Please use this identifier to cite or link to this item: https://hdl.handle.net/10646/2581
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMuzadziwa, Denson-
dc.date.accessioned2016-04-27T09:13:32Z-
dc.date.available2016-04-27T09:13:32Z-
dc.date.issued2016-04-
dc.identifier.urihttp://hdl.handle.net/10646/2581-
dc.description.abstractIn this dissertation we solve the Kuramoto-Sivanshinsky equation numerically using an adaptive mesh method. Discretization in time is done using Crank- Nicolson with septic Hermite collocation method applied in space on an adaptive mesh. The adaptive mesh is a solution of moving mesh partial differential equations derived from the principle of equidistribution. A rezoning approach which works with a decoupled solution procedure is then used to develop a matlab code to produce the numerical results. The method is evaluated for effectiveness and computational efficiency with the most current best method available in the literature.en_US
dc.language.isoen_ZWen_US
dc.subjectKuramoto-Sivanshinskyen_US
dc.subjectadaptive mesh methoden_US
dc.subjectCrank- Nicolsonen_US
dc.subjectseptic Hermite collocation methoden_US
dc.titleNumerical simulation of the wave (shock profile) propagation of the Kuramoto-Sivanshinky equation using an adaptive mesh methoden_US
thesis.degree.advisorSikwila, S. T. , Dr.-
thesis.degree.countryZimbabween_US
thesis.degree.disciplineMathematicsen_US
thesis.degree.facultyFaculty of Scienceen_US
thesis.degree.grantorUniversity of Zimbabween_US
thesis.degree.grantoremailspecialcol@uzlib.uz.ac.zw
thesis.degree.levelMScen_US
thesis.degree.nameMaster of Science in Mathematicsen_US
thesis.degree.thesistypeThesisen_US
dc.date.defense2015-07-
Appears in Collections:Faculty of Science e-Theses Collection

Files in This Item:
File Description SizeFormat 
Muzadziwa_NUMERICAL_SIMULATION-OF_THE_WAVE_SHOCK_PROFILE_PROPAGATION.pdf1.12 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.