GIS and Remote Sensing Applications for Modelling the

Distribution of Elephants and their Interaction with Vegetatior

By

Henry Ndaimani (R0019417)

Thesis submitted to the Department of Geography and Environmental Scién&ément of

the reqirements for the award of Doctor of Philosophy degree in Science (Spatial Ecology

November2018



Dedication

To my wife Petunia, and daughters Michelle Natalie and Brielle Yaretzi



Declaration 1: Originality

| hereby declare that thisesis submitted for the Doctor of Philosophy degree at the University
of Zimbabwe is my original work and has not been previously submitted to any other institutic
of higher education. | further declare that all sources cited or quoted are indicatedrtsyahe

a comprehensive list of references.

Henry Ndaimani

Copyright@University of Zimbabwe, 2018



Declaration 2: Publications
Details that form part and/or include research presented in this thesis include publisk
manuscripts, manusctgpunder review and give details of the contributions of each author t

the research work and writing of each publication.

Publication 1: *Ndaimani, H.Murwira, A.,*Masocha, M./Gara, T.W. andZengeya, F.M.,
2017. Evaluating performanceof aerial suvey data in elephant habitat
modelling Published in théfrican Journal of Ecologys5 (3), pp.276281.

This work was done by the first author under the guidance and supervision of the second

third authors. The fourth and fifth authors helped indbreceptualisatiorand final editing of

the manuscript.

4 University of Zimbabwe, Department of Geography and Environmental Science, P. O. B

MP 167, Mount Pleasant, Harare, Zimbabwe

Publication 2: *Ndaimani, H.,?°Murwira, A. and3Masocha, M.,2018. A new method for
correcting locational error from aerial surveys improves habitat model
performance. Published in tiAdrican Journal of Ecology56 (4), pp.928-937.

This work was done by the first author under the guidance and supervision of the second

third authors.

13 University of Zimbabwe, Department of Geography and Environmental Science, P. O. B

MP 167, Mount Pleasant, Harare, Zimbabwe

Publication 3: !Ndaimani, H.,?Murwira, A., *Masocha, M. andZengeya, F.M., 2017.

Elephant (oxodonta africanp GPS collar data show multiple peaks of



occurrence farther from water sources. Publishe€agent Environmental
Science3 (1), p1-11.
This work was done by the first author under the guidance and supervision of the second
third authors. The fourtauthor commented on the manuscript.
4 University of Zimbabwe, Department of Geography and Environmental Science, P. O. B

MP 167, Mount Pleasant, Harare, Zimbabwe.

Publication 4: *Ndaimani, H.,2Murwira, A., 3Masocha, M.*Gara, T. W. Submitted to
PlosOng, GPScollar data confirmthe selectiveuse of a protected patchy
African savannaltlandscape by elephantsoikodonta africang

This work was done by the first author under the guidance and supervision of the second

third authors. The fourth authoommented on the manuscript.

13 Department of Geography and Environmental Science, University of Zimbabwe, P O B

MP 167, Mount Pleasant, Harare, Zimbabwe
4Faculty of Geelnformation Science and Earth Observation (ITC), University of Twente,

Hengelosesaat 99, P O Box 6, 7500 AA, Enschede, The Netherlands

Publication 5: !Ndaimani, H., 2Murwira, A., *Masocha, M. $ubmitted to Geocarto
Internationa), Elephant(Loxodonta africanp movement is correlated with
change in vegetation structure in a patchyasaah landscape

This work was done by the first author under the guidance and supervision of the second

third authors.

13 Department of Geography and Environmental Science, University of Zimbabwe, P O B

MP 167, Mount Pleasant, Harare, Zimbabwe



Certification by supervisors:
Prof A .

Prof. M.

Mur wir a:

Masocha:

[N

[N

[N

S'D\

[N

E'D\

[N

D~

[N

D~

[N

D~

[N

D~

[N

D~

[N



Acknowledgements
| would like to thank Professors Amon Murwira and Mhosisi Masocha who sacrificed man
hours to guide and supervise my work. Additional thanks dortadzai Michelle Zengeya

andMr Tawanda Winmore Gara for commenting on my manuscripts.

Part of this work was funded by the University of Zimbabwe Research Board Grant #9104

The University of Zimbabwe, Zimbabwe Defence Forces, Frankfurt Zoologicaét$oand

Malilangwe Conservation Trust also funded collaring of elephants.

Vi



Table of Contents

D= To [ o%= 11 0] o 1 PSR [
Declaration 1: OFgINAITY.........cuiiiiiiiiiiieii e eeee e e e Ii
Declaration 2PUBDIICAtIONS. .........oeuiiiiiiiii e e e e e e e e e e anene s ii
ACKNOWIEAGEIMENTS. ...ttt et reee e e e e e e e e e e e e eeeeeeesebn s mmmeeeeeeeesssnnes Vi
Table of CONENLS.......cooiiiiie e e e e e e s emenn e e e e eeeeeee 2 M
S o T T = U X
Y 0 1= 1] L= PSP PP PP PPPPPRPUPPPPP Xiii
LiSt Of ADDIEVIAtIONS ... ..o e e e e e e e e as Xiv
Y 013 1 = Lo A PP PPPPPPPPPPPP XVi
(O gF= T o] (=] S PP PPPPPPPPP 1
1. General INtrOQUCTION ... ...uuueiiieeee e ceeeee e e e e e e e e ceeee e e e e e e e e e e e e eeeeeeeeennnnnne e e 2
1.1 The impat of elephants on vegetation StruCture..............ccvvvvvvieeerciivivnnnnnne. 2
1.2 Traditional methods for understanding the impact of elephants on vegetation
] L1003 (U] PP UPPPTR PP 3
1.3 GIS, GPS and remote sensing use in understanding elephant impact on vegetati
0] LU 1 | PP 4
1.4 Problem StatemMeNL..........ccuuuiiiiiiiiiieeeii it e e e e e e e e e e e e e e e e e s 8
1.5  ThESIS JECHVES.....ccoo ittt e e e e e e e amenans 8
I S (U0 VA= 1= U OPUPPRRR 9
1.7  Outline of the theSIS.........ooi i e 11
] (=] €= o > PSSO 13
(O g F= T 0 (=] S PP PP PPPPPPPP 25
2. Evaluating the performance of aerial survey datalephant habitat modelling......26
/2285 I | 01 1o Yo [T £ o o 27
2.2  Materials and MethOds.........ccccuiiiiiiiiiiieeeii e 30
2.3 RESUILS ..t ———— e eeearae 35
2.4 DISCUSSION. ... ittt e e ettt eee ettt mmme e et et e et e st abae e eennennnnans 39
P2 T O] o] 1153 [0 o H PP SRPPPPPPRY” o
] (=] (= o > USSR 43
(O gF= T 0 (=] g PP O PP PPPPPPPPPPPPPPPPPPRY” o
3. A new method for correcting locational error from aerial surveys improves habitat
MOAE] PEITOIMIANCE ...ttt ree e eret e e e et e e e e e e e e e e e e e s st e e e e eeeeas 49
G 200 R [ 1 0T [ Tod 1 o] o U RSPPPPN 50
3.2  Materials and Meth@...........ooooiiiiiiiiiee e 52
3.3 RESUILS. .. s 63



I B 11T o] U LS [0 o USRI 68
G T O (o3 11 o] o FS U SRRPPPPRRR 70
] (=] C=T o = PRSP 71
(O g T T o (=] O PP PPPPPPPPPPPPPY £
4. Elephant Loxodonta africanpGPS collar data show multiple peaks of occurrence
farther from Water SOUICES ... ... it e 75
vt R [ 011 0T U 11 [ o PP PP PP PP PP PPRPPR 76
4.2  Materials and Methods..........ooooiiiiiiiiiiiie e 79
4.3 RESUILS....ceiiiiiiiiiiee e 84
N B 1 Yol U L1 [ o TSP PP 38
T o ] o (11 o] PRSP 90
] (=] €= o = S UPUPRRTT. 92
(O g F= T o (] g OO PP PPPPPPPPN 96
5. GPScollar data confirm theedective use of a protected patchy African savannah
landscape by elephantsokodonta affiCang.............cccuuvviiiiiiiieeeiiiiie e 97
00 R [V 0T [ Tod 1 o] o U PPPRP 98
5.2  Materials and methods...........oooiiiiiiiiiieeee e 101
5.3 RESUILS. ..ot e e e e ettt e e e e e e e ns 109
oI B 1Y o] B =1 (o] PRSP 115
5.5 CONCIUSION. ...t e et e et e e e e e e e e e e e e e e e e e e s ammeeaaeeas 117
] (=] €= o = PSS 119
(04 g T T 01 (] GG TP PPPPPPPPPPP 124
6. GPScollar data show a correlation between elephant moverbexddonta africana
and tree cover change in a protected patchy African savannah landscape........... 125
G0 I 01 1 Yo [T £ o 126
6.2 Materials and Methods........coooiiii e 129
B.3  RESUIS. ..o ree et e e e e e e e e e et a e e e e e e e e ns 135
G B 1ol U =1 (o o PSSR 141
(G T O] o o] 015 [0 o F PRSPPI 143
] (=] C=T o PP 144
(O g F= T 0 (=] S PP PPPPPPPPP 149
48 111 o o 11 o o] o ISR 150
7.1 How do elephant distribution models built from GPS collar data compare to those
built from aerial SUrVeY data?...........cccuviiiiiiiiieee s 151
7.2 A new method for correcting the locational error in aerial survey.data.....153
7.3 Does elephant presence peak farther from water?............cccccoevveeeeii e, 155

viii



7.4  Additional evidence for selective use of a heterogeneous savannah landscape b\

BIEPINANES. ... ———————————————— 157
7.5 Different rates of vegetation change in vegetation/cover types................ 158
7.6  Contributions of this thesto knowledge................oeeviiiiiiceciiiiiiiiiiee 159
7.7 Recommendations for future research.............ooooiiiiin e 160
] (=] =T o = PRSP 162



List of Figures

Figure 11:

Figure 21:

Figure 22:

Figure 23:

Figure 24:

Figure 25:

Figure 26:

Figure 31:

Figure 32:

Figure 33:

Figure 34:

Figure 35:

Figure 36:

Location of the three studytas in Zimbabwe: (a) Mana Pools, (b) Gonarezhou,
and (c) Hwange national park. Elephant presence data were collected during
aerial SUrveyYS IN 2014 ..ot rren e 10
Conceptual framework illustrating the locational error associated with aerial
survey presence data in relation to a typical habitat predictor. Note that at the
NDVI spatial resolution of 30 m, the GPS point falls in a differexeldrom the
elephant location (a) but increasing the spatial resolution to say 250 metres, the
GPS point, and the elephant lie within the same pixel.(b).............ccccc.....ce
Location of the study site in soudlastern Zimbabwe. Elephant presence data are
overlaid to show the spatial distribution of data sets used in this study....31
ROC curves for elephant distribution models built using presence data from aeri:
surveys and GPS collars as the response variable and NDVI and distance from
water point data at 30, 250, 500 and 1000 metres spatial resolution as the

O] (=0 1103 (0 S
Mean area under the curve (x 95% confidence interval) for elephant habitat
models built using aerial survey data and GPS collar. ddte differences are
shown for different spatial resolutions of the predictor variables (a) 30 m, (b) 25C
m, (c) 500 m, and (d) 1,000 m
Probability curves for elephant habitat models built using aerial survey and GPS
collar data plotted against NDVI and distance from water points at different
spatial resolutions: (a) 30 m, (b) 250 m, (c) 500 m, and (d) 1,000.m......... 38
Elephant habitat predicted using aerial survey and GPS collar data against NDV
and distance from water points at spatial resolutions of 30 m, 250 m, 500 m and

Location of (a) Mana Pools, (b) Gonarezhou, and (c) Hwange National Parks in
Zimbabwe. Maps also show elephant sightings data from aerial surveys as well
rainfall from BioClim data...............uuiiiiiiiii e 52

The correction factor (D) = estimated distance between the line of flight (marked
by the windsock) and the centre of the average strip widtthéoright and left
observers. C = distance between outer markers for both obserees;erage

strip width for the right observer; x average strip width for the left observer;

and Y is the width of the invisible area underneath the aircraft anc:éetthe

inner markers of both obServers............oooec 55
Location of selected uncorrected and corrected elephant presence points in (a)
Gonarezhou; (b) Hwange; and (c) Mana Pools. Note that the transect bearing in

(@) =0° (b) =128°% and (C) =907, ...ceeii e —— 63
Comparison of estimated correction factors for Gonarezhou, Hwange and Mana
POOIS. ... e e e e aaes 64

Comparison of models built using corted and uncorrected data. Results
illustrate; no significant difference in performance of both data sets in
Gonarezhou based on (a) TSS and (b) ROC; significant difference in the models
based on (c) TSS and (d) ROC in Hwange; and significant differertiee in

models based on (c) TSS and (d) ROC in Mana Pools
Probability of elephant presence predicted using corrected andected location
data in Gonarezhou, Hwange and Mana Paals.

X



Figure 41:

Figure 42:

Figure 43:

Figure 44:

Figure 51:
Figure 52:
Figure 53:

Figure 54:

Figure 61:
Figure 62:
Figure 63:

Figure 64:

Figure 65:

Figure 66:

Hypothetical framework: the predicted response of elephamtater in (a) an
imaginary homogeneous landscape characterised by uniform forage quantity an
(b) a more realistic heterogeneous landscape characterised-byifanm forage
QUAINTIEY. ¢ttt ettt r et e e e ennr e 78
Elephant location data (from Global Positioning System (GPS) collars) collected
from the eight elephants during 13 selected months between July 2009 and
November 2011 in northern GonarezhoatiNnal Park, souteast Zimbabwe80
Probability of elephant occurrence (P (E)) plotted against distance from water
sources and NDVI from July 2009 to November 2011. Elephant occurrence
generally peaked at lgasvice with distance from water sources. The continuous
horizontal line represents the logistic threshold value of equal training sensitivity
and specificity (values above the line represent elephant habitat while those belc
represent NOMADItAL)................ooiiiiiiiiee e 86
Probability of elephant occurrence (P (Eyotted line, and NDVI continuous

line plotted against distance from water s@s; from July 2009 to November

12 0 I PR SUPPPRPR 88
Conceptual framework indicating habitat selection by elephants if they (a)
uniformly; and (b) selectively utilise the landscape...........cccoeeeeiriiiiceeiinnnl! 99
Location of (a) position fixes for 15 elephants fitted with GPS collars(ahd
Gonarezhou in Zimbabwe...............uviiiiiiiiiccii 103
Major vegetation/cover types in the Gonarezhou Naltidaek (adapted from
Cuniliffe €t @l (2012)).....uueeeiiiieiei e rrne e 108

Selective use of vegetation /cover type by elephants in the GonarezhaneNati
Park, Zimbabwe. Cover type: Guibortia; 2=Brachystegialulbernadia
3=SpyrostachysA=Mopane; 5=mixe@rachystegia6=mixed woodland on clay;
7=Combretum apiculatun8=Androstachys9=mixed woodland on alluvium; 10
mixed Galpinia-Lannea 11=Terminala-Strychnos12=riverbed; 13=dam;
I o 1AV £ TSP
Conceptual diagram showing: (a) elephant selective use of a hetenageneo
landscape; and (b) differential rates of change in vegetation structute...127
Study area: (a) location of the Gonarezhotidwal Park in Zimbabwe, and (b)
location data for collared elephants (GNP = Gonarezhou National .Rark)129
Vegetation/cover types in the Gonarezhou National Park, Zimbabwe (adapted
from Cunliffe (2012))...ccceiie e 130
Results of pixebased rgression for tree cover change estimated from MOD44B
data in the Gonarezhou national park (2@006): (a) Slope of the regression, (b)
p-value, and (c) pixels where change is significant..............c...ccooeeeee. 136
Tree cover change in major vegetation/cover types of Gonarezhou National Parl
(a) area change per vegetation/cover type, and (b) proportion of the
vegetation/cover type changed............ccooooiiiiiiiiccciiiei e 137
Mean slope of tree cover change in 14 vegetation/cover types in the Gonarezho!
National Parks: (a) mean change and 95% confideer/al; and (b) histogram

of the slope of change in pixels where change is significant (red dotted line
separates negative and positive change). Change is based on MOD44B data
(20002016) ... .uuuuurrrrrrrereeieeeeeeeeeeereree e e e e e eaaaaaaaae e e s it e e e e e e e e e e e e e e e e e e ——— s 138

Xi



Figure 67: Change in MOD13Q#lerived NDVI per vegetation/cover type plotted together
with: (a) KDE; (b) LTD; and (c) speed of collared elephants in the Gonarezhou
NALONAL PATK-....coiiieieeeie e 140

Xii



List of Tables

Table 31:

Table 32:

Table 41:

Table 42:

Table 43:

Table 51 :

Table 52:

Table 53:

Table 54:

Table 55:

Table 56:

Table 61 :

Details of the strata, sightings, transects and the dates on which data were collec
in Gonarezhou, Hwange and Mana Pools National Padapted from Dunham
BL AL20L4). .. e e ennn s 59
Comparison of NDVI, distance to water and terrain ruggedness at corrected and
uncorrecteclephant PreSenCe SILES............uuviiiiiiiiiieeeiiiiiii e 68
Elephant occurrence points used in the prediction of elephant habitat and the dat
on which theerra/MODIS NDVI image was acquired................cccvvvvvieennnnns 81
Performance and variable contribution of the MaxEnt models predicting the
geographical distribution of elephants in the GNP during the dry season months «
2009, 2010 @nd 201d....cciiieiieeeeeee e 85
Peaks of elephant occurrence away from water sources and minimum NDVI with
elephant habitat (habitat = probability values > the logistic threshold of equal
training sensitivity and SPecCifiCity)..........cccoeiiiiiiiiiieee e 87
Details of the coll ared..el.ep.hablds
Results of compositional analysis showing more use of open water (13) and
riverbed (12) by elephants in the Go
the vegetation type intherowisie d mor e t han t he-otype
otherwise. When the difference is significant, the sign is tripled............... 110
Pairwise omparisons of elephant speed in the vegetation types (values represent
mean difference while * shows significant difference at the 0.05 alpha legdl?

Ranked median speed of elephant movement, range, and number of samples in
different vegetation tyPeS.........uuiiiii i 113
Pairwise comparisons for LTD among vegetation types (values represent mean
difference while * shows significant difference)............ccccccvvviiieeciiiiiiennnn. 114
Ranked median LTD of elephant, range, and number of samples in different
VEGETAION TYPES ... 114
Details of the coll ar.ed...el.eph.ab3ls

Xiii



List of Abbreviations

ANOVA

AUC

DEM

DN

GCP

GIS

GLTFCA

GNP

GPS

IDH

KDE

LTD

MAXENT

MCP

MNDWI

MODIS

NDVI

NIR

R

ROC

SDM

SIN

™

TOA

Analysis of Variance

Area Under Curve

Digital Elevation Model

Digital Number value

Ground Control Point

Geographical Information Systems

Great Limpopo Transfrontier Conservation Area
Gonarezhou National Park

Global Positioning System

Intermediate Disturbance Hypothesis

Kernel Density Btimator

Linear Time Density

Maximum Entropy Species Distribution Modelling
Minimum Convex Polygon

Modified Normalised Difference Water Index
Moderate Resolution Imaging Spectroradiometer
Normalised Diference Vegetation Index

Near Infrared

Red

Receiver Operating Characteristic

Species Distribution Modelling

Sinusoidal

Thematic Mapper

Top of Atmosphere

Xiv



TRI Terrain Ruggedness Index
TSS True Skil Statistic

UTM Universal Transverse Mercator

XV



Abstract

Knowledge of elephantLpxodonta africanp interaction with vegetation is critical for
conservation of the medeerbivore and of other wildlife species found in the ecosystem.
Although the impaicof elephants on vegetation structure has been investigated before, locati
and time specific knowledge on changes in the landscape has remained largely inconclus
This is because most of the early studies largely depended dvagkd observationkdt are
limited in scope both spatially and temporally. This thesis develops and applies GIS and rem
sensing methods aimed at understanding the spatial pattelepbinvegetation iteraction

in a predominantly savannah landscape. Specific objeaifitbe study were to: (1) understand
the predictive ability of elephant distribution models developed using presence data collec
from GPS collarand compare them those developed from aerial survey data; (2) develop
and test newnethods for correatg locational error in aerial survey data for improvinggdels

of elephant distribution; (3) test whether elephant presence peaks farther from water point:
addition to the known peak near water; (4) investigate whether elephants selectivaayautili
heterogeneous landscape; and (5) test whether and how the rate of change in vegete
structure differs across a heterogeneous landsdarstly, resultsof the studyshow that
elephant presence models built from GPS collar data outperformed those diladrial
survey dataSecondlya newmethod suggested for correctiagorin aerial survey data shifted
location by 143 to 177m from the line of flight. In addition, the models of elephant presen:
built from the corrected dataset had better predi@hibty than those built from uncorrected
data.Thirdly, elephant presence peaked at places located farther from water sources in addi
to the known peak near watd@he peaks occurred in areas of high vegetation céwerthly,
elephant speed of movemt and utilisation othe landscape (i.e., speed, Linear Time Density
and the Kernel Density Estimajatiffered by vegetation/cover typéinally, the rate of tree
cover change diffetkby vegetation/cover type. The change was also observed to betedrrela
with elephanmovementind utilisation of the landscag®esults of the thesthussuggest that
GIS and Remote senshiigased methods improve our understanding of elepregggtation
dynamicsin space and time. These findings underscore the utilizi8fand remote sensing

in studies that investigate the spatial pattern of elephianaiction withvegetation. Knowledge

of those patterns could be applied in the formulation of strategies aimed at conserving

African elephant as well as other wildlépecies that coccur with theanegaherbivore

XVi



Chapter 1

General Introduction
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1. General introduction

1.1 The impact of elephants on vegetation structure

Understanding whether and how African elephahtsx¢donta africanp potentially drive
change invegetation structure, especially in protected wildlife areas, is important fo
conservation. Existing knowledge underscores the role omégaherbivoreas a driver of
change in ecosystem structure and function (Kalwij et al., 2010, Asner and Levi2k, POis

is largely because elephants are known to typically push, uproot and ring bark trees wh
foraging (Guy, 1976, Kohi et al ., 2011, C
have been described as ecosystem engirfesseri et al., 2031 Thus, elephanrdominated
landscapes tend tme slowly transformed in terms of vegetation structure (Vanak et al., 201z

Tafangenyasha, 1997).

Studies that test the impact of elephants on vegetation structure provide evidence that-the m
herbivore is largely selective when foraging (Holdo, 2@D&dron et al., 2006). As a result, it
could be predicted that due to overutilization the targeted species may slowly disappear fr
the ecosystem; together with other life forms that depend on it for survival (Jacobs and Big
2002, Swanepoel, 1993). THuit is logical to postulate that transformation of vegetation
structure by elephants may hdaereachingmplications on ecosystem structure and function.
In fact,thetransformatiorof vegetation by elephants is not only a threat to the rhedaivore
itself but could be a threat to its own habitat, as well as other species that depend on the ha
for survival. Transformation of vegetation as a result of elephant foraging likely occurs il

landscapes thatre either fenced up or where the mégéebivore occurs at high densities

Although we have known for some time that protected wildlife areas are established to maint

biological diversity (Scott et al., 2001, Shafer, 1999has become apparent from existing



studies that several ecosystem dis&unces affect theynamically stable sta{@hom and Seidl,
2016, Seidl et al., 2016Previous studies have consistently shown that these disturbanc
include, among others, climate extrenfdBdgley and Bond, 2015, Scheiter and Savadogo,
2016) veld fires(Staver et al., 2017, Luvuno et al., 2046} foraging by megherbivores like

the African elephanBakker et al., 2016, Asner et al., 201B9r instance, ecologists generally
agree that elephants change their own habitats as well as that of othak species when
foraging(Pringle et al., 2015, Herremans, 1995hus, change in vegetation structure driven

by elephant foraging is a key topic in ecological disturbance theory.

1.2  Traditional methods for understanding the impact of elephants on vedation
structure

In the absence of Geographical Information Science (GIS), Global Positioning System (GF
tracking and remote sensing, studies that seek to investigate the impacts of elephant:
vegetation largelyely onfieldwork. For instance, obsemvwans made in the field suggest that
elephants drivéhe highest rates of change in vegetation structure especially near water poil
(Mukwashi et al., 2012, Franz et al., 2010his change is largely attributable to the mega
herbivore which intensivelyofages in areas around water points since it is vaspendent.
This phenomenon is in line with the piosphere effect which was first described by(La68§&

and later by several other auth¢esy., Graetz and Ludwig, 1976, Andrew, 1988, Heshmatti et
al., 2002, Egeru et al., 2019Ylost descriptions of vegetation structure in the piosphere bas
their conclusions on data collected in plots located at increasing distances from water soul
(e.g., Valeix et al., 2011, Mukwashi et al., 2012, Thrash e199]1) While these plebased
observations offered useful insiglms$o elephamvegetation dynamics ilocalisedareas ere

fieldwork was conducted, they remained largely limited in spatial and temporal scope.



This means that early knowledge on the §omg behaviourof elephants was largely based on
following them in the field and recording what they eat including other activities (Guy, 197¢
Adams and Berg, 1980, Barnes, 198®)is data collection method lies at trentreof modern
understanding oflephant foraging ecology although it could be reasoned that its accurac
possibly depends on how close the observer can be to the target animals. For instance, v
observing dangerous animals like elephants, observations could be made from long distar
to minimisethe risk of attacKGuy, 1976) Thus, the accuracy of such observations remains
largely limited. Even in cases where the animals followed are not dangerous and data :
collected atthe shortestdistances to the animal, the window of observai® limited to
particular times of the day. This is because it is practically difficult to follow an animal nonsto
for 24hrs in the field. For instancajghttime observations are mostly limited by reduced
visibility unlessspecialisedequipment is usedThus, studies that are based on fieésed

observations of target animals are limited in scope both spatially and temporally.

1.3 GIS, GPS and remote sensing use in understanding elephant impact on vegetation
structure

While earlier methods for understanding timpact of elephants on vegetation structure are
limited both in temporal and spatial scope, GIS, GPS trackingemdtesensing enable a
wider window of observation. For instandacreased use of radio telemetry to track the
movement of target animatgs enhanced knowledge on their day and night movement acros
entire home ranges (e.g., Lindeque and Lindeque, 1991, Galanti et al., 2000, Ngene et al., 2(
Radio tracking of wildlife enables researchers to determine the exact location of the tar
animal in the field and possibly infer what they are do(Bgltis et al., 2016, Hacker et al.,
2015) I n addition, wildlife tracking enabl
(Ngene et al., 2017, Venter et al., 201&5 well as the habitatggs preferredDe Boer et al.,

2005, Harris et al., 2008Y o date, some GPS collars are programmed to take position fixe
4



even at the 15 minutes interval thus widening thadaiv of observation of the target animals
(e.g., Clark et al., 2006Moreover, lhe tracking units measure location with minimal error thus
making observation comparatively accurate in sfblegbert and French, 2001, Moen et al.,
1997) Based on these recent advances in animal tracking using GPS collars, it is theref
imperative thathypotheses that investigate the movement pattern of elephants be revisited

obtain enhanced insights on how they move in the landscape.

Knowledgeof how elephants move in the landscape and the potential impact of that movem
on the structure of vetgion depends to a large extent on the quality of location data used 1
understand their distribution. The main sources of location data usetwdel elephant
distribution include GPS collars (Galanti et al., 2006, Graham et al., 200%erial surveys
(Matawa et al., 2012, Murwira and Skidmore, 2006)most African countries, aerial survey
data are collected in 150m wide strips located to the right and I@tedfwing aircraft flying

at ~90m above the ground and along predetermined systemasiedis{Birschl et al., 1981,
NortonGriffiths, 1978) Aerial surveys are primarily designed to collect data used to estimat
the population sizes of elephants and other large animals that are visible from the air. A

description of the procedure forra surveys was made by Nort@riffiths (1978)

Location data collected during aerial surveys have been used extensively to predict
distribution of animals in the landscape (Forbes and Theberge, 1993, Redfern et al., 2C
Zhang et al., 2018 Howe\er, these data come with their shortcomings. For instance, wher
distance sampling is not applificerczak and Hobbs, 1998) where the aircraft is not specially
designed to offer full view of the area underndatly., Whitt et al., 2013, Laake et al99r),

the location of the sighting is recorded along the line of flight of the aeroplane when in actt
fact it is located severahetresaway from the line of fligh{Thomas et al., 2010)n fact,

modellingfrom such data could introduce error sinceltdwtionpoint used is different from
5



the actual position of the sighting. A number of studies acknowledged that aerial survey d
are associated with locational er(bturwira and Skidmore, 2005, Cumming and Lynam, 1995)

but, to the best of our knowledg® attempt has ever been made to correct it. Thus, it is critica
to test whether the locational error associated with aerial survey data could influence °

predictive ability of elephant distribution models to enhance conservation effort.

In most proécted areas of Africa, limited availability of animal presence data either from GP
collars or aerial surveys has made it difficult to undertake studies to investigdistribution

of elephants. This is largely duettwe costsassociated with data d¢ettion. The costs of GPS
collars (Creel et al., 2013, Girard et al., 20889 aerial survey@Vhittaker et al., 2003, Watts

et al., 2010has been reported before in literature. Thus, even in landscapes where only ae
survey data are available, it etter to correctocationalerror than disregard the data in
elephantnodellingeffort. To the best of our knowledge, limited effort has been made to corre«

the locational error associated with aerial survey data for lmetidellingresults.

Recent adances in remote sensing make it possible to test hypotheses at large spatial ext
which include the global scale (e.g., Mayaux et al., 2004, Prince and Goward, 1995, Asne
al., 2003) Thus, remote sensing provides landsesqgame data that enablesvestigation of
elephant movement patterns at large spatial ex{@mamailleJammes et al., 2009, Asner et
al., 2009) This is opposed to pltased observations, whose window of observation remains
limited to the areas visited. Remote sensing also enables the collection of data in inacces:
areas while plebased observationsan only be conducteth areasthat are accessiblén
addition, continued availability of freely available remotely sensed productsnalkes it a
cheaper data collection option than fieldwddkha et al., 2008, Mumby et al., 1999hus
remote sensingan be regarded ascasteffectiveapproach that enables rapid investigation of

elephant movement patterns, including their impact on ecosystems.
6



More so, remote sensing enables repetitive observation of the same area thus making it pos
to investigae largescalechanges in landscape characteristics over time (Petropoulos et a
2009, Kumari, 2017, Hegazy and Kaloop, 20Fs)r instance, it is possible to investigate daily
changes in vegetation condition from MOEBE¥8sed images which are acquiredyddrevious
studies have consistently shown that remotely sensed data can be used to account for
temporalscale changes in landscape strucfifmett et al., 2015, McDowell et al., 2015)
Thus, it is now possible to investigate changes in foragewatdr distribution based on
remotely sensed datghrlén and Morris, 2015, Imai et al., 2017, Seager et al., 2B¥R)ence
from existing studies shows that these factors drive the movement pattern of elephants and
affect the way theuwtilise the landscapgMarshal et al., 2011, Bhola et al., 2012, Ogutu et al.,
2014) It is therefore imperative that in the faceesferincreasingavailability of remotely
sensed data, hypotheses that test how elephants move in the landscape and their potential ir

on vegetation need to be revisited.

Remote sensing devices collect data without contact with the ground henceitimaisethe
impacton target ecosystems (Azmy et al., 20X2) the other hand, fieldased observations

of elephanidriven vegetation clmge are often intrusive since they require presence in the field
Thus, field workers potentially disturb the animals and plants found in the areas where tt
collect datgTejedo et al., 2012, Monz et al., 2018hother advantage of remote sensing when
pitted against field work is its ability to provide reflectance data at various wavelengtt
including those found outside the visible range of the electromagnetic spééidlam et al.,
2010, Estes et al., 201@xisting studies have underscored the ytdit the near infrared and
red edge bands in monitoring vegetation chai@evers and Gitelson, 2013, Mutanga et al.,
2012) Thus in this thesis, we use remotely sensed data to investigate elépamizegetation
change in the study areas. Neverthel#dsas to be noted that despite the discussed usefulnes

of remotely sensed data, they cannot replace fieldwork but should ideally complement it.
7



1.4  Problem statement

Although ecologists generally agree that elephant foraging leads to opening upiforadiems

of vegetation (e.g., Mapaure and Moe, 2009, Kalwij et al., 2010), knowledge on the pattern
that change at the landscape scale remains largely underdeveloped. That knowledge has la
been limited by fieldvork based approaches that are lediboth in spatial and temporal scope.
While plot-based observations provide critical insights elephamnvegetation dynamics, they
remain limited to the areas where data collection was undertaken. As a result, knowlec
generated by this method on tbleanges to vegetation structure occurring at long distance:
from the water points remained largely elusive. The few studies that shifted attention to otl
areas not linked to th@iospherdargely remained limited to pldiased observations targeting
vegdation types of interest (e.g., Holdo, 2006, E#mahar, 1996) However, recent
developments in GIS, GPS tracking and remote sensing technologies provide an opportunit
revisit hypotheses investigating the impact of elephant foraging on vegetatidarstraicthe
landscape scaléAn attempt to adequately model changes in vegetation structure driven k
elephand, especially at the landscape scale, provides knowledge on possible changes
ecosystem structure and function which in turn can be used & bethage protected wildlife

areas.

1.5 Thesis objectives
In this thesis, the main objective was to develop, test and apply Geographical Informati
Systems (GIS) and remote sensmgthodgo understanavhether and how elephant foraging
drives change inegetation structure across a largely heterogeneous savannah landscape.
The specific objectives of the thesis were to:

1) develop elephant distribution models from presence data collected using GPS coll

and compare their predictive ability to those depeld from aerial survey data;



2) propose a new method for correctilogationalerror in aerial survey data and to test
whether the correction improves elephant distributrmaellingresults;

3) determine whether elephant presence peaks farther from watés poaddition to the
known peak near water;

4) validate selectivetilisationof a heterogeneous landscape by elephants; and

5) investigate whether and how the rate of change in vegetation structure differs acros

heterogeneous landscape.

16  Study area

Themajority of the hypotheses were tested in@umarezhou national parkofgitude 31.32°E

I 32.41°E and latitude 21.11932.22°S)located to the soutbast of Zimbabwe (Figure-1).
Additional hypotheses were tested in the Hwa(igegitude 25.79°E 27 46°E and latitude
18.50°S 19.88°Shnd Mand&ools(longitude 29.15°E 29.74°E and latitude 15.67°85.29°S)
national parks located to the no#lest and north of the country respectively. Hwange National

Park is the Iegest national park while Mana#ls is third in size.

Elevation in theGonarezhowational park ranges between 155m and 567m. Vegetation i
typical dry deciduous savannah dominatedimyophospermum mopaiw@ the clay and loam
soils; andCombretunsppon the sandy soilsThe dimate in the national park is subtropical
savannahcharacterisedby summer rainfall received from November to Aptibngterm
annual rainfall is ~600mm. January is the hottest month with maximum temperatures averag

~36°C while June is coldest with minimum temgiares averaging 9°C.
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Figure 1-1: Location ofthe three study sites in Zimbabwe: (a) Mana Pools@(arezhou,
and (c) Hwange national parklephant presence data were collected during aerial surveys i

2014.

Gonarezhou is the second largest national park in the country after Hwange national par}
was gazetted as a game reserve in the 1930s and covers an area 2H508dar(Zisadza et
al., 2010) The park supports ~11000 elephants making it thenslargest metpopulation in

the country(Dunham, 2015)In fact, the park has one of the healthiest elephant populations i
the country when compared to the rest of the range areas where populations were reporte
be declining (Robson et al., 2017)A growing elephant population at densities >2
individuals/kn# is of interest to ecologists since elephants have been known to drive change

vegetation structure where they occur at high densities.
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Typical uses of the park include photographic safaris @rdping. Surrounding areas are
characterisedy safari hunting and communkinduses The study area falls in the Great
Limpopo Transfrontier Conservation Area which combines wildlife areas found in Zimbabwve

Mozambique and South Africa (Andersson and deiri@ \Wichatitsky, 2017)

1.7  Ouitline of the thesis

This thesis consists oégenchapters. Five of the chapters (Chapté) are manuscripts which
have either been published or are under rededthey address the five main objectives of the
thesis These five chapters are presented in the thesis as separate papergpétitisn of
some sections was inevitable. Chapter 1 consists of a general introduction and backgro
information on the impact of elephants on vegetation structure. The chaptpralites the
basis of the research designs adopted in subsequent chapters. More so, the chapter high
the objectivesof the studyChapter 2 develops elephant distribution models from GPS colla
data and compares their predictive ability to thoset Ifnaiin aerial survey data. The chapter
aims toestablishthe best elephant presence datasets to use for refradalelling results.
Chapter 3 proposes a new method for correcting the locational error associated with elept
location data collected from @& surveys. The chapter further investigates whether the
correction method suggested improves model performance. Based on the evidence provide
the chapter, a decision is made on using GPS collar data fanbdstlingresults. Chapter 4
utiliseselephant presence data collected from GPS cditeyether with distance from water
points and NDV]to determine whether theexistother peaks of elephant presence located far
from water. The chapter seeks to enhance knowledge on how elephissgdandscapes in
areas not linked to thgiosphere Chapter 5 validates selectiuélisation of a heterogeneous
savannah landscape by elephants. Chapter 6 investigates whether percentage tree cover ch
in the Gonarezhou national park from 2000 to 2017. hlapter further tests wheth@change

in percentage tree cover is correlated with elephant movement in particular vegetation/co
11



types. Chapter 7 is a synthesis of the main results of the thesis. Contributions of the thesi
the currentunderstanding fathe spatial pattern of elephant impact on vegetation structure ar

discussed. The chapter further expldhespossibilitiesfor future research.
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Chapter 2

Evaluating the performance of aerial survey data inelephant habitatmodelling
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2. Evaluating the performance of aerial survey data in elephant habitatmodelling

Abstract

Aerial survey data are widely used to mode¢ distribution of wildlife. However, their
performance in habitahodellingremains largely untested. We usedaeurvey and satellite
linked Global Positioning System (GPS) collar data for elephants, to test: (1) whether there
an optimal spatial resolution of predictor variables at which habitat models based on ae
survey data that are uncorrected for |auzl error can accurately predict elephant habitat and,
(2) whether habitat models based on these data sets can accurately predict the presen
elephants in closed woodland habitats. We applied maximum entrogglling(MaxEni) to
these datasets andad the Normalised Difference Vegetation Index (NDVI) as well as distanct
from water points as the habitat predictors to answer these questions. Our results demons
the better ability of aerial survey data to predict elephant presence at the coastel sp
resolution of 1000 m of both predictor variables. Habitat models derived from aerial surve
dataunder predictee@lephant presence in more closed woodland habitats than those deriv
from GPS collar data. This result implies that elephants locatger ulense tree canopies are
likely missed during an aerial survey. Our study is one of the first to empirically test and rept
results on the poor performance of aerial survey data in hati@elling especiallyin dense

woodlands.
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2.1  Introduction

Understanding the spatial distribution of wildlife species in a landscape is critical for the
management and biodiversity conservation. In recent years, the possibility of determining
spatial distribution of wildlife species has been enhanced by edsan remote sensing
technology as well as the introduction of novel species distributmetellingtechniques that
use satellite data (Elith et al., 2006, Nagendra et al., 2013, Ross and Howell, 2013). Accul
prediction of habitat for target speciesingportant as it helps strengthen efforts to prevent
further habitat loss (Bean et al., 2014). This is particularly important for African elephan
(Loxodonta africanpbecause they are known to transform habitats (Lagendijk et al., 201:
Valeix et al., 2Q1, Van Langevelde et al., 2003). Failure to accurately predict elephant drive
habitat changes in a timely manner may also threaten the existence of other wildlife species
use the affected habitats (Head et al., 2012, Young et al., 2005). Thisnly metause
elephants are keystone species and protection of their habitat is beneficial to other specie
the ecosystem (Laws, 1970). Thus, sustainable management of wildlife areas benefits dire

from accurate prediction of wildlife habitats espdgialephant habitat.

However, the ability of habitat models to accurately pretiepresencef wildlife species is
influenced by the spatial characteristics of the response and predictor variables, especi
spatial resolution and locational error. landscapes where groubdsed surveys atane-
consumingand costly, aerial survey data have extensively been useddellinghabitats for
wildlife species (Scheidat et al., 2012, Kiffner et al., 2013, Pittiglio et al., 2013). However, tt
utility of aerial survey data uncorrected for locational error in wildlife halmtatdellingwork
remains largely untested. Given the extensive spatial coverage of aerial surveys, one wc
expect these data to produce better habitat models since a wide varietyaittzabisampled.
Ideally, the presence data usedmndellingshould represent the full range of values of the

predictor variable in the study area so as to ensure gummklling results (Vaughan and
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Ormerod, 2003). Location data that are collected framahsurveys and have not been
corrected for locational error generally lack spatial accuracy as depicted in F(ixuPwira

and Skidmore, 2005).

in the line of
flight

(a)
Decreasing NDVI 30m

spatial resolution ® 250m

(c)
500m
(d)
1000m

Figure 2-1: Conceptual framework illustrating the loatal error associated with aerial survey

presence data in relation to a typical habitat predictor. Note that at the NDVI spatial resoluti
of 30 m, the GPS point falls in a different pixel from the elephant location (a) but increasir
the spatial resolwdn to say 250netres the GPS pointandthe elephantie within the same

pixel (b).

The bcationalerror is often unavoidable in aerial surveys (Figwl 2xcept where distance
sampling methods are used to get more accurate measurements of |Wdtiag and Pike,
2009). When aerial surveys are conducted, the area below the aircraft is usually not visible
observers except in a fespecialisedsurveys where a double window aircraft offering a full
view underneath the aircraft is used (Whitt et 2013). From Figure-2, we can also deduce

that if the predictor variable used in elephant habitadelling is available at a spatial
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resolution smaller than the locational error inherent in aerial survey data, poor moc
performance is likely to occubut this needs to be subjected to a rigorous empirical test befor

any conclusions can be drawn.

In this paper, we claim that the performance of aerial survey data uncorrected for locatiol
error in species habitat models may be established by corgpaandidate models to those
derived from superior datasets such as GPS collar data. The use of GPS collar data has sl
that higher accuracy can be achieved in species distributolelling(Loe et al., 2012, Wells

et al., 2014). Previous studies cohsmtly established that GPS collars exhibit locational error
that does not exceed 100 m (Stache et al., 2012, Adams et al., 2013), which is consider
smaller than the locational error of up to 500 m reported for aerial survey data (Murwira a
Skidmore 2005). In essence, the locatioealorsof aerial survey data is a function of the strip
width used in the survey and could also vary between surveys. Although under ide
circumstances many animals covering a large area would be collared, it is fietheecase
that limited resources permit collaring of only a small number of animals covering a muc
smaller spatial extent. In effect, aerial surveys could offer a limited representation of habi
assumingfor examplea single flight and a fairly spse population,where one would get a
snapshot of a subset of individuals in just one of the habitats they likely use. Overall, test
how aerial survey data perform in species habmatlelling against GPS collar data may

provide empirical evidence of thelative performance of these sampling methods.

In this study, we aimed to establistihe utility of aerial survey data that are not corrected for
locational error in elephant habitabdelling We specifically asked whether there is an optimal
spatial esolution of the predictor variable at which aerial survey data produce more reliak
elephant habitat models. We also asked whether habitat models based on aerial survey dai

able to accurately preditiie occurrenceof elephantsn densewoodland haltats. To answer
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these questions, we appliBthxEntto aerial survey and GPS collar data for elephants obtainec
from Gonarezhou National Park of Zimbabwe. For each dataset, we used NDVI and distal

from the nearest water point available at different apegsolutions as the habitat predictors.

2.2  Materials and methods

2.2.1 Study site

This study was conducted in northern Gonarezhou national park (GNP) located iaasiath
Zimbabwe (Figure 22). The site is ideal for testing our hypotheses becéliséata on elephant
presence from aerial surveys and GPS collars were collected during the same montt
September 2009, thus making the datasets comparable and, (2) GNP has an estimated ele
population of 10,000 (Dunham et al., 2013) which is ambtigslargest in the country. This

makes the study site important for elephant conservation in the country.

Elephant presence data were collected in an area approximately 2,733 kmz2 in size, betw
latitudes 21.10° and 21.76° South and longitudes 3h@&32.41° East. Altitude ranges from
155 m to 567 m above sea levEypical vegetation in the study ansadry deciduous savannah
dominated byColophospermum moparend Combretumapiculatum Tree density in the
mopane woodlands ranges from 98 to 548sf#tea (Gandiwa and Kativu, 2009b). Mean annual
rainfall is 466 mm per annum and is received from December to March (Gandiwa and Kati\

2009a).
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Figure 2-2: Location of the study site in soudfastern Zimbale. Elephant presence data are

overlaid to show the spatial distribution of data sets used in this study.

2.2.2 Elephant presence data

Data on elephant presence were collected from a sample aerial survey andlszftellit€ PS
collars fitted on 8 elepms (5 cows and 3 bulls). The aerial survey was conducted over th
period from 4 to 9 September 2009 and the sampling effort ranged from 12.2 % to 21.1 %
the different survey strata (Dunham et al., 2010). Elephants were sighted by two observ
scanningooth sides of systematic line transects spaced by 2.5 km and covered from the air
a Cessna 185 fixed wing aircraft. The line transects were selected based on stratified ran
sampling where the starting point was randomly selected and subsequehtidraes equal
separation distance to enhance representativeness. The average ground speed of the aircre
160 km/hr whilst the flying height was about 30(9ft.44 m)above the ground measured using
a radar altimeter. The ground speed of the aircraét slightly higher than the speed of between
130 and 150 km/hr recommended by Nor@iriffiths (1978). Each time an elephant was

sighted, the GPS location of the aircraft at the time of sighting the animals was reé¢orded
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detaileddescription otthe methalsused in that survey is available in NortGniffiths (1978)

and Dunham (2012). We used a total of 222 elephant locations from the aerial survey in
analyses. Data from GPS collars were collected from 1 to 24 September 2009. These d
coincided withthe period when aerial survey data were collected, that is from 4 to 9 Septemt
2009. Lack of perfect overlap in the data collection dates for thedtwaset possibly had
minimum effect on model performance since we expee@eatbn-significant change in
vegetation biomass (estimated by NDVI) over the entire data collection period. GPS collar d
used in our analyses (collected in September 2009) had a fix success rate of 100%. These
were collected from eight satellite collars supplied by Africacfé Tracking (South Africa),
fitted on eight elephants amilogranmedto take three fixes per day (two during the day and
one during the night). The elephants fitted with the collars were selected during random flig|
in the national park and cadsralbde separation distance between individual animals was
maintained to ensure more complete coverage of representative habitats. Only the GPS c
fixes taken during the day were used in our analyses to ensure comparability with aerial sur
data which wez also collected during the day. We based our analyses on locatiolo el
inside the study site and left dhibse outsideTo ensure equal sample size to the aerial survey
dataset, we used 222 points randomly selected from a total of 284 eleyfzicinis obtained
from the GPS collars in our analyses. We used the random point selection tool implemente

a GIS to select the 222 points from GPS collar data.

2.2.3 NDVI data

We used NDVI as one of the habitat predictors because it correlatesgpsiiith vegetation
biomass (Tucker, 1979). In addition, vegetation has been shown to be a key predictor
elephant habitat (Murwira and Skidmore, 2005). NDVI was calculateddiometfree Landsat

TM and Moderate Resolution Imaging Spectroradiometer [MB) images acquired in

September 2009 to coincide with elephant presence data. Landsat and MODIS data w
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downloaded from www.usgs.gov. Landsat bands used to compute NDVI (redasnafrared
bands) had a spatial resolution of 30 m whilst MODIS barele wvailable at 250 m, 500 m
and 1,000 m spatial resolutions. Landsat data were acquired on 16 September 2009 w
MODIS data at 250 m spatial resolution were acquired on 6 September 2009 and the dat
500 m and 1000 m were both acquired on 17 Septe@®@9. Prior to computing NDVI,
Landsat data were converted from digital numbers (DN valueg)p@f the atmosphere
reflectance (TOA) following the method described by Chander et al. (2009). Landsat data w:
geometrically corrected to less than a 36y180 m pixel (Root Mean Square Error (RMSE) of
0.87) based on 20 Ground Control Points (GCPs) collected in the field using a GPS a
positional error of £5 m. Twenty GCPs are generally considered adequate for the 2nd order
terms) polynomial transforation used in this study (Toutin, 2004). MODIS data were re
projected from the geographic coordinate system to Universal Transverse Mercator (UTI
Zone 36 South in ENVI 5.1 (Exelis Visual Information Solutions, Boulder, Colorado) to b

compatible with elejpant presence data.

2.2.4 Distance from water points

We also usethedistancdrom the nearest water point as a predictor variable in the model. Th
location of water points at the time of sampling was established using the Modified Normalis
Differenee Water Index (MNDW!I) described in detail by Hagiu (2005). The index was
calculated using Landsat data described in detail in the previous section. All pixels wi
MNDWI values greater than O were classified as water points as suggested-tpy K2005)
Later, the Euclidian distance calculation algorithm was used to compute the distance
individual pixels from the nearest water points. In order to get data at the spatial resolutions
250 m, 500 mand1000 m, the datan distance from watewhich were computed at the 30 m

Landsat resolutiowerelater resampled to the desired resolutions.
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2.2.5 Elephant distribution modelling

In this studyMaxEntwas used to predithedistributionof elephants in northern Gonarezhou.
MaxEntwas selected based s ability to reliably predict species distribution frgresence
only data. The algorithm is described in greater detail in Phillips and Dudik (2008). To gener:
elephant habitat models, elephant presence data from the aerial survey and GPS collars"
used as the response variable separately whilst NDVI and distance from water points c
calculated at four spatial resolutions of 30 m, 250 m, 508nd1,000 m were the predictor
variables. We used 70% of the elephant locations to calibrate the muts|30% of the data
were set aside to validate the predictions as recommended in the literature (Araujo and Gui
2006). In total, eight habitat models were built (that is, four from each elephant presen

dataset), at the NDVI and distance from wakaint spatial resolutions described earlier.

2.2.6 Model evaluation

For each elephant distribution model, the Area Under Curve (AUC) of the Receiver Operati
Characteristic (ROC) curve was generated
presence based on 30% of the dataset set aside for model validation. The sensitivity
specificity of the model predictions were assessed ubmigcreasingorobability of presence
(logistic output) thresholds. ROC curves were generated using the megwibdd in Sing et

al. (2005). Elephant absence locations used in the computation of the ROC curves were obta
from the background pixels randomly createdMaxEnt The AUCs were based on 500
bootstraps thus allowing calculation of confidence intarvBifferences in the AUCs of the
habitat models based on aerial survey and GPS collar data at each spatial resolution of N
and distance from water points were inferred when their confidence intervals did not overl:
Confidence intervals were computed the 95% confidence levelhe gpatial similarity
between the predicted elephant habitats from both datavsettested using the Jaccard

Similarity Index. The index tests for similarity between two sample sets and is the ratio of t
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size ofthe intersectionto the size ofthe union of the same set. More detail on the index is
described in Magurran (2004). In this study, bigger values of the index represented similat

in the predicted elephant habitats whereas lower values represented dissimilarity.

2.3 Results

2.3.1 Predictive ability of habitat models derived from aerial survey data

The AUCs for the models relating elephant presence data from aerial surveys to both predic
at spatial resolutions of 30 m, 250 m, 500amd 1000 m were significantllower than those
predicted based on GPS collar data (FiguBeahd 24). In particulatr the AUC for the model
relating aerial survey and GPS collar data to NDVI and distance from water points at the 3C
spatial resolutiorwas 0.592 (95% CI [0.511, 0.8%) and 0.767 (95% CI [0.3B] 0.820])
respectively. At thespatial resolution of 250 for NDVI and distance from watgoint, the
model based on aerial survey data had an AUC of 0. 603 (95% CI [0.526, 0.684]) whilst tl
for GPS collar data was 0.708 (9%2b[0.641, 0.773]). Similarly, the AUCs for models based
on aerial survey and GPS collar data were 0.607 (95% CI [0.526, 0.692]) and 0.719 (95%
[0.650, 0.789]) respectively at the NDVI and distance from water points spatial resolution
500 m. Finally at the spatial resolution of 1000 for both predictors, the AUC for models
based on aerial survey and GPS collar data @&&90 (95% CI [ 0.516, 0.663]) afbdb78 (95%

C1[0.589, 0.764]) respectively.
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Figure 2-3: ROC curves for elephant distribution models built using presence data from aer;
surveys and GPS collars as the response variable and NDVI and distance from water point

at 30, 250, 500 and 1000 metres spatial resolution as the predictors.
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Figure 2-4: Mean area under the curve (= 95% confidence interval) for elephant habitat mode
built using aerial survey data and GPS collar data. The differences are shown for differ:

spatial resolutionsf the predictor variables (a) 30 m, (b) 250 m, (c) 500 m, and (d) 1,000 m.

2.3.2 Performance of aerial survey data in relation to vegetation density

Figure 25 illustrates the performance of elephant models built using aerial survey data a
GPS collardata at different values of the predictor (NDVI). We observe that elephan
distribution models built using aerial survey data achieved higher probabilities of elepha
presence (logistic output) at lower NDVI values compared to those based on GPS tallar d
In contrast, at higher NDVI values, habitat models based on aerial survey data showed o

probabilities of elephant presence when compared to those based on GPS collar data.
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Figure 2-5: Probability cuves for elephant habitat models built using aerial survey and GP
collar data plotted against NDVI and distance from water points at different spatial resolutior

(@) 30 m, (b) 250 m, (c) 500 m, and (d) 1,000 m.

2.3.3 Spatial similarity between the prealicted elephant habitats

The spatial resolution of the predictor variable had a significant effect on the similarity ar
dissimilarity of habitat predicted using aerial survey and GPS collar data. We observed I
similarity (J = 0.197) between elephant tats predicted using aerial survey and GPS collar
data when both predictors had a fine spatial resolution (30 m). Likelagesimilarity was
detected when comparing habitats predicted using the two data sets at the 250 m and 5(
spatial resolutions (3 0.245 and 0.178, respectively). The highest similarity was observed ¢
the 1,000 m spatial resolution (J = 0.265). Figueshows the maps of the predicted elephant

habitats that were used in the calcul ati
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Figure 2-6. Elephant habitat predicted using aerial survey and GPS collar data against ND

and distance from water points at spatial resolutions of 30 m, 250 m, 500 n©@danl

2.4  Discussion

We foundthat high spatial similarity between elephant habitats predicted using aerial surv
and GPS collar datasetsistlargely at the D00 m spatial resolution of the predictor variables
and not at finer spatial resolutions. This key result indicates the gevformance of aerial
survey data in elephant distribution modelling at finer scales of the predictor variables. Sc
dependence in the performance of aerial survey data was previously suggested in the litere
but until now empirical evidence confimg its effect had not been provided in a spatial
modellingframework. In a previous studgcationalerror of up to 500 m associated with aerial
survey data was reported in nowtlestern Zimbabwe (Murwira and Skidmore, 2005). Unlike,
aerial survey datahe locational error inherent in GPS collar data rarely exceeds 100 m (Remg

et al., 1995, Moen et al., 1996). From thesult we deduce that at most aerial survey data
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uncorrected for this locational error can be used to provide reliable estimatkeplodre

distribution at a coarse spatial resolution of 1,000 m.

Another important aspect of the results of this study is the lower probability of elepha
presence (logistic output) obtained from habitat models based on aerial survey data in
NDVI areas compared to those from GPS collar data. High NDVI values have been obsen
to be associated with high tree canopy area (Ndaimani et al., 2Q1d4pwiever,has to be
emphassed that the logistic output of thglaxEnt model is not exactly the same a® th
probability of presence (Yackulic et al., 2013). This key result suggests that elephants un
dense tree canopies are potentially missed during aerial surveys whilst those occurring in o
areas with fewer trees have a better chance of being det€hteéailure by aerial surveys to
accurately detect animals under tree canopies has been documented (Jachmann, 2002, P«
and Kendall, 1987) and this result simply confirms it. The finding that aerial surveys possik
miss elephants under dense tree p@® hasfar-reachingimplications on habitat models
predicted using aerial survey data and raises the question: if an aerial survey fails to spot
largest land mammals on Earth isavannathen what hope do we have for spotting smaller
mammals suchsaantelopes? On the other hand, the fact that habitat models based on G
collar data succeeded in predicting higher probabilities of elephant presence in areas of |
tree covels also an important finding. The main reason for the superiority of GRS dalta

is that whilst it is restricted in spatial extent since only a few individuals can be collared due
high costs, it has high locational accuracy. In addition, GPS data pravit®@e accurate
representation for all the habitats (including thesetb habitats) than aerial survey data.
Nevertheless, elephant presence data from aerial surveys are collected over large spatial ex

thus enabling the sampling of a wide variety of habitats.
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Overall, our study is amongst the first to test the adwgnodf using species presence data from
aerial surveys in habitamodellingin an AfricansavannahBased orthe evidencegathered in
this study, we recommend that species distribution models built from aerial survey de
uncorrected for locational errohsuld, thereforepe treated with caution. Although the results
reported here are robust given that two different presence datasets were ussabeiling
framework is not perfect. First, NDVI and distance frtime water points were the only
predictors ged to predict elephant presence yet other variables sutiunagninduced
disturbance are known to play a major role in elephant distribution. This could have contribuf
to the poor performance of aerial survey data and hence the inclusion of otheatesvar
warrants further investigation. Another potential limitatiorthat we used only one species
distributionmodellingtechnique faxEn{ but could have used other methods such as booste
regression trees (Elith et al., 2006). The choidél@kEntis justifiable since previous research
has demonstrated its superiority over competing methods. In addition, our aim was not to bt
predictive models per se but to test the effethelocationalerror on the performance of aerial

survey data.

2.5 Conclusion

We conclude that presence data from aerial surveys, which are not corrected for locational el
perform poorly in species habitat modelling and should be used with care. Overall, our stu
also demonstrated the superiority of GPS collar data areiff spatial resolutions of the
predictor variable but given the limited spatial extent of the data, better results are likely to
obtained when it is used to complement aerial survey data which tend to have a large sp:
coverage but low locationateuracy.However, it has to be noted that we are not suggesting
the complete replacement of aerial survey data with GPS collar data. These two datasets a s
for different purposes. For instance, due to the survey design, aerial survsiildaiaainan

important method foestimatng animal populations whilst GPS collar data cannot be used fot
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that purpose since only a few individual animals can be collared at any giverFtitaee
studies could test whether models that combine both data setsrpleefder since the combined
data possibly samples a wider representation of habitats existing in the landscape. Further v
could involve a comparison of models based on points collected in open and closed habitat

order to tease apart the effectsamfdtional errors from those caused by changes in detectability
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A new method for correctinglocational error from aerial surveys improves habitat

model performance
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3. A new method for correctinglocational error from aerial surveys improves habitat

model performance

Abstract

The utility of aerial survey data in modelling the distribution of wildlife has been questione
due to locational errors. Yet, little effort has been made to correct these errors. Here, a r
method is proposed for correcting locational errors associated with aeriay slata. We
further tested whether the correction improves model performance using elephant aerial sur
data collected at three protected sites in Zimbabwe. Our correction method succeeded in shif
location by 143 to 177 m from the line of flight. Balson the true skill statistic, models built
using corrected data in Hwange and Mana Pools national parks were significantly better t
those from uncorrected data and only in Gonarezhou national park were no significe
differences in model performanceserved. These results underscore the benefit of applying
the new correction methddr modelling wildlife distribution. The other key result is that the
correction seems to be more beneficial in heterogeneous landscapes than homogeneous
for, in the former, a small shift in location results in the sampling of different habitats thal
where sightings were made. The proposed method opens new opportunities for improving

accuracy of aerial survey data in species distribution modelling.
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3.1 Introduction

The development of models to predict the spatial distribution of wildlife in a landscape
important for conservation. For instance, models that accurately predict the distribution of tar
species in a landscape provide useful insigiitsthe ecolog of the species thereby enabling
targeted allocation of resources for their protection. However, it is generally agreed that
accuracy of the wildlife distribution model predictiodspend on, inter alia, the quality of
wildlife location data (Wisz edl., 2008, Elith et al., 2006 hus, the development of methods

to improve the quality of wildlife location data is critical.

Several attempts have been made to improve the quality of wildlife data. HoteJfecus

has mainly been on developing metedor improving the quality of predictor variable data
such as vegetation cover and terrain, largely collected from remote sensing (Moisen et
2006) While the accuracy of wildlife presence data collected from radio telemetry has eith
been questiortk or documented since the 196(4eezen and Tester, 196@nd several
improvements have been suggedid., Fedak et al., 2002, Frair et al., 20106¢ locational
accuracy of data from aerial surveys has remained untested especially when applied toge
with remotely sensed predictor variables. Thus, focusing attention on ascertaining &

improving the accuracy of wildlife locational data from aerial surveys is critical.

Typical data collection using aerial surveys involves flyingxad-wing plane abng pre
selected transects and recording animals sighted within ~150 m wide search strips to the r
and left of the flight path (see Figure2} If distance sampling theory (Buckland et al., 2005)
is not applied during the survey, the position of dipalar animal sighting is recorded along
the line of flight when in fact the true position of the sighting is a distance away. Therefore, u
of aerial survey data, uncorrected for locational error, in modelling assumes that the samg

position is in thdine of flight when, infact, it should be somewhere inside the search strips. In
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highly heterogeneous landscapes, points separated by several metres might represent diff
habitats. Thusthe use of uncorrected data in those landscapes for predithiagpotential
distribution of target species possibly compromises model performance. Previous studies |
used aerial survey data for habitat modelling have had to use coarse scale environme
variables in order to avoid the pitfall of locational erféor instanceMurwira and Skidmore
(2005)indicated that the magnitude of error for aerial survey data is less than 500 m and hax

use coarse environmental variable data to avoid significantly influencing model performanc

To date somestudies that &ive used the uncorrected data in modelling have assumed that tl
error is so minimal that it has negligible effect on model performande.g., Murwira and
Skidmore 2005) In addition, to the best of our knowledge, little attempt has been made t
objectvely test whether correction of the data would affect the performance of models th
predict the potential distribution of species in the landscape. In fact, knowledge on whett
correcting locational error inherent in data collected from aerial surveyls!woprove model

performance remains largely rudimentary.

In this study, we tested the utility of a method for correctimglocationalerror in animal
presence data collected from aerial surveys. We tested whether the correction factors estim
in different study sites were the same. We also asked whether the corrected presence data v
improve the performance of models predicting the potential distribution of African elephan
(Loxodonta africanpin three sites located in Zimbabwe. It was alsended that if the
correction method can work in multiple sites, it is likely to work in other savannah landscape

thereby being generalizable.
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3.2  Materials and methods

3.2.1 Study sites

The study was conducted in the Gonarezhou, Hwange and ManaNRdmsal Parks of
Zimbabwe (Figure 4). These three sites are similar in that no hunting and other forms ¢
consumptive use of wildlife are permitted. However, the three sites differ in size, rainfa
vegetation, soils and elephant density. We seletiedtudy sites because they represent key

elephant range areas in the country (Child, 2@d4) have different environmental gradients.
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Zimbabwe. Maps also show elephant sightings data from aerial surveys as well as rainfall fr

Bioclim data
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The first study area lies in the Gonarezhou National RAr69°E32.41°E 21.11°S-22.07°3
located to thesoutheastof Zimbabwe(Figure 31(a)). The area is defined as that part of the
park located within the Landsat scene defined by path 168 and row 075 and is 323@7 km
size. Elevation ranges from 155 to 567 m wihihe meanslope is 2.78°. Total annual
precipitation fromlong-term records is ~450 mm. Major soil groups are Cambic Arenosols,
Luvic Arenolos and LithosolsThe vegetation found in the study atiegredominantlydry
deciduous savannah dominateddntophospermum mopaaadCombretunapiculatum The

park is home te-11,000 elephants at a density of ~2.25 animaf/km

The second study area is ~11,38%klies in the Hwange National ParR607E-27.46°E
18.525-19.63°3 and is located to the north west of Zimbabwe (Figutéd). This area is the
part of the natinal park which is located in the Landsat scene defined by path 172 and row 0
Long-termannual rainfall ranges from 450 to 650 mm. Elevation ranges from 830 to 1128 |
with a mean slope of 1.68°. Cambic Arenosols, Luvic Arenosols/eniit Cambisols ar¢éhe
dominant soil groups found in the ar@aikaeaplurijuga is the dominant vegetation type on
Arenosols whileTerminalia sericeaand Combretum spglominate the Cambisols. Elephant

density is ~3.02 animals/Knand is the highest in the country.

The third study area is ~2124 Krand comprises the entire Mana Pools National P2K BE-
29.74°E 15.67S-16.29°S found on the north of Zimbabwe (Figurel®)). Total annual
precipitation fromlong-term data ranges from 450 to 650 mm. The area is chaisedeby
elevation values of 268186 m and mean slope of 4.56°. Major soil groups include Chromic
Luvisols, Ferralic Arenosols and Lithosol€olophospermum mopangominates on the
Lithosols whileBrachystegia sppre dominant on the Arenosols. Elephanisitees are lower

than in the other two sites (~0.38 animals’km
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3.2.2 Calibration flights

The calibration of flights was undertaken as described by N@tdfiths (1978b) Prior to
aerial surveys in each of the three study sites, calibration fhgéte run with fixed wing
aircraft, that is, Cessna 185 fBonarezhouCessna 206 for Hwange and Cessnha 206 for Mana
Pools. This was necessary since the aircraft used and the observers who participated in
aerial survey were different. During caliboat, the pilot flew the plane at right angles to an
airstrip and above windsocklocated at the centre of the airstrip. The pilot had to fly past the
airstrip at a height of about 91.44(300 ft), which is the height used during the actual surveys.
Meanwhile, observers seated at the rear right andsiet of the aircraft visually scanned
between streamers (a pair of parallel carbon fibre fishing rods) fixed on the struts of the airci
and called out the maximum and minimum values of markers writtevhite paint on the
airstrip visible from the air. The markers were numbered from zero to 35 on each side of
windsock and individual markers were separated by 10 m. The values for the maximum ¢
minimum markers between the streamers on the side of @aserver were later used to
calculate the estimated strip width in metres for that observer. The total calibration runs wi

31 in Gonarezhou, 33 in Hwange and 30 in Mana Pools.

3.2.3 Correction of the locational error

Strip width data collected durinthe calibration runs were used to derive the estimated
correction factorD) for each site (Figure-3). D is defined as the distance between the line of
flight (marked by thevindsocKk and the centre of the average estimated strip width for the righ

andleft observers.
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‘Wind sock

Xr

(9]

Figure 3-2: The correction factor (D) = estimated distance between the line of flight (marke
by thewindsock and the centre of the average strip width for the right and left obse@vers.
distance between outer markers for both observers; average strip width for the right
observer; k= average strip width for the left observer; and Y is the width of the invisible are

underneath the aircraft and between the inner markers of bah/ebs

A total of nine derived equations were used to correct the inherent error associated with ae
survey locational data.

First, the average combined distance between the left and right outer markers was calculat:
as:

d -B & eqn 1
whered is the average distance between the outer markers of the right and left ob&isers;

the distance between the outer markers of the right and left observers during an individ

calibration run; and is the total number of calition runs for the site.
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The average strip width for the right observer was calculated as:

-

g -B eqgn 2
where ¢ is the average strip width for the right observeris the strip width for the'"

calibration runandn is the total number of calibration runs for the site.

Similarly, the average strip width for the left observer was calculated as:
O -B w eqn 3

where is the average strip width for the left obserweis the strip width for thé" calibration

run; andn is the total number of calibration runs for the site.

To calculate the invisible strip underneath the aircraft and between the inner markers of
right and left observers, equation 4 was applied:

® 6f bz a)z eqn 4

whered is the width of the invisible area underneath the aircéafs the average distance
between the outer markers for the right and left observersp artti were described before.
Then,D wasderived as follows:

o - 1L eqn 5

After calculating the correction fact@, the next step was to calculate the bearing of an
individual sighting located to the right of the flight path)(as :

— %o wTtJ eqn 6

where%.is the bearing of the transect.

Equation 7 was used to calculate the bearing of an individual sighting located to the left of t
flight path as given by:

— % wTJ eqn 7

where—is the bearing of the sighting to the rigif the flight path.

Equations 8 and 9 were then used to calculate the longitude and latitude at the corrected
location of the sighting, respectively.

®w wOoi Q¢ — egn 8
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©» WOonéi — eqn 9

wherew is the longitudeof the sighting along the flight patty is the estimated longitude of
the sighting after correctionyis the latitude of the sighting along the flight path;is the
estimated latitude of the sighting after correction; ‘@nslthe estimsged correction factor.

The three sites have similar terrain ruggedness (TaB)e &s a result, there was no need to
correct for terrain differences using a Digital Elevation Model (DEM). In addition, the
correction factors were less than 200 m, thusetief ect of t he eartho

error was deemed negligible.

3.2.4 A comparison of the correction factors using real data sets

Data collected during calibration runs in Gonarezhou, Hwange and Mana Pools National Pe
were used to estimat®orrection factors@) based on our suggested method. We later testec
whether the correction factors estimated for the three study sites were significantly differe
Oneway ANOVA was used to test whether there were any significant differences in the me
estimated values for the correction factors. ANOVA was used since data did not significan
deviate from a normal distribution (Gonarezhou: W= 0.9670.442; Hwange: W = 0.96),

= 0.286; Mana Pools: W = 0.969~ 0.512). The null hypothesis testeds thatD;=D>=D3.

The alternative hypothesis was that at least one of the Deaues differ. Following the

rejectionofH,, Tukeyds HSD tests were perfor med

3.2.5 Comparisons of elephant distribution models for corrected andincorrected data
Elephant location data corrected for position error using the method described before were L
to test whether the suggested correction method improves the performance of Spe
Distribution Models (SDMs). To achieve this, Maximum epyranodelling (MaxEnt) (Phillips

et al., 2004)was used with elephant presence data as the response variable and NDVI as \

as distance from water sources as the two predictor variables, to predict the poten
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distribution of elephants in the three stisites.MaxEnt is a genergdurpose machine learning
method that predicts the presence of target species gresenceonly data(Phillips et al.,
2004) Multi-collinearity was not detected since the two predictor variables were observed
be weakly comlated (Gonarezhou: r $.162; Hwange: r =0.085; Mana Pools: r = 0.168).
Evidence fromthe literaturesuggests that multiollinearity distorts model estimation when
correlation coefficients (|r|) between predictor variables excee@@imann et al.2013)
Correlation analysis was performed on raster data of the predictor variables using the Sp:

Analyst Tools of ArcGIS 10.{ESRI, 2011)

Location data for elephants used for modelling were collected during a national surv
conducted during the yrseason in August of 2014 (Mana Pools) and during the month o
October 2014 for both Gonarezhou and Hwaikyen though August and October occur in the

dry season, visibility of animals might differ during these months because of potenti
differences irvegetation condition. Locatiaiata were collected along transects located within

theindividual stratum. Table -3 provides more detail on the sampling parameters.
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Table 3-1: Details of the strata, digings, transects and the dates on which data were collecte

in Gonarezhou, Hwange and Mana Pools National Parks (Adapted from Dunham et al.201¢

# Spacing
Site Strata Sightings Transects (km) Bearing Dates
Gonarezhou Chefu 53 14 2.8 42 29 Oct
Chilojo A 81 15 1.7 45 26 Oct
134 ¢
Chilojo B 82 24 2 46) 28 Oct
Chipinda
Pools 121 26 2.2 0 26 Oct
Mabalauta NP 29 15 2.9 90 30 Oct
134 ¢
Naivasha 22 12 3.5 46) 26 Oct
Hwange Central A 64 10 4.4 66 15 Oct
-26
Central B 7 9 4.6 (154) 23 Oct
Dandari 19 29 2.5 0 16 Oct
Dzivanini 114 15 4 90 18 Oct
Main Camp 129 14 3.5 41 13 Oct
Mtoa 97 20 2.7 0 13 Oct
-52
Ngamo 199 17 3.4 (128) 22 Oct
Robins 129 11 3.3 90 10 Oct
Shakwanki 79 15 4.5 90 17 Oct
Shapi 342 26 2.2 0 16 Oct
Sinamatella 121 18 3.2 0 12 Oct
Mana Pools Mana | 64 32 15 0 25 Aug
Mana Il 151 22 1.8 90 31 Aug

All elephant presence data falling outside the boundaries of the study sites were excluded f
the analyses. The total number of elephant sightings used for analys8fasGonarezhou,

602 for Hwange and 160 for Mana Pools. Although the density of sightings later used f
modelling differed sigh f i ¢ &n 171168, df =2, p = 0.000) in the three sites, there was nc
need to adjust the sample sizes since the MaxEnt algorithm is not sensitive to sample size (\

et al., 2008)

NDVI was selected for modelling elephant distribution as a proxiofage quantity following

Garroutte et al. (2016bNDVI was calculated from Landsat 8 satellite data accessed from th
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Glovis platform (vww.glovis.usggyov). The acquisition dates for the images were 15/09/14 for

Gonarezhou, 13/10/14 for Hwange and(®014 for Mana Pools. We selected these dates
because they representeldudfree data acquired on dates closest to the time when aeria
survey data were collected at each site. We could not otitaid-free scenes that cover the
entire Gonarezhou and Hnge national parks and for tha&asonwe limited our analyses to
the parts of the study sites covered by available sceneprdtressing of the data involvée
conversionof radiance to Tomf-atmosphere (TOA) reflectance following the method
describe by Chavez Jr (1989)he actual conversion of radiance to TOA reflectance was
implemented in ENVI version 5.Ekelis Visual Information Solutions, Boulder, Colorado).

Later, we calculated NDVI using the standard formula (RIRIR+R).

Water is a key dver of elephant distribution hence its inclusion as a predictor variable in ou
models. We used the same Landsat 8 data described above to map water based on the Mo
Normalised Difference Water Index (MNDWI) described by Xu (200@ater pixels had
MNDWI values of greater than zero. We later calculated the distance of individual pixels fro
surface water using the Euclidean distance calculation algorithm implemedtezGiS 10.1

(ESRI, 2011)

MaxEnt was run separately for corrected and uncoudedgphant presence data. The numbers
of uncorrected points used for modelling were: Gonarezhou = 208, Hwange = 602 and Mz
Pools = 160. Since correction was undertaken for all points falling inside study areas, the s¢
numbers of corrected points werged for modelling. MaxEnt is a general utility presence only
SDM that has been known to perform better than prestenceonly models (Elith et al., 2006)

We ran the MaxEnt models in the Biomeod?2 package of the R soffWauéler et al., 2016)

For eaclstudy site, 30 model runs were performed using corrected data while the other 30 u:

uncorrected data to yield a total of 60 model runs per site. Foreach0% of the presence
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data were used to calibrate the model while the remaining B8%wset asié for model
evaluation as recommended in the literat{4eaujo and New, 2007)For each model run,
10,000 points were randomly generated and usegsesdeabsencesWe selected 10,000
pseudeabsenceb®ecause the number does not exceed the recommendadumain all the

three study site€Thuiller et al., 2016)

The Relative Operating Characteristic (RQ®)ason, 1982and True Skill Statistic (TSS)
(Woodcock, 1976)available in the Biomode2 were used to evaluate the performance c
MaxEntbased models ipredicting elephant presence when ran with corrected or uncorrecte
data. Each of 60 model runs generated th
t-test was used to compare whether ROC and TSS values differed significantly for MaxE
modelsran using corrected and uncorrected elephant presence data. This test is parametric
requires that the test variable follows a normal distribution. The data were tested for normal
prior to statistical analysis and were found not to significaptty@.05) deviate from a normal
distribution. Tests for normalitgf distributionfollowed the procedure described by Shapiro

and Wilk (1965)and were implemented in the R softwéreCore Team, 2017)

We used the logistic threshold of equal training sefitgitand specificity to obtaira binary
classification of the predictions for each model while continuous probabilities of presence we
presented as maps. We later compared the size of the area classified as the potential distrib

of elephants for b the corrected and uncorrected data.

3.2.6 Comparison of NDVI, distance from water and Terrain Ruggedness Index
We compared NDVI, distance from water and the Terrain Ruggedness Index (TRI) to establ
whether therevere differences in the values of the@redictor variables at the corrected and

uncorrected elephant presence sites. The TRI was calculated using the method suggeste
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Riley et al. (1999) The method uses a DEM to calculate the absolute difference betwee
elevation in a central pixel and ieighbouring pixels. The value obtained is later averaged tc
obtainthe meandifference in elevation. The index measufesroughnes®f the landscape.
The oughnessof the landscape potentially has an effecttioa calculationof a corrected

position ugng our suggested method.

NDVI, distance from water sources and TRI at elephant location sites from both the correc
and uncorrected data sets were extracted using standard overlay functions implemente
ArcGIS 10.1 (ESRI, 2011)For each study sitehe values extracted at the corrected and
uncorrected sites were compared using the MAfimitney U statistic since data were not

normally distributedThe sgnificanceof the results was inferred at an alpha level of 0.05.

3.2.7 Test for spatial autocorrelation of NDVI

Next, we tested the maximum distance at which spatial autocorrelation existed in the ND
data. The «istenceof spatial autocorrelation at long distances is associated with mor
homogemrousvegetation cover than ahorterdistances. Theariogram method was used to
establish the distances at which NDVI data showed spatial autocorrelation. First, NDVI valu
at corrected and uncorrected sites were extracted using the method described above. Se
the semivariance of NDVI for coordinategirs was calculated using the method described in
detail by Clark (1979)Next, the semivariance was plotted against lag distances at an interva
of 500 metres to produce variogram clouds. Then, exponential functions were fitted to t
variogram clouds uisg the eye fit function implemented using the geoR package in R Softwar
(Ribeiro Jr and Diggle, 2001)inally, the Nugget, Range and Sill were extracted from the

analyses.
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3.3 Results

We observe that the suggested correction method was successftinrating corrected
location in Gonarezhou, Hwange and Mana Pools (Figudg JIhe correction was also
successful in areas with different transect bearings. We also observe that the correction fa
(D) differed significantly in the three study areas {F= 21.524p < 0.0001) (Figure-3). The
following are the estimated correction factors: Gonarezhou (175.4 m); Hwange (142.7 m); &
Mana Pools (177.9 m). Pairwise compari so
differences in the estined correction factor between Gonarezhou and Hwamge0(0001);

a significant difference between Hwange and Mana Popls (0.0001); and no significant

difference between Gonarezhou and Mana Pqo#s(.05).

(c)

0 1 km
—

Figure 3-3: Location of selected uncorrected and corrected elephant presence points in
Gonarezhou; (b) Hwange; and (c) Mana Pools. Note that the transect bearing in (a) = 0°; (k

128°; and (c) = 90°
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Figure 3-4: Comparison of estimated correction factors for Gonarezhou, Hwange and Mal

Pools

We also observe that using ROC as the evaluation metric, the models from corrected c
performed better than those from uncorrected data in Hwange (t = @i82%58,p = 0.000)
while in Gonarezhou and Mana Pools their performance was not significantly differel
(Gonarezhou: t = 0.151, df = 58> 0.05; Mana Pools: t = 1.702, df = 8> 0.05) (Figure 3

5). When TSS was used as the evaluation metric, thdelsduilt using corrected data in
Hwange and Mana Pools significantly differed from those built using uncorrected da
(Hwange: t = 13.423, df = 58,= 0.000; Mana Pools: t = 3.081, df = 38+ 0.003) while in

Gonarezhou we observed no significant défece (t =1.137, df = 58p > 0.05).
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Figure 3-5: Comparison of models built using corrected and uncorrected data. Resul

illustrate; no significant difference in performance of both data sets in Gooarkabked on (a)

TSS and (b) ROC,; significant difference in the models based on (c¢) TSS and (d) ROC

Hwange; and significant difference in the models based on (c) TSS and (d) ROC in Mana Pc

Results from our analysis illustrate that the predicted elephabitat was consistently larger

for corrected data than for uncorrected data. Predicted habitat in Gonarezhou using corre

data was 1690.78 Khwhile that for uncorrected data was 1630.10°kin Hwange, the

predicted habitat from the model usingremted data was 4385.31 kmvhile that predicted



using uncorrected data was 4333.65°kithe predicted habitat for elephants in Mana pools,
from corrected data was 896.20 kmhereas that from uncorrected data was 853.22 km
Overall, we observe that untected data underestimated the potential habitat of elephants

60.68 knt in Gonarezhou, 51.66 Knn Hwange and 42.99 khin Mana Pools.
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Figure 3-6: Probability of elephant presence predicted usingected and uncorrected location

data in Gonarezhou, Hwange and Mana Pools
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Comparisons of extracted values of NDVI, distance to water and terrain ruggedness at elepl
presence sites showed no significant differenge>(0.05) between the corrected and

uncarected data (Table-3).

Table 3-2: Comparison of NDVI, distance to water and terrain ruggedness at corrected a

uncorrected elephant presence sites

Study area  Variable MannWhitney U Wilcoxon W Z P-value
Gonarezhou NDVI 21050 42786 -0.475 0.635
Distance to water 21222 42958 -0.334 0.738
Terrain
ruggedness 20688 42424 -0.771 0.441
Hwange NDVI 180323 361826 -0.146  0.884
Distance to water 180557 362060 -0.107 0.915
Terrain
ruggedness 179764 361267 0.239 0.811
Mana Pools NDVI 180323 361826 -0.146  0.884
Distance to water 180557 362060 -0.107 0.915
Terrain
ruggedness 12790 25670 -0.012 0.990

Next, results illustrate that variogram clouds for NDVI data extracted at elephant presence s
correct@ for locational error have spatial atgorrelation to distances of >=8 km in all the
three study sites. Spatial autocorrelation was observed up to; 15 km in Gonarezhou (Nugge
Range = 15000 m, Sill=0.001); 10 km in Hwange (Nugget = 0, Range = 10(6i0+8,01);

and 8 km in Mana Pools (Nugget = 0, Range = 8000 m, Sill = 0.02).

3.4  Discussion

Results of this study indicate the utility of the correction in modelling wildlife habitat. In
particular, results for Hwange and Mana Pools National Parksatedithat the corrected data
improved the performance of the elephant distribution models. This is consistent with rest
reported in an earlier study thatimal locationdata collected during aerial surveys consistently

perform poorly in SDMs comparedtiw GPS collar data (Ndaimani et al., 2016he reported
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improved performance of the corrected data in our study areas provides a basis for the nee
use corrected data for modelling. Based on these results, it could be claimed that model
elephant dstribution using uncorrected data could possibly give results with lower levels c
accuracy. Our suggested correction method shifts the supposed location closer to the ac
location in the landscape. In other words, the shift in location introducdzk lmptrection may

be enhancing the probability that the sampled location closely resembles the actual locat

where the elephants were sighted thereby possibly improving model performance.

Although the corrected data generally improved habitat modtrpsance, it did not improve
model performance in the Gonarezhou National park. This could be explained by low
heterogeneity in the vegetation cover of Gonarezhou National Park. In fact, results frc
variogram models computed from NDVI data showed th@tGonarezhou landscape is more
homogenous when compared to the other two landscapes. Thus, we speculate that failur
the corrected data to improve model performance in Gonarezhou could be linked to
homogeneity in GNP compared with the other stuéps These findings may suggest that the
performance of corrected data in SDMs is better in more heterogeneous landscapes 1

homogeneous ones.

The calculated correction factor (D) estimated from calibration data was found to be differe
among the sty areas. Particularly, the correction factors for Gonarezhou and Mana Pools we
not significantly differentig > 0.05) whilst the correction factor for Hwange was significantly
smaller. The same aircraft (Cessna 206) was used in Hwange and Mana Paelsvehe
different one (Cessna 185) was used in the Gonarezhou National PatkeY¥®reclaim that

the model of the aircraft used hasimited effect on the magnitude of the correction factor.

However, the pair of observers used in each of the thudg ateasveredifferent. Thus, results
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suggest that the observers potentially influence the correction factor since these were not

same in the three study areas.

Unlike previous studies that have used aerial survey data to model elephant halgkte&(8in
Milner Gulland, 2011, Murwira and Skidmore, 2008)r studyrepresents a novel attempt to
use corrected aerial survey data to model elephant habitat. In fact, results indicate
improvement in the model quality based on these corrected datacotitdsfurther improve
our understanding of wildlife distributions. However, we caution that while the correction is &
important first step, it is not always precise as it shifts location to the centre of a search s
~150 m wide. Therefore, related frguwvork could involve further testing on whether and how

the corrected data influences the performance of SDMs in more heterogeneous landscape:

3.5 Conclusion

In thisobjective we describe a simple method for correcting locational error inherentialani
presence data collected during aerial surveys. We found out that the magnitude of the correc
factor (D) differs by study area. We also found out that the corrected data improved t
performance of models predicting the potential distribution gbrelats, especially in less
homogenous landscapes. Our results are amongst the first attempts to improve the qualit
animal presence data collected withthe@useof distance sampling during aerial surveys. Our
findings are relevant to spatial ecologisind wildlife managers who use data collected from
aerial surveys for research as well as for managemdthiough the suggested correction
method significantly improved the performance of models that predict the potential distributic
of elephants, we pceeded to use GPS collar data in the following objective. This is largel

because GPS collar data possess both better locational accuracy and temporal coverage.
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Chapter 4

Elephant (Loxodonta africang GPS collar data show multiple peaks of occurrence

farther from water sources

Photo by: Ndaimani H

This chapter is based on:

Ndaimani, H., Murwira, A., Masocha, M. and Zengeya, F.M., 2017. Elephaxbdonta
africand GPS collar data show multiple peaks of occurrence farther from water source

Cogent Environmental Science, 3(1),-A1
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4. Elephant (Loxodonta africang GPS collar data show multiple peaks of occurrence

farther from water sources

Abstract

The undestanding of animal distribution in habitats located farther from water sources has r
been dealt with adequately in literature, yet this knowledge enables better prediction of spet
occurrence across an entire landscape. We tested whether elepharthcequeaks away from
water in addition to the known peak that is associated with water sources. We used
Maximum Entropy Modelling (MaxEnt) algorithm to predict the potential distribution of
elephants in the Gonarezhou National Park, Zimbabwe. Eleptzecking data from Global
Positioning System (GPS) collars were used as the response variable while NDVI (a proxy
forage quantity) and water sources data were the environmental variables. Results sho
multiple peaks of elephant occurrence with @aging distance from water sources.
Additionally, results illustrated that the peaks occur in high NDVI areas. Our finding:
emphasise the utility of GIS and remote sensing in enhancing our understanding of anir

occurrence driven by water sources.
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4.1  Introduction

Drinking water and forage are generally understood to be key drivers of animal distributions
tropical landscapes. This is particularly true in savannah ecosystems where vegetation cov
heterogeneous (Roever et al., 2048y drinking weer largely limiting(Chamaille Jammes et
al., 2007) Animals forage in order to meet their energy and praeguirementsand drink
water primarily for thermoregulatory purposes. Consequently, it is generally agreed that t
movement of animals acrossitiscapes is not random but rather follows the Optimal Foraging
Theory which states that animals seek to get the most energy gain at the lowest cost as a str
to maximise fithnes@MacArthur and Pianka, 1966)hus the accurate prediction of the poténtia
distribution of animals in most landscapes depends on the inclusion of water and forage

predictor variables.

Several studies reported that animals forage near water sources in order to minimise
distances they travel to access water (Follett agigddlo, 2002, Epaphras et al., 2008)is
behaviour has largely been reported amaagerdependenspecies that need to drimdlaily
(Wilson, 1966)and is common during the hot and dry months when heat stress is enhanced
high temperature@Coleman et la 2004, Wakefield and Attum, 20Q@for instance, African
elephantsl{oxodonta africanphave been observed to drink water daily (De Beer et al., 2006
and also forage close to water throughout the (@aylard et al., 2003)/Vhen the probability

of animal occurrence is relatively high in habitats close to water, we would expect density pee
to occur around water sources where distribution is linkédetavailability of water(Redfern

et al., 2003, Shannon et al., 200dpwever, there is often a tdff between access to water
and forage as animals may have to weigh the benefits of foraging near water where the pres
on forage is high or travelling farther fraitme waterwhere competition on forage resources is
reducedRedfern et al., 2003Ppegite widespread knowledgé animal occurrence near water,

knowledge on how they are distributed in those habitats farther from water remains larg
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rudimentaryWhile the distribution of animals in habitats near water sources could be viewe
as a stratggto maximise the intake of water, the habitat factors that drive the occurrence
animals in landscapes farther from water remain uncleéas therefore important to also
investigate the response of animals in habitats that are located farther fremsawates in

order to get a more complete view of animal distributions in the landscape.

In the past, studies that sought to understand the occurrence of animals in habitats near v
sources relied to a great extent on ptased field measurementsge Lange, 1969, e.g.,
Butler Jr et al., 1995)This approach virtually resulted in better understanding of more localise:
patterns that are limited to the sampled areas while ignoring those at the landscape sc
Consequently, understanding of animaturtence dynamics near water sources has been wel
developed(Mukwashi et al., 2012b) Ear | i er studies widely
which predicts that the pressure of herbivory on vegetation is higher near water than fart
from water(Landmanet al., 2012, James et al., 1998¥ a result, animadriven vegetation
change near water points is well researched whilst the possible change farther from water
generally remained uncl ear. 't i s iosppever t
effectd mostly depended on Ilargescaldspatmledatsthat e
allows for a landscape viewerenot readily available. In more recent years, the development:
in Geographical Information Systems (GIS), remote sensidg&obal Positioning Systems
(GPS) have allowed the testing of hypotheses related with the potential distribution of anim
at large spatial scald®hillips et al., 2006)For instance, it is now possible to obtain freely
available remotely sensed datdlee global scale and at relatively fine spatial resolutions which
wasimpossible in the pagHijmans et al., 2005)n addition, the developments in GPS collar
tracking in recent years has made it possible to obtain fine grain movement data for tar
animal species. Thus GIS and remote sensing can now be applied to enhance our understar

of animal occurrence near waterholes as well as farthertfremater
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In this study, we used elephant tracking data from GPS collars together with EIPkaxfy

for forage quantity) and water sources data to test whether elephant occurrence peaks ¢
from water in addition to the known peak that is associated with water sources. We also te:
whether the peaks of elephant occurrence away from water are asswacdthtédgh forage
quantity (estimated using NDVI). We specifically hypothesised that elephant occurrence pe:
near water in a hypothetical landscape with homogeneous vegetation (Fgaje Hhis
hypothetical pattern is mainly because the availabilitfjoohige will be uniform across the
landscape and therefore water will be expected to have more impact on the distribution
elephants than the other predictor variables. However, in a more realistic landscape v
heterogeneous vegetation cover such asrtpical savannahs, the response would be intricate
and typified by multiple peaks of occurrence at increasing distance from water (Figoye 4
The other peaks farther from water would be driven by other factors like forage abundance. (
study provids important insights into the precise response of elephants to the distribution

water within landscapes characterised by heterogeneous vegetation cover

(a) Homogenous landscape (b) Heterogeneous landscape

Probability of presence ——

Probability of presence ——

Figure 4-1: Hypothetical framework: the predictedsponse of elephants to water in (a) an
imaginary homogeneous landscape characterised by uniform forage quantity and (b) a nr

realistic heterogeneous landscape characterised bymfmrm forage quantity
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4.2  Materials and methods

4.2.1 Ethics statement

Handling of African elephants for GPS collaring was monitored by the Zimbabwe Parks al
Wildlife Management Authority as well as licensed drug handlers approved by the Division
Veterinary Services in Zimbabwe. The two departments provide and enfaoeiltlife

collaring guidelines for research in the country.

4.2.2 Study area

This study was carried out in northern Gonarezhou National Park, located between longitu
31.75°- 32.41°E and latitudes 21.10°21.76° S in soutleast Zimbabwe (Figure-2). The
study area has a typical seasonal savannah climateowgtermannual rainfall averaging 600
mm. Data collected from a weather station in the study area shows that annual rainfall was
mm in 2009, 552 mm in 2010 and 580 mm in 2011. Rainfakkdgived from November to
April while the rest of the year is dry (Gandiwa et al., 20Mggetation is dry deciduous

savannah dominated I8olophospermum mopaaadCombretunapiculatum
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Figure 4-2: Elephant location data (from Global Positioning System (GPS) collars) collectec
from the eight elephants during 13 selected months between July 2009 and November 201

northern Gonarezhou National Park, see#st Zimbabwe

The study area lies within a proted area that has an estimated elephant population of abot
10,000 (Dunham et al., 2013)Ve identified this area as ideal for answering our hypothese:
because 1) data on the location of collared elephants is available for 3 years (2009, 2010
2011), dlowing for analysis within three years of different rainfall amounts, and 2) perennie
water is restricted to the major rivers especially during the dry season thus making water
important driver of animal distribution. No artificial water sources erisie study area, thus

rivers and natural pans are the osiyrce of drinking water for animals.
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4.2.3 Elephant location data

Data on the location of elephants were collected during 13 selected months and the numbe
occurrence points used in theadyses is shown in Table We selected the months used in
the analyses based theavailability of data and those months with few occurrence points were

left out.

Table 4-1: Elephant occurrence pointsad in the prediction of elephant habitat and the dates

on whichtheterrdMODIS NDVI image was acquired.

Month Elephant occurrence poin Date of Image acquisitiol
July 2009 175 28/07/09
August 2009 187 29/08/09
September 2009 170 30/09/09
November 209 216 17/11/09
July 2010 136 28/07/10
August 2010 147 29/08/10
September 2010 128 30/09/10
October 2010 98 16/10/10
November 2010 138 17/11/10
August 2011 112 29/08/11
September 2011 103 30/09/11
October 2011 102 16/10/11
November 2011 85 17/11/1n

Eight elephants were fitted with GPS collars in the study area in July 2009. The collars we
programmed to take a minimum of three position fixes per day for a period of not less that
years depending on the battery life of the unit. The average¢oess rate for the GPS collars
during the 13 months selected for analyses was 81 %. For our analyses, we used only the
collected during the 13 months presented in Table We were particularly interested in

analysing elephant distribution duriniget dry months when surface water is limiting in the
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study area. For thigasonthe wetter months from December to June were not included in ou
analyses. Since our study area did not cover the entire range of the collared elephants
masked out all pason fixes that were located outside the study area boundary using the cli

function implemented in a GIS.

4.2.4 Normalised difference vegetation index
NDVI data used to predict elephant habitat were extracted from the 16 days terra/MODIS d
(MOD13Q1)freely available at the 250 m spatial resolution. These data are provided alrea

corrected for water, clouds, heavy aerosols and cloud shadows (Olofsson et al. Vi2®07)

downloaded the data from theww.glovis.usgs.gowvebsite where they are availabler fo

download free of charge. The dates on which these data were acquired are presented in T
4-1. Since two composites of the 16 days data are available during each month, we selecte
data acquired during the latter half of the month for consist&eymetric corrections included

conversion from the sinusoidal (SIN) to the Universal Transverse Mercator (UTM, WGS &
Zone 36S) projection to ensure compatibility with the elephant location data. Two tiles (h20v
and h21v11) were required to cover thearerstudy area. We later mosaicked and clipped the
images to the size of the study area. In this study, we used NDVI as a proxy for forage quar
following Garroutte et al. (2016&forage quantity is an important habitat variable for elephants
during the drier months of the year because it is largely limiting at that time especially i

savannah landscapes.

4.2.5 Distance from water sources

In order to determine the water sources available in the study area during the months inclu
in the analyses, wesed 16 days MODIS NDVI data described abdve data are provided at
the 250m spatial resolution. It was least likely that some water sources were missed dur

mapping since no artificial water is supplied in the study area and the sources that leave w
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during the dry season are big enough to be picked even at the spatial resolution NR%0m.
values range froral to +1, where negative values are generally associated with water bodi
and positive values with vegetation. Thus it is possible to ulseeshold approach to extract
water surfaces from NDVI data. We extracted water surfaces from the monthly generated NC
following the method described by Huang et al (20&djere a pixel is considered water when
NDVI is less than zero. Although othedinesfor extracting water sourcésve been proposed
such as the Modified Normalised Difference Water Ingdax 2006)we could not use thadex
sinceit uses the green and midfrared bands which are not available on the MOD13Q1
product. While Landsamages have these bands, favailability of cloud-freeimages limited

our analysis to MODIS images whose availability is enhanced by their high temporal resolutic
We did not evaluate the accuracy of the resultant classification since we did not have
independent fiekbased data set for validation. However, the method used in our study has be
used elsewher@.g Kameyama et al., 200dnd has yielded reasonably accurate results in those

landscapes thus justifying its use.

After extracting the watesurfaces for each of the study months, we then calculated the distan
of individual pixels from the nearest water sources using the Euclidian distance calculati

algorithm implemented in a GIS.

4.2.6 Modelling probability of elephant occurrence

We modded the potential distribution of elephants in the study area using the Maximur
Entropy Modelling (MaxEnt) algorithm. MaxEnt is a general purpose machine learning methc
that has widely been used in species distribution modelling and has been obseeréal o
better than other methods (Elith and Graham, 2008 used elephant occurrence data from
the eight GPS collars described above as the response variable while NDVI and distance f

the waterwere used as the predictor variables. The two predietoables were used in the
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models since they are widely accepted as key drivers of elephant distribution in mc
landscapes. Overall, we built 13 models, a model for each of the selected 13 months. The of
for removing duplicate presence records wasctetl to ensure that MaxEnt does not sample

the same pixel several times.

The Area Under Curve (AUC) of the Receiver Operating Curve (ROC) was used to validate
ability of individual models to predict elephant occurrence. A model was observed asedequi
very good and excellent when the AlWas 0.70i 0.80, 0.80f 0.90 and AUC = 0.9601.00

respectively (Panczykowski et al., 2012)

Graphs showing the response of elephants to distance from water sources were use
determine peaks of elephant occureefarther from water sources. The peaks were defined a:
the points where the predicted probability of occurrence was above the logistic threshold
equal training sensitivity and specificity. The distance from water at which elephant occurrer
peaked wasxtracted from the response curves. The same procedure was followed for detect
peaks of elephant occurrence in relation to NDNéxt, we extracted NDVI and elephant
probability of occurrence values at the elephant position fixes used for modellengxfFacted
NDVI values were then plotted against extracted probabilities of elephant occurrence &
polynomials fitted to the data. To establish whether the peaks of elephant occurrence coinci
with high NDVI, we plotted elephant response to water erstime axis with the polynomials

relating NDVI to distance from water.

4.3 Results
Results show that the two predictors, distance from water sources and NDVI explained mos
the variation in the probability of occurrence of elephants across the laad3Gape 42).

However, it can be observed that distance from water consistently predicts elephant distribut
84



better than NDVI over the three year period. We observe that the AUC of the ROC curves fr

the models can be rated adequate (August 2009, ri8leete2009, November 2009, August

2010, September 2010 and October 2010), very good (July 2009, July 2010, November 2(

August 2011, October 2011 and November 2011) and excellent (September 2011).

Table 4-2: Performance and variable contribution of the MaxEnt models predicting th

geographical distribution of elephants in the GNP during the dry season months of 2009, 2(

and 2011
Month Test dat a Model The ontributionof thevariable
gual it (%)
Distance fronthe NDVI
watersource
July 2009 0.832 £ 0.022 Very good 72.8 27.2
August 2009 0.796 + 0.029 Adequate 69.2 30.8
September 2009 0.740 £ 0.030 Adequate 57.3 42.7
November 2009 0.775 + 0.022 Adequate 54.3 45.7
July 2010 0.854 + 0.020 Very good 65.9 34.1
August 2010 0.722 + 0.029 Adequate 55.4 44.6
September 2010 0.719 £ 0.033 Adequate 75.3 24.7
October 2010 0.780 + 0.038 Adequate 68.5 31.5
November 2010 0.838 + 0.022 Very good 64.7 35.3
August 2011 0.855 + 0.022 Very good 65.2 348
September 2011 0.912 £ 0.015 Excellent 53.0 47.0
October 2011 0.806 + 0.030 Very good 72.8 27.2
November 2011 0.864 + 0.024 Very good 78.8 21.2
A Model quality threshol dsi OB Yeylgoodsn0.80h e

0.90, Excellent 9.90-1.00 (Panczykowski et al., 2012)

y Abbreviations

used: AUC,

and Normalised Difference Vegetation Index.

Response curves illustrate that elephant occurrence consistently peaked twicistetted

SD,

and

NDVI

1

from water sources (Figure3). However, this pattern is not observed in October 2010 anc

September 2011 where elephant occurrence peaks three times and once respectively. Ov
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the first peak is located near water (not more than 9 km awalg thie other is farther from

water (more than 50 km away)(Tabl3%
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Figure 4-3: Probability of elephant occurrence (P (E)) plotted against distance from watse
sources and NDVI from July 2009 to Novemb@d 2. Elephant occurrence generally peaked

at least twice with distance from water sources. The continuous horizontal line represents
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logistic threshold value of equal training sensitivity and specificity (values above the lin
represent elephant hatitahile those below represent nbabitat).

Table 4-3: Peaks of elephant occurrence away from water sources and minimum NDVI with
elephant habitat (habitat = probability values > the logistic thresholdiaf &gqining sensitivity

and specificity)

Month The dstanceat which Number Minimum NDVI Logistic
elephant probability of of peaks within elephant threshold
occurrence peaked away habitat
from water sources (km)

July 2009 0-45&7.1:324 2 0.614 0.3%

August 2009 0-2.9 & 15.924.6 2 0.369 0.395

September 2009 0-2.0 & 14.331.5 2 0.343 0.383

November 2009 0-2.5 & 17.626.0 2 0.348 0.460

July 2010 0.55.8 & 35.2 2 0.654 0.362

August 2010 1.45.0 & 26.2 2 0.415 0.466

September 2010 4.9-8.4 & 136-34.8 2 0.304 0.473

October 201® 0-1.6 & 10.421.6 &31.t 3 0.298 0.402

November 2010 0-2.0 & 11.930.9 2 0.564 0.377

August 2011 0-2.2&11.818.3 2 0.393 0.322

September

2011* 2.516.8 1 0.280 0.322

October 2011 0-2 & 7.524.8 2 0.275 0.358

November 2011 2.68.4 & 41.149.9 2 0.800 0.428

It can also be observed thake high probability of elephant occurrence coincides with high
NDVI values (Figure 48). In addition to this observation, response curves illustrating elephar
occurrence plottedgainst distance from water peaked consistently with those showing NDV
plotted against distance from water (Figur&)4NDVI values in areas predicted as suitable for
elephants range from a minimum of 0.28 in October 2011 to 0.80 in November 20114(Table
3). These NDVI values are observed to be generally higher in July and November than the

of the months under study.
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Figure 4-4: Probability of elephant occurrence (P (E)lotted line, and NDVT continuous

line plotted against distance from water sources, from July 2009 to November 2011.

4.4  Discussion

Results in this study seem to suggest that elephant occurrence peaks farther from wate
addition to the expected peak near water sources.thrgeforeconfirms our main hypothesis
that in a heterogeneous landscape characterised by patchy vegetation cover, elep
occurrence peaks more than once with distance from water sources in response to fol
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resource clustering. This is because evideffom our analyses suggests that the patches
selected by elephants farther from water are characterised by high NDVI values, i.e., h
forage (Figure 4). In fact, elephant occurrence peaked in patches with minimum NDVI value
of about 0.44 and theseeas are generally classified as forests (Nemani and Running, 1997
This is not surprising as elephants are -selective bulk feeders that often select highly
productive patches (i.e., high NDVI) either for foragin&uggiero, 1992)or for
thermoregulatio under tree canopies (i.e., high ND¥inahan et al., 2007PDur results seem

to contradict earlier studies that reported that elephants select landscapes of intermec
vegetation covefRoever et al., 2013, Gara et al., 20B5sed on our findingsye thus deduce
that elephant occurrence peaks in areas with high forage quantity farther from water and

could be for foraging purposes.

Our results also suggest that while both water and forage are key predictors of eleph
occurrence, the availaliyf of water explains the distribution of elephants better than vegetatior
cover (estimated by NDVI) (Table-2). This finding is supported by earlier studies where
elephants have been reported to drink water daily (Viljoen, 1989, De Beer et al.a@086)y
within 20 km of water(Loarie et al., 2009)This is particularly common during the hotter
months of the year when demand for water is high. In this regard, data used in our analy
were also collected during hotter months of the year making tletedpmportance of water
not surprising. Our findings therefore unsurprisingly reinforce the notion that elephants &
water dependent since the first peak in elephant occurrence was generally observed at less
9 km away from water although duringestied months they ventured further than 50 km away

(Table 43).

The finding that elephant occurrence peaks farther from water in addition to the peak close

water is of particular interest to landscape ecologists since elephactd vegetation change
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has historically been well explained in landscapes close to water than those farther away. Ov
to alocal overabundance oflephats near water, most studies have repogtephantinduced
vegetation change linked to water sources (De Beer et al., 2886 aille James et al., 2007)
However, following our findings, attention could now be directed to the hotspots of elepha
occurrence farther from water to test whether these landscapes could also be experien
elephaninduced vegetation change iniengar way to those landscapes closer to water. Our
findings, therefore form the basis for formulating hypotheses that test for elephduted

vegetation change in landscapes located farther fvatar.

Results from our study represent observatiorgelg made during the dry season. Application
of the findings to the wet season shqulwerefore be done with caution. Even though our
observations pertain to the dry season, inawever,emphasisghat an understanding of
elephant distribution during &t time of the year is critical since their rangimghaviouris
highly influenced by the availability of surface water (de Beer and van Aarde,.2008)
addition, while our study has been successful in reporting multiple peaks of elephant occurre
farther from water using dry season data, future studies could extend this analysis to the
season to establish whether similar findings can be made when surface water is abundant. C
work could involve tracking elephants in the field to establish wheitiegrselect high NDVI
patches for forage, thermoregulation or any other purpose. Despite our effort to remove spe
dependence in elephant occurrence data u:
MaxEnt, future work could use more robustthrods (e.g., spatial filtering) to deal with spatial

bias.

4.5  Conclusion
In thischaptey we reported multiple peaks of elephant occurrence farthenftater We also

reported that these areas of peak occurrence are associated with high NDVI. {Dgs fand
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amongst the first to provide empirical evidence for the existence of multiple peaks of eleph:
occurrence farther from water during the dry season. Results from our study provide the b:
for formulating hypotheses that test for elephaducedvegetation change in peak elephant

occurrence patches located farther from water sources.
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Chapter 5

GPS-collar data confirm the selectiveuse of a protected patchy Africansavannah

landscape by elephantsloxodanta africana)

This chapter is based on:

Ndaimani, H., Murwira, A., Masocha, M. and Gara, T. W., 2017.-Gélar data confirnthe
selectiveuse of a protected patchy Africaavannahlandscape by elephantkokodonta

africang). Submitted to PlosOne
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5. GPS-collar data confirm the selectiveuse of a protected patchy Africansavannah

landscape by elephantsl(oxodonta africang

Abstract

Understanding the influence of landscape patch heterogeneity on habitstioniliby
megaherbivoresuch as the Afrign elephantl(oxodonta africanpin the patchysavannah
landscape is an important objective in conservation ecology. To date, existing knowledge
whether the African elephantilises a heterogeneous landscape uniformly or selectisely
largely based odata collected via observing selected individual elephants for a few daytim
hours in the field and recording what they eat. Thus the knowledge generated from those ¢
remains inconclusive because the window of observation is limited in space artehiraeced
availability of satellite data and Global Positioning System (GPS) tracking of collared anime
enables observation at a wider spatial and temporal window. In this studydB&Jlata from

15 elephants, collected over two years in Gonarezhdiomé Park, Zimbabwe, were used to
test whether elephant length of stay (estimated with Linear Time Densieyspeedof
movement as well as patch selection differed significantly among vegetation type
Comparative use of vegetation type by elephats t@sted using the Compositional Analysis
algorithm of the adehabitatHS package in R softwEephants (1) selectively used the patchy
savannahlandscape; (2) moved fastest in mixed woodland on clay Bradhystegia
Julbernadia woodland; (3) moved slowe in Combretumapiculatum and Androstachys
woodland; and (4) stayed longestGnapiculatumand mixedBrachystegiazegetation types.
These findings provide the basis for formulating hypotheses which test whether etipremt
vegetation change could Héferentiated by vegetation type while also underscoring the utility
of GPScollar tracking and satellite remote sensing in elephant conservation in the Africe

savannalt@andscape.
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5.1 Introduction

Megaherbivoressuch as the Africarsavannahelephant Iloxodonta africanahereinafter
elephant) are known to be less selective when foraging (Osborn, 2005, Wittemyer et al., 20
This foraging strategy has been attributedtsanherently high daily energy requirements.
Thus, in a patchy landscape where f@raesources are limited, the elephant is expected to fee
on any vegetative material that is abundant. In fact, existing knowledge shows that in bion
charactesed by seasonal water availability like theevannahelephants prefer to graze during
the we-season when grasses occur in abundance, but browse more duringsbastry when
fresh grass biomass is in short sup@@odron et al., 2006, Tangley, 199Assuming this
observatiorto bevalid, it is therefore expectatiat plant communitiethat contributeto the
bulk of community biomass are usiid more by elephants when foraging in a habitat with
patchily distributed food resources. In light of this backgrouihd logical to assume that
elephantsoam the landscape in search of food at randatimout being particularly selective.
Whether elephants selectively or uniformly utilise a heterogeneous landseapbeen
questioned in several studié®r instance, Okello et €015)reported that elephants exhibited

a preferencefor bushlandand wadland habitats in the Amboseli ecosystem, Kenya. In a
separate study, Duffy et &011)also provided evidence dhe selectiveuse of habitat by
elephants. Based on these conflicting viewpoints on fedzBhgviour we, thereforeseek to

revisit the qe s t idmetephants selectively or uniformly utilise a heterogeneous lan®séape

Savannahare typically charactesed by a mosaic of grass and woody vegetation communities
in the same landscape (Scholes and Archer, 18#fjce, key resources suchasafe are also
patchily distributedlf elephants nosselectively utilise the landscape, then thestectionof
foraging spotss predicted to be uniform across all vegetation types as shown in the concepti
framework presented in Figurelfa). On the ther hand, if the elephant is selective as some

studies have suggested, then a discernible preference for certain vegetation types is inevi
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and this can be charactad (see Figure-%(b)). Thus it is critical toinvestigatewhetherthe

selectionof vegetation types by elephants is random across a heterogeneous landscape i

effortto better understand their potential impact on ecosystems

Selection

(a)

Type B Type C

Vegetation/cover type

1) S

o

Selection

Type C Type D

Vegetation/cover type

Figure 5-1: Conceptual framework indicating habitaelection by elephants if theya)

uniformly; and (b)selectively utilise the landscape

Previous work investigatingow elephants utilise the landscape showed that shkcted

certain plant species while avoiding others when foraging. For instance, in a seant
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conducted in the Chobe National Park in Botswana, G8raith and Chafota (2012¢ported
that 3050% of 27 woody species were preferred by elephants for their dietary needs.
limitation of these earlier studies is that they were based on physicatking individual
animals in the field and observing and recording what they eat during th@\Ggayt and
Eltringham, 1974, Kalemera, 198%s a result, conclusions drawn were thus limited to
observations made on a few animals tracked over a few.Ho@addition to basing conclusions
from a few tracked animals, observations for night feeding were overlooked owing to limite
visibility as well as the dangers associated with night traciBgy, 1976) Although these
earlier studies laid a foundatioarfcurrentunderstanding of elephant distribution, tleéfered
shapshots of how elephants selected plants for foraging and selections made outside the ne

window of observation remained unknown.

In recent years, increased use of Global Position Sy&&18) technology in wildlife tracking,
combined with enhanced availability of freely acquired remotely sensed data, has madk
possible to acquire GPS tracking data for both day and night (e.g., De Boer et al., 2005, Lo:
et al., 2009h) Apart from preiding the capability to trackighttime movement, the current
GPS technology allows researchers to track animals over longer periods depending on
battery life of the tracking devicébldaimani et al., 2017)}or instance, it is now possible to
remotey track collared animals over periods exceeding two y@irkett et al., 2012)In
addition, knowledge on the vegetation types visited by the study animals is no longer limit
spatially since position fixes for the entire home range can now be oblgireerlying these
point data orhigh-resolutionvegetation map@_eggett, 2006)Such accurate vegetation maps
are derived from freely available data retrieved from satellite sensors that take repea
measurements of the same area giving a synoptic viethe landscap€Masocha and

Skidmore, 2011) Therefore, with these improvements in Géfar tracking and satellite
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sensing technologies, it is impantto revisit hypothess that investigate hoglephantaitilise

the landscape

Knowledgeof the vegettion communities preferred by elephants is not only important for
understanding their feeding patterns but could be useful in explaining patterns of vegetat
change driven by themegaherbivor¢Laws, 1970) Elephants are known to break and uproot
treeswhen browsing(Kohi et al., 2011, Lamprey et al., 1967)hus, rates of change in

vegetation structure could be expected to be higher in landscapes used more often than t
less visited. For instance, in an earbardy Ndaimani et a{2017)reported paks of elephant

presence farther from water sourdésis demonstrating that improvements in GPS and satellite
remote sensing technology give some insight into how water and vegetation use could

differentiated in a heterogeneous landscape.

In this stuly, movement data from 15 GRSllared elephants were used to test whether
elephants utibe a heterogeneous landscape uniformly or selectively. This is different fror
relying on field observations that are limited to a few individuals monitored duririgloayn
particular, the study tested whether elephant speed of movement, selection and time of
(estimated by Linear Time Density) differed significantly among vegetation typssuaanah
ecosystem in Gonarezhou National Park, Zimbabwe. The miotivéor these tests was to
gather evidence in support or against the widely held view that elsgedetively utilise the
landscapeThis information is required fdhelaterformulation of hypotheses that test whether

the impact of elephants on veggbn structure is uniform across vegetation types.

52 Materials and methods
5.2.1 Ethics statement

Handling of elephants for GPS collaring and data collection for this research was approved
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under permits: 23(1)(C)(1)31/2015; 23(1)(C)(11)21/2016; and12&)(1)22/2016 issued by

the Zimbabwe Parks and Wildlife Management Authority.

5.2.2 Study area

The study was conducted in Gonarezhou National Park (GNP) located to the southeas
Zimbabwe between longitudes 31.32° and 32.41° East and latitude$ ahdl22.15° South
(Figure 52). GNP is approximately 5,000 Krin area. Elevation ranges from 155 to 567 m
above sea level (Ndaimani et al., 2QIHR)e terrain is flat to gently undulating with an average
slope of 0.98°. Climate is typical subtropisahannahwith along-termannual rainfall of 466
mm (Gandiwa and Kativu, 2009Rainfall is normally received from November to March with
the rest of the year being dry. Mean monthly temperatures range from 9°C in winter to 36°C
summer. The park has aniesited elephant population of ~10 O@Munham et al., 2013)
which converts to ~2 elephants/knThis makes GNP one of the key elephant conservation

areas in the country.
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Figure 5-2: Locationof (a) positon fixes for 15 elephants fitted with GPS collars and; (b)

Gonarezhou in Zimbabwe.
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Vegetation istypical dry deciduous savannalominated byCombretumspp combined with
Colophospermum mopameodland. Together, these woody species account for ~85% of th

tree biomass in the study area (Martini et al., 2016)

5.2.3 Elephant movement data
Fifteenadult elephants (10 bulls and 5 cows) were immebdi and fitted with GPS collars
from 1 May 2015 to 20 August 2016 (Tabld b The bulls were selected from Ietor herds
while the cows were selected from family herfise collars were programmed to take position
fixes every 4 hours resulting in 6 fixes per dale error inthe GPSlocation was +/15m as
stipuated by the supplierThe success rate of fixes ggd from 85% to 99% which is within
acceptable limits (Frair et al., 2010)
Table5-1:Det ai |l s of the

coll ared el ephants (I

Elephant ID Date of Fix end date GPS fixes usel % Missing GPS
collaring fixes
GONY 5/1/2015 6/30/2017 4369 8
GON1d 5/1/2015 8/24/2016 2871 1
GON11 5/1/2015 6/30/2017 4470 6
GON12 5/1/2015 6/30/2017 4262 10
GON13 5/1/2015 11/28/2015 1256 1
GON14 5/2/2015 6/30/2017 4060 14
NYAM' 8/12/2016 6/30/2017 1685 13
TSH! 8/13/2016 6/30/2017 1706 11
MAB! 8/20/2016 6/30/2017 1672 11
CHIP' 8/15/2016 6/30/2017 1627 15
CHIL" 8/13/2016 6/30/2017 1637 15
uz9' 12/28/2015 6/30/2017 3232 2
uz12 12/28/2015 6/30/2017 3233 2
uzi3 12/30/2015 6/30/2017 3215 2
uz14 12/302015 6/30/2017 3211 2
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5.2.4 Selection of vegetation type

The selection of vegetation types by collared elephants was estimated using the resol
selection ratio (Neu et al., 197d3lculated as:

W Yi'Y T6jo eqn 1

where;U; = number of position fixes in vegetation typéJ. = total number of position fixes
for the individual animalA = size of vegetation typewithin the elephant home range; ahd

= Total size of the elephant home range.

For each collared el@ant, the position fixes collected during the study period were retrievec
from the tracking site as text files and later converted to a point map. The home range
individual elephants was estimated using the Minimum Convex Polygon (MCP) based on 1
point map. Vegetation types located within the home range of each collared elephant were I
extracted by masking out the areas outside the MCP. The area covered by each vegetation
within the home range of individual elephants was estimated using ¢lae cafculation

algorithm.

5.2.5 Elephant speed

The speed of movement of each collared elephant (in km/hr) within a 500 m grid cell w
calculated using the formula:

Y B — eqgn 2

Where S = speed in grid cell Gdk = fractional length of track segment k intersecting G, N =

number of track segment s t+ tme spent byaa ¢lepharia n t

track segment k.
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The calculation was implemented in the Movement Ecology Tools for ArcGIS (Wall et al
2013) The areragespeed of movement was not segregated between male and female elephz
since it was not the objective of this study to test for differences in spé&ddn the sexes. In

addition, Wall et a(2013)reported no significant difference in the speed of male and female
elephants studied in Mali. Elephant speed within particular grid cells was later extracted us

standard overlay functions.

It was predited that elephants would move slowly in preferred vegetation types than those le

preferred.

5.2.6 Elephant time of stay in a grid cell
The time (in hours) spent by a collared elephant in a 500 m grid cell was calculated using

formula:
Y B — egn 3

Where T = time spent in grid cell GJk = fractional length of track segment k intersecting G;
N = number of track segmensk=s ami mahleb selleipl

track segment k (Wall et.ak013)

All the track segments that originated in a particular grid cell were used to catbelatean
time spent by the target elephant within the grid. The time spent in each grid cell was la
divided by total tracking time for the entire studyripd to get a normaded Linear Time
Density (LTD) value for each elephaifibese calculations were implemented in the Movement
Ecology Tools for ArcGIS (Wall et al., 2013%imilar to speed calculation, LTD values for
both male and female elephants weggragated and average values extracted for all the gric

cells located along the movement trajectories.
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It was predicted that elephants spent more time in preferred vegetation types than those
preferred Preference of vegetation type is not limitedhe need to forage babuldlinked to

other reasons like predator avoidance as well as other forms of disturbance.

5.2.7 Vegetation type

Variation in the speed, selecticendLTD of elephants was assessed per vegetation type. A
thematic vegetation mapith fourteen dominant vegetation types produced by Cunliffe et al
(2012) was converted to a 500 m raster to match other spatial datasets (Fguré&He
vegetation map was deemed reliable for use in this study since it has loWwag prediction
errar (0.0060.048). Elephant speed and LTD within particular vegetation typesextracted

from grid cells using standard overlay functions.
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Figure 5-3: Major vegetation/cover types in the Gonarezhou Nali®¥@k (adapted from

Cuniliffe et al (2012))

5.2.8 Data analysis

Variation in the selection of vegetation types by the pooled study elephants was tested u:
the Wilks lambda at an alpha level of 0.05. The test was run using the Compositional Analy
algorithm of the adehabitatHS package implemented in R software (Calenge, 201
Compositional analysis performs pairwise comparisons of habitat use in landscay

charactesed by several habitat types. As part of the output, a ranking matrix was bui
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indicating whether the vegetation type in the row is significantly used more than the type in t
column (see Table-8). For each study elephant, selection of vegetation type (estimated frol

habitat selection ratios) was presented as bar plots to show wihetbelectionwas uniform.

The dfferencein the speed and LTD of elephants in the various vegetation types was test
using the Kruskal Wallis test since data significantly deviated from normality (p<0.05). Thel
was no need to test for spatial autoclatien in elephant speed and LTD since the data were
not drawn from continuous phenomena. Pairwise comparisons of elephant speed and L
within the different vegetation types was based on the Tamhane test since residuals significa
deviated from normaly. Vegetation types covering less than 3 pixels were left out in the

comparison of speed and LTD since observations were deemed too few for analysis.

The median speed of elephants per vegetation type was later calculated and ranke
descending order.his analysis helped to illustratiee variationin elephant speed within the
different vegetation types. Similarly, the median LTD per vegetation type was calculated a
ranked to visually illustratéhe variation in the time spent by elephants in the eliént

vegetation types. Mean values were not used since data were not normally distributed.

5.3 Results

Use of vegetation types by the pooled 15 elephants differed significantly (Lambda=0.0z
df=13, p=0.000) in the study area. Results from compositianalysis illustrate that the
elephants used open water and riverbeds more than all the other available vegetation t
(Table 52). Both these types are locateldse to open water sourcesmong the vegetation
types located away from thpiosphere Mopane, TerminaliaStrychnosand Combretum
woodlands were most used. The types least used by the elephantsGuibitia,

Brachystegialulbernardiaand mixed woodland on clay.
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Table 5-2: Results of compositionahnalysis showing more use of open water (13) and riverbec
(12) by elephants in the Gonarezhou Nati.
the row is used more than the typeaiicolumn aodoifiher wi se. Wh e n

significant, tke sign is tripled.

Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total
3 + +++ 0 - - + - - - - - --- - - 5
4 +++ -+ +++ 0 +++ +++ + + + + + - -—- +++ 23
5 + +++ + 0 +++ - - - - - - + 9
6 + 0 1
7 +++ e+ +++ - + +++ 0 + + + - - -—- +++ 19
8 +++ e+ +++ - + +++ - 0 + - - - -—- + 15
9 +H+ + - + +++ - - 0 - - + 12
10 +++ - + +++ - + + 0 - +++ 18
11 +++ e+ +++ - + +++ + + + + 0 - -—- +++ 20
12 +++ e+ +++ + +++ +++ + + +++ H++ + 0 -—- +++ 28
13 B e I o S o S o S S R e 0 +++ 39
14 +++ 4+ + - +++ - - - 0 10

Analysis of vegtation type use by individual elephants showed that 11 selected types found
the piospherewhile four selected those away from thi@sphere(Figure 54). In total, five
elephants preferred mixed woodland on alluvial soils (elephants: GQKO¢chip, UZ13,
uzl14); four preferred the riverbed (elephants: GON14, ishblJZ9); and two preferred open
water habitat (elephants: UZ11 amghm). The rest of the elephants preferred vegetation types
located away from thepiosphere two preferredSpyrostachysafricanus woodland; one

preferredC. mopanavoodland and one preferrébmbretumapiculatumwoodland.
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Figure 5-4: Selective use of vegetation /cover type by elephants in the Gonarezhou Natior
Park, Zimbalwe. Cover type: 16uibortia; 2=Brachystegialulbernadia 3=Spyrostachys
4=Mopane; 5=mixedrachystegia 6=mixed woodland on clay; Gombretumapiculatum
8=Androstachys9=mixed woodland on alluvium; idixedGalpinia-Lannea 11=Terminalia

Strychnos12=nverbed; 13=dam; 14=cultivation.
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