
 

 

 

 

 

GIS and Remote Sensing Applications for Modelling the 

Distribution of Elephants and their Interaction with Vegetation  

 

 

 

 

By 

Henry Ndaimani (R0019417) 

 

Thesis submitted to the Department of Geography and Environmental Science in fulfilment of 

the requirements for the award of Doctor of Philosophy degree in Science (Spatial Ecology) 

 

 

 

November 2018



i 

 

Dedication  

 

 

 

 

 

 

To my wife Pertunia, and daughters Michelle Natalie and Brielle Yaretzi 

 

 

 

 

 

 

 

  



ii  

 

Declaration 1: Originality  

I hereby declare that this thesis submitted for the Doctor of Philosophy degree at the University 

of Zimbabwe is my original work and has not been previously submitted to any other institution 

of higher education. I further declare that all sources cited or quoted are indicated by means of 

a comprehensive list of references.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Henry Ndaimani  

 

Copyright@University of Zimbabwe, 2018 

  



iii  

 

Declaration 2: Publications 

Details that form part and/or include research presented in this thesis include published 

manuscripts, manuscripts under review and give details of the contributions of each author to 

the research work and writing of each publication. 

 

Publication 1: 1Ndaimani, H., 2Murwira, A., 3Masocha, M., 4Gara, T.W. and 5Zengeya, F.M., 

2017. Evaluating performance of aerial survey data in elephant habitat 

modelling. Published in the African Journal of Ecology, 55 (3), pp.270-281. 

This work was done by the first author under the guidance and supervision of the second and 

third authors. The fourth and fifth authors helped in the conceptualisation and final editing of 

the manuscript. 

1-4 University of Zimbabwe, Department of Geography and Environmental Science, P. O. Box 

MP 167, Mount Pleasant, Harare, Zimbabwe 

 

Publication 2: 1Ndaimani, H., 2Murwira, A. and 3Masocha, M., 2018. A new method for 

correcting locational error from aerial surveys improves habitat model 

performance. Published in the African Journal of Ecology, 56 (4), pp.928-937. 

This work was done by the first author under the guidance and supervision of the second and 

third authors.  

1-3 University of Zimbabwe, Department of Geography and Environmental Science, P. O. Box 

MP 167, Mount Pleasant, Harare, Zimbabwe 

 

Publication 3: 1Ndaimani, H., 2Murwira, A., 3Masocha, M. and 4Zengeya, F.M., 2017. 

Elephant (Loxodonta africana) GPS collar data show multiple peaks of 



iv 

 

occurrence farther from water sources. Published in Cogent Environmental 

Science, 3 (1), p.1-11. 

This work was done by the first author under the guidance and supervision of the second and 

third authors. The fourth author commented on the manuscript. 

1-4 University of Zimbabwe, Department of Geography and Environmental Science, P. O. Box 

MP 167, Mount Pleasant, Harare, Zimbabwe. 

 

Publication 4: 1Ndaimani, H., 2Murwira, A., 3Masocha, M., 4Gara, T. W. (Submitted to 

PlosOne), GPS-collar data confirm the selective use of a protected patchy 

African savannah landscape by elephants (Loxodonta africana). 

This work was done by the first author under the guidance and supervision of the second and 

third authors. The fourth author commented on the manuscript. 

1-3 Department of Geography and Environmental Science, University of Zimbabwe, P O Box 

MP 167, Mount Pleasant, Harare, Zimbabwe 

4Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 

Hengelosestraat 99, P O Box 6, 7500 AA, Enschede, The Netherlands 

 

Publication 5: 1Ndaimani, H., 2Murwira, A., 3Masocha, M. (Submitted to Geocarto 

International), Elephant (Loxodonta africana) movement is correlated with 

change in vegetation structure in a patchy savannah landscape. 

This work was done by the first author under the guidance and supervision of the second and 

third authors.  

1-3 Department of Geography and Environmental Science, University of Zimbabwe, P O Box 

MP 167, Mount Pleasant, Harare, Zimbabwe 

 



v 

 

Certification by supervisors: 

Prof. A. Murwira: ééééééééé... 

Prof. M. Masocha: ééééééééé.. 

  



vi 

 

Acknowledgements 

I would like to thank Professors Amon Murwira and Mhosisi Masocha who sacrificed many 

hours to guide and supervise my work. Additional thanks go to Dr Fadzai Michelle Zengeya 

and Mr Tawanda Winmore Gara for commenting on my manuscripts. 

 

Part of this work was funded by the University of Zimbabwe Research Board Grant #91048. 

The University of Zimbabwe, Zimbabwe Defence Forces, Frankfurt Zoological Society, and 

Malilangwe Conservation Trust also funded collaring of elephants.  

 

 

 

  



vii  

 

Table of Contents 

Dedication ................................................................................................................................... i 

Declaration 1: Originality .......................................................................................................... ii  

Declaration 2: Publications ....................................................................................................... iii  

Acknowledgements ................................................................................................................... vi 

Table of Contents ..................................................................................................................... vii  

List of Figures ............................................................................................................................ x 

List of Tables........................................................................................................................... xiii  

List of Abbreviations............................................................................................................... xiv 

Abstract ................................................................................................................................... xvi 

Chapter 1 .................................................................................................................................... 1 

1. General introduction........................................................................................................ 2 

1.1 The impact of elephants on vegetation structure ..................................................... 2 

1.2 Traditional methods for understanding the impact of elephants on vegetation 

structure .............................................................................................................................. 3 

1.3 GIS, GPS and remote sensing use in understanding elephant impact on vegetation 

structure .............................................................................................................................. 4 

1.4 Problem statement.................................................................................................... 8 

1.5 Thesis objectives ...................................................................................................... 8 

1.6 Study area ................................................................................................................ 9 

1.7 Outline of the thesis ............................................................................................... 11 

References ................................................................................................................................ 13 

Chapter 2 .................................................................................................................................. 25 

2. Evaluating the performance of aerial survey data in elephant habitat modelling ......... 26 

2.1 Introduction ............................................................................................................ 27 

2.2 Materials and methods ........................................................................................... 30 

2.3 Results .................................................................................................................... 35 

2.4 Discussion .............................................................................................................. 39 

2.5 Conclusion ............................................................................................................. 41 

References ................................................................................................................................ 43 

Chapter 3 .................................................................................................................................. 48 

3. A new method for correcting locational error from aerial surveys improves habitat 

model performance ............................................................................................................... 49 

3.1 Introduction ............................................................................................................ 50 

3.2 Materials and methods ........................................................................................... 52 

3.3 Results .................................................................................................................... 63 



viii  

 

3.4 Discussion .............................................................................................................. 68 

3.5 Conclusion ............................................................................................................. 70 

References ................................................................................................................................ 71 

Chapter 4 .................................................................................................................................. 74 

4. Elephant (Loxodonta africana) GPS collar data show multiple peaks of occurrence 

farther from water sources .................................................................................................... 75 

4.1 Introduction ............................................................................................................ 76 

4.2 Materials and methods ........................................................................................... 79 

4.3 Results .................................................................................................................... 84 

4.4 Discussion .............................................................................................................. 88 

4.5 Conclusion ............................................................................................................. 90 

References ................................................................................................................................ 92 

Chapter 5 .................................................................................................................................. 96 

5. GPS-collar data confirm the selective use of a protected patchy African savannah 

landscape by elephants (Loxodonta africana) ...................................................................... 97 

5.1 Introduction ............................................................................................................ 98 

5.2 Materials and methods ......................................................................................... 101 

5.3 Results .................................................................................................................. 109 

5.4 Discussion ............................................................................................................ 115 

5.5 Conclusion ........................................................................................................... 117 

References .............................................................................................................................. 119 

Chapter 6 ................................................................................................................................ 124 

6. GPS-collar data show a correlation between elephant movement (Loxodonta africana) 

and tree cover change in a protected patchy African savannah landscape ......................... 125 

6.1 Introduction .......................................................................................................... 126 

6.2 Materials and methods ......................................................................................... 129 

6.3 Results .................................................................................................................. 135 

6.4 Discussion ............................................................................................................ 141 

6.5 Conclusion ........................................................................................................... 143 

References .............................................................................................................................. 144 

Chapter 7 ................................................................................................................................ 149 

7. Introduction ................................................................................................................. 150 

7.1 How do elephant distribution models built from GPS collar data compare to those 

built from aerial survey data? ......................................................................................... 151 

7.2 A new method for correcting the locational error in aerial survey data .............. 153 

7.3 Does elephant presence peak farther from water? ............................................... 155 



ix 

 

7.4 Additional evidence for selective use of a heterogeneous savannah landscape by 

elephants ......................................................................................................................... 157 

7.5 Different rates of vegetation change in vegetation/cover types ........................... 158 

7.6 Contributions of this thesis to knowledge............................................................ 159 

7.7 Recommendations for future research ................................................................. 160 

References .............................................................................................................................. 162 

 

 

 

  



x 

 

List of Figures 

Figure 1-1: Location of the three study sites in Zimbabwe: (a) Mana Pools, (b) Gonarezhou, 

and (c) Hwange national park. Elephant presence data were collected during 

aerial surveys in 2014. .......................................................................................... 10 

Figure 2-1: Conceptual framework illustrating the locational error associated with aerial 

survey presence data in relation to a typical habitat predictor. Note that at the 

NDVI spatial resolution of 30 m, the GPS point falls in a different pixel from the 

elephant location (a) but increasing the spatial resolution to say 250 metres, the 

GPS point, and the elephant lie within the same pixel (b). .................................. 28 

Figure 2-2: Location of the study site in south-eastern Zimbabwe. Elephant presence data are 

overlaid to show the spatial distribution of data sets used in this study. .............. 31 

Figure 2-3: ROC curves for elephant distribution models built using presence data from aerial 

surveys and GPS collars as the response variable and NDVI and distance from 

water point data at 30, 250, 500 and 1000 metres spatial resolution as the 

predictors. ............................................................................................................. 36 

Figure 2-4: Mean area under the curve (± 95% confidence interval) for elephant habitat 

models built using aerial survey data and GPS collar data. The differences are 

shown for different spatial resolutions of the predictor variables (a) 30 m, (b) 250 

m, (c) 500 m, and (d) 1,000 m. ............................................................................. 37 

Figure 2-5: Probability curves for elephant habitat models built using aerial survey and GPS 

collar data plotted against NDVI and distance from water points at different 

spatial resolutions: (a) 30 m, (b) 250 m, (c) 500 m, and (d) 1,000 m. .................. 38 

Figure 2-6: Elephant habitat predicted using aerial survey and GPS collar data against NDVI 

and distance from water points at spatial resolutions of 30 m, 250 m, 500 m and 

1,000 m. ................................................................................................................ 39 

Figure 3-1: Location of (a) Mana Pools, (b) Gonarezhou, and (c) Hwange National Parks in 

Zimbabwe. Maps also show elephant sightings data from aerial surveys as well as 

rainfall from Bioclim data .................................................................................... 52 

Figure 3-2: The correction factor (D) = estimated distance between the line of flight (marked 

by the windsock) and the centre of the average strip width for the right and left 

observers. C = distance between outer markers for both observers; xr = average 

strip width for the right observer; xl = average strip width for the left observer; 

and Y is the width of the invisible area underneath the aircraft and between the 

inner markers of both observers ........................................................................... 55 

Figure 3-3: Location of selected uncorrected and corrected elephant presence points in (a) 

Gonarezhou; (b) Hwange; and (c) Mana Pools. Note that the transect bearing in 

(a) = 0°; (b) = 128°; and (c) = 90° ........................................................................ 63 

Figure 3-4: Comparison of estimated correction factors for Gonarezhou, Hwange and Mana 

Pools ..................................................................................................................... 64 

Figure 3-5: Comparison of models built using corrected and uncorrected data. Results 

illustrate; no significant difference in performance of both data sets in 

Gonarezhou based on (a) TSS and (b) ROC; significant difference in the models 

based on (c) TSS and (d) ROC in Hwange; and significant difference in the 

models based on (c) TSS and (d) ROC in Mana Pools ........................................ 65 

Figure 3-6: Probability of elephant presence predicted using corrected and uncorrected location 

data in Gonarezhou, Hwange and Mana Pools ..................................................... 67 



xi 

 

Figure 4-1: Hypothetical framework: the predicted response of elephants to water in (a) an 

imaginary homogeneous landscape characterised by uniform forage quantity and 

(b) a more realistic heterogeneous landscape characterised by non-uniform forage 

quantity ................................................................................................................. 78 

Figure 4-2: Elephant location data (from Global Positioning System (GPS) collars) collected 

from the eight elephants during 13 selected months between July 2009 and 

November 2011 in northern Gonarezhou National Park, south-east Zimbabwe .. 80 

Figure 4-3: Probability of elephant occurrence (P (E)) plotted against distance from water 

sources and NDVI from July 2009 to November 2011. Elephant occurrence 

generally peaked at least twice with distance from water sources. The continuous 

horizontal line represents the logistic threshold value of equal training sensitivity 

and specificity (values above the line represent elephant habitat while those below 

represent non-habitat). .......................................................................................... 86 

Figure 4-4: Probability of elephant occurrence (P (E)) ï dotted line, and NDVI ï continuous 

line plotted against distance from water sources, from July 2009 to November 

2011. ..................................................................................................................... 88 

Figure 5-1: Conceptual framework indicating habitat selection by elephants if they (a) 

uniformly; and (b) selectively utilise the landscape. ............................................ 99 

Figure 5-2: Location of (a) position fixes for 15 elephants fitted with GPS collars and; (b) 

Gonarezhou in Zimbabwe. ................................................................................. 103 

Figure 5-3: Major vegetation/cover types in the Gonarezhou National Park (adapted from 

Cuniliffe et al (2012)) ......................................................................................... 108 

Figure 5-4: Selective use of vegetation /cover type by elephants in the Gonarezhou National 

Park, Zimbabwe. Cover type: 1=Guibortia; 2=Brachystegia-Julbernadia; 

3=Spyrostachys; 4=Mopane; 5=mixed Brachystegia; 6=mixed woodland on clay; 

7=Combretum apiculatum; 8=Androstachys; 9=mixed woodland on alluvium; 10-

mixed Galpinia-Lannea; 11=Terminalia-Strychnos; 12=riverbed; 13=dam; 

14=cultivation. .................................................................................................... 111 

Figure 6-1: Conceptual diagram showing: (a) elephant selective use of a heterogeneous 

landscape; and (b) differential rates of change in vegetation structure .............. 127 

Figure 6-2: Study area: (a) location of the Gonarezhou National Park in Zimbabwe, and (b) 

location data for collared elephants (GNP = Gonarezhou National Park) ......... 129 

Figure 6-3: Vegetation/cover types in the Gonarezhou National Park, Zimbabwe (adapted 

from Cunliffe (2012)) ......................................................................................... 130 

Figure 6-4: Results of pixel-based regression for tree cover change estimated from MOD44B 

data in the Gonarezhou national park (2000-2016): (a) Slope of the regression, (b) 

p-value, and (c) pixels where change is significant. ........................................... 136 

Figure 6-5: Tree cover change in major vegetation/cover types of Gonarezhou National Park: 

(a) area change per vegetation/cover type, and (b) proportion of the 

vegetation/cover type changed. .......................................................................... 137 

Figure 6-6: Mean slope of tree cover change in 14 vegetation/cover types in the Gonarezhou 

National Parks: (a) mean change and 95% confidence interval; and (b) histogram 

of the slope of change in pixels where change is significant (red dotted line 

separates negative and positive change). Change is based on MOD44B data 

(2000-2016). ....................................................................................................... 138 



xii  

 

Figure 6-7: Change in MOD13Q1-derived NDVI per vegetation/cover type plotted together 

with: (a) KDE; (b) LTD; and (c) speed of collared elephants in the Gonarezhou 

national park. ...................................................................................................... 140 

 

  



xiii  

 

List of Tables 

Table 3-1: Details of the strata, sightings, transects and the dates on which data were collected 

in Gonarezhou, Hwange and Mana Pools National Parks (Adapted from Dunham 

et al.2014) ............................................................................................................... 59 

Table 3-2: Comparison of NDVI, distance to water and terrain ruggedness at corrected and 

uncorrected elephant presence sites ....................................................................... 68 

Table 4-1: Elephant occurrence points used in the prediction of elephant habitat and the dates 

on which the terra/MODIS NDVI image was acquired. ........................................ 81 

Table 4-2: Performance and variable contribution of the MaxEnt models predicting the 

geographical distribution of elephants in the GNP during the dry season months of 

2009, 2010 and 2011 .............................................................................................. 85 

Table 4-3: Peaks of elephant occurrence away from water sources and minimum NDVI within 

elephant habitat (habitat = probability values > the logistic threshold of equal 

training sensitivity and specificity) ........................................................................ 87 

Table 5-1: Details of the collared elephants (ǁ = male and ǀ = female) .............................. 104 

Table 5-2: Results of compositional analysis showing more use of open water (13) and 

riverbed (12) by elephants in the Gonarezhou National Park. A ñ+ò is used when 

the vegetation type in the row is used more than the type in a column, and ñ-ò 

otherwise. When the difference is significant, the sign is tripled. ....................... 110 

Table 5-3: Pairwise comparisons of elephant speed in the vegetation types (values represent 

mean difference while * shows significant difference at the 0.05 alpha level) ... 112 

Table 5-4: Ranked median speed of elephant movement, range, and number of samples in 

different vegetation types ..................................................................................... 113 

Table 5-5: Pairwise comparisons for LTD among vegetation types (values represent mean 

difference while * shows significant difference) ................................................. 114 

Table 5-6: Ranked median LTD of elephant, range, and number of samples in different 

vegetation types .................................................................................................... 114 

Table 6-1: Details of the collared elephants (ǁ = male, ǀ = female) .................................... 131 

 

  



xiv 

 

List of Abbreviations 

ANOVA    Analysis of Variance 

AUC     Area Under Curve 

DEM     Digital Elevation Model 

DN     Digital Number value 

GCP     Ground Control Point 

GIS     Geographical Information Systems 

GLTFCA    Great Limpopo Transfrontier Conservation Area 

GNP     Gonarezhou National Park 

GPS     Global Positioning System 

IDH     Intermediate Disturbance Hypothesis 

KDE     Kernel Density Estimator 

LTD     Linear Time Density 

MAXENT    Maximum Entropy Species Distribution Modelling 

MCP     Minimum Convex Polygon 

MNDWI    Modified Normalised Difference Water Index 

MODIS    Moderate Resolution Imaging Spectroradiometer 

NDVI     Normalised Difference Vegetation Index 

NIR     Near Infrared 

R     Red 

ROC     Receiver Operating Characteristic  

SDM     Species Distribution Modelling 

SIN     Sinusoidal 

TM     Thematic Mapper 

TOA     Top of Atmosphere 



xv 

 

TRI     Terrain Ruggedness Index 

TSS     True Skill Statistic 

UTM     Universal Transverse Mercator 

 

  



xvi 

 

Abstract 

Knowledge of elephant (Loxodonta africana) interaction with vegetation is critical for 

conservation of the mega-herbivore and of other wildlife species found in the ecosystem. 

Although the impact of elephants on vegetation structure has been investigated before, location 

and time specific knowledge on changes in the landscape has remained largely inconclusive. 

This is because most of the early studies largely depended on plot-based observations that are 

limited in scope both spatially and temporally. This thesis develops and applies GIS and remote 

sensing methods aimed at understanding the spatial pattern of elephant-vegetation interaction 

in a predominantly savannah landscape. Specific objectives of the study were to: (1) understand 

the predictive ability of elephant distribution models developed using presence data collected 

from GPS collars and compare them to those developed from aerial survey data; (2) develop 

and test new methods for correcting locational error in aerial survey data for improving models 

of elephant distribution; (3) test whether elephant presence peaks farther from water points in 

addition to the known peak near water; (4) investigate whether elephants selectively utilise a 

heterogeneous landscape; and (5) test whether and how the rate of change in vegetation 

structure differs across a heterogeneous landscape. Firstly, results of the study show that 

elephant presence models built from GPS collar data outperformed those built from aerial 

survey data. Secondly, a new method suggested for correcting error in aerial survey data shifted 

location by 143 to 177m from the line of flight. In addition, the models of elephant presence 

built from the corrected dataset had better predictive ability than those built from uncorrected 

data. Thirdly, elephant presence peaked at places located farther from water sources in addition 

to the known peak near water. The peaks occurred in areas of high vegetation cover. Fourthly, 

elephant speed of movement and utilisation of the landscape (i.e., speed, Linear Time Density 

and the Kernel Density Estimator) differed by vegetation/cover type. Finally, the rate of tree 

cover change differed by vegetation/cover type. The change was also observed to be correlated 

with elephant movement and utilisation of the landscape. Results of the thesis thus suggest that 

GIS and Remote sensing-based methods improve our understanding of elephant-vegetation 

dynamics in space and time. These findings underscore the utility of GIS and remote sensing 

in studies that investigate the spatial pattern of elephant interaction with vegetation. Knowledge 

of those patterns could be applied in the formulation of strategies aimed at conserving the 

African elephant as well as other wildlife species that co-occur with the megaherbivore.  
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Chapter 1 

General Introduction 
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1. General introduction 

1.1 The impact of elephants on vegetation structure  

Understanding whether and how African elephants (Loxodonta africana) potentially drive 

change in vegetation structure, especially in protected wildlife areas, is important for 

conservation. Existing knowledge underscores the role of the megaherbivore as a driver of 

change in ecosystem structure and function (Kalwij et al., 2010, Asner and Levick, 2012). This 

is largely because elephants are known to typically push, uproot and ring bark trees when 

foraging (Guy, 1976, Kohi et al., 2011, OôConnor et al., 2007). It is for this reason that elephants 

have been described as ecosystem engineers (Nasseri et al., 2011). Thus, elephant-dominated 

landscapes tend to be slowly transformed in terms of vegetation structure (Vanak et al., 2012, 

Tafangenyasha, 1997).  

 

Studies that test the impact of elephants on vegetation structure provide evidence that the mega-

herbivore is largely selective when foraging (Holdo, 2003, Codron et al., 2006). As a result, it 

could be predicted that due to overutilization the targeted species may slowly disappear from 

the ecosystem; together with other life forms that depend on it for survival (Jacobs and Biggs, 

2002, Swanepoel, 1993). Thus, it is logical to postulate that transformation of vegetation 

structure by elephants may have far-reaching implications on ecosystem structure and function. 

In fact, the transformation of vegetation by elephants is not only a threat to the mega-herbivore 

itself but could be a threat to its own habitat, as well as other species that depend on the habitat 

for survival. Transformation of vegetation as a result of elephant foraging likely occurs in 

landscapes that are either fenced up or where the mega-herbivore occurs at high densities. 

 

Although we have known for some time that protected wildlife areas are established to maintain 

biological diversity (Scott et al., 2001, Shafer, 1999), it has become apparent from existing 
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studies that several ecosystem disturbances affect the dynamically stable state (Thom and Seidl, 

2016, Seidl et al., 2016). Previous studies have consistently shown that these disturbances 

include, among others, climate extremes (Midgley and Bond, 2015, Scheiter and Savadogo, 

2016), veld fires (Staver et al., 2017, Luvuno et al., 2016) and foraging by mega-herbivores like 

the African elephant (Bakker et al., 2016, Asner et al., 2016). For instance, ecologists generally 

agree that elephants change their own habitats as well as that of other animal species when 

foraging (Pringle et al., 2015, Herremans, 1995). Thus, change in vegetation structure driven 

by elephant foraging is a key topic in ecological disturbance theory. 

 

1.2 Traditional methods for understanding the impact of elephants on vegetation 

structure 

In the absence of Geographical Information Science (GIS), Global Positioning System (GPS) 

tracking and remote sensing, studies that seek to investigate the impacts of elephants on 

vegetation largely rely on fieldwork. For instance, observations made in the field suggest that 

elephants drive the highest rates of change in vegetation structure especially near water points 

(Mukwashi et al., 2012, Franz et al., 2010). This change is largely attributable to the mega-

herbivore which intensively forages in areas around water points since it is water-dependent. 

This phenomenon is in line with the piosphere effect which was first described by Lange (1969) 

and later by several other authors (e.g., Graetz and Ludwig, 1976, Andrew, 1988, Heshmatti et 

al., 2002, Egeru et al., 2015). Most descriptions of vegetation structure in the piosphere base 

their conclusions on data collected in plots located at increasing distances from water sources 

(e.g., Valeix et al., 2011, Mukwashi et al., 2012, Thrash et al., 1991). While these plot-based 

observations offered useful insights into elephant-vegetation dynamics in localised areas where 

fieldwork was conducted, they remained largely limited in spatial and temporal scope. 
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This means that early knowledge on the foraging behaviour of elephants was largely based on 

following them in the field and recording what they eat including other activities (Guy, 1976, 

Adams and Berg, 1980, Barnes, 1982). This data collection method lies at the centre of modern 

understanding of elephant foraging ecology although it could be reasoned that its accuracy 

possibly depends on how close the observer can be to the target animals. For instance, when 

observing dangerous animals like elephants, observations could be made from long distances 

to minimise the risk of attack (Guy, 1976). Thus, the accuracy of such observations remains 

largely limited. Even in cases where the animals followed are not dangerous and data are 

collected at the shortest distances to the animal, the window of observation is limited to 

particular times of the day. This is because it is practically difficult to follow an animal nonstop 

for 24hrs in the field. For instance, night-time observations are mostly limited by reduced 

visibility unless specialised equipment is used. Thus, studies that are based on field-based 

observations of target animals are limited in scope both spatially and temporally. 

 

1.3 GIS, GPS and remote sensing use in understanding elephant impact on vegetation 

structure  

While earlier methods for understanding the impact of elephants on vegetation structure are 

limited both in temporal and spatial scope, GIS, GPS tracking and remote sensing enable a 

wider window of observation. For instance, increased use of radio telemetry to track the 

movement of target animals has enhanced knowledge on their day and night movement across 

entire home ranges (e.g., Lindeque and Lindeque, 1991, Galanti et al., 2000, Ngene et al., 2017). 

Radio tracking of wildlife enables researchers to determine the exact location of the target 

animal in the field and possibly infer what they are doing (Soltis et al., 2016, Hacker et al., 

2015). In addition, wildlife tracking enables estimation of the size of an animalôs home range 

(Ngene et al., 2017, Venter et al., 2015), as well as the habitat types preferred (De Boer et al., 

2005, Harris et al., 2008). To date, some GPS collars are programmed to take position fixes 
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even at the 15 minutes interval thus widening the window of observation of the target animals 

(e.g., Clark et al., 2006). Moreover, the tracking units measure location with minimal error thus 

making observation comparatively accurate in space (Hulbert and French, 2001, Moen et al., 

1997). Based on these recent advances in animal tracking using GPS collars, it is therefore 

imperative that hypotheses that investigate the movement pattern of elephants be revisited to 

obtain enhanced insights on how they move in the landscape. 

 

Knowledge of how elephants move in the landscape and the potential impact of that movement 

on the structure of vegetation depends to a large extent on the quality of location data used to 

understand their distribution. The main sources of location data used to model elephant 

distribution include GPS collars (Galanti et al., 2006, Graham et al., 2009) and aerial surveys 

(Matawa et al., 2012, Murwira and Skidmore, 2005). In most African countries, aerial survey 

data are collected in 150m wide strips located to the right and left of fixed-wing aircraft flying 

at ~90m above the ground and along predetermined systematic transects (Dirschl et al., 1981, 

Norton-Griffiths, 1978). Aerial surveys are primarily designed to collect data used to estimate 

the population sizes of elephants and other large animals that are visible from the air. A full 

description of the procedure for aerial surveys was made by Norton-Griffiths (1978). 

 

Location data collected during aerial surveys have been used extensively to predict the 

distribution of animals in the landscape (Forbes and Theberge, 1993, Redfern et al., 2006, 

Zhang et al., 2018). However, these data come with their shortcomings. For instance, where 

distance sampling is not applied (Lerczak and Hobbs, 1998) or where the aircraft is not specially 

designed to offer full view of the area underneath (e.g., Whitt et al., 2013, Laake et al., 1997), 

the location of the sighting is recorded along the line of flight of the aeroplane when in actual 

fact it is located several metres away from the line of flight (Thomas et al., 2010). In fact, 

modelling from such data could introduce error since the location point used is different from 
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the actual position of the sighting. A number of studies acknowledged that aerial survey data 

are associated with locational error (Murwira and Skidmore, 2005, Cumming and Lynam, 1995) 

but, to the best of our knowledge, no attempt has ever been made to correct it. Thus, it is critical 

to test whether the locational error associated with aerial survey data could influence the 

predictive ability of elephant distribution models to enhance conservation effort. 

 

In most protected areas of Africa, limited availability of animal presence data either from GPS 

collars or aerial surveys has made it difficult to undertake studies to investigate the distribution 

of elephants. This is largely due to the costs associated with data collection. The costs of GPS 

collars (Creel et al., 2013, Girard et al., 2002) and aerial surveys (Whittaker et al., 2003, Watts 

et al., 2010) has been reported before in literature. Thus, even in landscapes where only aerial 

survey data are available, it is better to correct locational error than disregard the data in 

elephant modelling effort. To the best of our knowledge, limited effort has been made to correct 

the locational error associated with aerial survey data for better modelling results.  

 

Recent advances in remote sensing make it possible to test hypotheses at large spatial extents 

which include the global scale (e.g., Mayaux et al., 2004, Prince and Goward, 1995, Asner et 

al., 2003). Thus, remote sensing provides landscape-scale data that enables investigation of 

elephant movement patterns at large spatial extents (ChamailléȤJammes et al., 2009, Asner et 

al., 2009). This is opposed to plot-based observations, whose window of observation remains 

limited to the areas visited. Remote sensing also enables the collection of data in inaccessible 

areas while plot-based observations can only be conducted in areas that are accessible. In 

addition, continued availability of freely available remotely sensed products also makes it a 

cheaper data collection option than fieldwork (Jha et al., 2008, Mumby et al., 1999). Thus 

remote sensing can be regarded as a cost-effective approach that enables rapid investigation of 

elephant movement patterns, including their impact on ecosystems. 
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More so, remote sensing enables repetitive observation of the same area thus making it possible 

to investigate large-scale changes in landscape characteristics over time (Petropoulos et al., 

2009, Kumari, 2017, Hegazy and Kaloop, 2015). For instance, it is possible to investigate daily 

changes in vegetation condition from MODIS-based images which are acquired daily. Previous 

studies have consistently shown that remotely sensed data can be used to account for fine 

temporal-scale changes in landscape structure (Arnett et al., 2015, McDowell et al., 2015). 

Thus, it is now possible to investigate changes in forage and water distribution based on 

remotely sensed data (Ehrlén and Morris, 2015, Imai et al., 2017, Seager et al., 2013). Evidence 

from existing studies shows that these factors drive the movement pattern of elephants and thus 

affect the way they utilise the landscape (Marshal et al., 2011, Bhola et al., 2012, Ogutu et al., 

2014). It is therefore imperative that in the face of ever-increasing availability of remotely 

sensed data, hypotheses that test how elephants move in the landscape and their potential impact 

on vegetation need to be revisited. 

 

Remote sensing devices collect data without contact with the ground hence they minimise the 

impact on target ecosystems (Azmy et al., 2012). On the other hand, field-based observations 

of elephant-driven vegetation change are often intrusive since they require presence in the field. 

Thus, field workers potentially disturb the animals and plants found in the areas where they 

collect data (Tejedo et al., 2012, Monz et al., 2010). Another advantage of remote sensing when 

pitted against field work is its ability to provide reflectance data at various wavelengths 

including those found outside the visible range of the electromagnetic spectrum (Adam et al., 

2010, Estes et al., 2010). Existing studies have underscored the utility of the near infrared and 

red edge bands in monitoring vegetation change (Clevers and Gitelson, 2013, Mutanga et al., 

2012). Thus in this thesis, we use remotely sensed data to investigate elephant-driven vegetation 

change in the study areas. Nevertheless, it has to be noted that despite the discussed usefulness 

of remotely sensed data, they cannot replace fieldwork but should ideally complement it. 
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1.4 Problem statement 

Although ecologists generally agree that elephant foraging leads to opening up or densification 

of vegetation (e.g., Mapaure and Moe, 2009, Kalwij et al., 2010), knowledge on the pattern of 

that change at the landscape scale remains largely underdeveloped. That knowledge has largely 

been limited by field-work based approaches that are limited both in spatial and temporal scope. 

While plot-based observations provide critical insights into elephant-vegetation dynamics, they 

remain limited to the areas where data collection was undertaken. As a result, knowledge 

generated by this method on the changes to vegetation structure occurring at long distances 

from the water points remained largely elusive. The few studies that shifted attention to other 

areas not linked to the piosphere largely remained limited to plot-based observations targeting 

vegetation types of interest (e.g., Holdo, 2006, Ben-Shahar, 1996). However, recent 

developments in GIS, GPS tracking and remote sensing technologies provide an opportunity to 

revisit hypotheses investigating the impact of elephant foraging on vegetation structure at the 

landscape scale. An attempt to adequately model changes in vegetation structure driven by 

elephants, especially at the landscape scale, provides knowledge on possible changes in 

ecosystem structure and function which in turn can be used to better manage protected wildlife 

areas. 

 

1.5 Thesis objectives 

In this thesis, the main objective was to develop, test and apply Geographical Information 

Systems (GIS) and remote sensing methods to understand whether and how elephant foraging 

drives change in vegetation structure across a largely heterogeneous savannah landscape.  

The specific objectives of the thesis were to:  

1) develop elephant distribution models from presence data collected using GPS collars 

and compare their predictive ability to those developed from aerial survey data;  
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2) propose a new method for correcting locational error in aerial survey data and to test 

whether the correction improves elephant distribution modelling results;  

3) determine whether elephant presence peaks farther from water points in addition to the 

known peak near water; 

4) validate selective utilisation of a heterogeneous landscape by elephants; and 

5) investigate whether and how the rate of change in vegetation structure differs across a 

heterogeneous landscape. 

 

1.6 Study area 

The majority of the hypotheses were tested in the Gonarezhou national park (longitude 31.32ºE 

ï 32.41ºE and latitude 21.11ºS -22.22ºS) located to the south-east of Zimbabwe (Figure 1-1). 

Additional hypotheses were tested in the Hwange (longitude 25.79ºE ï 27.46ºE and latitude 

18.50ºS ï 19.88ºS) and Mana Pools (longitude 29.15ºE ï 29.74ºE and latitude 15.67ºS -16.29ºS) 

national parks located to the north-west and north of the country respectively. Hwange National 

Park is the largest national park while Mana Pools is third in size.  

 

Elevation in the Gonarezhou national park ranges between 155m and 567m. Vegetation is 

typical dry deciduous savannah dominated by Colophospermum mopane on the clay and loam 

soils; and Combretum spp on the sandy soils. The climate in the national park is subtropical 

savannah characterised by summer rainfall received from November to April. Long-term 

annual rainfall is ~600mm. January is the hottest month with maximum temperatures averaging 

~36°C while June is coldest with minimum temperatures averaging 9°C. 
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Figure 1-1: Location of the three study sites in Zimbabwe: (a) Mana Pools, (b) Gonarezhou, 

and (c) Hwange national park. Elephant presence data were collected during aerial surveys in 

2014. 

Gonarezhou is the second largest national park in the country after Hwange national park. It 

was gazetted as a game reserve in the 1930s and covers an area ~5000km2 in size (Zisadza et 

al., 2010). The park supports ~11000 elephants making it the second largest meta-population in 

the country (Dunham, 2015). In fact, the park has one of the healthiest elephant populations in 

the country when compared to the rest of the range areas where populations were reported to 

be declining (Robson et al., 2017). A growing elephant population at densities >2 

individuals/km2 is of interest to ecologists since elephants have been known to drive change in 

vegetation structure where they occur at high densities. 



11 

 

Typical uses of the park include photographic safaris and camping. Surrounding areas are 

characterised by safari hunting and communal landuses. The study area falls in the Great 

Limpopo Transfrontier Conservation Area which combines wildlife areas found in Zimbabwe, 

Mozambique and South Africa (Andersson and de Garine-Wichatitsky, 2017). 

 

1.7 Outline of the thesis 

This thesis consists of seven chapters. Five of the chapters (Chapter 2-6) are manuscripts which 

have either been published or are under review and they address the five main objectives of the 

thesis. These five chapters are presented in the thesis as separate papers. Thus repetition of 

some sections was inevitable. Chapter 1 consists of a general introduction and background 

information on the impact of elephants on vegetation structure. The chapter also provides the 

basis of the research designs adopted in subsequent chapters. More so, the chapter highlights 

the objectives of the study. Chapter 2 develops elephant distribution models from GPS collar 

data and compares their predictive ability to those built from aerial survey data. The chapter 

aims to establish the best elephant presence datasets to use for reliable modelling results. 

Chapter 3 proposes a new method for correcting the locational error associated with elephant 

location data collected from aerial surveys. The chapter further investigates whether the 

correction method suggested improves model performance. Based on the evidence provided in 

the chapter, a decision is made on using GPS collar data for best modelling results. Chapter 4 

utilises elephant presence data collected from GPS collar, together with distance from water 

points and NDVI, to determine whether there exist other peaks of elephant presence located far 

from water. The chapter seeks to enhance knowledge on how elephants utilise landscapes in 

areas not linked to the piosphere. Chapter 5 validates selective utilisation of a heterogeneous 

savannah landscape by elephants. Chapter 6 investigates whether percentage tree cover changed 

in the Gonarezhou national park from 2000 to 2017. The chapter further tests whether a change 

in percentage tree cover is correlated with elephant movement in particular vegetation/cover 
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types. Chapter 7 is a synthesis of the main results of the thesis. Contributions of the thesis to 

the current understanding of the spatial pattern of elephant impact on vegetation structure are 

discussed. The chapter further explores the possibilities for future research. 
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2. Evaluating the performance of aerial survey data in elephant habitat modelling 

Abstract 

Aerial survey data are widely used to model the distribution of wildlife. However, their 

performance in habitat modelling remains largely untested. We used aerial survey and satellite-

linked Global Positioning System (GPS) collar data for elephants, to test: (1) whether there is 

an optimal spatial resolution of predictor variables at which habitat models based on aerial 

survey data that are uncorrected for locational error can accurately predict elephant habitat and, 

(2) whether habitat models based on these data sets can accurately predict the presence of 

elephants in closed woodland habitats. We applied maximum entropy modelling (MaxEnt) to 

these datasets and used the Normalised Difference Vegetation Index (NDVI) as well as distance 

from water points as the habitat predictors to answer these questions. Our results demonstrate 

the better ability of aerial survey data to predict elephant presence at the coarser spatial 

resolution of 1000 m of both predictor variables. Habitat models derived from aerial survey 

data under predicted elephant presence in more closed woodland habitats than those derived 

from GPS collar data. This result implies that elephants located under dense tree canopies are 

likely missed during an aerial survey. Our study is one of the first to empirically test and report 

results on the poor performance of aerial survey data in habitat modelling, especially in dense 

woodlands.  
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2.1 Introduction  

Understanding the spatial distribution of wildlife species in a landscape is critical for their 

management and biodiversity conservation. In recent years, the possibility of determining the 

spatial distribution of wildlife species has been enhanced by advances in remote sensing 

technology as well as the introduction of novel species distribution modelling techniques that 

use satellite data (Elith et al., 2006, Nagendra et al., 2013, Ross and Howell, 2013). Accurate 

prediction of habitat for target species is important as it helps strengthen efforts to prevent 

further habitat loss (Bean et al., 2014). This is particularly important for African elephants 

(Loxodonta africana) because they are known to transform habitats (Lagendijk et al., 2011, 

Valeix et al., 2011, Van Langevelde et al., 2003). Failure to accurately predict elephant driven 

habitat changes in a timely manner may also threaten the existence of other wildlife species that 

use the affected habitats (Head et al., 2012, Young et al., 2005). This is mainly because 

elephants are keystone species and protection of their habitat is beneficial to other species in 

the ecosystem (Laws, 1970). Thus, sustainable management of wildlife areas benefits directly 

from accurate prediction of wildlife habitats especially elephant habitat. 

 

However, the ability of habitat models to accurately predict the presence of wildlife species is 

influenced by the spatial characteristics of the response and predictor variables, especially 

spatial resolution and locational error. In landscapes where ground-based surveys are time-

consuming and costly, aerial survey data have extensively been used in modelling habitats for 

wildlife species (Scheidat et al., 2012, Kiffner et al., 2013, Pittiglio et al., 2013). However, the 

utility of aerial survey data uncorrected for locational error in wildlife habitat modelling work 

remains largely untested. Given the extensive spatial coverage of aerial surveys, one would 

expect these data to produce better habitat models since a wide variety of habitats are sampled. 

Ideally, the presence data used in modelling should represent the full range of values of the 

predictor variable in the study area so as to ensure good modelling results (Vaughan and 
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Ormerod, 2003). Location data that are collected from aerial surveys and have not been 

corrected for locational error generally lack spatial accuracy as depicted in Figure 2-1 (Murwira 

and Skidmore, 2005). 

 

Figure 2-1: Conceptual framework illustrating the locational error associated with aerial survey 

presence data in relation to a typical habitat predictor. Note that at the NDVI spatial resolution 

of 30 m, the GPS point falls in a different pixel from the elephant location (a) but increasing 

the spatial resolution to say 250 metres, the GPS point, and the elephant lie within the same 

pixel (b).  

 

The locational error is often unavoidable in aerial surveys (Figure 2-1) except where distance 

sampling methods are used to get more accurate measurements of location (Witting and Pike, 

2009). When aerial surveys are conducted, the area below the aircraft is usually not visible to 

observers except in a few specialised surveys where a double window aircraft offering a full 

view underneath the aircraft is used (Whitt et al., 2013). From Figure 2-1, we can also deduce 

that if the predictor variable used in elephant habitat modelling is available at a spatial 
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resolution smaller than the locational error inherent in aerial survey data, poor model 

performance is likely to occur; but this needs to be subjected to a rigorous empirical test before 

any conclusions can be drawn.  

 

In this paper, we claim that the performance of aerial survey data uncorrected for locational 

error in species habitat models may be established by comparing candidate models to those 

derived from superior datasets such as GPS collar data. The use of GPS collar data has shown 

that higher accuracy can be achieved in species distribution modelling (Loe et al., 2012, Wells 

et al., 2014). Previous studies consistently established that GPS collars exhibit locational error 

that does not exceed 100 m (Stache et al., 2012, Adams et al., 2013), which is considerably 

smaller than the locational error of up to 500 m reported for aerial survey data (Murwira and 

Skidmore, 2005). In essence, the locational errors of aerial survey data is a function of the strip 

width used in the survey and could also vary between surveys. Although under ideal 

circumstances many animals covering a large area would be collared, it is frequently the case 

that limited resources permit collaring of only a small number of animals covering a much 

smaller spatial extent. In effect, aerial surveys could offer a limited representation of habitat 

assuming, for example, a single flight and a fairly sparse population, where one would get a 

snapshot of a subset of individuals in just one of the habitats they likely use. Overall, testing 

how aerial survey data perform in species habitat modelling against GPS collar data may 

provide empirical evidence of the relative performance of these sampling methods.  

 

In this study, we aimed to establish the utility of aerial survey data that are not corrected for 

locational error in elephant habitat modelling. We specifically asked whether there is an optimal 

spatial resolution of the predictor variable at which aerial survey data produce more reliable 

elephant habitat models. We also asked whether habitat models based on aerial survey data are 

able to accurately predict the occurrence of elephants in dense woodland habitats. To answer 
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these questions, we applied MaxEnt to aerial survey and GPS collar data for elephants obtained 

from Gonarezhou National Park of Zimbabwe. For each dataset, we used NDVI and distance 

from the nearest water point available at different spatial resolutions as the habitat predictors.  

 

2.2 Materials and methods 

2.2.1 Study site 

This study was conducted in northern Gonarezhou national park (GNP) located in south-eastern 

Zimbabwe (Figure 2-2). The site is ideal for testing our hypotheses because: (1) data on elephant 

presence from aerial surveys and GPS collars were collected during the same month of 

September 2009, thus making the datasets comparable and, (2) GNP has an estimated elephant 

population of 10,000 (Dunham et al., 2013) which is amongst the largest in the country. This 

makes the study site important for elephant conservation in the country.  

 

Elephant presence data were collected in an area approximately 2,733 km2 in size, between 

latitudes 21.10° and 21.76° South and longitudes 31.75° and 32.41° East. Altitude ranges from 

155 m to 567 m above sea level. Typical vegetation in the study area is dry deciduous savannah 

dominated by Colophospermum mopane and Combretum apiculatum. Tree density in the 

mopane woodlands ranges from 98 to 543 trees/ha (Gandiwa and Kativu, 2009b). Mean annual 

rainfall is 466 mm per annum and is received from December to March (Gandiwa and Kativu, 

2009a). 
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Figure 2-2: Location of the study site in south-eastern Zimbabwe. Elephant presence data are 

overlaid to show the spatial distribution of data sets used in this study. 

 

2.2.2 Elephant presence data 

Data on elephant presence were collected from a sample aerial survey and satellite-linked GPS 

collars fitted on 8 elephants (5 cows and 3 bulls). The aerial survey was conducted over the 

period from 4 to 9 September 2009 and the sampling effort ranged from 12.2 % to 21.1 % in 

the different survey strata (Dunham et al., 2010). Elephants were sighted by two observers 

scanning both sides of systematic line transects spaced by 2.5 km and covered from the air by 

a Cessna 185 fixed wing aircraft. The line transects were selected based on stratified random 

sampling where the starting point was randomly selected and subsequent ones had an equal 

separation distance to enhance representativeness. The average ground speed of the aircraft was 

160 km/hr whilst the flying height was about 300 ft (91.44 m) above the ground measured using 

a radar altimeter. The ground speed of the aircraft was slightly higher than the speed of between 

130 and 150 km/hr recommended by Norton-Griffiths (1978). Each time an elephant was 

sighted, the GPS location of the aircraft at the time of sighting the animals was recorded. A 
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detailed description of the methods used in that survey is available in Norton-Griffiths (1978) 

and Dunham (2012). We used a total of 222 elephant locations from the aerial survey in our 

analyses. Data from GPS collars were collected from 1 to 24 September 2009. These dates 

coincided with the period when aerial survey data were collected, that is from 4 to 9 September 

2009. Lack of perfect overlap in the data collection dates for the two datasets possibly had 

minimum effect on model performance since we expected a non-significant change in 

vegetation biomass (estimated by NDVI) over the entire data collection period. GPS collar data 

used in our analyses (collected in September 2009) had a fix success rate of 100%. These data 

were collected from eight satellite collars supplied by Africa Wildlife Tracking (South Africa), 

fitted on eight elephants and programmed to take three fixes per day (two during the day and 

one during the night). The elephants fitted with the collars were selected during random flights 

in the national park and considerable separation distance between individual animals was 

maintained to ensure more complete coverage of representative habitats. Only the GPS collar 

fixes taken during the day were used in our analyses to ensure comparability with aerial survey 

data which were also collected during the day. We based our analyses on location fixes located 

inside the study site and left out those outside. To ensure equal sample size to the aerial survey 

dataset, we used 222 points randomly selected from a total of 284 elephant locations obtained 

from the GPS collars in our analyses. We used the random point selection tool implemented in 

a GIS to select the 222 points from GPS collar data.  

 

2.2.3 NDVI data 

We used NDVI as one of the habitat predictors because it correlates positively with vegetation 

biomass (Tucker, 1979). In addition, vegetation has been shown to be a key predictor of 

elephant habitat (Murwira and Skidmore, 2005). NDVI was calculated from cloud-free Landsat 

TM and Moderate Resolution Imaging Spectroradiometer (MODIS) images acquired in 

September 2009 to coincide with elephant presence data. Landsat and MODIS data were 
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downloaded from www.usgs.gov. Landsat bands used to compute NDVI (red and near-infrared 

bands) had a spatial resolution of 30 m whilst MODIS bands were available at 250 m, 500 m 

and 1,000 m spatial resolutions. Landsat data were acquired on 16 September 2009 while 

MODIS data at 250 m spatial resolution were acquired on 6 September 2009 and the data at 

500 m and 1000 m were both acquired on 17 September 2009. Prior to computing NDVI, 

Landsat data were converted from digital numbers (DN values) to top of the atmosphere 

reflectance (TOA) following the method described by Chander et al. (2009). Landsat data were 

geometrically corrected to less than a 30 m by 30 m pixel (Root Mean Square Error (RMSE) of 

0.87) based on 20 Ground Control Points (GCPs) collected in the field using a GPS at a 

positional error of ±5 m. Twenty GCPs are generally considered adequate for the 2nd order (12 

terms) polynomial transformation used in this study (Toutin, 2004). MODIS data were re-

projected from the geographic coordinate system to Universal Transverse Mercator (UTM) 

Zone 36 South in ENVI 5.1 (Exelis Visual Information Solutions, Boulder, Colorado) to be 

compatible with elephant presence data.  

 

2.2.4 Distance from water points 

We also used the distance from the nearest water point as a predictor variable in the model. The 

location of water points at the time of sampling was established using the Modified Normalised 

Difference Water Index (MNDWI) described in detail by Han-qiu (2005). The index was 

calculated using Landsat data described in detail in the previous section. All pixels with 

MNDWI values greater than 0 were classified as water points as suggested by Han-qiu (2005). 

Later, the Euclidian distance calculation algorithm was used to compute the distance of 

individual pixels from the nearest water points. In order to get data at the spatial resolutions of 

250 m, 500 m, and 1000 m, the data on distance from water which were computed at the 30 m 

Landsat resolution were later resampled to the desired resolutions. 
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2.2.5 Elephant distribution modelling 

In this study, MaxEnt was used to predict the distribution of elephants in northern Gonarezhou. 

MaxEnt was selected based on its ability to reliably predict species distribution from presence-

only data. The algorithm is described in greater detail in Phillips and Dudik (2008). To generate 

elephant habitat models, elephant presence data from the aerial survey and GPS collars were 

used as the response variable separately whilst NDVI and distance from water points data 

calculated at four spatial resolutions of 30 m, 250 m, 500 m, and 1,000 m were the predictor 

variables. We used 70% of the elephant locations to calibrate the model whilst 30% of the data 

were set aside to validate the predictions as recommended in the literature (Araujo and Guisan, 

2006). In total, eight habitat models were built (that is, four from each elephant presence 

dataset), at the NDVI and distance from water point spatial resolutions described earlier.  

 

2.2.6 Model evaluation  

For each elephant distribution model, the Area Under Curve (AUC) of the Receiver Operating 

Characteristic (ROC) curve was generated to assess the modelôs ability to predict elephant 

presence based on 30% of the dataset set aside for model validation. The sensitivity and 

specificity of the model predictions were assessed using the increasing probability of presence 

(logistic output) thresholds. ROC curves were generated using the method described in Sing et 

al. (2005). Elephant absence locations used in the computation of the ROC curves were obtained 

from the background pixels randomly created in MaxEnt. The AUCs were based on 500 

bootstraps thus allowing calculation of confidence intervals. Differences in the AUCs of the 

habitat models based on aerial survey and GPS collar data at each spatial resolution of NDVI 

and distance from water points were inferred when their confidence intervals did not overlap. 

Confidence intervals were computed at the 95% confidence level. The spatial similarity 

between the predicted elephant habitats from both data sets was tested using the Jaccard 

Similarity Index. The index tests for similarity between two sample sets and is the ratio of the 
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size of the intersection to the size of the union of the same set. More detail on the index is 

described in Magurran (2004). In this study, bigger values of the index represented similarity 

in the predicted elephant habitats whereas lower values represented dissimilarity. 

 

2.3 Results 

2.3.1 Predictive ability of habitat models derived from aerial survey data 

The AUCs for the models relating elephant presence data from aerial surveys to both predictors 

at spatial resolutions of 30 m, 250 m, 500 m, and 1000 m were significantly lower than those 

predicted based on GPS collar data (Figure 2-3 and 2-4). In particular, the AUC for the model 

relating aerial survey and GPS collar data to NDVI and distance from water points at the 30 m 

spatial resolution was 0.592 (95% CI [0.511, 0.669]) and 0.767 (95% CI [0.713, 0.820]) 

respectively. At the spatial resolution of 250 m for NDVI and distance from water point, the 

model based on aerial survey data had an AUC of 0. 603 (95% CI [0.526, 0.684]) whilst that 

for GPS collar data was 0.708 (95% CI [0.641, 0.773]). Similarly, the AUCs for models based 

on aerial survey and GPS collar data were 0.607 (95% CI [0.526, 0.692]) and 0.719 (95% CI 

[0.650, 0.789]) respectively at the NDVI and distance from water points spatial resolution of 

500 m. Finally, at the spatial resolution of 1000 m for both predictors, the AUC for models 

based on aerial survey and GPS collar data were 0.590 (95% CI [ 0.516, 0.663]) and 0.678 (95% 

CI [ 0.589, 0.764]) respectively. 
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Figure 2-3: ROC curves for elephant distribution models built using presence data from aerial 

surveys and GPS collars as the response variable and NDVI and distance from water point data 

at 30, 250, 500 and 1000 metres spatial resolution as the predictors. 
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Figure 2-4: Mean area under the curve (± 95% confidence interval) for elephant habitat models 

built using aerial survey data and GPS collar data. The differences are shown for different 

spatial resolutions of the predictor variables (a) 30 m, (b) 250 m, (c) 500 m, and (d) 1,000 m. 

 

2.3.2 Performance of aerial survey data in relation to vegetation density 

Figure 2-5 illustrates the performance of elephant models built using aerial survey data and 

GPS collar data at different values of the predictor (NDVI). We observe that elephant 

distribution models built using aerial survey data achieved higher probabilities of elephant 

presence (logistic output) at lower NDVI values compared to those based on GPS collar data. 

In contrast, at higher NDVI values, habitat models based on aerial survey data showed lower 

probabilities of elephant presence when compared to those based on GPS collar data. 
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Figure 2-5: Probability curves for elephant habitat models built using aerial survey and GPS 

collar data plotted against NDVI and distance from water points at different spatial resolutions: 

(a) 30 m, (b) 250 m, (c) 500 m, and (d) 1,000 m.  

 

2.3.3 Spatial similarity between the predicted elephant habitats 

The spatial resolution of the predictor variable had a significant effect on the similarity and 

dissimilarity of habitat predicted using aerial survey and GPS collar data. We observed low 

similarity (J = 0.197) between elephant habitats predicted using aerial survey and GPS collar 

data when both predictors had a fine spatial resolution (30 m). Likewise, low similarity was 

detected when comparing habitats predicted using the two data sets at the 250 m and 500 m 

spatial resolutions (J = 0.245 and 0.178, respectively). The highest similarity was observed at 

the 1,000 m spatial resolution (J = 0.265). Figure 2-6 shows the maps of the predicted elephant 

habitats that were used in the calculation of the Jaccardôs coefficient of similarity. 



39 

 

 

Figure 2-6: Elephant habitat predicted using aerial survey and GPS collar data against NDVI 

and distance from water points at spatial resolutions of 30 m, 250 m, 500 m and 1,000 m.  

2.4 Discussion 

We found that high spatial similarity between elephant habitats predicted using aerial survey 

and GPS collar datasets exist largely at the 1,000 m spatial resolution of the predictor variables 

and not at finer spatial resolutions. This key result indicates the poor performance of aerial 

survey data in elephant distribution modelling at finer scales of the predictor variables. Scale 

dependence in the performance of aerial survey data was previously suggested in the literature 

but until now empirical evidence confirming its effect had not been provided in a spatial 

modelling framework. In a previous study, locational error of up to 500 m associated with aerial 

survey data was reported in north-western Zimbabwe (Murwira and Skidmore, 2005). Unlike, 

aerial survey data, the locational error inherent in GPS collar data rarely exceeds 100 m (Rempel 

et al., 1995, Moen et al., 1996). From this result, we deduce that at most aerial survey data 
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uncorrected for this locational error can be used to provide reliable estimates of elephant 

distribution at a coarse spatial resolution of 1,000 m. 

 

Another important aspect of the results of this study is the lower probability of elephant 

presence (logistic output) obtained from habitat models based on aerial survey data in high 

NDVI areas compared to those from GPS collar data. High NDVI values have been observed 

to be associated with high tree canopy area (Ndaimani et al., 2014). It, however, has to be 

emphasised that the logistic output of the MaxEnt model is not exactly the same as the 

probability of presence (Yackulic et al., 2013). This key result suggests that elephants under 

dense tree canopies are potentially missed during aerial surveys whilst those occurring in open 

areas with fewer trees have a better chance of being detected. The failure by aerial surveys to 

accurately detect animals under tree canopies has been documented (Jachmann, 2002, Pollock 

and Kendall, 1987) and this result simply confirms it. The finding that aerial surveys possibly 

miss elephants under dense tree canopies has far-reaching implications on habitat models 

predicted using aerial survey data and raises the question: if an aerial survey fails to spot the 

largest land mammals on Earth in a savannah then what hope do we have for spotting smaller 

mammals such as antelopes? On the other hand, the fact that habitat models based on GPS 

collar data succeeded in predicting higher probabilities of elephant presence in areas of high 

tree cover is also an important finding. The main reason for the superiority of GPS collar data 

is that whilst it is restricted in spatial extent since only a few individuals can be collared due to 

high costs, it has high locational accuracy. In addition, GPS data provide a more accurate 

representation for all the habitats (including the closed habitats) than aerial survey data. 

Nevertheless, elephant presence data from aerial surveys are collected over large spatial extents, 

thus enabling the sampling of a wide variety of habitats.  
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Overall, our study is amongst the first to test the advantage of using species presence data from 

aerial surveys in habitat modelling in an African savannah. Based on the evidence gathered in 

this study, we recommend that species distribution models built from aerial survey data 

uncorrected for locational error should, therefore, be treated with caution. Although the results 

reported here are robust given that two different presence datasets were used, our modelling 

framework is not perfect. First, NDVI and distance from the water points were the only 

predictors used to predict elephant presence yet other variables such as human-induced 

disturbance are known to play a major role in elephant distribution. This could have contributed 

to the poor performance of aerial survey data and hence the inclusion of other covariates 

warrants further investigation. Another potential limitation is that we used only one species 

distribution modelling technique (MaxEnt) but could have used other methods such as boosted 

regression trees (Elith et al., 2006). The choice of MaxEnt is justifiable since previous research 

has demonstrated its superiority over competing methods. In addition, our aim was not to build 

predictive models per se but to test the effect of the locational error on the performance of aerial 

survey data.  

 

2.5 Conclusion 

We conclude that presence data from aerial surveys, which are not corrected for locational error, 

perform poorly in species habitat modelling and should be used with care. Overall, our study 

also demonstrated the superiority of GPS collar data at different spatial resolutions of the 

predictor variable but given the limited spatial extent of the data, better results are likely to be 

obtained when it is used to complement aerial survey data which tend to have a large spatial 

coverage but low locational accuracy. However, it has to be noted that we are not suggesting 

the complete replacement of aerial survey data with GPS collar data. These two datasets a suited 

for different purposes. For instance, due to the survey design, aerial survey data still remain an 

important method for estimating animal populations whilst GPS collar data cannot be used for 
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that purpose since only a few individual animals can be collared at any given time. Future 

studies could test whether models that combine both data sets perform better since the combined 

data possibly samples a wider representation of habitats existing in the landscape. Further work 

could involve a comparison of models based on points collected in open and closed habitats in 

order to tease apart the effects of locational errors from those caused by changes in detectability. 
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3. A new method for correcting locational error from aerial surveys improves habitat 

model performance 

 

Abstract 

The utility of aerial survey data in modelling the distribution of wildlife has been questioned 

due to locational errors. Yet, little effort has been made to correct these errors. Here, a new 

method is proposed for correcting locational errors associated with aerial survey data. We 

further tested whether the correction improves model performance using elephant aerial survey 

data collected at three protected sites in Zimbabwe. Our correction method succeeded in shifting 

location by 143 to 177 m from the line of flight. Based on the true skill statistic, models built 

using corrected data in Hwange and Mana Pools national parks were significantly better than 

those from uncorrected data and only in Gonarezhou national park were no significant 

differences in model performance observed. These results underscore the benefit of applying 

the new correction method for modelling wildlife distribution. The other key result is that the 

correction seems to be more beneficial in heterogeneous landscapes than homogeneous ones 

for, in the former, a small shift in location results in the sampling of different habitats than 

where sightings were made. The proposed method opens new opportunities for improving the 

accuracy of aerial survey data in species distribution modelling. 
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3.1 Introductio n 

The development of models to predict the spatial distribution of wildlife in a landscape is 

important for conservation. For instance, models that accurately predict the distribution of target 

species in a landscape provide useful insights into the ecology of the species thereby enabling 

targeted allocation of resources for their protection. However, it is generally agreed that the 

accuracy of the wildlife distribution model predictions depends on, inter alia, the quality of 

wildlife location data (Wisz et al., 2008, Elith et al., 2006). Thus, the development of methods 

to improve the quality of wildlife location data is critical. 

 

Several attempts have been made to improve the quality of wildlife data. However, the focus 

has mainly been on developing methods for improving the quality of predictor variable data 

such as vegetation cover and terrain, largely collected from remote sensing (Moisen et al., 

2006). While the accuracy of wildlife presence data collected from radio telemetry has either 

been questioned or documented since the 1960s (Heezen and Tester, 1967) and several 

improvements have been suggested (e.g., Fedak et al., 2002, Frair et al., 2010), the locational 

accuracy of data from aerial surveys has remained untested especially when applied together 

with remotely sensed predictor variables. Thus, focusing attention on ascertaining and 

improving the accuracy of wildlife locational data from aerial surveys is critical. 

 

Typical data collection using aerial surveys involves flying a fixed-wing plane along pre-

selected transects and recording animals sighted within ~150 m wide search strips to the right 

and left of the flight path (see Figure 3-2). If distance sampling theory (Buckland et al., 2005) 

is not applied during the survey, the position of a particular animal sighting is recorded along 

the line of flight when in fact the true position of the sighting is a distance away. Therefore, use 

of aerial survey data, uncorrected for locational error, in modelling assumes that the sampled 

position is in the line of flight when, in fact, it should be somewhere inside the search strips. In 
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highly heterogeneous landscapes, points separated by several metres might represent different 

habitats. Thus, the use of uncorrected data in those landscapes for predicting the potential 

distribution of target species possibly compromises model performance. Previous studies that 

used aerial survey data for habitat modelling have had to use coarse scale environmental 

variables in order to avoid the pitfall of locational error. For instance, Murwira and Skidmore 

(2005) indicated that the magnitude of error for aerial survey data is less than 500 m and had to 

use coarse environmental variable data to avoid significantly influencing model performance. 

 

To date, some studies that have used the uncorrected data in modelling have assumed that the 

error is so minimal that it has a negligible effect on model performance (e.g., Murwira and 

Skidmore, 2005). In addition, to the best of our knowledge, little attempt has been made to 

objectively test whether correction of the data would affect the performance of models that 

predict the potential distribution of species in the landscape. In fact, knowledge on whether 

correcting locational error inherent in data collected from aerial surveys would improve model 

performance remains largely rudimentary.  

 

In this study, we tested the utility of a method for correcting the locational error in animal 

presence data collected from aerial surveys. We tested whether the correction factors estimated 

in different study sites were the same. We also asked whether the corrected presence data would 

improve the performance of models predicting the potential distribution of African elephants 

(Loxodonta africana) in three sites located in Zimbabwe. It was also deemed that if the 

correction method can work in multiple sites, it is likely to work in other savannah landscapes, 

thereby being generalizable.  
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3.2 Materials and methods 

3.2.1 Study sites 

The study was conducted in the Gonarezhou, Hwange and Mana Pools National Parks of 

Zimbabwe (Figure 3-1). These three sites are similar in that no hunting and other forms of 

consumptive use of wildlife are permitted. However, the three sites differ in size, rainfall, 

vegetation, soils and elephant density. We selected the study sites because they represent key 

elephant range areas in the country (Child, 2004) and have different environmental gradients. 

 

Figure 3-1: Location of (a) Mana Pools, (b) Gonarezhou, and (c) Hwange National Parks in 

Zimbabwe. Maps also show elephant sightings data from aerial surveys as well as rainfall from 

Bioclim data 
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The first study area lies in the Gonarezhou National Park (31.59°E-32.41°E, 21.11°S-22.07°S) 

located to the south-east of Zimbabwe (Figure 3-1(a)). The area is defined as that part of the 

park located within the Landsat scene defined by path 168 and row 075 and is 3,777 km2 in 

size. Elevation ranges from 155 to 567 m while the mean slope is 2.78°. Total annual 

precipitation from long-term records is ~450 mm. Major soil groups are Cambic Arenosols, 

Luvic Arenolos and Lithosols. The vegetation found in the study area is predominantly dry 

deciduous savannah dominated by Colophospermum mopane and Combretum apiculatum. The 

park is home to ~11,000 elephants at a density of ~2.25 animals/km2.  

 

The second study area is ~11,389 km2, lies in the Hwange National Park (26.07°E-27.46°E, 

18.52°S-19.63°S) and is located to the north west of Zimbabwe (Figure 3-1(b)). This area is the 

part of the national park which is located in the Landsat scene defined by path 172 and row 073. 

Long-term annual rainfall ranges from 450 to 650 mm. Elevation ranges from 830 to 1128 m 

with a mean slope of 1.68°. Cambic Arenosols, Luvic Arenosols and Vertic Cambisols are the 

dominant soil groups found in the area. Baikaea plurijuga is the dominant vegetation type on 

Arenosols while Terminalia sericea and Combretum spp dominate the Cambisols. Elephant 

density is ~3.02 animals/km2 and is the highest in the country.  

 

The third study area is ~2124 km2 and comprises the entire Mana Pools National Park (29.15°E-

29.74°E, 15.67°S-16.29°S) found on the north of Zimbabwe (Figure 3-1(c)). Total annual 

precipitation from long-term data ranges from 450 to 650 mm. The area is characterised by 

elevation values of 268-1186 m and mean slope of 4.56°. Major soil groups include Chromic 

Luvisols, Ferralic Arenosols and Lithosols. Colophospermum mopane dominates on the 

Lithosols while Brachystegia spp are dominant on the Arenosols. Elephant densities are lower 

than in the other two sites (~0.38 animals/km2).  
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3.2.2 Calibration flights  

The calibration of flights was undertaken as described by Norton-Griffiths (1978b). Prior to 

aerial surveys in each of the three study sites, calibration flights were run with fixed wing 

aircraft, that is, Cessna 185 for Gonarezhou, Cessna 206 for Hwange and Cessna 206 for Mana 

Pools. This was necessary since the aircraft used and the observers who participated in each 

aerial survey were different. During calibration, the pilot flew the plane at right angles to an 

airstrip and above a windsock located at the centre of the airstrip. The pilot had to fly past the 

airstrip at a height of about 91.44 m (300 ft), which is the height used during the actual surveys. 

Meanwhile, observers seated at the rear right and left side of the aircraft visually scanned 

between streamers (a pair of parallel carbon fibre fishing rods) fixed on the struts of the aircraft 

and called out the maximum and minimum values of markers written in white paint on the 

airstrip visible from the air. The markers were numbered from zero to 35 on each side of the 

windsock and individual markers were separated by 10 m. The values for the maximum and 

minimum markers between the streamers on the side of each observer were later used to 

calculate the estimated strip width in metres for that observer. The total calibration runs were 

31 in Gonarezhou, 33 in Hwange and 30 in Mana Pools. 

 

3.2.3 Correction of the locational error 

Strip width data collected during the calibration runs were used to derive the estimated 

correction factor (D) for each site (Figure 3-2). D is defined as the distance between the line of 

flight (marked by the windsock) and the centre of the average estimated strip width for the right 

and left observers.  
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Figure 3-2: The correction factor (D) = estimated distance between the line of flight (marked 

by the windsock) and the centre of the average strip width for the right and left observers. C = 

distance between outer markers for both observers; xr = average strip width for the right 

observer; xl = average strip width for the left observer; and Y is the width of the invisible area 

underneath the aircraft and between the inner markers of both observers 

 

A total of nine derived equations were used to correct the inherent error associated with aerial 

survey locational data. 

First, the average combined distance between the left and right outer markers was calculated 

as: 

ὅǰ В ὅ         eqn 1 

where ὅǰ is the average distance between the outer markers of the right and left observers; Ci is 

the distance between the outer markers of the right and left observers during an individual 

calibration run; and n is the total number of calibration runs for the site. 
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The average strip width for the right observer was calculated as: 

ὼǰ В ὼ        eqn 2 

where ὼǰ is the average strip width for the right observer; xi is the strip width for the ith 

calibration run; and n is the total number of calibration runs for the site. 

Similarly, the average strip width for the left observer was calculated as: 

ὼǰ В ὼ        eqn 3 

where ὼǰ is the average strip width for the left observer; xi is the strip width for the i th calibration 

run; and n is the total number of calibration runs for the site. 

To calculate the invisible strip underneath the aircraft and between the inner markers of the 

right and left observers, equation 4 was applied: 

ὣ ὅӶ ὼǲ ὼǲ)       eqn 4 

where ὣ is the width of the invisible area underneath the aircraft; ὅǰ is the average distance 

between the outer markers for the right and left observers; and ὼǰ and ὼǰ were described before. 

Then, D was derived as follows:  

Ὀ
ǰ ǰ

        eqn 5 

After calculating the correction factor D, the next step was to calculate the bearing of an 

individual sighting located to the right of the flight path (—) as : 

— ‰ ωπЈ        eqn 6 

where ‰ is the bearing of the transect. 

Equation 7 was used to calculate the bearing of an individual sighting located to the left of the 

flight path as given by: 

— ‰ ωπЈ        eqn 7 

where — is the bearing of the sighting to the right of the flight path.  

Equations 8 and 9 were then used to calculate the longitude and latitude at the corrected 

location of the sighting, respectively. 

ὼ ὼὈίὭὲ—        eqn 8 
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ώ ώὈὧέί—        eqn 9 

where ὼ is the longitude of the sighting along the flight path; ὼ is the estimated longitude of 

the sighting after correction; ώis the latitude of the sighting along the flight path; ώ is the 

estimated latitude of the sighting after correction; and Ὀ is the estimated correction factor. 

The three sites have similar terrain ruggedness (Table 2-2). As a result, there was no need to 

correct for terrain differences using a Digital Elevation Model (DEM). In addition, the 

correction factors were less than 200 m, thus the effect of the earthôs curvature on locational 

error was deemed negligible.  

 

3.2.4 A comparison of the correction factors using real data sets 

Data collected during calibration runs in Gonarezhou, Hwange and Mana Pools National Parks 

were used to estimate correction factors (Ὀ) based on our suggested method. We later tested 

whether the correction factors estimated for the three study sites were significantly different. 

One-way ANOVA was used to test whether there were any significant differences in the mean 

estimated values for the correction factors. ANOVA was used since data did not significantly 

deviate from a normal distribution (Gonarezhou: W= 0.967, p = 0.442; Hwange: W = 0.962, p 

= 0.286; Mana Pools: W = 0.969, p = 0.512). The null hypothesis tested was that D1=D2=D3. 

The alternative hypothesis was that at least one of the mean D values differ. Following the 

rejection of Ho, Tukeyôs HSD tests were performed for pairwise comparisons.  

 

3.2.5 Comparisons of elephant distribution models for corrected and uncorrected data 

Elephant location data corrected for position error using the method described before were used 

to test whether the suggested correction method improves the performance of Species 

Distribution Models (SDMs). To achieve this, Maximum entropy modelling (MaxEnt) (Phillips 

et al., 2004) was used with elephant presence data as the response variable and NDVI as well 

as distance from water sources as the two predictor variables, to predict the potential 
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distribution of elephants in the three study sites. MaxEnt is a general-purpose machine learning 

method that predicts the presence of target species from presence-only data (Phillips et al., 

2004). Multi -collinearity was not detected since the two predictor variables were observed to 

be weakly correlated (Gonarezhou: r = -0.162; Hwange: r = -0.085; Mana Pools: r = 0.168). 

Evidence from the literature suggests that multi-collinearity distorts model estimation when 

correlation coefficients (|r|) between predictor variables exceed 0.7 (Dormann et al., 2013). 

Correlation analysis was performed on raster data of the predictor variables using the Spatial 

Analyst Tools of ArcGIS 10.1 (ESRI, 2011). 

 

Location data for elephants used for modelling were collected during a national survey 

conducted during the dry season in August of 2014 (Mana Pools) and during the month of 

October 2014 for both Gonarezhou and Hwange. Even though August and October occur in the 

dry season, visibility of animals might differ during these months because of potential 

differences in vegetation condition. Location data were collected along transects located within 

the individual stratum. Table 3-1 provides more detail on the sampling parameters. 
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Table 3-1: Details of the strata, sightings, transects and the dates on which data were collected 

in Gonarezhou, Hwange and Mana Pools National Parks (Adapted from Dunham et al.2014) 

Site Strata Sightings 

# 

Transects 

Spacing 

(km) Bearing Dates 

Gonarezhou Chefu 53 14 2.8 42 29 Oct 

 Chilojo A 81 15 1.7 45 26 Oct 

 Chilojo B 82 24 2 

134 (-

46) 28 Oct 

 

Chipinda 

Pools 121 26 2.2 0 26 Oct 

 Mabalauta NP 29 15 2.9 90 30 Oct 

  Naivasha 22 12 3.5 

134 (-

46) 26 Oct 

Hwange Central A 64 10 4.4 66 15 Oct 

 Central B 7 9 4.6 

-26 

(154) 23 Oct 

 Dandari 199 29 2.5 0 16 Oct 

 Dzivanini 114 15 4 90 18 Oct 

 Main Camp 129 14 3.5 41 13 Oct 

 Mtoa 97 20 2.7 0 13 Oct 

 Ngamo 199 17 3.4 

-52 

(128) 22 Oct 

 Robins 129 11 3.3 90 10 Oct 

 Shakwanki 79 15 4.5 90 17 Oct 

 Shapi 342 26 2.2 0 16 Oct 

  Sinamatella 121 18 3.2 0 12 Oct 

Mana Pools Mana I 64 32 1.5 0 25 Aug 

  Mana II 151 22 1.8 90 31 Aug 

 

All elephant presence data falling outside the boundaries of the study sites were excluded from 

the analyses. The total number of elephant sightings used for analyses was 208 for Gonarezhou, 

602 for Hwange and 160 for Mana Pools. Although the density of sightings later used for 

modelling differed significantly (ɢ2 = 17.168, df = 2, p = 0.000) in the three sites, there was no 

need to adjust the sample sizes since the MaxEnt algorithm is not sensitive to sample size (Wisz 

et al., 2008).  

 

NDVI was selected for modelling elephant distribution as a proxy for forage quantity following 

Garroutte et al. (2016b). NDVI was calculated from Landsat 8 satellite data accessed from the 
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Glovis platform (www.glovis.usgs.gov). The acquisition dates for the images were 15/09/14 for 

Gonarezhou, 13/10/14 for Hwange and 20/09/14 for Mana Pools. We selected these dates 

because they represented cloud-free data acquired on dates closest to the time when aerial 

survey data were collected at each site. We could not obtain cloud-free scenes that cover the 

entire Gonarezhou and Hwange national parks and for that reason, we limited our analyses to 

the parts of the study sites covered by available scenes. Pre-processing of the data involved the 

conversion of radiance to Top-of-atmosphere (TOA) reflectance following the method 

described by Chavez Jr (1989). The actual conversion of radiance to TOA reflectance was 

implemented in ENVI version 5.1 (Exelis Visual Information Solutions, Boulder, Colorado). 

Later, we calculated NDVI using the standard formula (NIR-R/NIR+R).  

 

Water is a key driver of elephant distribution hence its inclusion as a predictor variable in our 

models. We used the same Landsat 8 data described above to map water based on the Modified 

Normalised Difference Water Index (MNDWI) described by Xu (2006). Water pixels had 

MNDWI values of greater than zero. We later calculated the distance of individual pixels from 

surface water using the Euclidean distance calculation algorithm implemented in ArcGIS 10.1 

(ESRI, 2011).  

 

MaxEnt was run separately for corrected and uncorrected elephant presence data. The numbers 

of uncorrected points used for modelling were: Gonarezhou = 208, Hwange = 602 and Mana 

Pools = 160. Since correction was undertaken for all points falling inside study areas, the same 

numbers of corrected points were used for modelling. MaxEnt is a general utility presence only 

SDM that has been known to perform better than most presence-only models (Elith et al., 2006). 

We ran the MaxEnt models in the Biomeod2 package of the R software (Thuiller et al., 2016). 

For each study site, 30 model runs were performed using corrected data while the other 30 used 

uncorrected data to yield a total of 60 model runs per site. For each run, 70% of the presence 
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data were used to calibrate the model while the remaining 30% was set aside for model 

evaluation as recommended in the literature (Araujo and New, 2007). For each model run, 

10,000 points were randomly generated and used as pseudo-absences. We selected 10,000 

pseudo-absences because the number does not exceed the recommended maximum in all the 

three study sites (Thuiller et al., 2016).  

 

The Relative Operating Characteristic (ROC) (Mason, 1982) and True Skill Statistic (TSS) 

(Woodcock, 1976) available in the Biomode2 were used to evaluate the performance of 

MaxEnt-based models in predicting elephant presence when ran with corrected or uncorrected 

data. Each of 60 model runs generated the ROC and TSS metrics per site. Thus, the studentôs 

t-test was used to compare whether ROC and TSS values differed significantly for MaxEnt 

models ran using corrected and uncorrected elephant presence data. This test is parametric and 

requires that the test variable follows a normal distribution. The data were tested for normality 

prior to statistical analysis and were found not to significantly (p > 0.05) deviate from a normal 

distribution. Tests for normality of distribution followed the procedure described by Shapiro 

and Wilk (1965) and were implemented in the R software (R Core Team, 2017).  

 

We used the logistic threshold of equal training sensitivity and specificity to obtain a binary 

classification of the predictions for each model while continuous probabilities of presence were 

presented as maps. We later compared the size of the area classified as the potential distribution 

of elephants for both the corrected and uncorrected data. 

 

3.2.6 Comparison of NDVI, distance from water and Terrain Ruggedness Index 

We compared NDVI, distance from water and the Terrain Ruggedness Index (TRI) to establish 

whether there were differences in the values of the predictor variables at the corrected and 

uncorrected elephant presence sites. The TRI was calculated using the method suggested by 
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Riley et al. (1999). The method uses a DEM to calculate the absolute difference between 

elevation in a central pixel and its neighbouring pixels. The value obtained is later averaged to 

obtain the mean difference in elevation. The index measures the roughness of the landscape. 

The roughness of the landscape potentially has an effect on the calculation of a corrected 

position using our suggested method. 

 

NDVI, distance from water sources and TRI at elephant location sites from both the corrected 

and uncorrected data sets were extracted using standard overlay functions implemented in 

ArcGIS 10.1 (ESRI, 2011). For each study site, the values extracted at the corrected and 

uncorrected sites were compared using the Mann-Whitney U statistic since data were not 

normally distributed. The significance of the results was inferred at an alpha level of 0.05.  

 

3.2.7 Test for spatial autocorrelation of NDVI 

Next, we tested the maximum distance at which spatial autocorrelation existed in the NDVI 

data. The existence of spatial autocorrelation at long distances is associated with more 

homogeneous vegetation cover than at shorter distances. The variogram method was used to 

establish the distances at which NDVI data showed spatial autocorrelation. First, NDVI values 

at corrected and uncorrected sites were extracted using the method described above. Second, 

the semi-variance of NDVI for coordinate pairs was calculated using the method described in 

detail by Clark (1979). Next, the semi-variance was plotted against lag distances at an interval 

of 500 metres to produce variogram clouds. Then, exponential functions were fitted to the 

variogram clouds using the eye fit function implemented using the geoR package in R Software 

(Ribeiro Jr and Diggle, 2001). Finally, the Nugget, Range and Sill were extracted from the 

analyses. 
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3.3 Results  

We observe that the suggested correction method was successful in estimating corrected 

location in Gonarezhou, Hwange and Mana Pools (Figure 3-3). The correction was also 

successful in areas with different transect bearings. We also observe that the correction factor 

(D) differed significantly in the three study areas (F2, 91 = 21.524, p < 0.0001) (Figure 3-4). The 

following are the estimated correction factors: Gonarezhou (175.4 m); Hwange (142.7 m); and 

Mana Pools (177.9 m). Pairwise comparisons using the Tukeyôs HSD test illustrate significant 

differences in the estimated correction factor between Gonarezhou and Hwange (p < 0.0001); 

a significant difference between Hwange and Mana Pools (p < 0.0001); and no significant 

difference between Gonarezhou and Mana Pools (p > 0.05).  

 

Figure 3-3: Location of selected uncorrected and corrected elephant presence points in (a) 

Gonarezhou; (b) Hwange; and (c) Mana Pools. Note that the transect bearing in (a) = 0°; (b) = 

128°; and (c) = 90° 
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Figure 3-4: Comparison of estimated correction factors for Gonarezhou, Hwange and Mana 

Pools 

We also observe that using ROC as the evaluation metric, the models from corrected data 

performed better than those from uncorrected data in Hwange (t = 8.817, df = 58, p = 0.000) 

while in Gonarezhou and Mana Pools their performance was not significantly different 

(Gonarezhou: t = 0.151, df = 58, p > 0.05; Mana Pools: t = 1.702, df = 58, p > 0.05) (Figure 3-

5). When TSS was used as the evaluation metric, the models built using corrected data in 

Hwange and Mana Pools significantly differed from those built using uncorrected data 

(Hwange: t = 13.423, df = 58, p = 0.000; Mana Pools: t = 3.081, df = 58, p = 0.003) while in 

Gonarezhou we observed no significant difference (t = -1.137, df = 58, p > 0.05). 
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Figure 3-5: Comparison of models built using corrected and uncorrected data. Results 

illustrate; no significant difference in performance of both data sets in Gonarezhou based on (a) 

TSS and (b) ROC; significant difference in the models based on (c) TSS and (d) ROC in 

Hwange; and significant difference in the models based on (c) TSS and (d) ROC in Mana Pools 

 

Results from our analysis illustrate that the predicted elephant habitat was consistently larger 

for corrected data than for uncorrected data. Predicted habitat in Gonarezhou using corrected 

data was 1690.78 km2 while that for uncorrected data was 1630.10 km2. In Hwange, the 

predicted habitat from the model using corrected data was 4385.31 km2 while that predicted 
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using uncorrected data was 4333.65 km2. The predicted habitat for elephants in Mana pools, 

from corrected data was 896.20 km2 whereas that from uncorrected data was 853.22 km2. 

Overall, we observe that uncorrected data underestimated the potential habitat of elephants by 

60.68 km2 in Gonarezhou, 51.66 km2 in Hwange and 42.99 km2 in Mana Pools.  
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Figure 3-6: Probability of elephant presence predicted using corrected and uncorrected location 

data in Gonarezhou, Hwange and Mana Pools 
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Comparisons of extracted values of NDVI, distance to water and terrain ruggedness at elephant 

presence sites showed no significant difference (p > 0.05) between the corrected and 

uncorrected data (Table 3-2). 

 

Table 3-2: Comparison of NDVI, distance to water and terrain ruggedness at corrected and 

uncorrected elephant presence sites 

Study area Variable Mann-Whitney U Wilcoxon W Z P-value 

Gonarezhou NDVI 21050 42786 -0.475 0.635 

 Distance to water 21222 42958 -0.334 0.738 

 

Terrain 

ruggedness 20688 42424 -0.771 0.441 

Hwange NDVI 180323 361826 -0.146 0.884 

 Distance to water 180557 362060 -0.107 0.915 

 

Terrain 

ruggedness 179764 361267 0.239 0.811 

Mana Pools NDVI 180323 361826 -0.146 0.884 

  Distance to water 180557 362060 -0.107 0.915 

 

Terrain 

ruggedness 12790 25670 -0.012 0.990 

 

Next, results illustrate that variogram clouds for NDVI data extracted at elephant presence sites 

corrected for locational error have spatial auto-correlation to distances of >=8 km in all the 

three study sites. Spatial autocorrelation was observed up to; 15 km in Gonarezhou (Nugget=0, 

Range = 15000 m, Sill=0.001); 10 km in Hwange (Nugget = 0, Range = 10000 m, Sill=0.01); 

and 8 km in Mana Pools (Nugget = 0, Range = 8000 m, Sill = 0.02). 

 

3.4 Discussion 

Results of this study indicate the utility of the correction in modelling wildlife habitat. In 

particular, results for Hwange and Mana Pools National Parks indicated that the corrected data 

improved the performance of the elephant distribution models. This is consistent with results 

reported in an earlier study that animal location data collected during aerial surveys consistently 

perform poorly in SDMs compared with GPS collar data (Ndaimani et al., 2016). The reported 
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improved performance of the corrected data in our study areas provides a basis for the need to 

use corrected data for modelling. Based on these results, it could be claimed that modelling 

elephant distribution using uncorrected data could possibly give results with lower levels of 

accuracy. Our suggested correction method shifts the supposed location closer to the actual 

location in the landscape. In other words, the shift in location introduced by the correction may 

be enhancing the probability that the sampled location closely resembles the actual location 

where the elephants were sighted thereby possibly improving model performance.  

 

Although the corrected data generally improved habitat model performance, it did not improve 

model performance in the Gonarezhou National park. This could be explained by lower 

heterogeneity in the vegetation cover of Gonarezhou National Park. In fact, results from 

variogram models computed from NDVI data showed that the Gonarezhou landscape is more 

homogenous when compared to the other two landscapes. Thus, we speculate that failure by 

the corrected data to improve model performance in Gonarezhou could be linked to the 

homogeneity in GNP compared with the other study areas. These findings may suggest that the 

performance of corrected data in SDMs is better in more heterogeneous landscapes than 

homogeneous ones.  

 

The calculated correction factor (D) estimated from calibration data was found to be different 

among the study areas. Particularly, the correction factors for Gonarezhou and Mana Pools were 

not significantly different (p > 0.05) whilst the correction factor for Hwange was significantly 

smaller. The same aircraft (Cessna 206) was used in Hwange and Mana Pools whereas a 

different one (Cessna 185) was used in the Gonarezhou National Park. We, therefore, claim that 

the model of the aircraft used has a limited effect on the magnitude of the correction factor. 

However, the pair of observers used in each of the three study areas were different. Thus, results 
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suggest that the observers potentially influence the correction factor since these were not the 

same in the three study areas. 

 

Unlike previous studies that have used aerial survey data to model elephant habitat (Singh and 

Milner Gulland, 2011, Murwira and Skidmore, 2005), our study represents a novel attempt to 

use corrected aerial survey data to model elephant habitat. In fact, results indicate an 

improvement in the model quality based on these corrected data. This could further improve 

our understanding of wildlife distributions. However, we caution that while the correction is an 

important first step, it is not always precise as it shifts location to the centre of a search strip 

~150 m wide. Therefore, related future work could involve further testing on whether and how 

the corrected data influences the performance of SDMs in more heterogeneous landscapes.  

 

3.5 Conclusion 

In this objective, we describe a simple method for correcting locational error inherent in animal 

presence data collected during aerial surveys. We found out that the magnitude of the correction 

factor (D) differs by study area. We also found out that the corrected data improved the 

performance of models predicting the potential distribution of elephants, especially in less 

homogenous landscapes. Our results are amongst the first attempts to improve the quality of 

animal presence data collected without the use of distance sampling during aerial surveys. Our 

findings are relevant to spatial ecologists and wildlife managers who use data collected from 

aerial surveys for research as well as for management. Although the suggested correction 

method significantly improved the performance of models that predict the potential distribution 

of elephants, we proceeded to use GPS collar data in the following objective. This is largely 

because GPS collar data possess both better locational accuracy and temporal coverage. 
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4. Elephant (Loxodonta africana) GPS collar data show multiple peaks of occurrence 

farther from water sources 

 

Abstract 

The understanding of animal distribution in habitats located farther from water sources has not 

been dealt with adequately in literature, yet this knowledge enables better prediction of species 

occurrence across an entire landscape. We tested whether elephant occurrence peaks away from 

water in addition to the known peak that is associated with water sources. We used the 

Maximum Entropy Modelling (MaxEnt) algorithm to predict the potential distribution of 

elephants in the Gonarezhou National Park, Zimbabwe. Elephant tracking data from Global 

Positioning System (GPS) collars were used as the response variable while NDVI (a proxy for 

forage quantity) and water sources data were the environmental variables. Results showed 

multiple peaks of elephant occurrence with increasing distance from water sources. 

Additionally, results illustrated that the peaks occur in high NDVI areas. Our findings 

emphasise the utility of GIS and remote sensing in enhancing our understanding of animal 

occurrence driven by water sources.  
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4.1 Introduction  

Drinking water and forage are generally understood to be key drivers of animal distributions in 

tropical landscapes. This is particularly true in savannah ecosystems where vegetation cover is 

heterogeneous (Roever et al., 2013) and drinking water largely limiting (Chamaille Jammes et 

al., 2007). Animals forage in order to meet their energy and protein requirements and drink 

water primarily for thermoregulatory purposes. Consequently, it is generally agreed that the 

movement of animals across landscapes is not random but rather follows the Optimal Foraging 

Theory which states that animals seek to get the most energy gain at the lowest cost as a strategy 

to maximise fitness (MacArthur and Pianka, 1966). Thus the accurate prediction of the potential 

distribution of animals in most landscapes depends on the inclusion of water and forage as 

predictor variables. 

 

Several studies reported that animals forage near water sources in order to minimise the 

distances they travel to access water (Follett and Delgado, 2002, Epaphras et al., 2008). This 

behaviour has largely been reported among water-dependent species that need to drink daily 

(Wilson, 1966) and is common during the hot and dry months when heat stress is enhanced by 

high temperatures (Coleman et al., 2004, Wakefield and Attum, 2006). For instance, African 

elephants (Loxodonta africana) have been observed to drink water daily (De Beer et al., 2006) 

and also forage close to water throughout the year (Gaylard et al., 2003). When the probability 

of animal occurrence is relatively high in habitats close to water, we would expect density peaks 

to occur around water sources where distribution is linked to the availability of water (Redfern 

et al., 2003, Shannon et al., 2009). However, there is often a trade-off between access to water 

and forage as animals may have to weigh the benefits of foraging near water where the pressure 

on forage is high or travelling farther from the water where competition on forage resources is 

reduced (Redfern et al., 2003). Despite widespread knowledge of animal occurrence near water, 

knowledge on how they are distributed in those habitats farther from water remains largely 
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rudimentary. While the distribution of animals in habitats near water sources could be viewed 

as a strategy to maximise the intake of water, the habitat factors that drive the occurrence of 

animals in landscapes farther from water remain unclear. It is therefore important to also 

investigate the response of animals in habitats that are located farther from water sources in 

order to get a more complete view of animal distributions in the landscape. 

 

In the past, studies that sought to understand the occurrence of animals in habitats near water 

sources relied to a great extent on point-based field measurements (e.g., Lange, 1969, e.g., 

Butler Jr et al., 1995). This approach virtually resulted in better understanding of more localised 

patterns that are limited to the sampled areas while ignoring those at the landscape scale. 

Consequently, understanding of animal occurrence dynamics near water sources has been well 

developed (Mukwashi et al., 2012b). Earlier studies widely reported the ópiosphere effectô 

which predicts that the pressure of herbivory on vegetation is higher near water than farther 

from water (Landman et al., 2012, James et al., 1999). As a result, animal-driven vegetation 

change near water points is well researched whilst the possible change farther from water has 

generally remained unclear. It is important to note that these earlier studies on the ópiosphere 

effectô mostly depended on point measurements possibly because large-scale spatial data that 

allows for a landscape view were not readily available. In more recent years, the developments 

in Geographical Information Systems (GIS), remote sensing and Global Positioning Systems 

(GPS) have allowed the testing of hypotheses related with the potential distribution of animals 

at large spatial scales (Phillips et al., 2006). For instance, it is now possible to obtain freely 

available remotely sensed data at the global scale and at relatively fine spatial resolutions which 

was impossible in the past (Hijmans et al., 2005). In addition, the developments in GPS collar 

tracking in recent years has made it possible to obtain fine grain movement data for target 

animal species. Thus GIS and remote sensing can now be applied to enhance our understanding 

of animal occurrence near waterholes as well as farther from the water.  
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In this study, we used elephant tracking data from GPS collars together with NDVI (a proxy 

for forage quantity) and water sources data to test whether elephant occurrence peaks away 

from water in addition to the known peak that is associated with water sources. We also tested 

whether the peaks of elephant occurrence away from water are associated with high forage 

quantity (estimated using NDVI). We specifically hypothesised that elephant occurrence peaks 

near water in a hypothetical landscape with homogeneous vegetation (Figure 4-1a). This 

hypothetical pattern is mainly because the availability of forage will be uniform across the 

landscape and therefore water will be expected to have more impact on the distribution of 

elephants than the other predictor variables. However, in a more realistic landscape with 

heterogeneous vegetation cover such as the tropical savannahs, the response would be intricate 

and typified by multiple peaks of occurrence at increasing distance from water (Figure 4-1b). 

The other peaks farther from water would be driven by other factors like forage abundance. Our 

study provides important insights into the precise response of elephants to the distribution of 

water within landscapes characterised by heterogeneous vegetation cover 

 

Figure 4-1: Hypothetical framework: the predicted response of elephants to water in (a) an 

imaginary homogeneous landscape characterised by uniform forage quantity and (b) a more 

realistic heterogeneous landscape characterised by non-uniform forage quantity 
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4.2 Materials and methods 

4.2.1 Ethics statement 

Handling of African elephants for GPS collaring was monitored by the Zimbabwe Parks and 

Wildlife Management Authority as well as licensed drug handlers approved by the Division of 

Veterinary Services in Zimbabwe. The two departments provide and enforce the wildlife 

collaring guidelines for research in the country. 

 

4.2.2 Study area 

This study was carried out in northern Gonarezhou National Park, located between longitudes 

31.75° - 32.41°E and latitudes 21.10° - 21.76° S in south-east Zimbabwe (Figure 4-2). The 

study area has a typical seasonal savannah climate with long-term annual rainfall averaging 600 

mm. Data collected from a weather station in the study area shows that annual rainfall was 403 

mm in 2009, 552 mm in 2010 and 580 mm in 2011. Rainfall is received from November to 

April while the rest of the year is dry (Gandiwa et al., 2011). Vegetation is dry deciduous 

savannah dominated by Colophospermum mopane and Combretum apiculatum.  
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Figure 4-2: Elephant location data (from Global Positioning System (GPS) collars) collected 

from the eight elephants during 13 selected months between July 2009 and November 2011 in 

northern Gonarezhou National Park, south-east Zimbabwe 

 

The study area lies within a protected area that has an estimated elephant population of about 

10,000 (Dunham et al., 2013). We identified this area as ideal for answering our hypotheses 

because 1) data on the location of collared elephants is available for 3 years (2009, 2010 and 

2011), allowing for analysis within three years of different rainfall amounts, and 2) perennial 

water is restricted to the major rivers especially during the dry season thus making water an 

important driver of animal distribution. No artificial water sources exist in the study area, thus 

rivers and natural pans are the only sources of drinking water for animals. 
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4.2.3 Elephant location data 

Data on the location of elephants were collected during 13 selected months and the number of 

occurrence points used in the analyses is shown in Table 4-1. We selected the months used in 

the analyses based on the availability of data and those months with few occurrence points were 

left out.  

 

Table 4-1: Elephant occurrence points used in the prediction of elephant habitat and the dates 

on which the terra/MODIS NDVI image was acquired. 

Month Elephant occurrence points Date of Image acquisition 

July 2009 175 28/07/09 

August 2009 187 29/08/09 

September 2009 170 30/09/09 

November 2009 216 17/11/09 

July 2010 136 28/07/10 

August 2010 147 29/08/10 

September 2010 128 30/09/10 

October 2010 98 16/10/10 

November 2010 138 17/11/10 

August 2011 112 29/08/11 

September 2011 103 30/09/11 

October 2011 102 16/10/11 

November 2011 85 17/11/11 

 

Eight elephants were fitted with GPS collars in the study area in July 2009. The collars were 

programmed to take a minimum of three position fixes per day for a period of not less than 2 

years depending on the battery life of the unit. The average fix success rate for the GPS collars 

during the 13 months selected for analyses was 81 %. For our analyses, we used only the data 

collected during the 13 months presented in Table 4-1. We were particularly interested in 

analysing elephant distribution during the dry months when surface water is limiting in the 
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study area. For this reason, the wetter months from December to June were not included in our 

analyses. Since our study area did not cover the entire range of the collared elephants, we 

masked out all position fixes that were located outside the study area boundary using the clip 

function implemented in a GIS. 

 

4.2.4 Normalised difference vegetation index 

NDVI data used to predict elephant habitat were extracted from the 16 days terra/MODIS data 

(MOD13Q1) freely available at the 250 m spatial resolution. These data are provided already 

corrected for water, clouds, heavy aerosols and cloud shadows (Olofsson et al., 2007). We 

downloaded the data from the www.glovis.usgs.gov website where they are available for 

download free of charge. The dates on which these data were acquired are presented in Table 

4-1. Since two composites of the 16 days data are available during each month, we selected the 

data acquired during the latter half of the month for consistency. Geometric corrections included 

conversion from the sinusoidal (SIN) to the Universal Transverse Mercator (UTM, WGS 84 

Zone 36S) projection to ensure compatibility with the elephant location data. Two tiles (h20v11 

and h21v11) were required to cover the entire study area. We later mosaicked and clipped the 

images to the size of the study area. In this study, we used NDVI as a proxy for forage quantity 

following Garroutte et al. (2016a). Forage quantity is an important habitat variable for elephants 

during the drier months of the year because it is largely limiting at that time especially in 

savannah landscapes. 

 

4.2.5 Distance from water sources 

In order to determine the water sources available in the study area during the months included 

in the analyses, we used 16 days MODIS NDVI data described above. The data are provided at 

the 250m spatial resolution. It was least likely that some water sources were missed during 

mapping since no artificial water is supplied in the study area and the sources that have water 
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during the dry season are big enough to be picked even at the spatial resolution of 250m. NDVI 

values range from -1 to +1, where negative values are generally associated with water bodies 

and positive values with vegetation. Thus it is possible to use a threshold approach to extract 

water surfaces from NDVI data. We extracted water surfaces from the monthly generated NDVI 

following the method described by Huang et al (2012), where a pixel is considered water when 

NDVI is less than zero. Although other indices for extracting water sources have been proposed 

such as the Modified Normalised Difference Water Index (Xu, 2006) we could not use the index 

since it uses the green and mid-infrared bands which are not available on the MOD13Q1 

product. While Landsat images have these bands, non-availability of cloud-free images limited 

our analysis to MODIS images whose availability is enhanced by their high temporal resolution. 

We did not evaluate the accuracy of the resultant classification since we did not have an 

independent field-based data set for validation. However, the method used in our study has been 

used elsewhere (e.g Kameyama et al., 2004) and has yielded reasonably accurate results in those 

landscapes thus justifying its use.  

 

After extracting the water surfaces for each of the study months, we then calculated the distance 

of individual pixels from the nearest water sources using the Euclidian distance calculation 

algorithm implemented in a GIS. 

 

4.2.6 Modelling probability of elephant occurrence 

We modelled the potential distribution of elephants in the study area using the Maximum 

Entropy Modelling (MaxEnt) algorithm. MaxEnt is a general purpose machine learning method 

that has widely been used in species distribution modelling and has been observed to perform 

better than other methods (Elith and Graham, 2009). We used elephant occurrence data from 

the eight GPS collars described above as the response variable while NDVI and distance from 

the water were used as the predictor variables. The two predictor variables were used in the 
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models since they are widely accepted as key drivers of elephant distribution in most 

landscapes. Overall, we built 13 models, a model for each of the selected 13 months. The option 

for removing duplicate presence records was selected to ensure that MaxEnt does not sample 

the same pixel several times. 

 

The Area Under Curve (AUC) of the Receiver Operating Curve (ROC) was used to validate the 

ability of individual models to predict elephant occurrence. A model was observed as adequate, 

very good and excellent when the AUC was 0.70 ï 0.80, 0.80 ï 0.90 and AUC = 0.90 -1.00 

respectively (Panczykowski et al., 2012). 

 

Graphs showing the response of elephants to distance from water sources were used to 

determine peaks of elephant occurrence farther from water sources. The peaks were defined as 

the points where the predicted probability of occurrence was above the logistic threshold of 

equal training sensitivity and specificity. The distance from water at which elephant occurrence 

peaked was extracted from the response curves. The same procedure was followed for detecting 

peaks of elephant occurrence in relation to NDVI. Next, we extracted NDVI and elephant 

probability of occurrence values at the elephant position fixes used for modelling. The extracted 

NDVI values were then plotted against extracted probabilities of elephant occurrence and 

polynomials fitted to the data. To establish whether the peaks of elephant occurrence coincided 

with high NDVI, we plotted elephant response to water on the same axis with the polynomials 

relating NDVI to distance from water. 

 

4.3 Results 

Results show that the two predictors, distance from water sources and NDVI explained most of 

the variation in the probability of occurrence of elephants across the landscape (Table 4-2). 

However, it can be observed that distance from water consistently predicts elephant distribution 
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better than NDVI over the three year period. We observe that the AUC of the ROC curves from 

the models can be rated adequate (August 2009, September 2009, November 2009, August 

2010, September 2010 and October 2010), very good (July 2009, July 2010, November 2010, 

August 2011, October 2011 and November 2011) and excellent (September 2011).  

 

Table 4-2: Performance and variable contribution of the MaxEnt models predicting the 

geographical distribution of elephants in the GNP during the dry season months of 2009, 2010 

and 2011 

Month Test data AUC Ñ SDÿ Model 

qualityÀ 

The contribution of the variable 

(%) 

Distance from the 

water source 

NDVIÿ 

July 2009 0.832 ± 0.022 Very good 72.8 27.2 

August 2009 0.796 ± 0.029 Adequate 69.2 30.8 

September 2009 0.740 ± 0.030 Adequate 57.3 42.7 

November 2009 0.775 ± 0.022 Adequate 54.3 45.7 

July 2010 0.854 ± 0.020 Very good 65.9 34.1 

August 2010 0.722 ± 0.029 Adequate 55.4 44.6 

September 2010 0.719 ± 0.033 Adequate 75.3 24.7 

October 2010 0.780 ± 0.038 Adequate 68.5 31.5 

November 2010 0.838 ± 0.022  Very good 64.7 35.3 

August 2011 0.855 ± 0.022  Very good 65.2 34.8 

September 2011 0.912 ± 0.015 Excellent 53.0 47.0 

October 2011 0.806 ± 0.030 Very good 72.8 27.2 

November 2011 0.864 ± 0.024 Very good 78.8 21.2 

 

À Model quality thresholds based on the AUC: Adequate = 0.70 ï 0.80, Very good = 0.80 ï 

0.90, Excellent = 0.90 -1.00 (Panczykowski et al., 2012). 

ÿ Abbreviations used: AUC, SD, and NDVI refer to Area Under Curve, Standard Deviation 

and Normalised Difference Vegetation Index. 

 

Response curves illustrate that elephant occurrence consistently peaked twice with distance 

from water sources (Figure 4-3). However, this pattern is not observed in October 2010 and 

September 2011 where elephant occurrence peaks three times and once respectively. Overall, 
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the first peak is located near water (not more than 9 km away) while the other is farther from 

water (more than 50 km away)(Table 4-3). 

 

Figure 4-3: Probability of elephant occurrence (P (E)) plotted against distance from water 

sources and NDVI from July 2009 to November 2011. Elephant occurrence generally peaked 

at least twice with distance from water sources. The continuous horizontal line represents the 
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logistic threshold value of equal training sensitivity and specificity (values above the line 

represent elephant habitat while those below represent non-habitat). 

Table 4-3: Peaks of elephant occurrence away from water sources and minimum NDVI within 

elephant habitat (habitat = probability values > the logistic threshold of equal training sensitivity 

and specificity)  

Month The distance at which 

elephant probability of 

occurrence peaked away 

from water sources (km) 

Number 

of peaks 

Minimum NDVI 

within elephant 

habitat 

Logistic 

threshold  

July 2009 0-4.5 & 7.1-32.4  2 0.614 0.386 

August 2009 0-2.9 & 15.9-24.6 2 0.369 0.395 

September 2009 0-2.0 & 14.1-31.5  2 0.343 0.383 

November 2009 0-2.5 & 17.0-26.0  2 0.348 0.460 

July 2010 0.5-5.8 & 35.2- 2 0.654 0.362 

August 2010 1.4-5.0 & 26.2- 2 0.415 0.466 

September 2010 4.9-8.4 & 13.6-34.8 2 0.304 0.473 

October 2010*  0-1.6 & 10.4-21.6 & 31.1- 3 0.298 0.402 

November 2010 0-2.0 & 11.9-30.9 2 0.564 0.377 

August 2011 0-2.2 & 11.8-18.3  2 0.393 0.322 

September 

2011* 2.5-16.8 1 0.280 0.322 

October 2011 0-2 & 7.5-24.8 2 0.275 0.358 

November 2011 2.6-8.4 & 41.1-49.9 2 0.800 0.428 

 

It can also be observed that the high probability of elephant occurrence coincides with high 

NDVI values (Figure 4-3). In addition to this observation, response curves illustrating elephant 

occurrence plotted against distance from water peaked consistently with those showing NDVI 

plotted against distance from water (Figure 4-4). NDVI values in areas predicted as suitable for 

elephants range from a minimum of 0.28 in October 2011 to 0.80 in November 2011 (Table 4-

3). These NDVI values are observed to be generally higher in July and November than the rest 

of the months under study.  



88 

 

 

Figure 4-4: Probability of elephant occurrence (P (E)) ï dotted line, and NDVI ï continuous 

line plotted against distance from water sources, from July 2009 to November 2011. 

 

4.4 Discussion 

Results in this study seem to suggest that elephant occurrence peaks farther from water in 

addition to the expected peak near water sources. This, therefore, confirms our main hypothesis 

that in a heterogeneous landscape characterised by patchy vegetation cover, elephant 

occurrence peaks more than once with distance from water sources in response to forage 
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resource clustering. This is because evidence from our analyses suggests that the patches 

selected by elephants farther from water are characterised by high NDVI values, i.e., high 

forage (Figure 4-4). In fact, elephant occurrence peaked in patches with minimum NDVI values 

of about 0.44 and these areas are generally classified as forests (Nemani and Running, 1997). 

This is not surprising as elephants are non-selective bulk feeders that often select highly 

productive patches (i.e., high NDVI) either for foraging (Ruggiero, 1992) or for 

thermoregulation under tree canopies (i.e., high NDVI) (Kinahan et al., 2007). Our results seem 

to contradict earlier studies that reported that elephants select landscapes of intermediate 

vegetation cover (Roever et al., 2013, Gara et al., 2016). Based on our findings, we thus deduce 

that elephant occurrence peaks in areas with high forage quantity farther from water and this 

could be for foraging purposes. 

 

Our results also suggest that while both water and forage are key predictors of elephant 

occurrence, the availability of water explains the distribution of elephants better than vegetation 

cover (estimated by NDVI) (Table 4-2). This finding is supported by earlier studies where 

elephants have been reported to drink water daily (Viljoen, 1989, De Beer et al., 2006) and stay 

within 20 km of water (Loarie et al., 2009). This is particularly common during the hotter 

months of the year when demand for water is high. In this regard, data used in our analyses 

were also collected during hotter months of the year making the reported importance of water 

not surprising. Our findings therefore unsurprisingly reinforce the notion that elephants are 

water dependent since the first peak in elephant occurrence was generally observed at less than 

9 km away from water although during selected months they ventured further than 50 km away 

(Table 4-3). 

 

The finding that elephant occurrence peaks farther from water in addition to the peak close to 

water is of particular interest to landscape ecologists since elephant-induced vegetation change 
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has historically been well explained in landscapes close to water than those farther away. Owing 

to a local overabundance of elephants near water, most studies have reported elephant-induced 

vegetation change linked to water sources (De Beer et al., 2006, Chamaille James et al., 2007). 

However, following our findings, attention could now be directed to the hotspots of elephant 

occurrence farther from water to test whether these landscapes could also be experiencing 

elephant-induced vegetation change in a similar way to those landscapes closer to water. Our 

findings, therefore, form the basis for formulating hypotheses that test for elephant-induced 

vegetation change in landscapes located farther from water.  

 

Results from our study represent observations largely made during the dry season. Application 

of the findings to the wet season should, therefore, be done with caution. Even though our 

observations pertain to the dry season, we, however, emphasise that an understanding of 

elephant distribution during that time of the year is critical since their ranging behaviour is 

highly influenced by the availability of surface water (de Beer and van Aarde, 2008). In 

addition, while our study has been successful in reporting multiple peaks of elephant occurrence 

farther from water using dry season data, future studies could extend this analysis to the wet 

season to establish whether similar findings can be made when surface water is abundant. Other 

work could involve tracking elephants in the field to establish whether they select high NDVI 

patches for forage, thermoregulation or any other purpose. Despite our effort to remove spatial 

dependence in elephant occurrence data using the óremove duplicate presence pointsô option in 

MaxEnt, future work could use more robust methods (e.g., spatial filtering) to deal with spatial 

bias.  

 

4.5 Conclusion 

In this chapter, we reported multiple peaks of elephant occurrence farther from water. We also 

reported that these areas of peak occurrence are associated with high NDVI. Our findings are 



91 

 

amongst the first to provide empirical evidence for the existence of multiple peaks of elephant 

occurrence farther from water during the dry season. Results from our study provide the basis 

for formulating hypotheses that test for elephant-induced vegetation change in peak elephant 

occurrence patches located farther from water sources. 
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Chapter 5 

 

 

 

GPS-collar data confirm the selective use of a protected patchy African savannah 

landscape by elephants (Loxodonta africana) 

 

 

This chapter is based on: 

 

Ndaimani, H., Murwira, A., Masocha, M. and Gara, T. W., 2017. GPS-collar data confirm the 

selective use of a protected patchy African savannah landscape by elephants (Loxodonta 

africana). Submitted to PlosOne. 

 

  

Photo by: Ndaimani H 
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5. GPS-collar data confirm the selective use of a protected patchy African savannah 

landscape by elephants (Loxodonta africana) 

 

Abstract 

Understanding the influence of landscape patch heterogeneity on habitat utilisation by 

megaherbivores such as the African elephant (Loxodonta africana) in the patchy savannah 

landscape is an important objective in conservation ecology. To date, existing knowledge on 

whether the African elephant utilises a heterogeneous landscape uniformly or selectively is 

largely based on data collected via observing selected individual elephants for a few daytime 

hours in the field and recording what they eat. Thus the knowledge generated from those data 

remains inconclusive because the window of observation is limited in space and time. Enhanced 

availability of satellite data and Global Positioning System (GPS) tracking of collared animals 

enables observation at a wider spatial and temporal window. In this study, GPS-collar data from 

15 elephants, collected over two years in Gonarezhou National Park, Zimbabwe, were used to 

test whether elephant length of stay (estimated with Linear Time Density), the speed of 

movement as well as patch selection differed significantly among vegetation types. 

Comparative use of vegetation type by elephants was tested using the Compositional Analysis 

algorithm of the adehabitatHS package in R software. Elephants (1) selectively used the patchy 

savannah landscape; (2) moved fastest in mixed woodland on clay and Brachystegia-

Julbernadia woodland; (3) moved slowest in Combretum apiculatum and Androstachys 

woodland; and (4) stayed longest in C. apiculatum and mixed Brachystegia vegetation types. 

These findings provide the basis for formulating hypotheses which test whether elephant-driven 

vegetation change could be differentiated by vegetation type while also underscoring the utility 

of GPS-collar tracking and satellite remote sensing in elephant conservation in the African 

savannah landscape.  
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5.1 Introduction  

Megaherbivores such as the African savannah elephant (Loxodonta africana hereinafter 

elephant) are known to be less selective when foraging (Osborn, 2005, Wittemyer et al., 2007). 

This foraging strategy has been attributed to its inherently high daily energy requirements. 

Thus, in a patchy landscape where forage resources are limited, the elephant is expected to feed 

on any vegetative material that is abundant. In fact, existing knowledge shows that in biomes 

characterised by seasonal water availability like the savannah, elephants prefer to graze during 

the wet-season when grasses occur in abundance, but browse more during the dry-season when 

fresh grass biomass is in short supply (Codron et al., 2006, Tangley, 1997). Assuming this 

observation to be valid, it is therefore expected that plant communities that contribute to the 

bulk of community biomass are utilised more by elephants when foraging in a habitat with 

patchily distributed food resources. In light of this background, it is logical to assume that 

elephants roam the landscape in search of food at random without being particularly selective. 

Whether elephants selectively or uniformly utilise a heterogeneous landscape has been 

questioned in several studies. For instance, Okello et al (2015) reported that elephants exhibited 

a preference for bushland and woodland habitats in the Amboseli ecosystem, Kenya. In a 

separate study, Duffy et al (2011) also provided evidence on the selective use of habitat by 

elephants. Based on these conflicting viewpoints on feeding behaviour, we, therefore, seek to 

revisit the question, ódo elephants selectively or uniformly utilise a heterogeneous landscape?ô 

 

Savannahs are typically characterised by a mosaic of grass and woody vegetation communities 

in the same landscape (Scholes and Archer, 1997). Hence, key resources such as forage are also 

patchily distributed. If elephants non-selectively utilise the landscape, then their selection of 

foraging spots is predicted to be uniform across all vegetation types as shown in the conceptual 

framework presented in Figure 5-1(a). On the other hand, if the elephant is selective as some 

studies have suggested, then a discernible preference for certain vegetation types is inevitable 
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and this can be characterised (see Figure 5-1(b)). Thus, it is critical to investigate whether the 

selection of vegetation types by elephants is random across a heterogeneous landscape in an 

effort to better understand their potential impact on ecosystems. 

 

Figure 5-1: Conceptual framework indicating habitat selection by elephants if they (a) 

uniformly; and (b) selectively utilise the landscape. 

 

Previous work investigating how elephants utilise the landscape showed that they selected 

certain plant species while avoiding others when foraging. For instance, in a recent study 
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conducted in the Chobe National Park in Botswana, Owen-Smith and Chafota (2012) reported 

that 30-50% of 27 woody species were preferred by elephants for their dietary needs. A 

limitation of these earlier studies is that they were based on physically tracking individual 

animals in the field and observing and recording what they eat during the day (Wyatt and 

Eltringham, 1974, Kalemera, 1989). As a result, conclusions drawn were thus limited to 

observations made on a few animals tracked over a few hours. In addition to basing conclusions 

from a few tracked animals, observations for night feeding were overlooked owing to limited 

visibility as well as the dangers associated with night tracking (Guy, 1976). Although these 

earlier studies laid a foundation for current understanding of elephant distribution, they offered 

snapshots of how elephants selected plants for foraging and selections made outside the narrow 

window of observation remained unknown. 

 

In recent years, increased use of Global Position System (GPS) technology in wildlife tracking, 

combined with enhanced availability of freely acquired remotely sensed data, has made it 

possible to acquire GPS tracking data for both day and night (e.g., De Boer et al., 2005, Loarie 

et al., 2009b). Apart from providing the capability to track nighttime movement, the current 

GPS technology allows researchers to track animals over longer periods depending on the 

battery life of the tracking devices (Ndaimani et al., 2017). For instance, it is now possible to 

remotely track collared animals over periods exceeding two years (Birkett et al., 2012). In 

addition, knowledge on the vegetation types visited by the study animals is no longer limited 

spatially since position fixes for the entire home range can now be obtained by overlying these 

point data on high-resolution vegetation maps (Leggett, 2006). Such accurate vegetation maps 

are derived from freely available data retrieved from satellite sensors that take repeated 

measurements of the same area giving a synoptic view of the landscape (Masocha and 

Skidmore, 2011). Therefore, with these improvements in GPS-collar tracking and satellite 
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sensing technologies, it is important to revisit hypotheses that investigate how elephants utilise 

the landscape. 

 

Knowledge of the vegetation communities preferred by elephants is not only important for 

understanding their feeding patterns but could be useful in explaining patterns of vegetation 

change driven by the megaherbivore (Laws, 1970). Elephants are known to break and uproot 

trees when browsing (Kohi et al., 2011, Lamprey et al., 1967). Thus, rates of change in 

vegetation structure could be expected to be higher in landscapes used more often than those 

less visited. For instance, in an earlier study, Ndaimani et al (2017) reported peaks of elephant 

presence farther from water sources, thus demonstrating that improvements in GPS and satellite 

remote sensing technology give some insight into how water and vegetation use could be 

differentiated in a heterogeneous landscape. 

 

In this study, movement data from 15 GPS-collared elephants were used to test whether 

elephants utilise a heterogeneous landscape uniformly or selectively. This is different from 

relying on field observations that are limited to a few individuals monitored during daylight. In 

particular, the study tested whether elephant speed of movement, selection and time of stay 

(estimated by Linear Time Density) differed significantly among vegetation types in a savannah 

ecosystem in Gonarezhou National Park, Zimbabwe. The motivation for these tests was to 

gather evidence in support or against the widely held view that elephants selectively utilise the 

landscape. This information is required for the later formulation of hypotheses that test whether 

the impact of elephants on vegetation structure is uniform across vegetation types. 

 

5.2 Materials and methods 

5.2.1 Ethics statement 

Handling of elephants for GPS collaring and data collection for this research was approved 
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under permits: 23(1)(C)(II)31/2015; 23(1)(C)(II)21/2016; and 23(1)(C)(II)22/2016 issued by 

the Zimbabwe Parks and Wildlife Management Authority. 

 

5.2.2 Study area 

The study was conducted in Gonarezhou National Park (GNP) located to the southeast of 

Zimbabwe between longitudes 31.32° and 32.41° East and latitudes 21.11° and 22.15° South 

(Figure 5-2). GNP is approximately 5,000 km2 in area. Elevation ranges from 155 to 567 m 

above sea level (Ndaimani et al., 2016). The terrain is flat to gently undulating with an average 

slope of 0.98°. Climate is typical subtropical savannah with a long-term annual rainfall of 466 

mm (Gandiwa and Kativu, 2009). Rainfall is normally received from November to March with 

the rest of the year being dry. Mean monthly temperatures range from 9°C in winter to 36°C in 

summer. The park has an estimated elephant population of ~10 000 (Dunham et al., 2013), 

which converts to ~2 elephants/km2. This makes GNP one of the key elephant conservation 

areas in the country.  
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Figure 5-2: Location of (a) position fixes for 15 elephants fitted with GPS collars and; (b) 

Gonarezhou in Zimbabwe. 
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Vegetation is typical dry deciduous savannah dominated by Combretum spp combined with 

Colophospermum mopane woodland. Together, these woody species account for ~85% of the 

tree biomass in the study area (Martini et al., 2016). 

 

5.2.3 Elephant movement data  

Fifteen adult elephants (10 bulls and 5 cows) were immobilised and fitted with GPS collars 

from 1 May 2015 to 20 August 2016 (Table 5-1). The bulls were selected from bachelor herds 

while the cows were selected from family herds. The collars were programmed to take position 

fixes every 4 hours resulting in 6 fixes per day. The error in the GPS location was +/-15m as 

stipulated by the supplier. The success rate of fixes ranged from 85% to 99% which is within 

acceptable limits (Frair et al., 2010). 

Table 5-1: Details of the collared elephants (ǁ = male and ǀ = female) 

Elephant ID Date of 

collaring 

Fix end date GPS fixes used % Missing GPS 

fixes 

GON9ǀ 5/1/2015 6/30/2017 4369 8 

GON10ǁ 5/1/2015 8/24/2016 2871 1 

GON11ǀ 5/1/2015 6/30/2017 4470 6 

GON12ǁ 5/1/2015 6/30/2017 4262 10 

GON13ǁ 5/1/2015 11/28/2015 1256 1 

GON14ǀ 5/2/2015 6/30/2017 4060 14 

NYAMǁ 8/12/2016 6/30/2017 1685 13 

TSHǁ 8/13/2016 6/30/2017 1706 11 

MABǁ 8/20/2016 6/30/2017 1672 11 

CHIPǁ 8/15/2016 6/30/2017 1627 15 

CHILǁ 8/13/2016 6/30/2017 1637 15 

UZ9ǀ 12/28/2015 6/30/2017 3232 2 

UZ12ǁ 12/28/2015 6/30/2017 3233 2 

UZ13ǀ 12/30/2015 6/30/2017 3215 2 

UZ14ǁ 12/30/2015 6/30/2017 3211 2 
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5.2.4 Selection of vegetation type 

The selection of vegetation types by collared elephants was estimated using the resource 

selection ratio (Neu et al., 1974) calculated as: 

ὡ Ὗ Ὗϳ Ⱦὃ ὃϳ        eqn 1 

where; Ui = number of position fixes in vegetation type i; U+ = total number of position fixes 

for the individual animal; Ai = size of vegetation type i within the elephant home range; and A+ 

= Total size of the elephant home range. 

 

For each collared elephant, the position fixes collected during the study period were retrieved 

from the tracking site as text files and later converted to a point map. The home range of 

individual elephants was estimated using the Minimum Convex Polygon (MCP) based on the 

point map. Vegetation types located within the home range of each collared elephant were later 

extracted by masking out the areas outside the MCP. The area covered by each vegetation type 

within the home range of individual elephants was estimated using the area calculation 

algorithm.  

 

5.2.5 Elephant speed 

The speed of movement of each collared elephant (in km/hr) within a 500 m grid cell was 

calculated using the formula:  

Ὓ В           eqn 2 

Where SG = speed in grid cell G; dk = fractional length of track segment k intersecting G, N = 

number of track segments in the elephantôs trajectory; and tk = time spent by an elephant in 

track segment k. 
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The calculation was implemented in the Movement Ecology Tools for ArcGIS (Wall et al., 

2013). The average speed of movement was not segregated between male and female elephants 

since it was not the objective of this study to test for differences in speed between the sexes. In 

addition, Wall et al (2013) reported no significant difference in the speed of male and female 

elephants studied in Mali. Elephant speed within particular grid cells was later extracted using 

standard overlay functions.  

 

It was predicted that elephants would move slowly in preferred vegetation types than those less 

preferred.  

 

5.2.6 Elephant time of stay in a grid cell 

The time (in hours) spent by a collared elephant in a 500 m grid cell was calculated using the 

formula:  

Ὕ В           eqn 3 

Where TG = time spent in grid cell G; dk = fractional length of track segment k intersecting G; 

N = number of track segments in the elephantôs trajectory; and sk = animalôs linear speed for 

track segment k (Wall et al., 2013). 

 

All the track segments that originated in a particular grid cell were used to calculate the mean 

time spent by the target elephant within the grid. The time spent in each grid cell was later 

divided by total tracking time for the entire study period to get a normalised Linear Time 

Density (LTD) value for each elephant. These calculations were implemented in the Movement 

Ecology Tools for ArcGIS (Wall et al., 2013). Similar to speed calculation, LTD values for 

both male and female elephants were aggregated and average values extracted for all the grid 

cells located along the movement trajectories.  
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It was predicted that elephants spent more time in preferred vegetation types than those less 

preferred. Preference of vegetation type is not limited to the need to forage but could linked to 

other reasons like predator avoidance as well as other forms of disturbance. 

 

5.2.7 Vegetation type 

Variation in the speed, selection, and LTD of elephants was assessed per vegetation type. A 

thematic vegetation map with fourteen dominant vegetation types produced by Cunliffe et al 

(2012) was converted to a 500 m raster to match other spatial datasets (Figure 5-3). The 

vegetation map was deemed reliable for use in this study since it has low out-of-bag prediction 

error (0.000-0.048). Elephant speed and LTD within particular vegetation types were extracted 

from grid cells using standard overlay functions. 
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Figure 5-3: Major vegetation/cover types in the Gonarezhou National Park (adapted from 

Cuniliffe et al (2012)) 

 

5.2.8 Data analysis 

Variation in the selection of vegetation types by the pooled study elephants was tested using 

the Wilks lambda at an alpha level of 0.05. The test was run using the Compositional Analysis 

algorithm of the adehabitatHS package implemented in R software (Calenge, 2015). 

Compositional analysis performs pairwise comparisons of habitat use in landscapes 

characterised by several habitat types. As part of the output, a ranking matrix was built 
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indicating whether the vegetation type in the row is significantly used more than the type in the 

column (see Table 5-2). For each study elephant, selection of vegetation type (estimated from 

habitat selection ratios) was presented as bar plots to show whether the selection was uniform. 

 

The difference in the speed and LTD of elephants in the various vegetation types was tested 

using the Kruskal Wallis test since data significantly deviated from normality (p<0.05). There 

was no need to test for spatial autocorrelation in elephant speed and LTD since the data were 

not drawn from continuous phenomena. Pairwise comparisons of elephant speed and LTD 

within the different vegetation types was based on the Tamhane test since residuals significantly 

deviated from normality. Vegetation types covering less than 3 pixels were left out in the 

comparison of speed and LTD since observations were deemed too few for analysis. 

 

The median speed of elephants per vegetation type was later calculated and ranked in 

descending order. This analysis helped to illustrate the variation in elephant speed within the 

different vegetation types. Similarly, the median LTD per vegetation type was calculated and 

ranked to visually illustrate the variation in the time spent by elephants in the different 

vegetation types. Mean values were not used since data were not normally distributed.  

 

5.3 Results 

Use of vegetation types by the pooled 15 elephants differed significantly (Lambda=0.029, 

df=13, p=0.000) in the study area. Results from compositional analysis illustrate that the 

elephants used open water and riverbeds more than all the other available vegetation types 

(Table 5-2). Both these types are located close to open water sources. Among the vegetation 

types located away from the piosphere, Mopane, Terminalia-Strychnos and Combretum 

woodlands were most used. The types least used by the elephants were Guibortia, 

Brachystegia-Julbernardia and mixed woodland on clay. 
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Table 5-2: Results of compositional analysis showing more use of open water (13) and riverbed 

(12) by elephants in the Gonarezhou National Park. A ñ+ò is used when the vegetation type in 

the row is used more than the type in a column, and ñ-ò otherwise. When the difference is 

significant, the sign is tripled.  

Type  1                                                                                                                                                                                                                                                       2 3 4 5 6 7 8 9 10 11 12 13 14 Total 

1 0 - - --- - - --- --- --- --- --- --- --- --- 0 

2 + 0 --- --- --- + --- --- --- --- --- --- --- --- 2 

3 + +++ 0 --- - + --- --- - --- --- --- --- - 5 

4 +++ +++ +++ 0 +++ +++ + + + + + - --- +++ 23 

5 + +++ + --- 0 +++ - - - - - --- --- + 9 

6 + - - --- --- 0 --- --- --- --- --- --- --- --- 1 

7 +++ +++ +++ - + +++ 0 + + + - - --- +++ 19 

8 +++ +++ +++ - + +++ - 0 + - - - --- + 15 

9 +++ +++ + - + +++ - - 0 - - --- --- + 12 

10 +++ +++ +++ - + +++ - + + 0 - --- --- +++ 18 

11 +++ +++ +++ - + +++ + + + + 0 - --- +++ 20 

12 +++ +++ +++ + +++ +++ + + +++ +++ + 0 --- +++ 28 

13 +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ +++ 0 +++ 39 

14 +++ +++ + --- - +++ --- - - --- --- --- --- 0 10 

 

Analysis of vegetation type use by individual elephants showed that 11 selected types found in 

the piosphere while four selected those away from the piosphere (Figure 5-4). In total, five 

elephants preferred mixed woodland on alluvial soils (elephants: GON10, chil, chip, UZ13, 

uz14); four preferred the riverbed (elephants: GON14, mab, tsh, UZ9); and two preferred open 

water habitat (elephants: UZ11 and nyam). The rest of the elephants preferred vegetation types 

located away from the piosphere: two preferred Spyrostachys africanus woodland; one 

preferred C. mopane woodland and one preferred Combretum apiculatum woodland.  
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Figure 5-4: Selective use of vegetation /cover type by elephants in the Gonarezhou National 

Park, Zimbabwe. Cover type: 1=Guibortia; 2=Brachystegia-Julbernadia; 3=Spyrostachys; 

4=Mopane; 5=mixed Brachystegia; 6=mixed woodland on clay; 7=Combretum apiculatum; 

8=Androstachys; 9=mixed woodland on alluvium; 10-mixed Galpinia-Lannea; 11=Terminalia-

Strychnos; 12=riverbed; 13=dam; 14=cultivation. 








































































































