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Abstract

Missing responses are very common in longitudinal data. Much research has been
going on, on ways to go around this complication in analysing such a data set. The
approaches range from simple remedies like: analysing complete cases only, imputing
the missing data, available case analysis and many others, to joint modelling of the
measurement process and the missing mechanism. The work of Rubin(1976) on classi-
fications of missing mechanisms contributed greatly to the development of researches
on joint models, as missingness could now be classified as ignorable or non-ignorable.
There are at least three joint modelling approaches, three common forms which are
differentiated by the factorisation of the full data density are: selection models, pat-
tern mixture models and shared parameter models.
Missing data in longitudinal studies can be classified into two main categories, which
are missing intermittently: which is when a subject has a missing value for one occa-
sion or more but will at a later stage during the study period have observed values,
and dropouts: this is when we have a monotone missing pattern that is if we have
a missing value at a particular point in time, there after the subject continues to
have missing values until the completion of the study. The focus of this research is
on the latter. Simulation of the missing pattern was done to produce informative
dropouts. The major aim of this research was to compare estimates from different
modelling approaches, with the main focus being comparing joint models to complete
case basing on how their estimates compared to the complete data model estimates.
The first part of this research focuses on linear mixed modelling of a complete lon-
gitudinal data set. The extensive modelling process starts from exploration of the
data to estimation of parameters forms the baseline of the second part of the research
which is the joint modelling process.
The E-M algorithm (Dempster at al (1977) formed the backbone of the likelihood
estimation under these approaches and at times convergence would not be reached
or would be slow, and the in such cases the modified forms like the stochastic E-M
algorithm would be used.

The complete case estimates were very close to the complete data estimates. How-
ever it is difficult for this researcher to conclude that complete case analysis performs
better than the other models. This researcher feels one could reach to a solid conclu-
sion after considering different proportions of dropouts and also different patterns in
which the dropouts are distributed throughout the study period.

iii



Chapter 1

Introduction

Longitudinal data is observed over time as well as over space, that is, response is

measured repeatedly on a set of units or subjects. Longitudinal designs have be-

come the most convincing and most popular way of collecting change data. Cross

sectional studies have one historic context while time series allows for multiple his-

torical context but for only one spatial location (Plewis, 1985), it is to this effect that

longitudinal data have an advantage over the earlier two. Longitudinal studies have

the capacity to separate changes from baseline, over time within individuals from

differences among individuals.

Longitudinal data can be classified into categories, with the two major categories

being: panel data and time series cross-section data. The major differences between

panel data and time series cross section data are that panel data have a large number

of cross-sections with each unit observed only a few times where as time series cross

1
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sectional data has a reasonably sized number of observations and not very large num-

ber of cross sections. There are other types of longitudinal data like historical data,

that is, data collected in retrospect and pseudo panel data (repeated cross sections).

The problem of missing responses is common in longitudinal researches. Missing val-

ues arise whenever one or more of the sequence of measurements from units within the

study are incomplete in the sense that the intended measurements are not taken, are

lost or are otherwise unavailable. In the absence of missing values many multivariate

statistical analysis would start by reducing the data matrix Y, to the mean vector,

µ and the covariance matrix S = [sjk]. But now, missing values result in unbalanced

data and our challenge would be the estimation of µ and S since some of the yij

values are now missing. We also have to address the questions:

• Why the values are missing?

• Whether or not their being missing has any bearing on the practical questions

being posed by the data?

Whenever, not all planned measurements are observed, a level of complexity is added

to the analysis of longitudinal data. Several remedies to the analysis of incomplete

data have been suggested. The most common approaches are (1) to discard subjects

with incomplete sequences and (2) imputing missing values. The first approach has

an advantage of simplicity but it is an inefficient use of information, since information

on completers only is used, in a trivial sense it describes response conditional on a
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subject having all measurements taken. The principle of imputation is that observed

values are used to impute values for missing observations. There are several ways of

imputing values ranging from simple to complex. These methods use more data than

the complete case analysis but they suffer from some drawbacks.

There are several approaches to estimation of parameters, which can be classified

as likelihood based and non likelihood based approaches. Likelihood estimates are

known to be asymptotically unbiased and sufficient (Diggle, 2002).

1.1 Motivation

A lot of research has been done on statistical methods and models for the analysis

of longitudinal data, with much emphasis on models for balanced or complete data

and in recent years there is a lot of focus on the area of joint modelling of the

measurement process and the missingness mechanism (Molenberghs and Verbeke,

2005). Dropouts occur frequently in longitudinal data, and in most fields where the

subjects are living organisms, dropouts in the form of deaths are usually of interest.

It becomes of paramount importance to closely consider and also model the missing

value mechanism when modeling the measurement process. Quick and easy remedies

have commonly been used to deal with data which has dropouts, using such methods

as, the complete case analysis, the available case analysis, imputing conditional or un-

conditional means. These methods have their advantages and disadvantages. But one

may really want to know if the cause of dropout is related to or is saying something
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about the experiment and hence it becomes important to consider the dropping out

as a stochastic process, which also needs to be modelled.

A subject’s pattern of response in a study is likely to depend on many character-

istics of that subject including some which are unobservable. Debates about relative

merits of certain models over others should be mainly contextually based. An impor-

tant consideration in formulating a model for a longitudinal data set with dropouts

would be to think of what casual relationship might plausibly exist amongst the

three stochastic processes namely the measurements, dropout times and the unob-

served characteristics(random effects). It is upon this background that this research

is made, and is geared to explore and compare different procedures for modeling

longitudinal data with dropouts. Focus will be put on the likelihood approach.

1.2 Aims and Objectives

1.2.1 Aims

The major aim of this research is to produce a comparison of models for longitudinal

data with non-ignorable dropouts obtained using likelihood approaches.

1.2.2 Objectives

The objectives of this research are to:

1. Produce models for longitudinal data with dropouts using Complete case analy-

sis
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2. Produce an integrated analysis of the measurement process and the dropout

mechanism for a:

(i) Selection model

(ii) Pattern mixture model

(iii) Shared parameter model

3. Compare models obtained from integrated analysis and those obtained from

complete case analysis.

1.3 Significance of the study

In practical situations it is difficult to justify a particular missing data mechanism,

and it maybe hard to distinguish whether it is random or not. Unless missing data

are a deliberate feature of the study design it is important to try to limit them during

data collection, since any method for compensating for the missing data requires

some unverifiable assumptions that maybe or may not be justified. However, since

data are likely to be missing despite all these efforts, it is important to try and collect

covariates that are predictive of the missing value so that an adequate adjustment can

be made. In real situations assumptions of random missingness are in-testable and

non-ignorable models offer a conservative approach. This research will contribute to

on going researches on longitudinal data with dropouts. No one approach may be said

to cover all forms in which the practical problems pose to researchers. It is therefore
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upon this background that this research is geared to produce a comparison of the

possible modelling approaches to longitudinal data with non ignorable dropouts.

1.4 Organisation

Chapter one consists of the general introduction, motivation, aims and objectives,

which is in actual fact the definition of work to be covered in this research. Chapter

two covers a detailed literature review i.e, longitudinal data, missingness mechanisms,

the quick solutions to modelling longitudinal data and likelihood based modelling.

Chapter three gives an outline of the methods to be used in data analysis. Chapter

four consists of analysis and the results. The last chapter, chapter five gives rec-

ommendations and conclusions. At the end of the document is the Appendix and

Bibliography. The appendix covers the Data and Programs used in this research



Chapter 2

LITERATURE REVIEW

2.1 Longitudinal Data

Longitudinal data is observed over time as well as over space, and therefore a longitu-

dinal design would produce a rectangular data matrix, say Y = [yij], where yij is the

value of the variable yj for unit i, j = 1, 2, 3...ni and i = 1, 2, 3...m, so yij denotes the

jth measurement of the ith of the m units. Often, the primary objective of longitu-

dinal data analysis is to describe the mean response as a function of time, treatment

effects and possibly covariates attached to the units or individual measurement.

Likelihood based approaches lean strongly on the assumption of independent observa-

tions, but repeated observations on the same unit are seldom independent. Therefore,

the assumption of independence should not be assumed but tested. Naturally there

is heterogeneity due to unmeasured factors across subjects.

7
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2.1.1 Notation

This section presents the basic notation to be followed in this study (adopted from

Diggle (2002)). We let Yij represent a response variable and Xij be a p × 1 vector

of explanatory variables observed at times tij for the observation j = 1, 2, . . . , ni on

subject i = 1, 2, . . . ,m. The mean of Yij is represented by E(Yi) = µij and the

variance of Yij is represented by V ar(Yij) = υij. The set of repeated outcomes for

subject i are collected into vector Yi = (Yi1, Yi2, . . . , Yini
)′ with mean E(Yi) = µi

and the ni × ni covariance matrix V ar(Yi) = νi, where the (jk)th element of νi

is the covariance between Yij and Yik denoted by Cov(Yij, Yik) = υijk. Responses for

all units constitute a matrix Y = (Y1,Y2, . . . ,Ym)′.

The basic linear regression model becomes

Yij = β1xij1 + β2xij2 + . . . + βpxijp + εij (2.1.1)

where xijk is kth explanatory variable, with k = 1, 2, 3, . . . , p. This can be expressed

in matrix notation as

Yij = x′
ijβ + εij

where β = (β1, . . . , βp)
′ is a p vector of unknown regression coefficients, and εij is

a zero mean random variable representing the deviation of responses from Yi =

Xiβ + εi.
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2.1.2 Modelling Issues

Repeated observations on same unit are seldom independent, so the independence

assumption should be tested and not assumed. Another important issue to consider

when modelling longitudinal data is the fact that naturally there is heterogeneity due

to unmeasured factors across subjects, (Diggle,2002).

Model Fitting Process

Model fitting aims at answering questions about the process which generated the

data. A model contains a relatively small number of parameters whose values can be

interpreted as answers to the scientific questions being posed by the data. The model

fitting process can be divided into four stage, which are:

(i) Formulation: This stage involves choosing the general form of the model. The

focus at this stage is the mean and the covariance structure. The time series

plots of observed averages within treatment groups are simple and effective

tools to model formulation in instances where data is well replicated and non

parametric smoothing is helpful where there are few measurements at any one

time. Time series plots, scatter plot matrices and variogram plots of residuals

can be used to give an idea of the underlying covariance structure.
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(ii) Estimation: The aim at this stage is to attach numerical values to the parame-

ters in the model whose general form is

Yi ∼ Np(Xiβ, σ2Vi(φ)) (2.1.2)

where V(φ) is the covariance structure

(iii) Inference: The aim of this stage is to make inference about the parameter space

β.

(iv) Diagnostic checking: This stage aims at comparing the observed data with the

estimated data to highlight any discrepancies.

Types of Models

With repeated measurements we often strategise to reduce the repeated values into

one or two summaries and then analyse each summary variable as a function of co-

variates Xi. The vector of repeated measurements for each subject is summarised by

a vector of a relatively small number of estimated subject specific regression coeffi-

cients, then multivariate regression techniques can be used to relate these estimates

to known covariates and compare the estimates across groups. This is the so called

two-stage or derived variable analysis. The three main approaches in applying the

two stage analysis are:

(a) Marginal Models: The main feature of the marginal models is that the regression

of the response on explanatory variables is done separately from the within
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subject correlation. The marginal expectation E(Yij) is modelled as a function

of explanatory variables, where the marginal expectation means the average

response over a subpopulation that share a common value of X, i.e. E(Yij) = µij

depends on explanatory variables Xij through the function η(µij) = X′
ijβ where

η is a known link function, such as the identity link for Gaussian or the logit

link for binary responses and the log link for counts. The marginal variance

depends on the marginal mean according to V ar(Yij) = υ(µij)φ where υ(.) is a

known variance function which needs to be estimated.

Repeated values are not likely to be independent, therefore the assumptions

about the form of correlations are to be included. The correlation of Yij and Yik

is usually a function of marginal means and perhaps of additional parameters

α, that is, Corr(Yij, Yik) = ρ(µij, µik, α). Marginal models are appropriate if

the population average is the focus.

(b) Random effects models: There is natural heterogeneity across subjects due to

unmeasured factors. This heterogeneity is reflected in their regression coeffi-

cients which vary from one individual to the next. This heterogeneity can be

represented by a probability distribution. Another factor is that observations

from the same subject are seldom independent, they share unobservable vari-

ables say Ui. For Gaussian data the linear random effects model does the job

and the basic ideas extend to regression models for discrete and non-Gaussian
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continuous responses. The random effects Generalised linear model assumes

that data for a subject are independent observations following a Generalised

linear model (GLM) but that the regression coefficients vary from subject to

subject according to a distribution F. The general specification of a random ef-

fects GLM is as follows: Given Ui, responses Yi1, . . . , Yini
are mutually indepen-

dent and follow a GLM (also known as the exponential family of distributions)

with density

f(yij|ui) = exp[
yijθij − b(θij)

a(φ)
+ c(yij, φ)], (2.1.3)

the conditional moments for the canonical exponential distribution in 2.1.3

are;

µij = E(yij|ui) = b′(θij)

and

vij = V ar(yij|ui) = b′′(θij)/a(φ)

satisfying h(µij) = x′
ijβ

∗ + d′
ijui, and vij = υ(µij)φ where h and υ are link and

variance functions respectively, dij is a subset of xij. β∗ represents the effects

of the explanatory variables on individuals’ response. Random effects models

are appropriate when the aim is to make inference about subjects rather than

the population.

(c) Transition models: Since repeated observations on a subject are seldom in-

dependent, correlation among Yi1, Yi2, . . . , Yini
exists because the past values,
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Yi1, Yi2, . . . , Yij−1, influence the present observation Yij. The past observations

are treated as additional predictor variables. In the general transition model,

the conditional distribution of Yij given the past is modelled as an explicit func-

tion of the preceding responses. The general transition model can be specified

as follows: let Hij = {Yi1, Yi2, . . . , Yij−1} represent past responses for the ith

subject, also let µc
ij=E(Yij|Hij) and vc

ij=V ar(Yij|Hij) be the conditional mean

and variance of Yij given past responses and the explanatory variables assuming

h(µc
ij) = x′

ijβ
∗∗ +

∑s
r=1 fr(Hij, α), and that vc

ij = υ(µc
ij)φ where h and v are

link and variance functions respectively while β∗∗ represents change per unit

change in x.

2.2 The General Linear Mixed Effect Model

The general linear mixed effect model can viewed as a combination of models from a

two stage analysis where: The first stage assumes that Yi satisfies a linear regression

model

Y i = Ziβi + εi (2.2.4)

where Zi is an appropriate design matrix. This model shows how the response evolves

over time for the ith subject where βi is a q − dimensional vector of unknown sub-

ject specific regression coefficients and εi is a vector of the residual components

εij, j = 1, 2, 3, · · · , ni, usually assumed to be normally distributed with mean zero
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and covariance matrix Vi. The model is completed by specifying the covariance

structure, which can be homogeneous or heterogeneous.

Commonly used homogeneous covariance structures are;

• When Vi = σ2Ini
for Ini

denoting the identity matrix of dimension ni. This is so

under the strong assumption that all repeated measurements are independent

though repeated measurements within the same subject are seldom independent

• The first order autoregressive model which assumes that the covariance between

two measurements Yij and Yik from the same subject i is of the form σ2ρ|tij−tik|

for unknown parameters σ2 and ρ.

• Compound symmetry which assumes that the covariance is of the form σ2+γδ2
ij

for unknown parameters σ2 and γ > −σ2, and where δjk equals 1 for j = k and

zero otherwise.

The second stage is a multivariate regression model of the form

βi = Kiβ + bi (2.2.5)

which models variability between the subjects with respect to their subject specific

regression coefficients, βi, Ki is a (q × p) matrix of covariates, b′
is are assumed to

be independent following a q− dimensional normal distribution with mean zero and

general covariance structure D.
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Substituting for equation 2.2.5 in 2.2.4 we get the general linear mixed model as

Yi = ZiKiβi + Zibi + εi (2.2.6)

which simplifies to

Yi = Xiβ + Zibi + εi (2.2.7)

where Xi = ZiKi is a ni × p matrix of known covariates. Model 2.2.7 has linear

mixed effects: with fixed effects β which are population specific, that is the same for

all subjects and random effects bi which are subject specific. The b′
is are assumed to

be random because subjects are selected randomly from a population.

It follows that Yi conditional on random effects bi is normally distributed with mean

Xiβ + Zi with covariance matrix Σi, and bi ∼ N(0,D). The marginal density of Yi

is therefore given by

f(yi) =

∫
f(yi|bi) f(bi) dbi (2.2.8)

where f(yi|bi) is the conditional density of Yi given bi and f(bi) is the density of bi.

We have f(yi) as a density of an ni dimensional normal distribution with mean vector

Xiβ and with covariance matrix Vi = ZiDZ′
i + Σi. The mean structure depends on

covariates Xi and the covariance structure depends on Zi.
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2.3 Incomplete Data

Whenever there is a situation that not all planned measurements are observed, a level

of complexity is added to the analysis of longitudinal data. Questions like, why the

values are missing and whether missingness has any bearing on the practical question

being posed by the data, have to be addressed.

According to Diggle (2002) missing values can be classified as whether missing inter-

mittently or as dropouts. Missing values occur as dropouts when observations on a

subject are obtained until a certain point in time, after which all measurements are

missing, that is, if we intend to take a sequence of measurements on a particular unit,

and whenever yj is missing so are yk for all k > j, otherwise missing values are said

to be intermittent.

Intermittent missing values can arise through a known censoring mechanism or the

reason for their being missing is often known since the subject in question remains

in the study. In some cases it will be reasonable to assume that the missingness is

unrelated to the measurement process. When such is the case analysis of the data

can be done by any method which accommodates unbalanced data.

Dropouts are often lost to any form of follow up and there is a possibility that dropouts

arise for reasons directly or indirectly related to the measurement process. When

there is any kind of relationship between the measurement process and the dropout

process, the interpretation trends in mean response over time can be problematic.
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Also, resulting from dropouts, subjects are lost from the study, which results in a

decreasing sample size, this increases variability which in turn decreases precision.

2.4 Simple Missing Data Methods

With missing values in longitudinal data, inference will often be invalidated when the

observed measurements do not constitute a simple random subset of the complete set

of measurements. Also often standard software work with complete arrays of data.

Often quick and simple ways are found round the problem of modelling data with

missing values. Two most common fixes will be reviewed below.

2.4.1 Complete Case Analysis

A complete case analysis includes only those cases into the analysis for which all

ni measurements were recorded, that is discard all incomplete sequences. The ad-

vantages of this methods are that it is very simple to describe and since the data

structure would be complete arrays, standard statistical software can be used. The

method suffers drawbacks, among others it is obviously wasteful of data especially if

the dropout process is unrelated to the measurement process. The method performs

differently under different missing mechanism and therefore a partial check on missing

mechanism assumptions can be made.
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2.4.2 Imputation

Imputation is an alternative way to obtain a complete data set instead of discarding

subjects with incomplete sequences. The principle is that observed values are used to

impute values for missing observations. There are several ways of imputing ranging

from simple to some complex. Some commonly used methods of imputing values

include:

1. Last observation carried forward: This procedure uses information on the sub-

ject to impute the values for missing observations of that particular subject.

The method consists of extrapolating the last observed measurement for the

subject in question to the remainder of their intended time sequence. Very

strong and unrealistic assumptions have to be made to ensure validity of this

method, like that the subject’s measurement stays at the same level from the

moment of dropout onward.

The method overestimates precision by treating imputed and actually observed

values on equal footing.

2. Unconditional mean imputations: This is termed unconditional because infor-

mation is borrowed from other subjects to impute a value for a missing obser-

vation. One does not use information on the subject for which an imputation is

generated. The missing value is replaced by the average of the observed values

on the same variable over the other subjects. Other methods of imputation
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which are a bit complex like Buck’s method and multiple imputation can be

used to impute values.

3. Available case method: The method uses all available values to the jth variable

disregarding their response status at the other measurement occasions. This

method uses more information than the complete case.

2.5 Modelling the Dropout Process

In order to incorporate incompleteness into the modelling process we need to reflect

on the nature of the missing value mechanism and its implications for statistical

inference.

Little and Rubin (1987) made important distinctions between different missing value

processes. Let Yi denote the complete set of measurements for the ith subject which

would have been obtained were there no missing values that is, we assume that

for each subject i in the study a sequence of measurements Yij is designed to be

measured at occasions j = 1, . . . , ni and the outcomes are grouped into a vector

Yi = (Yi1, . . . , Yini
)′.

For each occasion j define

Rij =

{
1 if Yij is observed

0 Otherwise

The missing data indicators Rij are grouped into a vector Ri which is of the same

length as Yi. Now (Yi,Ri) is the full data that is, the complete data together with
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the missingness indicators. Yi can be partitioned into Yi = (Yo
i ,Y

m
i ) where Yo

i

denotes measurements actually observed,that is the vector containing those Yij for

which Rij = 1 and Ym
i denotes those measurements which would have been available

had they not been missing. Yo
i and Ym

i can be referred to as the observed and missing

components respectively. The process generating Ri is referred to as the missing data

process. To note is the fact that unless all components of Ri equal 1, the data com-

ponents are never jointly observed. One observes the measurements of Yo
i together

with the missingness indicators Ri.

We can partition µi,Vi and xi in a similar manner to obtain (µo
i , µ

m
i ), (Vo

i ,V
m
i )

and (xo
i ,x

m
i ) respectively.

Lets consider the full data density f(yi, ri|Xi,Zi, θ, ϕ) where Xi is the design matrix

for fixed effects and Zi is the design matrix for random effects. θ and ϕ are vectors

that parameterise the joint distribution where θ = (β′, φ′) (fixed and covariance para-

meters) describes the measurement process and ϕ describes the missingness process.

In the case of dropouts: Adopting the notation that for any subject the complete set

of observed measurements is Yi = (Yi1, . . . ,Yini
). Let the scalar Di be the dropout

indicator obeying the relationship Di = 1 +
∑ni

j=1 Rij, where Rij is as defined earlier

on. Di denotes the dropout time and 2 ≤ Di ≤ ni +1 with D = n+1 indicating that
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the subject in question has not dropped out. Further more, we introduce another

indicator Ti, indicating the number of measurements taken for subject i, where

Ti =

ni∑
j=1

Rij = Di − 1.

Rubin and Little (1987) classify missing value mechanisms as

1. Completely Random Dropout (CRD) if Di is independent of both Yo
i and Ym

i .

The dropout and the measurement process are independent. Consider for ex-

ample, the joint density of di given Yi and ϕ, f(di|yi, ϕ), with ϕ being the

vector of the non response model then if CRD

f(di|yi, ϕ) = f(di|ϕ).

2. Random Dropout (RD) if di is independent of Ym
i . The probability of non

response depends on the observed response Yo
i but not on the missing values

Ym
i and

f(di|yi, ϕ) = f(di|yo
i , ϕ)

3. Informative Dropout (ID) if di is dependent on Ym
i . The dropout depends on

unobserved measurements, i.e. those that would have been observed if the the

unit had not dropped out and

f(di|yi, ϕ) = f(di|ym
i ,yo

i , ϕ)
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We can afford to ignore the first two dropout patterns since the dropout process either

depends on the observed values only or is completely independent of the measurement

process. Hence CRD and RD constitute the ignorable class of dropouts. However

for ID, the dropout process depends on the unobserved values of the measurement

process, meaning that what ever the measurement value would have been, had the

subject not dropped out, the value has a causal effect to the subject’s dropout, hence

the the dropout process is non-ignorable.

2.6 Joint Modelling of Measurements and Miss-

ingness

Likelihood-based and non-likelihood-based approaches can be used to model data with

non responses. In the case of maximum likelihood, there exist three approaches based

on the factorisation of the full data density or equivalently the likelihood function.

These are:

• Selection models, which are a result of outcome dependent factorisation of the

joint or full data density. Missingness indicators are conditioned on the values

of the measurement process.

• Pattern mixture models, which are a result of pattern dependent factorisation.

The distribution of the measurement process is a mixture of distributions for

subjects within distinct subgroups determined by patterns of missingness.
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• Shared parameter models (random effects models), which are a result of para-

meter dependent factorisation. The measurement process and the missingness

indicators are conditional independent given a group of parameters shared by

the two parties.

The following graphical illustration from Diggle (2002) gives a kind of thought exper-

iment that the data analyst must conduct in deciding how to deal with the dropouts.

The three stochastic processes in question are Y, the measurement process, D, the

drop out process and U, the unobserved characteristics or random effects.

Figure 2.1: Graphical representation of the models
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In the diagram, (a) represents a denial that any simplifying assumptions are pos-

sible. Under this circumstance one would be more or less compelled to express a

model for the data as a collection of joint distributions of Y and U conditional on

each of the possible values of D. Diagram (b) can be interpreted as a situation in

which the random effects or subject specific characteristics, U, influence the proper-

ties of the measurement process, Y, for the subject in question, with the propensity

to drop out subsequently determined by the realisation of the measurement process.

Diagram (c) can be interpreted as a situation where the subject-specific characteris-

tics initially determine the propensity to drop out, with a consequential variation in

the measurement process between different, predestined dropout cohorts (patterns).

Diagram (d) suggests that the measurement and the dropout processes are a joint

response to subject-specific characteristics, which could be thought of as under identi-

fied explanatory variables. The natural parameters of the three models have different

meanings.

2.7 Likelihood Based Estimation

Let the data denoted by Y , where Y may be a scalar, vector or matrix. For longitu-

dinal data Y would be a matrix. The data are assumed to be generated by a model

described by a probability function f(Y |θ) where θ is the vector of parameters. The

following definitions and terminology shall be used:
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(i) f(Y |θ) is a function that gives probabilities or densities of various Y value sets

for fixed θ values.

(ii) The likelihood function L(θ|Y ) is any function proportional to f(Y |θ). L(θ|Y )

is a function of the parameter θ for fixed Y .

(iii) The log likelihood function `(θ|Y ) is the natural logarithm of the log likelihood

function L(θ|Y ) .

2.7.1 Maximum Likelihood Estimation

The idea behind maximum likelihood parameter estimation is to determine the para-

meters that maximise the probability (likelihood) of the sample data. Consider the

full data density f(y, r; θ, ϕ) where θ and ϕ are unknown parameter spaces which

need to be estimated. The likelihood function,

L(θ, ϕ|y, r) =
∏

f(yi, ri|θ, ϕ). (2.7.9)

Now since we are dealing with, incomplete data y = (yo,ym) where yo denotes the

observed data and ym denotes the observed data. Let

f(y|θ) = f(yo,ym|θ) (2.7.10)

denote the joint density of yo and ym. The marginal pdf of yo can be found by

integrating out ym from the joint density, that is,

f(yo|θ) =

∫
f(yo,ym|θ) dym. (2.7.11)
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The logarithm likelihood function is given by

` = lnL =
∑

lnf(yi, ri|θ, ϕ). (2.7.12)

If the likelihood is differentiable, the Maximum Likelihood estimators of θ are ob-

tained by differentiating the likelihood or the log likelihood with respect to θ, setting

the result equal to zero and solving for θ.

S(θ|y) =
∂`

∂θj

= 0 (2.7.13)

is the likelihood equation. S(θ|y) is called the score function. I(θ|y) is the observed

information where I(θ|y) = − ∂2`
(∂θ)2

. The covariance matrix is the inverse of the

observed information evaluated at θ̂: C = I−1(θ̂|Y ).

The likelihood of θ based on Yo, ignoring the missing data mechanism is a function

of θ proportional to f(Yo|θ) implying that inference about θ can be based on this

likelihood, L(θ|Yo).

Consider Y and the missing data indicator R, one way of factorisation of their joint

distribution is expressing it as a product of the densities of Y and the conditional

distribution of R given Y, that is,

f(Y,R|θ, ϕ) = f(Y |θ) f(R|Y,ϕ) (2.7.14)

where ϕ is unknown parameter space.

The actual observed data consists of the values of the variables(Yo, R). Their joint
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distribution is obtained by integrating Y m out of the joint density of Y = (Y o, Y m)

and R i.e.,

f(Y o, R|θ, ϕ) =

∫
f(Y o, Y m|θ) f(R|Y o, Y m, ϕ) dY m. (2.7.15)

The likelihood function of θ and ϕ, L(θ, ϕ|Y o, R) ∝ f(Y o, R|θ, ϕ).

From Rubin’s work, if the distribution of the missing data mechanism does not depend

on the missing values Y m then the factor f(R|Y o, Y m, ϕ) in equation 2.7.14 simplifies

to f(R|Y o, ϕ) then

f(Y o, R, θ, ϕ) = f(R|Y o, ϕ)

∫
f(Y o, Y m, θ) dY m = f(R|Y o, ϕ)f(Y o|θ) (2.7.16)

If f(R|Y o, Y m, ϕ) = f(R|Y o, ϕ) then the probability that a particular component of

Y is missing cannot depend on the value of the component when it is missing.

When a closed form solution of equation 2.7.15 above can not be found, iterative

methods can be applied. Such methods like the New-Raphson algorithm and the

Expectation-Maximisation (EM) algorithm can be used as an alternative to direct

maximisation. Let θ(0) be the initial estimate of θ, and let θ(t) be the tth iteration.

The Newton-Raphson algorithm is given by the equation

θ(t+1) = θ(t) + I−1(θ(t)|Y o) S(θ(t)|Y o) (2.7.17)

where I(θ|Y o) is the observed information and I(θ|Y o) = −∂2`(θ|Y o)
(∂θ)2

. Alternatively

the method of Scoring can be used where the observed information in equation 2.7.17



28

is replaced by the expected information.

θ(t+1) = θ(t) + J−1(θ(t)|Y o) S(θ(t)|Y o) (2.7.18)

where J(θ) = −E {I(θ|Y o)|θ} =
∫ ∂2`(θ|Y o)

(∂θ)2
f(Y o|θ) dY o. Both these methods involve

calculating the matrix of second derivatives of the log likelihood. The EM algorithm

does not require second derivatives.

2.8 Ignorability of Missingness

Since inference has to be based on what was obtained we focus on outcome depen-

dent missingness and according Rubin (1976) missing values are ignorable when ri is

independent of ym
i , given yo

i and Xi and also when θ and ϕ are distinct. Under this

ignorability the log-likelihood function for θ can be separated from the log-likelihood

for ϕ.

`(θ, ϕ|yo
i , ri) = `(θ|yo

i ) + `(ϕ|yo
i , ri)

where ` = lnL and

L = L(θ, ϕ|yo
i , ri) ∝ Π

∫
f(yi, ri|θ, ϕ)dyo

i .

Under this condition ignorability is equivalent to the union of RD and CRD hence

non ignorability becomes a synonym for ID in this context. So under ignorability

the CRD and RD provide the same fitted measurement but however, as discussed

by Verbeke and Molenberghs (1997) this does not imply that inferences under CRD
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and RD are equivalent. Yang (2006) defines ignorability as a condition under which

observed data can be used to estimate θ without bias.

2.8.1 Expectation-Maximisation (EM) Algorithm

When dealing with likelihood based estimation the process of maximisation becomes a

challenge when the data is incomplete. Often patterns of incomplete data do not have

particular forms that allow explicit maximum likelihood estimates to be calculated

by exploiting factorisations of the likelihood.

Special forms of the algorithm have been proposed about half a century ago but the

first unifying and formal account was given by Dempster, Laird and Rubin(1977).

The EM algorithm consists of an Expectation (E step) and a Maximisation (M step).

The E Step

Given the current value θ(t) of the parameter vector, the E step computes the expected

value of the complete data log likelihood, given the observed data and the current

parameters to give what is called the objective function. If we consider the complete

data set Y = (Y o, Y m), the joint likelihood density function is :

f(y; θ) = f(yo; θ) f(ym|yo; θ)).

So the likelihood function is

logL(θ; y) = logL(θ; yo) + logL(θ; ym).
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First by using initial values θ(0) of the parameter vector we can compute the objective

function for ignorable data at the tth iteration:

Q(θ|θ(t)) =

∫
`(θ|Y )f(Y m|Y o, θ = θ(t)) dY m (2.8.19)

which simplifies to

Q(θ|θ(t)) = E
{

`(θ|Y )|Y o, θ(t)
}

. (2.8.20)

For non ignorable models we find the initial estimates of θ and ϕ, θ(0) and ϕ(0)

respectively. At the iteration t, given the current estimates (θ(t) and ϕ(t)) of (θ, ϕ)

the E step calculates

Q(θ, ϕ|θ(t), ϕ(t)) =

∫
`(θ, ϕ|Y o, Y m, R) f(Y m|Y o, R, θ = θ(t), ϕ = ϕ(t)) dY m

(2.8.21)

The M Step

The M step determines the parameter vector that maximises the respective objec-

tive function, θ(t+1) and (θ(t+1), ϕ(t+1)) for ignorable and non-ignorable missing data

respectively. Formally θ(t+1) satisfies

Q(θ(t+1)|θ(t)) ≥ Q(θ|θ(t)) (2.8.22)

for all θ, and (θ(t+1), ϕ(t+1)) satisfies

Q(θ(t+1), ϕ(t+1)|θ(t), ϕ(t)) ≥ Q(θ, ϕ|θ(t), ϕ(t)), (2.8.23)
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for all (θ, ϕ). One then makes iterations of the E and M steps until convergence.

The E step entails calculating the conditional expectation, this maybe infeasible in

many situations. Celuex and Diebolt (1985) provided a possible alternative in which

the expectations are calculated via simulations. In their stochastic EM algorithm, at

each iteration the missing data is imputed with a single draw from the conditional

distribution of the missing data given the observed and the current parameter es-

timates. This imputation of missing values is based on all our current information

about θ and hence provides us with a plausible pseudo-complete data. Once we have

a pseudo-complete data we can directly maximise its log likelihood to obtain updated

estimates. The process is iterated for a sufficient number of iterations.

2.8.2 Theory of the EM Algorithm

Assuming ignorability of missingness the distribution of the complete data Y can

be factored as f(Y |θ) = f(Y o, Y m|θ) = f(Y o|θ)f(Y m|Y o, θ) where f(Y o|θ) is the

density of of the observed data Y o. f(Y m|Y o, θ) is the density of the missing data

given the observed data. The corresponding decomposition of the likelihood becomes

`(θ|Y ) = `(θ|Y o, Y m) = `(θ|Y o) + lnf(Y m|Y o, θ). (2.8.24)

We wish to estimate θ by maximising the incomplete data likelihood `(θ|Y o) with

respect to θ for fixed Y o

`(θ|Y o) = `(θ|Y )− lnf(Y m|Y o, θ) (2.8.25)
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where lnf(Y m|Y o, θ) is the missing part of the complete data log-likelihood. The

expectation of equation 2.7.25 above over the distribution of the missing data Y m,

given the observed data Y o and a current estimate of θ, θ(t) is

`(θ|Y o) = Q(θ|θ(t))−H(θ|θ(t)) (2.8.26)

where Q(θ|θ(t)) =
∫

`(θ|Y )f(Y m|Y o, θ = θ(t)) dY m and

H(θ|θ(t)) =

∫
lnf(Y m|Y o, θ) f(Y m|Y o, θ(t)) dY m (2.8.27)

It can be shown by Jensen’s inequality that H(θ|θ(t) ≤ H(θ(t)|θ(t)). The difference in

values of `(θ|Y o) at successive iterations is given by

`(θ(t+1)|Y o)− `(θ(t)|Y o) =
[
Q(θ(t+1))−Q(θ(t)|θ(t))

]
−
[
H(θ(t+1))−H(θ(t)|θ(t))

]
.

(2.8.28)

The EM algorithm chooses θ(t+1) to maximise Q(θ|θ(t))with respect to θ.

2.8.3 The Stochastic E-M Algorithm

The E-M algorithm is a common approach for parameter estimates in complete data

sets, however calculating the conditional expectation required in the E-step maybe

infeasible in many situations. Celuex and Diebolt (1985) brought the general idea of a

stochastic E-M algorithm where the expectations are performed via simulations. The

idea behind the stochastic E-M algorithm is that at each iteration the missing data

is imputed with a single draw from the conditional distribution of the missing data
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given the observed and the current parameter estimates. So the imputation is based

on all current information about θ, and hence provides a pseudo-complete data set

which can be therefore maximised to obtain current estimates. The main advantage

of the stochastic E-M over the E-M is that the earlier avoids the evaluations of the

integrations, in the E step of the E-M algorithm. The stochastic E-M algorithm has

the S-step and the M-step which are developed as follows:

• S-step: The first missing value is simulated from the conditional distribution

f(Y m
i |Y o

i , Di, θ
(t), ϕ(t)). This distribution does not have a plausible form and

hence it is not possible to use direct simulation. to overcome this problem the

following procedure is used

– A candidate value y∗ is generated from the conditional distribution func-

tion f(Y m
i |Y o

i , θ(t)) which is normal distribution.

– Calculate the probability of dropout for Y ∗ according to the dropout

model, where the parameters ϕ are fixed at current values. Lets denote

this probability P ∗
i

– A random variate U is simulated from the uniform distribution on the

interval [0, 1], then Y m
i = Y ∗, if U ≤ P ∗

i : otherwise repeat first step.

• M-step: The M-step consist of two sub steps, which are,

– M1-step which caters for estimation of the dropout parameters, e.g. the
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logistic step in the case where we assume the dropout process can be

modelled by a logistic model. These parameters can be obtained using an

iterative method for likelihood estimation of binary data models.

– M2-step, maximum likelihood estimates of the measurement process are

obtained using an appropriate optimisation approach.

2.9 Models for Data with Dropouts

Let us denote Y ∗
i = (Y ∗

i1, Y
∗
i2, . . . , Y

∗
in)T be the n−element complete vector of mea-

surements on the ith subject and ti = (ti1, . . . , tin)T be the corresponding times at

which the measurements are made. Let Yi = (Yi1, Yi2, . . . , Yin)T denote the vector of

observed measurements with missing values coded as 0.

2.9.1 Selection Models

Under the Selection model one uses the functional form of f(di|yi) to discriminate

between different types of dropout processes. The full data density can be factorised

as below

f(yi, di|Xi,Zi, θ, ϕ) = f(yi|Xi,Zi, θ)f(di|yi,Xi, ϕ) (2.9.29)

where f(yi|Xi,Zi, θ) is the marginal density of the measurement process, f(di|yi,Xi, ϕ)

is the density for the missingness process conditional on the outcomes. The latter

factor corresponds to the self selection of individuals into ’observed’ and ’missing’

groups which is the basis of selection models. This factor can be expressed in the
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form

f(di|yi,Xi, ϕ) = f(di|yo
i ,y

m
i ,Xi, ϕ) (2.9.30)

If θ and ϕ are disjoint in the sense that the parameter space (θ′, ϕ′)′ is the product

of the parameter spaces θ and ϕ then inference can be based on the marginal observed

data density only, which is the separability condition. The observed data likelihood

can be expressed as

f(yo
i , di|θ, ϕ) =

∫
f(yi, di|θ, ϕ) dym

i =

∫
f(yo

i ,y
m
i |θ)f(di|yo

i ,y
m
i , ϕ)dym

i (2.9.31)

If the density of missingness f(di|yo
i ,y

m
i , ϕ) is independent of the measurements (both

yo
i and ym

i ), when it assumes the form f(di|ϕ) then the process is termed Completely

Random Dropout (CRD).

If f(di|yo
i ,y

m
i , ϕ) is independent of the unobserved measurements ym

i , but depends

on the observed measurements yo
i , there by assuming the form f(di|yo

i , ϕ) then the

process is referred to as random drop out(RD).

If f(di|yo
i ,y

m
i , ϕ) depends on values of ym

i , the process is referred to as informative

drop out (ID). ID process is allowed to depend on yo
i . It is important to note that

for selection models to hold the separability condition has to be satisfied such that

the measurement model f(yo
i ) and the dropout model f(di) or f(di|yi) can be fitted

separately.
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2.9.2 A Selection Model for Dropouts

Let us denote tdi
as the dropout time for the ith subject, where 2 ≤ di ≤ n+1, where

n + 1 identifies no drop out. Then, ri is a vector of di − 1 consecutive ones followed

by n + 1 − di consecutive zeros. The crucial assumption we make for the dropout

process is the one made by Diggle and Kenward (1994) which says that if a subject is

still in the study at time tk, its associated sequence of measurements Yj : j = 1, . . . , k

follows the same joint distribution as that of the corresponding Y ∗
j : j = 1, . . . , k. The

working relationship between Y and Y ∗ is as follows:

Yj =

{
Y ∗

j if j = 1, . . . , D − 1

0 j ≥ D

where 2 ≤ D ≤ n. Now let f ∗(y, β, φ) denote the joint probability density function

of Y ∗, which follows the multivariate Gaussian model. Let Hk = (y1, y2, . . . , yk−1

denote an observed sequence of measurements up to time tk−1 and y∗k the value that

would be observed at time tk if the unit did not drop out. Diggle and Kenward(1994)’s

model allows the conditional probability of drop out at time d to depend on the history

of the measurement process up to and including time td, so that for d ≤ n

P (D = d|history) = pd(Hd, y
∗
d; ϕ), (2.9.32)

where ϕ is a vector of unknown parameters. Now the joint distribution of the observed

sequence Y via the sequence of conditional distributions for Yk given (Y1, Y2, . . . , Yk−1) =

Hk. Let f ∗
k (y|H∗

k ; β, φ) denote the conditional univariate probability density function
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of Y ∗
k given (Y ∗

1 , Y ∗
2 , . . . , Y ∗

k−1) = H∗
k . Also let fk(y|Hk; β, φ) denote the the condi-

tional probability density function of Yk given (Y1, Y2, . . . , Yk−1) = Hk, then it follows

that

P (Yk = 0|Hk, Yk−1 = 0) = 1 (2.9.33)

and

P (Yk = 0|Hk, Yk−1 6= 0) =

∫
pk(Hk, y, ϕ)f ∗

k (y|Hk; β, φ) dy (2.9.34)

and for Yk = y 6= 0,

fk(y|Hk; β, φ, ϕ) = {1− pk(Hk, y; ϕ)} f ∗
k (y|Hk; β, φ) (2.9.35)

Then for a complete sequence Y = (Y1, . . . , Yn), and suppressing the dependency

on the parameters β, ϕ and φ,

f(y) = f ∗
1 (y1)

n∏
k=2

fk(yk|Hk) (2.9.36)

= f ∗(y)
n∏

k=2

{1− pk(Hk, yk)} (2.9.37)

For an incomplete sequence Y = (Y1, Y2, . . . , Yd−1, 0, . . . , 0) with dropout at time td

f(y) =

{
f ∗

1 (y1)
d−1∏
k=2

fk(yk|Hk)

}
P (Yd = 0|Hd) (2.9.38)

= f ∗
d−1(y)

[
d−1∏
k=2

{1− pk(Hk, yk)}

]
P (Yd = 0|Hd) (2.9.39)

, where f ∗
d−1(y) denotes the joint pdf of the first d− 1 non zero elements of Y ∗

If we let µ(β) and V(φ) be the mean response vector and the covariance matrix

for a complete sequence of measurements Y∗ = (Y1, Y2, . . . , Yn)t on a single subject,
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respectively and y be the realisation of Y∗, then we let µ(k) denote the first k elements

of µ. Also let V(k) denote the leading k× k sub matrix of V, c(k) = (c
(k)
1 , . . . , c

(k)
k ) for

k-element c-vector of covariances, where

c
(k)
j = cov(Y ∗

j , Y ∗
k+1), j = 1, . . . , k

and vkk = var(Y∗
k. Then for each k = 1, . . . , n − 1 , the joint pdf of y is k variate

Gaussian with mean vector µ(k) and variance V(k). As cited earlier in section 2.1, V

can take various forms.

Considering the dropout process, there are several ways of modelling the dropout

process and specification of conditional probability, pk(Hk, y; ϕ) in equation 2.9.32.

A logistic linear model is proposed as an empirical model,

logit {pk(Hk, y; ϕ)} = ϕ0 + ϕ1y +
k∑

j=2

ϕjyk+1−j (2.9.40)

where ϕ can be allowed to depend on covariates or on time in which case model

above can be extended by making ϕ0 a function of covariates say, wqk time tk. The

relationship can be for example linear :

ϕ0 =
r∑

q=1

ϕq0wqk (2.9.41)

Now for the likelihood function, let yi = {yij : j = 1, . . . , di − 1} denote the ob-

served measurements on the ith subject, with di indicating the dropout time. Let

f ∗(yi) denote the joint pdf of the di− 1 available measurements from the ith subject,
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we have

f ∗
i (yi) = (

√
2π)−(di−1)(V(di−1)(φ)−

1
2 )exp

{
−1

2
(yi − µi)

TV(di−1)(φ)−1(yi − µi)

}
(2.9.42)

and applying logarithms we get

logf ∗
i (yi) = −{(di − 1)/2} log(2π)−1

2
log
∣∣∣V(di−1)(φ)

∣∣∣−1

2
(yi−µ(i))TV(di−1)(φ)−1(yi−µ(i))

(2.9.43)

where µ(i) represent the relevant di − 1 elements of the mean response vector. Model

2.9.32 can be expressed in the form

log

{
pk(Hk, y; ϕ)

1− pk(Hk, y; ϕ)

}
= ϕ0 + ϕ1y +

k∑
j=2

ϕjyk+1−j (2.9.44)

implying that

log {(1− pk(Hk, y; ϕ))} = −log

{
1 + exp

(
ϕ0 + ϕ1y +

k∑
j=2

ϕjyk+1−j)

)}
(2.9.45)

Then the log-likelihood for β, φ and ϕ based on yi : i = 1, . . . ,m is

L(β, φ, ϕ) = L1(β, φ) + L2(ϕ) + L3(β, φ, ϕ) (2.9.46)

where

L1(β, φ) =
m∑

i=1

logf ∗(yi) (2.9.47)

L2(β) =
m∑

i=1

d−1∑
k=2

log {1− pk(Hik, yik)} (2.9.48)

and

L3(β, φ, β) =
∑

i:di≤n

logP (D = di|yi) (2.9.49)
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2.9.3 Pattern-Mixture Models

Pattern mixture models offer an alternative way of factorising the joint density. For

longitudinal data the classification of subjects according to dropout time divides sub-

jects into subgroups after the event. One would want to know whether the response

characteristics which are of primary interest do or do not vary between these sub-

groups. The usual assumption is that subjects with the same drop out time are more

alike than those with different dropout times, thus those with the same dropout time

share a common response distribution. In other words, the response is a mixture

over patterns. However, this assumption may be too strong in many circumstances.

Pattern-mixture models work with the factorisation of the joint distribution of Yi

and Di, the full data density into the marginal density of Di and the conditional

distribution of Yi given Di. Thus

f(yi, di|Xi,Zi, θ, ϕ) = f(yi|di,Xi,Zi, θ)f(di|Xi, ϕ). (2.9.50)

The rationale of the pattern mixture models is that each subject’s dropout time

is somehow predestined and that the measurement process varies between dropout

cohorts. The typical feature of pattern mixture models is that the distribution of the

missingness mechanism only depends on the covariates only and not on the outcome

variable.
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Suppressing the dependence on covariates in equation 2.9.50 above, we obtain

f(yi, di|θ, ϕ) = f(yi|di, θ)f(di|ϕ). (2.9.51)

Equivalently using Ti introduced earlier on,

f(yi, ti|θ, ϕ) = f(yi|ti, θ)f(ti|ϕ). (2.9.52)

where Ti = Di − 1 indicates the pattern in which t measurements are obtained.

The models above imply a different distribution for each dropout time. For a contin-

uous response with a Gaussian distribution yi|ti ∼ N(µ(ti),Σ(ti)) where

µ(t) =


µ1(t)

µ2(t)

· · ·
µn(t)



and

Σ(ti) =


σ11 σ21 · · · σn1

σ12 σ22 · · · σn2

...
...

...
...

σ1n σ2n · · · σnn



for t = 1, 2, . . . ,m (where t indicates the length of the sequence). Let P (t) = πt =

f(ti|ϕ), this implies that the marginal distribution of response is a mixture of normal

means, i.e

µ =
m∑

t=1

πtµ(t) (2.9.53)
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This produces a saturated pattern mixture model. Pattern-mixture model factori-

sation stresses those aspects of the model which are assumption driven rather than

data driven. This means that pattern mixture model parameters can not be identified

without placing restrictions on the conditional distributions f(y|t).

Little (1993) discusses the use of a less stringent restriction called complete case

missing value (CCMV). CCMV corresponds to assuming that for each t < n + 1 and

T = t < j

f(yj|y1, . . . , yj−1, T = t) = f(yj|y1, . . . , yj−1, T = n) (2.9.54)

He shows how these constraints can be used to identify all the parameters in the model

and also to obtain estimates for these and the marginal probabilities. The CCMV

restrictions equate the conditional distributions beyond time t i.e those unidentifiable

from this dropout group, with the same conditional distributions from the completers.

Molenberghs et al (1998) show that RD dropout corresponds to a stronger restriction

in which the conditional distributions beyond time t is equated with all conditional

distributions from all those who dropout after time t, which they call the available

case missing value (ACMV) restrictions.

f(yj|y1, . . . , yj−1, T = t) = f(yj|y1, . . . , yj−1, T > j) (2.9.55)

Usually the choice of restriction will need to be guided by the context of the scien-

tific question being posed by the data. Also the form of the data requires a more

structured model for the response which incorporates covariates. Models for f(ti|ϕ)
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can be constructed in many different ways but most authors assume that the dropout

process is fully observed and that Ti satisfies a parametric model. Some authors even

extend to cases where the dropout is allowed to be right censored with no parametric

restriction put on the dropout times. Hogan and Laird (1997)’s conditional model

for Yo
i given Ti is a linear mixed model with dropout time as one of the covariates

in the mean structure. To handle the incomplete covariates due to right censoring

Hogan and Laird (1997) use the Expected Maximisation (EM) algorithm for Maxi-

mum Likelihood estimation. Under CRD, f(y,d) = f(y)f(d), the pattern-mixture

models and the selection models coincide.

RD can be expressed in pattern mixture model framework through restrictions CCMV

and ACMV. CCMV can be defined as the condition that for t ≥ 2 and j < t

f(yt|y1, . . . , yt−1, d = j + 1) = f(yt|y1, . . . , yt−1, d = n + 1) (2.9.56)

that is, the conditional density of unobserved components given a particular set of

observed components is equal to the corresponding density in the subgroup of com-

pleters. ACMV can be defined as the condition that for t ≥ 2 and j < t

f(yt|y1, . . . , yt−1, d = j + 1) = f(yt|y1, . . . , yt−1, d > t) (2.9.57)

that is, the conditional density of unobserved components given a particular set of

observed components is equal to the conditional density calculated from the subgroup
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of all patterns for which all required components have been observed.

2.9.4 A Pattern Mixture Model for Dropouts

As seen in the previous section, a pattern mixture model factorises the joint distrib-

ution f(yi,di|θ, ϕ) into the product of the conditional density of the measurements

given the dropout pattern, f(yi|Xi, θ
(ti)), and the marginal density describing the

dropout mechanism, f(ti|Xi, ϕ), where ti = 1, . . . , n indicate the dropout time. The

dropout process f(ti|Xi, ϕ) is the probability to belong to a particular dropout pat-

tern. The measurement models depends on dropout and take the general form:

Yi = Xiβ(ti) + Zibi + εi (2.9.58)

bi ∼ N(0,D(ti)) (2.9.59)

εi ∼ N(0, Σ(ti)). (2.9.60)

In this model the fixed effects as well as the covariance parameters are allowed to

change with dropout pattern. The likelihood contribution of the ith subject based on

observed data (yo
i , ti) is proportional to

f(yo
i , ti) = f(ti) f(yo

i |ti).
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This now requires specifying the marginal model for the dropout process and the con-

ditional model for observed outcomes given the drop out pattern as in 2.9.58. For any

subject with ti < n, the sub vector of θ(ti) describing ym
i is unidentified. Identifying

restrictions such as available-case missing value (ACMV) proposed by Molenberghs

et al.(1998), the complete case missing value (CCMV) proposed by Little (2003) and

the neighbouring case missing value (NCMV) can be applied. The distribution of

di depend on Xi and the distribution of yi conditional on di and Xi is normally

distributed.

2.9.5 Shared Parameter Models

For the shared parameter models the full data density is factorised as follows:

f(yi, di,Xi,Zi, θ, ϕ) = f(yi|ξi,Xi,Zi, θ) f(di|Xi, ξi, ϕ). (2.9.61)

where ξi are the shared parameters which play the role of the confounder for the

relationship between yi and di. They can be either observable variables or latent

variables (e.g random effects). For the case when you observable variables the shared

parameter model becomes a pattern mixture model. Jason Roy (2003) introduced

a special shared parameter model he called the latent dropout class model. His

model combines features of pattern mixture models and latent-class models where he

assumes that there exists a small number of dropout classes and class membership

which is unobserved but the probability of being in any particular latent dropout
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class is determined by the drop out times themselves.

2.9.6 A Shared Parameter Model for Dropouts - The Latent
Dropout Class Model

Adopting the notation introduced in section 2.5 for Ti, and indicating the number of

measurements taken for subject i, that is the length of time the ith unit has been in

the study, where

Ti =

ni∑
j=1

Rij = Di − 1

the latent dropout class model factorises the joint distribution as

f(Y,T) = f(ξ|T)f(Y|ξ)

We have to specify the models for the latent dropout class conditional on the drop

out and for the response conditional on the latent class.

If we assume that Ti determines the probability that a subject in one of the M < n

latent dropout classes, where n is the number of intended observations on a unit and

denote ξi = (ξi1, . . . , ξiM)T where ξik, k = 1, 2, . . . ,M are indicator variables for each

latent class such that if a subject i is in class j then ξij = 1 and ξij′ = 0 for j 6= j′.

The latent variable ξ is considered ordinal in the sense that increases in the dropout

time are assumed to monotonically increase or decrease the chances of being in one
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of the first k dropout classes. Under this assumption the probability of being in a

given class is assumed to be determined by Ti through the regression model

P (
k∑

j=1

ξij = 1|Ti) = h(Ti, λk), k = 1, 2, . . . ,M − 1

where h is a monotone function and λk is a vector of parameters. The probability of

being in dropout class less than or equal to k is some monotone function of the dropout

time. Therefore, ξi|Ti ∼ Multinomial with probabilities pij. For j = 2, 3, . . . ,M − 1,

pij = h(Ti; λj)− h(Ti; λj−1,

pi1 = h(Ti; λ1) (2.9.62)

and

piM = 1− h(Ti; λM−1). (2.9.63)

Common examples of h(.) are the probit and the inverse of the logit links.

Now specifying the model for the response conditional on the latent class, we let Xij

be a vector of covariates whose effects on Y do not depend on the latent class. Let Zij

be a vector of covariates whose effects on Y vary with the latent class ξi. The complete

response conditional on the latent class is assumed to be normally distributed with

mean

E(Yij|ξi,xij, zij, Ti) = xT
ijβ + (zij ⊗ ξi)

T αi

for j = 1, 2, . . . , n, where α and β are vectors of parameters. The term (zij ⊗ ξi)

corresponds to interactions between levels of the latent class and covariates. No
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dependence between the variance and covariance of (Yi1, Yi2, . . . , Yin) and the latent

class ξi is assumed. The conditional distribution of Yi given ξi is

(Yi|ξi) ∼ N(Xiβ + Zi(ξ)α, Vi(φ))

where Vi(φ) is the covariance matrix parameterised by the vector φ.

Now deriving the likelihood function, Y = (Yo,Ym), where Y is the complete vector,

Yo is the observed vector and Ym is the missing vector. Let η = (βT , αT , φT , λT )T

represent the set of parameters of interest. Then the likelihood function for the ith

subject is

L(η, π, Y o
i , Ti) =

∑
ξ

∫
L(β, α,φ; Yi|ξi, Ti) L(λi; ξi|Ti) L(η; Ti) dY m

i (2.9.64)

= L(π; Ti)
∑

ξ

L(β, α,φ; Y o
i |ξ) L(λ; ξ|Ti) (2.9.65)

Where π are parameters characterising the distribution of Ti. Maximising the loga-

rithm of L(η, π, Y o
i , Ti) using the normal proceedure is not feasible so the EM algo-

rithm or other numerical methods like the Newton-Raphson algorithm are applied to

obtain the parameters.

2.10 Testing for completely random dropouts

The main objective here is to test the hypothesis that the dropouts are completely

random, that is, the probability that a unit drops out at time tj is independent of
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the observed sequence of measurements of that unit at times t1, t2, . . . , tj−1 where

we assume that a complete set of measurements on a unit would be taken at times

tj, j = 1, 2, . . . , n but dropout occur. The available data on the ith of the m units

are yi = (yi1, yi2, . . . , yini
) with ni < n and yij taken at times tj. Let pij denote the

probability that the ith unit drops out time tj. Under the CRD assumption pij may

depend on time, treatment or other explanatory variables but cannot depend on the

observed measurement yi. Diggle (1989) develops a method to test this assumption

which consists of applying separate tests at each time with each treatment group

and analysing the sample of p-values for departure from the uniform distribution on

(0, 1). Formal tests like Kolmogorov-Smirnov test or Benard’s Monte Carlo test can

be used to investigate whether the complete set of p-values behaves like a random

sample from the uniform distribution.



Chapter 3

Methodology

3.1 Data used in the research

This research will be based on real life data. It will start with analysis on the complete

data set, followed by non-ignorable dropout pattern simulated on the data set to

produce an incomplete data set. The data set, Diabetes, is obtained from observing

191 diabetes patients over a period of nine years, with measurements taken annually.

The main research objective is to model the body-mass index (BMI) of the patients in

relation to mainly time, with the main grouping factor observed being gender. Other

factors and covariates observed are hypertensive status, family history of diabetics

status, sugar level (hba1c) and age in years. The body-mass index was invented

by Aldophe Quetelet (Wikipedia). It compares a person’s weight and height. The

mathematical formulae is

BMI =
W

H2
(3.1.1)

50
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Table 3.1: BMI classifications
BMI values(x) x ≤ 18.5 18.5 < x ≤ 25 25 < x ≤ 30 x > 30
Classification Underweight Normal Overweight Obese

where W is the person’s weight in kilograms and H is the person’s height in metres

hence the BMI unit is kg/m2. Based on the BMI value a person can then be classified

either as underweight, or normal weight,or overweight or obese. Table 3.1 show the

categories and it is mostly used as tool to estimate a healthy body weight based on

how tall a person is:

3.2 Model building

The focus of this research is fitting general linear mixed models. Under the linear

mixed model the data vector Yi for the ith subject is assumed to be normally distrib-

uted with mean Xiβ and covariance matrix of the form Vi = ZiDZ ′
i+Σi. When fitting

a general linear mixed model, appropriate mean and covariance structures have to

be specified. Exploratory Data analysis provides the crucial initial detective work for

model specification. Two approaches can be adopted, exploring the marginal distrib-

ution or exploring the subject specific profiles. This research will focus on graphical

methods to explore the mean structure, variance function and the correlation struc-

ture. This will form a basis for selection of the preliminary mean structure, fixed

effects structure, random effects structure and the residual covariance structure.
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This research is going to focus on likelihood estimation methods, the main attracting

property being that likelihood estimates known to be asymptotically unbiased and

asymptotically efficient. Since the samples to be used in this research are large, es-

timates obtained can be safely considered to be good. Model fitting and parameter

estimation will be considered as follows:

1. Estimation on complete data: Linear mixed models will be fitted also with the

possibility of serial correlation under consideration.

2. Estimation of the joint models: The three main different approaches to joint

modelling of the measurement process and the dropout process, owing to dif-

ferent factorisations that can be done to the full data density, will be done.

This research’s main focus is on the measurement process given a non-ignorable

missing pattern, which is more conservative since the assumptions of ignorable

missing patterns are in most cases in-testable, for comparison purposes it would

be good to also consider models under ignorability assumptions, so time per-

mitting models under ignorability assumptions are going to be considered also.

Under ignorability assumptions the dropout process is assumed to be ignor-

able and if focus is on the marginal of the observed vector, Yo
i only. Under

non-ignorability assumptions, dropouts are no longer ignorable, the dropout

could be related to unobserved responses implying that the treatment effects

can no longer be estimated without taking the drop out model into account. A



53

marginal model is now required for the complete vector, Yi.

3.3 Summary of methods to be used

1. Working with the Complete longitudinal data set. The initial step would be

Exploratory Data Analysis of the data set. This mainly involves the graphical

approach, looking at plots for individual profiles, average mean over time and

variance plots. These will help come up with plausible tentative structures for

the random effect, fixed effects, covariance and correlation.

2. Model building and estimation on the complete data set would follow with a

linear mixed effect model fitted to the complete data set.

3. The next step would be to simulate dropout patterns on the data set.

4. Jointly model the measurement process and the dropout process is then done

using the three approaches to factorisation of the joint density, which are, se-

lection model, pattern mixture model and shared parameter model. For the

pattern mixture model and the shared parameter model, the Latent dropout

class model will be fitted as a representative of both models. The E-M algo-

rithm will be used to obtain likelihood based estimates .

5. Diagnostic checks are done on the fitted models using exploratory or graphical

approach, aiming at detecting serious departures from model assumptions and
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identifying potentially influential cases

6. A comparison of the results from the four models based on measurement process

estimates will be done. In this research only the bias of estimates from the three

models on the incomplete data from the estimates of the complete data set will

be considered.



Chapter 4

Analysis and Results

4.1 Introduction

In this research, analysis is mainly centred on the incomplete data set, however the

first part of this chapter focuses on linear mixed effects models on the complete data

set and the second part focuses on joint modeling for the incomplete data. Analysis

starts with exploring the data, mainly aiming at coming up with tentative mean

and covariance structures, followed by model estimation and lastly model adequacy

checking.

4.2 Complete data set analysis

The main research question is modeling the BMI values by gender over time.

4.2.1 Exploration of the data

Profile plots for BMI values were plotted against time for (a) all patients, (b) male

patients and (c) female patients:

55
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Figure 4.1: Bmi profiles for all the patients
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Figure 4.2: BMI profiles for patients by Gender

There seems to be a difference in mean profiles for males and females, with mean

profiles for females depicting slightly higher values than mean profiles for males.

Though the number of observations for each subject are not so many, there is an

indication of some within subject-pattern, the BMI values increase with time with a

flattish slope though. This would warrant for some autoregressive serial correlation

in the models.

Regressions of BMI values on time are fitted for each subject to pursue these

impressions. The box plots of regression coefficients are shown in Figure 4.3. The

intercept represents the mean value at the start of the study. The median intercept
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for female patients is higher than that for male patients and there is more variation

among females than there is among males. The median slopes are almost equal, with

females slopes showing slightly more variation. For both groups slopes are skewed to

the positive values. The T-tests for comparing the slopes and intercepts for males and
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Figure 4.3: Coefficients for within subject regression of BMI values on time

females produced the following results(full results in Appendix) showing that males

have a slightly higher average BMI growth rate(0.3298) than that of females(0.3182)

but it is not significantly different from the females BMI growth rate. Comparing the

average BMI values at the the start of the study period, results show that we have

some evidence(α = 0.1 level of significance) to conclude that females have a higher
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average BMI value.

4.2.2 Fitting the linear mixed model

Our starting point is the general liner mixed effect model, suppose each subject has

response BMIi, a vector of length ni, which is modelled as:

BMIi ∼ Np(Xiβ + Zibi, σ
2Vi(φ)) (4.2.1)

where bi ∼ N(0,D) and Vi = ZiDZ′
i + Σi. With m individuals and assuming the

errors and the random effects between individuals are uncorrelated we model using

BMI ∼ Np(Xβ, σ2V(φ)) (4.2.2)

where V = ZDZ′ + Σ with Y =


y1

y2

· · ·
y191

 , X =


x1

x2

· · ·
x191

 , b =


b1

b2

· · ·
b191

 ,

D = diag(D, D, · · · , D), Z = diag(Z1, Z2, · · · , Z191) and Σ = diag(Σ1, Σ2, · · · , Σ191)

Fitting a mixed effects model to the data, that included fixed effects of time and sex

and the interaction between time and sex, and the random intercepts and slope gave

the following output:

Linear mixed-effects model fit by REML

Data: d3

AIC BIC logLik

5589.245 5632.822 -2786.622

Random effects:

Formula: ~time | serialno

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr
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(Intercept) 4.4402609 (Intr)

time 0.2307473 -0.248

Residual 0.8149142

Fixed effects: BMI ~ time + sex + time:sex

Value Std.Error DF t-value p-value

(Intercept) 25.921709 0.4670258 1526 55.50380 0.0000

time 0.329764 0.0264395 1526 12.47241 0.0000

sexFemales 1.200317 0.6486941 189 1.85036 0.0658

time:sexFemales -0.011566 0.0367242 1526 -0.31494 0.7529

Correlation:

(Intr) time sxFmls

time -0.272

sexFemales -0.720 0.196

time:sexFemales 0.196 -0.720 -0.272

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-10.81015463 -0.29931969 0.01131231 0.32404452 6.33807709

Number of Observations: 1719

Number of Groups: 191

There is a statistically significant upward trend for groups signified by the coefficient

of time. The average for the female group is slightly higher than that of females as

shown by the coefficient of sexFemales which is not significant at 5% but is significant

at 10%. The interaction coefficient is not statistically significant, indicating that there

is not much difference between the gender groupings in changes in BMI values with

time. The model is updated leaving out the interaction, there are slight changes in

fixed effects parameters which all remain significant. The AIC value decreased slightly

showing that the latter is a better model.
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To test whether the random effects are necessary ( the intercept and slope), models

are refitted omitting one each time in turn from the model. The refitted models are

contrasted with the original model by calculating a likelihood-ratio statistic. The

following results were obtained: (i)For testing the necessity of the random slope,

bm.lme.1 is the original model and bm.lme.2 is the model without the random slope:

Model df AIC BIC logLik Test L.Ratio p-value

bm.lme.1 1 7 5582.571 5620.705 -2784.286

bm.lme.2 2 5 5958.211 5985.449 -2974.105 1 vs 2 379.6395 <.0001

(ii)For testing the necessity of the random intercept, bm.lme.1 is the original model

and bm.lme.3 is the model without the random intercept:

Model df AIC BIC logLik Test L.Ratio p-value

bm.lme.1 1 7 5582.571 5620.705 -2784.286

bm.lme.3 2 5 8371.795 8399.033 -4180.897 1 vs 2 2793.223 <.0001

The tests are highly significant, suggesting that both the random intercept and slope

are necessary. A plot of the residuals of the model in Fig 4.4 indicates that there is

some serial correlation, as supported by the plot of residuals against fitted values.

Since observations are taken longitudinally on the same subject, there is a high

likelihood that the within subject errors are correlated. A continuous first order auto-

regressive (CAR1) process in the errors is assumed. According to CAR1, suppose

that εi,t and εi,t+s are errors for subject i separated by s units of time, then the

correlation between these two errors is ρ(s) = φ|s| where 0 ≤ φ ≤ 1 (Fox, 2002). A

CAR1 model is fitted to the data, by updating the original model. The results (see
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Figure 4.4: Residuals vs fitted values for all subjects
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Appendix) show that the estimated autocorrelation parameter, φ̂ = 0.78 is quite large

and the estimated fixed effects coefficients have changed slightly, with the coefficient

for gender decreasing by 25% from 1.45. A test for the statistical significance of

the error autocorrelation was performed with bm.lme.1 being the original model and

bm.lme.4 being the model with autocorrelation. The following output was obtained:

Model df AIC BIC logLik Test L.Ratio p-value

bm.lme.1 1 7 5582.571 5620.705 -2784.286

bm.lme.4 2 8 5404.411 5447.993 -2694.205 1 vs 2 180.1603 <.0001

This test shows that the error autocorrelation is of significance to the model. With

the new development we reconsider the necessity of the random slope and intercept.

Note: bm.lme.5 is the autocorrelated model without random slope and bm.lme.6 is

the autocorrelated model without the random intercept.

Model df AIC BIC logLik Test L.Ratio p-value

bm.lme.4 1 8 5404.411 5447.993 -2694.205

bm.lme.5 2 6 5404.519 5437.206 -2696.260 1 vs 2 4.108473 0.1282

Model df AIC BIC logLik Test L.Ratio p-value

bm.lme.4 1 8 5404.411 5447.993 -2694.205

bm.lme.6 2 6 5404.943 5437.629 -2696.471 1 vs 2 4.5319 0.0037
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The results show that the random time term can now be removed from the model

giving the following output:

Linear mixed-effects model fit by REML

Data: d3

AIC BIC logLik

5404.519 5437.206 -2696.260

Random effects:

Formula: ~1 | serialno

(Intercept) Residual

StdDev: 3.111951 3.211055

Correlation Structure: Continuous AR(1)

Formula: ~time | serialno

Parameter estimate(s):

Phi

0.9527864

Fixed effects: BMI ~ time + sex

Value Std.Error DF t-value p-value

(Intercept) 25.899078 0.4612001 1527 56.15584 0.000

time 0.315824 0.0232650 1527 13.57506 0.000

sexFemales 1.046601 0.6198911 189 1.68836 0.093

Correlation:

(Intr) time

time -0.252

sexFemales -0.697 0.000

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.79065293 -0.47224039 0.00957101 0.47758716 2.50013692

Number of Observations: 1719

Number of Groups: 191

The fitted model is

BMIij = 25.899 + 0.3158tj + 1.0466sexFemales + b0i + 0.9528εi,j−1 + aij (4.2.3)
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The average BMI value for females at baseline is 26.945 compared to an average of

25.899 for males. On average both male and female diabetic patients are overweight.

β̂ =


25.899

0.3158

1.0466



Zi =


1

1
...

1


a 9× 1 vector of ones, the random effects variance d11 = 9.684 and

Xi =



1 1 1

1 2 1

1 3 1

1 4 1

1 5 1

1 6 1

1 7 1

1 8 1

1 9 1
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for female subjects and

Xi =



1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

1 6 0

1 7 0

1 8 0

1 9 0


for male subjects. The estimated autocorrelation parameter, φ̂ = 0.95278, which is

quite large. Fitted values for the males and females are produced using the CAR1

model without a random slope to explore the fixed effects across the two groups.

Figure 4.5 shows a plot of the fitted values for the two groups:

The average BMI values of females is higher than that of males from the start of

the study and this gap is constantly maintained through out the observation period.

Figure 4.6 shows that the residuals are normally distributed.

4.3 Incomplete data analysis

As an initial step, Trellis plots of the two groups of patients (Figures 4.7 and 4.8),

were obtained, with missing values were set at zero so as to visualise the dropouts

on the plots. Generally there seems to be no distinct difference in the way dropouts

occurred for between the two gender groupings.
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Figure 4.6: Q-Q plot for residuals
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Figure 4.7: Trellis plots for male patients
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Figure 4.8: Trellis plots for female patients



71

4.3.1 Complete case analysis

Discarding all incomplete sequences and fitting a linear mixed model with first order

auto regression CAR(1), the following output was obtained:

Linear mixed-effects model fit by REML

Data: d5

AIC BIC logLik

4888.68 4920.784 -2438.34

Random effects:

Formula: ~1 | serialno

(Intercept) Residual

StdDev: 3.202934 3.080305

Correlation Structure: Continuous AR(1)

Formula: ~time | serialno

Parameter estimate(s):

Phi

0.9512138

Fixed effects: bmNew2 ~ time + sex

Value Std.Error DF t-value p-value

(Intercept) 25.846433 0.4594018 1368 56.26106 0.0000

time 0.313317 0.0239154 1368 13.10104 0.0000

sexFemales 1.148478 0.6197868 189 1.85302 0.0654

Correlation:

(Intr) time

time -0.234

sexFemales -0.699 -0.008

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-2.8927681 -0.4456124 0.0201981 0.4600157 2.4357658

Number of Observations: 1560

Number of Groups: 191
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The following estimates were obtained:

β̂ =


25.846

0.3133

1.1484


the random effects variance d11 = 10.25856, autocorrelation parameter φ = 0, 9512.

4.3.2 Selection model for the diabetes data

Assuming separability condition to be met, modelling is done in two stages, modelling

the measurement process and modelling the dropout process.

Modelling the BMI profiles

Using the EM algorithm built in the Linear mixed models (”lmm” library by Schafer

J.L (2009)), the following results were obtained for the estimates of (β′, φ)

$beta

int time gender

25.844756 0.3112734 1.0901032

$sigma2

[1] 3.0717747

$psi

int

int 10.75789

$phi

[1] 0,92356

$converged

[1] TRUE

$iter

[1] 16

$loglik

[1] -2688.206 -2033.486 -1805.148 -1662.309 -1633.426 -1627.091 -1626.209

[8] -1626.196 -1626.070 -1626.068 -1626.068 -1626.068 -1626.068 -1626.068
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[15] -1626.068 -1626.068

The log likelihood is seen decrease from first iteration to the fourth iteration there

after an exponential decay is seen in the log likelihood figures which stabilises at a

value of -1626.068. The EM algorithm converged in 16 cycles giving

β̂ =


25.645

0.278

0.901


the random effects variance d11 = 10.75789, autocorrelation parameter φ = 0, 92356.

Modelling the dropout process

In this research, dropout is restricted to relate to the factor hypertensive and a co-

variate age in years and current and previous observations only. In line with Diggle

and Kenward (1994), we assume that the probability of a dropout at occasion j,

(j = 2, . . . , ni), given that the subject was still in the study the previous occasion

follows a logistic model

logit[P (Di = j|Di ≥ d)] = ϕ0 + ϕ1BMIij + ϕ2BMIi,j−1 + ϕ3hypertensij + εij

4.3.3 Pattern-mixture model /Shared parameter model for
the diabetes data

We will consider Roy (2003)’s Latent Dropout Class Model. According to Roy (2003)

the Latent Dropout class model shares properties of both Pattern-mixture model and

Shared parameter model and will therefore consider it as a representative of both types



74

of models. Assuming the dropout pattern to be sampled from multinomial distribu-

tion with support {1, 2, 3, 4, 5, 6, 7, 8, 9}, where class Ti = 9 contains all completers.

The associated multinomial probability vector is denoted by π = (π1, π2, · · · , π9)
′.

The model for Y o
i conditional on Ti is of the form 4.2.1.

Dropout occasion:t 1 2 3 4 5 6 7 8 9
Fitted prob:π̂ = P (Ti = t) 5

191
5

191
1

191
3

191
8

191
6

191
5

191
3

191
155
191

Table 4.1: Fitted probabilities under the Multinomial dropout model

Let the latent dropout classes be, early for those subjects which drop out on

the second or third occasion, mid for those which dropout on the fourth, fifth or

sixth occasion, late for those which drop out on the seventh or eighth occasion and

completers for those which did not dropout. Consider pij the probability of being in

dropout class less or equal to k where k = 1, 2, 3, 4. Then p̂ij is distributed as follows:

k 1 2 3 4
p̂ij

10
191

22
191

36
191

191
191

Table 4.2: Cumulative probabilities for dropout classes

These probabilities can then be modelled using probit link, with the drop out

time as a covariate. The conditional distribution of Yi on latent class is given by the

conditional distribution of BMIi given ξi is

(BMIi|ξi) ∼ N(Xiβ + Zi(ξ)α, Vi(φ))
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Fitting the model using Schafer (2009)’s lmm package, in which a dummy variable

is included for each dropout class gave the following output:

> ecmeml.result

beta

int time gender beta.hat[1] beta.hat[2] beta.hat[3] beta.hat[4]

25.594776 0.300751 0.910328 0.889131 0.751231 0.541465 0.321489

sigma2

[1] 9.559070

phi

[1] 0,955634

psi

[1] 10.516733

converged

[1] TRUE

iter

[1] 8

loglik

[1] -2458.209 -2247.236 -1789.412 -1627.283 -1621.271 -1592.063 -1592.063

[8] -1592.063

4.4 Comparison of the estimates

The main focus of this research is on the measurement process, that BMI values

estimates under various models. Since the dropout pattern was a simulated one, it will

only serve as a place holder for modelling purposes but it has no practical meaning.

Estimates from the model on the complete data set will be the comparing factor

and therefore are compared to the estimates obtained from complete case analysis,

selection model and latent dropout class model. The table below shows the estimates
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obtained from the different models and their percentage deviation from the complete

data model estimates. The complete data average BMI value for females at baseline

Model (estimates)
Complete

data
LMM

Complete
case

LMM
Selection Model

Latent
dropout class

model
Parameter
β0(constant) 25.899 25.846(-0.2%) 24.847(-4.1%) 24.595(-3.2%)
β1(time) 0.346 0.313(-9.4%) 0.311(-10.0%) 0.301(-13.0%)
β2(sexF ) 1.047 1.148(9.7%) 1.090(4.2%) 0.910(-13.0%)
β11(early) - - - 0.889
β12(mid) - - - 0.751
β13(late) - - - 0.541
β14(completer) - - - 0.321
d11(r.e var) 9.684 10.259(5.92%) 10.758(11.1%) 10.577(9.2%)
σ(res. var) 3.211 3.080(-4.1%) 3.072(-4.3%) 3.092(-3.7%)
φ(autoregr) 0.953 0.952(-0.2%) 0.924(-3.1%) 0.956(0.3%)
loglik -2696.20 -2438.34 -1626.068 -1592.063

Table 4.3: Estimates from the models

is 26.945 compared to an average of 25.899 for males. The change in BMI value from

one point in time to the next was found not to be significantly different for the gender

groupings, with a universal increment of 0.3458 for both male and female subjects.

The variance for the random effects was found to be 9.684 and the AR(1) parameter,

φ = 0.9528. There is a mixture of results in terms of how the estimates from the

different models on incomplete data compare to the estimates from the model on the

complete dataset. There is variation in performance from one estimate comparison to

another and there seems to be no clear trend on performance of the models in terms
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of the ”bias” looked at.



Chapter 5

Conclusions and Recommendations

5.1 Conclusions

The major aim of this research was to compare estimates from different modelling

approaches, with the main focus being comparing joint models to complete case bas-

ing on how their estimates compared with the complete data model estimates. The

data nature and the experimental question to be answered gave the direction and

main focus of the research. Considering that initially the data produced a complete

data array for the subjects and the dropouts were simulated, it was reasonable to

focus on the measure process estimation, which is the bmi profiles for the subjects

by gender over time. Since dropouts were simulated, it would be difficult to attach a

practical meaning to them, but had they been actual observed it would have been of

importance to also focus on drop out models.

The linear mixed modelling was implementation was not much of a challenge

78
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because of the the availability of several R libraries that can fit these models, which

include Lmm by J. L. Schafer (May 2009), Lme4 by D. Bates (July 2008), nlme by

J. Pinheiro at al (2009), Linear mixed models were fitted well on the complete data

set and the complete case analysis. The complete case estimates were very close to the

complete data estimates. However it is difficult for this researcher to conclude that

complete case analysis performs better than the other models. The EM algorithm for

the Latent Dropout Class model converged faster than the algorithm for the selection

model, actually the Latent Class Dropout model algorithm was twice as faster as

the algorithm for the selection model. For all models the average profiles at baseline

for both male and female subjects fell in the overweight class and there is a steady

increment as we move in time.

The main reason for comparing the models on the incomplete data set to the model

on the complete data set was come a conclusion on which model produced estimates

that are more closer to the full data estimates. This conclusion can not be explicitly

reached since there was no clear cut trend in performance of the models and looking

at fact that this comparison was just in terms of percent deviation of incomplete

data estimate from the from the full data estimate. This researcher feels one could

reach to a solid conclusion after considering different proportions of dropouts and also

different patterns in which the dropouts are distributed throughout the study period.

The log likelihood variations of the models indicates that joint models are better and
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I think with a finer refinement on assumptions of the models and also consideration

of the dropout model estimates a more satisfying conclusion could be reached on the

comparison of the complete case analysis to the joint modelling for the measurement

process and the dropout process under non-ignorable dropouts. In most practical

situations, the assumptions on randomness or non randomness of the dropout process

are sometimes in-testable and therefore the assumption of non-ignorable dropouts is a

conservative approach. Though in this research the complete case analysis might have

produced estimates more closer to the joint models I still feel with refinement of the

model assumptions and considerations the joint models might perform better. And

of course the basis of comparison in this research might not be of much statistically

significance, and the findings of this research can serve as a foundation to deeper

comparisons. However it is not in all cases that the joint models are necessary, the

remedies can fare better especially considering that the joint models can make some

rigid and in-testable assumptions.

5.2 Recommendations

The joint modelling of the measurement process and the dropout process is of great

importance to most fields of study like in biology, medicine and other fields where

the subjects are living organism, and in such cases if not due to censoring, a dropout

might be due to loss of life. It becomes of paramount importance to establish if the

dropout is or is not related to the measurement process. under these circumstances
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modelling of the measurement process and of the dropout processes are both of great

importance.

Incomplete longitudinal data poses challenges related to sensitivity of modelling as-

sumptions and therefore there is need for a sensitivity analysis. Molenberghs et al

(2000) defines sensitivity analysis as one in which several statistical models are si-

multaneously fitted and/or where a statistical model is further scrutunised using spe-

cialised tools. This entails fitting a selected number of (non random) models which

are deemed plausible or in which a preferred (primary) analysis is supplemented with

a number of variations. Though different analysis methods are likely to have distinct

impacts on conclusions, I think there can be found a common ground for comparing

these models. No one approach may be said to cover all forms in which the practical

problem pose to researchers.

I recommend that modelling should be done under all the three missing mechanisms

and them comparisons of estimates cane be made linking to the practical question of

the experiment unless in situations where randomness can be verified.
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5.3 R codes (Syntax)

Importing the data

> library(foreign) # Loading the required package to import data.

> library(nlme) # Loading the non-linear mixed effects models library.

> d1=read.spss("C:/diabetes.sav", use.value.labels=TRUE) # Importing

an spss data file

> attach(d1) # Putting the file in the search path.

> d2<-data.frame(d1) #Converting to data frame format.

> d2

Complete data set analysis Profile plots for the complete data set

> library(longitudinalData) #Required package

> bmi1= array(bmi, c(9,191))# Restructure bmi values : rows

showing time series data for a subject.

> bmit = t(bmi1) # Transpose:columns represent individual profiles.

> bmilong = as.longData(bmit,id =1:191,timeCol = c(1:9))# Converting

to longData class (data format that can be handled by package)

> part = partition(clusters=c(rep("M",92), rep("F",99),nbClusters=2))

#Partion data by gender, M-males, F-females (Note: Data already sorted

by gender).

> plot(bmilong, type= "l" ,xlab = "Time", ylab = "Bmi",

+ main= "Individual profile plots") # Plot individual profiles for

all subjects on one plot.

> plotSubGroups(bmilong, part, type= "l" ,xlab = "Time", ylab = "Bmi",

+ main= "Individual profile plots ) # plot individual profiles by

gender

Profile plots

> library(lattice)

> xyplot(bmi ~ time | serialno, d3,type="l", strip=FALSE)

Trellis plots

> Msample<-sample(unique(d2$serialno[d2$sex=="Males"]),92)

> Malegroup<-groupedData(bmi ~ time | serialno,

+ data=d2[is.element(serialno, Msample),])

> Fsample<-sample(unique(d2$serialno[d2$sex=="Females"]),99)
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> Femalegroup<-groupedData(bmi ~ time | serialno,

+ data=d2[is.element(serialno, Fsample),])

> print(plot(Malegroup, main= "Male Subjects",

+ xlab="Time", ylab="bmi Values",

+ layout= c(5,4), aspect=1.0),

+ position= c(0, 0, 1 , 1), more=T)

Modelling

> d3=data.frame(d1)

> Msample1<-sample(unique(d3$serialno[d3$sex=="Males"]),92)

> Malegroup1<-groupedData(bmi ~ time | serialno,

+ data=d3[is.element(d3$serialno, Msample1),]) # All Male

patients

> Fsample1<-sample(unique(d3$serialno[d3$sex=="Females"]),99)

> Femalegroup1<-groupedData(bmi ~ time | serialno,

+ data=d3[is.element(d3$serialno, Fsample1),]) # All

Female patients

> mlist<-lmList(bmi ~ time | serialno,

+ subset= sex=="Males", data=d3) # Fitting a

regression(within individual) of bmi values on time for males

> flist<-lmList(bmi ~ time | serialno,

+ subset= sex=="Females", data=d3) # Fitting a regression

of bmi values on time for females

> mlist.coef<-coef(mlist) # Array of regression coefficients

for the male group.

> flist.coef<-coef(flist) # Array of regression coefficients for

the male group.

> new<-par(mfrow= c(1,2)) # Arrangement format on a page

> boxplot(mlist.coef[,1],flist.coef[,1] ,main="Intercepts",

+ names=c("Males", "Females")) # Boxplot of Intercepts

> boxplot(mlist.coef[,2],flist.coef[,2] ,main="Slopes",

+ names=c("Males", "Females")) # Boxplots of Slopes

> par(new)

> t.test(mlist.coef[,1],flist.coef[,1]) T-test for intercepts.

> t.test(mlist.coef[,2],flist.coef[,2]) T-test for slopes.
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Fitting a linear mixed model

> bm.lme.1<-lme(bmi ~ time, # Time as the major covariate.

+ random = ~ time |serialno,# Time as random effects

+ data = d3)

summary(bm.lme.1) # Detailed model output.

> bm.lme.2<-update(bm.lme.1, random = ~ 1|serialno)#

Refitting a lmm without the random slope.

> bm.lme.3<-update(bm.lme.1, random = ~ time -1|serialno)#

Refitting a lmm without the random intercept.

> anova(bm.lme.1, bm.lme.2)# Testing for significance of the

random slope.

> anova(bm.lme.1, bm.lme.3) # Testing for significance of

the random intercept.

> bm.lme.4<-update(bm.lme.1, correlation = corCAR1(form=~ time |serialno))

# Factoring in autocorrelation (AR(1)).

> anova(bm.lme.1, bm.lme.4) # Testing for the necessity of autocorrelation.

> bm.lme.5<-update(bm.lme.4, random = ~ 1|serialno) # Autocorrelated mixed

model without random slope.

> bm.lme.6<-update(bm.lme.4, random = ~time- 1|serialno) # Autocorrelated

mixed model without random intercept.

> anova(bm.lme.4, bm.lme.5) # Testing for the necessity of random slope

in the autocorrelated mixed model.

> anova(bm.lme.4, bm.lme.6) # Testing for the neccesity of the random

intercept in the autocorrelated mixed model.

> summary(bm.lme.5) # Summary of the fitted model(adopted).

> bdata<-expand.grid(time=seq(1 ,9, by=1),sex=c("Males", "Females"))

# Fitted values.

> bdata$bmi<-predict(bm.lme.5, bdata, level=0) # level=0 produces

estimates for fixed effects.

> plot(bdata$time, bdata$bmi, type="n",
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+ xlab="Time", ylab="BMI values")

> points(bdata$time[1:9], bdata$bmi[1:9], type="b", pch=16, lwd=2)

> points(bdata$time[10:18], bdata$bmi[10:18], type="b",pch=0,lty=2,lwd=2)

> legend(locator(1), c("Males", "Females"),pch=c(16,0), lty=c(1,2),lwd=2)

Incomplete data analysis

> for(i in 2:1719){ # Begin loop

+ if(d2$hypertens[(i-1)]=="Non-hypertensive"&d2$hypertens[i]=="Hypertensive"

& d2$serialno[i]==d2$serialno[(i-1)]) d2$bmi[i]<- 0# Inducing drop out

times.

+ else d2$bmi[i]= d2$bmi[i]

+ } # end loop

> d2$bmi

> for(i in 2:1719){

+ if (d2$serialno[i] ==d2$serialno[(i-1)] & d2$bmi[(i-1)]==0)

d2$bmi[i]<-0 else d2$bmi[i]=d2$bmi[i]

+ } # Inducing missing values on all observation of the same subject

after a missing value.

> d2$bmi

> bmNew<-d2$bmi

> ind2=(bmNew <1)

> bmNew[ind2]=NA # replacing zero’s with NA

Constructing the missing value indicator vector r

> r<-d2$bmi

> ind3=(r>0)

> r[ind3]=1

Constructing a vector with length of series for each subject Ti

> d3<-data.frame(d2[,-2],bmNew,r)

> T_i<-c()

> r1= array(r, c(9,191))

> rt = t(r1)

> T_i<-rowSums(rt)

Obtag profile plots for the incomplete data set
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> bmi2= array(bmNew, c(9,191))

> bmit2 = t(bmi2)

> bmilong2 = as.longData(bmit2, id =1:191, timeCol = c(1:9))

> part = partition(clusters=c(rep("M",92), rep("F",99),nbClusters=2))

> plotSubGroups(bmilong2, part, type= "l" ,xlab = "Time", ylab = "Bmi",

+main= "Individual profile plots ) # plot individual profiles by gender

Modelling

Complete case analysis

> bmNew2<-bmNew[!is.na(bmNew)]

> bmNew1=!is.na(bmNew)

> serialno<-d2$serialno[bmNew1]

> bmNew2<-bmNew[!is.na(bmNew)]

> bmNew1=!is.na(bmNew)

> serialno<-d2$serialno[bmNew1]

> sex<-d2$sex[bmNew1]

> T_iNew<-T_i[bmNew1]

> R_New<-r[bmNew1]

> time<-d2$time[bmNew1]

> d5<-data.frame(d2$serialno, d2$sex, bmNew, r, T_i, d2$time)

> d5<-data.frame(serialno, sex, bmNew2, R_New, time)

> bm.lme.5mis<-lme(bmNew2 ~ time + sex,

+ random=~1|serialno,

+ correlation=corCAR1(form=~time|serialno),

+ data=d5)

>

Selection modelling

> pred<-cbind(int=rep(1,1719),time=d2$time,gender=1*(d2$sex=="Females"))

> xcol=1:3

> zcol=1

> ecmeml.result <- ecmeml.lmm(bmNew2,serialno,pred,xcol,zcol)

The dropout process model

> glm.drop<-glm(drop.tbl ~ hypertens_j+bmi_j+bmi_{j-1}, binomial}
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Latent dropout class

pred <- cbind(int=rep(1,1719),time=d2$time,gender=1*(d2$sex=="Females"),

+ dummy1=1*(ldc==1),dummy2=1*(ldc==2),dummy3=1*(ldcc==3),dummy4=1*(ldcc==4))

xcol <- 1:7

zcol <- 1

>ecmeml.result <- ecmetml.lmm(bmNew2,serialno,pred,xcol,zcol)

5.4 Results

T-tests for comparing slopes and intercepts for males and fe-
males

Welch Two Sample t-test

data: mlist.coef[, 2] and flist.coef[, 2]

t = 0.3169, df = 187.175, p-value = 0.7516

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.06042439 0.08355607

sample estimates:

mean of x mean of y

0.3297645 0.3181987

T-tests for comparing average BMI value at the start of the
research period

Welch Two Sample t-test

data: mlist.coef[, 1] and flist.coef[, 1]

t = -1.8605, df = 187.919, p-value = 0.06437

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-2.47297561 0.07234185

sample estimates:

mean of x mean of y

25.92171 27.12203

Linear mixed model without the interaction term:
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Linear mixed-effects model fit by REML

Data: d3

AIC BIC logLik

5582.571 5620.705 -2784.286

Random effects:

Formula: ~time | serialno

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 4.4394672 (Intr)

time 0.2300857 -0.247

Residual 0.8149142

Fixed effects: BMI ~ time + sex

Value Std.Error DF t-value p-value

(Intercept) 25.950531 0.4579313 1527 56.66905 0.0000

time 0.323770 0.0183062 1527 17.68632 0.0000

sexFemales 1.144711 0.6242038 189 1.83387 0.0682

Correlation:

(Intr) time

time -0.192

sexFemales -0.707 0.000

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-10.818759145 -0.298818811 0.008918353 0.322969586 6.335455115

Number of Observations: 1719

Number of Groups: 191

CAR1 model

Linear mixed-effects model fit by REML

Data: d3

AIC BIC logLik

5404.411 5447.993 -2694.205

Random effects:

Formula: ~time | serialno

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 4.2444606 (Intr)
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time 0.2014551 -0.207

Residual 1.4459284

Correlation Structure: Continuous AR(1)

Formula: ~time | serialno

Parameter estimate(s):

Phi

0.7764626

Fixed effects: BMI ~ time + sex

Value Std.Error DF t-value p-value

(Intercept) 25.930210 0.4585112 1527 56.55305 0.0000

time 0.317344 0.0225144 1527 14.09516 0.0000

sexFemales 1.099906 0.6194670 189 1.77557 0.0774

Correlation:

(Intr) time

time -0.232

sexFemales -0.700 0.000

Standardized Within-Group Residuals:

Min Q1 Med Q3 Max

-4.95249419 -0.23640978 0.01752392 0.30762015 4.10779415

Number of Observations: 1719

Number of Groups: 191


