EVALUATION OF pH AND OSMOLALITY LEVELS IN THE SMALL INTESTINE OF RATS (*RATTUS NORVEGICUS*) AND CHICKENS (*GALLUS GALLUS*) EXPERIMENTALLY INFECTED WITH *TRICHINELLA ZIMBABWENSIS*.

by

KUDAKWASHE MAGWEDERE

Thesis submitted in accordance with the requirements of the University

of Zimbabwe for the degree of Masters of Science

(Physiology)

DEPARTMENT OF PRECLINICAL VETERINARY STUDIES

FACULTY OF VETERINARY SCIENCE

UNIVERSITY OF ZIMBABWE

August 2005

DECLARATION

BY

CANDIDATE

This thesis is my own original work and has not been presented for a

degree at any other University

.....

Kudakwashe Magwedere

BY SUPERVISOR

This thesis has been submitted for examination with my approval as

University supervisor

.....

Professor Samson Mukaratirwa (DVM, MVSc, PhD)

ACKNOWLEDGEMENTS

I offer my gratitude and appreciation to my supervisor, Professor Samson Mukaratirwa for providing resources and for the deft ways in which he lovingly challenged and supported me throughout the whole of this work offering direction and penetrating criticism - knowing when to push and when to let up. It is difficult to overstate my gratitude to Dr Eveson Bhebe and Mr Michael Chimonyo for their inspiration and great efforts to explain things clearly and simply when they helped me with data analysis.

I extend my sincere appreciation to Mr Jephat Chifamba the Chairman of Physiology Department, School of Medicine for giving me unlimited access to the use of departmental equipment during my project. He knowingly and unknowingly led me to an understanding of some of the more subtle challenges to our ability to thrive. I am grateful to all my friends, learning partners and technical staff of Preclinical Veterinary studies from the University of Zimbabwe, for being the surrogate family during the many years I studied there and for their continued moral support thereafter.

Finally, I am forever indebted to my wife Margaret Rutendo for her understanding, endless patience and encouragement when it was most required.

iii

|--|

TITLEi
DECLARATIONii
ACKNOWLEDGEMENTSiii
LIST OF TABLESvii
LIST OF FIGURES
LIST OF ABBREVIATIONSix
ABSTRACTxi
INTRODUCTION1
Background1
Hypothesis
Objectives
LITERATURE REVIEW
<i>Trichinella</i> and its hosts
Location and distribution of adult <i>Trichinella</i> 4
Parasite feeding mechanisms
<i>Trichinella</i> male and female characteristics
Life cycle
Life cycle duration
<i>Trichinella</i> fecundity
Factors involved in intestinal physiology14
Hormones
Lactobacillus
Metabolites

Physico-chemical conditions	17
Osmolality in uninfected host	18
Intestinal muscle contractility as a secondary factor	19
Proteinases and pH	21
Proteinases and cations	22
Nucleotides	23
Gene target and immunity	23
Physiology of poultry gastrointestinal tract	27
Intestines	27
Crop and stomach	27
Intestinal cations as partial determinants of osmolality	31
Effect of fed on pH	31
MATERIALS AND METHODS	
Parasite strain	33
Experimental animals	33
Animal feed	
Infection of animals	33
pH and osmolality measurements	35
Recovery of adult <i>Trichinella zimbabwensis</i> for length and sex determination	36
Statistical analysis	36
RESULTS	37
Health of experimental animals	
Recovery of adult worms	37

Adult parasite length	40
рН	42
Osmolality	42
DISCUSSION	46
рН	46
Osmolality	48
Trichinella length and recovery of adult worms	51
Trichinella establishment in chickens	
CONCLUSION AND RECOMMENDATIONS	53
REFERENCES	54

LIST OF TABLES

Table 1: Basal gastric secretory rates of the chicken in comparison with those of selected
mammals
Table 2: pH of contents of the digestive tract of avian species and mean duration of
transit time of ingesta in chickens
Table 3: Number of rats(R) and chickens (P) slaughtered at different days
Table 4: Mean length (±se) in millimeters of male and female <i>Trichinella zimbabwensis</i>
recovered from the small intestine of rats at days 2, 5, 7 and 10 after oral infection with
1000 infective larvae/rat
Table 5: Means of pH levels of the anterior and posterior segments of the small intestine
in rats at 2, 5, 7 and 10 days after oral infection with 1000 larvae/rat of Trichinella
zimbabwensis
Table 6: Means of osmolality (mosmol kg ⁻¹) levels of the anterior and posterior
assuments of the small intesting in note at 2, 5, 7 and 10 days often and infection with 1000
segments of the small intestine in rats at 2, 5, 7 and 10 days after oral infection with 1000

LIST OF FIGURES

Figure 1: The life cycle of a Trichinella species
Figure 2: Diagrammatic representation of the digestive tract of a broiler chicken32
Figure 3: The number of adult <i>Trichinella zimbabwensis</i> recovered from the small
intestine of individual rats at days 2, 5, 7 and 10 after oral infection with 1000 larvae/rat
Figure 4: The population dynamics of <i>Trichinella zimbabwensis</i> in the anterior (a) and
posterior (p) sections of the small intestine of rats at days 2, 5, 7 and 10 after oral
infection with 1000 larvae/rat

ABBREVIATIONS

NCDC	National centre of disease control United States of America
NIH	National Institute of Health
HCL	hypochloric acid
NaCl	sodium chloride
р. і	post infection
mm	millimeters
SE	standard error
μl	microliter
°C	degrees Celsius
rpm	revolutions per minute
ml/h	milliliter per hour
ad lib	ad libitum
$L_1 g^{-}$.	first stage larvae per gram
g	gram
%	percent
Ig	immunoglobulin
IL	interleukin
IFN	interferon
KG	kilogram
Μ	molar
meq	milli equivalents

PU	pepsin unit	
NGF	nerve growth factor	
h	hour	
рН	hydrogen ion	
LEWIS, LOU, PVG, AO and WKA/H names of different strains of rats		
SCID	strain of mice deficient in B and T lymphocytes	
CD-1	mice strain	
IFN γ, TNFα	interferon gamma and tumor necrosis factor alpha	
CD4+, OX22- (CD45RC-) CD4+, OX22+ (CD45RC+) memory phenotypes of		
	the T lymphocyte cell receptor	
Fc∈R1Fo	mast cell receptor	
Th	helper T lymphocyte cells	
CD4	receptor type found on T lymphocyte cells	

ABSTRACT

In order to evaluate the levels of pH and osmolality in the establishment and survival of *T. zimbabwensis*, 10 weeks old male rats (*Rattus norvegicus*) and 3 weeks old chicks (*Gallus gallus*) were each subdivided into four groups. Group 2 and group 4 were fed muscle tissue containing 1000 infective L_1 stage larvae, while group 1 and 3 were used as controls. Using a standardized post-prandial time, the rats in group 1 and 2 were sacrificed on days 2, 5, 7 and 10 p. i and chickens in groups 3 and 4 on day 2 and 5 p. i. Significant increase (p<0.05) in pH in the anterior segment was observed at day 5 p. i in rats. In the posterior segment of infected rats, there was a significant decrease (p<0.05) in pH at day 2 p. i and a significant increase (p<0.05) at day 5, 7 and 10 p. i when compared to the controls. There were no significant pH differences (p>0.05) in chickens.

In infected rats, osmolality of the anterior segment of the small intestine increased significantly (p<0.05) at day 2 p. i before declining at day 5 p. i and in the posterior section, osmolality significantly increased at day 2 p. i. The increase in osmolality levels in chickens at day 2 and at day 5 p. i was not significant (p>0.05).

It may be concluded that in *Trichinella* infection, luminal pH and osmolality are altered at certain stages of the parasite's life cycle in the small intestine and this alteration is probably crucial for the establishment and survival of the parasite.