• Login
    View Item 
    •   UZ eScholar Home
    • Faculty of Science
    • Faculty of Science ETDs
    • Faculty of Science e-Theses Collection
    • View Item
    •   UZ eScholar Home
    • Faculty of Science
    • Faculty of Science ETDs
    • Faculty of Science e-Theses Collection
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis of continuous longitudinal data with non-ignorable data.

    Thumbnail
    View/Open
    Thes_lillian.pdf (998.6Kb)
    Date
    2012-08-28
    Author
    Siziba, Lillian
    Metadata
    Show full item record

    Abstract
    Missing responses are very common in longitudinal data. Much research has been going on, on ways to go around this complication in analysing such a data set. The approaches range from simple remedies like: analysing complete cases only, imputing the missing data, available case analysis and many others, to joint modelling of the measurement process and the missing mechanism. The work of Rubin(1976) on classifications of missing mechanisms contributed greatly to the development of researches on joint models, as missingness could now be classified as ignorable or non-ignorable. There are at least three joint modelling approaches, three common forms which are differentiated by the factorisation of the full data density are: selection models, pattern mixture models and shared parameter models. Missing data in longitudinal studies can be classified into two main categories, which are missing intermittently: which is when a subject has a missing value for one occasion or more but will at a later stage during the study period have observed values, and dropouts: this is when we have a monotone missing pattern that is if we have a missing value at a particular point in time, there after the subject continues to have missing values until the completion of the study. The focus of this research is on the latter. Simulation of the missing pattern was done to produce informative dropouts. The major aim of this research was to compare estimates from different modelling approaches, with the main focus being comparing joint models to complete case basing on how their estimates compared to the complete data model estimates. The first part of this research focuses on linear mixed modelling of a complete longitudinal data set. The extensive modelling process starts from exploration of the data to estimation of parameters forms the baseline of the second part of the research which is the joint modelling process. The E-M algorithm (Dempster at al (1977) formed the backbone of the likelihood estimation under these approaches and at times convergence would not be reached or would be slow, and the in such cases the modified forms like the stochastic E-M algorithm would be used. The complete case estimates were very close to the complete data estimates. However it is difficult for this researcher to conclude that complete case analysis performs better than the other models. This researcher feels one could reach to a solid conclusion after considering different proportions of dropouts and also different patterns in which the dropouts are distributed throughout the study period.
    URI
    http://hdl.handle.net/10646/832
    Subject
    statistics
    missing responses
    longitudinal data
    dropouts
    Collections
    • Faculty of Science e-Theses Collection [257]

    University of Zimbabwe: Educating To Change Lives!
    DSpace software copyright © 2002-2020  DuraSpace | Contact Us | Send Feedback
     

     

    Browse

    All of UZ eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    University of Zimbabwe: Educating To Change Lives!
    DSpace software copyright © 2002-2020  DuraSpace | Contact Us | Send Feedback