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Abstract

In this dissertation we solve the Kuramoto-Sivanshinsky equation numerically

using an adaptive mesh method. Discretization in time is done using Crank-

Nicolson with septic Hermite collocation method applied in space on an adaptive

mesh. The adaptive mesh is a solution of moving mesh partial differential equa-

tions derived from the principle of equidistribution. A rezoning approach which

works with a decoupled solution procedure is then used to develop a matlab

code to produce the numerical results. The method is evaluated for effectiveness

and computational efficiency with the most current best method available in the

literature.
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Chapter 1

Introduction

The Kuramoto-Sivashinsky (K-S) equation is a non-linear fourth order partial dif-

ferential equation (PDE) discovered separately by Yoshiki Kuramoto and Gregory

Shivashinsky in the study of non-linear stability of travelling waves. Shivashinsky

[33] came up with the equation while modelling small thermal diffusive instabil-

ities in laminar flame front in 1977. In this case, the solution u(x1, x2, t) is the

perturbation of an unstable planar flame front in the direction of propagation.

Sivashinsky also discovered the equation as a model for cellular flame patterns

produced in the irregular burning of premixed gases. His main area of concern was

to qualitatively describe the forces affecting the shape of a flame front. The forces

of interest to him were diffusion, heat conduction, temperature of the flame and

the hydrodynamics of the underlying mixture. It is against this background that

Sivashinsky used a flame model by Istratov and Librovich [17] which provided

him with equations to describe these forces and enable him to come up with the

equation.

Kuramoto [19, 20, 21, 22] derived the equation in the study of the Belousov-

Zabotinskii reaction as a model of diffusion induced chaos. u(x1, x2, x3, t) was

considered to be a small perturbation of a global periodic solution just beyond

the parameter domain where the Hopf bifurcation has occurred.
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In one dimension the K-S equation is

∂u

∂t
+ u

∂u

∂x
+
∂2u

∂x2
+
∂4u

∂x4
= 0. (1.1)

It has been discovered that the equation describes other physical contexts such as

long waves on thin films, long waves on the interface between two viscous fluids

and unstable drift waves in plasmas.

The structure of the K-S equation is such that the second derivative is an

energy source and thus has a distributing effect. The non-linear term u∂u
∂x

is a

correction to the phase speed and is caused by the movement associated with

mean flow for thin films. The term is responsible for transferring energy from

low to high wave numbers while the fourth derivative is the dominating term and

is responsible for stabilising the equation.

Amongst other applications, the K-S equation is used as a model to describe

the fluctuations of the positions of a flame front, the motion of a fluid going

down a vertical wall or a spatially uniform oscillating chemical reaction in a

homogeneous medium.

Several methods have been used to solve the equation numerically and of

interest are the methods based on the method of lines (MOL). In this method,

spatial derivative terms are replaced by algebraic approximations which result

in a system of ordinary differential equations (ODEs). Numerical integration is

then implemented in time to obtain the numerical solution. Khater and Temsah

[18] use the Chebyshev spectral collocation method whereby exact derivatives

are replaced by derivatives of interpolating polynomials at Chebyshev points in

the domain. The Backward difference formula is then applied in time. Mittal

and Arora [26] use quintic B-splines which are fifth order B-splines to discretize

the spatial derivatives in space and the Crank- Nicholson scheme is applied in

time. The numerical solution was found to be close to the exact solution and

error results proved to be less than those produced by the lattice Boltzmann

method [23]. Zavalani [37] uses the Fourier spectral method to solve the K-S

equation. A Fourier series is used to write the PDE solution in terms of its

10



Fourier series. A system of ODEs for the time dependent coefficients is obtained

by substitution of this series into the PDE. A time stepping method is then used

to solve the ODE system. In the meshless method of lines [12], the numerical

solution of the equation is approximated by a set of scattered nodes and radial

basis functions are used to approximate the spatial derivatives to transform the

system into a system of first order ODEs. Multiquadric(MQ), Gaussian(GA) and

inverse Multiquadric(IMQ) functions are used as basis functions. The resulting

ODE system in time is solved using Runge Kutta method of fourth order. Results

obtained are very close to the exact solution. The method implemented using

MQ radial basis functions performs better than with the other two types of

basis functions and it gives higher level of accuracy using a lower number of

spatial nodes. In [36], Zarebnia and Parvaz implements the method of lines for

the solution of the K-S equation using the septic B-spline collocation method.

Seventh order B-splines are used to discretize the derivatives on a fixed mesh in

space and finite difference formula in conjunction with the θ-weight method is

applied in time. Each seventh order B-spline covers eight elements and thus each

element is covered by eight splines. Each septic B-spline is also continuous up to

the seventh derivative. Thus the method gives a better numerical approximation

for the solution of the equation. A comparison of global relative errors at different

times shows that the septic B-spline collocation method is more accurate than

the quintic B-spline method.

In this dissertation, an adaptive method is implemented to obtain the numer-

ical solution of the K-S equation. This has the advantage of enabling sufficient

mesh points to be concentrated in the region of rapid solution variations thereby

increasing accuracy and efficiency. It is the aim of this thesis to reduce the error

in obtaining the numerical solution of the K-S equation in comparison to that

obtained in solving the equation on a fixed uniform mesh using septic B-spline

collocation method, which has proved to be the current accurate and efficient

method.

Using a fine mesh is not necessary when implementing adaptive methods as
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accuracy of the numerical solution is achieved by concentrating computational

effort in regions involving high solution variation. This in turn improves com-

putational efficiency as fewer mesh points can be used with the bulk of them

located in regions were there are needed the most. Adapting a mesh is one way

of eliminating oscillations in a solution as it allows the use of a small mesh. An

adaptive small mesh is capable of keeping track of important structures that oc-

cur in PDEs and in turn an accurate solution is obtained. The major drawback

of adaptive methods is that they sometimes introduce an extra level of complex-

ity to the system through the mesh equation and this may lead to additional

computational cost and numerical instability.

The three types of techniques that exist for adaptive mesh methods are h-

refinement, p-refinement and r-refinement method. In h-refinement, extra nodes

are added or removed to an existing uniform mesh when a certain criteria is sat-

isfied resulting in a refined mesh or coarse mesh [1, 11, 31]. p-refinement method

improves the accuracy of the numerical solution by increasing or decreasing the

order of the basis functions in each element so as to minimize the error in the

approximation. The technique is mainly applied in finite elements method [11].

The relocation refinement method or r-refinement technique as they are usually

called, relocates nodes towards areas which need a high spatial resolution in or-

der to capture important characteristics in the solution. This results in smaller

mesh cells in the regions of interest thus focussing computational effort in those

areas whilst at the same time enjoying the benefits of using a fixed number of

mesh points. The method is described by Miller and Miller in [25] and then ex-

tended by Haung and Russell in [14, 15]. In this dissertation we are interested in

adapting our mesh using the r-refinement method.

12



Chapter 2

Grid Generation

2.1 Equidistribution Principle

The problem of how to choose a suitable grid for the adaptive moving mesh

method can be solved by several techniques. Amongst these are the functional

minimisation and the Equidistribution Principle (EP). The functional minimisa-

tion uses the measurable properties of a mesh to generate a moving mesh from

variational principle. In this dissertation we will consider the EP, a concept first

introduced by Burchard [6] as a method of finding changing nodes for optimal

spline approximations. Deboors in [8, 9] and Dodson [10] developed the concept

for the solution of boundary value problems and in particular, it is deBoors who

came up with a simpler algorithm for an equidistributed mesh in [9]. Ren and

Russell [28] and Huang, Ren and Russell [14, 15] came up with different forms

of the discrete and continuous EP and the associated two point boundary value

problem method. Moving mesh partial differential equations (MMPDEs) based

on the EP were also derived in these papers.

The idea underlying the EP concept is that if some measure of the error in

the numerical solution can be approximated, then mesh points may be selected

in a way as to equally distribute the error in each subinterval. Such a measure of

the solution error is called a monitor function, denoted by M(u(x, t), t), which is
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usually a user defined function. It is a positive definite function of the solution

and/or its derivatives.

We can consider the EP idea as a coordinate mapping from a computational

domain Ωc to a physical space Ωp where x, ξ ∈ [a, b]. For an arbitrary function

f = f(x, t) = f(x(ξ, t), t), we use the notation

fx ≡
∂f

∂x

≡ ∂f

∂x

∣∣∣∣
t fixed

ft ≡
∂f

∂t

≡ ∂f

∂t

∣∣∣∣
x fixed

(2.1)

∂f

∂ξ
≡ ∂f

∂ξ

∣∣∣∣
t fixed

=
∂f

∂x

∣∣∣∣
t fixed

∂x

∂ξ

∣∣∣∣
t fixed

ḟ ≡ df

dt

≡ ∂f

∂t

∣∣∣∣
ξ fixed

=
∂f

∂x

∣∣∣∣
t fixed

∂x

∂t

∣∣∣∣
ξ fixed

+
∂f

∂t

∣∣∣∣
x fixed

.

The computational domain is usually considered as a uniform mesh

ξi =
(i− 1)(b− a)

N
, i = 1, ..., N + 1, (2.2)

where N is a positive integer. In this regard, the goal of the grid generation

problem becomes one of finding a suitable coordinate mapping or transformation.

Huang and Russell [15] use the EP to derive moving mesh partial differential

equations (MMPDEs) whose solutions are mesh functions {Xi(t)}N+1
i=1 or moving

meshes

Π := {a = X1 < X2(t) < ... < XN(t) < XN+1 = b} (2.3)

which are equidistributing for all values of t.

The continuous form of the EP is the integral∫ x(ξ,t)

a

M(s(ξ, t))ds = ξθ(t) (2.4)
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where

θ(t) =

∫ b

a

M(s, t)ds. (2.5)

Differentiating (2.4) with respect to ξ once and twice, we obtain

M(x(ξ, t), t)
∂

∂ξ
x(ξ, t) = θ(t) (2.6)

and
∂

∂ξ

{
M(x(ξ, t), t)

∂

∂ξ
x(ξ, t)

}
= 0 (2.7)

Equations (2.6) and (2.7) are called quasi-static equidistribution principles (QSEPs)

as they do not contain the node speed ẋ(ξ, t).

Time differentiation of equation (2.7) and expansion gives

(MMPDE1)
∂

∂ξ

(
M
∂ẋ

∂ξ

)
+

∂

∂ξ

(
∂M

∂ξ
ẋ

)
= − ∂

∂ξ

(
∂M

∂t

∂x

∂ξ

)
. (2.8)

The derivative ∂M
∂t

is regarded as a source of mesh movement in MMPDE1 since

it will have solutions with zero speed if the value of the derivative is zero. Thus

we can conclude that the mesh remains stationary regardless of the initial mesh

if M(x, t) is independent of time.

We can achieve stability in the movement of the mesh by requiring the EP

(2.7) to be satisfied at a later time t + τ and (0 < τ � 1) [15]. Therefore the

mesh need to satisfy the condition

∂

∂ξ

{
M(x(ξ, t+ τ), t+ τ)

∂

∂ξ
x(ξ, t+ τ)

}
= 0 (2.9)

which is capable of controlling mesh movement. Taylor’s expansions for x(ξ, t+τ)

and M(x(ξ, t+ τ), t+ τ) are given by

∂

∂ξ
x(ξ, t+ τ) =

∂

∂ξ
x(ξ, t) + τ

∂

∂ξ
ẋ(ξ, t) +O(τ 2) (2.10)

M(x(ξ, t+ τ), t+ τ) = M(x(ξ, t), t) + τ ẋ
∂

∂x
M(x(ξ, t), t)

+τ
∂

∂t
M(x(ξ, t), t) +O(τ 2) (2.11)
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respectively. We substitute expansions (2.10) and (2.11) into the result (2.9) and

ignore higher order terms to obtain

(MMPDE2)
∂

∂ξ

(
M
∂ẋ

∂ξ

)
+

∂

∂ξ

(
∂M

∂ξ
ẋ

)
= − ∂

∂ξ

(
∂M

∂t

∂x

∂ξ

)
− 1

τ

∂

∂ξ

(
M
∂x

∂ξ

)
.

(2.12)

An additional correction term

−1

τ

∂

∂ξ

(
M
∂x

∂ξ

)
(2.13)

exists in (2.12) and is a measurement of how close the mesh x(ξ, t) satisfy QSEP. It

contains the relaxation parameter τ which plays a pivotal role in driving the mesh

towards equidistribution. A smaller τ will result in high mesh velocities where as a

very large value of τ tends to give a stationary mesh. In this regard, the correction

term can be considered as the source of mesh movement and mechanism to drive

the mesh towards equidistribution even in the absence of the source of mesh

movement, ∂M
∂t

. Consequently, dropping the term ∂x
∂ξ

∂M
∂t

or both terms ∂x
∂ξ

∂M
∂t

and

ẋ∂M
∂ξ

in MMPDE2 is of less or no significance and gives the following MMPDEs

(MMPDE3)
∂2

∂ξ2
(Mẋ) = −1

τ

∂

∂ξ

(
M
∂x

∂ξ

)
(2.14)

and

(MMPDE4)
∂

∂ξ

(
M
∂ẋ

∂ξ

)
= −1

τ

∂

∂ξ

(
M
∂x

∂ξ

)
. (2.15)

A MMPDE which explicitly computes the node speed was computed by An-

derson in [2] and is given by

(MMPDE5) ẋ =
1

τ

∂

∂ξ

(
M
∂x

∂ξ

)
. (2.16)

There are other MMPDEs which can be derived using attraction and repulsion

of pseudo-forces. Literature on these can be found in [15].

The moving mesh method in this dissertation makes use of MMPDE4 because

we can obtain unique solutions for the mesh velocities with Dirichlet boundary

conditions. This is discretized using centred finite difference approximation in

space to give

Mi+1 +Mi

2( 1
N

)2
(ẋi+1 − ẋi)−

Mi +Mi−1

2( 1
N

)2
(ẋi − ẋi−1) = −Ei

τ
(2.17)

16



where

Ei =
Mi+1 +Mi

2( 1
N

)2
(xi+1 − xi)−

Mi +Mi−1

2( 1
N

)2
(xi − xi−1). (2.18)

2.2 Moving mesh methods

Three major components which enables a mesh to be moved are:

• the strategy used to move the mesh

• the discretization method for the physical PDE

• the approach used to solve the system of physical and mesh equations

The quasi-Lagrange approach and the rezoning approach are used to treat the

effect caused by the mesh movement in the time discretization of the physical

PDE. The quasi-Lagrange approach uses either the coupled or decoupled solution

procedure and the rezoning approach is designed to work only with the decoupled

solution procedure.

In the coupled solution procedure, the mesh equation and the physical PDE

are solved simultaneously as one system for the mesh and the physical solution

[16]. Interpolation of the solution from one mesh to the next is not needed

and the mesh is able to keep its dynamical properties such as scaling structures

[3, 4, 5]. However the procedure has the disadvantage of creating highly non-

linear equations even from linear physical PDEs which makes the resulting system

difficult and expensive to solve.

For the decoupled solution procedure, a mesh at the new time level is first

generated using old values of the mesh and solution. The solution is then obtained

at the new time level. Huang [13], Huang and Russell [4] and Ceniceros and Hou

[7] solved moving mesh equations using the decoupled procedure. The procedure

has the advantage of ease of coding as the PDE solution and moving mesh part

can be coded separately thus improving efficiency in each section of the solution.

The decoupled solution procedure has the the disadvantage of producing a mesh

17



that lags in time. It also lacks a built-in mechanism to force a badly generated

mesh on track thus causing instability in the solution integration.

2.2.1 Quasi-Lagrange approach

In the quasi-Lagrange approach, there is continuous movement of mesh points in

time. The physical PDE is reformulated into derivatives along the trajectories and

a convective term is added to reflect the mesh movement. The extra convective

term and the new time derivatives are treated in the same way as other terms

in the physical PDE. Interpolation of the solution from the old mesh to the

new mesh in not necessary. The approach was used in the solution of Burger’s

equation and scalar reaction-diffusion equation from combustion in [14] and to

solve Fisher’s equation in [27].

2.2.2 Rezoning approach

The mesh in the rezoning approach moves in an intermittent manner and as

result the method is applied with the decoupled solution procedure. A mesh is

held stationary while solving for the physical PDE and then updated at each time

level using mesh equations. The physical solution is then interpolated from the

old mesh to the new one and the PDE is discretized on the new mesh held fixed

for the current time step. In this dissertation, we are interested in the rezoning

approach because it allows for the coding of the mesh equation and the physical

equation separately and improvements can be made on each part without altering

the whole code.

Tang [35] and H and T Tang [34] developed the rezoning approach for solving

one and two dimensional hyperbolic systems of conservation laws. In [35], exper-

iments were carried out on the inviscid burgers equation in one dimension where

a second order finite volume scheme was used in conjunction with a second order

Runge-Kutta discretization. It was observed that the adaptive mesh method is

able to follow the moving shock with a second order rate of convergence. In the
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same paper, the method was also tested with the one dimension equations of gas

dynamics where the method was able to resolve the contact and shock discon-

tinuities in the solution profile. According to [5, 34, 35], an algorithm for the

rezoning approach is as follows:

1. Solve the given physical PDE on the current mesh.

2. Use the PDE solution obtained to calculate the monitor function.

3. Find the new mesh by solving a MMPDE.

4. Adjust the current PDE solution to suite the new mesh by interpolation.

5. Solve the physical PDE on the new mesh for the solution in the next time.

2.2.3 Monitor functions

The choice of monitor functions play an important role in the adaptive moving

mesh strategy. This has a bearing on the efficiency and optimization of the initial

data and thus precise choices must be made for different functions. The choice is

influenced by the need to place mesh nodes so that a certain quantity is equally

distributed, that is the idea of EP. This quantity might be an area when the EP

is applied to a non-linear differential equation or the arc length in the case of

problems with steep fronts. The mass monitor function is suitable for the former

whilst the arc-length monitor function is suitable for the latter scenario. Given

that u(x, t) is the solution for an unsteady one-dimensional problem, the mass

monitor function and the arc-length monitor function are given by

M(x, t) = u(x, t). (2.19)

and

M(x, t) =

√
1 + α2

(
∂u

∂x

)2

(2.20)

respectively where α is a user specified parameter chosen depending on the be-

haviour of the solution u(x, t). Another commonly used monitor function is the
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curvature monitor function given by

M(x, t) =

(
1 + α2

(
∂2u

∂x2

)2) 1
4

. (2.21)

Monitor functions are sometimes modified so as to suite specific solution func-

tions. This can be done by combining two or more different types of monitor

functions which have the ability to locate mesh points in different regions of

interest thus giving a more refined representation of the solution profile. For ex-

ample, a combination of an arc-length monitor function and a curvature monitor

function can be given by

M(x, t) =

(
1 + α2

(
∂u

∂x

)2

+ α2

(
∂2u

∂x2

)2) 1
2

. (2.22)

With the correct choice of α, this monitor function is a powerful tool to equidis-

tribute mesh points in problems such as the K-S equation. Another example of

a modified monitor function is the extended curvature monitor function which is

of the form

M(x, t) =

(
1 + α2(1− u)2 + β2(a− u)2

(
∂2u

∂x2

)2) 1
2

. (2.23)

The monitor function was developed in [27] for the moving mesh solution of

Fisher’s equation. It works with three user-defined parameters α, β and a.

To illustrate how monitor functions equidistribute mesh points, we consider

the linear boundary value problem of the function u(x) given by

ε
d2u

dx2
+
du

dx
= 0, x ∈ (0, 1), (2.24)

with Dirichlet boundary conditions

u(0) = 1 u(1) = exp

(
− 1

ε

)
. (2.25)

This problem has the exact solution given by

u(x) = exp

(
− x

ε

)
. (2.26)

20



We take the value of ε in the ODE and its exact solution to be 10−1. Given

a mesh {xi}N+1
i=1 where N is the number of mesh intervals, the finite difference

discretizations of first and second derivatives on this mesh are given by

du

dx
≈ ui+1 − ui−1

xi+1 − xi−1

,

d2u

dx2
≈ 2

xi+1 − xi−1

[
ui+1 − ui
xi+1 − xi

− ui − ui−1

xi − xi−1

]
, (2.27)

for i = 2, ..., N .

We substitute the expressions in (2.27) into the ODE (2.24) to give the discretized

form

2ε

xi+1 − xi−1

[
ui+1 − ui
xi+1 − xi

− ui − ui−1

xi − xi−1

]
+

[
ui+1 − ui−1

xi+1 − xi−1

]
= 0, (2.28)

for i = 2, ..., N , with

u1 = 1 and uN+1 = exp

(
− 1

ε

)
.

For the moving mesh method, we use QSEP (2.6) as the equation for the mesh

since the ODE is a steady-state problem. The finite difference discretization of

QSEP (2.6) on the mesh {xi}N+1
i=1 is given by

Mi+1 +Mi

2( 1
N

)2
(xi+1 − xi)−

Mi +Mi−1

2( 1
N

)2
(xi − xi−1) = 0, i = 2, ..., N (2.29)

with

x1 = 0 and xN+1 = 1.

The discrete forms of the arc-length, curvature and modified monitor functions

are given by

Mi =

√
1 + α2

(
ui+1 − ui−1

xi+1 − xi−1

)2

, (2.30)

M4
i = 1 + α2

[
2

xi+1 − xi−1

(
ui+1 − ui
xi+1 − xi

− ui − ui−1

xi − xi−1

)]2

(2.31)

and

M2
i = 1+α2

[(
ui+1 − ui−1

xi+1 − xi−1

)2

+

(
2

xi+1 − xi−1

(
ui+1 − ui
xi+1 − xi

−ui − ui−1

xi − xi−1

))2]
(2.32)
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respectively for i = 2, ..., N . The number of mesh points used in this illustration

is 21.

Figure 2.1 shows the distribution of mesh points on a uniform fixed mesh. The

mesh points are concentrated in the flatter region and there are fewer points in

the steep region. Thus the behaviour of the solution is poorly represented on this

mesh.
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Figure 2.1: Distribution of mesh points on a uniform fixed mesh

It can be seen in figure 2.2 that the arc-length monitor function distributes

mesh points both at the steep and flatter regions thus giving a smoother repre-

sentation of the solution. The same level of equidistribution, can also be achieved

by using the curvature monitor function with α = 10 as shown in figure 2.3.
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Figure 2.2: Equidistributed mesh with arc-length monitor function, α = 5 and
ε = 10−1
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Figure 2.3: Equidistributed mesh with curvature monitor function, α = 10 and
ε = 10−1
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Figure 2.4 shows how mesh points are equidistributed using the modified mon-

itor function (2.22).
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Figure 2.4: Equidistributed mesh using a modified monitor function, α = 1 and
ε = 10−1

We note that once the value of ε is less than 10−1, the scheme will not be able

to resolve the boundary layer. An upwinding finite difference scheme has to be

used to discretize the first derivative term.

2.2.4 Smoothing

A non-smooth mesh is usually obtained when solving problems with rapid solution

variation. This might be caused by neighbouring intervals of the mesh nodes

being very different such that the discretization process is highly compromised.

As a consequence, such a mesh gives solutions with oscillatory behaviour thereby

increasing the error in approximating the numerical solution. Non-smooth meshes

also have a tendency of slowing the convergence rate thus causing inefficiencies

in the solution process.

A process called smoothing has the ability to eliminate these undesirable oc-

currences thereby giving reasonably accurate solutions. Smoothing can be applied

on either the mesh or monitor function. A fairly straight forward smoothing pro-

cess is described in [14, 15] whereby smoothing is implemented on the monitor
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function. Values of the smoothed monitor (M̃) function at the point xi are given

by

M̃i =

√√√√∑i+p
k=i−p(Mk)2( γ

1+γ
)|k−i|∑i+p

k=i−p(
γ

1+γ
)|k−i|

. (2.33)

The parameter p is called the smoothing index and is non-negative. It determines

the extent of smoothing where p = 0 indicates the non-smooth case and cases

p = 1, 2, 3 produce good results. γ is non-negative and is called the smoothing

parameter. It represents the rigidity of the grid and requires that neighbouring

intervals should have a grid spacing not differing by more γ
1+γ

where 1 < γ < 2

so as to have a stable grid.
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Chapter 3

Hermite Collocation Method

3.1 Introduction

Collocation method involves determining an approximate solution to a differen-

tial equation by requiring that the approximate solution satisfy the differential

equation at some discrete points (collocation points) together with boundary

conditions. Consider a general fourth order PDE on the domain [a, b] given by

ut = F (t, x, u, ux, uxx, uxxx, uxxxx), t > 0 (3.1)

where F is a given continuous function. The PDE(3.1) has the initial condition

given by

u(x, ta) = u0(x), a < x < b, (3.2)

and four suitable boundary conditions (two at the left boundary point a and the

other two at right boundary point b) so that the Initial Boundary Value Problem

(IBVP) is well posed. The boundary conditions are of the form

Ba1(t, x, u, ux, uxx, uxxx, uxxxx) = y1(t)

Ba2(t, x, u, ux, uxx, uxxx, uxxxx) = y1(t) (3.3)

Bb1(t, x, u, ux, uxx, uxxx, uxxxx) = z1(t)

Bb2(t, x, u, ux, uxx, uxxx, uxxxx) = z2(t)
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where y1(t), y2(t), z1(t), z2(t) are any suitable values that the boundary conditions

can take at x = a and x = b respectively. We also consider a time dependent

mesh with

a = X1(t) < X2(t) < ... < XN+1(t) = b t ∈ [ta, tb], (3.4)

and denote the variable spatial step by Hi = Xi+1(t)−Xi(t) for i = 1, ..., N . We

let Φ be the functions space we wish to represent the approximate solution of the

IBVP(3.1) where

Φ = span{φ0, φ1, ..., φ7} (3.5)

and φj = φj(x, t) for j = 1, 2, ..., 7. The space Φ can be the space of polynomials,

splines of a certain degree or some radial basis functions space. We write the

approximate solution as

U(x, t) =
7∑
j=0

cjφj Xa < x < Xb, (3.6)

where cj are the coefficients to be determined which can be constants or functions.

Suppose we consider the internal points in the mesh (3.4) as the collocation points

in this illustration. The collocation method then requires that the approximate

solution (3.6) satisfies the IBVP (3.1) at each of the collocation points and the

boundary conditions (3.4) at the points xa and xb. A quantity Ri called the

residual is obtained and is set equal to zero at each collocation point where

Ri = Ut − F (t, x, U, Ux, Uxx, Uxxx, Uxxxx). (3.7)

The expressions for the residual enforced to zero at collocation points and the

boundary conditions evaluated at the boundary points gives a system of equations

which is solved for the unknown coefficients cj for j = 0, 1, ..., 7.

The main feature of collocation is that its output is a function (usually a

piecewise polynomial) that approximates the solution of a differential equation

throughout some interval. Thus it can be used to estimate the behaviour of a

solution in the entire interval in question which is in contrast with finite differ-

ence method which produce a discrete set of solution values [24]. Collocation
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methods produce results which are usually of a higher order of accuracy as com-

pared to finite difference methods and it is this higher accuracy that permits the

use of coarser grid of points and hence a small number of points to store data

and operate upon [30]. Derivatives with respect to space variables are computed

explicitly and correctly and higher order derivatives need not be approximated

by difference quotients which can be a problem and is a feature of finite difference

method [32].

However, collocation methods are affected by the presence of boundaries as these

tend to introduce instability problems that are highly restrictive as regards to

time step. The methods also tend to be expensive with regard to computational

time [24].

3.2 Hermite collocation method

The Hermite collocation method results from using a piecewise Hermite polyno-

mial as the approximate solution for the physical solution u(x, t) of the PDE.

The piecewise polynomial makes use of the Hermite basis which is a local repre-

sentation which allows the use of the same information with some scaling in each

subinterval of the mesh [24]. In this section we derive the septic hermite interpo-

lating polynomials and the corresponding 7th order Hermite basis functions. The

description of the septic Hermite collocation method then follows after.
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3.2.1 Hermite interpolating polynomials

Suppose that we know the values of a function u(x) and its consecutive derivatives

up to the pth order at N + 1 points given by

ui = u(xi)

u
(1)
i = u(xi)

...

u
(p)
i = u(xi).

Our approach is to find a polynomial that matches both the function and its

consecutive derivatives at these points and such a polynomial is called a Hermite

polynomial. Our conditions are then given by

U(xi) = ui, i = 1, 2, ..., N + 1

U (1)(xi) = u
(1)
i , i = 1, 2, ..., N + 1

... (3.8)

U (p)(xi) = u
(p)
i , i = 1, 2, ..., N + 1.

Since there are (p + 1)(N + 1) conditions, we are potentially able to determine

up to (p + 1)(N + 1) unknowns in our model. Typically, this means that our

polynomial will have a degree of (p+ 1)(N + 1)− 1 and is given by

U(x) =

(p+1)(N+1)−1∑
j=0

ajx
j. (3.9)

In order to develop a hermite interpolating polynomial U(x) which can interpolate

a function and its consecutive derivatives up to the third order for the interval

[0, 1], we substitute p = 3 and N = 1 into (3.9) to give

U(s) =
7∑
j=0

ajs
j (3.10)
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We then apply the conditions in (3.8) to give the matrix system

1 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0 0 2 0 0 0 0 0

0 0 2 6 12 20 30 42

0 0 0 6 0 0 0 0

0 0 0 6 24 60 120 210


︸ ︷︷ ︸

A



a0

a1

a2

a3

a4

a5

a6

a7


︸ ︷︷ ︸

a

=



u0

u1

u
(1)
0

u
(1)
1

u
(2)
0

u
(2)
1

u
(3)
0

u
(3)
1


︸ ︷︷ ︸

u

(3.11)

If we let S be the set of basis functions {1, s2, s3, s4, s5, s6, s7} and

S =



1

s

s2

s3

s4

s5

s6

s7


we have

U(s) =STa = STA−1u

=LTu (3.12)
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where

L =



L0,0(s)

L1,0(s)

L0,1(s)

L1,1(s)

L0,2(s)

L1,2(s)

L0,3(s)

L1,3(s)


and

L0,0 = (20s3 + 10s2 + 4s+ 1)(s− 1)4

L0,1 = s(10s2 + 4s+ 1)(s− 1)4

L0,2 =
s2

2
(4s+ 1)(s− 1)4

L0,3 =
s3

6
(s− 1)4

L1,0 = −(20s3 − 70s2 + 84s− 35)s4 (3.13)

L1,1 = s4(s− 1)(10s2 − 24s+ 15)

L1,2 = −s
4

2
(s− 1)2(4s− 5)

L1,3 =
s4

6
(s− 1)3

are the septic hermite basis functions on the interval [0, 1]. These Hermite basis

functions L0,l(s) and L1,l(s) for l = 0, 1, 2, 3 are polynomials of degree 7 which

observe the conditions

dk

dsk
L0,l(0) = δk,l,

dk

dsk
L0,l(1) = 0, k, l = 0, 1, 2, 3

dk

dsk
L0,l(0) = 0,

dk

dsk
L1,l(1) = δk,l, k, l = 0, 1, 2, 3

where δk,l denotes the Kronecker delta. The variable s is a local coordinate which

takes values in the interval (0, 1).
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3.2.2 Septic Hermite collocation method

We consider the collocation discretization of the IBVP (3.1) on the time depen-

dent mesh (3.4). According to (3.12), we can approximate the physical solution

u(x, t) on the mesh (3.4) by a piecewise Hermite polynomial of 7th degree given

by

U(x, t) = Ui(t)L0,0(s) + Ux,iHi(t)L0,1(s) + Uxx,iH
2
i (t)L0,2(s)

+ Uxxx,i(t)H
3
i (t)L0,3(s) + Ui+1(t)L1,0(s) + Ux,i+1Hi(t)L1,1(s)

+ Uxx,i+1H
2
i (t)L1,2(s) + Uxxx,i+1(t)H3

i (t)L1,3(s)
(3.14)

for x ∈ [Xi(t), Xi+1(t)], i = 1, 2, ...N where Ui(t), Ux,i(t), Uxx,i(t) and Uxxx,i(t) are

the unknown variables [30]. We define the variable s as

s =
x−Xi(t)

Hi(t)
, (3.15)

where Hi(t) = Xi+1(t) − Xi(t) for i = 1, ..., N . We also obtain derivatives of

U(x, t) with respect to the spatial variable x for x ∈ [Xi(t), Xi+1(t)], by direct

differentiation of (3.14) to give

∂(l)U(x, t)

∂xl
=

1

Hi(t)l

[
Ui(t)

d(l)L0,0

ds(l)
+ Ux,iHi(t)

d(l)L0,1

ds(l)
+ Uxx,iH

2
i (t)

d(l)L0,2

ds(l)
+

Uxxx,i(t)H
3
i (t)

d(l)L0,3

ds(l)
+ Ui+1(t)

d(l)L1,0

ds(l)
+ Ux,i+1Hi(t)

d(l)L1,1

ds(l)
+

Uxx,i+1H
2
i (t)

d(l)L1,2

ds(l)
+ Uxxx,i+1(t)H3

i (t)
d(l)L1,3

ds(l)

]
(3.16)

for l = 1, 2, 3. In each subinterval [Xi, Xi+1] of the mesh (3.4), we define the four

Gauss-Legendre points

0 < ρ1 < ρ2 < ρ3 < ρ4 < 1.
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which are given by

ρ1 =
1

2
−
√

525 + 70
√

30

70

ρ2 =
1

2
−
√

525− 70
√

30

70

ρ3 = 1− ρ1

ρ4 = 1− ρ2.

These Gauss-Legendre points are the roots of the Legendre polynomials of degree

four mapped onto the interval (0, 1). We regard these points as the collocation

points in each subinterval of the mesh (3.4). The endpoints are excluded as

collocation points since ρ1 > 0 and ρ4 < 1. In order to scale Gauss-Legendre

points into subsequent subintervals, we define the collocation points as

Xij = Xi +Hiρj, i = 1, ..., N, j = 1, 2, 3, 4. (3.17)

We can determine the unknown variables consisting of the solution U and its

first three spatial derivatives by substituting (3.14) and its appropriate derivatives

into (3.1) to give the residual (3.7) at each of the four gauss points in each

subinterval. We then set the residuals to be equal to zero which result in 4N

equations in 4(N + 1) unknowns. The boundary conditions evaluated at X1 and

XN+1 gives the remaining four equations thus creating a system of 4(N + 1)

equations in 4(N + 1) unknowns.

3.3 Adaptive hermite collocation method

We can write the piecewise Hermite polynomial (3.14) in the compact form

U(x, t) =
3∑
l=0

(hi)
lU

(l)
i (t)L0,l(s) +

3∑
l=0

(hl)
lU

(l)
i+1L1,l(s) (3.18)

Where the 4(N + 1) unknowns are given by

U
(l)
i ≈

∂lu

∂xl
(Xi(t), t) U

(l)
i+1 ≈

∂lu

∂xl
(Xi+1(t), t), l = 0, 1, 2, 3.
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We discretize the time domain [ta, tb] using the following finite sequence

{ta = t0 < ... < tn < ... < ... < tk = tb}. (3.19)

At each time t = tn = n × dt, we consider a non-uniform mesh {Xn
i }N+1

i=1 where

Xn
i = Xi(tn) given by

a = Xn
1 < ... < Xn

N+1 = b (3.20)

with Hn
i = Xn

i+1 −Xn
i being a non-uniform spatial step for i = 1, ..., N . At the

same time step t = tn, we also consider the approximations to the exact solution

u(x, t) and its derivatives given by {Un
i }N+1

i=1 and {(U (l)
i )n}N+1

i=1 respectively where

(U
(l)
i )n represents the lth derivative approximation with respect to the spatial

variable x at the time t = tn for l = 1, 2, 3.

Chapter 2 of this dissertation describes how we construct a new mesh {X̃i
n}N+1

i=1

using the EP if we are given the mesh, approximate solution and/or its derivative

approximations at the current time step. Our desire then is determine the new

approximations {Ũi
n}N+1

i=1 and {(Ũi
(l)

)n}N+1
i=1 which are related to the new mesh

{X̃i
n}N+1

i=1 in a similar manner the approximations {Un
i }N+1

i=1 and {(U (l)
i )n}N+1

i=1 are

related to the old mesh {Xn
i }N+1

i=1 in each subinterval [Xi, Xi+1]. This process

of updating the solution and its derivatives from the old mesh to the new mesh

is achieved by interpolation. Interpolation can be done over the whole domain

[a, b] or over small subintervals [Xi, Xi+1] which leads to piecewise polynomial

interpolation. A simple example of a piecewise interpolation polynomial is the

cubic Hermite polynomial. This is capable of giving a smoother interpolant over

the subinterval [Xi, Xi+1] which is continuous only up to the first derivative. Thus

the use of this interpolant to estimate higher derivatives tends to give inconsistent

estimates.

In this dissertation we combine the moving mesh method with the septic Her-

mite collocation method to solve the K-S equation which is of the form (3.1).

Thus it is desirable to have a piecewise interpolating polynomial which demands

that the function values and its three consecutive derivatives are satisfied in each
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subinterval. It must also be able to maintain properties of the data such as posi-

tivity and monotonicity. Such an interpolant is the septic Hermite interpolating

polynomial.

Given the partition (3.20) and approximations {(U (l)
i )n} for l = 0, 1, 2, 3, sup-

pose we desire to interpolate U (l)(x) at x = X̃i
n

where X̃i
n ∈ [Xn

i , X
n
i+1] for

i = 1, ..., N . Firstly, we define the local coordinate s of X̃i
n

by

s =
X̃i

n −Xn
i

Hn
i

. (3.21)

We then define

Ũ (l)(X̃i
n
) =

3∑
l=0

H l−p
i U

(l)
i

d(l)L0,l(s)

ds(l)
+

3∑
l=0

H l−p
i U

(l)
i+1

d(l)L1,l(s)

ds(l)
(3.22)

for l = 0, 1, 2, 3 to be the interpolated values of Ũ and the first three consec-

utive derivatives on the new subinterval [X̃i
n
, X̃n

i+1]. In order to compute the

approximations of U at the next time step t = tn+1 denoted by {Un+1
i }N+1

i=1 ,

we use the values of the new mesh {X̃n
i }N+1

i=1 and the updated approximations

{Ũn
i }N+1

i=1 in a septic Hermite collocation numerical scheme. The new approxima-

tions {Un+1
i }N+1

i=1 and the new mesh {X̃n+1
i }N+1

i=1 will become the starting condi-

tions for repeating the whole adaptive process.
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Chapter 4

Numerical Results

4.1 Introduction

In this chapter we present the numerical results for the K-S problem (4.1)

ut + uux + uxx + uxxxx = 0, x ∈ (−30, 30), t > 0 (4.1)

with boundary conditions

u(−30, t) = σ, ux(−30, t) = β (4.2)

u(30, t) = ω, ux(30, t) = ζ (4.3)

where σ, β, ω and ζ are obtained from the exact solution (4.4) with c = 0.1, x0 =

−10 and k = 1
2

√
11
19

. The results are obtained using septic Hermite collocation

method and finite difference method on both a uniform and a non-uniform mesh.

u(x, t) = c+
5

19

√
11

19
[11 tanh3(k(x− ct− x0))− 9 tanh(k(x− ct− x0))] (4.4)

We begin by deriving the finite difference and collocation stencils for the prob-

lem, more specifically by constructing numerical schemes which are valid for both

the uniform and non-uniform mesh. To determine the efficiency of the numeri-

cal simulations on both the uniform and non-uniform mesh, we calculate the l∞

norm errors at different times and make comparison with the values given by the

method in [36].
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The spatial discretization of the domain is given by

−30 = x1 < x2 < ... < xN+1 = 30 (4.5)

where xi represents the nodal points and hi = xi+1 − xi with hi > 0 is the

variable spatial step. We define {Ui}N+1
i=1 and {ui}N+1

i=1 as sequences of numerical

and exact solutions respectively in the l∞ space evaluated at xi. If Ei represents

the absolute error in the numerical solution at xi where Ei = |Ui − ui|, then the

l∞ norm error at any given time t is given by

||Ei||∞ = max
1≤i≤N+1

|U(xi, t)− u(xi, t)| (4.6)

where ||.||∞ is the infinity norm.

4.2 Discretization

4.2.1 The K-S equation finite difference stencil

The first and second derivative finite difference approximations on a general three

point mesh with grid points xi−1 < xi < xi+1 are given by

ux ≈
ui+1 − ui−1

xi+1 − xi−1

(4.7)

and

uxx ≈
2

hi + hi+1

[
ui+1 − ui
hi+1

− ui − ui−1

hi

]
. (4.8)

respectively. The five point finite difference scheme for the fourth derivative on

a general mesh with grid points xi−2 < xi−1 < xi < xi+1 < xi+2 is given by

uxxxx ≈ aui−2 + bui−1 + cui + cui+1 + eui+2

where the coefficients are given by

a = 24
(xi−1−xi−2)(xi−xi−2)(xi+1−xi−2)(xi+2−xi−2)

b = − 24
(xi−1−xi−2)(xi−xi−1)(xi+1−xi−1)(xi+2−xi−1)

c = 24
(xi−xi−1)(xi−xi−2)(xi+1−xi)(xi+2−xi)

d = − 24
(xi+1−xi)(xi+1−xi−1)(xi+1−xi−2)(xi+2−xi+1)

e = 24
(xi+2−xi+1)(xi+2−xi)(xi+2−xi−1)(xi+2−xi−2)

.

(4.9)
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We discretize the K-S equation (4.1) using the finite difference schemes (4.7),

(4.8) and (4.9) to obtain

un+1
i −uni
δt

+

(
u
n+1

2
i+1 +u

n+1
2

i +u
n+1

2
i−1

3

)(
u
n+1

2
i+1 −u

n+1
2

i−1

xi+1−xi−1

)
+ 2
xi+1−xi−1

(
u
n+1

2
i+1 −u

n+1
2

i

xi+1−xi − u
n+1

2
i −u

n+1
2

i−1

xi−xi−1

)
+

(
au

n+ 1
2

i−2 + bu
n+ 1

2
i−1 + cu

n+ 1
2

i + du
n+ 1

2
i+1 + eu

n+ 1
2

i+2

)
= 0

(4.10)

where

u
n+ 1

2
i =

un+1
i +uni

2

un = u(tn)

un+1 = u(tn+1).

tn and tn+1 are the current and later times respectively with δt = tn+1 − tn

representing the time step. We simplify equation (4.10) and obtain the difference

equation
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un+1
i−2

[
aδt
2

]
+

un+1
i−1

[
δt

(xi+1−xi−1)(xi−xi−1)
+ bδt

2

+
δt(un+1

i+1 −u
n+1
i−1 −u

n+1
i−1 +uni+1−uni−1)

12(xi+1−xi−1)
− δt(uni+1+uni +uni+1)

12(xi+1−xi−1)

]
+

un+1
i

[
1− δt

(xi+1−xi−1)(xi+1−xi) −
δt

(xi+1−xi−1)(xi−xi−1)

+ cδt
2

+
δt(un+1

i+1 −u
n+1
i−1 +uni+1−uni−1)

6

]
+

un+1
i+1

[
δt

(xi+1−xi−1)(xi+1−xi) + dδt
2

+
δt(un+1

i+1 −u
n+1
i−1 +uni+1−uni−1)

6

+
δt(uni−1−uni +uni+1)

2(xi+1−xi−1)

]
+

un+1
i+2

[
eδt
2

]
= uni −

δt(uni−1+uni +uni+1)

6

(uni+1−uni−1)

2(xi+1−xi−1)

− δt(uni+1−uni−1)

2(xi+1−xi−1)
− δt

[
auni−2+buni−1+cuni +duni+1+euni+2

2

]
.

(4.11)

with

a = 24
(xi−1−xi−2)(xi−xi−2)(xi+1−xi−2)(xi+2−xi−2)

b = − 24
(xi−1−xi−2)(xi−xi−1)(xi+1−xi−1)(xi+2−xi−1)

c = 24
(xi−xi−1)(xi−xi−2)(xi+1−xi)(xi+2−xi)

d = − 24
(xi+1−xi)(xi+1−xi−1)(xi+1−xi−2)(xi+2−xi+1)

e = 24
(xi+2−xi+1)(xi+2−xi)(xi+2−xi−1)(xi+2−xi−2)

.

(4.12)

The difference equation (4.11) can be written as

fiu
n+1
i−2 + giu

n+1
i−1 + hiu

n+1
i +miu

n+1
i+1 + riu

n+1
i+2 = Dn

i (4.13)

where

Dn
i = uni −

δt(uni−1+uni +uni+1)

6

(uni+1−uni−1)

2(xi+1−xi−1)
− δt(uni+1−uni−1)

2(xi+1−xi−1)

− δt
[
auni−2+buni−1+cuni +duni+1+euni+2

2

]
.

(4.14)

and fi, gi, hi,mi, ri represents the leading coefficients given by
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fi = aδt
2

gi = δt
(xi+1−xi−1)(xi−xi−1)

+ bδt
2
− δt(uni+1+uni +uni+1)

12(xi+1−xi−1)

+
δt(un+1

i+1 −u
n+1
i−1 −u

n+1
i−1 +uni+1−uni−1)

12(xi+1−xi−1)

hi = 1− δt
(xi+1−xi−1)(xi+1−xi) −

δt
(xi+1−xi−1)(xi−xi−1)

+ cδt
2

+
δt(un+1

i+1 −u
n+1
i−1 +uni+1−uni−1)

6

mi = δt
(xi+1−xi−1)(xi+1−xi) + dδt

2
+

δt(un+1
i+1 −u

n+1
i−1 +uni+1−uni−1)

6

+
δt(uni−1−uni +uni+1)

2(xi+1−xi−1)

ri = eδt
2

(4.15)

for i = 3, ..., N − 1. The system (4.13) consists of N − 3 equations in N + 1

unknowns. The boundary conditions (4.3) gives us the remaining four equations

giving a consistent system of N + 1 equations in N + 1 unknowns. From the

boundary conditions we have

u1 = σ

u2 − u1 = 0

uN+1 = ω

uN+1 − uN = 0.

(4.16)

In matrix form, we write the finite difference system as follows,

CU = D (4.17)

where
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C =



1 0 0 0 0 ... ... ... 0 0 0 0 0 0

1 −1 0 0 0 ... ... ... 0 0 0 0 0 0

f3 g3 h3 m3 r3 ... ... ... 0 0 0 0 0 0

0 f4 g4 h4 m4 r4 ... ... ... 0 0 0 0 0
...

. . . . . . . . . . . . . . . . . .
...

...
...

...
...

...
...

0 0 0 0 0 ... fi gi hi mi ri ... 0 0
...

...
...

...
...

...
...

. . . . . . . . . . . . . . .
...

...

0 0 0 0 0 ... ... ... fN−2 gN−2 hN−2 mN−2 rN−2 0

0 0 0 0 0 ... ... ... ... fN−1 gN−1 hN−1 mN−1 rN−1

0 0 0 0 0 ... ... ... 0 0 0 0 −1 1

0 0 0 0 0 ... ... ... 0 0 0 0 0 1



U =



un+1
1

un+1
2

un+1
3

...

un+1
i

...

un+1
N−1

un+1
N

un+1
N+1



and D =



σ

0

Dn
3

...

Dn
i

...

Dn
N−1

0

ω


4.2.2 The K-S equation Hermite collocation stencil

We begin by changing the notation used to define the mesh (4.5) and the interval

length for our convenience. We represent the nodal points xi by Xi and the

interval length hi by Hi. We place four collocation points defined by Xij =

Xi + ρjHi in each subinterval of the domain and define the local variable of the

collocation points by

s
(i)
j =

Xij −Xi

Hi

, (4.18)
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for i = 1, ..., N and j = 1, 2, 3, 4. From here on, we drop superscript in s
(i)
j for

convenience.

We discretize the time derivative with finite difference and apply Crank-Nicolson

scheme to equation (4.1) and get[
un+1−un

δt

]
+

[
(uux)n+1+(uux)n

2

]
+

[
(uxx)n+1+(uxx)n

2

]
+

[
(uxxxx)n+1+(uxxxx)n

2

]
= 0

(4.19)

where δt is the time step. In order to linearize the non-linear term (uux)
n+1, we

use the linearization form given by Rubin and Graves [29],

(uux)
n+1 = un+1unx + unun+1

x − (uux)
n. (4.20)

Substituting equation (4.20) into equation (4.1), we get[
un+1−un

δt

]
+

[
un+1unx+unun+1

x

2

]
+

[
(uxx)n+1+(uxx)n

2

]
+

[
(uxxxx)n+1+(uxxxx)n

2

]
= 0.

(4.21)

We rearrange the terms in equation (4.21)and simplify to get

un+1 + δt
2

[
un+1unx + unun+1

x + (uxx)
n+1 + (uxxxx)

n+1

]
= un − δt

2

[
(uxx)

n + (uxxxx)
n

]
.

(4.22)

We then evaluate the Hermite polynomial approximation (3.14) at the four in-

ternal collocation points in each subinterval [Xi, Xi+1] to give

U(x, t) = Ui(t)L0,0(sj) + Ux,i(t)Hi(t)L0,1(sj) + Uxx,i(t)H
2
i (t)L0,2(sj)

+ Ui,xxx(t)H
3
i (t)L0,3(sj) + Ui+1(t)L1,0(sj)

+ Ux,i+1(t)Hi(t)L1,1(sj) + Ui+1,xx(t)H
2
i (t)L1,2(sj) (4.23)

+ Ui+1,xxx(t)H
3
i (t)L1,3(sj).

We use the notation

L′(s) =
dL(s)

ds

L′′(s) =
d2L(s)

ds
(4.24)

L(iv)(s) =
d4L(s)

ds4
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in the expressions for the first, second and fourth derivatives of U as obtained

from (3.16). Similarly, we evaluate these at the four internal collocations points

in each subinterval to get

Ux(x, t) =
1

Hi(t)

[
Ui(t)L

′
0,0(sj) + Ux,i(t)Hi(t)L

′
0,1(sj)

+ Uxx,i(t)H
2
i (t)L′0,2(sj) + Ui,xxx(t)H

3
i (t)L′0,3(sj) (4.25)

+ Ui+1(t)L′1,0(sj) + Ux,i+1(t)Hi(t)L
′
1,1(sj)

+ Ui+1,xx(t)H
2
i (t)L′1,2(sj) + Ui+1,xxx(t)H

3
i (t)L′1,3(sj)

]
Uxx(x, t) =

1

H2
i (t)

[
Ui(t)L

′′
0,0(sj) + Ux,i(t)Hi(t)L

′′
0,1(sj)

+ Uxx,i(t)H
2
i (t)L′′0,2(sj) + Ui,xxx(t)H

3
i (t)L′′0,3(sj)

+ Ui+1(t)L′′1,0(sj) + Ux,i+1(t)Hi(t)L
′′
1,1(sj) (4.26)

+ Ui+1,xx(t)H
2
i (t)L′′1,2(sj) + Ui+1,xxx(t)H

3
i (t)L′′1,3(sj)

]

Uxxxx(x, t) =
1

H4
i (t)

[
Ui(t)L

(iv)
0,0 (sj) + Ux,i(t)Hi(t)L

(iv)
0,1 (sj)

+ Uxx,i(t)H
2
i (t)L

(iv)
0,2 (sj) + Ui,xxx(t)H

3
i (t)L

(iv)
0,3 (sj)

+ Ui+1(t)L
(iv)
1,0 (sj) + Ux,i+1(t)Hi(t)L

(iv)
1,1 (sj) (4.27)

+ Ui+1,xx(t)H
2
i (t)L

(iv)
1,2 (sj) + Ui+1,xxx(t)H

3
i (t)L

(iv)
1,3 (sj)

]
.

Substituting the expressions (4.23), (4.25), (4.26) and (4.27) into (4.22), we obtain

the following difference equation,

β
(i)
j1 U

n+1
i + β

(i)
j2 U

n+1
x,i + β

(i)
j3 U

n+1
xx,i + β

(i)
j4 U

n+1
xxx,i + β

(i)
j5 U

n+1
i+1 +

β
(i)
j6 U

n+1
x,i+1 + β

(i)
j7 U

n+1
xx,i+1 + β

(i)
j8 U

n+1
xxx,i+1 = Ψn

ij

(4.28)
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where

β
(i)
j1 = L0,0(sj) + δt

2
Un
x,iL0,0(sj) + δt

2Hi(t)
Un
i L
′
0,0(sj) + δt

2H2
i (t)

L′′0,0(sj)

+ δt
2H4

i (t)
L

(iv)
0,0 (sj)

β
(i)
j2 = Hi(t)L0,1(sj) + δt

2
Un
x,iHi(t)L0,1(sj) + δt

2Hi(t)
Un
i Hi(t)L

′
0,1(sj)

+ δt
2H2

i (t)
Hi(t)L

′′
0,1(sj) + δt

2H4
i (t)

Hi(t)L
(iv)
0,1 (sj)

β
(i)
j3 = H2

i (t)L0,2(sj) + δt
2
Un
x,iH

2
i (t)L0,2(sj) + δt

2Hi(t)
Un
i H

2
i (t)L′0,2(sj)

+ δt
2H2

i (t)
H2
i (t)L′′0,2(sj) + δt

2H4
i (t)

H2
i (t)L

(iv)
0,2 (sj)

β
(i)
j4 = H3

i (t)L0,3(sj) + δt
2
Un
x,iH

3
i (t)L0,3(sj) + δt

2Hi(t)
Un
i H

3
i (t)L′0,3(sj)

+ δt
2H2

i (t)
H3
i (t)L′′0,3(sj) + δt

2H4
i (t)

H3
i (t)L

(iv)
0,3 (sj)

β
(i)
j5 = L1,0(sj) + δt

2
Un
x,iL1,0(sj) + δt

2Hi(t)
Un
i L
′
1,0(sj) + δt

2H2
i (t)

L′′1,0(sj)

+ δt
2H4

i (t)
L

(iv)
1,0 (sj)

β
(i)
j6 = Hi(t)L1,1(sj) + δt

2
Un
x,iHi(t)L1,1(sj) + δt

2Hi(t)
Un
i Hi(t)L

′
1,1(sj)

+ δt
2H2

i (t)
Hi(t)L

′′
1,1(sj) + δt

2H4
i (t)

Hi(t)L
(iv)
1,1 (sj)

β
(i)
j7 = H2

i (t)L1,2(sj) + δt
2
Un
x,iH

2
i (t)L1,2(sj) + δt

2Hi(t)
Un
i H

2
i (t)L′1,2(sj)

+ δt
2H2

i (t)
H2
i (t)L′′1,2(sj) + δt

2H4
i (t)

H2
i (t)L

(iv)
1,2 (sj)

β
(i)
j8 = H3

i (t)L1,3(s) + δt
2
Un
x,iH

3
i (t)L1,3(sj) + δt

2Hi(t)
Un
i H

3
i (t)L′1,3(sj)

+ δt
2H2

i (t)
H3
i (t)L′′1,3(sj) + δt

2H4
i (t)

H3
i (t)L

(iv)
1,3 (sj)

(4.29)

and

Ψn
ij = Un

i (t)L0,0(sj) + Un
x,i(t)Hi(t)L0,1(sj) + Un

xx,i(t)H
2
i (t)L0,2(sj)

+ Un
i,xxx(t)H

3
i (t)L0,3(sj) + Un

i+1(t)L1,0(sj) + Un
x,i+1(t)Hi(t)L1,1(sj)

+ Un
i+1,xx(t)H

2
i (t)L1,2(sj) + Un

i+1,xxx(t)H
3
i (t)L1,3(sj)

− δt
2H2

i

[
Un
i (t)L′′0,0(sj) + Un

x,i(t)Hi(t)L
′′
0,1(sj) + Un

xx,i(t)H
2
i (t)L′′0,2(sj)

+ Un
i,xxx(t)H

3
i (t)L′′0,3(sj) + Un

i+1(t)L′′1,0(sj) + Un
x,i+1(t)Hi(t)L

′′
1,1(sj)

+ Un
i+1,xx(t)H

2
i (t)L′′1,2(sj) + Un

i+1,xxx(t)H
3
i (t)L′′1,3(sj)

]
− δt

2H4
i

[
Un
i (t)L

(iv)
0,0 (sj) + Un

x,i(t)Hi(t)L
(iv)
0,1 (sj) + Un

xx,i(t)H
2
i (t)L

(iv)
0,2 (sj)

+ Un
i,xxx(t)H

3
i (t)L

(iv)
0,3 (sj) + Un

i+1(t)L
(iv)
1,0 (sj) + Un

x,i+1(t)Hi(t)L
(iv)
1,1 (sj)

+ Un
i+1,xx(t)H

2
i (t)L

(iv)
1,2 (sj) + Un

i+1,xxx(t)H
3
i (t)L

(iv)
1,3 (sj)

]
.

(4.30)
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From the boundary conditions (4.3), we obtain

U(x1) = σ

Ux(x1) = β

U(xN+1) = ω

Ux(xN+1) = ζ

(4.31)

which results in a consistent system of 4N + 4 equations in 4N + 4 unknowns. In

matrix form we have

AUn+1 = Bn (4.32)

where

A =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

β
(1)
11 β

(1)
12 β

(1)
13 β

(1)
14 β

(1)
15 β

(1)
16 β

(1)
17 β

(1)
18 0 0 0 0 0 0 0 0

β
(1)
21 β

(1)
22 β

(1)
23 β

(1)
24 β

(1)
25 β

(1)
26 β

(1)
27 β

(1)
28 0 0 0 0 0 0 0 0

β
(1)
31 β

(1)
32 β

(1)
33 β

(1)
34 β

(1)
35 β

(1)
36 β

(1)
37 β

(1)
38 0 0 0 0 0 0 0 0
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4.3 Uniform Mesh Results

4.3.1 Finite Difference Method

Figures 4.1 and 4.2 shows the numerical solutions of the problem for N = 100

and δt = 0.001 at t = 4 using finite difference method on a uniform mesh. We

can observe in Figure 4.1 that the numerical solution does not track the exact

solution and has a tendency to oscillate on a section of the solution. Figure 4.2

shows the behaviour of the absolute error at t = 4.
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Figure 4.1: Finite difference method, uniform mesh, behaviour of numerical so-
lution of K-S problem at t = 4, N = 100 and δt = 0.001
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Figure 4.2: Finite difference method, uniform mesh, absolute error in the numer-
ical solution of K-S problem at t = 4, N = 100 and δt = 0.001

4.3.2 Hermite Collocation Method

Figures 4.3 and 4.4 shows the behaviour of the numerical solution and the ab-

solute error respectively of the K-S equation on a uniform mesh using Hermite

collocation method at t = 4 with N = 100 and δt = 0.001. In figure 4.3, we

observe that the numerical solution tracks the exact solution with the absolute

error variation as shown in figure 4.4.
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Figure 4.3: Hermite collocation method, uniform mesh, numerical solution be-
haviour of K-S problem at t = 4 with N = 100 and δt = 0.001
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Figure 4.4: Hermite collocation method, uniform mesh, absolute error in numer-
ical solution of K-S problem at t = 1, N = 100 and δt = 0.001
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Table 4.1: Comparison of maximum pointwise errors for K-S problem at different
times with δt = 0.001, N = 100 and α = 8

Time Finite difference Hermite collocation Method in [36]
0.5 2.821×10−1 4.4×10−3 1.03619×10−3

1 4.66×10−1 7.6×10−3 1.63762×10−3

1.5 6.029×10−1 1.05×10−2 2.07273×10−3

2 7.023×10−1 1.49×10−2 2.48375×10−3

2.5 7.66×10−1 1.98×10−2 2.79434×10−3

3 7.931×10−1 2.45×10−2 3.00439×10−3

3.5 7.814×10−1 3.06×10−2 3.16038×10−3

4 7.285×10−1 3.85×10−2 3.43704×10−3

Table 4.2: Maximum pointwise errors for K-S problem on a uniform mesh using
collocation method with T = 1 and δt = 0.001

Number of subintervals(N) 20 40 80 160
Maximum pointwise error 9.997 ×10−2 2.18×10−2 9×10−3 5.4×10−3
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Figure 4.5: Hermite collocation method, uniform mesh, numerical solutions be-
haviour of K-S problem with N = 100, δt = 0.001 up to final time T = 4

Table 4.1 compares the maximum absolute errors produced in the numerical

solution of the K-S equation by the finite difference method and Hermite colloca-

tion method with the method in [36]. In table 4.2, we can see that the maximum

absolute error decreases with the increase in the number of subintervals N for the

collocation method on a uniform mesh. Figure 4.5 shows the solution obtained
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by the collocation method on a uniform mesh for time t = 0, 1, 2, 3, 4. The move-

ment of the solution is from left to right as time increases and the solution tracks

the exact solution with no oscillations. We also observe that the concentration of

mesh points is higher in the flatter regions of the solution profile in comparison

to the concentration in the steeper region.

4.4 Non-uniform Mesh Results

4.4.1 Finite difference method
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Figure 4.6: Finite difference method, non-uniform mesh, numerical solution be-
haviour of K-S problem at t = 4 with N = 100, δt = 0.001, τ = 2 × 10−2 and
α = 15

Figures 4.6 and 4.7 shows the numerical solutions of the K-S equation on non-

uniform mesh using finite difference method for N = 100, δt = 0.001, τ = 2×10−2

and α = 15 at t = 4. Figure 4.6 is the numerical solution profile for the conditions

which give the minimum value of the absolute errors at time t = 4. Figure 4.7

shows the corresponding absolute error behaviour in determining the numerical

solution.
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Figure 4.7: Finite difference method, non-uniform mesh, absolute error in the
numerical solution for N = 100, δt = 0.001, τ = 2× 10−2 and α = 15 at t = 4

4.4.2 Hermite collocation method
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Figure 4.8: Hermite collocation method, non-uniform mesh, numerical solution
behaviour of K-S problem at t = 4 with N = 100, δt = 0.001, τ = 2× 10−2 and
α = 8
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Figure 4.9: Hermite collocation method, non-uniform mesh, absolute error in
numerical solution of K-S problem at t = 4 withN = 100, δt = 0.001, τ = 2×10−2

and α = 8

Figures 4.8 and 4.9 shows the numerical solution profile and the behaviour of

the maximum absolute error respectively at t = 4 with N = 100, δt = 0.001 and

α = 8. In Figure 4.8, we observe that the numerical solution is able to track

the exact solution and the distribution of mesh points is almost equal along the

solution profile which enables resolution of the solution with minimum errors.

Table 4.3 compares finite difference method and collocation method on a non-

uniform mesh at different values of time with optimum values of α and τ being

used for each method. The time step is δt = 0.001 and N = 100. We also

observe in table 4.4 that the maximum pointwise error decreases with increase in

the number of partitions N .

Figure 4.10 shows the numerical solution profiles produced by the adaptive

collocation method for time t = 0, 1, 2, 3, 4. We observe that the solution moves

from left to right as time progresses. The mesh points at different times keep on

tracking the solution profile and maintain an almost equal distribution along the

profile up to final time T = 4. Figure 4.11 shows the paths taken by the mesh

points in tracking the solution profile.
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Table 4.3: Comparison of maximum pointwise errors in the numerical solution of
the K-S equation on a non-uniform mesh at different times with δt = 0.001 and
N = 100

parameters α = 8 τ = 2× 10−2 α = 8 τ = 2× 10−2

Time Hermite Collocation Finite Difference method in [36]
0.5 9.0×10−4 4.42×10−2 1.03619×10−3

1 1.4×10−3 3.63×10−2 1.63762×10−3

1.5 1.7×10−3 3.78×10−2 2.07273×10−3

2 1.9×10−3 4.22×10−2 2.48375×10−3

2.5 2.0×10−3 4.78×10−2 2.79434×10−3

3 2.1×10−3 5.45×10−2 3.00439×10−3

3.5 2.1×10−3 6.26×10−2 3.16038×10−3

4 2.1×10−3 7.20×10−2 3.43704×10−3

Table 4.4: maximum pointwise errors for K-S equation on a non-uniform mesh
using collocation method with T = 1, δt = 0.001, 2× 10−2 and α = 8

Number of subintervals(N) 20 40 80 160
Maximum pointwise error 2.02 ×10−2 2.9×10−3 8.0×10−4 3.2×10−2
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Figure 4.10: Hermite collocation method, non-uniform mesh, numerical solution
behaviour of K-S equation up to final time T = 4 for N = 100, δt = 0.001,
τ = 2× 10−2 and α = 8
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Figure 4.11: Hermite collocation method, mesh trajectories of K-S equation up
to final time T = 4 with N = 100, δt = 0.001, τ = 2× 10−2 and α = 8
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Chapter 5

Conclusions and Further Work

5.1 Conclusions

In this dissertation, we successfully solved the K-S equation numerically using an

adaptive mesh method which is more computationally efficient than the method

in [36]. The algorithm for the numerical simulation is based on the rezoning

approach which works with the decoupled solution procedure. We then wrote

matlab codes based on this approach.

In chapter 2, we started by giving a review of the EP and how it is used

to derive MMPDEs whose solutions give the adaptive non-uniform meshes. We

illustrated how different choices of the monitor functions in the EP are able to

give different meshes. We then came up with a modified monitor function which

when smoothed works better with MMPDE4 for the resolution of an adaptive

mesh for the numerical solution of the K-S equation.

In chapter 3, we studied the septic Hermite collocation method in detail which

is our choice of the discretization method for the K-S equation. We also dis-

cretized the equation using finite difference in chapter 4 so as to make a com-

parison of numerical results on an adapted mesh. We then developed the septic

Hermite interpolant which is able to update the approximate solution of the K-S

problem and its derivatives up to the third order in each subinterval of the mesh.
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This is a necessary step in the rezoning approach algorithm.

Numerical results showed that Hermite collocation method on a non-uniform

adaptive mesh is able to improve the accuracy of the numerical solution of the K-S

equation. The method is computationally efficient in comparison to the method

used in [36] and the adaptive finite difference method. It was also observed

that a non-uniform mesh produced by mesh adaptation has the ability to reduce

oscillations in the numerical solution. This was seen when we made a comparison

of the numerical solution of the problem using finite difference method on a

uniform mesh and non-uniform mesh. Another observation we made is the ability

of an adaptive mesh to keep track of the region of rapid solution variation in the

K-S equation, which is one of the desired properties of an adaptive mesh method.

5.2 Future Work

Whilst septic Hermite collocation method on an adaptive non-uniform mesh has

proved to be a superior method than the method in [36], there is still need to

hold experiments for different values of the time step and the domain to ascertain

whether it is possible to come up with optimum parameters that would improve

the computational efficiency of the resulting models.

We also would want to solve the K-S equation using septic Hermite collocation

method on an adaptive mesh with the qausi-langrange approach working with

the coupled solution procedure and give a comparative analysis of which scenario

gives the best results for the problem.

Finally, we make note of the fact that the choice of monitor functions, the

MMPDEs and temporal and spatial smoothing parameters are still key issues

warranting further study as these are based on an empirical approach.
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