Show simple item record

dc.contributor.authorMadanha, Sesuai Yash
dc.date.accessioned2014-04-24T09:55:34Z
dc.date.available2014-04-24T09:55:34Z
dc.date.issued2014-04-24
dc.identifier.urihttp://hdl.handle.net/10646/1213
dc.description.abstractThis work is a contribution to the theory of products of finite groups. A group G = AB is a weakly totally permutable product of subgroups A and B if every subgroup, U of A such that U ≤ A ∩ B or A ∩ B ≤ U, permutes with every subgroup of B and if every subgroup V of B such that V ≤ A ∩ B or A ∩ B ≤ V , permutes with every subgroup of A. It follows that a totally permutable product is a weakly totally permutable product. Some results on totally permutable products in the framework of formation theory are generalised. In particular it is shown that if the factors of a weakly totally permutable product are in F, then the product is also in F, where F is a formation containing U, the class of all finite supersoluble groups. It is also shown that the F-residual (and F-projector) of the product G is just the product of the F-residuals (and respectively F-projectors) of the factors A and B, when F is a saturated formation containing U. Moreover, it is shown that a weakly totally permutable product is an SC-group if and only if its factors are SC-groups. In the framework of Fitting classes some results are extended to weakly totally permutable products. Fischer classes containing U were proved to behave nicely with respect to forming products in totally permutable products. It is shown that a particular Fischer class, F N, where F is a Fitting class containing U and N is the class of all nilpotent groups, also behave nicely with respect to forming products in weakly totally permutable products.en_US
dc.language.isoen_ZWen_US
dc.subjectfinite groupsen_US
dc.subjectpermutable productsen_US
dc.subjectformation theoryen_US
dc.titleOn Groups which are Products of Weakly Totally Permutable Subgroupsen_US
thesis.degree.advisorStewart, A.G.R
thesis.degree.advisorHauck, Peter
thesis.degree.countryZimbabween_US
thesis.degree.disciplineMathematicsen_US
thesis.degree.facultyFaculty of Scienceen_US
thesis.degree.grantorUniversity of Zimbabween_US
thesis.degree.grantoremailspecialcol@uzlib.uz.ac.zw
thesis.degree.levelMPhilen_US
thesis.degree.nameMaster of Philosophyen_US
thesis.degree.thesistypeThesisen_US
dc.date.defense2013


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record