Show simple item record

dc.contributor.authorMafuta, Phillip
dc.contributor.authorMukwembi, Simon
dc.contributor.authorMunyira, Sheunesu
dc.date.accessioned2021-02-15T09:08:10Z
dc.date.available2021-02-15T09:08:10Z
dc.date.issued2018-08-29
dc.identifier.citationMafuta, P., Mukwembi, S., & Munyira, S. (2019). Spanning paths in graphs. Discrete Applied Mathematics, 255, 278-282.en_ZW
dc.identifier.issn0166218X
dc.identifier.urihttps://hdl.handle.net/10646/3962
dc.description.abstractThe Conjecture, Graffiti.pc 190, of the computer program Graffiti.pc, instructed by DeLavi˜na, state that every simple connected graph G with minimum degree δ and leaf number L(G) such that δ ≥ 1 2 (L(G) + 1), is traceable. Here, we prove a sufficient condition for a graph to be traceable based on minimum degree and leaf number, by settling completely, the Conjecture Graffiti. pc 190. We construct infinite graphs to show that our results are best in a sense. All graphs considered are simple. That is, they neither have loops nor multiple edges.en_ZW
dc.description.sponsorshipDAAD, Germany.en_ZW
dc.language.isoenen_ZW
dc.publisherElsevieren_ZW
dc.subjectleaf numberen_ZW
dc.subjectminimum degreeen_ZW
dc.subjecttraceable graphsen_ZW
dc.titleSpanning paths in graphsen_ZW
dc.typeArticleen_ZW


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record