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ABSTRACT

Maize production in marginal tropical regions is at great risk from rainfall variability. Farmers
would benefit from the ability to forecast production likelihood. In this study we sought to
develop a simple maize production decision support tool for Masvingo by using seasonal
weather forecasts and a crop production model to forecast maize yields prior to the season.
Downscaled ENSO-based statistical seasonal forecasts from RAINMAN were tested against
those downscaled from a Global Circulation Model (GCM) using Climate Predictability Tool
(CPT). RAINMAN was found to perform better at forecasting total seasonal rainfall than CPT.
RAINMAN predictions were 69 % correct in all rainfall categories for the 1991/92 - 2006/07
seasons as opposed to 44 % for CPT (p< 0.05). RAINMAN had a higher hit rate than CPT and
was not biased to any rainfall category while CPT was biased towards the normal and
dry/below normal rainfall categories. Monthly rainfall predictions by RAINMAN were
validated. The tool explained 65 % to 81 % (p<0.05) of the rainfall variability of the
agricultural season (October to April), except for December and March where it explained 37
% and 48 % of the variability, respectively. We generated monthly weather series for the five
phases of the Southern Oscillation Index (SOI). These formed the climatic scenarios used to

run the crop production model (AquaCrop).

Simulated agrometeorological scenarios included three planting dates, optimal and poor
fertility levels, and three maize cultivars. Simulated maize yields ranged from 1.2 t/ha to 5.9
t/ha. Average yields were low for poor fertility levels. 100-day (early maturing) maize cultivars
produced better yields under poor fertility levels. 140-day (late maturing) maize cultivars
attained highest yields (5.9 t/ha) for good rain conditions (neutral, rising, and positive SOI and
(20 %) probability of rainfall occurrence) and minimum yields (1.2 t/ha) under poor fertility.
100-day and 140-day maize cultivars produced higher yields when planted late (7 December).
125-day cultivars produced better yields when planted early (29 October) or on the medium
planting date (16 November). The variance in yields under the given agrometeorological
scenarios point towards the importance of considering maize cultivar and planting date
selection. It was clear that maize production at Masvingo should preferably be done under good

fertility.
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CHAPTER 1: INTRODUCTION

1.0 Introduction

In water limited environments, rainfall variability is the single most important factor in
agricultural production and hence risks (Hansen, 2002). Management strategies developed to
buffer against the uncertainties of rainfall are a common feature in dryland agricultural regions.
Farmers need information that is relevant at the field scale, and that is expressed in terms of
impacts and management implications within the systems they operate (Hansen, 2002). In
practice however, such specific and detailed information is rarely available to the farmer.
Instead, operational seasonal forecasts are often given for a large area. The content provided by

these forecasts is not particularly useful in agricultural production terms.

Recent advances in the application of climate prediction to agriculture suggest potential for
improved risk management strategies, enabling producers to better tailor management decisions
to the season (Hansen, 2002). Farmers can use site specific seasonal forecasts to mitigate
unwanted impacts or take advantage of favourable conditions. By providing advance
information with a sufficient lead time to adjust critical agricultural decisions, seasonal
forecasts have significant potential to contribute to the efficiency of agricultural management
and to food and livelihood security (Appipattanavis et al., 2010). Integrating crop simulation
models with seasonal climate forecast tools is a perceived opportunity to add value to seasonal

climate forecasts for agriculture (Hansen, 2004).

The need for site and system specific information has been addressed in a number of research
studies using crop models (Hansen, 2004). Often yield likelihoods are based on historical
weather conditioned upon seasonal weather forecasts (Hammer et al., 2001). Hammer et al.,
(1996) used a wheat simulation model to determine the value of seasonal forecasting to crop
management in northeast Australia using phases of the Southern Oscillation Index (SOI). Using
the Decision Support System for Agrotechnology Transfer (DSSAT) crop simulation models,

Jones et al., (2000) estimated the economic returns to decisions based on predictions of phases



of the EI Nino Southern Oscillation (ENSO) and terciles of growing season rainfall in southeast
USA. They showed that the optimal mix of rainfed crops differed among ENSO phases, and
that the modification of maize management based on rainfall terciles returned higher profits
than the optimization based on only the phases of ENSO. Related studies have been carried out
all over the world with relative success (Shin, 2009; Frassie et al., 2006; Baigorria et al., 2008).

Phillips et al., (1998) studied El Nifio Southern Oscillation (ENSO) related maize vyield
variability in Zimbabwe, showing a significant relationship between ENSO and Zimbabwean
maize yields. However, despite perennial food shortages, few studies have attempted to apply
the best possible forecast methods and tailor forecast products to the expressed needs of

farmers in the marginal areas of Zimbabwe.

1.1 Background

Zimbabwe lies between latitude 15° and 23° S and longitude 25° and 33° E, and covers 390,757
square kilometers. Agricultural land holds 85 % of the land resources in the country. 64 % of
the total land area in Zimbabwe lies within agro-ecological regions IV (37 %) and V (27 %)
which are marginal for rainfed crop production (Matarira et al., 2004). It is therefore apparent
that studies carried out to improve decision making in marginal farming areas is critical for

Zimbabwe.

1.1.1 Climate and rainfall

Zimbabwe lies entirely in the tropics (Hussein, 1987). The rainy season (mid October to late

March) varies considerably over the country. Low rainfall is found in those areas where
considerable rainfall variability is also found. High frequencies of drought coupled with
considerable rainfall variability are usually associated with the most fragile ecosystems in the
south of the country (Regions IV and V) (Ngara and Rukobo, 1999). Year to year rainfall
variability in Zimbabwe has been associated with the EI Nino Southern Oscillation (ENSO)

(Matarira and Jury, 1992), hence the possibility of forecasts.



1.1.2 Soils and geology

Another factor important to crop production in Zimbabwe is soils. The soils in Zimbabwe are
classified under eight subgroups based on soil depth, texture, chemistry and structure. Soils are
closely related to the underlying parent rocks, such that soils from igneous and
metamorphosised igneous rocks occupy 65 % and sedimentary origins occupy 25 % of the
country’s land area (Nyamapfene, 1991). Grant (1970) observed that many crops on the sandy
soils in communal lands reveal multiple nutrient deficiencies of Nitrogen (N), Phosphorous (P),
Sulphur (S), Magnesium (Mg) and Potassium (K).

1.2 Objectives of the study

The overall objective is to apply available seasonal weather forecasting and crop production

simulation tools so as to improve agricultural decision making. The specific objectives are:

e To test the utility of downscaled ENSO-based statistical seasonal forecasts from
RAINMAN against those downscaled from a GCM using CPT (Climate Predictability
Tool).

e To run simulations using a crop growth simulation model and downscaled weather
forecasts for a variety of scenarios.

e To develop and provide guidelines for a decision support tool for maize production at

Masvingo.

1.3 Study area

The location under study is Masvingo. Masvingo is found in south-east Zimbabwe. It is located
in agro-ecological region 1V, where rainfall is inherently variable and unreliable. Masvingo has
an altitude of 1100 m above sea level. Mean annual rainfall in agro-ecological region 1V ranges
between 400 and 650 mm, with Masvingo averaging 641 mm annually. Mean monthly

maximum temperatures range from 25-29 °C. Masvingo has a predominantly semi-arid climate



(Chenje et al., 1998). Soils in Masvingo are predominantly of a moderately deep coarse sandy
loam (Phillips et al., 1998). Although the area is semi arid and marginal for maize production, a

large proportion of the population still grows maize for food.

1.4 Study justification

Probabilistic crop yield forecasts are directly relevant to farmers' livelihood decisions and, at a
different scale, to early warning. Masvingo is found in a marginal drought prone region in
which a large proportion of the population grows maize despite its drought intolerance (Chenje
et al., 1998). Investigating the relationship between various climatic scenarios in Masvingo and
maize yields will be helpful to farmers. Farmers will be better prepared to take full advantage
of potentially good rainfall seasons and to manage prospective poor rainfall seasons. Policy
makers will be in a better position to ease any food security risk experienced by the region.

1.5 Scope of the Research

The study seeks to derive a decision support tool for the farming of maize at Masvingo.
Considering that rainfall variability is the single most important factor in rainfed maize
production (Hansen, 2002), a downscaled seasonal climate forecasting tool (RAINMAN)
(Clewett, 1995) will be tested for Masvingo. The tool will be tested against predictions
downscaled from a Global Circulation Model (GCM) by Climate Predictability Tool (CPT)
(Ndiaye and Mason, 2006). RAINMAN will be integrated with a crop production simulation
model (AquaCrop) (Stetudo et al., 2009) to produce maize yield predictions for various
climatic and agrometerorological conditions. A decision support tool for maize production for

Masvingo will be developed based on the results.

Within the framework of the research, some assumptions are made. The assumptions made are:
AquaCrop has been tested and validated for locations similar to Masvingo, therefore
AqguaCrop can be applied to the study area without reservation (Heng et al., 2009; Hsiao et al.,

2009); temperature and reference evapotranspiration (ETo) do not vary much seasonally,



therefore, historical averages can be used for crop simulations. Climatological data is

homogeneous and accurate.

1.6 Benefits of the study

The project has the potential to provide a quick and efficient concentration of information at a
central point to enable quick decision making. The development of an easy to use decision
support tool will help farmers decide on the best practices to partake during a particular season
e.g. planting dates, maize cultivars to plant, and appropriate field management practices. Early
maize yields forecasts enable planning for storage and sale of produce as well as for
supplements in case of a poor yield forecasts. Aid organizations can plan for relief operations.

1.7 Thesis structure

The thesis comprises 5 chapters. Chapter 1 gives an introduction of the study, its justification,
objectives, and the general character of the research. Chapter 2 reviews the available literature
on the study. A critical review of previous research work on related topics is performed. An in-
depth description of variables key to the study is found in this chapter. Chapter 3 lays out the
materials and methodology used to carry out the study. The results obtained and the discussions
of the results are incorporated in Chapter 4. Chapter 5 gives the recommendations and

conclusion.



CHAPTER 2: LITERATURE REVIEW

2.0 Introduction

If a reliable seasonal climate forecast is available at the beginning of a cropping season, the
upcoming season’s crop yield amount can be estimated reasonably well by using a dynamic crop
production model. This will help farmers and/or crop decision-makers to prepare for the crop
growing season (Jones et al., 2000; Hansen, 2002). A crop production model needs a season-long
weather dataset to simulate a crop yield amount. A skillful seasonal forecast is necessary (Shin et
al., 2006; Baigorria et al., 2007). The seasonal climate forecast should capture the high-
frequency modes of weather/climate variability properly to use it in a crop model for a reliable
yield projection. Since Zimbabwe has a strong teleconnection to the EI Nino Southern
Oscillation (ENSO) (Phillips et al., 1998; Cane et al., 1994), it is practical to develop a climate-
based decision support system that uses the ENSO-based historical weather data to implement a
probabilistic yield risk forecast for maize. The yield forecast should be based on location,

planting date, soil type, maize variety, fertility and ENSO-based climate scenarios.

This chapter will review literature on ENSO-based yield forecasting. RAINMAN, an ENSO-
based probabilistic weather forecasting tool will be discussed along with CPT; a downscaled
dynamic weather forecasting tool also used by the Zimbabwe Meteorological Services
Department (ZMSD). The crop modeling process will be described along with one major crop
production model favoured by researchers and one proposed for this study. The chapter will
however begin by reviewing the relationship between maize and the physical environment

modeled by the crop production models.

PART 1: MAIZE AND THE ENVIRONMENT

Maize productivity is mainly governed by water availability, climate, soil characteristics and

agronomic practices.



2.1 Maize phenology and development

For maize, the duration of growth stages and length of total crop season are climate dependent,
and hence area specific. They also depend on the crop variety and planting date which
determines the temperature regime of the cropping period. Since development is highly
dependent on temperature, and since maize is grown from low lands to over 3500 m altitude in
the tropics, it is impossible to generalize about the development patterns and time to maturity
(Norman et al., 1984). However, Raes (1996) distinguished four main growth stages for annual
crops which include: (1) initial stage- period from germination through establishment, showing a
slight increase in vegetative cover, covering about 10 % of the soil; (2) crop development stage-
period from end of initial stage to full ground cover, characterized by rapid increase in vegetative
cover; (3) mid-season stage- full cover to start of maturity, senescence commences and ground
cover is almost constant throughout this period; and (4) late-season stage- which is the time from

maturity to harvest.

2.2 Maize/climate relations

2.2.1 Rainfall

Maize is an efficient user of water in terms of dry matter production such that among cereals, it
is potentially the highest yielding (Norman et al., 1984). Frequency and depth of rain has a
pronounced effect on grain yields. Initially, the moisture requirement is low and builds up to a
maximum at the flowering stages. Thereafter, the moisture requirement decreases progressively
to maturity (Sithole, 2003). Water requirements of a long season variety (150-day) ranges from
600 to 1000 mm of well distributed rainfall for the growing period. A medium maturity grain
crop (110-140 day) requires from 500 to 800mm depending on climate (Sithole, 2003).

Water deficits at different stages of growth have different effects on maize yields. Soil moisture
during flowering and early grain formation seems particularly critical at determining yield (Salter
and Goode, 1967). East African work suggests that there are three main periods when water is

most essential- germination, fertilization, and grain filling (Semb and Garberg, 1969). They state



that after germination, maize can survive with very little water for some time. Stress-induced
delays in silking lead to loss of synchrony in development of silks and tassels with particularly
adverse effects. Ochse et al., (1961) suggest that in very general terms, optimum rainfall
conditions for maize are a little rain at the start of the growth period, soaking rains every 4 to 5
days from the end of the first month up to about 3 weeks after flowering and a gradual tapering
off of rain until harvest. The other limitation to yield is sensitivity to water stress. Where water
stress cannot be avoided, maize is replaced by sorghum or pearl millet (Norman et al., 1984).

2.2.2 Crop response to water stress.

Plant water stress can have major impacts on plant growth and development. When it comes to
crops, plant water stress can be the cause of lower yields and possible crop failure. Early
recognition of water stress symptoms can be critical to maintaining the growth of a crop. The
most common symptom of plant water stress is wilting. Drying to a condition of wilt will reduce
growth. Low water availability can also cause physical limitations to a crop. During moisture

stress, stomata close to conserve water. This also closes the pathway for the exchange of water,

carbon dioxide, and oxygen resulting in decreases in photosynthesis (Bauder, 2003).

The processes of photosynthesis, respiration, and translocation are affected by water stress,
partly through concentrations of active molecules in the fluids within the plant. Water stressed
crops may redistribute assimilates towards the root system at the expense of vegetative growth
and economic yield development, so as to increase the rate of root growth into deeper layers of
the soil profile thereby increasing the amount of stored moisture the plant has access to (Bauder,
2003). Raes et al., (2009) assert that crop responses to possible water stress, which can occur at
any time during the crop cycle, occur through three major feedbacks: (1) reduction of the canopy
expansion rate (typically during initial growth), (2) acceleration of senescence (typically during
completed and late growth), and (3) closure of stomata (typically during completed growth).
They go on to suggest that water stress of particular relevance may also affect the water

productivity parameter and the harvest index of a crop.



2.2.3 Temperature

Maize shoots elongate linearly with time, with a temperature optimum of about 30 °C and
showing negligible elongation at 9 °C or above 40 °C (Norman et al., 1984). Photosynthetic rates
peak at 30-40 °C; they are negligible at 44-50 °C. Rates of leaf emergence and lamina expansion
also peak at about 30 °C (Norman et al., 1984). Duncan (1975) postulated that it would be
expected that the greatest maize growth be in environments conducive to leaf temperatures of 30-
33 °C during the day but with cool nights. Within the tropics, one would therefore expect higher
dry matter yields in the wet and dry and the cool tropics than in the wet tropics, which has less

diurnal variation and might be expected to produce less total growth.

Flowering in tropical maize is accelerated by short days. Critical day lengths are 14.5-15 hours
whereas maize of a temperate origin is less sensitive to day length. Time to flowering is
accelerated by rising temperature. Actual grain filling period for tropical maize is typically 20-30
days (Norman et al., 1984). The numbers of grains that fill depend on temperature, both directly
through fertilization and photosynthate production, and indirectly through auxiliary tillering at
low temperature. In the tropics, numbers of grains set per cob vary by only 10 % according to
temperature, but tillering may change the number of grains per plant by 50 % (Norman et al.,

1984). Maize is very sensitive to frost.

2.3  Maize/soil relations

While maize is adapted to a wide variety of soils in the tropics, ranging from sands to heavy
clays, most maize is grown on well-structured soil of intermediate texture (Sandy loams to clay
loams), which provide adequate soil water, aeration and penetrability ( Norman et al., 1984).
Although in deep soils the roots can reach a depth of 2 m, the highly branched system is located
in upper 0.8 to 1 m and about 80 % of the soil water uptake occurs in this zone. In addition to
soil water and nutrient status, the maize root development is strongly influenced by textural and
structural stratification (Sithole, 2003).



Poor soil structure restricts root development and depresses yields of maize. High bulk density
affects the growth of maize. Soil erosion has also been known for the deterioration of infiltration
rate and soil structure. Maize yields on eroded slopes decline with slope angle and quantity of
soil eroded. Where excessive erosion has occurred, maize yield reduction cannot be corrected by
fertilizer application (Duncan, 1975).

PART 2: SEASONAL FORECAST TOOLS AND CROP YIELDS

2.4 Seasonal forecasting

For the sake of producing seasonal rainfall forecasts, the Zimbabwe Meteorological Services
Department (ZMSD) divides the country into three homogeneous regions. These regions are
determined through use of a statistical technique known as principal components regression
(PCR). The regions differ slightly in aerial extent for the three-month averaged periods of
October to December (OND) and January to March (JFM). Forecasts are made for three probable
categories of below-normal (dry conditions), near-normal (around the average), and above-
normal (wet conditions) for each region. A probability is assigned to each category, indicating
the chance of the particular category to occur in each region during the target season. This is
shown in Fig. 2.1 for the 2005/6 season.

An example is Region 3 (in which Masvingo lies) of the OND map in Figure 2.1 (a). There is a
35 % chance that the average rainfall for Region 3 will be above normal, 40 % chance that it will
be in the normal range and a 25 % chance that it will be below normal. Any seasonal rainfall
forecasts for this region are therefore also forecasts for the district. It is also possible to forecast
rainfall at stations within the district when better resolution is required. Among other tools, the
ZMSD also uses Climate Predictability Tool (CPT) to make station specific seasonal weather

forecasts.
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Figure 2.1: Forecast for the (a) first half (OND 2005), and (b) second half (JFM 2006) of the
2005/06 rainfall season

2.4.1 Climate Predictability Tool (CPT)

CPT is a software package developed by the International Research Institute for Climate and
Society (IRI) designed for making seasonal climate forecasts. CPT was developed primarily to
enable forecasters at National Meteorological Services (NMSs) in Africa to produce updated

forecasts for their country (Ndiaye and Mason, 2006).

There are two main approaches used to generate seasonal forecasts: using large scale models of
the global atmosphere, known as general circulation models (GCMs), or using a statistical
approach to relate seasonal climate to changes in seas surface temperatures (SSTs), such as those
associated with EI Nino. Predictions by the GCMs are large scale and are often not relevant for
specific locations. CPT adjusts the GCM predictions so that they are applicable locally. This

process is called downscaling and involves a statistical correction to GCM predictions.

All analysis methods require two datasets: an “X variables” or “X Predictors” dataset which
consists of ocean-atmosphere parameters being used to predict future weather e.g. Sea Surface

Temperatures (SSTs); and a “Y variables” or “Y Predictands” dataset which consists of the
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weather parameter being predicted by the model e.g. rainfall. CPT takes into account local
variations in altitude, and teleconnections between the major climate indicators (Ndiaye and
Mason, 2006).

2.4.1.1 Advantages of CPT

o CPT forecasts can be made in a matter of hours; this eliminates the length and cost of
forecasting workshops.

o« CPT makes rigorous tests for estimating skill levels. And adjusts the forecast
accordingly. The quality of the forecast is improved and artificial skill is avoided.

o Forecasts are produced in a variety of formats, and detailed information is provided
so that the forecast can be communicated to the end users in easy to understand terms
(Ndiaye and Mason, 2006)

2.4.2 RAINMAN

RAINMAN is a seasonal climate forecasting system developed by The Queensland Department
of Primary Industries in Australia. It performs probabilistic prediction of rainfall at a seasonal
lead time based on discrete categories or ‘‘phases’ (i.e., positive, rapidly rising, negative,
rapidly falling and neutral; falling, rising, and neutral) of the Southern Oscillation Index (SOI)
and/or SSTs. The set of past years falling within a given category serve as equally probable
analogs for predicting a distribution of rainfall outcomes conditioned on the observed SOI phase
and/or SSTs. RAINMAN was developed in a series of workshops with strong support from
Indonesia, Zimbabwe and India (George et al., 2003). The tool has monthly rainfall data from
over 12,000 stations from Australia and locations throughout the world. Some 60 % of these
locations have more than 50 years of good data and 10 per cent have more than 100 years of
good data (Clewett, 1995). RAINMAN aims to develop knowledge and skills for managing
climate variability in agriculture by analysing effects of ENSO on rainfall to derive probability-

based seasonal climate forecasts.
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RAINMAN analyses follow accepted scientific conventions by applying several statistical tests
to seasonal forecasts so that: (a) users have some guidance regarding the statistical reliability of
the forecast information, and (b) duty of care is discharged in providing forecast information to
users. The statistical tests used in RAINMAN are:(1) the Kruskal-Wallis (KW) test as used by
Stone and Auliciems (1992), the Kolmogorov-Smirnov (KS) test as described by Conover (1971)
for comparing two probability distributions, and (3) the LEPS (Linear Error in Probability Space)
skill score test as proposed by Ward and Folland (1990). The KW test is given precedence over
the KS test. Results of analyses carried out by Clewett et al., (1992) show that the Forecast
Phase System of RAINMAN has considerable skill for the period October to March (OND &
JFM), using a one month lead time

2.4.2.1 Advantages of RAINMAN

« Meeting the needs of people by producing a package that is comprehensive, easy to
use, locally relevant, and addressing the problems that people face in managing
climatic risk by:

(a) Targeting the required location, season and lead-time.

(b) Providing clear information about risk and whether forecast skill is present or not

« Seasonal climate forecasts are perceived to be very useful in agricultural management
and thus RAINMAN is seen as useful because it empowers people with the necessary
knowledge and skills to apply seasonal forecasting technology to their management
decisions.

« The compact disc technology used enables fast, reliable and comprehensive delivery
of information, the computer programming software is at the forefront of technology,
the combination of data, analytical capacity, tutorials and reference information give
the product balance, and the package mix can grow to take on new information (e.g.
streamflow and runoff) and new climate forecasting methods as the science improves
(Clewett, 1995).
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2.4.3 Forecasting and model selection

In the Forecasting procedure, an option is given to specify a number of data points to hold out for
validation and a number of forecasts to generate into the future. The data which are not held out
are used to estimate the parameters of the model, the model is then tested on data which has been
held (validation period), and forecasts are then generated using combined data from the

estimation and validation periods (Legates and McCabe, 1999).

In general, the data in the estimation period are used to help select the model and to estimate its
parameters. Forecasts made in this period are not completely "honest™ because data on both sides
of each observation are used to help determine the forecast. The one-step-ahead forecasts made
in this period are usually called fitted values (They are said to be "fitted" because software
estimates the parameters of the model so as to "fit" them as well as possible in a mean-squared-
error sense.) The corresponding forecast errors are called residuals. The residual statistics (Mean
Square Error (MSE),Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE)
etc) may understate the magnitudes of the errors that will be made when the model is used to
predict the future, because it is possible that the data have been overfitted i.e., the model may
have inadvertently fitted some of the "noise” in the estimation period (Legates and McCabe,
1999).

The data in the validation period are held out during parameter estimation. One-step-ahead
forecasts made in this period are often called backtests. Ideally, these are "honest” forecasts and
their error statistics are representative of errors that will be made in forecasting the future.
However, if one tests a great number of models and chooses the model whose errors are smallest
in the validation period, they may end up overfitting the data within the validation period as well
as in the estimation period. If the model has good predictive ability and if the data have not been
badly overfitted, the error measures in the validation period should be similar to those in the

estimation period (Legates and McCabe, 1999).
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2.5 Linking forecasts tools and crop models

Predictions of rainfall fluctuations throughout the season offer farmers the opportunity to
improve agricultural risk management. By providing information about growing season
characteristics in advance of the season, agricultural decision making is improved. However,
climatic forecasts are more useful to farmers when they are translated into probabilistic forecasts
of production and outcomes of management alternatives. A mismatch between the spatial and
temporal scale of dynamic climate models and crop simulation models must be addressed if crop
models are to contribute to the task. Hansen and Indeje (2004) proposed methods for linking crop
models with seasonal climate forecasts. The methods include classification and selection of
historic analogs, stochastic disaggregation, direct statistical prediction, probability-weighted
historic analogs and use of corrected daily climate model output.

Daily weather inputs for the crop model can come directly from the daily output of a dynamic
atmospheric general circulation model or high-resolution regional climate model (RCM) nested
within GCM output fields. An alternative to using daily climate model output is to use lower-
frequency (e.g. monthly or seasonal) predictions. A disaggregating process to produce
realizations of daily weather as input to the crop model can be applied to the monthly or seasonal
predictions. What has been the “standard approach” for some time is to categorize the observed
predictor variables (e.g. ENSO phases), and use the predictor category to select sets of analog
years from the observed station time series as input to the crop model. The potential information
pathways in Figure 2.2 suggest several potential approaches for linking dynamic crop simulation

models with climate predictors via dynamic climate models (Hansen and Indeje, 2004).

2.5.1 Historical analogues approach

The most common approach to using seasonal forecasts with agricultural models has been to
divide the range of variability of climatic predictors into a small set of categories or “phases”
based on some objective criterion, then select the set of past years falling within a given category

as equally-probable analogs (pathway in Figure 2.2). Historic analogs are easily interpreted at
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any spatial and temporal scale for which data are available, and provide weather series at

individual stations for driving crop simulation models (Hansen and Indege, 2004).

Distributions of climatic realizations or simulated production for the set of analog years

associated with a given category provide an intuitive probabilistic interpretation. To date, most

efforts to predict crop response at a seasonal time scale, and most quantitative studies of

agricultural decisions tailored to seasonal climate forecasts have used the historic analogues

approach. The historic analogues are conditioned with categorical indices based on sea surface

temperatures or the Southern Oscillation Index (SOI), both associated with ENSO (Hansen and
Indege, 2004). RAINMAN uses this approach.
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Figure 2.2 Potential pathways to localized simulation-based predicted crop yields from large

scale observed climate predictors (adapted from Hansen and Indeje, 2004).
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2.5.2 El Nino Southern Oscillation (ENSO).

ENSO is associated with rainfall variability in Southern Africa and Zimbabwe (Phillips et al.,
1998). The EIl Nino phenomenon which occurs every 3 to 8 years involves changes in the
circulation system of the atmosphere (Ngara and Rukobo, 1999). In broad terms, the pressure
near Australia increases while sea surface temperatures (SSTs) decrease. The combined effect of
these changes is the tendency for trade winds to ease in strength; cutting off a major source of
moisture to the tropical monsoons. This tends to reduce rainfall over Southern Africa. The
reduction of rainfall is usually not uniform and varies with seasons (Ngara and Rukobo, 1999).
The reversal of the Tahiti (18° S, 150° W) and Darwin (12° S, 131° E) pressure gradient as part of
the Southern Oscillation is associated with the intensification of El Nino events, hence the term
ENSO episode. The pressure swings between these two places is known as the Southern
Oscillation Index (SOI). The SOI monitors the difference in surface pressure across the Pacific
Ocean and as such is useful for keeping track of EI Nino episodes (Ngara and Rukobo, 1999).

2.5.3 The Southern Oscillation Index (SOI).

The strength of the Southern Oscillation is measured by the difference in air pressure between
Darwin and Tahiti. The SOI usually ranges from - 30 to + 30. Extreme phases of the Southern
Oscillation usually last for about nine months once they have become established. Dry spells
often break when the SOI rises rapidly from extremely low values even if it does not become
positive, for example, when it changes from - 15 to 0 (Clewett et al., 1992). When the Southern
Oscillation Index is strongly positive or rising, the trade winds blow strongly across the warm
Pacific picking up plenty of moisture; above- average rainfall is likely to be experienced in
certain locations around the world. When the SOI is strongly negative or falling, trade winds are
weak, and rainfall in the Indonesian and Australian region and parts of southern Africa can be
below average. A neutral SOI is likely to result in normal rainfall in these locations (Clewett et

al., 1992). The trends or phases up or down of the SOI are used as indicators of future weather.

While the Southern Oscillation modifies the climate pattern, the weather continues its natural

variability under the other influences. These are sometimes so dominant that the Southern
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Oscillation cannot be a totally reliable indicator of future weather. Not every drought is caused
by an El Nino, nor do all La Ninas (non-El Nino phases) cause floods; however, the chances, or
probabilities, of their influence can be estimated. The SOI can be used to improve the estimates
of probability of rainfall in certain locations and during certain months but it cannot give an
absolute forecast (Clewett, 1995).

2.5.4 ENSO and crop yields simulations.

The ability to forecast some aspects of ENSO signals for time scales of months to over one year
are currently being used to extrapolate the potential occurrences of ENSO related
weather/climate events for specific seasons and regions of the world which have strong ENSO
signals. Such information now forms crucial components of early warning systems, including the
planning, management and operations of agricultural activities in some parts of the tropical
regions. For some of these agricultural applications, models have been developed which transfer
projected ENSO signals directly into agricultural stress indices (Ogallo et al., 2000). A strong
relationship is known to exist between the EI Nino Southern Oscillation and annual precipitation
in southern Africa (Phillips et al., 1998). Sea surface temperatures and pressures in the Atlantic
and the Indian Ocean have also been found to correlate to varying degrees with precipitation
patterns in Africa (Phillips et al., 1998).

Indication of the potential impacts of ENSO on agriculture in Zimbabwe was shown in the study
by Cane et al., (1994) in which it was found that SSTs in some regions of the Pacific are good
indicators of national level Zimbabwean maize yields. Years which had a strongly positive SST
anomaly (EI Nino years) were associated with lower than average precipitation and maize yields.
Years with negative SST anomaly (La Nina years) were associated with higher than average
precipitation and maize yields. However, it was found that the correlation between SSTs and
maize yields were slightly higher than SSTs and annual precipitation, indicating that the
influence of ENSO on climate and crop yields may be more complex than simple annual
precipitation averages reveals (Cane et al., 1994). RAINMAN analyses more than just annual

precipitation by relating ENSO with monthly rainfall if required.
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Phillips et al., (1998) carried out further studies to identify the aspects of climate, particularly
rainfall, in Zimbabwe that are associated with the ENSO signal, and to test the usefulness of
predictions for maize crop management at various sites. They concluded that ENSO is a strong
determinant of inter-annual climate variability at the investigated sites (including Masvingo) in
all the agroecological zones of Zimbabwe. Forecasts based simply on ENSO categories were
found to be unlikely to provide the highest quality information for maize management decision-
making. However, with improvements in both climate forecasts and crop simulation models,
there was potential for identifying management strategies that reduce agricultural risk associated
with climate in Zimbabwe and other ENSO-affected regions (Phillips et al., 1998).

PART 3: MODELING

2.6 The modeling process

Models are meant to help solve problems, both practical and academic. The stages by which they
can do this are:

Stage 1: Problem formulation: What is the question? Questions must be specific, in the form of
a hypothesis to be tested or the prediction of some alternative actions or scenarios of the future.
Stage 2: model choice: the essential controlling factors are identified. A range of existing
models which have been applied to similar problems and can be used or modified. As a last
resort, a new model can be built.

Stage 3: model calibration: Parameters to be used for the chosen model must be found from
literature, or, if necessary from subsidiary experiments.

Stage 4: model validation: ideally, the model is run to predict something where the answer is
known- perhaps from previous data or a simplified example.

Stage 5: model application: The model is used to test the initial hypothesis or give an answer to
the question posed. Whether the model is adequate depends on the decisions which depend on

the outcome and the nature of the initial question (Hillel, 1977).
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2.6.1 Types of models

Depending on the scientific discipline, there are different types of models, ranging from very
simple models that are based on one equation to extremely advanced models, which include

thousands of equations.

Hillel, (1977) identified two broad types of models as mechanistic and empirical. The
mechanistic models are based on the known processes that make up the system which is being
modeled, using the laws of physics, biochemistry etc. Empirical models on the other hand do
not rely on insight into the cause and effect in the system being modeled; rather they seek to find
a statistical relationship between a measurable quantity e.g. maize yield and related predictor
variables e.g. Climatological parameters. Empirical models are limited because they often have
no generality and no guarantee that relationships which have worked in the past will continue to
work in the future. Mechanistic models are more elegant and elaborate, but may not always be
possible to quantify; it is also very hard to be sure that all relevant mechanisms have been

included.

2.7 Crop modeling

One of the main goals of crop production simulation models is to estimate agricultural
production as a function of weather and soil conditions as well as crop management. Dynamic
crop production model systems, as decision supporting tools, have extensively been utilized by
agricultural scientists to evaluate possible agricultural consequences from interannual climate
variability and/or climate change (e.g Paz et al., 1998; Semenov et al., 1996). DSSAT is one such

model which is commonly used by scientists for these purposes.

2.7.1 DSSAT CERES-Maize

The Decision Support System for Agrotechnology Transfer (DSSAT) Cropping System Model
(CSM) is a commonly used decision support tool. It provides a shell that allows the user to

organize and manipulate data, run crop models, and analyze the output. It can simulate 27
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different crops and, since they all share common input and output data formats, the same climate
and soil datasets can be used to simulate all crops. The DSSAT models have been employed at a
variety of scales (from field to regional/national) in an assortment of research applications such
as simulating the impact of climate change on agriculture (Attri and Rathore, 2003; Carbone et
al., 2003), quantifying the impact of climate variability on agricultural production (Andresen et
al., 2001; Xie et al., 2001), and forecasting yield prior to or during the growing season
(Bannayan et al., 2003; Chipanshi et al., 1997).

DSSAT models are dynamic simulation models that rely on an understanding of the basic
physiological processes. They have undergone rigorous evaluation in a wide range of different
climate and soil conditions and for many different crop hybrids. The CERES-Maize model is
found within DSSAT, it is one of the oldest, most advanced, and most widely used crop
simulation models. CERES-Maize simulates maize growth, water, and soil nitrogen dynamics at
the field scale. It simulates the development of roots and shoots, growth and senescence of leaves
and stems, biomass accumulation and partitioning between roots and shoots, leaf area index,
root, stem, leaf, and grain growth. Six phenological stages are simulated and the length of each
stage is controlled by plant genetics, weather, and other environmental factors. Air temperatures
(or more specifically growing degree-days) are the primary control of plant development.
Genetic coefficients are used to set the genotype-specific aspects of maize development
(Quiring, 2004).

Potential dry matter production is calculated as a function of radiation, leaf area index (LAI) and
reduction factors for temperature and moisture stress. Final grain yield is calculated as the
product of plant population, kernels per plant, and weight per kernel. CERES-Maize accounts for
the effects of weather, soil type, genotype, nitrogen, and management options on crop growth
and yield and it utilizes a daily time step to calculate crop growth and to simulate the water and

nitrogen balances (Quiring, 2004).
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2.7.2 AquaCrop

In this study, the use of a recently developed crop growth simulation model named AquaCrop
(Raes et al., 2009) is proposed. It integrates the effects of crop phenotype, soil profiles, weather
data, and management options into a crop production model. The crop model uses maximum and
minimum air temperatures (Tx and Tn), rainfall, and reference evapotranspiration (ETo) from
season-long weather records. It computes plant growth and development processes on a daily
basis in a specific location, from planting date to maturity date. As a result, the impact of
weather, soils, and management decisions on a crop yield can be well estimated (Shin et al.,
2006). Daily seasonal climate data are preferred as inputs for the AquaCrop crop model.
However, it can generate daily weather from an input of 10 day or monthly weather data.

AquaCrop is a dynamic water-driven production simulation model that requires a relatively low
number of parameters and input data to simulate the yield response to water of most of the major
field and vegetable crops cultivated worldwide. Its parameters are explicit and mostly intuitive
and the model maintains sufficient balance between accuracy, simplicity and robustness (Steduto
et al., 2009). The model has a structure that overarches the soil-plant-atmosphere continuum
(Figure 2.3). It includes the soil, with its water balance; the plant, with its development, growth
and yield processes; and the atmosphere, with its thermal regime, rainfall, evaporative demand
and carbon dioxide concentration (CO,). Additionally, some management aspects are explicitly
considered (e.g., irrigation, fertilization, etc.) as they will affect the soil water balance, crop

development and therefore final yield (Raes et al., 2009).
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Figure 2.3 Flowchart of Aquacrop indicating the main components of the soil-plant-atmosphere

continuum (Raes et al., 2009)

2.7.2.1 The soil

The soil component of AguaCrop is configured as a dispersed system of a variable depth
allowing up to five horizons of different texture composition along the profile. As default, the
model includes all the classical textural classes but the user can input own specific values. For
each texture class, the model associates a few hydraulic characteristics which can be estimated
from soil texture through pedotransfer functions. The hydraulic characteristics include the
hydraulic conductivity at saturation, and the volumetric water content at saturation, field capacity
and wilting point (Steduto et al., 2009).
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For the soil profile explored by the root system, the model performs a water balance that includes
the processes of runoff (through the curve number), infiltration, redistribution or internal
drainage, deep percolation, capillary rise, uptake, evaporation and transpiration. A daily step soil
water balance keeps track of the incoming and outgoing water fluxes at the boundaries of the
root zone and of the stored soil water retained in the root zone.

When calculating the soil water balance, the amount of water stored in the root zone can be
expressed as an equivalent depth (Wr) or as depletion (Dr). Expressing the water content in a
particular soil volume as an equivalent depth (Wr) is useful when computing the soil water
balance of the root zone. It makes the adding and subtracting of gains and losses of water
straightforward since the various parameters of the soil water balance such as rain and
evapotranspiration are usually expressed in terms of water depth. The stored soil water in the

root zone expressed as a depth is given by:

Wr =1000q Z (Eq. 2.1)

where Wr is soil water content of the root zone expressed as a depth [mm]; 1000q is average soil
water content for the root zone expressed as equivalent depth per unit soil depth
[mm(water)/m(soil depth)]; q is average volumetric water content in the root zone [m3/m3]; Z is
the effective rooting depth [m] (Raes et al., 2009).

2.7.2.2 The plant

In AquaCrop, the crop system has five major components and associated dynamic responses:
phenology, aerial canopy, rooting depth, biomass production and harvestable yield. The crop
grows and develops over its cycle by expanding its canopy and deepening its rooting system
while at the same time the main developmental stages are established. The canopy represents the
source for actual transpiration that gets translated in a proportional amount of biomass produced

through the water productivity parameter, (WP), i.e.
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B =WP - XTr. (Eq. 2.2a)

Where Tr is the crop transpiration (in mm). The harvestable portion (Y) of such biomass (B) is

then determined via the harvest index (HI), i.e.

Y=B-HI (Eq. 2.2b)

The basis for using equation. 2.2a as the core of the model growth engine for AquaCrop lies on
the conservative behaviour of WP (Steduto and Albrizio, 2005; Steduto et al., 2007). The WP
parameter of AquaCrop is normalized for reference evapotranspiration (ETo) and the carbon
dioxide (CO,) concentration of the bulk atmosphere, it may vary moderately in response to the
fertility regime, and remains constant under water deficits except when severe water stress is
reached. The normalization of WP for climate makes the model applicable to diverse locations
and seasons, including future climate scenarios. Once the biomass (B) is obtained (Eq. 2.2a), the
crop yield is derived by multiplying B and the harvest index, HI (Eq. 2.2b). Starting from
flowering, HI can be adjusted for water deficits depending on the timing and extent of the water

stress during the crop cycle (Raes et al., 2009).

Even though AquaCrop uses a HI parameter, it does not calculate the partitioning of biomass
into various organs (e.g., leaves, roots, etc.), i.e. biomass production is decoupled from canopy
expansion and root deepening. This choice avoids dealing with the complexity and uncertainties
associated with the partitioning processes, which remain among the least understood and most
difficult to model (Raes et al., 2009).

2.7.2.21 Growing degree days

Depending on the data availability, preference of the user and/or simulation modes, crop growth
and development is described dynamically either in calendar days or in thermal time. AquaCrop
uses Growing Degree Days (GDD) (Eg. 2.3) to compute thermal time. Different crop

developmental stages are completed once a given number of calendar days or GDD are reached.
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GDD= Tavg— Thase (Eq. 2.3)

The base temperature (Thase) is the temperature below which crop development does not
progress. In AquaCrop an upper threshold temperature (Tupper) is considered as well. The
upper temperature threshold specifies the temperature above which crop development no longer

increases with an increase in air temperature. The average air temperature (Tavg) is given by:

rag - B ;Tn - (Eq. 2.4)

where Tx is the daily maximum air temperature and Tn is the daily minimum air temperature
(Raes et al., 2009)

The genetic variation among species and cultivars may be implemented in the model through the
variation in timing and duration of the various developmental stages, as well as through the rate
of canopy expansion, rate of root deepening, the water productivity parameter and other response

factors to environmental conditions.

2.7.2.2ii Canopy cover

The canopy is a crucial feature of AquaCrop through its expansion, ageing, conductance and
senescence, as it determines the amount of water transpired, which in turn determines the amount
of biomass produced. The canopy expansion is expressed through the fraction of green canopy
ground-cover (CC). Having canopy development expressed through CC and not via leaf area
index (LAI) is one of the distinctive features of AquaCrop. It introduces a significant
simplification in the simulation, reducing the overall aboveground canopy expansion to a growth
function and allowing the user to enter actual values of CC even estimated by eye. Moreover, CC
may be easily obtained also from remote sensing (Stetudo et al., 2007). Canopy development is

simulated by two equations:

e (exponential growth) is valid when CC < CCx/2
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CC =CCoe'“c¢ (Eq. 2.5a)
e (exponential decay) is valid when CC > CCx/2

2
€ox 0 o

CCo

CC=CCx-0.25

(Eq. 2.5b)

where CC is canopy cover at time t [fraction ground cover]; CCo - initial canopy size at t= 0
[fraction ground cover]; CCx - maximum canopy cover [fraction ground cover]; CGC - canopy
growth coefficient [increase of fraction ground cover per day or growing degree day]; t - time
[day or growing degree day] (Stetudo et al., 2007).

2.7.2.2iii Root development

The root system in AquaCrop is simulated through its effective rooting depth. The effective
rooting depth (Z) is defined as the soil depth where most of the root water uptake is taking place,
even though some crops may have a few roots beyond that depth. The root deepening rate is a
function of crop type and time. In AquaCrop, the development of the rooting depth is simulated
by considering the n™ root of time. Once half of the time required for crop emergence (or plant
recovery in case of transplanting) is gone (to/2), the rooting depth starts to increase from the

sowing depth (Zo) till the maximum effective rooting depth Zx is reached:

Z=Zo+ (Zx- Zo) (Eq. 2.6)

where Z is the effective rooting depth at time t [m]; Zo is sowing depth [m]; Zx is maximum
effective rooting depth [m]; to time to reach crop emergence [days or growing degree days]; tx is
time after planting when Zx is reached [days or growing degree days]; t is the time after planting

[days or growing degree days]; n is shape factor (Raes et al., 2009).
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2.7.2.3 The atmosphere

The atmospheric environment of the crop is described in AquaCrop and deals with key input
meteorological variables. Five weather input variables are required to run AquaCrop: daily
maximum and minimum air temperatures (T), daily rainfall, daily evaporative demand of the
atmosphere expressed as reference evapotranspiration (ETo) and the mean annual carbon dioxide
concentration in the bulk atmosphere. While the first four are derived from typical agro-
meteorological stations, the CO? concentration uses the Mauna Loa Observatory records in
Hawaii (Raes et al., 2009).

Temperature (minimum and maximum), rainfall and ETo may be provided at different time
scales, specifically daily, 10-day, and monthly records. However, at run time AquaCrop
processes the 10-day and monthly records into daily values. This flexibility for different time
scales of weather input variables is required to use AquaCrop in areas of limited weather

records and for simplicity.

ETo is the evapotranspiration rate from a grass reference surface, not short of water and is an
index for the evaporating power of the atmosphere. AquaCrop does not include the routines for
calculating ETo, but a separate software program (ETo calculator) based on the procedures
described in the FAO Irrigation and Drainage Paper 56 (Allen et al., 1998) where not all the
required input variables for calculating ETo are available is provided to the user for such purpose
(Raes et al., 2009).

2.7.2.31 Evapotranspiration

The dual crop coefficient approach (Allen et al., 1998) is used to determine evapotranspiration.
Crop transpiration (Tr) and soil evaporation (E) are calculated by multiplying ETo with their
specific coefficients (Eg. 2.7a). The effects of characteristics that distinguish the crop
transpiration and soil evaporation from grass are integrated into the crop transpiration coefficient

(Kcb) and the soil water evaporation coefficient (Ke). Soil evaporation, crop transpiration and
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ETo are expressed in mm/day. When the root zone is well watered and the soil surface wet, crop

transpiration as well as soil evaporation are at their maximum rate and ET is given by:

ETc = Kcb + Ke ETo (Eq. 2.7a)

The value of both coefficients depends on canopy cover. The crop transpiration coefficient is
proportional to the fractional canopy cover (Kcb ~ CC) and the soil water evaporation coefficient
is proportional to the fraction of the soil surface not shaded by the canopy (Ke ~ (1-CC)) (Raes et
al., 2009).

The rate of soil evaporation and crop transpiration drops below their maximum rates, when
insufficient water is available in the soil to respond to the evaporative demand of the atmosphere.
This is simulated by multiplying the crop transpiration coefficient with the water stress
coefficient for stomatal closure (Kssto) and the soil water evaporation coefficient with a
reduction coefficient (Kr) (Raes et al., 2009):

ET = Ks Kcb + Kr Ke ETo (Eq. 2.7b)

2.7.2.3ii Processing of 10-day and monthly climatic data

The input data may consist of daily, 10-day or monthly temperature (max and min), ETo and
rainfall data. At run time, the 10-day and monthly data are processed to derive daily minimum
and maximum air temperatures, ETo and rain data. By weighing the evapotranspiration rates and
air temperatures in the previous, actual and next 10-day period or month, daily ETo rates, and the
daily maximum and minimum air temperatures are obtained in AquaCrop. The calculation

procedure is based on the interpolation procedure presented by Gommes (1983).

The same holds for the rainfall data but since it is highly unlikely that rainfall is homogenously
distributed over all the days of the 10-day period or month, some further processing is carried out
to determine the amount of rainfall that is stored in the top soil as effective rainfall, lost by

surface runoff and by deep percolation. Effective rainfall is that part of rainfall that is stored in
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the root zone and not lost by surface runoff or deep percolation. After the subtraction of the
amount of rainfall lost by surface runoff, the effective rainfall is estimated by one or another
procedure determined by the user (Stetudo et al., 2007).

The following procedures can be selected to determine the effective rainfall when 10-day or
monthly rainfall data is used:

- 100 percent effective

- USDA-SCS procedure (SCS, 1993; Naesens, 2002).

- Expresses as a percentage of rainfall.

2.7.2.4 Major advantages of AquaCrop

AquaCrop combines the benefits of more empirical modelling methods (low input data
requirements, validity over large areas) with the benefits of a process-based approach (the
potential to capture variability due to different sub seasonal weather patterns and hence increased
validity under future climates). It also includes several key biophysical processes that are
important in determining crop response to climate variability, particularly in future climate.
(Raes et al., 2009).
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CHAPTER 3: METHODOLOGY

3.0 Introduction

The Zimbabwe Meteorological Services Department (ZMSD) is responsible for weather services
in Zimbabwe. The department offers forecasts for farmers to plan for maize production and other
farming activities. However, the forecasts are non-specific with regard to decision making in
maize production. The first part of the study entailed comparing the proposed probabilistic
weather forecasting tool (RAINMAN) with Climate predictability tool (CPT), one of the forecast
tools used by the ZMSD. The comparison will be done in order to assess RAINMAN's
suitability for integration into the decision support tool intended for maize production at
Masvingo. The second part of the project entailed the generation of weather series to be used for
running the crop model. The third part involved crop simulations and the development of the

decision criteria for maize production at Masvingo.

PART 1: COMPARISON OF RAINMAN AND CPT

3.1 Climatic data: Rainfall

The data used in the analyses consisted of monthly precipitation for Masvingo station (long-
30°52’ E; Lat- 20°04° S; Alt- 1100 m). The data was provided by the ZMSD. To compare the
two forecast tools, seasonal rainfall analyses were done on rainfall for one season (October to
March) over a validation period of 16 seasons (1991/92-2006/07) and an estimation period of 41
seasons (1950/51-1990/91) using RAINMAN and CPT. Observed rainfall data for RAINMAN
was preexistent in the software tool and was assumed to be accurate since the tool was created
with the input of the ZMSD. However, the data available in RAINMAN International version 4.1
was for 1899/90-1989/90. This data was appended and updated to 2006/07 using monthly
rainfall data obtained from the MAGM data base courtesy of the ZMSD. CPT input data was
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also obtained from the same data base. The monthly rainfall data used in CPT was for 1950/51-
2006/07.

3.2 RAINMAN simulations

Probabilities of rainfall for Masvingo station were computed using RAINMAN version 4.1
through the SOI forecast phase system. Results of seasonal analyses for Masvingo for the season
October-March were represented by deciles of rainfall tables (Figure 3.1; Appendix A). The SOI
forecast phase system has five phases namely; negative, falling, neutral, rising and positive. The
seasonal analysis in RAINMAN to obtain predicted amounts of rainfall was performed in the

research format.

3.2.1 Settings

Results of analyses carried out by Clewett et al., (1992) show that the SOI forecast phase system
of RAINMAN has considerable skill for the period October- March (ONDJFM), using one
month lead time. The duration of the rainfall season was therefore set at October- March and the
SOI phase months were set at July — August (JA) giving a one month lead time as shown in

Figure 3.1.

The SOI for the forecast months (JA) prior to the season under investigation were set in the
“which phase? Calculator”. The SOI values were found within RAINMAN under the SOI/SST
manual update in the Masvingo file. With the above settings, RAINMAN seasonal analysis was
carried out for the SOI phase system for the seasons 1950/51- 1990/91 and 1991/92- 2006/2007
(Appendix A: Table A-1; Table A- 2).
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Figure 3.1 RAINMAN simulation window showing settings and predicted seasonal total rainfall
for Masvingo for the season October to March with a 1 month lead time for the SOI phase period

of July-August.

3.2.2 Skill analysis

The major statistical tests used in RAINMAN are the Kruskal-Wallis (KW), and the LEPS
(Linear Error in Probability Space) skill score test and the probability score (p). The statistical
relationship of the ENSO indicators with rainfall is classified in Table 3.1. Forecasts with
statistical relationships considered significant were applied with no reservations. Doubtful
statistical relationships were applied with a degree of caution. Statistical relationships that were
insignificant were discarded or applied with extreme caution on the basis that skill score values
below 7.6 are not sufficiently skilful. Forecast skill reduces from 7.6 and forecasts with skill

scores below 0.0 have no skill.
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Table 3.1 Measures of the strength of statistical relationship between ENSO indicators and

rainfall amounts

KW test result LEPS Skill Score
Significant 0.9 or above 7.6 or above
Doubtful below 0.9 7.6 or above
Doubtful 0.9 or above below 7.6
Not significant below 0.9 below 7.6

3.2.3 Seasonal analysis

Depending on the SOI phases (falling, negative, neutral, rising positive), rainfall amounts in the
deciles of rainfall at Masvingo were selected under the 20 % (above normal/wet), 50 % (normal)
or 80 % (below normal/dry) categories of probability of rainfall occurrence based on the

realisations summarized in Table 3.2

Table 3.2 Selection criteria for seasonal analysis results based on SOI phase system. — indicates

a negative value; + indicates a positive value; +(0-10) indicates positive but between 0 and 10;

SOl PHASE

FALLING NEGATIVE NEUTRAL RISING POSITIVE

July Aug July  Aug July Aug July Aug July Aug July Aug July Aug

- - - - - - + o+ - + +0-10) +(>10)
80 % 80 % 50 % 20% 20 % 50 % 20 %
(dry) (dry) (normal) (wet) (wet) (normal) (wet)

3.3 CPT simulations

Seasonal total rainfall for Masvingo station was also carried out by means of the statistical
software package, Climate Predictability Tool (CPT) version 9.10. CPT provides a Windows

package for seasonal climate forecasting given updated data (Ndiaye and Mason, 2006).
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3.3.1 Settings

CPT simulations were performed under the settings shown in the input window in Figure 3.2.
The principle component method of analysis was selected as advised by Ndiaye and Mason
(2006). The X domain limits were selected as: Northernmost latitude: 30; Southern most latitude:
- 40; Westernmost latitude: - 70; Easternmost latitude: 290. Rainfall amounts at Masvingo station
from 1900/01 to 2006/07 were used as input response (Y) variables. The Y domain variables
were selected as: Northernmost latitude: - 19; Southern most latitude: - 21; Westernmost latitude:

29; Easternmost latitude: 32. CPT simulations were run based on the above settings and the
results obtained were summarised in Appendix A: Table A-5; Table A-6; Table A-7; Table A-8.

Climate Predictability Tool, v. 9.10 - Input Window
File Edit #Actions Options Wiew Help

browse hrowse

Figure 3.2 CPT input window where simulation settings are applied and training data

characteristics

PART 2: GENERATION OF RAINFALL DATA SERIES

The second part of the study entailed the generation of rainfall weather series for Masvingo. The

generated weather series represent weather scenarios for the five phases of the Southern
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Oscillation Index in three categories of rainfall i.e. wet (20 %); dry (80 %) and normal (50 %)
categories. The weather series were used to run the crop production simulations for a variety of
agrometerorological scenarios (three planting dates, three maize cultivars and two fertility
levels).

3.4 Monthly rainfall predictions

Predictions of monthly rainfall for the growing season (October to March) were performed using
RAINMAN. April was included in case of late planting. Historical rainfall from 1899/00 to
1989/90 was available within the RAINMAN database. The records were appended with rainfall
amounts obtained from the ZMSD up to the 2006/07 season. RAINMAN divided the years from

1899/90 to 2006/07 into the five phases of the SOI, negative, falling, neutral, rising and positive.
The period from 1899/90 to 2006/07 was used for making rainfall predictions.

3.4.1 Settings

The rainfall predictions were carried out in the research format of RAINMAN. The rainfall
period was set to the month being predicted e.g. January-January for the month of January. The
SOI phase period was set for July-August (JA), giving lead times from one month for October
predictions to seven months for April. The resultant predictions were found in the deciles of
rainfall tables (Appendix B) under the wet (20 %), normal (50 %) and dry (80 %) categories of
the five SOI phases.

3.4.2 Skill analysis

Skill analysis was based on Table 3.1. However, since the lead times ranged from 1 month to 7
months the level of skill was expected to decline. Therefore, for monthly rainfall predictions, a
KW score under 0.9 and an LEPS score below 7.6 were considered acceptable as long as LEPS

was above 0 and the probability value was greater than 0.5.
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3.4.3 Seasonal analysis

In order to assess the accuracy of RAINMAN probabilistic monthly predictions, they were
validated against the observed rainfall for each month for a validation period from 1991/92 to
2006/07. The predicted rainfall amount was selected based on whichever of the three categories
of rainfall (20 %, 50 %, and 80 %) was found to bear a resemblance to the observed monthly
rainfall category.

PART 3: CROP SIMULATIONS

3.5 The modeled environment

Simulations of maize yields were carried out using AquaCrop v 3.0 (Raes et al., 2009).
AguaCrop was chosen for its combined simplicity and robustness. The model allows for the use
of monthly weather data despite quantifying plant physiological response on a daily time-step.
AqguaCrop has been tested for a variety of locations, some similar to Masvingo. Required model
inputs include the climate (minimum and maximum temperature, precipitation and reference
evapotranspiration (ETo), crop characteristics, planting date, field management (fertility), and

soil properties as shown in Figure 3.2.

3.5.1 Soil characteristics

The soil texture characteristics at Masvingo were considered to be a moderately deep coarse
loam (Phillips et al., 1998). The field capacity and wilting point for textural classes of Zimbabwe
are found at -10 kPa and -1500 kPa suction pressure respectively (Hussein, 1983). Important soil

parameters for rainfed agriculture at Masvingo are given in Table 3.3.
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Main menu

Environment
Climate

File:
Clirviaske: liSDIfaIIing[EEIZ].CLI masvingo msec 2010

Growing cycle; Day 1 after sowing: 29 October 2000 - Harvest: 17 March 2007
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Soil
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j ‘1"— Imitial conditions l—[N one] Soil water profile at Field Capacity

Run 3y —
Prﬂiect — = Froject |—[N one] Mo specific: project

Figure 3.2 Aquacrop main menu showing the modeled environment and the basic input

parameters.

Table 3.3 Physical characteristics of soil sandy clay loam texture group at Masvingo (Adapted
from Sithole, 2003. pp 36)

Property Sandy clay loam
Bulk density (g cm™) 1.48
Soil water content at saturation (0sat) (% Vol) 43.2
Soil water content at field capacity Orc (10) (% Vol) 28.8
Soil water content at wilting point Owp(1500) (% Vol) 16.1
Total available water TAW mm/m 127
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3.5.2 Climate data

Mean monthly maximum and minimum air temperature data were obtained from the ZMSD.
Precipitation data was obtained from predictions made by RAINMAN. ETo values were

generated using ETo calculator.

3.5.3 Crop characteristics

Conservative characteristics applicable to all maize cultivars were considered as summarized in
Table 3.4(a). All the other crop characteristics not defined are as presented by AquaCrop
(default).

Table 3.4 (a) Conservative crop characteristics applicable to all the three maize cultivars

considered.

Description Value Units
Biomass water productivity (WP) 29 gm°
Reference harvest index (HI) 36 %

Plant density 37 037 Plants/ha
Maximum canopy cover 75 %
Maximum rooting depth 1.2 m

The length of season for Masvingo is sometimes as short as 95 days (dry years) and as long as
145 days (wet years) (Sithole, 2003). The variations are large enough to command careful
selection of crop cultivars. The characteristics of crop cultivars for maize used in the simulations
are summarized in Table 3.4(b), Table 3.4(c) and Table 3.4(d). The length of growth stages of
maize were based on calendar days and not growing degree days (GDDSs) since the temperature
variation within the season over the years was assumed to be negligible. The calendar days for

each growth stage were developed as a proportion of the days to maturity of the maize cultivar.
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Table 3.4(b) Growth stages for 100-day maize cultivar

Growth stage

Length (days)

Days from sowing to emergence
To flowering
To maximum rooting depth
To start of canopy senescence

To maturity

Length of flowering stage

5
50
71
86
100

Table 3.4(c) Growth stages for 125-day maize cultivar

Growth stage

Length (days)

Days from sowing to emergence
To flowering
To maximum rooting depth

To start of canopy senescence

To maturity

Length of flowering stage

5
63
88
108
125
11

Table 3.4(d) Growth stages for 140-day maize cultivar

Growth stage

Length (days)

Days from sowing to emergence
To flowering
To maximum rooting depth

To start of canopy senescence

To maturity

Length of flowering stage

6
70
108
120
140
13
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3.5.4 Planting dates

The planting dates used for the study were based on the optimal planting dates generated by
Sithole (2003) as shown in Table 3.5. In this study, the method applied is the Depth criterion
which was developed by quantifying methods used by farmers to determine planting dates. The
method is quantified by taking a cumulative rainfall depth required to bring the top 0.25 m of the
soil profile to field capacity within 4 days before planting.

Table 3.5 Optimal early, mean and late onset of planting dates for Masvingo based on criteria
used in Zimbabwe (Adapted from Sithole (2003), pp 52.)

Method Onset dates

Early Mean Late
MET (Meteorological 24- Oct 10-Nov 30- Nov
office, Zimbabwe)
AREX (Agriculture, 20- Oct 6- Nov 26- Nov
research & extension)
FAO (Food & agric 18- Oct 5- Nov 23- Nov
organization)
DEPTH 29- Oct 16 Nov 7- Dec

3.5.5 Fertiliser management

Two levels of fertilizer application were used: an “optimal” level and a lower level more

representative of resource poor farming communities.

3.6 Data analysis

3.6.1 Use of Contingency Tables and Associated Scores

A summary of the predicted and observed climate events was represented in the form of
contingency tables. Contingency tables are used to record and analyze the relationship between
two or more categorical variables which in this study are represented by observed and predicted

rainfall in three categories of dry/below normal (< 500 mm), normal (500-650 mm) and
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wet/above normal (> 650 mm). These tables provided the basis from which a number of useful

scores were obtained.

Table 3.3 Framework contingency table for calculating associated scores

Predicted

Below normal(B) Normal (N) Above normal(A) TOTAL

Below normal (B) A Asr Ass J
Observed  Normal (N) Ao Az Aas K

Above normal (A) As Az Ags3 L

TOTAL M N @) T

Percent correct gives the percentage of total predictions made which were correct and is given

by:

Percent correct= (A + Axpp + Ags) / T * 100 (Eg. 3.1a)

The hit rate is the number of correct predictions divided by the number observed in each

category. It is a measure of the ability to correctly forecast a certain category and is given by:

Hit Rate = Aa1/j, A22/k, Ass/l for the three different categories (Eq. 3.1b)

Bias is the number of predictions divided by the number observed for each category. It measures
the ability to forecast events at the same frequency as found in the sample without regard to

forecast accu racy.

Bias = M/J, N/K, O/L for the three categories, (Eq. 3.1¢)

Where Bias = 1 implies no Bias.

Bias >1 implies over-forecasting the event

Bias <1 implies under-forecasting the events
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The Critical Success Index (CSI) shows the percentage of correctness of a prediction in each

category and is given by

CSI= A/ (M+J)-A11), Azl ((N+K)- Az2), Ass/(( O+L)- Asz) (Eq. 3.1d)

3.6.2 Significance tests

Contingency tables for the observed and predicted rainfall were investigated for any significant
association by performing y? significance tests at a 5 % level of significance. The tests were
important in assessing the relevance of contingency tables results on the accuracy of CPT and
RAINMAN in predicting seasonal total rainfall. The null hypothesis Ho, used was: there is no

association between observed and predicted seasonal total rainfall.

Ho was accepted when y2cac was less than y2, otherwise it was rejected for alternative hypothesis
H; which stated: there is a significant association between observed and predicted seasonal total
rainfall.

The comparison between observed frequencies (O;) and predicted frequencies (E;), for = 1,2...,n

i.e. for n pairs of values, or classes is made by considering the statistic

Poalo= ¥ 62 (Eq. 3.2a)

i=1 Ei

Regression equations of observed and predicted rainfall were investigated for significant
correlation by performing a significance t- test at a 5 % significance level. The null hypothesis
Ho used was: there is no significant difference between observed and predicted rainfall. This
was tested against an alternative hypothesis H; stating there is a significant difference between
observed and predicted rainfall. A two-tailed test was performed for which the null hypothesis

was accepted for the following conditions:

-1,=0.025<t < +t, = g.025 (Eq 32b)
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The t-distribution degrees of freedom were given by df(v)= n-1 where n was the number of
seasons under investigation. The t- statistic value corresponding to correlation coefficient was

based on the equation within excel 2007 for t- distribution.

3.6.3 Error statistics

We employed standard descriptive measures of goodness-of-fit to evaluate the accuracy of
seasonal rainfall predictions made by the seasonal forecast models.

The Mean Square Error (MSE) is one of the most commonly used measures of accuracy.

Forecasters usually choose the models which minimize MSE.
MSE= 1> € -y 3 (Eq. 3.32)
n =

Where: n is the total number of observations

y, Is the observed amount

yi is the predicted amount

Mean Absolute Percentage Error (MAPE) combines the individual percentage errors without
offsetting the negative and the positive values. This measure is similar to the Mean Absolute
Error (MAE).

Yo Y

Yo

MAPE= 13 X100 (Eq. 3.3b)
n

i1

However, MAPE treats each error equally without taking account of the sign. It is useful in
comparing different forecasting models. MAPE assumes that the cost of errors is more closely

related to the percentage error than to the unit error.
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The Root mean square error (RMSE) is measured in the same units as the data, rather than in
squared units, and is representative of the size of a "typical" error. It is a valid indicator of

relative model quality only if it can be trusted.

RMSE= \/—Zn ¢ -y 32 (Eq. 3.3¢)

Coefficient of Variation (VC) is similar to the statistical inference coefficient of variation. It
relates RMSE to the average of the actual data. The smaller the value the better the performance
of the model.

VC= (Eq. 3.3d)

The Mean Absolute Error (MAE) gives an equal weight to the individual error of each period,
while not offsetting the positive and negative values of the individual error. MAE is less
sensitive than RMSE to errors in large predicted departures from the mean, and is therefore

considered a more robust measure of accuracy.

MAE= 23y, -y,

n =

(Eq. 3.3¢)

There is no absolute criterion for a "good" value of the error statistics mentioned in section 3.6.3:
it depends on the units in which the variable is measured and on the degree of forecasting
accuracy, as measured in those units, which is sought in a particular application (Legates and
MacCabe, 1999).
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3.6.4 Regression analysis

Regression is the amount of change in one variable that is associated with unit change in the
other. Regression analysis is a statistical approach that is used to investigate the relationship
between two or more variables (Boyce, 2005). The closeness of the relationship is measured by
the coefficient of determination R?. The strength of R® ranges from 0 to 1, with 1 representing a
perfect positive relationship. The analysis was done using EXCEL. Observed rainfall was
plotted against predicted rainfall.
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CHAPTER 4: RESULTS AND DISCUSSION

4.0 Introduction

This section presents and discusses the results of the study. Initially, the proposed seasonal
weather forecast tool (RAINMAN) is tested and compared for utility against CPT with the aim
of determining the tool’s appropriateness for use in an integrated yield forecasting tool with
AquaCrop. Simulations are run with seasonal forecasts and a variety of agricultural scenarios.
Ultimately, a decision support tool for maize production in Masvingo is developed.

PART 1: UTILITY OF RAINMAN

4.1 Comparison of RAINMAN and CPT

The seasonal total rainfall predictions from CPT and RAINMAN and the observed rainfall

amounts for the validation period and the estimation period are summarized in Appendix A.

The trend analyses of the predicted seasonal total rainfall amounts by CPT and observed seasonal
total rainfall amounts shows that CPT has a poor predictive ability compared to RAINMAN.
Figure 4.1(a) shows that CPT makes most of its predictions in the normal (500-650 mm) and
below normal range of rainfall amounts. Figure 4.1 (b) shows that the predictions made by
RAINMAN in the estimation period (1950/51-1990/91) have a trend which is similar to that of
the observed rainfall amounts. On the other hand, Figure 4.2 (a) shows the rainfall amounts
predicted by CPT to be very different from the observed values, the model makes most

predictions within the normal range of rainfall.
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It was noted over the validation period (Figure 4.2) that the predicted rainfall from RAINMAN
varied as the observed rainfall. However, the tool was considerably off the mark in the 1999/00,
2002/03 and 2005/06 seasons. Although RAINMAN predicted above normal rainfall for the
1999/00 season, the observed rainfall was much higher than the predicted. Zimbabwe
experienced cyclone Eline late in the season and it is noted as the reason for the difference. The
month of February received 412 mm. highly anomalous rainfall totals falling in March 2003 (412
mm) and December 2005 (457 mm) led to poor predictions by RAINMAN in the 2002/03 and

2005/06 seasons since there were rarely any analogous years to be compared.

The predicted and observed seasonal rainfall totals were plotted against each other in order to
view the relationship between the two as shown in Figure 4.3. An R? value of 0.13 was found
between the rainfall amounts predicted by RAINMAN (Figure 4.3 (b)) and the observed,
indicating a weak positive correlation. An R? value of 0.11 was found between the rainfall
amounts predicted by CPT and the observed seasonal total rainfall amounts (Figure 4.3 (a)),
indicating a poor positive correlation. However, despite the poor linear relationships, the patterns
presented in Figures 4.3 (b) and 4.3 (d) show that RAINMAN makes predictions in all categories
of rainfall while CPT (Figures 4.3 (a) and (c)) predominantly makes predictions of rainfall in the

normal to below normal categories only.

The similar coefficients of determination and patterns for RAINMAN within the estimation
period (0.13) and the validation period (0.13) show that the data used to train the model is
‘honest” and therefore there is no chance of overfitting of the model data. The estimation period
(0.10) and validation period (0.11) coefficients of determination and similar patterns for CPT
also point towards a minimal chance of overfitting. Based on the patterns shown in Figures 4.3
(@), (b), (c), and (d), RAINMAN has a better predictive ability than CPT.
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(1991/92- 2006/07); (c) CPT, (d) RAINMAN.
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Table 4.1(a) Contingency table for observed and predicted (RAINMAN) rainfall in estimation

period (1950/51-1990/91), showing percentage of correct predictions, the hit rate per rainfall

category, BIAS and the Critical Success Index (CSI) for each category.

Below normal
Observed Normal
Above normal
TOTAL

Percent correct = 54 %

Below normal Normal
Hit rate: 47 % 43 %
BIAS: 0.77 0.87
Csl: 36 % 30 %

Below normal
8

0

5

13

Above normal

65 %
1.29
39 %

Predicted
Normal Above normal TOTAL
2 7 17
3 4 7
1 11 17
6 22 41

Table 4.1(b) Contingency table for observed and predicted (CPT) rainfall in estimation period

(1950/51-1990/91), showing percentage of correct predictions, the hit rate per rainfall category,

BIAS and the Critical Success Index (CSI) for each category.

Observed Below normal
Normal
Above normal
TOTAL

Percent correct = 22%

Below normal
Hitrate= 17 % 100 %
BIAS = 0.22 6.16
Csl: 16 % 16 %

Predicted
Below normal  Normal Above normal TOTAL
3 15 0 18
0 6 0 6
1 16 0 17
4 37 0 41

Normal Above normal

0%
0
0%
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Within the estimation period, the predictive ability of RAINMAN is much better than that of
CPT. Tables 4.1 (a) and 4.1 (b) show that RAINMAN makes at least twice as many accurate
predictions in each category than CPT over the same period. RAINMAN has a 54 % correct
forecast hit rate to CPT’s 22 %. RAINMAN shows only a slight bias in all the rainfall categories
while CPT has a considerable bias in all the categories. Furthermore, RAINMAN has a superior

Critical Success Index (CSl) in all forecast categories

Table 4.2(a) Contingency table for observed and predicted (RAINMAN) rainfall in validation
period (1990/91-2006/07), showing percentage of correct predictions, the hit rate per rainfall
category, BIAS and the Critical Success Index (CSI) for each category.

Predicted
Below normal  Normal Above normal TOTAL
Below normal 3 1 0 4
Observed Normal 1 3 1 5
Above normal 2 0 5 7
TOTAL 6 4 6 16

Percent correct = 69 %

Below normal Normal Above normal

Hit rate: 75 % 60 % 71 %
BIAS: 15 0.8 0.86
CSl: 43 % 50 % 63 %

The predictive ability of RAINMAN in the validation period as shown in Table 4.2 (a) is better
than that of CPT (Table 4.2 (b)). RAINMAN has 69 % correct predictions while CPT makes 44
% correct predictions. RAINMAN and CPT have similar hit rates in the below normal category
of 75 % and 80 % respectively. Their bias and Critical Success Index (CSI) in the below normal
category are also similar. RAINMAN shows better predictive ability in the normal and above
normal categories. CPT has a 75 % hit rate to RAINMAN’s 60 %. However, CPT is greatly
biased towards the normal category with a bias of 1.75 to RAINMAN’s 0.8. RAINMAN has a
stronger critical CSI of 50 % to CPT’s 38 %. While RAINMAN has a good predictive ability in
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the above normal category (Hit rate — 71 %; Bias- 0.86; CSI- 63 %), CPT makes no predictions

in the above normal category.

Table 4.2(b) Contingency table for observed and predicted (CPT) rainfall in validation period
(1990/91-2006/07), showing percentage of correct predictions, the hit rate per rainfall category,
BIAS and the Critical Success Index (CSI) for each category.

Predicted
Below normal  Normal Above normal TOTAL
Below normal 4 1 0 5
Observed Normal 1 3 0 4
Above normal 4 3 0 7
TOTAL 9 7 0 16.

Percent correct =44 %

Below normal Normal Above normal

Hit rate: 80 % 75 % 0%
BIAS: 1.8 1.75 0%
CSl: 40 % 38 % 0%

Table 4.2(c) Values of y2- statistics for the contingency tables

N X calc
RAINMAN(1991/92- 2006/07) 16 25.3
RAINMAN (1950/51-1990/91) 41 9.63
CPT (1991/92-2006/07) 16 1.8
CPT(1951/52- 1990/91) 41 2.3

y? significance tests carried out for the contingency tables (Table 4.2 (c)) revealed a significant
association between observed rainfall and predicted (RAINMAN) rainfall for the validation and
estimation periods (* caic > x? 5% 9.49). The significance test also showed no association between

observed rainfall and predicted (CPT) rainfall amounts for the validation and estimation periods
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(% caic < ¥* 5w 9.49). Based on the contingency tables results in the validation and estimation
periods, RAINMAN is a better probabilistic seasonal total rainfall predictor than CPT.
RAINMAN makes good predictions in all the categories of rainfall while CPT makes most

predictions within the normal category of rainfall.

Table 4.3(a) Summary of the error statistics of the observed and predicted rainfall for the
validation period (1990/91-2006/07).

RAINMAN CPT
MSE 60 304 68 888
RMSE 246 262
MAE 167 209
MAPE 49.7 50.6
Variation coefficient (VC) 38.4 41

The error statistics as summarized in Table 4.3 (a) reaffirm the stronger predictive abilities of
RAINMAN to CPT. In all cases in the validation period, RAINMAN shows a slight superiority
over CPT by having lesser error values for all the statistics. However, in the estimation period
(Table 4.4 (b)), CPT tends to minimize the forecast errors more than RAINMAN. The MAPE for
CPT and RAINMAN is identical. CPT has better statistics for MSE, RMSE, MAE and VVC. CPT
minimizes its errors over the larger data in the estimation period because it mostly makes its
forecasts in the normal rainfall category. CPT therefore evens out all the anomalies over the

longer test period from 1950/51 to 1990/91, hence the smaller errors.

Table 4.3(b) Summary of the error statistics of the observed and predicted rainfall for the
estimation period (1950/51-1990/91).

RAINMAN CPT
MSE 52 382 42 868
RMSE 228 207
MAE 184 178
MAPE 42 42
Variation coefficient (VC) 39 36
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4.2 Conclusion

RAINMAN has a better ability in predicting total seasonal rainfall in all categories of rainfall
(wet/above normal (20 %), normal (50 %), and dry/below normal (80 %)) for the validation and
estimation periods. RAINMAN makes better predictions per rainfall category than CPT.
RAINMAN’s ability to make good predictions in all the three categories of rainfall makes it an
appropriate tool for this study since Masvingo is found in agro-ecological region IV of
Zimbabwe, which experiences high rainfall variability and considerable below normal rainfall

activity.

Furthermore, RAINMAN has the ability to make rainfall predictions for each of the months
within the full agricultural season. This ability is useful in the maize yield simulation phase,
since the crop production simulation model proposed for this study makes use of daily, dekadal
or monthly rainfall totals for simulation. Based on the results presented, RAINMAN was found
to be a suitable forecasting tool for integration into the decision support tool for maize

production in Masvingo.

PART 2: GENERATION OF RAINFALL TIME SERIES

4.3 RAINMAN monthly rainfall predictions

Figure 4.4 and Table 4.4 show that RAINMAN has a significantly useful ability in predicting the
variance of rainfall per month during the validation period 1991/92-2006/07. RAINMAN
explained more that two-thirds of the variance of monthly rainfall in October, November,
January, February and April as shown by the coefficients of determination which range from
0.67-0.81(Appendix B). The relationship was marginally significant for the months of December
(0.37) and March (0.48). A highly anomalous rainfall amount of 413 mm received in March
2003 resulted in only 48 % of rainfall variance being explained. This was a result of cyclone

Japheth which the tool is not positioned to predict.
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Figure 4.4 Comparison of the observed (squares) and predicted (triangles) monthly rainfall for

the months of October to April for the period 1991/92 — 2006/07; (a) October, (b) November, (c)
December, (d) January, (e) February, (f) March, (g) April.

Table 4.4 Showing R?, t-statistics (Appendix C), the error statistics MSE, RMSE, MAE, and the

percentage variance of the MAE from the mean rainfall in (brackets).

Month Mean Rainfall (mm) R® t MSE (mm) RMSE (mm) MAE (mm)
October 25 0.76 1.24 444 21 9.6(36)
November 80 0.70 1.86 1180 34 21(26)
December 145 037 218 11113 105 57(39)
January 144 0.68 0.62 3935 63 38(26)
February 119 0.67 0.86 4941 70 32(27)
March 82 0.48 1.17 7064 84 34(42)
April 22 0.81 2.18 764 28 15(68)

t-distribution significance tests carried out for the correlation coefficients on the relationship
between observed and predicted rainfall accepted Ho (t < t, = 0.025 (249)) for all months thereby
showing that a significant relationship exists between RAINMAN predictions and observed

rainfall for all months.
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Despite RAINMAN explaining only 37 % variance of monthly rainfall variance in December,
the MAE of the December predictions was 39 % of average rainfall which shows that December
predictions are much better than R? reflects. RAINMAN had difficulty predicting highly
anomalous rainfall amounts experienced in December of 1992/93 (376 mm), 2001/02 (330 mm)
and 2005/06 (457 mm). April rainfall predictions showed a very significant relationship to the
observed rainfall (R*> = 0.87). However, a MAE of 68 % of mean rainfall shows that April
predictions are not as accurate as the relationship may imply. Figure 4.4 (g) showing the trend
analysis for April rainfall confirms that RAINMAN underestimates rainfall in April. In general,
RAINMAN shows a significant predictive ability in making monthly predictions of rainfall for
the period of October to March for Masvingo. April predictions were however cautiously

included in the seasonal predictions.

Figure 4.5 and Appendix B; Tables B- 22 to 26 show the predictions of rainfall made by
RAINMAN using the SOI phase system for the months October to March for the three categories
of rainfall (dry/below normal (80 %), normal (50 %), wet/above normal (20 %)). The month of
April has been included to account for seasons which overlap the month of March. The rainfall
series shown in figure 4.5 and Appendix B-22 to 26 are the weather scenarios used as rainfall

input in crop yield simulations.

The rainfall amounts generated by RAINMAN (Figure 4.5; Appendix D: D- 22 to D- 26) show
the expected trend of lower total monthly rainfall amounts for a falling and negative SOI index
and higher rainfall amounts for the rising and positive SOI index for the growing season relative
to the neutral phase. As expected, rainfall peaks for the season were found between December

and February for all SOI phases and probabilities of occurrences.
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(d) SOl rising (e) SOI positive.
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Table 4.5 Mean monthly maximum and minimum temperatures and ETo for the growing season

at Masvingo.

Oct Nov Dec Jan Feb  March April

Mean monthly maximum temperature (° C) 29 29.3 285 286 277 276 26.1
Mean monthly minimum temperature (°C) 145 16.2 169 173 169 157 12.5
ETo (mm/day) 55 57 55 54 50 47 4.0

The mean monthly maximum and minimum temperatures were calculated using data obtained
from the ZMSD for a period of at least 30 years. ETo values were obtained using the FAO ETo
calculator using the minimum and maximum temperatures in Table 4.5 for a semi arid location

and moderate wind speed.

PART 3: CROP SIMULATION AND DECISION CRITERIA

In order to achieve a clear picture of the dynamics between maize growth and
agrometerorological factors at Masvingo, maize production simulations were carried out bearing
probabilistic rainfall predictions by RAINMAN based on the SOI phase, fertility levels, and
optimal planting dates. Grain yields were obtained for these scenarios for 3 maize cultivars as
shown in Tables 4.6 (a) - (c). Simulated maize yields ranged from 1.2 t/ha to 5.9 t/ha. Sowing
date was found to have no particular impact on the maize yields for all the SOI phases under
poor fertility. However, planting date was found to be significant for the maize cultivars under
optimal fertility especially for the 140-day cultivar given normal rainfall conditions (50 %) for a
falling, negative and neutral SOI phase. Under these conditions, yields varied by as much as 1.9
t/ha. For the 100-day and 125-day maize cultivars, planting date was significant given a neutral
SOI, and normal rainfall (50 %). Yields varied by as much as 1.3 t/ha.
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Table 4.6(a) Simulated maize yields by SOI phase for a 100-day maize cultivars, sowing dates

for Masvingo for poor and near optimal fertility and wet/above normal (20 %), normal (50 %)

and dry/below normal (80 %) rainfall conditions for each phase.

Mean yields (tons/ha)

Fertility level early (29 Oct) mid(16 Nov) late (7 Dec)
poor 20% 2.3 2.3 2.3
50% 2.2 2.2 1.9
FALLING 80% 2.1 2.1 2.1
near optimal 20% 4.3 4.3 4.3
50% 3.7 3.9 4
80% 3.3 3.3 3.4
poor 20% 2.2 2.2 2.3
50% 2.1 2.1 2.3
NEGATIVE 80% 2.1 2.1 2.2
near optimal 20% 4.1 4.3 4.4
50% 3.9 4.1 4.2
80% 3.2 3.2 3.4
poor 20% 2.3 2.3 24
50% 2.2 2.3 2.3
SOI PHASE NEUTRAL 80% 2.1 2.1 2.2
near optimal 20% 4.3 4.4 4.4
50% 4.1 4.2 3.6
80% 3.2 3.3 3.5
poor 20% 2.3 2.4 2.3
50% 2.2 2.3 2.4
POSITIVE 80% 2.1 2.2 2.2
near optimal 20% 4.3 4.4 4.3
50% 4.1 4.3 4.4
80% 3.5 3.5 3.6
poor 20% 2.2 2.3 2.2
50% 2.2 2.3 2.2
RISING 80% 2.1 2.2 2.2
near optimal 20% 4.2 4.4 4.4
50% 4.1 4.3 4.4
80% 3.4 3.5 3.6
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Table 4.6(b) Simulated maize yields by SOI phase for a 125-day maize cultivars and sowing

dates for Masvingo for poor and near optimal fertility and wet/above normal (20 %), average (50

%) and dry/below normal (80 %) rainfall for each phase.

Mean yields (tons/ha

Fertility level early (29 Oct)  mid(16 Nov) late (7Dec)
poor 20% 2 2 2
50% 1.8 1.8 1.9
FALLING 80% 1.7 1.8 1.9
near optimal 20% 5.3 5.1 5.2
50% 3.1 3.5 3.2
80% 1.9 2 2
poor 20% 2.2 2.3 2.3
50% 1.8 1.9 1.9
NEGATIVE 80% 1.7 1.7 1.8
near optimal 20% 5 5.1 5.2
50% 4.6 4.9 4.9
80% 1.9 2 2.1
poor 20% 1.9 2 2
50% 1.9 1.9 1.9
SOI PHASE NEUTRAL 80% 1.7 1.8 1.8
near optimal 20% 5.1 5.2 5.3
50% 4.9 4.3 3.6
80% 1.9 2 2.1
poor 20% 2 2 2
50% 1.9 2 2
POSITIVE 80% 1.7 1.8 1.9
near optimal 20% 5.1 5.3 5.2
50% 5 5.2 5.3
80% 2 1.9 2
poor 20% 1.9 2 2
50% 1.8 1.9 1.9
RISING 80% 1.7 1.8 1.9
near optimal 20% 5.1 5.2 5.3
50% 5 5.1 5.2
80% 2 1.9 2
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Table 4.6(c) Simulated maize yields by SOI phase for a 140-day maize cultivar and sowing dates

for Masvingo for poor and near optimal fertility and wet/above normal (20 %), average (50 %)

and dry/below normal (80 %) rainfall for each phase.

Mean vyields (tons/ha)

Fertility level early (29 Oct) mid(16 Nov) late (7 Dec)
poor 20% 1.9 2 2
50% 1.8 1.8 1.9
FALLING 80% 1.7 1.8 1.8
near optimal 20% 5.7 5.7 5.7
50% 2.3 2.7 2
80% 15 1.6 1.6
poor 20% 1.8 2 2
50% 1.7 1.8 1.9
NEGATIVE 80% 15 1.6 1.7
near optimal 20% 5.4 5.6 5.8
50% 3.5 4.5 4
80% 1.7 1.6 1.6
poor 20% 19 2 2
50% 1.8 1.9 1.9
SOI PHASE NEUTRAL 80% 15 1.7 1.7
near optimal 20% 5.6 5.8 5.8
50% 4.2 3.1 2.3
80% 15 1.6 1.6
poor 20% 1.9 2.1 2.1
50% 1.8 2 2
POSITIVE 80% 1.6 1.8 1.8
near optimal 20% 5.7 5.9 5.8
50% 5.4 5.8 5.8
80% 1.3 1.2 1.3
poor 20% 1.8 2 2
50% 1.8 2 2
RISING 80% 1.6 1.7 1.8
near optimal 20% 5.5 5.7 5.8
50% 5.4 5.7 5.8
80% 14 1.3 1.2

4.4 SOI impacts by maize cultivar

The 100-day maize cultivar experienced highest grain yields during the neutral, positive and

rising phases of the SOI. Maximum vyields of 4.4 t/ha and minimum yields averaging 2.1 t/ha
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were obtained (Table 4.6 (a); Figure 4.5). 125-day maize cultivars experienced maximum yields
of 5.3 t/ha. Minimum yields of 1.7 t/ha were experienced for all SOI phases for predicted dry (80
%) rainfall conditions. 140-day maize cultivars produced the highest grain yields of 5.9 t/ha for a
positive SOI phase and predicted wet/above normal (20 %) rainfall conditions (Figure 4.9).
Figures 4.5 to 4.9 show that under near optimal fertility, grain yields fluctuate with the maize
cultivar for all SOI phases for predicted dry conditions (80 %). The longer the maize cultivar
takes to mature, the lower the grain yields attained.

4.5 SOI impacts by fertility level

Figures 4.5 to 4.9 show that maize yields were depressed under poor fertility and higher for near
optimal fertility for all maize cultivars given expected good rains as shown for a rising, positive
and neutral SOI phase and rainfall predictions of 20 % (wet) and 50 % (normal). Maximum
predicted yields of 5.9 t/ha were obtained for optimal fertility, a positive SOI and predicted wet
(20 %) rainfall conditions for the 140-day maize cultivar (Table 4.6c). The 140-day maize
cultivar yielded the maximum yields for near optimal fertility levels whilst the 100-day cultivar
did better under poor fertility levels for all rainfall probabilities, yielding no less than 2 t/ha
(Table 4.6a; Figure 4.5a-4.9a).

Poor grain yields were obtained by all maize cultivars for all the five SOI phases given poor
fertility. The least amount of grain was found to occur under dry (80 %) rainfall predictions.
However, minimum yields of as little as 1.2 t/ha were obtained for the 140-day maize cultivar for
dry rainfall (80 %) conditions for a rising and positive SOI phase and near optimal fertility levels
(Figure 4.8 (b) and 4.9 (b)). This shows that fertility levels add no value to 140-day maize when
low rainfall is expected. On the contrary, increased fertility tends to boost yields for 100-day
maize cultivars even under predicted dry rainfall conditions (80 %) for all SOI phases. Grains
yields as much as 3.6 t/ha were obtained for near optimal fertility levels and rising and positive
SOI phases (Table 4.6 (a)). Grain yields for 125-day maize under predicted dry (80%) rainfall

conditions and near optimal fertility averaged 1.9 t/ha.
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Figure 4.5 Simulated average grain yields for different maize cultivars for a falling SOI index
for wet/above normal (20 %), normal (50 %) and dry/below normal (80 %) rainfall conditions
given (a) poor fertility and (b) near optimal fertility.
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Figure 4.6 Simulated average grain yields for different maize cultivars for a negative SOI index

for wet/above normal (20 %), normal (50 %) and dry/below normal (80 %) rainfall conditions

given (a) poor fertility and (b) near optimal fertility.
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Figure 4.7 Simulated average grain yields for different maize cultivars for a neutral SOI index
for wet/above normal (20 %), normal (50 %) and dry/below normal (80 %) rainfall conditions
given (a) poor fertility and (b) near optimal fertility.
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Figure 4.8 Simulated average grain yields for different maize cultivars for a rising SOI index for
wet/above normal (20 %), normal (50 %) and dry/below normal (80 %) rainfall conditions given

(a) poor fertility and (b) near optimal fertility
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Figure 4.9 Simulated average grain yields for different maize cultivars for a positive SOI index
for wet/above normal (20 %), normal (50 %) and dry/below normal (80 %) rainfall probabilities
given (a) poor fertility and (b) near optimal fertility

Given 50 % probability of rainfall occurrence under optimal fertility for a falling SOI phase, the
100- day maize cultivar is most likely to produce the highest yields. The 125-day maize cultivar
produces higher yields for a negative and neutral SOI phase. For the 140-day maize cultivars,
higher yields are expected for a rising and positive SOl phase for the 50 % probability of

occurrence.

4.6 Decision support criteria

4.6.1 Falling SOI

Given a falling SOI phase, farmers are better placed planting 100-day maize cultivars late (7
December) (Figure 4.10 (a)). However, given wet conditions (20 %) for a falling SOI phase,
140-day maize cultivars produce higher maize yields. given dry rainfall conditions (80 %), maize
yields can be as low as 1.3 t/ha under optimal fertility if 140-day maize is planted. For the 20 %

and 80 % probabilities, any of the three planting dates achieves the given yields.
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Grain Yield (t/ha)

Rainfall probability
of occurrence

100-day O 125-day . 140-day

Figure 4.10 (a) guidelines for maize production at Masvingo, showing expected grain yields
based on a falling SOI phase (wet (20 %), normal (50 %) and dry (80 %) rainfall conditions),

optimal fertility, maize cultivar and planting date.

4.6.2 Negative SOI

Grain Yield (t/ha)

Rainfall probability
of occurrence

Figure 4.10 (b) guidelines for maize production at Masvingo, showing expected grain yields
based on a negative SOI phase (wet (20 %), normal (50 %) and dry (80 %) rainfall conditions),

optimal fertility, maize cultivar and planting date.
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Figure 4.10 (b) shows that given a negative SOI phase, farmers are likely to obtain better yields
by planting 125-day maize on 16 November. Given wet rainfall conditions (20 %) for a negative
SOI, 140-day maize produces higher yields. 100-day maize performs better for dry rainfall
conditions (80 %) for the negative SOI phase. For the 20 % and 80 % rainfall probabilities, any

of the three planting dates achieves the given yields.

4.6.3 Nuetral SOI

Grain Yield (t/ha)

Rainfall probability
of occurrence

. 140-day ‘ 140 and 100-day

100-day Q 125-day

Figure 4.10 (c) guidelines for maize production at Masvingo, showing expected grain yields
based on a neutral SOI phase (wet (20 %), normal (50 %) and dry (80 %) rainfall conditions),

optimal fertility, maize cultivar and planting date.

If the SOI is neutral (Figure 4.10 (c)), 125-day maize cultivars produce higher yields (5 t/ha) if
planted early (29 October). Given wet (20 %) conditions for the neutral phase, 140-day maize
performs best. For the dry (80 %) conditions under a neutral phase, 100-day maize cultivars
perform best. Yields can be as low as 1.5 t/ha if 140-day maize is planted under dry (80 %)
conditions. For the 20 % and 80 % rainfall probabilities, any of the three planting dates achieves

the given yields.
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4.6.4 Rising SOI

If the SOI is rising, better yields of up to 5.8 t/ha are obtained if the 140-day maize is planted late
(7 December). Given dry (80 %) rainfall conditions, the 100-day maize cultivar produces better
yields. Minimum vyields of 1.3 t/ha are obtained for the 140-day variety under dry (80 %)
conditions. Given the 20 % and 80 % rainfall probabilities, any of the three planting dates

achieves the given yields (Figure 4.10 (d)).

Grain Yield (t/ha)

Rainfall probability

of occurrence

@ | 140-day

100-day ()| 125-day

Figure 4.10 (d) guidelines for maize production at Masvingo, showing expected grain yields
based on a rising SOI phase (wet (20 %), normal (50 %) and dry (80 %) rainfall conditions),

optimal fertility, maize cultivar and planting date.

4.6.5 Positive SOI

Given a rising SOI (Figure 4.10 (e)), farmers are advised to plant the 140-day maize cultivar late
(7 December) in order to attain yields of as much as 5.9 t/ha. As with all the other SOI phases,
100-day maize cultivars perform better for dry (80 %) conditions. Given the 20 % and 80 %

rainfall probabilities, any of the three planting dates achieves the given yields.
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Grain Yield (t/ha)

Rainfall probability
of occurrence

Figure 4.10 (e) guidelines for maize production at Masvingo, showing expected grain yields
based on a positive SOI phase (wet (20 %), normal (50 %) and dry (80 %) rainfall conditions),

optimal fertility, maize cultivar and planting date.

Figure 4.11 shows the decision criterion for maize production at Masvingo. The decision support
tool was developed based on the normal (50 %) rainfall conditions for all the SOI phases. The 50
% probability of occurrence represents rainfall which can be received once in every two years.
Only optimal fertility levels were considered since yields are mostly depressed for poor fertility
levels despite rainfall probability, maize cultivar or planting date. The decision criterion shows

the optimal grain yields which can be obtained for each maize cultivar and optimal planting date.

The Decision Support tool shows that for a rising and positive SOI phase, yields can be as high
as 5.8 t/ha if the 140-day maize cultivar is planted late (7 December). In effect, all the maize
cultivars attain their highest possible yields if planted late for a rising and positive SOI phase.
100-day maize cultivars yield as much 4.2 t/ha. 125-day maize yields up to 5.2 t/ha for a rising
SOl and 5.3 t/ha for a positive SOI. For a neutral SOI phase, the best possible yields of as much
as 5 t/ha are obtained when a 125-day maize cultivar is planted early (29 October). If the 140-day
and 100-day cultivars are planted on median (16 November) and late planting dates respectively,
the best yields attainable for the neutral SOI are 4 t/ha. The 125-day maize cultivar also attains

highest yields for a negative SOI phase if planted on the median planting date (16 November).
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The 100-day maize cultivar is best planted late (7 December) for all the SOI phases if maximum
yields are to be obtained. The 100-day cultivar is the most productive given a falling SOI phase.

Grain Yield (t/ha)

1 |15 (2 (25 |3 |35 |4 4.5 5 5.5

Falling 16 Nov

= :
2 Negative 16
2 Nov
& =
S5 2 Neutral 29
 ©
b -§_ Oct
; 8 Rising 7
i Dec
S
a Positive 7 Dec

‘ 100-day Q 125-day . 140-day . 140 and 100-day

Figure 4.11 decision criterion for maize production at Masvingo, showing expected grain yields

based on SOI phases (normal (50 %) probability of occurrence), optimal fertility, maize cultivar

and planting date.
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

5.0 Introduction

The main aim of the study was to apply available seasonal weather forecast and crop production
simulation tools so as to improve decision making in maize production. A simple to use decision
support tool for maize production at Masvingo was to be developed using an ENSO-based
seasonal weather forecasting tool (RAINMAN) and a crop production simulation model
(AquaCrop). Inthis section, we conclude on the tests carried out for the utility of RAINMAN,
and the generation of weather series to be used for crop production simulation. Conclusions are
also made about simulated maize yields. Recommendations for maize production at Masvingo

and further research are highlighted.

5.1 Comparison of RAINMAN and CPT

RAINMAN was found to have a better predictive ability than CPT over a season-long period
from October to March. CPT made most of its predictions within the average/normal rainfall
category while RAINMAN tended to make predictions within all rainfall categories.
Contingency tables clearly showed that RAINMAN makes more correct predictions in total and
per rainfall category than CPT (Tables 4.1 (a) and (b); Table 4.2 (a) and (b)). The error statistics
for the validation period (1991/92-2006/07) showed RAINMAN to minimize errors more,
thereby confirming its better predictive ability (Table 4.3 (a)). However, the longer estimation
period (1951/52- 1990/91) showed CPT to minimize errors better than RAINMAN (Table
4.3(b)). This was seen to be misleading since CPT minimized errors by simply making “safe”
predictions within the average/normal rainfall category. Conclusions were therefore made based
on validation period results. RAINMAN’s ability to forecast on a monthly scale made it even
more useful for the purposes of this study. RAINMAN was found to be suitable for making

seasonal analyses and forecasts for the decision support tool at Masvingo.
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5.2 Rainfall series generation

RAINMAN was found to be practical in monthly rainfall analysis and the generation of rainfall
time series for use with the crop model. The tool was used to make forecasts which were out of
its optimal forecast zone of no more than a two- month lead time. However, despite weaker
statistical significance (LEPS< 7.6; SS< 0.9), the tool still managed to make good monthly
rainfall predictions within the validation period (1991/92 — 2006/07). RAINMAN managed to
account for more than 65 % of the rainfall variation within that period for the months of October,
November, January, February, and April (R? ranging from 0.67 to 0.81). For the months of
December and March, R? values were 0.48 and 0.37 respectively.

The SOI conditioned rainfall series (Figure 4.5; Appendix D: Table D- 29 to D- 33) produced by
RAINMAN was aligned to expectations of rainfall during certain phases of the SOI. Rainfall
amounts were generally lesser for the falling and negative SOI and higher for the rising and
positive SOI relative to the neutral SOI phase.

5.3 Crop simulations and decision criterion

AqguaCrop was able to simulate maize yields with only monthly climatic data for the various
agrometeorological scenarios. Although the simulated yields were not validated, they resembled
average maize yields for Zimbabwe of 4-8 t/ha (Seedco, 2005) under good management and 0.4—
2.3 t/ha (FAOSTAT, 2007) under communal fertility levels.

It can be concluded from the results that crop yields vary significantly with SOI phase, fertility
level and maize cultivar. Maize yields are overally depressed under poor fertility levels with
maximum attainable yields of 2.4 t/ha for all agrometeorological scenarios. However, under near
optimal fertility, yields are generally high for all maize cultivars. Early maturing maize cultivars
(100-day) are most favourable under falling and negative SOI phases especially when planted
late (7 December), yields can be as high as 4.3 t/ha. The 100-day maize cultivar is very
productive for dry conditions (80 %) for all SOI phases. The 125-day maize cultivar is

favourable for a neutral SOI phase. The late maturing (140- day) maize cultivar is the most
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productive cultivar for a rising and positive SOI phase and for all wet (20 %) rainfall conditions
in each SOI phase. For use in planning and management, a decision criterion was developed for
all SOI phases (50 %), near optimal fertility, planting date and maize variety for Masvingo
(Figure 4.11).

5.4 Recommendations

The study showed that climate (SOI phase), maize cultivar, planting date and fertility affect
maize yields considerably. It is therefore important for farmers to put all these
agrometeorological factors into consideration as they plan for an upcoming agricultural season in
order to optimize their yields. This study showed that RAINMAN can be used to make
predictions of expected rainfall for the season based on the phase of the SOI during July and
August. SOI phases can therefore be the bases of planned activities for maize production at

Masvingo.

Farmers at Masvingo are advised to apply optimal amounts of fertilizer since it is clear that poor
fertility levels depress yields despite rainfall levels. Farmers would miss out on potentially good
yields during good quality rainfall seasons as expected during the neutral, rising and positive SOI
phases. Farmers’ choice of maize cultivar is vital. Considering that the length of the agricultural
season at Masvingo varies from 95 —145 days (Sithole, 2003), farmers are advised to select
maize cultivars which are within this range. The three maize cultivars used in this study can be
used as a guide. Farmers can also select their planting dates based on the SOI phase. We suggest
three planting dates which can be used as guides for early (29 October), mid (16 November), and

late (7 December) planting.

5.5 Further research

Although Aquacrop was able to simulate reasonable crop yields using monthly seasonal forecast
rainfall data and mean monthly temperature and ETo data, there is considerable room for

improvement if daily or 10-day climate data can be obtained. The shorter rainfall periods will
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help to account for rainfall distributions which are known to affect maize growth e.g. dry spells.
Later versions of RAINMAN can be used to generate the daily forecasts for rainfall and

temperature. This study has exposed the potential of integrated modeling in maize production

management. We therefore recommend similar studies to be expanded to the rest of Zimbabwe

and to include other crops which are vital for food security in Zimbabwe.
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APPENDICES

APPENDIX A: COMPARISON OF RAINMAN AND CPT

Table A- 1: RAINMAN prediction table using the SOl Phase method (July-august) for the
validation period (1991/92- 2006/07)

Deciles of rainfall at MASVINGO

Analysis of historical data (1899 to 2001) using SOI Phases: Jul to Aug Leadtime of 1 month
The SOI phases/rainfall relationship for this season is statistically significant because KW test
is above 0.9, and Skill Score (8.9) is above 7.6 (p = 0.93).

Rainfall period: Oct to SOl SOl

Mar SOl falling negative SOl neutral SOl rising  positive All years
Highest on record (mm) 849 1,089 1,012 1,012 1,340 1,340
In 10% yrs, rain at least 687 760 779 901 927 840
20% 560 729 747 785 793 753
30% 534 619 684 729 719 667
40% 488 573 611 638 666 621
50% (median rainfall ) 427 530 584 616 637 579
60% 424 480 553 585 616 529
70% 381 416 454 542 578 446
80% 347 391 420 488 429 416
90% 296 208 371 450 393 340
Lowest on record (mm) 162 175 95 235 313 95
Years in historical record 15 19 26 20 23 103
Standard deviation (mm) 175 227 211 189 244 220
Average rainfall (mm) 469 536 577 633 666 584
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Table A- 2: RAINMAN prediction table using the SOI phases method (July —Aug) for the
estimation period (1950/51)

Deciles of rainfall at MASVINGO

Analysis of historical data (1899 to 1990) using SOI Phases: Jul to AugLeadtime of 1 month
The SOI phases/rainfall relationship for this season is statistically doubtful because KW test

is below 0.9 but Skill Score (7.7) is above 7.6 (p = 0.90).

Rainfall period: Octto Mar SOl falling SOI negative SOl neutral SOl rising SOI positive  All years
Highest on record (mm) 722 1,089 966 1,012 1,340 1,340
In 10% yrs, rain at least 625 764 769 904 937 804
20% 541 744 744 790 777 748
30% 532 643 624 715 697 662
40% 497 596 609 630 666 618
50% (median rainfall ) 448 530 579 599 637 577
60% 425 492 512 572 616 523
70% 423 417 444 503 546 449
80% 381 384 422 481 427 419
90% 352 208 403 439 386 369
Lowest on record (mm) 271 175 216 235 313 175
Years in historical record 12 17 22 18 21 90
Standard deviation (mm) 125 238 177 198 254 213
Average rainfall (mm) 474 543 570 627 662 585
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Table A- 3: SOI phases for July and August, and RAINMAN predictions per tercile of rainfall
for the validation period. Highlighted are the selected rainfall values based on Table 3. 3.

YEAR SOI PHASE Terciles of Rainfall Actual
. . .. ... Occurrence (mm)  R/fall
falling negative neutral rising positive Recorded(mm)
July Aug July Aug July Aug July Aug July Aug 20% 50% 80%

1991/92 17 76 744 579 422 95
1992/93 6.9  +14 790 599 481 744
1993/94 2108 -14.0 744 530 384 401
1994/95 -18.0 -17.2 744 530 384 559
1995/96 +4.2 +0.8 744 579 422 771
1996/97 +6.8 +4.6 748 577 419 614
1997/98 95  -19.8 541 448 381 334
1998/99 +146 +9.8 748 577 419 803
1999/00 +4.8 +2.1 744 579 422 1012
2000/01 37 458 790 599 481 632
2001/02 30 -89 744 579 422 588
2002/03 74 -149 541 448 381 849
2003/04 28 -15 744 579 422 890
2004/05 71 16 744 579 422 515
2005/06 1.2 7.3 541 448 381 966
2006/07 97  -149 744 530 384 466
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Table A- 4: SOI phases for July and August, and RAINMAN predictions per tercile of

rainfall for the estimation period. Highlighted are the selected rainfall values based on Table

3. 3.
YEAR SOl PHASE Terciles of Rainfall Actual
falling negative  neutral rising positive Occurrence (mm)  R/fall
July Aug Jul Aug Jul Aug Jul Aug Jul Aug 20% 50% 80% Recorded(mm)
1950/51 211 123 77 637 427 432
1951/52 82 05 790 599 481 795
1952/53 35 -3.7 744 579 422 966
1953/54 -1.0 -17.2 541 448 381 469
1954/55 42 104 790 599 481 1012
1955/56 19.2 149 77 637 427 621
1956/57 126 110 77 637 427 666
1957/58 0.9 -9.5 541 448 381 722
1958/59 22 78 790 599 481 593
1959/60 -5.0 -5.0 744 579 422 338
1960/61 4.8 6.6 7 637 427 637
1961/62 22 01 744 579 422 430
1962/63 04 46 790 599 481 723
1963/64 -1.0 -2.4 744 579 422 403
1964/65 68 143 777 637 427 616
1965/66 226 -114 744 530 384 416
1966/67 -1.0 40 790 599 481 783
1967/68 1.6 59 790 599 481 235
1968/69 7.4 0.1 744 579 422 743
1969/70 -6.9 4.4 744 579 422 428
1970/71 56 4.0 790 599 481 496
197172 1.6 149 790 599 481 647
1972173 -186 -89 744 530 384 208
197374 6.1 12.3 777 637 427 886
1974175 120 6.6 777 637 427 937
1975/76 211 207 77 637 427 660
1976177 -12.8  -12.1 744 530 384 756
1977178 -147  -12.1 744 530 384 776
1978179 6.1 1.4 744 579 422 484
1979/80 -8.2 -5.0 744 530 384 610
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1980/81 -1.7 1.4 744 579 422 744

1981/82 9.4 5.9 77 637 427 385
1982/83 -19.3  -23.6 744 530 384 175
1983/84 73 01 790 599 481 400
1984/85 2.2 2.7 744 579 422 787
1985/86 23 85 790 599 481 556
1986/87 2.2 -7.6 541 448 381 271
1987/88 -18.6  -14.0 744 530 384 752
1988/89 11.3 149 77 637 427 427
1989/90 9.4 -6.3 541 448 381 681
1990/91 55 -5.0 541 448 381 162

Table A- 5: CPT predictions and probability of occurrence of rainfall for the validation period
(1991/92- 2006/07).

Terciles of rainfall

Season Prediction Lower bound Upper bound

Below normal  Above

normal Normal
1991/92 493 249 755 38 33 29
1992/93 530 272 763 36 34 30
1993/94 498 244 755 39 33 28
1994/95 495 254 755 39 33 29
1995/96 523 268 762 36 34 33
1996/97 583 319 776 33 34 33
1997/98 465 208 751 43 31 25
1998/99 490 244 755 39 33 25
1999/00 595 333 777 33 34 33
2000/01 556 296 760 37 34 30
2001/02 514 264 760 37 34 30
2002/03 492 247 755 38 33 28
2003/04 485 234 754 40 33 27
2004/05 492 247 755 38 33 28
2005/06 487 236 754 40 33 28
2006/07 484 231 754 40 33 27

Table A- 6: CPT predictions and probability of occurrence of rainfall for the estimation period
(1950/51- 1990/91).

Season Prediction  Lower bound Upper bound Terciles of rainfall
Below normal Above
normal normal

1950/51 621 339 937 32 32 36

1951/52 593 201 780 58 27 15

1952/53 610 266 850 45 32 23
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1953/54
1954/55
1955/56
1956/57
1957/58
1958/59
1959/60
1960/61
1961/62
1962/63
1963/64
1964/65
1965/66
1966/67
1967/68
1968/69
1969/70
1970/71
1971/72
1972/73
1973/74
1974/75
1975/76
1976/77
1977/78
1978/79
1979/80
1980/81
1981/82
1982/83
1983/84
1984/85
1985/86
1986/87
1987/88
1988/89
1989/90
1990/91

588
618
627
631
522
545
600
599
598
595
567
619
551
571
614
602
542
611
617
495
602
611
618
590
512
576
505
505
566
488
487
583
575
527
454
565
594
517

225
268
416
288
216
234
252
270
274
399
275
395
126
223
240
278
278
434
439
199
572
439
495
224
225
280
259
273
895
743
863
943
921
831
856
1101
1033
288

818
887
958
930
798
839
841
851
856
934
857
953
739
826
851
878
877
958
962
816
1067
961
985
814
815
877
882
855
895
743
863
943
921
831
856
1101
1033
900

54
42
28
35
56
50
48
45
42
31
42
30
66
53
48
39
39
27
26
56
14
25
20
55
54
38
47
43
38
65
44
31
34
50
45
11
16
36

29
38
31
31
28
29
31
32
33
33
33
31
23
29
29
33
33
32
32
27
26
32
29
29
29
33
31
32
33
23
30
32
34
31
31
24
27
33

17
28
41
34
16
21
21
23
25
36
26
39
11
18
23
28
28
42
43
17
60
43
50
17
17
29
21
25
30
11
26
37
33
19
25
65
57
30
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Table A- 7: predicted and observed total seasonal rainfall (mm) in validation period.

Season Predicted rainfall (mm) Observed
RAINMAN CPT
1991/92 579 493 95
1992/93 790 530 744
1993/94 384 498 401
1994/95 384 495 559
1995/96 744 523 771
1996/97 577 583 614
1997/98 381 465 334
1998/99 748 490 803
1999/00 744 595 1012
2000/01 790 556 632
2001/02 579 514 588
2002/03 381 492 849
2003/04 744 485 890
2004/05 579 492 515
2005/06 381 487 966
2006/07 384 484 466

Table A- 8: predicted and observed total seasonal rainfall (mm) in estimation period

Season Predicted rainfall (mm) Observed
RAINMAN CPT

1950/51 777 621 432

1951/52 790 593 795

1952/53 744 610 966

1953/54 381 588 469

1954/55 790 618 1012




1955/56
1956/57
1957/58
1958/59
1959/60
1960/61
1961/62
1962/63
1963/64
1964/65
1965/66
1966/67
1967/68
1968/69
1969/70
1970/71
1971/72
1972/73
1973/74
1974/75
1975/76
1976/77
1977/78
1978/79
1979/80
1980/81
1981/82
1982/83
1983/84
1984/85
1985/86
1986/87
1987/88
1988/89
1989/90
1990/91

777
777
381
790
422
637
744
790
579
579
384
790
790
744
422
790
790
384
777
777
777
384
384
744
530
744
637
384
790
744
790
381
384
i
381
381

627
631
522
545
600
599
598
595
567
619
551
571
614
602
542
611
617
495
602
611
618
590
512
576
505
505
566
488
487
583
575
527
454
565
594
517

621
666
722
593
338
637
430
723
403
616
416
783
235
743
428
496
647
208
886
937
660
756
776
484
610
744
385
175
400
787
556
271
752
427
681
162

91



APPENDIX B: GENERATION OF RAINFALL DATA SERIES

Table B- 1: RAINMAN predictions using the SOI phases method (July —Aug) for the month of

October.

Deciles of rainfall at MASVINGO
Analysis of historical data (1899 to 2007) using SOI Phases: Jul to AugLeadtime of 1 month

The SOI phases/rainfall relationship for this season is statistically not significant because KW test
is below 0.9 and Skill Score (5.0) is below 7.6 (p = 0.69).

Rainfall period: Oct SOl SOl SOl SOl SOl All
falling negative neutral rising positive years
Highest on record 56 75 120 86 58 120
(mm)
In 10% yrs, rain at least 52 45 75 66 45 57
20% 48 27 52 50 37 45
30% 38 21 37 38 30 32
40% 32 16 25 19 27 23
50% (median rainfall ) 19 9 16 14 23 16
60% 16 6 8 13 15 13
70% 14 3 4 7 11 6
80% 9 1 2 2 6 2
90% 4 0 0 0 1 0
Lowest on record (mm) O 0 0 0 0 0
Years in historical 13 19 32 21 23 108
record
Standard deviation 20 20 33 26 17 25
(mm)
Average rainfall (mm) 26 17 29 25 22 24
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Table B- 2: SOI phases for July (Jul) and August(Aug), and RAINMAN predictions per tercile
of rainfall (mm) for the month of October over the validation period (1991/92- 2006/07).
Highlighted are the selected rainfall amounts based on which probability closely resembles the
actual rainfall.

SOI PHASE

year falling Negative  neutral rising positive Terciles actual
of rainfall rainfall

(mm)
Ju Aug Jul Au Jul Au Jul Au Ju Au 20 50 80
g g g g % % %

1991/9 - - 52 16 2 1

2 77 7.6

1992/9 - 14 50 14 2 2

3 6.9

1993/9 -11 -14 27 9 1 1

4

1994/9 -18  -17 27 9 1 75

5

1995/9 42 0.8 52 16 2 5

6

1996/9 6.8 46 37 23 6 1

7

1997/9 - - 48 19 9 14

8 9.5 198

1998/9 14. 93 37 23 6 7

9 8

1999/0 48 2.1 52 16 2 12

0

2000/0 - 5.3 50 14 2 13

1 3.7

2001/0 3 - 52 16 2 15

2 8.9

2002/0 - - 48 19 9 45

3 7.6 145
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2003/0 29 - 52 16 2 120
4 1.8

2004/0 - - 52 16 2 19
5 7.1 7.7

2005/0 1.2 -7.3 48 19 9 0

6

2006/0 - -15 27 9 1 8

7 9.6

Table B- 3: predicted and observed rainfall (mm) for the month of October over the validation
period (1991/92- 2006/07).

Season observed predicted
1991/92 1 2
1992/93 2 2
1993/94 1 1
1994/95 75 27
1995/96 5 2
1996/97 1 6
1997/98 14 9
1998/99 7 6
1999/00 12 16
2000/01 13 14
2001/02 15 16
2002/03 45 48
2003/04 120 52
2004/05 19 16
2005/06 0 9
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2006/07 8 9

Table B- 4: RAINMAN predictions using the SOI phases method (July —Aug) for the month of
November.

Deciles of rainfall at MASVINGO

Analysis of historical data (1899 to 2007) using SOI Phases: Jul to AugLeadtime of 2 months
The SOI phases/rainfall relationship for this season is statistically not significant because KW test
is below 0.9 and Skill Score (1.3) is below 7.6 (p = 0.53).

Rainfall period: Nov SOl SOl SOl SOl SOl All
falling negative neutral rising positive years
Highest on record 178 197 179 154 228 228
(mm)
In 10% yrs, rain at least 152 98 143 121 153 151
20% 149 85 125 101 139 121
30% 126 76 117 87 114 101
40% 91 66 100 77 87 82
50% (median rainfall ) 75 61 81 69 71 73
60% 72 50 70 63 68 63
70% 60 28 60 42 49 47
80% 50 18 33 30 38 32
90% 36 13 19 25 30 18
Lowest on record (mm) O 5 4 7 15 0
Years in historical 13 19 32 21 23 108
record
Standard deviation 54 46 49 39 56 49
(mm)
Average rainfall (mm) 90 60 85 69 87 78

Table B- 5: SOI phases for July and August, and RAINMAN predictions per tercile of rainfall
(mm) for the month of November over the validation period (1991/92- 2006/07). Highlighted are
the selected rainfall amounts based on which probability closely resembles the actual rainfall.

SOI' PHASE terciles of rainfall  actual
rainfall
year falling negative neutral rising positive (mm)

Jul  Aug Jul Aug Jul Au Jul Au Jul Au 20 50 80
g g g N %N %

1991/9 - - 125 81 33 25
2 77 7.6

1992/9 - 1.4 101 69 30 82
3 6.9

1993/9 - -14 85 61 18 197
4 10.8

1994/9 -18 - 85 61 18 24
5 17.2
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1995/9 42 08 125 81 33 57
6

1996/9 6.8 46 139 71 38 86
7

1997/9 - - 149 75 50 86
8 9.5 1938

1998/9 14. 93 139 71 38 153
9 8

1999/0 48 21 125 81 33 162
0

2000/0 - 5.3 101 69 30 102
1 3.7

2001/0 -3 - 125 81 33 179
2 8.9

2002/0 - - 149 75 50 74
3 7.6 145

2003/0 29 - 125 81 33 121
4 1.8

2004/0 - - 125 81 33 18
5 71 7.7

2005/0 1.2 -7.3 149 75 50 58
6

2006/0 9.6 -15 85 61 18 104
Z

Table B- 6: predicted and observed rainfall (mm) for the month of November over the

validation period (1991/92- 2006/07).
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season observed predicted

1991/92 25 33
1992/93 82 69
1993/94 197 85
1994/95 24 18
1995/96 57 81
1996/97 86 71
1997/98 86 75
1998/99 153 139
1999/00 162 125
2000/01 102 101
2001/02 179 125
2002/03 74 75
2003/04 121 125
2004/05 18 33
2005/06 58 50
2006/07 104 85

Table B- 7: RAINMAN predictions using the SOI phases method (July —Aug) for the month of
December.

Deciles of rainfall at MASVINGO

Analysis of historical data (1899 to 2007) using SOI Phases: Jul to AugLeadtime of 3 months
The SOI phases/rainfall relationship for this season is statistically significant because KW test
is above 0.9, and Skill Score (9.1) is above 7.6 (p = 0.93).

Rainfall period: Dec SOl SOl SOl SOl SOl All
falling negative neutral rising positive years
Highest on record 457 378 330 492 398 492
(mm)
In 10% yrs, rain at least 128 226 251 376 291 292
20% 116 153 175 201 266 205
30% 115 147 162 180 226 166
40% 80 142 142 160 208 144
50% (median rainfall ) 66 109 127 145 162 123
60% 58 76 114 121 122 106
70% 48 69 88 89 114 82
80% 36 47 53 86 89 65
90% 9 31 32 75 77 35
Lowest on record (mm) O 27 19 13 34 0
Years in  historical 13 19 32 21 23 108
record
Standard deviation 116 97 81 123 96 102
(mm)
Average rainfall (mm) 97 126 131 172 177 144
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Table B- 8: SOI phases for July and August, and RAINMAN predictions per tercile of rainfall
(mm) for the month of December over the validation period (1991/92- 2006/07). Highlighted are
the selected rainfall amounts based on which probability closely resembles the actual rainfall

Terciles of rainfall actual

SOI PHASE rainfall (mm)

season falling negative neutral rising positive

Juy Aug July Aug July Aug July Aug July Aug 20% 50% 80%
1991/92 -7.7 -7.6 175 127 53 19
1992/93 -6.9 14 201 145 86 376
1993/94 -10.8 -14 153 109 47 109
1994/95 -18 -17.2 153 109 47 149
1995/96 42 0.8 175 127 53 146
1996/97 6.8 46 266 162 89 116
1997/98 -9.5 -19.8 116 66 36 3
1998/99 148 9.3 266 162 89 237
1999/00 48 2.1 175 127 53 88
2000/01 -3.7 53 201 145 86 75
2001/02 -3 -8.9 175 127 53 330
2002/03 -7.6 -14.5 116 66 36 131
2003/04 29 -18 175 127 53 94
2004/05 7.1 7.9 175 127 53 177
2005/06 1.2 -7.3 116 66 36 457
2006/07 9.6 -15 153 109 47 148

Table B- 9: predicted and observed rainfall (mm) for the month of December over the validation
period (1991/92- 2006/07).

season observed predicted
1991/92 19 53
1992/93 376 201
1993/94 109 109
1994/95 149 153
1995/96 146 127
1996/97 116 89
1997/98 3 36
1998/99 237 266
1999/00 88 53
2000/01 75 86
2001/02 330 175
2002/03 131 116
2003/04 94 127
2004/05 177 175
2005/06 457 116
2006/07 148 153
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Table B- 10: RAINMAN predictions using the SOI phases method (July —Aug) for the month of
January.

Deciles of rainfall at MASVINGO

Analysis of historical data (1899 to 2007) using SOI Phases: Jul to AugLeadtime of 4 months
The SOI phases/rainfall relationship for this season is statistically not significant because KW test
is below 0.9 and Skill Score (-1.3) is below 7.6 (p = 0.43).

Rainfall period: Jan SOl SOl SOl SOl SOl All
falling negative neutral rising positive years
Highest on record 313 449 437 331 527 527
(mm)
In 10% yrs, rain at least 291 210 259 314 309 306
20% 235 161 220 243 206 216
30% 214 151 191 199 165 186
40% 194 126 149 181 120 148
50% (median rainfall ) 112 101 89 138 102 109
60% 85 91 79 109 91 87
70% 74 81 68 78 81 76
80% 64 57 51 73 73 60
90% 31 41 35 47 46 38
Lowest on record (mm) 6 2 7 12 8 2
Years in historical 13 19 33 21 23 109
record
Standard deviation 104 99 107 98 121 105
(mm)
Average rainfall (mm) 147 126 138 155 146 142

Table B- 11: SOI phases for July and August, and RAINMAN predictions per tercile of rainfall
(mm) for the month of January over the validation period (1991/92- 2006/07). Highlighted are
the selected rainfall amounts based on which probability closely resembles the actual rainfall

SOI PHASE ) ) Actual
terciles of rainfall  rajnfall (mm)

season falling negative neutra rising positive

Juy Aug July Aug July Aug July Aug July Aug 20% 50% 80%

1991/92 -71.7 -7.6 220 89 51 19
1992/93 -6.9 1.4 243 138 73 78
1993/94 -10.8 -14 161 101 57 78
1994/95 -18 -17.2 161 101 57 101
1995/96 42 0.8 220 89 51 437
1996/97 6.8 46 206 102 73 202
1997/98 -9.5 -19.8 235 112 64 192
1998/99 148 9.3 206 102 73 79
1999/00 48 21 220 89 51 261
2000/01 -3.7 53 243 138 73 47
2001/02 -3 -8.9 220 89 51 32
2002/03 -7.6 -14.5 235 112 64 87
2003/04 29 -1.8 220 89 51 152
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2004/05 1.1 -1.7 220 89 51 155
2005/06 1.2 -7.3 235 112 64 239
2006/07 9.6 -15 161 101 57 25

Table B- 12: predicted and observed rainfall (mm) for the month of January over the validation
period (1991/92- 2006/07).

season observed predicted
1991/92 19 51
1992/93 78 73
1993/94 78 57
1994/95 101 101
1995/96 437 220
1996/97 202 206
1997/98 192 235
1998/99 79 73
1999/00 261 220
2000/01 47 73
2001/02 32 51
2002/03 87 64
2003/04 152 89
2004/05 155 220
2005/06 239 235
2006/07 25 57

Table B- 13: RAINMAN predictions using the SOI phases method (July —Aug) for the month of
February.

Deciles of rainfall at MASVINGO

Analysis of historical data (1899 to 2007) using SOI Phases: Jul to AugLeadtime of 5 months
The SOI phases/rainfall relationship for this season is statistically not significant because KW test
is below 0.9 and Skill Score (1.0) is below 7.6 (p = 0.60).

Rainfall period: Feb SOl SOl SOl SOl SOl All
falling negative neutral rising positive years
Highest on record 186 401 412 321 275 412
(mm)
In 10% yrs, rain at least 161 237 301 268 232 248
20% 122 151 149 198 197 171
30% 86 141 122 169 158 145
40% 70 129 106 137 144 121
50% (median rainfall ) 65 101 89 118 122 99
60% 55 87 77 98 96 81
70% 44 54 68 91 81 66
80% 26 37 37 58 53 40
90% 12 26 19 50 15 19
Lowest on record (mm) 8 6 4 10 3 3
Years in  historical 13 19 33 21 23 109
record

100



Standard deviation 58 97 104 87 80 90
(mm)
Average rainfall (mm) 75 118 119 139 123 118

Table B- 14: SOI phases for July and August, and RAINMAN predictions per tercile of rainfall
(mm) for the month of February over the validation period (1991/92- 2006/07). Highlighted are
the selected rainfall amounts based on which probability closely resembles the actual rainfall

actual

SOI PHASE terciles of rainfall

season falling negative neutral rising positive  rainfall (mm)
Jul  Aug Jul Aug Jul Au Jul Au Jul Au 20 50 80
g g g % % %

1991/9 - - 149 89 37 4
2 7.7 7.6
1992/9 - 1.4 198 118 58 198
3 6.9
1993/9 - -14 151 101 37 6
4 10.8
1994/9 -18 17. 151 101 37 101
5 2
1995/9 42 0.8 149 89 37 108
6
1996/9 6.8 46 197 122 53 122
7
1997/9 - - 122 65 26 8
8 9.5 1938
1998/9 14. 93 197 122 53 236
9 8
1999/0 48 21 149 89 37 412
0
2000/0 - 5.3 198 118 58 268
1 3.7
2001/0 3 - 149 89 37 18
2 8.9
2002/0 - - 122 65 26 100
3 7.6 145
2003/0 29 - 149 89 37 151
4 1.8
2004/0 - - 149 89 37 89
5 71 7.7
2005/0 1.2 -7.3 122 65 26 65
6
2006/0 96 -15 151 101 37 87
-
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Table B- 15: predicted and observed rainfall (mm) for the month of February over the validation
period (1991/92- 2006/07).

season observed predicted
1991/92 4 37
1992/93 198 198
1993/94 6 37
1994/95 101 101
1995/96 108 101
1996/97 122 122
1997/98 8 26
1998/99 236 197
1999/00 412 149
2000/01 268 198
2001/02 18 37
2002/03 100 122
2003/04 151 149
2004/05 89 89
2005/06 65 65
2006/07 87 101

Table B- 26: RAINMAN predictions using the SOI phases method (July —Aug) for the month of
March.

Deciles of rainfall at MASVINGO

Analysis of historical data (1899 to 2007) using SOI Phases: Jul to AugLeadtime of 6 months
The SOI phases/rainfall relationship for this season is statistically not significant because KW test
is below 0.9 and Skill Score (1.0) is below 7.6 (p = 0.60).
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Rainfall period: Mar SOl SOl SOl SOl SOl All
falling negative neutral rising positive years
Highest on record 413 239 266 203 289 413
(mm)
In 10% yrs, rain at least 143 151 180 150 191 179
20% 114 115 91 127 140 128
30% 76 108 75 100 126 103
40% 61 89 64 78 107 78
50% (median rainfall) 38 60 48 75 92 68
60% 26 36 47 31 84 48
70% 20 27 39 27 68 32
80% 8 21 30 19 60 23
90% 4 14 18 8 44 11
Lowest on record (mm) 4 3 1 3 1 1
Years in historical 12 19 33 21 23 108
record
Standard deviation 115 68 69 60 71 74
(mm)
Average rainfall (mm) 80 78 76 72 108 83

Table B- 17: SOI phases for July and August, and RAINMAN predictions per tercile of rainfall
(mm) for the month of March over the validation period (1991/92- 2006/07). Highlighted are the
selected rainfall amounts based on which probability closely resembles the actual rainfall

SOI PHASE terciles of rainfall ~ Actual
rainfall
season falling negative neutral rising positive (mm)
Jul  Aug Jul Aug Jul Au  Jul Au Jul Au 20 50 80
g g g % % %

1991/9 - - 91 48 30 23
2 77 7.6
1992/9 - 14 127 75 19 8
3 6.9
1993/9 - -14 115 60 21 10
4 10.8
1994/9 -18 - 115 60 21 109
5 17.2
1995/9 42 0.8 91 48 30 18
6
1996/9 6.8 46 140 92 60 87
7
1997/9 - - 114 38 8 31
8 9.5 19.8
1998/9 14. 93 140 92 60 91
9 8
1999/0 48 21 91 48 30 79
0
2000/0 - 5.3 127 75 19 127
1 3.7
2001/0 3 - 91 48 19 14

103



2 8.9

2002/0 - - 114 38 8 413
3 76 145

2003/0 29 - 91 48 30 242
4 1.8

2004/0 - - 91 48 30 35
5 71 7.7

2005/0 12 -7.3 114 38 8 123
6

2006/0 -9.6 -15 115 60 21 23
7

Table B- 18: predicted and observed rainfall (mm) for the month of March over the validation
period (1991/92- 2006/07).

season observed predicted
1991/92 23 30
1992/93 8 19
1993/94 10 21
1994/95 109 115
1995/96 18 30
1996/97 87 92
1997/98 31 38
1998/99 91 92
1999/00 79 91
2000/01 127 127
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2001/02
2002/03
2003/04
2004/05
2005/06
2006/07

14
413
242
35
123
23

19
114
91
30
114
21

Table B- 19: RAINMAN predictions using the SOI phases method (July —Aug) for the month of

April.

Deciles of rainfall at MASVINGO
Analysis of historical data (1899 to 2007) using SOI Phases: Jul to AugLeadtime of 7 months
The SOI phases/rainfall relationship for this season is statistically significant because KW test
is above 0.9, and Skill Score (11.7) is above 7.6 (p = 0.96).

Rainfall period: Apr

Highest on record
(mm)

In 10% yrs, rain at least
20%

30%

40%

50% (median rainfall )
60%

70%

80%

90%

Lowest on record (mm)

Years in historical
record
Standard deviation
(mm)
Average rainfall (mm)

SOl
falling
56

42

[EEy
w

QO ONWOUU N

SOl

negative

73

37
19
16

OO RFrRPPFPFONO

19

22

15

SOl
neutral
93

24

22

SOl SOl
rising positive
127 104
49 66
22 34
18 30
15 24
13 19
13 16
10 13
6 11
0 4

0 1
21 23
32 26
24 28

All
years
127

58
29

108

25

21

Table B- 20: SOI phases for July and August, and RAINMAN predictions per tercile of rainfall
(mm) for the month of April over the validation period (1991/92- 2006/07). Highlighted are the
selected rainfall amounts based on which probability closely resembles the actual rainfall

SOI PHASE terciles of rainfall  actual
. . - o rainfall
Season falling negative neutral rising positive (mm)
Jul  Aug Jul Aug Jul  Aug Jul Aug Jul Aug 20 50 80
% % %
1991/92 7.7 -7.6 30 13 5 1
1992/93 -69 14 22 13 6 3
1993/94 -10.8 -14 19 7 1 0
1994/95 -18 17.2 19 7 1 17
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1995/96
1996/97
1997/98
1998/99
1999/00
2000/01
2001/02
2002/03
2003/04
2004/05
2005/06 1.2 -7.3

2006/07 -9.6

9.5 19

76 14

-15

4.2

4.8

2.9
7.1

0.8

2.1

-1.8
-7.7

6.8 4.6

14.

9.3

30
34
13
34
30
22
30
13
30
30
13
19

13
19

19
13
13
13

13
13

RO Ul O0OTo Ol OB O

=

=

104
14
44
15
90

58

71

Table B- 21: predicted and observed rainfall (mm) for the month of April over the validation

period (1991/92- 2006/07).

season observed predicted
1991/92 1 5
1992/93 3 6
1993/94 0 1
1994/95 17 19
1995/96 5 5
1996/97 104 34
1997/98 5 5
1998/99 14 11
1999/00 44 30
2000/01 15 13
2001/02 90 30
2002/03 3 5
2003/04 58 30
2004/05 5 5
2005/06 0 0
2006/07 71 19
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Figure B-1: Observed and predicted monthly rainfall for the month of October for the validation
period (1991/92-2006/07
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Figure B-2: Observed and predicted monthly rainfall for the month of November for the
validation period (1991/92-2006/07.
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Figure B-3: Observed and predicted monthly rainfall for the month of December for the
validation period (1991/92-2006/07.
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Figure B-4: Observed and predicted monthly rainfall for the month of January for the validation
period (1991/92-2006/07.
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Figure B-5: Observed and predicted monthly rainfall for the month of February for the
validation period (1991/92-2006/07.
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Figure B-6: Observed and predicted monthly rainfall for the month of March for the validation
period (1991/92-2006/07.
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Figure B-7: Observed and predicted monthly rainfall for the month of April for the validation
period (1991/92-2006/07.

Table B- 22: monthly predictions of rainfall (mm) for a falling SOI for each probability of
rainfall occurrence

MONTH SOl PHASE
Falling
20% 50% 80%

October 48 19 9
November 149 75 50
December 116 66 36
January 235 112 64
February 122 65 26
March 114 38 8
April 13 5 0
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Table B- 23: monthly predictions of rainfall (mm) for a negative SOI for each probability of
rainfall occurrence

MONTH SOl PHASE
Negative
20% 50% 80%

October 27 9 1
November 85 61 18
December 153 109 47
January 161 101 57
February 151 101 37
March 115 60 21
April 19 7 1

Table B- 24: monthly predictions of rainfall (mm) for a neutral SOI for each probability of
rainfall occurrence

MONTH SOl PHASE
Neutral
20% 50% 80%

October 52 16 2
November 125 81 33
December 175 127 53
January 220 89 51
February 149 86 37
March 91 48 30
April 30 13 5

Table B- 25: monthly predictions of rainfall (mm) for a rising SOI for each probability of
rainfall occurrence

MONTH SOl PHASE
Rising
20% 50% 80%

October 50 14 2
November 101 69 30
December 201 145 86
January 243 138 73
February 198 118 58
March 127 75 19
April 22 13 6
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Table B- 26: monthly predictions of rainfall (mm) for a positive SOI for each probability of
rainfall occurrence

MONTH SOl PHASE
Positive
20% 50% 80%

October 37 23 6
November 139 71 38
December 266 162 89
January 206 102 73
February 197 122 53
March 140 92 60
April 34 19 11
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APPENDIX C: SIGNIFICANCE TESTING

Number of variables 16
Critical values of t for two tailed test = +2.49, i.e. Reject Ho if |t|>2.49

Table C- 1: statistic (t stat) for the month of October for the validation period (1991/92-2006/07)

Variable 1 Variable 2
Mean 21.125 14.6875
Variance 1076.65 238.4958
Observations 16 16
Pearson Correlation 0.873787
Hypothesized Mean Difference 0
Df 15
t Stat 1.242359
P(T<=t) one-tail 0.116588
t Critical one-tail 2.13145
P(T<=t) two-tail 0.233177
t Critical two-tail 2.48988

Ho was accepted. Hence there is no significant difference between observed and predicted
rainfall.

Table C- 2: t statistic (t stat) for the month November for the validation period (1991/92-
2006/07)

Variable 1 Variable 2
Mean 95.5 80.625
Variance 3038 1297.05
Observations 16 16
Pearson Correlation 0.834268
Hypothesized Mean Difference 0
Df 15
t Stat 1.860359
P(T<=t) one-tail 0.041277
t Critical one-tail 2.13145
P(T<=t) two-tail 0.082555
t Critical two-tail 2.48988

Ho was accepted. Hence there is no significant difference between observed and predicted
rainfall.
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Table C- 3: t statistic (t stat) for the month December for the validation period (1991/92-2006/07

Variable 1 Variable 2
Mean 27.1875 13.625
Variance 1215.629 137.3167
Observations 16 16
Pearson Correlation 0.897958
Hypothesized Mean Difference 0
Df 15
t Stat 2.180147
P(T<=t) one-tail 0.022794
t Critical one-tail 2.13145
P(T<=t) two-tail 0.045588
t Critical two-tail 2.48988

Ho was accepted. Hence there is no significant difference between observed and predicted

rainfall.

Table C- 4: t statistic (t stat) for the month January for the validation period (1991/92-2006/07)

Variable 1 Variable 2
Mean 136.5 126.5625
Variance 12219.33 6113.463
Observations 16 16
Pearson Correlation 0.823825
Hypothesized Mean Difference 0
Df 15
t Stat 0.621392
P(T<=t) one-tail 0.271835
t Critical one-tail 2.13145
P(T<=t) two-tail 0.54367
t Critical two-tail 2.48988

Ho was accepted. Hence there is no significant difference between observed and predicted

rainfall.
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Table C- 5: t statistic (t stat) for the month February for the validation period (1991/92-2006/07)

Variable 1 Variable 2

Mean

Variance
Observations
Pearson Correlation
Hypothesized Mean Difference
Df

t Stat

P(T<=t) one-tail

t Critical one-tail
P(T<=t) two-tail

t Critical two-tail

123.3125 108.0625
12191.83  3471.929
16 16
0.817795

0

15

0.860739

0.201466

2.13145

0.402931

2.48988

Ho was accepted. Hence there is no significant difference between observed and predicted

rainfall.

Table C- 6: t statistic (t stat) for the month March for the validation period (1991/92-2006/07)

Variable 1  Variable 2

Mean

Variance
Observations
Pearson Correlation
Hypothesized Mean Difference
Df

t Stat

P(T<=t) one-tail

t Critical one-tail
P(T<=t) two-tail

t Critical two-tail

89.5625 65.25
11329.86  1764.2
16 16
0.692205

0

15

1.17036

0.130058

2.13145

0.260115

2.48988

Ho was accepted. Hence there is no significant difference between observed and predicted

rainfall.
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Table C- 7: t statistic (t stat) for the month April for the validation period (1991/92-2006/07)

Variable 1 Variable 2
Mean 27.1875 13.625
Variance 1215.629 137.3167
Observations 16 16
Pearson Correlation 0.897958
Hypothesized Mean Difference 0
Df 15
t Stat 2.180147
P(T<=t) one-tail 0.022794
t Critical one-tail 2.13145
P(T<=t) two-tail 0.045588
t Critical two-tail 2.48988

Ho was accepted. Hence there is no significant difference between observed and predicted

rainfall.
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