dc.contributor.author | Dankelmann, Peter | |
dc.contributor.author | Mukwembi, Simon | |
dc.contributor.author | Swart, Henda C | |
dc.date.accessioned | 2017-09-06T07:43:37Z | |
dc.date.available | 2017-09-06T07:43:37Z | |
dc.date.issued | 2015-01-15 | |
dc.identifier.citation | Dankelmann, P., Mukwembi, S., & Swart, H. C. (2008). Average distance and edge-connectivity I. SIAM Journal on Discrete Mathematics, 22 (1), 92-101. | en_US |
dc.identifier.issn | 1095-7200 | |
dc.identifier.uri | http://hdl.handle.net/10646/3381 | |
dc.description | The results in this paper are part of the second author’s PhD thesis. | en_US |
dc.description.abstract | The average distance $\mu(G)$ of a connected graph G of order n is the average of the distances between all pairs of vertices of G. We prove that if G is a $\lambda$-edge-connected graph of order n, then the bounds $\mu(G) \le 2n/15+9$ if $\lambda=5,6$, $\mu(G) \le n/9+10$ if $\lambda=7$, and $\mu(G) \le n/(\lambda+1)+5$ if $\lambda \ge 8$ hold. Our bounds are shown to be best possible, and our results solve a problem of Plesník | en_US |
dc.description.sponsorship | National Research Foundation and the University of KwaZulu-Natal | en_US |
dc.language.iso | en_ZW | en_US |
dc.publisher | Society for Industrial and Applied Mathematics | en_US |
dc.subject | Plesnik | en_US |
dc.subject | verticesof G | en_US |
dc.title | Average distance and edge-connectivity I | en_US |
dc.type | Article | en_US |
dc.contributor.authoremail | simonmukwembi@gmail.com | en_US |