Show simple item record

dc.contributor.authorMuzadziwa, Denson
dc.date.accessioned2016-04-27T09:13:32Z
dc.date.available2016-04-27T09:13:32Z
dc.date.issued2016-04
dc.identifier.urihttp://hdl.handle.net/10646/2581
dc.description.abstractIn this dissertation we solve the Kuramoto-Sivanshinsky equation numerically using an adaptive mesh method. Discretization in time is done using Crank- Nicolson with septic Hermite collocation method applied in space on an adaptive mesh. The adaptive mesh is a solution of moving mesh partial differential equations derived from the principle of equidistribution. A rezoning approach which works with a decoupled solution procedure is then used to develop a matlab code to produce the numerical results. The method is evaluated for effectiveness and computational efficiency with the most current best method available in the literature.en_US
dc.language.isoen_ZWen_US
dc.subjectKuramoto-Sivanshinskyen_US
dc.subjectadaptive mesh methoden_US
dc.subjectCrank- Nicolsonen_US
dc.subjectseptic Hermite collocation methoden_US
dc.titleNumerical simulation of the wave (shock profile) propagation of the Kuramoto-Sivanshinky equation using an adaptive mesh methoden_US
thesis.degree.advisorSikwila, S. T. , Dr.
thesis.degree.countryZimbabween_US
thesis.degree.disciplineMathematicsen_US
thesis.degree.facultyFaculty of Scienceen_US
thesis.degree.grantorUniversity of Zimbabween_US
thesis.degree.grantoremailspecialcol@uzlib.uz.ac.zw
thesis.degree.levelMScen_US
thesis.degree.nameMaster of Science in Mathematicsen_US
thesis.degree.thesistypeThesisen_US
dc.date.defense2015-07


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record