• Login
    View Item 
    •   UZ eScholar Home
    • Faculty of Agriculture Environment and Food Systems
    • Faculty of Agriculture Environment and Food Systems ETDs
    • Faculty of Agriculture Environment and Food Systems e-Theses Collection
    • View Item
    •   UZ eScholar Home
    • Faculty of Agriculture Environment and Food Systems
    • Faculty of Agriculture Environment and Food Systems ETDs
    • Faculty of Agriculture Environment and Food Systems e-Theses Collection
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Combining Ability Analysis for Early Maturity and Phaeosphaeria Leaf Spot Resistance in Regional Maize Germplasm

    Thumbnail
    View/Open
    Oliver_Mhembere_Msc_Thesis.pdf (478.8Kb)
    Date
    2012-08-30
    Author
    Mhembere, Oliver
    Metadata
    Show full item record

    Abstract
    Phaeosphaeria leaf spot (P. maydis Henn.) disease has the potential to cause substantial yield losses in maize (Zea mays L,). Maize is grown by smallholder farmers without fungicides; hence the need to breed for resistance in regional adapted germplasm. Sub-Saharan Africa has been characterised by low annual rainfall amounts. As such the demand for early maturing maize hybrids has been on the increase. No information is available on the combining ability of maize genotypes for Phaeosphaeria leaf spot resistance (PLS) and early maturity. In addition, there is virtually little information about the gene action determining PLS resistance in African maize germplasm. This study was therefore conducted to determine the combining ability of early maturity and PLS disease resistance in Sub-Saharan Africa maize germplasm. The maize inbred parents previously selected for their performance were crossed in a North Carolina Design II mating scheme. The twenty-five experimental hybrids that were generated were evaluated for general and specific combining abilities together with five check hybrids in a 5 x 6 rectangular lattice design during the 2006/7 summer season at two locations, Borrowdale and Kadoma in Zimbabwe. There was significant variation among hybrids (P < 0.05). General combining ability (GCA) effects were more important than specific combining ability (SCA) effects, reflecting the preponderance of additive gene action for days to maturity, Phaeosphaeria leaf spot disease resistance and grain yield. Results of GCA showed that E25 and E29 were the best general combiners for earliness (giving high negative GCA effects) at both locations. For PLS disease resistance, E31 and E18 were the best general combiners (giving high negative GCA effects), at Borrowdale and Kadoma, respectively. For SCA effects, the highest significant negative effect for earliness was shown by the crosses E28 x E29 and E32 x E25 at both locations. The highest SCA effect for PLS disease resistance was given by the cross E32 x E31 and E28 x E31 at Borrowdale and Kadoma, respectively. For grain yield, the highest SCA effects were given by E26 x E18 and E28 x E25 at Borrowdale and Kadoma, respectively. The hybrids showed a high range of performance for all characters investigated, and could be further exploited for their heterotic capacities and subsequent release in areas where PLS is prevalent. Early maturity and PLS disease resistance heritabilities were moderate (51 %) and high (68 %), respectively indicating that selection could be used to improve earliness and PLS resistance in this germplasm.
    URI
    http://hdl.handle.net/10646/898
    Subject
    staple food
    maturing maize
    maize crop
    Collections
    • Faculty of Agriculture Environment and Food Systems e-Theses Collection [105]

    University of Zimbabwe: Educating To Change Lives!
    DSpace software copyright © 2002-2020  DuraSpace | Contact Us | Send Feedback
     

     

    Browse

    All of UZ eScholarCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage StatisticsView Google Analytics Statistics

    University of Zimbabwe: Educating To Change Lives!
    DSpace software copyright © 2002-2020  DuraSpace | Contact Us | Send Feedback