Show simple item record

dc.contributor.authorMhlanga, Farai Julius
dc.date.accessioned2012-09-03T08:23:59Z
dc.date.available2012-09-03T08:23:59Z
dc.date.issued2012-09-03
dc.identifier.urihttp://hdl.handle.net/10646/941
dc.description.abstractTechniques in stochastic analysis are presented in a continuous time framework.We then review methods in quadratic hedging approaches with focus on minimal variance hedging in a discrete time framework. We also consider specific exercises. We then relate the results obtained in quadratic hedging methods to the case of a discrete time market driven by a Markov process.en_ZW
dc.language.isoen_ZWen_ZW
dc.subjectvariance hedgingen_ZW
dc.subjectMarkov processen_ZW
dc.subjectMarkov modelsen_ZW
dc.subjectquadratic hedgingen_ZW
dc.subjectstochastic analysisen_ZW
dc.titleMinimal Variance Hedging In A Discrete Time Market Driven By Markov Processen_ZW
thesis.degree.advisorDi Nunno, G. (Prof.)
thesis.degree.countryZimbabween_ZW
thesis.degree.disciplineMathematicsen_ZW
thesis.degree.facultyFaculty of Scienceen_ZW
thesis.degree.grantorUniversity of Zimbabween_ZW
thesis.degree.grantoremailspecialcol@uzlib.uz.ac.zw
thesis.degree.levelMScen_ZW
thesis.degree.nameMaster of science in Mathematicsen_ZW
thesis.degree.thesistypeThesisen_ZW
dc.date.defense2005-06-29


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record