Show simple item record

dc.contributor.authorDankelmann, Peter
dc.contributor.authorMukwembi, Simon
dc.contributor.authorSwart, Henda C
dc.date.accessioned2017-09-06T07:43:37Z
dc.date.available2017-09-06T07:43:37Z
dc.date.issued2015-01-15
dc.identifier.citationDankelmann, P., Mukwembi, S., & Swart, H. C. (2008). Average distance and edge-connectivity I. SIAM Journal on Discrete Mathematics, 22 (1), 92-101.en_US
dc.identifier.issn1095-7200
dc.identifier.urihttp://hdl.handle.net/10646/3381
dc.descriptionThe results in this paper are part of the second author’s PhD thesis.en_US
dc.description.abstractThe average distance $\mu(G)$ of a connected graph G of order n is the average of the distances between all pairs of vertices of G. We prove that if G is a $\lambda$-edge-connected graph of order n, then the bounds $\mu(G) \le 2n/15+9$ if $\lambda=5,6$, $\mu(G) \le n/9+10$ if $\lambda=7$, and $\mu(G) \le n/(\lambda+1)+5$ if $\lambda \ge 8$ hold. Our bounds are shown to be best possible, and our results solve a problem of Plesníken_US
dc.description.sponsorshipNational Research Foundation and the University of KwaZulu-Natalen_US
dc.language.isoen_ZWen_US
dc.publisherSociety for Industrial and Applied Mathematicsen_US
dc.subjectPlesniken_US
dc.subjectverticesof Gen_US
dc.titleAverage distance and edge-connectivity Ien_US
dc.typeArticleen_US
dc.contributor.authoremailsimonmukwembi@gmail.comen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record