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ABSTRACT 
 

 

The main objective of this thesis was to assess the agro-climatic potential of fuel crops 
(typically sorghum) in Zimbabwe using a revised map of solar radiation received at the surface. 
To achieve this objective climatic data, principally, maximum and minimum temperatures, and 
surface solar radiation were collected and analyzed.  
 
Values of solar radiation data gathered from two terrestrial and one satellite source did not agree 
closely. Satellite estimates of solar radiation were found to be on average, at least 21 % lower 
than ground based measurements. Values from the Climatic Handbook, updated with more 
recent records from the Zimbabwe Meteorological Department were used to produce monthly 
radiation maps using the computer program Surfer. 
 
Potential yields (biomass production) of sweet sorghum (Keller variety) under existing climate 
conditions were calculated using the Ceres model within the Decision Support System for 
Agrotechnology Transfer (DSSAT version 4.0) for four stations, representative of different 
Agroecological Zones of Zimbabwe. A few sensitivity tests were implemented to test the 
response of the potential yield to changes in environmental conditions, as well as a change in 
the sorghum variety. Potential yields assessment gave high productivity over Karoi (Natural 
Region IIa) and Masvingo (Natural Region IV) relative to Harare, and Buffalo Range. The 
lowest potential yield was found in Buffalo Range.  However, while Karoi and Masvingo had 
high yields but, Masvingo displayed a shorter growing season, that means it has a relatively 
higher biomass production rate. 
 
From the sensitivity tests, a 2 °C rise in maximum temperature (warmer climate) as well as a 
reduction in surface solar radiation of 5 MJ/m2/day resulted in a decrease in potential yields. 
The average potential yield decrease under a temperature modified environment was about 4 % 
and under reduced surface radiation about 9 %.  
 
The potential yields of sweet sorghum (Keller variety) were compared with those of grain 
sorghum (Pioneer 8333) for the current climate of Karoi. A comparison of the potential yields of 
two sorghum varieties, Keller (sweet) and Pioneer 8333(grain) over the Karoi site did not give 
significant differences. Notable differences, however, were found in the length of the growing 
period (LGP); Pioneer displayed a short growing period relative to Keller. 
 
The project illustrates the first part of the methodology required to evaluate the potential and 
economic benefits of different fuel crops in Zimbabwe.  Further studies of alternative crops and 
varieties, and the costs of fuel production are required. 
 

 

 
 
 
 

 

 

 

 

 

 



 v

ACKNOWLEDGEMENT 
 

 
This thesis was made possible through the assistance of Professor James Milford, my colleague 
Anywhere “Einstein” Tsokankunku, whose tireless efforts with DSSAT4 were invaluable for 
my modeling exercise. Also deserving special mention is Mr. Albert Mhanda, head of IS at the 
Meteorological Service Department who assisted me with database management compatible 
with the model requirements.  I would also want to thank my supervisor, Sebinasi Dzikiti for 
finding time to go through my project and making the final corrections. 
 
More importantly, my gratitude goes to the sponsors of the MAGM Project, the Flemish Inter-
University Council (VLIR) and the Coordinator Mr. B. Chipindu who flawlessly coordinated 
the MAGM program. Not forgetting the government of Zimbabwe through the Director of 
Meteorological  Services, Dr. A. Makarau (Permanent Representative of Zimbabwe with WMO) 
who afforded me the opportunity to take study leave to pursue my academic career in 
Agricultural Meteorology. Also deserving of special mention are the data providers, the 
Zimbabwe Meteorological Services through there IS unit and International Research Institute 
(USA-IRI) – Climatic Research Unit, University of East Anglia (UK-CRU)  who availed all the 
data used in the analysis.  
 
My fellow students deserve special mention for all their useful hints and tips. They made the 
working environment bearable through their humorous comments. Together we were ONE. 

Last and not least, my family that had to endure my riotous time table, I am eternally grateful 
for their patience and understanding.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 



 vi

TABLE OF CONTENTS 
 
 

DEDICATION .................................................................................................................. iii 

ABSTRACT ...................................................................................................................... iv 

ACKNOWLEDGEMENT ................................................................................................ v 

LIST OF FIGURES ......................................................................................................... xi 

ABBREVIATIONS AND SYMBOLS ........................................................................... xii 

CHAPTER 1: INTRODUCTION .................................................................................... 1 

1.1 The Justification of the Research Project ............................................................. 1 
1.2 Benefits of the study ................................................................................................ 2 
1.3 Objectives of the study ............................................................................................ 3 
1.4 Target Area .............................................................................................................. 4 
1.5 Thesis Layout ........................................................................................................... 5 

CHAPTER 2: LITERATURE REVIEW ........................................................................ 6 

2.1 Historical background ............................................................................................ 6 
2.1.1 Principles of bio-diesel production technology ................................................. 6 
2.1.2 Advantages of Bio-diesel: .................................................................................. 6 

2.2 Biomass use: Experience from Other Countries .................................................. 9 
2.2.1 Australia ............................................................................................................. 9 
2.2.2 South Africa ....................................................................................................... 9 
2.2.3 Brazil ................................................................................................................ 10 
2.2.4 United States of America ................................................................................. 10 
2.2.5 Canada .............................................................................................................. 10 
2.2.6 Zimbabwe ......................................................................................................... 11 

2.2.6.1 Background of Jatropha plant  in Zimbabwe ............................................ 11 
2.3 Arguments against bio-fuels ................................................................................. 12 
2.4 The Challenge ........................................................................................................ 14 
2.5 Reasons for Factoring Temperature and Solar Radiation in the Cultivation 

of Fuel Crops ............................................................................................................... 15 
2.5.1 Effect of temperature on plant growth and development ................................. 16 

2.5.1.1 Distribution ............................................................................................... 16 
2.5.1.2 Photosynthesis ........................................................................................... 16 
2.5.1.3 Dry Matter Accumulation ......................................................................... 17 
2.5.1.4 Expansion Growth ..................................................................................... 18 
2.5.1.5 Phenological Development ....................................................................... 18 
2.5.1.6 Diurnal Temperature Variation ................................................................ 19 
2.5.1.7 Freezing Temperatures ............................................................................. 19 
2.5.1.8 Germination and Seedling Growth ........................................................... 19 

2.5.2 Solar Radiation ................................................................................................. 19 
2.6 The Climate of Zimbabwe .................................................................................... 20 

2.6.1 Background ...................................................................................................... 20 
2.6.2 Temperature ..................................................................................................... 21 
2.6.3 Solar Radiation ................................................................................................. 21 
2.6.4 Rainfall ............................................................................................................. 22 
2.6.5 Agro-climatic mapping .................................................................................... 23 

2.7  Literature review on Fuel Crops and Bio-fuels ................................................. 24 
2.7.1 Sweet Sorghum (Sorghum bicolor (L.) Moench] ............................................ 24 

2.7.1.1 Plant profile .............................................................................................. 24 



 vii

2.7.1.2 Why Sweet Sorghum? ................................................................................ 24 
2.7.1.3 Climate influence on sorghum production ................................................ 26 
2.7.1.4 Ethanol production from sweet sorghum: ................................................. 27 

2.7.2 Components of sweet sorghum stem juice ....................................................... 27 
2.7.2.1 Brix degree in sweet Sorghum stem .......................................................... 27 
2.7.2.2 Total Sugar Content in Juice of Sweet Sorghum ....................................... 28 
2.7.2.3 Glucose content ......................................................................................... 28 

2.7.3  Sugar Cane (Saccharum officinarum) ............................................................. 29 
2.7.3.1 Plant profile .............................................................................................. 29 
2.7.3.2 Cultivation ................................................................................................. 29 
2.7.3.3 Sugarcane Yield ........................................................................................ 30 
2.7.3.4 Water Requirements .................................................................................. 31 
2.7.3.5 Sugarcane in Zimbabwe ............................................................................ 32 
2.7.3.6 Propagation .............................................................................................. 32 
2.7.3.7 Harvesting Cane ....................................................................................... 33 
2.7.3.8 Transportation .......................................................................................... 33 
2.7.3.9 Sugarcane for Production of Ethanol ....................................................... 33 

2.7.4 Jatropha Curcas Plant ....................................................................................... 34 
2.7.4.1 Plant Profile .............................................................................................. 34 
2.7.4.2 Distribution and habitat ............................................................................ 34 
2.7.4.3 Climate ...................................................................................................... 35 
2.7.4.4 Biophysical limits ...................................................................................... 35 
2.7.4.5 Flowering and fruiting habit ..................................................................... 35 
2.7.4.6 Crop Yield ................................................................................................. 35 
2.7.4.7 Zimbabwe jatropha experience  summarized ............................................ 37 

CHAPTER 3: MATERIALS AND METHODS .......................................................... 38 

3.1 Introduction ........................................................................................................... 38 
3.2 The climate data and their sources ...................................................................... 39 

3.2.1 Solar radiation data sources ............................................................................. 39 
3.2.1.1 Ground-based observations ...................................................................... 39 
3.2.1.2 Instruments used ....................................................................................... 40 
3.2.1.3 Satellite based solar radiation data .......................................................... 41 
3.2.1.4 Errors in satellite estimates ...................................................................... 41 
3.2.1.5 Comparison of data sources for solar radiation ....................................... 41 
3.2.1.6 Differences in the sources ......................................................................... 41 

3.2.2 Temperature data .............................................................................................. 44 
3.2 Analysis Methods and Tools ................................................................................. 45 

3.2.1 Surfer 32 version 6.04 ...................................................................................... 46 
3.2.2 Crop Modelling ................................................................................................ 46 

3.2.2.1 DSSAT software package system background .......................................... 46 
3.2.2.2 Minimum Data Set (MDS) ......................................................................... 47 
3.2.2.3 Introduction to Crop Simulation (ICSim) tool .......................................... 47 
3.2.2.4 Differences and limitations of ICSim relative to DSSAT v4 (XBuild) 
capabilities (Hoogenboom, 2003) ......................................................................... 48 
3.2.2.5  Outputs of ICSim ...................................................................................... 49 
3.2.2.6 Data type and sources for computer simulation ....................................... 49 
3.2.2.7  Cultivar coefficients in CSM .................................................................... 49 

3.3 Crop simulation methodology .............................................................................. 50 
CHAPTER 4:  RESULTS ........................................................................................... 51 
4.1 Introduction ........................................................................................................... 51 
4.2 Solar Radiation Data............................................................................................. 51 

4.2.1 Comparison of the radiation maps ................................................................... 52 



 viii

4.2.2 Results for solar radiation sources mapping .................................................... 54 
4.2.2.1 Summary of mapping results ..................................................................... 55 

4.2.3 Quantitative comparison between satellite and ground based measurements . 55 
4.2.3.1 Summary of radiation comparison ............................................................ 58 

4.2.4 Radiation data for modelling ............................................................................ 58 
4.3 Crop Simulation Results ....................................................................................... 58 

4.3.1 Potential yield of sorghum (Sorghum bicolor, L Moench) .............................. 58 
4.3.2 Potential yield results comparison ................................................................... 60 

4.3.2.1 Inter site yield comparisons ...................................................................... 60 
4.3.2.2 Results of Yield versus LGP ...................................................................... 62 

4.4 Sensitivity Tests ..................................................................................................... 66 
4.4.1 Sensitivity tests under modified environmental conditions ............................. 66 

4.4.1.1 Harare Belvedere Site ............................................................................... 66 
4.4.1.2 Results of potential yield under modified environments ........................... 67 
4.4.1.3 Buffalo Range Site ..................................................................................... 68 
4.4.1.4 Masvingo Site ............................................................................................ 68 
4.4.1.5 Karoi Site .................................................................................................. 69 

4.4.2 Sensitivity test for different sorghum varieties ................................................ 71 
4.4.2.1 Comparison of potential yields between the two varieties ........................ 71 
4.4.2.2 Comparison of the length of the growing period between the varieties ... 72 
4.4.2.3 Comparison of the growing period under a modified environment .......... 73 
4.4.2.4 Results for modified temperature environment ......................................... 74 
4.4.2.5 Summary of results on the differences in potential yield at each site 
under different environmental conditions: ............................................................ 74 

4.5 Conversion Efficiency for Sorghum .................................................................... 76 
CHAPTER 5: DISCUSSION ......................................................................................... 77 

5.1 Introduction ........................................................................................................... 77 
5.2 Radiation ................................................................................................................ 77 

5.2.1 Comparison of radiation sources. ..................................................................... 77 
5.2.2 Solar radiation and crop yield .......................................................................... 79 

5.3 Potential Yield ....................................................................................................... 81 
5.3.1 Introduction ...................................................................................................... 81 
5.3.2 Potential yield under existing environmental conditions at different sites ...... 81 
5.3.3 Potential Yield under a Modified Environment ............................................... 81 
5.3.4 Potential yield versus length of growing period (LGP) ................................... 82 

5.4 Sensitivity tests discussion .................................................................................... 85 
5.4.1 Different varieties compared ............................................................................ 85 

5.5 Conversion efficiency of biomass yield to bio-ethanol ....................................... 87 
5.5.1 Conversion efficiency of sweet sorghum ......................................................... 87 
5.5.2 Potential Yield of Sugar Cane .......................................................................... 87 

5.5.2.1 Productivity of sugarcane in Zimbabwe ................................................... 88 
5.5.2.2. Comparative Productivity in South Africa ............................................... 90 

5.6 Conversion efficiency to bio-fuel for the different fuel crops ........................... 91 
5.6.1 Potential Yield of Jatropha ............................................................................... 91 
5.6.2 Conversion efficiency of the jatropha seed oil to biediesel ............................. 92 
5.6.3 Comparison of conversion efficiencies of the different fuel crops .................. 92 

5.7 Economics of Bio-Fuel Production ...................................................................... 93 
5.7.1 Introduction ...................................................................................................... 93 
5.7.2 Land Availability ............................................................................................. 94 
5.7.3 Productivity of the fuel crops ........................................................................... 94 
5.7.4 Fibre Production ............................................................................................... 94 
5.7.5 Energy Balance ................................................................................................ 95 



 ix

5.8 A Market for Ethanol ........................................................................................... 96 
    5.9 Clean development mechanism (CDM) of the Kyoto Protocol 1997)............... 96 

CHAPTER 6: CONCLUSION ....................................................................................... 97 

6.1 Introduction ........................................................................................................... 97 
6.2 Revised radiation maps......................................................................................... 97 
6.3 Simulated potential biomass production ............................................................. 97 

6.3.1 Sensitivity of sorghum yield to environmental changes. ................................. 97 
6.4 Recommendations ................................................................................................. 99 
6.5 Future Issues .......................................................................................................... 99 

REFERENCES .............................................................................................................. 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 x

LIST OF TABLES 
 

Table 2.1 Emissions reduction comparisons of bio-diesel with reference to petroleum diesel  
Table 2.2 Comparison of the yield, element use and cost of production for the  
different fuel crops 
Table 2.3: WUE (in gl-1) and Consumptive water Use the crops in Comparison 
Table 2.4: Comparison of sugar production among three crops. 
Table 2.5: Sugar content of the different sweet sorghum varieties 
Table 2.6: FAO sugarcane production rankings 
Table 2.7: Crop coefficient (Kc) versus development stages 
Table 2.8: Relative jatropha seed yield figures that can be expected for a farming system 
without irrigation. 
Table 2.9: Relative jatropha seed yield figures that can be expected for a farming system 
with irrigation. 
Table 3.1: Summary of data sources 
Table 3.2: Mean monthly solar radiation for selected stations. 
Table 4.1: The percentage difference between solarimeter measurements and satellite based 
estimates for selected stations and randomly selected months. 
Table 4.2:Typical sites (stations) of the Natural Regions used in the analysis. 
Table 4.3: Summary of potential biomass production of the sorghum variety Keller. 
Table 4.4: Comparison of highest potential biomass production (yield) with length of 
growing period (LGP) and planting date. 
Table 4.5: Correlation coefficients for LGP against biomass production 
Table 4.6 Comparison of productivity rate (PR) at different sites for the highest potential 
biomass productivities.   
Table 4.7: Potential yields of the sorghum varieties Keller (sweet) and Pioneer 8333 (grain) 
Table 4.8: Difference in biomass production between the sorghum varieties; Keller and 
Pioneer 8333 
Percentage difference in yields between the two varieties; Keller and Pioneer 8333. 
Table 5.1: Comparison of solar radiation data from surface observations and satellite 
estimates. 
Table 5.2: Summary of the sorghum varieties crop coefficients used in DSSAT v4.0.2.0 
Table 5.3: Simulated and measured results for sugarcane; South African experiment. 
Table 5.4: Potential Productivity of Jatropha according to maturity  
Table 5.5: Potential conversion efficiencies of the different fuel crops 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xi

LIST OF FIGURES 
 

Figure 1.1 Location of Zimbabwe in the southern African subcontinent 
Figure 2.1: Response of net photosynthesis to air temperature in C3 and C4 plant 
Figure 2.2: Response of grass dry matter accumulation to day/night temperatures, 15/10, 
18/13, 21/16, 27/22, 30/25, 33/28 and 36/31°C.  
Figure 2.3 Dry matter (g m-2) versus Accumulated PAR for sweet sorghum 
Figure 2.4: The mean annual radiation map of Zimbabwe 
Figure 2.5: Sugarcane crop in Hawaii. 
Figure 2.6: Jatropha curcas fruits before they are ripe. 
Figure 3.1: Ground based station network for  solar radiation measurements. 
Figure 3.2: Map showing the spatial distribution of the temperature stations used in the 
analyis 
Figure 4.1:  Satellite and ground based mean monthly maps of solar radiation for Zimbabwe 
Figure 4.2: Correlation graph of radiation measurements between ground stations for 
different periods. 
Figure 4.3: Correlation graph of radiation measurements between ground observations and 
satellite estimates. 
Figure 4.4: Potential biomass yield at different sites under current climate. 
Figure 4.5: Length of growing period (LGP) versus biomass production. 
Figure 4.6: Biomass productivity rate (PR) at different sites under current climatic 
conditions. 
Figure 4.7: Harare: Potential biomass production under different environmental conditions 
and different planting dates. 
Figure 4.8: Buffalo Range: Potential biomass production under different environmental 
conditions and different planting dates. 
Figure 4.9: Masvingo: Potential biomass production under different environmental 
conditions and different planting dates. 
Figure 4.10: Karoi: Potential biomass production under different environmental conditions 
and different planting dates. 
Figure 4.11: Comparison of the potential biomass production for Keller and Pioneer 8333. 
Figure 4.12: Comparison of the LGP for Keller and Pioneer 8333 under current 
environmental conditions. 
Figure 4.13: Comparison of the LGP for Keller and Pioneer 8333 under a modified 
environment (+ 2 ºC, maximum temperature). 
Figure 5.1: Percentage difference of satellite based radiation to ground based measurements. 
Figure 5.2: Mean monthly solar radiation cycle at different sites. 
Figure 5.3: The influence of planting date on yield and length of growing period of sweet 
sorghum. 
Figure 5.4: Productivity rate (ratio of potential yield to length of growing period) at 
different sites 
Figure 5.5:  Above ground fresh matter composition for sweet sorghum and sugarcane 
Figure 5.6: Variations in the rate of partitioning for the various components 
Figure 5.7  The various energy consumers in the production cycle of sweet sorghum.  

 

 

 

 

 

 

 

 



 xii

ABBREVIATIONS AND SYMBOLS 
 
ARDA – Agricultural Development Authority 
CDM – Clean Development Mechanism 
CRU – Climate Research Unit 
DSSAT - Decision Support System for Agro-technology Transfer 
GHGs – Green house gases 
IBSNAT - The International Benchmark Sites Network for Agro-technology Transfer 
IDC – Industrial Development Corporation 
IEA – International Energy Agency 
IRI – International Research Institute 
IS – Information Systems 
Kc – Crop coefficient for evaporation measurements. 
LGP – Length of the growing period 
MAGM – Masters in Agricultural Meteorology 
NOCZIM – National Oil Company of Zimbabwe 
PAR – Photosynthetically active radiation   
POEDG – Plant Oil and Engine Development Group 
REW – Renewable Energy World 
TAR – Third Assessment Report 
UNFCCC – United Nations Framework Convention on Climate Change 
VLIR – Flemish Inter-University Council 
WMO – World Meteorological Organization 
ZESA – Zimbabwe Electricity Supply Authority 



 1

CHAPTER 1: INTRODUCTION 
 

 

‘Just as the 20th century saw the rise of mineral oil as a major fuel, the 21st century should be the 

forum for the emergence of a new mixture of energy carriers increasingly dominated by 

renewable energy sources and among these, leading the way is bio-energy.’ (Best, 2006) 

 

The current era is probably seeing the last decades where fossil fuels are of supremacy without 

competition, where environmental and climate change issues are high on the international 

agenda and where energy security has come on the scene as a major driver of change, including 

in Zimbabwe (target area of study). However, as some social scientists have pointed out, 

another compelling reason calling for a modern bio-energy philosophy are the billions rural 

people in the world who are still energy poor and require more affordable, clean and sustainable 

energy, (Rosillo-Calle et al., 2006). The major advantage is that bio-energy is a locally available 

energy source with the highest versatility among the renewable energies, that is to say it can be 

made available in solid, liquid or gaseous forms.   

   

The debate of alternative forms of energy has been doing the scientific circles since the wide 

scale use of fossil fuel began in the 19th century. The reason behind it is the logic that fossil fuel 

is a finite resource and hence if human civilization is to be sustainably developed or maintained, 

it shall require a renewable source of energy. Another argument that is rapidly gaining ground is 

the ‘Climate Change’ debate, where fossil fuel is being singled out for being the major source of 

greenhouse gas emissions, particularly CO2, that are responsible for global warming. Therefore 

the international thrust is to find ways of partially replacing the mineral fuel with bio-energy, 

(Rosillo-Calle et al., 2006). 

 

Throughout human history biomass in all its forms, has been the most important source of all 

our basic needs, often summarized as the six “fs”: food, feed, fuel, feedstock, fibre and 

fertilizer. Biomass products are also a source of a seventh ‘f’ i.e. finance (IEA, 2002) 

1.1 The Justification of the Research Project 

Zimbabwe is a developing country whose energy requirements particularly in the transport 

sector are still on the rise. While the current study is essentially limited to Zimbabwe, the 

methodologies employed are easily transferable to other regions. In fact, Woods et al. (2004) 

has already conducted some preliminary work in some southern African countries, on the 

feasibility of utilizing sweet sorghum in conjunction with sugarcane for the production of 

ethanol and for power generation. While his work was more site specific and inclusive of other 

factors, the current study is mainly focused on the climatic influences to fuel crop production 

using the DSSAT4 model. 
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The current study is timely in that it will shed light and understanding on the key climatic 

elements that will influence the utilization of bio-energy and its future in Zimbabwe. This study 

seeks to answer the question, “What is the potential of bio-energy in a particular place and 

moment?”  While bio-energy comes in all the three states of matter i.e. solid, liquid and gas, the 

focus here shall be mainly on the liquid fuel form that is employed mainly in the transportation 

industry. The transport industry is among the top economic activities that is responsible for a 

significant amount of CO2 emissions and it is one of the sectors that has been targeted by the 

Kyoto Protocol, to which Zimbabwe is signatory, to find ways of reducing emissions of 

greenhouse gases (GHGs), (UNFCCC, TAR, 2003) 

 

Zimbabwe, like many other countries that do not have mineral oil reserves, annually spends 

million of dollars in foreign currency in the importation of this vital commodity. Efforts have 

already started on research activities aimed at finding alternative fuel sources in order to lessen 

the financial burden on importing oil. The Zimbabwe Herald Newspaper of 13/09/2006,  

reported that four parastatals (quasi-independent government bodies), [the Industrial 

Development Corporation (IDC), the Agricultural Development Authority (ARDA), ZESA 

Holdings and the National Oil Company of Zimbabwe (NOCZIM)] were seeking approval for 

the construction of a sugar mill by IDC on land provided by Arda at Chisumbanje. NOCZIM’s 

interest would be on fuel while ZESA Holdings would focus on the power aspects of the 

project. Zimbabwe already has a relatively large ethanol plant in the southeast of the country 

based on sugarcane as a feedstock, capable of producing about 40 million litres of anhydrous 

ethanol (Woods, 2000). The major disadvantage is that ethanol production competes with 

crystalline sugar production for the same feedstock. The challenge is to identify other feedstocks 

that do not compete with or jeopardize food security in the country.  Among the possible crops 

that could be cultivated are sweet sorghum (Sorghum bicolor, L. Moench) and the Jatropha 

curcas plant (currently receiving a lot of attention from the Ministry of Science and 

Technology, Zimbabwe). There are other fuel crops available that are not discussed in this study 

but can equally be assessed using the same methodology as applied here.     

 

1.2 Benefits of the study 

 

The current study should contribute to three main areas i.e. (1) to increase the body of scientific 

knowledge that is aimed at understanding the physical principles underlying the growing of fuel 

crops and hence improve on the breeding and management aspects to maximize on fuel crop 

production for sustainable bio-fuel production and (2) to assist as a decision support tool for 

policy makers. Whether to invest in fuel crops or not? Which crop and where? (3) to provide 
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radiation maps from remote sensing sources (satellite). One of the benefits accruing from this 

study is the feasibility of using satellite based observations of solar radiation to accurately 

produce solar radiation maps that can find a range of applications especially in radiation 

sensitive projects. Satellite based measurements would greatly enhance the spatial and temporal 

resolution of this parameter than is the case at the present. At present, satellite data on radiation 

has not yet been calibrated and validated with ground observations in Zimbabwe to be of 

immediate use in a wide range of possible applications.  

 

Since the government has already embarked on the road of bio-fuel production, any additional 

data and information particularly on agro-climatic conditions suitable for different energy crops 

would be useful, particularly for research scientists in agriculture, farmers as well as policy 

makers.  

1.3 Objectives of the study 

 
The objective of this study is to identify climate parameters in Zimbabwe that determine the 

potential yield of fuel crops. To this end the use of the Decision Support System for Agro-

technology Transfer (DSSAT) model is being utilized to simulate potential yield of fuel crops. 

This crop simulation tool could prove to be useful for a range of other experiments designed to 

look at crop production be it for food or for fuel.  

 

 It would be ideal to come up with an agro-climatic zone map showing the areas that potential 

investors would need to concentrate on when growing a particular fuel crop, unfortunately this 

requires more field experiments to verify simulated model results which is outside the scope of 

this work. However, the preliminary results from this study should provide a ‘first guess’ for 

any would be investor, regarding the growing of fuel crops of choice.  

 

Lastly but more importantly, the satellite based solar radiation maps produced were to be 

compared to ground measurements maps. They should provide food for thought in terms of 

utilization of remotely sensed data that is currently under utilized in Zimbabwe, especially in 

view of the scarcity of ground observing stations. A more detailed and accurate map would go a 

long way in the ongoing research on renewable energy sources e.g. solar energy research. The 

larger scientific community could also stand to benefit from accurate solar radiation data with a 

better spatial and temporal resolution than at present. 
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1.4 Target Area 

 

The author’s study area is Zimbabwe (Figure 1.1) and the general climate characteristics of the 

country will be highlighted in subsequent sections.     

 

 
 

Figure 1.1:  The location of Zimbabwe in the southern African subcontinent 

 
Zimbabwe is a land locked country whose area is approximately 400 000 km2 whose climate can 

be described as both tropical and extra-tropical. It lies generally between 15° S and 22.5° S and 

extends from 25° E and 34° E. (Shoko K, 1999; Climate Handbook of Zimbabwe 1980). In a 

nutshell the climate of Zimbabwe can be described as a tropical ‘dry and wet’ climate i.e. to say 

for about seven months it will be dry and the other five months it will be wet. Of course this is a 

broad simplification of reality when one is interested in the climate of a particular area or 

locality. 

 

 The main factors that control the climate of a locality are determined by 1) its latitude, that in 

turn determines the amount of solar radiation received at the top of the atmosphere at any time 

of the year; 2) its position relative to the distribution of land and sea, the latter providing a 

source of moisture in the form of water vapour and exercising a moderating influence on the 

diurnal and annual temperature range; 3) its height above sea level, that in turn has a strong 

bearing on temperature. Other influences that are dependent on 1) and 2) are the general 

circulation of the atmosphere and its perturbations, ocean currents (warm or cold), nature of 

underlying surface, vegetative cover and topographical features. The most important large scale 

circulation features that affect Zimbabwe are the Inter-tropical Convergence Zone (ITCZ) 
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during the rainy season (November to March), especially the northern half of the country and 

the mid latitude westerly waves in the dry season (winter; May to July). The intermediate 

months of August to October (spring) and April (autumn) are transitional periods i.e. when the 

dominant weather patterns are changing in tandem with the movement of the sun.     

 

This is not an in-depth analysis of the weather and climate of the country but a brief outline of 

the factors that govern the weather parameters that are the basis of agro-climatic potential of the 

different fuel crops shall be given in chapter two. 

1.5 Thesis Layout 

The thesis is structured into basically six chapters including the Introduction (Chapter 1).  

Chapter 2 dwells on the background to the bio-diesel debate plus the literature review. The 

history behind it is analyzed in the context of the pros and cons up to present. The different 

feed-stocks (fuel crops) currently in use the world are analyzed and also the state of the 

development of the bio-fuel industry in the world, looking at the major players as identified by 

FAO. Why some countries favor some fuel crops compared to others? Various literatures on the 

bio-fuel debate as regards the different energy crops are presented, but however, much of the 

literature used was on sweet sorghum. The last pages of the chapter are devoted to the fuel crops 

that are being considered for Zimbabwe as potential feedstock material for bio-ethanol or bio-

diesel production. The climatic parameters used in the study, namely maximum temperature, 

minimum temperature, solar radiation and rainfall are then discussed following the crop 

discussion. Here the purpose is to highlight the significance of weather in the growth and 

development of fuel crops. This is then followed by a brief overview of the general climate of 

Zimbabwe, giving a general picture of the spatial as well as temporal distribution of the primary 

climate parameters. Lastly in this chapter, the agro-ecological zones of Zimbabwe are presented, 

as an illustration of the link between climate and food crops.  

 

Chapter 3 is devoted to materials and methods used in the current research effort.  The data 

sources and their suitability for the present study are discussed. The chapter is divided into two 

parts, one part is looking at the more frequently observed weather parameters of rainfall and 

temperature and the second part is looking at the less observed but very important parameter of 

solar radiation. Two methods of radiation observations are analyzed; ground based observations 

and remotely sensed data from satellite (geostationary). The main tools used to analyze the data 

are discussed next, namely the computer based Surfer Program and the DSSAT Cropping 

Simulation Model. Chapter 4 will concentrate on the results obtained. Discussion of the results 

is done in Chapter 5 and finally the conclusions and recommendations arising from the findings 

are given in Chapter 6  
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CHAPTER 2: LITERATURE REVIEW 
 

 2.1 Historical background   

 
The concept of bio-fuel dates back to 1885 when Dr. Rudolf Diesel built the first diesel engine 

with the full intention of running it on a vegetative source (fuel crops). Diesel  presented an 

engine powered by peanut oil in 1900 at the Paris World Expo. In 1912 he stated " ..the use of 

vegetable oils for engine fuels may seem insignificant today. But such oils may in the course of 

time become as important as petroleum and the coal tar products of present time." 

 

2.1.1 Principles of bio-diesel production technology 

Bio-diesel can be produced at room temperature and atmospheric pressure. The reaction takes 

place when vegetable oil is mixed with alcohol in the presence of a catalyst to form bio-diesel 

and glycerol. The preferred alcohols are methanol and ethanol. The catalyst may be a strong 

acid such as sulphuric acid or a strong base such as sodium hydroxide or potassium hydroxide. 

The base is preferred because it is easy to handle and the rate of reaction is high and the amount 

of oil converted to bio-diesel is also high. The rate of reaction is affected by other factors such 

as temperature, stirring and oil acidity. 

 

The proportional ingredients of the bio-diesel are as follows: One litre of vegetable oil, 150 –

200 ml of methanol (or ethanol) and 3.5 g of sodium hydroxide. First, sodium hydroxide is 

dissolved in alcohol to form a solution. Second the solution is mixed with oil for the reaction to 

take place. The ingredients will produce about 1.15 litres of bio-diesel. If methanol is used, a 

closed container (reactor) is necessary to protect the operator from methanol poisoning. Any 

amount of water in the ingredients (alcohol or oil) reduces the yield of bio-diesel and should be 

avoided ( Kibahozi,  2005). 

 

The form in which bio-diesel is used is denoted as BXX where XX is the percentage of bio-

diesel in a mixture, for example B100 is pure bio-diesel and B20 contains 20% bio-diesel and 

80% petroleum diesel. Most vehicle engines can use bio-diesel of B20 percentage mixture but 

unfortunately, not all diesel engines can use B100, because pure bio-diesel may damage certain 

elastomers and natural rubber used in the fuel pump parts and hoses (Kibahozi, 2005). 

. 

2.1.2 Advantages of Bio-diesel: 

Bio-diesel is renewable, with net zero carbon dioxide emission (Kibahozi, 2005). Other 

emissions are also lower compared to petroleum diesel as shown in Table 2.1 below. The 

negative or positive sign indicates the percentage decrease/ increase in emission compared to 

emissions from burning of petroleum diesel. Bio-fuel is an umbrella term used to describe all 
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fuels derived from organic matter. The two most common bio-fuels are bio-ethanol, a substitute 

for gasoline, and bio-diesel, a substitute for diesel. Both are seen by climate change scientists as 

complimentary ways of cutting greenhouse gas emissions quickly with minimal modification to 

the existing vehicle and fuel infrastructure. The course of action for mitigation of climate 

change is to stabilize and reduce concentrations of greenhouse gases. Bio-diesel, as a fuel 

produced from vegetable oil, is one of the mitigation options that can be used by countries to 

mitigate climate change and provide sustainable development (Kibahozi, 2005). 

 

Table 2.1 Emissions reduction comparisons of bio-diesel with reference to petroleum 

diesel Source: www.biodiesel.org 

Emission Type *B100  **B20 
  

Total Unburned Hydrocarbons -10 to -67% -20% 
Carbon monoxide -10 to -48% -12% 
Particulate matter - 24 to -47% -12% 
Soot -50 to -52%  
NOx +8 to +12%   
Sulfates -100% -20% 
PAH (polycyclic aromatic hydrocarbons) 
{average reduction across all compounds measured} 

-80% -13% 

Ozone potential of speciated Hydrocarbons -50% -10% 
NOTE: Range variability depends on type of engine; turbulent engine is more 

efficient than direct injection engine. 

*100 % pure bio-diesel 

**20 % bio-diesel and 80 % petroleum diesel 

 

• Bio-diesel molecules contain oxygen atoms that improve combustion efficiency 

(Blassnegger, 2003; Wolfgang, 2003). On the other hand, bio-diesel increases nitrogen 

oxide emissions. The emissions can be reduced by using the oxidation type catalytic 

converter (Kibahozi, 2005). 

• It is essentially non-toxic (one tenth the toxicity of salt!) and biodegradable.   

• Healthwise, it does not contain toxic and carcinogenic aromatics (benzene, toluene and 

xylene), hence bio-diesel emissions show decreased levels of polycyclic aromatic 

hydrocarbons (PAH) and nitrated polycyclic aromatic hydrocarbons (nPAH), which 

have been identified as potential cancer causing compounds. 

• Contains very little amount of sulphur. Sulphur dioxide is a compound that causes 

respiratory diseases. 

• For countries without fuel source, it is a foreign currency saver. 

• Economic stability can be found through use of own fuel source as international oil 

cartel determines the tune for the price of oil. 
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• Employment opportunities are boosted, resulting in poverty alleviation 

• Qualifies for Clean Development Mechanism (CDM)* under the Kyoto Protocol 

(Kibahozi, 2005). 

• Technically it has properties similar to petroleum diesel; hence no engine modifications 

are required. Power output at B100 just less by 5%, hardly noticeable 

• It has higher flash point, i.e. temperature at which it ignites. It is therefore safer to 

transport and store than petroleum diesel. 

• Bio-diesel has better lubricating properties than diesel, hence longer engine-lifetime 

(Wolfgang, 2003). 

   

Bio-ethanol is produced by processing starchy or sugar-rich crops such as sweet sorghum, sugar 

cane, wheat or maize. In the case of starchy crops, the starch is converted into sugars using 

enzymes. The resulting highly pure ethanol can be blended with petrol to various percentages.  

 

 

 
 

Footnote: *CDM – This is one of the mechanism by which countries with emission quota reduction 

targets can employ by paying another country (developing) to adopt clean technology with the emission 

reduction being ascribed to the developed country. The Kyoto Protocol was crafted by the United Nations  

Framework Convention on Climate Change (UNFCCC) in Japan in 1997. This document was the first 

international attempt to place legally binding limits on greenhouse gas emissions from developed 

countries. 

 

Sugar cane and sweet sorghum are grown specifically for fuel in a number of countries. A 

variety of other lignocellulose materials including sugar cane stalks can contribute to the 

process, and the residues used as fertilizer on the fields. According to REW, (2000) using one 

ton of bio-ethanol instead of fossil fuel reduces the emission of CO2 into the atmosphere by 2.3 

tons. The assumption is that CO2 is simply cycled during the whole growth and consumption 

process. Needless to say, the significance of the CO2 reduction lies in the principle rather than 

the actual figure that it might not fully reflect the assumptions inherent in the calculations.  

 

Long-term viability of agricultural fuel crops also depends on maintaining the physical quality 

of the soils, and the plant nutrition. The different feed-stocks have different nutritional 

requirements and the cost of producing a unit quantity of bio-ethanol also differs. A 

comparative table for element use and cost per cubic metre of bio-ethanol produced for some 

feed-stocks is shown below (Table 2.2). However comparative figures for Jatropha are not 

available. 
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Table 2.2 Comparison of the yield, element use and cost of production for some fuel 

crops (Source: REW, 2000) 

Crop Sugar yield 

t/ha 

Element use, kg/t yield Bioethanol 

Cost US$/m3

  N P2O5 K2O  

Sugar cane 8 - 12 1 0.1 2 260 

Sugar beet 6 – 8 5 1 –2 5 – 6 590 

Sweet sorghum 7 – 12 0.9 0.9 1.3 200 -300 

Maize 5 – 8 10 4 5 300 - 420 

 

It appears from the Table 2.2 above that sweet sorghum together with sugarcane have relatively 

low production costs (US$ 200-300 per cubic metre) compared to sugar beet and maize. The 

main advantage that sweet sorghum has over sugarcane is that it has higher water use efficiency. 

But it must be borne in mind that production costs are also related to the level of development in 

a country. Different technologies of production could result in different costs. 

 

2.2 Biomass use: Experience from Other Countries 

 
In addition to crops grown specifically for fuel there is a wide range of commercial uses of 

biomass by-products to produce power on the medium scale. In some cases the benefit from 

energy as a by-product may materially improve the viability of growing a fuel crop.  

 

2.2.1 Australia 

In Australia, like in Triangle Ltd. (Zimbabwe) bagasse from sugar mills is the raw material for 

power generation. For example, from one mill in Queensland, 120 kiloton/year of bagasse is 

produced, and burnt in a generating plant with a capacity of 22MW. Of this, about 8 MW is 

used on site, and the rest exported to the local electricity grid (REW, 2002). Since this process 

has already been proven, its further exploitation could substantially boost the power generation 

capacity of the country (Zimbabwe).  

 

2.2.2 South Africa 

The South African transport energy sector is apparently shifting towards more utilization of bio-

fuel, with newspaper reports talking of ‘….government to make a decision on whether or not to 

force oil companies refining crude oil in SA to add ethanol to their petrol later this year,’ ( Bain, 

2006). 
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There is debate in South Africa on which raw material would be the most efficient when it 

comes to feed-stock for bio-ethanol plants. Some people argue maize would be the most cost 

effective feedstock while others are in favour of sugar cane. The argument is that sugar cane 

involves a simpler process than maize. The role of carbon trading no matter which crop was 

used as feedstock appears to be taking centre stage in any projects involving bio-fuels and fuel 

crops in South Africa. 

 

2.2.3 Brazil 

Currently Brazil is the largest producer of sugarcane and consequently has the highest 

percentage of vehicles running on bio-ethanol, estimated at 45 %. Walter et al., (2006), reported 

that in 2004, 42 % of Brazilian primary energy supply was covered by renewables, with a 

contribution of 13.6 % of sugar cane products (alcohol and bagasse). 

According to the report, the country fulfills the main required conditions regarding large-scale 

production of biomass, such as land availability, adequate weather conditions, little constraints 

regarding labour and the domain both of biomass production and biomass conversion 

technologies in the agricultural and in the industrial sites. Estimated savings due to avoided oil 

imports were about US$52.1 billion (January 2003) from 1975 to 2002 (Goldemberg et al., 

2004). 

 

Use of land devoted to sugarcane growing in Brazil is less than 2 % (5.5 million hectares) and it 

is well accepted that large-scale sugarcane plantations in Brazil has not affected food production 

and even a substantial enlargement of the alcohol production would be possible without serious 

constraints (Walter et al., 2006). The Brazilian experience in bio-fuels production indicates that 

it is possible to produce such fuels in a sustainable way and at low cost. 

 

2.2.4 United States of America 

The United States of America has the world’s fastest growing fuel ethanol market. In 2004 it 

was approximately 14 billion litres while production was about 13 billion litres, hence the ready 

market for surplus ethanol produced elsewhere like Brazil. Most of the bio-ethanol in the USA 

is produced from maize but research into other possible sources is being carried out in the face 

of the growing argument against causing starvation in poorer countries that rely on food imports 

(New Scientist, 2006; Arthur, 1997). 

 
 
 2.2.5 Canada   
Canada is regarded as leader in Bio-Oil technology and Bio-Oil development. One of the 

leading Canadian companies on Bio-Oil technology, Lignol Innovations of British Columbia 

anticipates commercial production of ethanol from woody fibre using its process in 2006 

(Bradley, 2006). Lignol claims it will have the lowest production cost for ethanol. Bio-Oil from 



 11

pyrolysis of wood is brown, free-flowing liquid comprised highly oxygenated compounds and 

has a density of 1.2 kg/litre. With fast pyrolysis biomass waste is heated rapidly in the absence 

of oxygen, vaporized and then condensed into liquid fuel. Its heating value is 40 % of diesel by 

weight and 55 % by volume. It can be stored, pumped and transported like petroleum products 

and can be combusted directly in boilers, gas turbines and slow to medium speed diesels for 

heat and power (Bradley, 2006). 

 

2.2.6 Zimbabwe 

The country already boasts of an ethanol plant based on sugarcane as a stock-feed in the 

southeast run by Triangle Ltd. However, of late the competition with crystalline sugar and a 

dwindling market for the product had forced production levels to decrease (Woods, 2000). The 

focus in Zimbabwe at present is the Jatropha curcas plant as a source of bio-diesel. The 

government through the Ministry of Science and Technology is directing research efforts aimed 

at establishing plantations where the jatropha plant can be grown. Currently, large scale 

processing plants have yet to be established for the production of bio-diesel from jatropha seed 

oil. The development of the bio-fuel industry is at an experimental stage. The results of this 

project should augment national efforts aimed at enhancing bio-fuel production from fuel crops 

including Jatropha curcas plant. An expansion of the agricultural base to include fuel crop 

cultivation is being seen as a national priority (Muropa, 2002) 

2.2.6.1 Background of Jatropha plant  in Zimbabwe 

Jatropha curcas plant is mainly grown in Mutoko and Mhondoro as a hedge. The plant does 

well in warm conditions with temperatures above 20°C and up to 28°C. It is not sensitive to 

day-length and has low rainfall requirements, but it responds to higher rainfall under hot 

climatic conditions as well (Industrial Development Corporation of Zimbabwe, 2000). Research 

work has been conducted on Jatropha growing at a number of sites for example at Art Farm 

under the auspices of Plant Oil & Engine Development Group (POEDG) in 1992. Sites were 

chosen due their differences in agro-climate and the range was from natural region 2a to natural 

region 5 (Masvingo, Beitbridge, Kadoma and Mid-Sabi) with a view to ascertaining the best 

plant spacing and possible seed yields. Fertilizer application at 400kg per hectare was 

selectively applied at some sites. 

 

The following results were obtained (Source: Industrial Development Corporation of 

Zimbabwe, 2000): 

• Masvingo trial germinated badly, about 60 % 

• The average growth rate was 35-40 % better in warmer Mid-Sabi than at Art Farm 

near Harare. 
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• At Art farm (near Harare), there was no response to fertilizer application unlike that at 

Mid-Sabi. (unexplained). 

• At Art Farm, wider spacing gave higher yields (2 tons/ha) than close spacing (0.5 

ton/ha)  

• Fruits are picked one or two years earlier from vegetative propagation than from seed 

planting. 

Apart from production of bio-diesel, jatropha oil and its associated by-products can be used in a 

variety of ways: 

a) Jatropha oil is an excellent substitute of palm kernel oil, which is currently 

being imported. 

b) Jatropha oil is high in Oleic Acid and hence can be converted into a liquid 

soap as a pesticide (www.jatrophacurcas.org). 

c) It can be sulphated and sulphited to produce fat liquoring agents for the 

tanning industry. 

d) The oil has been used in its basic form as a pesticide to fight against 

armyworm, termites, harvester ants etc. 

e) Soap is a bi-product in the production of bio-diesel.  

f) Pharmaceutical uses - In the Phillipines they use it to stop diarrhoea, in 

Nigeria the leaves are used as wound dressing and in Cameron, they use the 

leaves as a cure for fever, jaundice and rheumatism (IDC., 2000). 

g) The press cake is valuable as organic manure since it has nitrogen content of 

3.2 – 3.8 % which is similar to that of chicken manure (IDC., 2000).  

h) Plants can be used as hedge to demarcate boundaries for homesteads.  

 

Despite there being trials planted, few research results have been published in Zimbabwe on 

different bio-fuel feed-stocks, comparing their commercial economic viability and 

sustainability. Sugarcane has been the only bio-ethanol feedstock to be used practically in a 

liquid bio-energy industry setup (Woods, 2000). The author is of the opinion that given the 

sensitivity of food security to changes in crop production systems, the main thrust on any 

research efforts should be biased towards non-food feedstock so as to avoid competition that 

might impact negatively on national food reserves. Currently efforts are directed at the Jatropha 

Curcas plant. However sweet sorghum and sugarcane could also be viable options. This study 

will also form part of the research literature of comparative studies of the different bio-fuel 

feed-stocks (fuel crops) that can possibly be exploited. 

2.3 Arguments against bio-fuels 

 
Despite the advantages associated with the production and utilization of bio-fuels, there are 

arguments that have been advanced mainly by environmentalists worried about the negative 
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impacts of the cultivation of fuel crops particularly in virgin forests. The main argument is that 

the remaining rainforests in such places as Brazil and Borneo will be cleared in order to grow 

fuel crops, which will lead to loss of biodiversity. Worst of all, some argue that bio-fuels will 

barely slow down global warming if the technology behind them does not improve (New 

Scientist, 2006). Since the time of Rudolph Diesel, bio-fuels have not received much attention 

until the oil crisis of the 1970s, when some countries like Brazil returned to bio-fuels. 

According to a study published by the Worldwatch Institute (2006); for Brazil to produce 10 % 

of its entire fuel consumption requires just 3 % of its agricultural land. However in other 

countries the numbers do not add up. The same Worldwatch study estimated that to meet a 10 % 

fuel target, the US would require 30 % of its agricultural land and for Europe up to 72 %. The 

basis of the argument against bio-fuels assumes that all countries are economically and 

technologically advanced to the same level. For instance not only do Brazilians drive far less 

than their European counterparts but their fertile land and favourable climate mean their crop 

yields are higher, and their population density is lower. Therefore, it is necessary for individual 

countries to assess their own capability and limitations when considering investment in the bio-

fuel industry. It is obvious some countries will become net exporters of bio-fuel while others 

will be importers depending on their national priorities. Other countries like China, Cuba, and 

Hungary including Zimbabwe have plans for bio-fuels but the first stage should be assessment 

of the economic viability of different feed-stocks.  

 

 The environmental benefits of bio-ethanol from cultivation to final production of bio-fuel needs 

to be assessed carefully. Cultivating a crop demands large quantities of fertilizer and pesticides, 

which themselves have environmental and energy costs (www.newscientist.com, 2005).  

Several research studies have tried to balance the fossil fuel bio-fuel equation comparing 

emissions at every stage of production from seed to engine. Farell, (2006) estimated that bio-

ethanol would produce 13 % less GHG than an equivalent amount of gasoline. However, Farell 

arrived at this figure by assuming the leftover biomass from making the bio-ethanol is used as a 

dry fuel in a furnace or fed to animals. However not all bio-ethanol refineries do this; in 

Triangle Ltd. in the SE of Zimbabwe, the bagasse from production of crystalline sugar from 

sugar cane is used to generate electricity. Given these research findings, institutions or the bio-

fuel industry should at the very onset factor in the utility of the by-product of making bio-fuel so 

as to optimize on its economic viability rather than create another waste disposal problem. 

Another argument is based on the envisioned slump in grain diverted to bio-ethanol production 

that would precipitate a rise in world grain price. This would be particularly true of those 

systems that use maize as a feedstock like the USA. The issue of availability of land is also 

country specific judging from the country report from Brazil.   

The argument being posed by those opposed to the pro bio-fuel debate is that the booming 

demand for bio-fuels is having dangerous environmental and social impacts in the major 
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countries of cultivation such as Brazil, Indonesia, Malaysia, Borneo and New Guinea. However, 

for Zimbabwe, land availability should not present such problems.  

 

 The arguments presented so far are mainly to do with environmental costs not the science and 

technology per se. It would suffice to say that every case has its own merits and demerits. The 

issues raised are not applicable to every situation; one needs to take into consideration the 

different backgrounds of the countries involved. A case in point is the country report from 

Brazil on the availability of land and the argument that cultivation of sugarcane for bio-ethanol 

will cause a deficit in production of food crops (New Scientist, 2006). While it might be true 

some people might engage in practices that are not beneficial to the ordinary person, if properly 

managed, fuel crop cultivation could actually be of financial benefit to the poorer communities. 

 

 A future possible solution to the fuel crop versus food crop competition could be to produce 

bio-ethanol without using food crops, and focusing instead on converting cellulose-rich organic 

matter into ethanol. Cellulose feed stocks could deliver twice as much ethanol per hectare as 

maize according to Bradley (2006) and the Canadian company Lignol Innovations appears to 

leading in this endevour.  

2.4 The Challenge 

 
During the 1970-2000 period, part of the sugar crop in Zimbabwe was processed into ethanol 

for blending with mineral petrol, but eventually the demand for domestic and export crystalline 

sugar outweighed the supply and the price of mineral fuel had dropped and both militated 

against the further development of the bio-fuel industry. The challenge is to jump-start the bio-

fuel project now as current fuel shortages impact negatively on the economy. These days the 

government is encouraging farmers to grow Jatropha Curcas plants for bio-diesel production. 

However, the case for the other alternate fuel crops being cultivated for bio-fuel has not been 

investigated thoroughly. A study undertaken by Woods J. et al., (1996) on the integration of 

sweet sorghum with sugarcane in existing sugar industries in semi-arid areas of Zimbabwe, 

showed good promise for bio-energy production i.e. the production of ethanol and electricity in 

a Combined Heat and Power system (CHP).  

 

The current study should add to this knowledge bank, providing a foundation in terms of agro-

climatic information for the potential production of fuel crops of choice. The establishment of 

plantations requires agro-climatic zoning, among other factors, as a prerequisite to tap the 

potential of these crops to the full. On the other hand, complimentary to the cultivation of the 

crops is the processing of the feedstock to produce the bio-fuel, which means that processing 

plants will have to be established to produce the bio-diesel.  
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To the author’s knowledge, little research has been undertaken in Zimbabwe to investigate the 

different agro-climatic conditions that favour the maximization of production of the different 

types of fuel crops. The efforts of this research are therefore primarily designed to add to this 

knowledge. The aim is to classify the agro-climatic zones of the country in terms of their 

suitability for the cultivation commercially, of the different fuel crops, (sugar cane, sweet 

sorghum, and jatropha curcas plant).  

2.5 Reasons for Factoring Temperature and Solar Radiation in the Cultivation of 
Fuel Crops 

 

“Weather has significant impact on crop growth and development. It is a key component that 

controls agricultural production,” Hoogenboom (2000). In some cases, it has been stated that as 

much as 80% of the variability of agricultural production is due to the variability of weather 

conditions, especially rain-fed production systems.  

 

The critical agro-meteorological variables associated with agricultural production are 

precipitation, air temperature and solar radiation. Air temperature is the main weather variable 

that regulates the vegetative and reproductive development (Hodges, 1991). Solar radiation 

provides the energy for the processes that drive photosynthesis, affecting carbohydrate 

partitioning and biomass accumulation of the individual plant components (Boote and Loomis, 

1991).  

 

Growing a crop is an exercise in energy transformation. In order to achieve this transformation, 

it is necessary for the crop to carry out the following three processes in sequence: 

 Interception of incident solar radiation by the leaf canopy; 

 Conversion of the intercepted radiant energy to chemical potential energy, (the latter 

conveniently expressed in terms of plant dry matter).  

 Conversion of the dry matter produced between the harvested parts and the rest of the 

plant. 

 

The yield (Y) of a crop over a given period of time can be expressed by the equation (2.1) 

(Walker et al., 1989); 

 

Y = Q x I x E x H                                                       2.1 

 

Where:- 

Q is the total quantity of incident solar radiation by the leaf canopy; 

I is the fraction of Q which is intercepted by the canopy. 
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E is the overall photosynthetic efficiency of the crop (i.e. the efficiency of conversion of radiant 

to chemical potential energy), commonly expressed in terms of the total plant dry matter 

produced per unit of intercepted radiant energy. 

H is the fraction of the dry matter produced that is allocated to the harvested parts. This is really 

the harvest index of the crop stand, although it should be emphasized that it is normally 

expressed in terms of above –ground production, excluding the root system. 

 

Walker, et al., (1989) quoting Watson (1940) said that variation in I accounts for most of the 

differences in yield between sites and seasons in temperate regions, because E and H are 

relatively constant in the absence of severe stress (drought, disease). What has been established 

is that in certain crops, notably grasses, there is limited scope for improvement of yield by 

variation in I and H and that increased production can come only from increases in E. 

 

2.5.1 Effect of temperature on plant growth and development 

Ambient temperature affects natural species distribution (apart from managed agriculture).  

2.5.1.1 Distribution 

C4 grasses like sweet sorghum are best adapted to warmer temperatures prevailing in warm 

lowland areas of the tropics like in Zimbabwe. However, species, ecotypes, and cultivars of C4 

grasses differ in their temperature responses Jones (1992). These genotype differences are 

evident in tolerance to freezing and chilling and high temperatures. 

2.5.1.2 Photosynthesis 

C4 grasses have higher optimum temperature for photosynthesis than C3 grasses such as wheat, 

barley, oats and most temperate forage grasses. For example, according to Jones (1992), Vong 

and Murata (1977) found that the optimum temperature for wheat photosynthesis is 18 °C while 

that of maize, grain sorghum, and millet is 30 °C (Figure 2.1)(Jones, 1983).  
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Figure 2.1: Response of net photosynthesis to air temperature in C3 and C4 plant. 

(Vong and Murata 1977); (Source: Jones, H G., 1992) 

2.5.1.3 Dry Matter Accumulation 

Experiments conducted in growth chambers and temperature-controlled greenhouses in general 

indicated that the optimum mean daily air temperature for C4 grass dry matter accumulation is 

about 30-35°C. Growth is severely reduced above about 40°C and below about 20°C. 

The effect of temperature on dry matter accumulation is similar, though not identical, to its 

effect on photosynthesis. At suboptimal temperatures the relative photosynthesis rate is usually 

higher than the relative rate of dry matter accumulation. For example, the minimum temperature 

for maize and C4 grass net photosynthesis is usually less than 10°C but the minimum 

temperature for dry matter accumulation is about 10°C, Jones (1992). In sugarcane, maximum 

stalk production is obtained at a mean temperature of 30°C; however, maximum sucrose storage 

occurs at lower mean temperatures. Increase in tiller number and tiller weight contributes to the 

growth of most grasses. For most grasses the optimum temperature for tiller numbers is lower 
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than for tiller size, a reflection of the availability of non structural carbohydrates in the parent 

tiller at lower temperatures (Jones, 1992).  

2.5.1.4 Expansion Growth 

Leaf and stem growth are very sensitive to temperature. When water and nutrients are 

adequately supplied, sugarcane stalk elongation is highly correlated with air temperature. 

However, the relationship between the elongation and temperature is affected by other factors. 

Jones (1992) suggested that cane often grows more rapidly at a given temperature in spring than 

in autumn, probably due to differences in mineral nutrition, soil moisture and crop age 

(Clements, 1980; Stender, 1924; Sun and Chow, 1949).     

 

Figure 2.2: Response of grass dry matter accumulation to day/night temperatures, 

15/10, 18/13, 21/16, 27/22, 30/25, 33/28 and 36/31°C. From Sweeney and Hopkins 

(1975). (Source: Jones, H G., 1992) 

2.5.1.5 Phenological Development 

The phenological development of plants is accelerated by warm temperatures and delayed by 

cool temperatures. For example, high temperatures after anthesis shorten the grain filling period 

of grain sorghum and can reduce both seed weight and number (Balasko and Smith, 1971; 

Peters et al., 1971). The effect of temperature on the growth stages has been quantified using 

several indices like the “growing degree-day” (GDD) that is most common. The daily value of 

GDD is the difference between the daily mean temperature and a threshold temperature. A GDD 

index is obtained by summing daily GDD from planting to some stage of development. The 
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equation can be written thus: GDD = ∑(Tm – Tc); where Tm is the mean temperature for the day 

and Tc is the threshold temperature for the crop in degrees celcius. 

2.5.1.6 Diurnal Temperature Variation  
Albert, et al., (1988) reported that for sugarcane grown at equal mean temperatures, diurnal 

temperature variation resulted in higher growth rates than constant temperatures. Other 

researchers like Ivory and Whiteman (1978) found out that at sub-optimal mean temperatures 

equal day/night temperatures give the highest growth rates. However, at optimum or supra-

optimum mean temperatures, the highest growth rates occur when the day temperatures are 

about 10°C higher than night temperatures. They concluded that at sub-optimal temperatures a 

reduction in night temperatures causes more reduction in net photosynthesis than in dark 

respiration. At optimum and supra-optimum temperatures the reverse is true.  

2.5.1.7 Freezing Temperatures 
C4 grasses are more susceptible to frost. Freezing temperatures severely damage tissues and 

frequently kill the entire plant (Jones, 1992). 

2.5.1.8 Germination and Seedling Growth  

One of the most severe effects of high temperature on C4 grass growth is its inhibition of 

germination and early growth. The high midday light intensities found in the tropics and 

subtropics often cause temperatures of bare surface soils to exceed 50°C  

 

2.5.2 Solar Radiation  

It has been shown through experimentation that for many crops plant biomass is proportional to 

accumulated intercepted solar radiation. Figure 2.3, shows the relationship between radiation 

(∑PAR) accumulated from emergence to harvest and total sweet sorghum dry biomass produced 

(Monteith, 1977). 
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Figure 2.3: Dry matter (gm-2) versus Accumulated PAR for sweet sorghum (Monteith, 

1997)  

 

In conclusion, it can be seen from these figures that the weather parameters of temperature and 

solar radiation play a pivotal role in the final yield of a crop. Therefore an accurate climatic 

record of temperature and radiation is imperative for maximization of crop productivity through 

application of these climatic data. An understanding of how they affect plant growth, 

development and partitioning is necessary to develop crop models that produce results closer to 

the ground truth. Climate information of at least 30 years (continuous daily observation) with a 

good spatial distribution will be required in crop model simulation exercises as well as agro-

climatic mapping. The climate of a particular place will therefore be invaluable for assessing its 

suitability to produce fuel crops. 

 

2.6 The Climate of Zimbabwe 

 2.6.1 Background 

Brief overviews of some of the parameters of the climate of Zimbabwe that are directly 

pertinent to the current study are given. Crop growth requires sufficiently high levels of 

temperature and solar radiation for photosynthesis and therefore net carbon assimilation. In the 

previous chapter, the influence of temperature and radiation on growth and photosynthesis and 

the need for these climate information and data in strategic crop production was highlighted. 

The most important or rather primary weather inputs into a crop model are maximum and 

minimum temperature, solar radiation and rainfall. 

 

Good crop management if economically viable can control factors like water, nutrients, 

humidity and management of pests and diseases. Monthly average maps of temperature and 
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radiation are the main focus in this section. They will be discussed in order to characterize the 

spatial and temporal distribution of the parameters in Zimbabwe, because it is known that inter-

annual variation in climatic growth factors can have a strong influence on crop growth 

particularly in annual crops with short growth periods like sorghum (Woods, 2000). This will 

assist in the understanding of preferred planting and harvesting dates for optimum crop yield for 

the fuel crops (sweet sorghum) being studied through the Cropping Simulation Model (CSM) 

tool in DSSAT4.  

Productivity is defined in terms of useful products or outputs that can be derived per given unit 

mass or unit area, in this case – bio-fuel in the form of bio-diesel or bio-ethanol produced per 

hectare. However, it is first necessary to establish the fundamental climate factors, which define 

the potential productivity of the fuel crops, sweet sorghum, sugarcane, and jatropha, which is 

important for defining the ultimate efficiency of the agricultural system. The long-term averages 

for temperature and solar radiation were calculated using Excel and the contour maps were 

drawn with the computer program Surfer 32.  

 

2.6.2 Temperature 

 Temperature is a critical consideration determining agricultural production in any locality. It 

determines date of planting through control of the germination process via the soil temperature. 

Some seeds will not germinate if the soil temperature is above a certain threshold (Jones, 1992). 

Temperature determines the duration of the growing period, from which concept of growing 

degree-days is derived by agriculturalists. It could safely be said that, besides water availability, 

temperature governs the length of the growing season. There are a number of formats in which 

temperature is depicted for use in agricultural practices: 

1) The observed values of minimum temperature as a baseline for agronomic practices. 

2) The observed maximum temperature for assessing the upper threshold in crop growth 

and development. 

3) The calculated average temperature as a mathematical mean: Tmean = (Tmax +Tmin)/2 

4)  The thermal time as given by the ‘degree-days’ formula: GDD = ∑ (Tmean – Tbase) for 

Tbase < or = Tmean< or = To; where GDD (ºCday) is accumulated growing degree days, Tbase is 

the threshold temperature for development to occur and To is the optimum temperature. ∑ is 

the summation of days between germination and maturity of the crop.  

 

In this particular study, the temperature component is included in the subroutines of the DSSAT 

Cropping Simulation Model in the growth and development stages of the crop.  

 

2.6.3 Solar Radiation 

The fundamental determinant of biomass productivity is the amount of sunlight falling on the 

leaves of the plant (Woods, 2000). The annual average radiation spatial pattern for Zimbabwe 
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(Figure 2.4) shows that the SE of the country and the Zambezi valley receive relatively high 

solar energy compared to the rest of the country. Despite the latitudinal control of radiation 

received at the top of the atmosphere, the insolation at the surface is governed by the prevailing 

weather conditions. The influence of cloud cover is quite significant during the rainy season 

whereby the cloudiness results in a marked drop in the amount of radiation received.  

 

 

FIGURE 2.4:  The mean annual radiation map of Zimbabwe (Source: Shoko, 1999) 

 

 2.6.4 Rainfall   

The climate of Zimbabwe is characterized by a rainy season of about five months 

(approximately November to March). Apart from rather variable transition months, the rest of 

the year has little or no rain (Climate Handbook of Zimbabwe, 1980). The mountainous Eastern 

Highlands can and do receive some rain in the form of drizzle though even in the winter months 

due to the influence of orography.  In winter the dominant weather feature is the incursion of a 

cool and moist maritime air-mass emanating from the Mozambique Channel from mobile highs 

of the subtropical high pressure belt that frequently traverse the southern African subcontinent.  

 

The average annual rainfall for the whole country is about 675 mm, ranging between about 300 

mm in low lying Limpopo Valley to as much as 3000 mm in the Eastern Highlands. There is a 

general increase of rainfall from south to north and this gradient is distorted by the even stronger 
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association between the elevation and rainfall, with rainfall much more at high elevations than 

in low lying areas.  

 

While it is important to know the rainfall characteristics of any locality for crop cultivation, 

water is one of those parameters that can be managed by man through the use of irrigation 

systems if there is a deficit and through drainage if there is too much. However, even this 

management system shall require information regarding the rainfall pattern of an area for 

planning purposes. In this thesis, rainfall is one of the primary weather elements included in the 

Crop Modelling System (CMS) of DSSAT4. However, water availability is considered to be 

non-limiting when it comes to the calculation of potential total above ground biomass. It is 

assumed that there will be sufficient irrigation to give the potential yield. Therefore it is only 

being considered mainly in its role as water for crop use. Its seasonal and annual variation shall 

not be dwelt on in the present discussion.  

 

Crop models can use the relationship between water use and photosynthesis to limit crop growth 

when soil water falls below threshold levels i.e. the crop becomes water stressed. However, in 

CERES crop model, as used in DSSAT4, the relationship between the crop growth and water 

stress is a simple  “on/off” switch, with no photosynthesis allowed to occur at all below 

threshold levels and full photosynthesis allowed to occur above the threshold (Woods, 2000).  

 

2.6.5 Agro-climatic mapping 

In this study, the simulation of potential yield (above ground biomass) per site is being linked 

simply to the Natural Regions as they apply to Zimbabwe. This is not to assume the whole 

region shall expect similar productivities as it has been found out that yields do differ from site 

to site due to differences in local climate, management practices, crop genotype and crop 

variety.  
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2.7  Literature review on Fuel Crops and Bio-fuels 
 
2.7.1 Sweet Sorghum (Sorghum bicolor (L.) Moench] 

2.7.1.1 Plant profile 

Sweet sorghum is a tropical, annual grass (domesticated in Ethiopia) that can be grown in the 

countries with moderate climate without frost during the vegetative period Stricevic et al. 

(1997).  Sweet sorghum presents high genotype variability in terms of end-products from lingo-

cellulosic fibers to soluble sugars. (Wei et al., 1997).  

It has a number of biological advantages over other fuel crops in that it has water-logging 

resistance, is drought tolerant and also exhibits saline-alkali tolerance (Wei et al. 1997).  It can 

also do well in infertile soils. Chinese experience has shown that it does well in regions with 

GDD between 1500 to 2500, GDD (defined as accumulated growing degree days). 

Unfortunately the base temperature (Tbase) was not given. The pH was also found to be between 

5 and 8 in most of the areas where it was grown. The sugar productivity realized ranged 

between 2.25-3.75 kg of sugar juice of brix degrees* Bx 38-40°  per hectare during the 1977 

trial period (Wei, et al., 1997). Biomass productivity of sweet sorghum was found to be between 

6000 to 9000 kg/ha. In terms of grain productivity, it ranged between 2250-4500 kg/ha.     

Sweet sorghum [Sorghum bicolor (L.) Moench] is the only crop that provides grain and stem 

that can be used for sugar, alcohol, syrup, jaggery, fodder, fuel, bedding, roofing, fencing, paper 

and chewing (Nallathambi, 1998; Nimbkar, 1998). Sweet sorghums have also been widely used 

for the production of forage and silage for animal feed.  

[Footnote: *brix degree is the unit used to measure total available fermentable sugars.]  

2.7.1.2 Why Sweet Sorghum? 

Sorghum particularly sweet sorghum with its multiple diversified components (starch, sugar, 

lingo-cellulosic) appears a very promising crop for the food, feed, energy chemical markets 

which can be used in the following markets, heat market, power/ heat market (cogeneration), 

transport market (bio-ethanol) and food feed markets (Grassi,  1997). Among the cultivated 
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crops of the grass family, sweet sorghum has the highest dry matter accumulation rate (Zelitch, 

1973) estimated at an average of 50 gm-2 day-1 for a number of world sites. Its efficiency for 

converting light energy is also better than that of sugarcane (Heichel, 1976). In a study carried 

out to assess the productivity of sweet sorghum under Mediterranean Climate (Marcello et al., 

1997), results showed that under potential conditions, in comparison with other crops sweet 

sorghum produces the highest biomass and consumes the same amount of water as other 

summer crops with identical cycle length (length of growing period). Sweet sorghum also 

efficiently transforms absorbed radiation into dry matter (RUE = 3.7 kg of dry matter per MJ) 

and consumes less water during the transpiration process for equal weight of biomass produced 

(WUE = 5.2 g l-1) (Marcello et al., 1997).  

 

The RUE values (g/MJ) found for the following specific crops were;  

 Soybean = 1.72 +/- 0.10   

 Sunflower = 2.05 +/- 0.11 

 Grain sorghum = 3.39 +/- 0.07  

 Sugarcane = 3.6  

(source: Varlet –Grancher as quoted by Marcello et al., 1997) 

 

Therefore it would suffice to say, under potential conditions, compared to other crops, sweet 

sorghum produces the highest absolute quantity of biomass per unit land surface (up to 32 t/ha 

of dry matter, Marcello et al., 1997). It also consumes the same amount of consumptive water 

(550mm, Marcello et al., 1997) as other crops with identical growth seasonal cycle length. It 

transforms the absorbed radiation into dry matter at a higher efficiency of RUE = 3.7 kg of dry 

matter per MJ, (Marcello M. et al., 1997) than other C4 crops [3.4 kg/MJ for grain sorghum]. 

Sweet sorghum also, has the highest biomass water use efficiency ( WUE = 5.2 gl-1) among the 

various crops studied (Marcello et al., 1997. (Table 3.2).  

 

Table 2.3: Water Use Efficiency (WUE)  and consumptive water use for different 

crops. (Source: Marcello et al., 1997)  

 Soybean Grain sorghum Sunflower  Sweet sorghum

WUE ( gl-1) 2.8 3.7 3.6 5.2 

Consumptive water (l) 344 545 400 550 

 

There are two types of sorghum, that is, grain sorghum and sweet sorghum that can be used for 

bio-ethanol production, the only difference being in the amount of sugars in the stalk.  Sweet 

sorghum in general has a higher biomass productivity compared to grain sorghum. Differences 

could be due to past evolutionary selection pressure. Grain sorghum favored shorter plant 
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stature and increased grain yield through increased partitioning of total biomass to panicle 

without significant improvement in dry matter production. Grain sorghum has higher efficiency 

in demobilizing assimilates from leaves and stalk to grain in contrast, sweet sorghum promotes 

higher dry matter production and increase in the extractable stalk sugars without significant 

gains in grain yield. 

 

Both sugar and grain can be produced which means potential productivity of arable land can be 

given full play. Sweet sorghum is a well known C4 plant with a high biomass production. Sugar 

juice in stalk is up to about 40 % of biomass can be used to produce alcohol. This translates to 

more than 6106 l/ha under optimum conditions. 

 

Table 2.4: Comparison of sugar production among three crops. (Source: Marcello et 

al., 1997)   

Variety  Growing time (days) Sugar production (%) 

Sugarcane  240 7.0 

Sugar beet 170 10.0 

Sweet sorghum 150 4.70 

 

2.7.1.3 Climate influence on sorghum production  
The experimental results of Junfeng (1997) reveal that climate is an important consideration in 

the production of sweet sorghum. Therefore the temperature, radiation, and rainfall 

characteristics of a region need to be assessed for their potential in sweet sorghum production. 

For Zimbabwe, it is imperative to know the effect of the parameters to the biomass productivity 

of sweet sorghum if it is to be utilized in a bio-ethanol industry.  

 

In separate but related experiments carried out in Germany over a period of ten years (1985-

1995); looking at the sustainability of the sweet sorghum crop for energy production in Europe, 

Bassam and Jakob (1997) reported that the biomass growth rate was determined in the periods 

in which the temperature was higher than 10 °C and the most productive growth rate stage has 

been ascertained when temperatures reached 17 °C and above. As in the Mediterranean and 

Hungary, (Marcello et al., 1997; Hunkar, 1997) temperature was by far the most deciding and 

critical growth factor of all climatic parameters. Their findings concluded that the major 

problem for a wide introduction of sweet sorghum in the Middle and Northern Europe is the 

insufficient cold tolerance in the early growth stages. Such a problem is not a major constraint 

over most parts of Zimbabwe, where temperatures rarely go down to sub-zero levels for a 

greater part of the year. 
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In India, research on bio-ethanol and other related by products, from sweet sorghum has been 

going on since the early 1970s. Complete development of indigenous technology for 

fermentation of sweet sorghum juice, solar distillation of ethanol and finally its use as a cooking 

and lighting fuel in new and improved stoves and lanterns was carried out.  Sweet sorghum 

bagasse was also tested in an existing paper mill to assess its suitability for paper manufacture. 

These various possible uses of sweet sorghum apart from ethanol production render it a suitable 

and economically viable crop in developing countries like Zimbabwe where other needs could 

be satisfied as well 

2.7.1.4 Ethanol production from sweet sorghum:  

In the final analysis, the viability of sweet sorghum as a feedstock for ethanol production will 

depend on the utility of the by products of the production process. In this regard knowledge of 

the various components of the sweet sorghum plant would be necessary to facilitate full 

exploitation of this promising plant.  

 
2.7.2 Components of sweet sorghum stem juice 

The stem juice of sweet sorghum is rich in fermentative sugar and is a desirable alcoholic 

fermentation material. The sugar content is commonly expressed with juice brix degree, but the 

relation between sugar content and brix degree has not been determined very clearly (Junfeng, 

1997). In addition to fermentative sugar, other kinds of sugars are also found in the stem juice of 

sweet sorghum. The acquirement of the contents of different sugars is beneficial to the 

enhancement of alcohol production rate. There are also some ammonia acids and minerals in the 

juice, measuring their contents enable better use sweet sorghum with multi-purpose.  

The research carried out by Junfeng, (1997), determined the sugar content and brix degree of 

different varieties in different growth stages. These varieties are yet to be tried in Zimbabwe. 

The results gave a scientific basis for the arrangement in the varieties and their sowing dates, so 

as to prolong the fermentation period and increase the efficiency of the alcoholic fermentation 

processing system. Therefore, the study by Junfeng (1997) had a practical instructive meaning 

for sweet sorghum breeding as well as for cultivation and for fermentation.  

2.7.2.1 Brix degree in sweet Sorghum stem  

The research shows that the brix degree of juice in sweet sorghum stem is lower before heading 

stage. After that, with the grain forming, the brix degree increases towards its maximum at 

harvest stage. Therefore, the recommendation from these results is that sweet sorghum should 

be harvested at the grain maturing stage in which both high sugar content and grain yield can be 

obtained.  
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2.7.2.2 Total Sugar Content in Juice of Sweet Sorghum  

There are plenty of sugars in the juice of sweet sorghum stem. However, how many kinds of 

sugars exist in the juice is still a question to be answered. The test by enthrone 

spectrophotometry shows the following kinds of sugars are also found in the juice of sweet 

sorghum, stem: xylose, ribose, arabinose, fructose, sorbose, galactose, mannose, sucrose 

glucose, polyglucose and glucoses (Jungfeng, 1997).  

2.7.2.3 Glucose content 

Glucose is the primary material of plant photosynthesis. For C4 species, besides the Calvin 

cycle of glucose formation, there is also a four-carbon pathway for CO2 fixation in mesophyll 

cells, therefore they have great potential for CO2 assimilation. 

Sweet sorghum is a C4 crop, with lower CO2 compensation point, higher light saturation point 

and weak photorespiration, and consequently has a higher biological yield. Table 3.4 shows the 

sucrose content of the tested varieties relative to glucose and fructose (Junfeng, 1997).  

Table 2.5 Comparison of the sugar content of different varieties of sweet sorghum. 
(Source Junfeng, 1997) 

Variety Percentage sugar content (%)
Glucose Fructose Sucrose 

Rio 1.62 1.30 7.19 
Shennong No. 2 2.26 1.86 5.0 

6 AX1022 2.28 1.86 5.5 
Jitian 3.5 2.67 4.45 

Longshil 1.86 1.63 7.91 
 

Similar experiments carried out in the United States by Glen et al., (1991) established that sweet 

sorghum can produce large quantities of both readily fermentable carbohydrate, and fibre for 

conversion via enzymatic hydrolysis, per unit land area. In fact, on the average, sweet sorghum 

produces more carbohydrate per unit land area than maize in the drought-prone southeastern 

Piedmont of the United States (Glen et al., 1991). Unlike maize, sweet sorghum does not 

concentrate carbohydrates in grain, but stores them in the stalk.  
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2.7.3  Sugar Cane (Saccharum officinarum) 

2.7.3.1 Plant profile 
Sugar cane is a tall tropical southeast Asian grass (Saccharum officinarum) having thick, solid, 

tough stems that are a chief commercial source of sugar (Columbia University Press 

Encyclopedia). It is a perennial species of the family Gramineae (grass family), probably 

cultivated in Asia from prehistoric times (Albert et al., 1998). Sugarcane somewhat resembles 

maize and sorghum, with a large terminal panicle and a noded stalk. It is a C4 plant.  Part of a 

sugarcane plantation from Hawaii (Figure 2.5).  

 

 
Figure 2.5  Saccharum officinarum grown in Hawaii 

 

2.7.3.2 Cultivation  

Most of the rain-fed and irrigated commercial crop is grown between 35°N and S of the equator. 

The crop flourishes under a long, warm growing season with a high incidence of radiation and 

adequate moisture, followed by a dry, sunny and fairly cool but frost-free ripening and 

harvesting period. 

Sugarcane cultivation requires a tropical or subtropical climate, with a minimum of 600 mm of 

annual rainfall. Optimum temperature for sprouting of stem cuttings is 32° to 38°C. Optimum 
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growth is achieved with mean daily temperatures between 22° and 30°C. Minimum temperature 

for active growth is approximately 20°C. For ripening, however, relatively lower temperatures 

in the range 10°C to 20°C are desirable, since this has a noticeable influence on the reduction of 

vegetative growth rate and the enrichment of sucrose in the cane.  It is one of the most efficient 

photosynthsizers in the plant kingdom, able to convert up to 2 % of incident solar energy into 

biomass. In prime growing regions, such as Hawaii, sugarcane can produce 20 kg for each 

square metre exposed to the sun. A summary of the major sugarcane producers in the world is 

given in the FAO rankings of 2005 (Table 2.6)  

Table 2.6: FAO sugarcane production rankings for 2005.  (Source: FAO Commodity 

Ranking; www.fao.int) 

RANK COUNTRY PRODUCTION

*(int $1000) 

PRODUCTION 

**(Mt) 

1 Brazil 8 725 914 420 121 000 

2 India  4 825 286 232 320 000 

3 China  1 819 452   88 730 000 

4 Thailand 1 029 610      49 572 000 

5 Pakistan    981 260   47 244 000 

6 Mexico    937 277   45 126 500 

7 Colombia    827 669   39 849 240 

8 Australia     794 369     38 246 000 

9 Phillipines     643 870   31 000 000 

10 United States of America     535 948   25 803 960  

11 Indonesia     529 635    25 500 000 

12 South Africa     451 230    21 725 100 

*(int $1000)  = calculated based on 1999-2001 international prices 

** (MT)        = Metric tones based on official figures 

2.7.3.3 Sugarcane Yield 

A long growing season is essential for high yields. The normal length of the total growing 

period varies between 9 months with harvest before winter frost to 24 months in Hawaii, but is 

generally 12 months. 

 

Sugar yield depends on cane tonnage, sugar content of the cane and on the cane quality. It is 

important that the cane is harvested at the most suitable moment when the economic optimum 

of the recoverable sugar per area is reached. Cane tonnage at harvest can vary between 50 and 

150 ton/ha or more, which depends particularly on the length of the total growing period and 
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whether it is a plant or a ratoon crop. Cane yields produced under rain-fed conditions can vary 

greatly. Good yields in the humid tropics and subtropics with irrigation can yield up to 150 

ton/ha cane. The water utilization efficiency for harvested yield (WUE) for cane containing 

about 80 % moisture is 5 to 8 kg/m3 and for sucrose containing 0.6 to 1.0 kg kg/m3, both with 

the highest values for good ratoon crops in the subtropics. 

 

The flowering of sugarcane is controlled by day-length, but it is also influenced by water and 

nitrogen supply. Flowering has a deleterious effect on sucrose content, hence flowering should 

be prevented or non-flowering varieties should be used. Towards maturity, vegetative growth is 

reduced and sugar content of the cane increases greatly. Sugar content at harvest is usually 

between 10 and 12 % of the fresh cane weight, but under experimental conditions 18% or more 

has been observed. Sugar content seems to decrease slightly with increased cane yields. 

Luxurious growth should be avoided during cane ripening. With respect to juice purity, low 

minimum temperatures positively affect this several weeks before harvest.   

2.7.3.4 Water Requirements 

Adequate available soil moisture throughout the growing period is important for obtaining 

maximum yields because growth is directly proportional to the water transpired. Depending on 

climate, water requirement of sugarcane are 1500 to 2500 mm evenly distributed over the 

growing season. 

 

The crop coefficient (Kc) values, relating to reference evapotranspiration (Eto) for the different 

growth stages are presented in the following table 3.6  

 

Table 2.7  Crop coeffiecient (Kc) versus development stage (Source: Kwanayi, 2002) 

Development stages days Kc coefficients*

Planting to 0.25 full canopy 30 - 60 0.45 – 0.6 

0.25 to 0.5 full canopy 30 - 40 0.75 – 0.85 

0.50 to 0.75 full canopy 15 - 25 0.90 – 1.00 

0.75 to full canopy 45 - 55 1.00 – 1.20 

Peak use 180 - 330 1.05 – 1.30 

Early senescence 30 - 150 0.80 – 1.05 

Ripening  30 – 60 0.60 – 0.75 

 

* Kc values depend on minimum relative humidity and wind velocity. 
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Sugarcane does not require a special type of soil. Best soils are those that are more than 1 metre 

deep but rooting depth of up to 5 m is possible. The soil should preferably be well-aerated (after 

heavy rain the pore space filled with air >10 to 12 %) and have a total available water content of 

15% or more. The optimum soil pH is about 6.5 but sugarcane will grow in soils with pH in the 

range of 5 to 8.5. 

Sugarcane has a high nitrogen and potassium needs and relatively low phosphate requirements, 

or 100 to 200 kg/ha N, 20 to 90 kg/ha P and 125 to 160kg/ha K for a yield of 100 ton/ha cane. 

Row spacing varies usually between 1.1 and 1.4 m; number of sets per ha depends on the 

number of buds per sett and may vary between 21000 and 35 000. 

Sugarcane is moderately sensitive to salinity and decreases in yield due to increasing salinity.  

2.7.3.5 Sugarcane in Zimbabwe  

  In Zimbabwe sugarcane is mainly grown in the Lowveld, in the southeast of the country, 

where temperatures are suitable for its cultivation. However, due to the low rainfall received in 

the area, irrigation is the main source of water. It is postulated in this study that in terms of 

biophysical limitations, sugarcane can also be successfully grown in the Zambezi valley that 

almost has similar climatic conditions as the Lowveld but with significantly more annual 

rainfall. According to sugarcane production guidelines (Kwanayi  et al.,2002) sugarcane has a 

long growing season of about 12 months, with a high water requirement of about 1500 

mm/year. In terms of temperature, it thrives under high temperatures (Tmin 16 – 21°C and 

Tmax 27 – 38°C). Different genotypes can vary in their requirements but not to a great deal and 

some of the seed cane varieties certified by Zimbabwe Sugar Association (ZSA) include N14, 

N10 and NCO 376.  

 
Planting is also timed to take advantage of the weather conditions, although theoretically it can 

be done throughout the year but ideally in the late summer months (August to November). The 

period from March/April is also suitable due to low weed pressure characteristic of the period. 

The crop results in high sucrose yield because the well-grown cane is dried off when conditions 

are best suited for ripening. Sugarcane planted from May to June is generally slow growing due 

to the very low temperature characteristic of the period (Kwanayi, et al.,2002). There are 203 

harvesting days for the year and for Zimbabwe yield levels are in the range 90 – 120 ton/ha (dry 

matter) with a sugar content of about 12%. 

2.7.3.6 Propagation 

Sugarcane is propagated from cuttings rather than from seeds, although certain types still 

produce seeds, modern methods of stem cuttings have become the most common method of 

reproduction. It takes about 8 – 10 months to produce seed cane and one would require about 5 

– 8 tonnes seed cane to plant one hectare. Propagation of the crop is done with cuttings (setts) 

with shoots 25 – 30 cm long. 
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 Each cutting must contain at least one bud, and the cuttings are usually planted by hand. Once 

planted, a stand of cane can be harvested several times; after each harvest, the cane sends up 

new stalks, called ratoons. Usually, each successive harvest gives a smaller yield, and 

eventually the declining yields justify replanting. Depending on agricultural practice, 2 to 10 

harvests may be possible between each planting.  

2.7.3.7 Harvesting Cane 

Sugar cane is harvested by hand or mechanically. Hand harvesting accounts for more than half 

of the world's production, and is especially dominant in the developing world. When harvested 

by hand, the field is first set on fire. The fire spreads very rapidly, burning away the leaves, but 

leaving the water-rich stalks and roots unharmed. Harvesters then cut the standing cane just 

above the ground with knives (Woods, 2000).  

The juice is concentrated by evaporation into dark, sticky sugar. Refined sugar, less nourishing 

as food, is obtained by precipitating out the non-sugar components. Almost pure sucrose is the 

main commercial product. By products obtained from sugarcane include molasses, rum, alcohol, 

fuel, livestock feed, and from the stalk residue, paper and wallboard.  

2.7.3.8 Transportation  
Time between burning of cane and milling should be < 72 hours because sucrose decreases with 

time due to fermentation. 

2.7.3.9 Sugarcane for Production of Ethanol  

Interest in the use of sugarcane for the production of ethanol is on the rise, in light of high oil 

and gasoline prices. Brazil has successfully adopted its fuel economy to replace much of its 

gasoline consumption with ethanol consumption. Maize is predominantly used in the United 

States for the production of ethanol. Sugarcane, however, is many times more efficient for the 

production of ethanol. However, as far as Zimbabwe is concerned, while there is already some 

plans for using sugarcane to produce ethanol, the competition for sugar crystal supply might 

render it less attractive for ethanol production than other stock-feeds like jatropha, sweet 

sorghum or sunflower. 
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2.7.4 Jatropha Curcas Plant 
 

2.7.4.1 Plant Profile 
Jatropha curcas is a drought-resistant perennial plant, growing well in marginal or rather poor 

soils. It is easy to establish, grows relatively quickly and can produce seeds for 50 years. It 

belongs to the family Euphorbiaceae Synonyms: Curcas purgans. The common English name is 

physic nut (www.jatrophaworld.com); Shona (Zimbabwe) – Jirimono.  Figure 2.6 shows 

jatropha fruits before they ripen. 

 

 

 

 

 

Figure 2.6: Jatropha Curcas plant fruits (source: www.D1) 

2.7.4.2 Distribution and habitat 

It is still uncertain where exactly the centre of origin is, but it is believed to be Mexico and 

Central America. It was introduced to Africa and Asia and but is now cultivated world-wide 

(www.jatrophacurcas.org). This highly drought-resistant species is adapted to arid and semi-arid 

conditions. The current distribution shows that introduction has been most successful in the 

drier regions of the tropics with annual rainfall of 300-1000 mm. It occurs mainly at lower 

altitudes (0-500 m) in areas with average annual temperatures well above 20°C but can grow at 

higher altitudes and tolerates slight frost. It grows on well-drained soils with good aeration and 

is well adapted to marginal soils with low nutrient content.  
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2.7.4.3 Climate  

Regarding climate, Jatropha curcas is found in the tropics and subtropics and likes heat, which 

means it does well in warmer areas (www.jatrophacurcas.org). It can withstand severe heat. 

Mean annual temperature: 20-28 ºC, Mean annual rainfall: 300-1000 mm or more. However, it 

also does relatively well even in lower temperatures and can withstand a light frost but not for 

prolonged periods. When it is cold it will drop its leaves. The older the tree the better its 

tolerance level. Black frost will almost certainly kill young plants and severely damage older 

plants. The water requirement of the jatropha plant is extremely low and it can stand long 

periods of drought by shedding most of its leaves to reduce transpiration loss (Finealt 

Engineering, 2006).  

2.7.4.4 Biophysical limits 

Jatropha is a highly adaptable species, but its strength as a crop comes from its ability to grow 

on very poor and dry sites. It is not sensitive to day length and is well adapted to alkaline soils. 

It does well in low lying areas, warm temperatures and average rainfall; 

It can thrive on the poorest stony soil. It can grow even in the crevices of rocks. The leaves are 

shed during the winter months and form mulch around the base of the plant. The organic matter 

from shed leaves enhance earth-worm activity in the soil around the root-zone of the plants, 

which improves the fertility of the soil. It is found to be growing in some parts of Zimbabwe, 

rugged in nature and can survive with minimum inputs and it is easy to propagate. 

2.7.4.5 Flowering and fruiting habit  

The trees are deciduous, shedding the leaves in the dry season. Flowering occurs during the wet 

season and two flowering peaks are often seen. In permanently humid regions, flowering occurs 

throughout the year. The seeds mature about three months after flowering. Early growth is fast 

and with good rainfall conditions nursery plants may bear fruits after the first rainy season, 

direct sown plants after the second rainy season. The flowers are pollinated by insects especially 

honey bees. Fruits are produced in winter when the shrub is leafless, or it may produce several 

crops during the year if soil moisture is good and temperatures are sufficiently high. Each 

inflorescence yields a bunch of approximately 10 or more ovoid fruits. A three, bi-valved cocci 

is formed after the seeds mature and the fleshy exocarp dries. The seeds become mature when 

the capsule changes from green to yellow, after two to four months (Rosillo-Calle, et al., 2006) 

2.7.4.6 Crop Yield 

Jatropha plant produces seeds with an oil content of about 37 %. The oil can be combusted as 

fuel without being refined. It burns with clear smoke-free flame. It has been tested successfully 

as fuel for simple diesel engine. (www.jatrophaworld.org). 
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A good crop can be obtained with little effort. Depending on soil quality and rainfall, oil can be 

extracted from the jatropha nuts after two to five years. The annual nut yield ranges from 0.5 to 

12 tons. The kernels consist of oil to about 60 percent; this can be transformed into biodiesel 

fuel through esterification. 

It is difficult to estimate unequivocally the yield of a plant that is able to grow in very different 

conditions. Yield is a function of water, nutrients, heat and the age of the plant and other factors. 

Many different methods of establishment, farming and harvesting are possible. Yield can be 

enhanced with right balance of cost, yield, labour and finally cost per metric ton (Mt). Seed 

production ranges from about 2 tons per hectare per year to over 12.5t/ha/year, after five years 

of growth. Although not clearly specified, this range in production may be attributable to low 

and high rainfall areas. An example of the difference in potential seed production that can be 

expected of two farming systems (without irrigation and with irrigation) is illustrated in Table 

2.8 and 2.9.   

Table 2.8 Jatropha potential seed production (ton/ha) figures that can be expected for 

a  farming system without irrigation (Source: www.jatrophaworld.org). 

Mt/Ha (metric ton per hectare) 

DRY 

 LOW NORMAL HIGH 

Year 1 0.10 0.25 0.40 

Year 2 0.50 1.00 1.50 

Year 3 0.75 1.25 1.75 

Year 4 0.90 1.75 2.25 

Year 5 1.10 2.00 2.75 
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Table 2.9 Jatropha potential seed production expected for a farming system with  

irrigation 

MT/HA (metric ton per hectare) 

IRRIGATED 

 LOW NORMAL HIGH 

Year 1 0.75 1.25 2.50 

Year 2 1.00 1.50 3.00 

Year 3 4.25 5.00 5.00 

Year 4 5.25 6.25 8.00 

Year 5 5.25 8.00 12.50 

 

2.7.4.7 Zimbabwe jatropha experience  summarized 

In Zimbabwe, the bio-diesel project using feedstock from the jatropha plant is managed by 

Finealt Engineering. It has been determined that the local seed has oil content of about 35 – 40 

% and one ton can yield up to 250 litres of oil. So far the limited research described in section 

2.3.4 has been the only recorded effort in Zimbabwe directed at the Jatropha curcas plant. The 

results of the experiments, certainly require further research, for example why there was poor 

germination at Masvingo, why there was a lack of response to fertilizer application at Art Farm. 

The relationship between growth rate and temperature as depicted by the different rates between 

Art Farm and Mid-Sabi needs to be investigated with possible application of crop models. At 

present, the author is not aware of any modeling effort that has been directed at the productivity 

of Jatropha. Hopefully the current study will demonstrate the possibility of applying modeling 

to cultivation of Jatropha in Zimbabwe, so that its potential yield in terms of bio-diesel can be 

compared to other bio-fuel yields from fuel crops like sweet sorghum and sugarcane. 
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CHAPTER 3: MATERIALS AND METHODS 

3.1 Introduction 
 

The chapter is divided into two parts; the materials and methods used in the solar radiation 

analysis and the materials and methods of the modeling process. It was found prudent to give a 

separate treatment to the weather element of radiation because of its importance to a number of 

applications. Mean monthly maps of solar radiation using satellite data have been prepared, and 

then compared with those from the Climate Handbook of Zimbabwe (1980) that used ground 

based solarimeter measurements. The most appropriate data for the modeling process is daily 

data, and it was selected from ground measurements of selected meteorological stations.  

 

The second part of the chapter is mainly concerned with the simulation of potential yield in 

terms of above ground biomass using DSSAT4 model. The main tool used in assessing the crop 

yield is the computer based Cropping Simulation Model tool (CSM) in the Decision Support 

System in Agro-technology Transfer (DSSAT v4.0). The model uses daily climatic data in its 

simulation of crop growth, development and finally yields. The model structure will be 

discussed later on in this chapter, but the model does not cover all the crops under review in this 

study. The Jatropha curcas plant is not included among the crops that the model has been 

designed to simulate, this is primarily due to the fact that it is a new crop in the bio-fuel 

production scenario and research work is ongoing in a number of countries. Since more crop 

models are envisaged to be included in DSSAT in the future, perhaps jatropha will eventually be 

included in the suite of the crop models currently in use in DSSAT. Future efforts could be 

directed that way in Zimbabwe where cultivation of jatropha is being encouraged by the 

government. The simulation of sugarcane is included in the DSSAT v4, but as legacy models, 

because it is still run in the previous DSSAT version 3.5, that is a DOS version. The only 

relevant crop, which is fully functional in the DSSAT v4 CSM system, is sorghum. Although 

the initial work in DSSAT4 has concentrated on grain sorghum varieties, the sweet sorghum 

varieties are easily incorporated through manipulation (changing) of the crop coefficients that 

determine the different development stages of a crop in the model. 
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3.2 The climate data and their sources 
 

Choice of climatic data used in this study was governed primarily by the model requirements of 

the Decision Support System in Agro-technology Transfer (DSSAT version 4.0.2.0) that in turn 

were determined by the weather elements influencing crop growth, development and yield. 

While it is recognized that more weather or climate parameters should be included in the model 

simulations, most data is not readily available, therefore the International Benchmark Standards 

Network for Agro-technological Transfer (IBSNAT) group chose to describe a generalized 

minimum data set (MDS) to be used for running the crop simulation models (Hoogenboom et 

al.,  2003). This standard includes a minimum data set for weather consisting of maximum and 

minimum air temperature air temperature, solar radiation and precipitation. Table 3.1. gives a 

summary of the climate data and their sources used in this analysis. 

 

Table 3.1: Summary of climate data sources 

Parameter No. of stations 
used 

Period  Total 
no. of 
years 

Source of data 

Monthly rainfall 
(mm) 

60 1971 to 
2000 

30 Meteorological Services 
Dept. (Zimbabwe) 

Solar radiation  
(MJm-2d-1) 

20 1951 to 
1970 

20 Climate Handbook of 
Zimbabwe 

Monthly maximum 
and minimum 
temperature (°C) 

23 1971 to 
2000 

30 Meteorological Services 
Dept. (Zimbabwe) 

Daily solar 
radiation  
(MJm-2d-1) 

4 1991 to 
2000 

10 Meteorological Services 
Dept. (Zimbabwe) 

Daily rainfall (mm) 4 1991 to 
2000 

10 Meteorological Services 
Dept. (Zimbabwe) 

Daily maximum 
and minimum 
temperature (°C) 

4 1991 to 
2000 

10 Meteorological Services 
Dept. (Zimbabwe) 

Solar radiation  
(Wm-2) 

Grid 
resolution: 0.5 
x 0.5 (lat, lon) 

1961 to 
1990 

30 Climate Research Unit 
(CRU), University of East 
Anglia, (united Kingdom) 

 
 

3.2.1 Solar radiation data sources 

3.2.1.1 Ground-based observations 
The record for ground based observed solar radiation data is not as expansive as the observed 

temperature or rainfall data. To begin with, the record is shorter and secondly the number of 

observation stations is relatively few. The most unfortunate issue on solar radiation is that, there 

were more observing stations in the first half of the twentieth century (> 20 stations), while the 

current station network is less than ten stations. As a result the period chosen for ground based 
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solar radiation data is rather ‘old’ (1951 to 1971) for the climatic characterization of solar 

radiation for Zimbabwe, because this was the time when there was still a wide coverage of solar 

radiation measuring stations  

(Figure 3.1). As can be seen from Figure 3.1, there are quite large data gaps for areas over the 

northwest of the country and the interpolation methods used to fill in the missing values have 

their own shortcomings especially in mountainous areas as opposed to flat plains. 
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FIGURE 3.1: Ground based station network for  solar radiation measurements  

(Source: Zimbabwe Meteorological Services Department) 

3.2.1.2 Instruments used  

Moll pyranometers installed at Bulawayo and Harare provided records of both global and 

diffuse solar radiation. Global radiation refers to the total receipt regardless of source, whereas 

diffuse refers to the radiation scattered by the atmosphere and any particulate matter held in 

suspension such as haze or clouds, but excluding direct radiation from the sun. These Moll 

pyranometers were calibrated against world standards, so they formed the national standards for 

a secondary network of Gunn-Bellani spherical pyranometers which respond to global radiation 

but are of lower accuracy (Climate Handbook of Zimbabwe, 1980). The network of instruments 

used to measure solar radiation for the period 1990 to 2000 used in the model simulation is 

called Sonego solarimeters. 
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3.2.1.3 Satellite based solar radiation data 

The satellite data used in this study was significantly lower (>20%) on average compared to 

solarimeter measurements and some of the errors for underestimation could arise from the 

model assumptions in the estimation of the solar radiation (Pinker and Lazlo, 1992; Beyer, et 

al., 1995; Bonomo and Brignoli, 1994). However, it would require a separate study to 

comprehensively validate the satellite data for the whole of Zimbabwe. Despite the 

underestimation drawback, the data has a more detailed spatial signature than the ground based 

observation purely because of its superior resolution (0.5º by 0.5º).  

3.2.1.4 Errors in satellite estimates 

Satellite measurements, although they have distinct advantages over ground based observations 

in terms of spatial and temporal resolution, they do suffer from instrument calibration errors that 

require correction procedures namely (Gautier et al., 1980):- 

 
• Correction for the satellite angle 

• Corrections for cloud cover 

• Instrument calibration 

• Correction for the sun angle 

 

In addition, the data needs to be validated with ground observations.  

3.2.1.5 Comparison of data sources for solar radiation  

From the afore-going discussion on the data sources of solar radiation, the next step is an 

assessment of the best source to use in the analysis. The solar radiation datasets are in two time-

scales, monthly and daily data. The monthly data are from two sources and a comparison is 

made between them to assess the better dataset to be used in the final analysis. The computer 

program Surfer32 is used to produce contour maps for each month. The result of this analysis 

gives the spatial and temporary variations of the parameter in the country that forms the basis of 

assessing the potential of a locality for the production of a particular crop. The daily data set is 

extracted from surface observations archived at the Zimbabwe Meteorological Services 

Department and is primarily used in the crop simulation modeling process. The principal crop 

simulation tool CSM in the DSSAT4 requires solar radiation at daily time steps.  

3.2.1.6 Differences in the sources 

The radiation data used in this analysis was from essentially three sources. The Zimbabwe 

Meteorological Services Department provided two data sources; the Climate Handbook of 

Zimbabwe (1980) for the period 1951 to 1970 and archived daily data for the period 1991 to 

2000 from the Data Processing Unit in the Information Systems (IS) branch. Satellite based 
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solar radiation data was sourced from the University of East Anglia - Climate Research Unit 

(UEA - CRU), United Kingdom database, for the period 1961 to 1990  (Table 3.1). 

 

One thing to note on the radiation data is that all the sources have different periods, thus making 

it less than ideal for comparison purposes. However, since the data is averaged over the 

respective period, it is assumed that differences arising from the different periods analyzed 

should be minimal by virtue of the conservative nature of the parameter, all other things being 

equal. Unlike rainfall whose variability has been the basis of several studies, average solar 

radiation is relatively unchanged over the time periods being considered here.  

 

The comparison of site specific radiation values was done by approximating the grid reference 

of a station (latitude, longitude) to the nearest satellite grid point value. Since the satellite 

measurements were in watts per square metre (Watts/m2), they were converted to MJ/m2/day by 

multiplying with a constant factor (i.e. [24 x 60 x 60]/106) to make them comparable to ground 

observations. The mean monthly radiation figures for selected months and stations are shown in 

Table 3.2. 

 

The choice of months used in the comparison analysis was based on the Zimbabwean seasons; 

January and February are representative of the wet season (summer) and June, July are typical 

of the dry season (winter); March and October represent the transition period from summer to 

winter and winter to summer respectively. 

 

TABLE 3.2 : Mean monthly solar radiation for  selected stations:  (a) 

BEITBRIDGE (MJm-2d-1) 

Instrument Sonago solarimeter  Moll pyranometer Satellite 

Period 1991 - 2000 1951 - 1971 1961 -1990 

January 25.18 24.60 17.20 

February  22.55 23.50 16.20 

March 23.50 21.20 15.90 

June 16.00 13.70 13.10 

July  16.80 15.20 14.00 

October 24.42 21.30 17.90 

 

(b) 

MOUNT DARWIN  (MJm-2d-1) 

Instrument Sonago solarimeter  Moll pyranometer Satellite 
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Period 1990 - 2000 1951 - 1971 1961 -1990 

January 22.82 21.50 15.00 

February  22.75 21.20 14.80 

March 22.88 21.60 15.00 

June 17.85 16.90 13.30 

July  18.73 17.90 13.90 

October 25.17 23.00 17.70 

(c) 

KAROI  (MJm-2d-1) 

Instrument Sonago solarimeter  Moll pyranometer Satellite 

Period 1990 - 2000 1951 - 1971 1961 -1990 

January 23.16 20.60 14.90 

February  22.75 20.40 14.80 

March 23.93 21.70 15.50 

June 19.74 16.90 13.80 

July  20.92 18.20 14.70 

October 27.30 23.50 17.90 

 

 

 

(d) 

HARARE BELVEDERE  (MJm-2d-1) 

Instrument Sonago solarimeter  Moll pyranometer Satellite 

Period 1990 - 2000 1951 - 1971 1961 -1990 

January 19.17 20.80 15.50 

February  17.43 20.60 15.20 

March 19.07 21.50 15.40 

June 15.85 16.40 13.20 

July  15.99 17.90 14.10 

October 22.71 23.60 17.60 

 

(e) 

 GWERU (MJm-2d-1) 

Instrument Sonago solarimeter  Moll pyranometer Satellite 
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Period 1990 - 2000 1951 - 1971 1961 -1990 

January 23.02 22.40 16.70 

February  24.21 21.60 16.00 

March 23.78 21.60 15.90 

June 19.56 16.10 13.10 

July  17.70 17.70 14.00 

October 23.1 23.10 17.50 

  

 

 

(f) 

MASVINGO (MJm-2d-1) 

Instrument Sonago solarimeter  Moll pyranometer Satellite 

Period 1990 - 2000 1951 - 1971 1961 -1990 

January 23.18 22.40 17.20 

February  23.55 22.10 16.20 

March 22.34 21.80 15.70 

June 16.75 15.40 12.70 

July  17.02 16.80 13.30 

October 24.06 21.50 17.10 

 

3.2.2 Temperature data  

The temperature data used in this study was sourced from the Zimbabwe Meteorological 

Services Department. The dataset has data at two time steps. There is monthly data that has been 

analyzed to produce monthly contour maps of maximum temperature using the Surfer32 

computer program. The number of stations used in the temperature analysis was 20 (Figure 3.3) 

and the climate period was 1971 to 2000. 
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Figure 3.3 Map showing the stations used in the temperature analysis  
 The choice of the period was governed by availability of data and also that the period covers 

the most recent climate pattern observed over the country. Preliminary climate change studies 

on temperature have suggested that a warming trend is discernible in some Zimbabwean 

stations’ time series (New et al., 2006); hence it would only be more appropriate to use the 

latest information unlike the radiation data. The current data period (1971 to 2000) is more 

continuous with fewer data gaps than earlier periods.  

 

The second level of the temperature data is daily time series. However, the daily data was only 

sourced for a few sample stations that will be used for site-specific case studies. The crop 

simulation model (CSM) requires among its weather parameters, daily or monthly data.  The 

CSM gives yield in terms of weight of above ground biomass per hectare. However, for a better 

comparison of the different fuel crop yield potential, the final potential yield for sweet sorghum 

and sugarcane is converted to litres of ethanol per unit area (hectare), while the potential yield 

for Jatropha curcas is given as mass of oil (kg) per hectare.   

3.2 Analysis Methods and Tools 
 
The data analysis was tackled using two principal tools:- 

 Surfer 32 for surface mapping of climate parameters 

  DSSAT4 CSM tool for crop simulation 
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 3.2.1 Surfer 32 version 6.04  

Surfer (Win32) is a product of Golden Software Inc. (1996); it is a data management system 

specifically for surface mapping using interpolation techniques. The spatial interpolation of 

agro-climatic data aims at estimating the value of rainfall, temperature or any other parameter at 

a given site based on the observations at neighbouring locations. Some of the interpolation 

techniques employed are generic and are described in the climate database FAOCLIM-2, which 

is a Climate Database for the entire world. The Agro-meteorology Group of the Food and 

Agricultural Organization of the United Nations (FAO) developed the FAOCLIM-2 software 

(Coordinator, Agro-meteorology Group; agromet@fao.org).   

 

Surfer is used to generate surface maps of monthly maximum temperature, as well as monthly 

maps of solar radiation from the datasets collected. The maps are used in conjunction with 

relevant literature to qualitatively assess the suitability of the Zimbabwean climate to the 

cultivation of the different fuel crops. Kriging and minimum curvature are the methods of 

interpolation that are employed by the Surfer program. Kriging is a linear regression prediction 

using data of the same attributes as that being estimated (Bogaert, et al., 1995). Cokriging on the 

other hand is the linear regression that uses data defined on different attributes.  

 

3.2.2 Crop Modelling  

Computer models, in general are mathematical representation of the real world system (Tsuji, et 

al., 1998). A model might include many assumptions, especially when information that 

describes the interactions of the system is inadequate or does not exist. In reality, it is 

impossible to include all the interactions between the environment and the modeled system in a 

model. Primary weather inputs for a computer simulation model are air temperature, solar 

radiation and rainfall. Secondary inputs are wind speed, relative humidity, soil temperature and 

dew point. 

 3.2.2.1 DSSAT software package system background 

IBSNAT, i.e. the International Benchmark Sites Network for Agro-technology Transfer was a 

network consisting of a contractor (University of Hawaii), its subcontractors and many global 

collaborators. Together they created a network of national, regional, and international 

agricultural research for the transfer of agro-technology among the global partners in both 

developed and lesser developed countries. From 1982 to 1987, the program was under the 

auspices of the USAID. ICASA was established in 1994 as a non-profit corporation in Honolulu 

in Hawaii. The International Consortium for Agricultural Systems (ICASA); developed the 

Decision Support System for Agro-technology Transfer (DSSAT) (Hoogenboom et al., 2003).  
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3.2.2.2 Minimum Data Set (MDS) 

IBSNAT project defined a minimum data standard (MDS) for crop model applications 

(DSSAT4 volume 1 with reference to work by ICRISAT, 1984; IBSNAT, 1990). This standard 

includes a minimum data set for weather consisting of maximum and minimum air temperature, 

solar radiation and precipitation. 

 

The model version that is employed in this study is DSSAT v4.0 that is an upgrade of the 

DSSAT v3.5 system, which was released in 1999. One of the most important changes and 

improvements in DSSAT v4 is that it has been completely redesigned and is now MS Windows 

based. Below is a summary of the most relevant components of DSSAT4 that are used in this 

analysis 

 

DSSAT v4.0: (Source:–Hoogeboom et al., 2003)  includes:-  

 More than 18 different crops simulated with CSM, including maize, wheat, rice, barley, 

sorghum, millet, soybean, peanut, dry bean, chickpea, cowpea, faba bean, velvet bean, 

potato, tomato, bell pepper, cabbage, bahia and brachiaria and bare fallow 

 The DSSAT v3.5 legacy models, including cassava, sunflower, sugarcane, taro, tanier, 

and pineapple. 

 A New Weather Data Manager WeatherMan for entering, analyzing and generating 

weather and climate data. 

 The Introductory Simulation Tool ICSim for simple simulations and application of 

models as a teaching tool. 

 

The list above is by no means exhaustive. One of the most important tools available in DSSAT 

v4 is a Crop Management Data Tool called XBuild, for entering and editing of experimental 

data. It is the simulation tool that is employed when crop modeling is done is conjunction with 

field experiments for validation purposes. In this study, the ICSim tool is employed in the 

simulation of crop yield. This tool was developed in response to training needs identified at a 

training workshop in Egypt on the use of DSSAT. In this case, it was chosen because of its 

simplicity and ease of use since no field experimental data is available that would have 

warranted the use of the XBuild tool.   

3.2.2.3 Introduction to Crop Simulation (ICSim) tool   

ICSim is a MS Windows application that is used as an add-on to DSSAT v4. ICSim makes use 

of the DSSAT directory structure and communication protocol that designates the location of all 

programs and data files used in DSSAT. The Visual Basic version 6 program was developed as 

part of a US-Egyptian cooperative project (Hoogemboom, et al 2003). A more comprehensive 

Windows based tool (XBuild) has been developed that will provide access to all the 
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functionality of the crop models. The crop simulation tool for DSSAT (XBuild) allows users to 

specify any combination of several crops for purposes of validation (comparing with observed 

data), seasonal analysis, crop rotations and spatial analysis that are available in DSSAT v4. A 

full documentation of the tools available in DSSAT v4 is found in “Tsuji et al., 1994 and 

Hoogenboom et al., 1999 volume 4.” The main capabilities of crop simulation models of 

DSSAT v4 software package allows users to specify weather, soil and main practices to 

simulate crop growth and yield using any of the crop models and data sets available in DSSAT 

v4. 

3.2.2.4 Differences and limitations of ICSim relative to DSSAT v4 (XBuild) capabilities 

(Hoogenboom, 2003) 

• The difference between XBuild and ICSim is that ICSim creates its own working 

directory (called \DSSAT4\ICSim) for all management files and all outputs of crop 

models. 

• ICSim provides capabilities to set up simulation runs for any number of crop models in 

DSSAT4, single season simulations only. It does not allow for users to simulate for a 

number of years to estimate the effects of weather variability on crop production. 

• Results of ICSim are not linked with some experimental measurements for validation. 

• ICSim simulates crop, soil and management conditions specified by the user using the 

crop models operating in the water and nitrogen limitation mode (i.e. with the soil water 

and nitrogen balances switched on). Also automatically simulates potential yield. 

• In ICSim, soil, water and nitrogen initial conditions are set in a simple way on the first 

screen. 

• Initial residue for simulation done with ICSim is assumed to be 1000kg/ha and cannot 

be changed by user. 

• In the Environmental Modification Screen, users can only specify one modification. 

This modification is aimed to start on the date specified in the corresponding box on the 

screen; that is defaulted to be the planting date. Once activated the environmental 

modification remains in effect throughout the season. 

• ICSim does not allow for pest damage to be imposed on the crops. 

• ICSim does not provide users with access to seasonal, sequence or spatial analysis 

programs in DSSAT v4, nor does it provide   users with access to other important 

utilities, such as WeatherMan (Hoogenboom et al., 2003) 

The reason for choosing ICSim was because my study did not include field experiments to 

verify model results. Therefore the results presented here are primarily simulated results that 

might or might not be closely linked to experimental results. Furthermore, not all the available 

results were discussed, only potential biomass production and length of growing season were 

analyzed with respect to different climatic (environmental) conditions. 
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3.2.2.5  Outputs of ICSim 

3.2.2.5.1 Overview.Out 
Overview.Out provides an overview of the input conditions and simulated crop performance. 

However as already stated, results are not linked to experimental measurements for validation. 

 The first section in this file presents information that uniquely describes the simulated 

results data set. This includes the Experimental Name, treatment number, crop, planting 

date, population and row spacing, soil initial conditions etc. 

 The second section in Overview.Out contains a summary of soil characteristics and 

cultivar coefficients. 

 The next section deals with crop and soil status at the main development stages, 

followed by a comparison of simulated and measured data for major variables. 

 Followed by information on simulated stress factors and weather summary during the 

development phases, as appropriate for the crop. 

3.2.2.5.2 Summary.Out 
The section in Summary.Out of ICSim contains one line summary of the main development 

events, water and nitrogen variables, and yield components. Furthermore it has two more lines 

of information on (1) scenario with water and nitrogen limitation (2) potential yield with water 

and nitrogen balances turned off. 

3.2.2.6 Data type and sources for computer simulation 

The weather data required to run the ICSim model included, daily maximum and minimum 

temperature (°C), daily solar radiation (MJ/m2/day) and daily rainfall (mm). This data had to be 

in a specific format, Excel or text, and in this case Excel was chosen since it was the original 

working datasheet and was therefore easier to manipulate into the required format for input into 

DSSAT4 weather files. 

3.2.2.7  Cultivar coefficients in CSM  

The CSM CERES-Sorghum crop model is designed to simulate grain varieties only. There are 

55 grain sorghum varieties that have so far been incorporated into the DSSAT4 CSM sorghum 

crop model. However, one can add-on a variety for simulation by the same model by changing 

the crop coefficients. The crop coefficients are the ‘drivers’ of the growth and development of a 

particular cultivar. For the purposes of this study, the sweet sorghum variety Keller was added 

to the list of varieties, making the total list 56. The Keller variety has demonstrated a 

comparably high potential yield in field experiments in Zimbabwe (Woods, 2000) and Europe 

(Daliannis, 1997). In order to test the sensitivity of the model to different sorghum varieties, the 

Keller (sweet variety) was compared to a grain variety, Pioneer 8333 at one of the test sites, 

Karoi.  
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3.3 Crop simulation methodology 
 
The crop simulation was done for four sites, namely Karoi, Harare Belvedere, Masvingo and 

Buffalo Range, using the weather data available, other stations were not chosen due to data gaps 

for the period 1990 to 2000. Solar radiation is not available for some Zimbabwe stations, hence 

the need to change to other modes of observation like satellite based observation (remote 

sensing) that would provide a more reliable spatial and temporal resolution of the parameter. 

 

Since the aim of the crop simulation exercise was to get an idea of the potential yield of the fuel 

crop, in this case sweet sorghum, under the given environmental conditions, the daily data for 

the ten year period (1991 to 2000) was averaged to produce the average daily data for one Julian 

year of 365 days. In order to satisfy the crop simulation to proceed without interruption through 

a complete growing season, the data was entered twice as if it was data for two consecutive 

years. However, the potential and actual yields of sugarcane for this work were derived from 

literature and statistics from the Triangle Ltd. Company in the southeast of the Zimbabwe where 

the bulk of sugar cane is grown in the country. There are two main reasons why simulation runs 

for sugar cane cultivation at the four sites mentioned above were not done; one was that field 

data is already available (albeit for one area) from the long experience of growing sugar cane in 

the SE of Zimbabwe plus research work (Woods et al., 2000) that has been done in the area. 

Secondly, the current DSSAT v4 crop models do not include sugarcane explicitly but it is a 

‘legacy model’ that is only available in the DSSAT v3.5 crop models and it is run in DOS (still 

under development to migrate to DSSAT v4).  

 

The incorporation of a jatropha model into the DSSAT CSM is yet to be implemented. 

Therefore it could not be simulated. 
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CHAPTER 4:  RESULTS 

 

4.1 Introduction 
 

The first part of the chapter, examines the results of the analysis of the different sources of solar 

radiation. In the second part, the results of the DSSAT - CSM crop simulation for sweet 

sorghum are analyzed, in terms of the potential yield (above ground biomass). The assessment 

of the potential yield is carried out primarily under existing climatic conditions. Furthermore, 

two sensitivity tests are carried out under modified environments (i.e. maximum temperature 

rise of 2ºC and a 5 MJ/m2/day reduction in solar radiation) to gauge the effect of the 

modifications on the potential yield. A third sensitivity test is done through a comparison 

between two sorghum varieties, a grain cultivar, Pioneer 8333 and the sweet sorghum cultivar, 

Keller. The varieties comparison is mainly useful from a breeding point of view, to assess 

characteristics that could be useful in gene manipulation to come up with a super variety which 

can deliver both high sucrose content and high grain yield. The future potential productivity of 

sorghum might eventually be judged from its capacity to deliver both sucrose for ethanol 

production and grain for food. 

4.2 Solar Radiation Data 

Knowledge of the solar radiation pattern is useful for identifying potential areas for the 

cultivation of fuel crops particularly sweet sorghum because of its influence on the plant 

photosynthesis as already discussed in chapter two. One of the challenges we face in Zimbabwe 

is an adequate solar radiation observation network. Currently, there are less than 10 stations that 

routinely measure radiation around the country compared to more than 20 in 1970; consequently 
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any interpolation method based on the present data coverage is bound to be fraught with 

inaccuracies. This limitation in a good spatial coverage of radiation data impacts negatively on 

applications requiring such data i.e. recent accurate radiation maps. In this study, satellite based 

observations are used as one of the possible sources of solar radiation data.  However, this data 

needs to be validated against ground based observations and in the current study it was used as 

it is.  

 

4.2.1 Comparison of the radiation maps      

Figure 4.1 below shows two radiation maps produced for each month for selected months. The 

left pane map is from radiation data sourced from ground based measurements and the right 

pane is for radiation sourced from satellite observations. The period of the data sources is 

different (see Table 3.1); the ground observations’ period was from 1951 to 1971 and the 

satellite observations are for the period 1961 to 1990. Ground and satellite based radiation 

maps’ units are MJm-2d-1.  
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Figure 4.1a: January solar radiation from ground based observations (left pane) and 

satellite based estimates (right pane) 
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Figure 4.1b: Radiation maps for April: ground based observations (left pane) and 

satellite based estimates (right pane) 
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Figure 4.1c: Radiation maps for July: ground based observations (left pane) and 

satellite based estimates (right pane) 
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Figure 4.1d: Solar radiation maps for October: ground based observations (left pane) 

and satellite based estimates (right pane) 

 

4.2.2 Results for solar radiation sources mapping 

The radiation comparison was done for four selected months which are typical of the seasons of 

Zimbabwe. The comparison of the two sources of radiation data through the radiation maps 

reveals differences that are summarized in subsequent sections. 

 

January 

During this period, the ground based radiation map shows that the mean radiation ranges 

between about 18-25 (MJ/m2/day) with an increasing trend from NE to SW. Satellite measured 

data map shows a range of about 14-18 (MJ/m2/day) with an increasing trend from N to S. The 

contour pattern broadly defines lower radiation values over the north-northeastern sector with 

relatively high values in the south of the country. This pattern reflects the general weather 

systems prevailing during this time of the year. Cloudy conditions predominate over northern 

parts of the country relative to southern areas due to the influence of the Inter-tropical 

Convergence Zone (ITCZ). 

 

April  

The radiation pattern changes during this period with the radiation minima shifting to the east of 

the country for satellite observations and to the south for ground based measurements but there 

is a general agreement about higher values over the northwestern sector. Furthermore the 

ground based radiation range for April is somewhat reduced, ranging between about 18-22 

(MJ/m2/day) and the satellite observations range is correspondingly reduced to 14-16 

(MJ/m2/day).  

 

July  
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Noteworthy during this period is the considerable overlap of the ranges from the two radiation 

sources, unlike in the other months. The spatial pattern is in fairly good agreement for both 

maps. Ground based data ranges between 14-18 (MJ/m2/day) and for satellite observations 

between 13-16 (MJ/m2/day). The trend of values increases from  E-SE going towards the NW. 

July is typical of the winter period with predominantly clear skies. The radiation pattern 

depicted during this month is indicative of the strong influence cloud cover has on the spatial 

distribution of surface solar radiation. During July there is a prevalence of low level cloud 

incursions from mobile high pressure systems situated to the SE of the subcontinent. 

 

October 

There is considerable difference between the two radiation maps during this period. Not only is 

there is no discernible overlap in the measured radiation from the two sources; but the ground 

based observations show radiation values in excess of 20 (MJ/m2/day) throughout the country, 

while satellite estimates have little range between 17 and 18 (MJ/m2/day). Compared to other 

analyzed months, the range between the minima and maxima radiation values is considerably 

less  in October. 

4.2.2.1 Summary of mapping results 

On the whole, the maps are showing that ground based observations of surface solar radiation 

has more spatial variability than satellite based measurements. The lack of overlap in the 

contour ranges for the two sources (except in winter) suggest the need to assess the precision 

and accuracy of satellite observations. Despite this drawback, the fairly good agreement in the 

general spatial pattern is indicative of the potential of satellite information for future use on 

surface solar radiation mapping. The satellite data has the additional advantage of being readily 

available and has a higher resolution than the current ground based measurements.  

 

4.2.3 Quantitative comparison between satellite and ground based measurements 

Initially, a comparison of ground based observations of solar radiation (grn_data) was done 

using regression method (Figure 4.2). The correlation coefficient (R2) is 0.9269, for the period 

1951-1970 data set versus the 1990-2000 data set. This suggests a strong linear relationship 

between the two data sets. Therefore it is possible to use either data set for a comparison with 

satellite based estimates. However, an average of the two data sets was calculated and used to 

compare with satellite based observational data.  
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Figure 4.2: Linear correlation graph of ground based observation for different 

periods (1951 – 1970 and 1990 – 2000).  

The comparison of the ground based observational data against the satellite estimates of solar 

radiation is shown in Figure 4.3. 
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Figure 4.3: Linear correlation graph of ground based solar radiation against 

corresponding satellite estimates 
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The regression of the two data sets indicates that the linear relationship as depicted by R2 (R2 = 

0.6781) is weaker than in Figure 4.2. Furthermore the results of the percentage differences 

found between the two radiation sources for selected sites are given below (Table 4.1). Quite 

large differences were found between solarimeter based measurements (ground observations) 

and satellite estimated values in absolute terms, when comparing site-specific data. Satellite 

values were lower than ground-based observation by more than 20 % on average (Table 4.1). 

 

 Table 4.1: The percentage difference between solarimeter measurements and satellite 

based estimates for selected stations and randomly selected months. 

Station January 

(%) 

February

(%) 

March 

(%) 

June 

(%) 

July 

(%) 

October 

(%) 

Average 

(%) 

Beitbridge -31 -30 -29 -12 -12 -22 -22 

Hre_Belvedere -25 -20 -24 -18 -17 -24 -21 

Gweru -26 -30 -30 -27 -25 -29 -28 

Masvingo -25 -29 -29 -21 -21 -25 -25 

Mt Darwin -32 -33 -33 -23 -24 -26 -29 

Karoi -32 -31 -32 -25 -25 -30 -29 

 
On average, Harare, (Belvedere) had the lowest percentage difference (21 %) while the largest 

differences are observed in Mount Darwin and Karoi, coincidentally both sites are situated over 

the northern parts of the country. Equally noticeable in the monthly figures is the lower 

differences (%) in winter (June, July) particularly over Beitbridge with the lowest difference of 

12 %. This relatively smaller difference is observed at most sites except Gweru and Karoi.  The 

Gweru results could possibly reflect the prevalence of low level cloud associated with ‘guti’ 

incursions from the SE. The effect of cloud cover on radiation was also found experimentally by 

Gautier et al., (1980). In their (Gautier et al., 1980) calculations, however, they had discovered 

that the satellite estimates tended to overestimate rather than underestimate as was found in the 

present study. Differences of site and calibration procedures could also come into play but the 

important point I have observed in the preceding results is that clear skies (particularly winter 

time) tend to reduce the difference between the two sources of radiation data.  

 

Future research efforts could be directed at coming up with an improved model to calculate 

surface solar radiation from satellite data for Zimbabwe. As already demonstrated (Gautier et 

al., 1980; Farzin Aghdasi, 1990, unpublished), processing of satellite imagery involves 

geometrical correction for the camera’s viewing angle, correction of the pixel brightness values 

for the sun angle, and accounting for the atmospheric transmissivity. The correction 
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methodologies need to be assessed for the Zimbabwe region where such large differences exist 

between surface observation and satellite based data. 

4.2.3.1 Summary of radiation comparison 

Quantitative assessments of the two data sets has revealed that satellite estimates are on average 

lower than ground measurements by >20%, with slightly less difference margin in winter 

(Figure 4.2), at least for most of the stations used in the analysis. 

The results confirm in percentage terms the difference found in the mapping comparisons. 

Therefore, the use of the satellite data in this thesis shall be limited to the radiation mapping 

comparisons.  

 

4.2.4 Radiation data for modelling 

In this study, ground based solar radiation data is used in the modeling exercise, because it 

approximates (in magnitude) other datasets found in literature sources on experiments done in 

the SE of Zimbabwe (Woods, et al., 2004). 

  

In addition, a sensitivity run on the effect of reducing solar radiation by about 25% (-5 

MJ/m2/day) was also incorporated to test yield potential response to variations in solar radiation, 

be it from climate variability or measurement errors. 

 4.3 Crop Simulation Results 
 

The purpose of this second component of the research is to compare the potential productivity 

of sweet sorghum (Keller variety) as a fuel crop under existing climate for different sites. Four 

stations (sites) data were analyzed, typically representing three Natural Regions of Zimbabwe 

(table 4.2). The potential productivities of sugarcane and jatropha were not simulated with local 

data but are from literature sources and are discussed in the next chapter. 

 

Table 4.2: Typical sites (stations) of the Natural Regions used in the analysis  

Station data analyzed Natural Region
Karoi  IIa 

Harare Belvedere IIa 

Masvingo  IV 

Buffalo Range  V 

 

 4.3.1 Potential yield of sorghum (Sorghum bicolor, L Moench) 

 Literature has shown that sorghum is one of the most productive crop species. This high 

productivity results from a combination of high light and nutrient use efficiencies and the ability 
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of sorghum to extract relatively high fractions of these resources when environmental conditions 

become limiting (Woods, 2000; Daliannis, 1997; Kulkarmi et al., 1997). 

   

The simulation results’ main output of interest to the objectives of the study is potential yield 

(above ground biomass) under existing environmental conditions.  The model results give the 

potential yield in kilograms per hectare (kg/ha) of total above ground biomass. In addition the 

simulated results of the potential yields under two different climatic scenarios are also given.  

 

The results of the potential yield (above ground biomass) in the three scenarios are given in 

Table 4.3; where y1 = biomass production under existing environmental conditions; y2 = 

biomass production under a modified environment (daily maximum temperature data increased 

by two degrees centigrade); y3 = potential yield under a modified environment (the daily 

radiation reduced by 5 MJm-2     (about 25 %); y1-y2 = difference in yield between existing 

climate and a 2°C rise in maximum temperature; y1-y3 = difference in yield between existing 

climate and a 5 MJ/m2/day reduction in surface radiation. 

 

 

 

 

 
 Table 4.3: Summary of potential yield of sweet sorghum (Keller cultivar) at different 
sites under different environmental conditions 

KAROI 
Existing 

climate + 2degC 

-5 

MJ/m2     

Planting date 

y1 

(kg/ha) 

y2 

(kg/ha) 

y3 

(kg/ha) y1-y2 %diff y1-y3 %diff 

jan 12803 12310 11862 493 4 941 7 

marc 12774 12513 11660 261 2 1114 9 

may 10924 10205 9914 719 7 1010 9 

jul 11202 10692 10592 510 5 610 5 

sept 11832 11472 11008 360 3 824 7 

nov 12149 11587 11139 562 5 1010 8 

MASVINGO 

jan 12803 12184 11694 619 5 1109 9 

mar 10668 11000 9555 -332 -3 1113 10 

may 9463 9019 8723 444 5 740 8 

jul 10820 10345 10086 475 4 734 7 

sept 11457 11066 10549 391 3 908 8 

nov 12352 11224 11086 1128 9 1266 10 

HARARE        
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jan 12301 12015 10983 286 2 1318 11 

marc 10056 10473 9023 -417 -4 1033 10 

may 9901 9402 9068 499 5 833 8 

jul 10849 10568 9806 281 3 1043 10 

sept 11301 11025 10024 276 2 1277 11 

nov 11598 11299 10240 299 3 1359 12 

BUFALLO RANGE 

jan 10515 9783 9557 732 7 958 9 

marc 11480 10988 9873 492 4 1607 14 

may 10242 10085 9170 157 2 1072 10 

jul 10028 9771 9399 257 3 629 6 

sept 9910 9213 9161 697 7 749 8 

nov 10130 9536 9500 594 6 630 6 

 
 
4.3.2 Potential yield results comparison 
The comparison of potential yields at the various sites was done in two ways; inter-site and 

intra-site comparisons. 

4.3.2.1 Inter site yield comparisons  

The simulated potential yields at the different sites under different environments are given in 

Table 4.1. Below is the potential yield comparison for the different sites under existing climatic 

conditions (Figure 4.4). 
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Figure 4.4 Potential yields at different sites under existing climate with different 

planting dates.  

 

(a) Yield versus Date of Planting (DOP) 

Slightly higher yields are obtained for all sites when the sweet sorghum crop is planted in 

January or November except in Buffalo Range that attains the highest yield for a crop planted in 

March. Incidentally, Karoi yield for a March crop is also quite high comparable to January. 

There is a general trend across all sites that lower yields are obtained for a crop planted in 

winter (i.e. May and July). Biomass production is highest over Karoi for crops planted in 

January, March, May, July, and September except in November and the productivity is above 

10000 kg/ha. On the other hand, Masvingo site while displaying relatively high productivities 

comparable with Karoi’s for most planting dates (> 10000 kg/ha) has the lowest biomass 

production in May (< 10000 kg/ha).  

 

(b) Yield versus site   

Karoi site obtained the highest biomass productivity for crops planted in January and March and 

also for the other simulated scenarios. It is only matched by Masvingo for January and 

November (slightly higher) crops. The major difference is that yields over Masvingo decrease 

quite markedly during the winter period. This could be attributed to relatively low mean daily 

temperatures experienced over the region during the winter months. Lower temperatures do not 

encourage vigorous vegetative growth compared to higher temperatures (within the crop 

tolerance limits). 

 

(c) Potential biomass productivity  versus length of growing period (LGP) and planting 

date (DOP). 

Above ground biomass is correlated with the length of the growing period (LGP) in most crop 

development and growth processes (Woods, 2000). In this analysis potential yields (above 

ground biomass) are compared with the length of the growing period (LGP) and the date of 

planting. (Table 4.4) 

 
Table 4.4: Comparison of the highest potential yield for each site with length of 
growing period and planting date: Yield 1= yield under existing climatic conditions 
and Yield 2 = under a 2ºC degree increase in maximum temperature 
Station Region  Yield 1 + LGP + DOP Yield 2 + LGP + DOP 

Keller 

(kg/ha) 

LGP 

 (days)  

Date of 

planting 

Keller 

 (kg/ha) 

LGP 

(days) 

Date of 

planting 

Karoi IIa 12803 185 Jan 12513 167 Mar 

Harare IIa 12301 182 Jan 12015 160 Jan 
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Masvingo IV 12803 154 Jan 12184 137 Jan 

Buffalo 

Range 

V 10515 139 Jan 10988 126 Mar 

  

4.3.2.2 Results of Yield versus LGP 
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Figure 4.5:  Length of growing period versus potential biomass productivity for all 
sites for a crop planted in January. 
 
 The correlation coefficient (R2) between biomass production and length of growing period is 

only 0.4934 (Figure 4.5). It appears there is a weak linear correlation between the two 

quantities. For example when a comparison between Karoi and Masvingo is made of biomass 

versus LGP, in yield 1 (under existing climatic conditions), Karoi’s yield of 12803 kg/ha are 

produced in 185 days (LGP) but in Masvingo, the same yield is produced in a shorter growing 

period, 139 days, giving a difference of 46 days (one and half months!). Similarly in yield 2 

(under a warmer climate), the Harare site yield of 12015 kg/ha is produced in 160 days but the 

Masvingo site produces a higher yield (12184 kg/ha) in a shorter growing period (137 days). 

These results tend to confirm the low correlation coefficient. This means other factors should be 

considered when one is planning to grow sweet sorghum in any particular site. The same results 

are found when individual sites’ biomass productivities are correlated with their LGPs, for the 

different planting dates, the coefficients (R2) are very low (Table 4.5).  
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Table 4.5 Correlation coefficients for LGP versus potential biomass for Keller (sweet 

sorghum variety) 

Site  Regression equation Coefficient (R2)

Karoi  Y = 0.079x  + 104.57 0.0494 

Masvingo Y = -0.0188x + 75.697 0.1415 

Harare Y = -0.0116x +238.87 0.0468 

Buffalo Range Y = 0.0302x – 33.681 0.4445 

 

Another way the author compared the results was by reducing them to an arbitrary productivity 

rate (PR) given as: 

PR = Yield/ LG                                                     4.1 

(PR = arbitrary ratio used as a comparison tool for present discussion only)  

 

Table 4.6 shows the productivity rates (PR) for the different sites. By reducing the yield data 

and length of growing period data into one (PR) value it becomes easier to compare the 

potential of each site to produce the fuel crop, (in this case sweet sorghum.), under its uniquely 

different environmental conditions. The potential rate (PR) combines both yield and length of 

growing period both of which are influenced by environmental conditions.  

 

Table 4.6: Comparison of PR values for highest biomass production at the different 
sites regardless of planting dates. 
Station Region  Biomass under existing 

climate (PR units of 

kg/ha/day) 

Biomass under warmer 

climate  (PR units of 

kg/ha/day) 

  Keller variety Keller variety 

Karoi IIa 69.2 74.9 

Harare IIa 79.9 75.1 

Masvingo IV 83.1 88.9 

Buffalo Range V 75.6 87.2 
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Figure 4.6: Biomass productivity rate (PR) at different sites under existing climatic 

conditions with varied planting dates.  

 

The results of the productivity rate (PR) displayed in Figure 4.6 reveal that for the crop planted 

in January; Buffalo Range has the highest rate (> 45 kg/ha/day), followed by Karoi, then 

Masvingo and lastly Harare (about 37 kg/ha/day). This rank sequence is repeated for the March 

crop but with lower rates; Buffalo Range tops the PR range at about 43 kg/ha/day and Harare 

with the lowest rate of 27 kg/ha/day. In May, the top two positions are unchanged but Harare 

has a higher rate than Masvingo. For July, the Karoi rate tops Buffalo Range and there is little 

difference between the Harare and Masvingo productivity rates. The crops planted in September 

and November have an identical sequence; Karoi has the highest rate, followed by Masvingo, 

Buffalo Range and Harare has the lowest rate of the four. It can also be concluded that generally 

the productivity rates for May and July are lower than for the other planting dates with the 

highest rates being realized in January, September and November.  The explanation behind the 

different productivity rates can be attributed to the temporal variation in received radiation for 

each site. While Buffalo Range receives relatively higher solar radiation in January than the rest 

of the stations, during the winter month; May, July, and even September, it has the lowest 

radiation received. This is due to the latitudinal difference of between stations. Of the four 

stations, Buffalo Range is the most southerly, followed by Masvingo and then Harare. Karoi is 

the most northerly, which could explain its higher productivity rate for May, July, September 

and November. Site comparisons of productivity rate (PR) indicate that for some stations, there 
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is strong correlation e.g.  Masvingo and Karoi have a correlation coefficient, R2 = 0.9227, while 

a comparison of the PR values for Buffalo Range and Harare give a low coefficient; R2 = 

0.3932. Stations with a strong linear correlation would tend to suggest that they belong to the 

same agro-climate regime for the production of sorghum. However, the PR results are not 

directly related to the total above ground biomass, for example Buffalo Range displays a high 

productivity rate, but has the lowest total above ground biomass (Table 4.6). The reason behind 

this discrepancy could also be explained through the different radiation characteristics for each 

site. 
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4.4 Sensitivity Tests 
 

4.4.1 Sensitivity tests under modified environmental conditions  

There is a general decrease in potential yield across the sites under modified environmental 

conditions (Table 4.3). In the first scenario, when the maximum temperature is increased by 2 

ºC; simulating a climate change scenario of a warmer environment, (New et al., 2006), the 

potential yield decreases by an average of about 4 % across the board regardless of planting date 

except over Harare and Masvingo (DOP = March). Similarly for the second scenario of a 25 % 

decrease in solar radiation, the potential yield decreases by about 9 %, approximately double the 

percentage decrease due to a warmer climate. The reason for using a 25 % decrease in solar 

radiation was based on the average decrease in solar radiation as measured by satellite. A 25 % 

decrease scenario was motivated by the need to assess the yield margin that would result from 

using satellite based solar radiation data as it is instead of using ground based data. 

In the following sections, results from each site are analyzed separately. 

4.4.1.1 Harare Belvedere Site 

In this analysis, the results of potential yields of Keller (sweet sorghum variety) under different 

environmental conditions and different planting dates are combined (Figure 4.7) for the Harare 

site.  
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Figure 4.7 Potential biomass productivity of the Keller sweet sorghum variety under 

different environmental conditions at Harare; maximum temperature increased by 2 

°C and solar radiation decreased by 5MJm-2 

4.4.1.2 Results of potential yield under modified environments 

The simulations of potential yield generally decrease under both reduced solar radiation and 

increased maximum temperature with the exception of the crop planted in March. The increase 

in temperature boasted its yield to slightly higher (+ 4 %) than can be obtained under existing 

climatic conditions. This is probably because of the added advantage of a warmer winter 

conducive to a more vigorous vegetative growth, but still the yield is lower than the yields for a 

crop planted in January or November. Field experiments would be necessary to validate the 

results. 
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Figure 4.8 Potential biomass productivity of the Keller sweet sorghum variety under different 

environmental conditions at Buffalo Range; maximum temperature increased by 2 °C and 

solar radiation decreased by 5MJm-2 

4.4.1.3 Buffalo Range Site   

The results for the Buffalo Range site (Figure 4.8) show a similar trend to the results obtained 

over Harare. The potential yield decreases under the modified environments, more so with a 

reduction in received solar radiation. However, biomass productivity for Buffalo Range is 

generally +/- 10000 kg/ha whereas for Harare, its biomass is more than 10000 kg/ha for 

January, September and November. 

4.4.1.4 Masvingo Site 

 Figure 4.9 shows the variations in potential biomass yield due to different environmental 

conditions for Masvingo in Region IV. The climate of the region is characterized by moderate 

rainfall (500 – 1000 mm) with summer temperatures mainly in the upper twenties (degrees 

celcius). However, in winter, frequent incursions of a cool and moist air-mass from the 

Mozambique channel) affect the area resulting in low    cloud with drizzle at times (guti). 

During these ‘guti’ episodes daytime temperatures can be depressed quite considerably unlike 

places like Karoi which are hardly affected by guti incursions. 
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Figure 4.9 Potential yields of sweet sorghum (Keller) under different environments 

over Masvingo; existing climate; warmer conditions (+ 2ºC rise in max temperature); 

and a 5 MJm-2 reduction in solar radiation.  

 

Under existing climatic conditions, the highest yield is about 12800 kg/ha for a crop planted in 

January, with the lowest yield of about 9500 kg/ha obtainable from a crop planted in May. 

Essentially the variation in yield trend follows what has been observed over other sites; 

modifying the environment through a temperature increase or a reduction in radiation causes a 

general decrease in potential yield. The only exception occurs under a temperature increase for a 

crop planted in March; biomass productivity is higher by about 3% than under the existing 

climate (Table 4.3). A similar response in potential biomass yield (March crop) was found over 

the Harare site. 

4.4.1.5 Karoi Site 

The Karoi site is used as a test site not only for the potential yields of the sweet sorghum variety 

Keller but also for the grain sorghum variety Pioneer 8333. The sorghum varieties found in the 

DSSAT4 model are all grain varieties and Keller was the only sweet variety that was added (by 

author) to the sorghum varieties for simulation. The addition of Keller was achieved by 

inserting the variety and its crop coefficients in the sorghum file in DSSAT. Crop coefficients 

were obtained from Woods (personal communication) that he used in trials he did in the SE of 

Zimbabwe (Woods, 2000). 
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Figure 4.10 Potential yields of (Keller) sweet sorghum under different environmental 

conditions over Karoi; existing climate; warmer conditions (+ 2ºC rise in max 

temperature); and a 5 MJm-2 reduction in solar radiation.  

 

Results of potential yields trends over Karoi (Figure 4.10) are different from those simulated 

over Buffalo Range. Generally the biomass over Karoi is much higher (> or close to 12 t/ha for 

planting date of January, March, September and November) than over Buffalo Range. Unlike 

the Masvingo and Harare sites which display an increase in productivity under a temperature 

modification scenario, for a crop planted in March, a decrease in yield is observed at Karoi. 

However, the January crop gave very similar biomass production at values greater than 12 t/ha. 

Biomass production for crops planted in May and July are lower than January, March, 

September and November crops. This could be attributed to the higher average temperatures 

experienced in summer relative to the winter averages. The minimum temperatures could also 

be too low for vigorous vegetative growth, but further research would be necessary to verify the 

assumption. 

 

In order to compare the potential yield difference between varieties, the sorghum grain Pioneer 
(8333) yields are computed as in the sweet variety Keller.  
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4.4.2 Sensitivity test for different sorghum varieties 

4.4.2.1 Comparison of potential yields between the two varieties  

The results obtained for the potential yields of the two varieties are shown  in Table 4.7.   

 

Table 4.7 Potential biomass of the sorghum varieties Keller (sweet) and Pioneer  8333 

(grain) 

Planting 
date 

Biomass 
production under 
existing climatic 

conditions 

Biomass production 
under a higher 
maximum 
temperature 

Biomass 
production under 

decreased 
radiation 

 KY1 PY1 KY2 PY2 KY3 PY3 

jan 12803 12624 12310 12187 11862 11750 

mar 12774 13419 12513 13029 11660 12160 

may 10924 10650 10205 10644 9914 10015 

jul 11202 11443 10692 11166 10592 10826 

sept 11832 11904 11472 11385 11008 11090 

nov 12149 11826 11587 11586 11139 11244 

Key: 
• KY = potential yield of Keller variety under scenarios 1, 2, 3. 
• PY = potential yield of Pioneer 8333 variety under scenarios 1, 2, 3. 

 

Table 4.8: Differences in biomass production between the sorghum varieties; KY is 

Keller (sweet sorghum) yield and PY is Pioneer 8333 (grain sorghum) 

Planting 
date 

Difference in 
biomass 

production under 
existing climate 

Difference in biomass 
production under a warmer 

climate 

Difference in biomass 
production under decreased 

radiation 

 KY1 – PY1 KY2 – PY2  KY3 – PY3 
Jan 479 123 112 

Mar -645 -516 -500 

May 274 -439 -101 

Jul  -241 -474 -234 

Sept  -72 87 -82 

Nov 323 1 -105 

 

Figure 4.11 shows that there is there is a strong linear relationship in potential yields between 

the two varieties under current environmental conditions (R2 = 0.8619). A further test on 

whether there is a significant difference (95 % significant level) in potential yield between 

Keller variety and Pioneer 8333, gives a z-score of 0.4602 and allowing for either tail of the 
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probability density function, it becomes 0.9204, which implies that the differences in yields are 

not significant. Even the z-score under a warmer climate (+ 2C rise in maximum temperature) is 

0.2946. This appears to confirm the results obtained above, i.e. any differences found are most 

likely caused by chance and therefore not significant.   
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Figure 4.11: Comparison of potential yields of Keller and Pioneer under existing 

climatic  conditions for Karoi site. 

 

From the difference in potential yields between the two varieties under existing climatic 

conditions, no clear cut generalizations can be made. The Keller variety has a higher yield for a 

crop planted in January, May and November. However, the same does no hold true in the in 

scenarios 2 and 3. The only conclusion to be drawn from these results is that there is no 

significant difference in potential biomass production between the two sorghum varieties.  

4.4.2.2 Comparison of the length of the growing period between the varieties 

Normally a longer growing period should result in higher biomass production when compared 

to a shorter period, assuming the photosynthesis efficiencies are the same. Figure 4.12 gives a 

comparison of the growing periods between the two sorghum varieties under existing 

environmental conditions. 
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Figure 4.12 Comparison of LGP between Pioneer and Keller under existing climate 

at Karoi. 

 

Figure 4.12 clearly shows that the sweet sorghum variety Keller has longer growing period than 

the grain sorghum variety Pioneer 8333 under current climatic conditions in the Karoi area, 

although the potential biomass production does not differ significantly.  

4.4.2.3 Comparison of the growing period under a modified environment 

An assessment is made on the influence on the growing period under a warmer climate 

 ( 2 ºC rise in maximum temperature) for the two varieties under consideration. There is no 

change in the relative difference in LGPs for the varieties as depicted by Figure 4.13 
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Figure 4.13 LGP comparisons under a two degree rise in maximum temperature 

 

In conclusion, it would appear from the simulations of the two sorghum varieties, Keller and 

Pioneer that the sweet sorghum variety has a longer growing period compared to the grain 

variety under all the environmental conditions simulated. 

4.4.2.4 Results for modified temperature environment 

Essentially, the temperature modification of the environment does not appear to affect the yields 

of the two varieties. Biomass obtained after planting in January, and March are marginally 

higher for both varieties, but there is no significant difference as already found out in the 

statistics given above. With such minor differences in the potential yields, it becomes 

imperative to consider the cost of production under the different scenarios in order to 

differentiate between the optimum planting dates and final yield. 

4.4.2.5 Summary of results on the differences in potential yield at each site under different 

environmental conditions: 

 In terms of potential yield between the sorghum grain variety (Pioneer) and sweet 

sorghum variety (Keller), there is no distinct difference between the two under existing 

environmental conditions.  

 The potential productivity of both varieties decrease when the environment is modified 

either through the maximum temperature being increased by 2 ºC or when there is a 5 

MJ/m2/day decrease in surface solar radiation. 
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 Keller variety takes longer to mature but does not show a corresponding increase in 

potential yield. 

 Crops planted in the summer months (November, January and March) generally show 

higher productivities compared to those planted in the early or mid winter months (May 

and July). 

 The lowest potential biomass yield is about 9000 kg/ha, under any environmental 

condition. 

 Changes in the environmental weather parameters had little effect on the comparative 

potential yields between the Keller and Pioneer variety according to the simulation 

results obtained in this study for the Karoi site. 
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4.5 Conversion Efficiency for Sorghum  
 

The ultimate aim of this project is to assess the productivity of fuel crops in terms of the amount 

of bio-fuel (ethanol) produced from either unit biomass or from unit land area. Woods, (1998) in 

previous field experiments done in the southeast of Zimbabwe,  came up with a mathematical 

formula adapted from Dallianis (1997) in computing the theoretical ethanol yield from sweet 

sorghum, as follows: 

 

EtOH (lha-1) = [Total sugar content (%) in fresh weight] X [6.5 (conversion factor)] X [0.85 

(conversion efficiency)] X  [total biomass (t/ha of fresh matter)] 

 

For example taking the Karoi potential yield of a total biomass of  about 12.8 t/ha for a crop 

planted in January and assuming a sugar content percentage of 13 % (Mahohoma personal 

communication), the  equivalent ethanol produced is calculated thus: 

13 x 6.5 x 0.85 x 12.8 = 919.36 litres (EtOH) per hectare                                       4.2 
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CHAPTER 5: DISCUSSION 

5.1 Introduction 
 
In this chapter the results obtained in chapter five are discussed with respect to the aims and 

objectives of the thesis. A brief overview of the economics of bio-fuel production is given at the 

end of the chapter based on some literature sources since this aspect was not part of the thesis. 

The viability of bio-fuel production will ultimately depend on a positive cost-benefit analysis 

that makes economic sense. 

5.2 Radiation  
 
The results obtained in this research about satellite estimates of solar radiation confirm the 

potential of this source to eventually be a reliable source of surface solar radiation data. 

Although only monthly radiation data was used in the analysis, daily data is also available upon 

request from the European Space Agency (ESA). What is required is validation of these satellite 

data so that they can be used more confidently for any of the various applications alluded to 

earlier. One of the outputs of the present work is mean monthly radiation maps from remotely 

sensed data (satellite). However, this effort was not so successful because of the large 

discrepancies found between satellite observations and ground based measurements (Table 4.2). 

 

5.2.1 Comparison of radiation sources. 

 
There were two sources of solar radiation measurements used in the analysis. The first source 

was from the Climate Handbook of Zimbabwe (1980) and the instruments used to measure the 

radiation were Gunni-Bellani spherical pyranometers calibrated against Moll pyranometers that 

are of higher accuracy.  This data was used in the derivation of mean monthly maps using Surfer 

computer program. The daily radiation dataset that was used in the weather data files of 

DSSAT4 in conjunction with temperature and rainfall data, was measured using the Sonago 

solarimeter network currently installed at the about eight stations around the country. These 

datasets were sourced from the Meteorological Services Department of Zimbabwe. 

 

Since the datasets from ground measurements were based on different observed periods, a 

comparison was done between them to ascertain their spatial and temporal consistency The 

results of the comparison of the two data sources from ground-based instruments showed 

insignificant differences as indicated earlier (Table 5.1).  
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Table 5.1:  Comparison of solar radiation data from surface observations for different 
periods and satellite observations: A:- surface data for 1990-2000 period; B:- surface 
data for 1951-1970; C:- satellite data for period 1961-1990 
Station (A)Ground based 

reference: 1990-

2000 (MJ/m2/d) 

(B)Ground 

based: 

1951-1970 

(MJ/m2/d) 

Comparison  

B/A X 100 

(%) 

(C)Satellite 

estimates:  

1961-1990 

(MJ/m2/d) 

Comparison  

C/A X 100 

(%) 

Beit-
bridge 

21.41 19.92 93 15.72 73 

Mount 
Darwin 

21.70 20.35 94 14.95 69 

Karoi 22.97 20.22 88 15.27 66 

Harare 
Belvedere 

18.37 20.13 110* 15.08 82 

Gweru 22.76 20.42 90 15.53 68 

Masvingo 21.15 20.00 95 15.37 73 

 

With the exception of Harare Belvedere (B/A = 110 %), the ground based data for the period 

1951 to 1971 was slightly lower than for the period 1990 to 2000 for all sites. The differences 

could possibly reflect a decrease in the mean cloud cover of the latter period to the earlier period 

or differences in instrumentation. The final outcome of this study is little affected from using 

either dataset. The earlier period data (1951-1971) was used solely for the production of mean 

monthly solar radiation maps for comparison with satellite based estimated averages. The 

averages for the period (1990-2000) were used in the DSSAT-CSM crop modeling exercise. 

The WeatherMan tool in DSSAT v4.0.2.0  is used for entering and analyzing data. The fairly 

large differences found between satellite estimates and ground based measurements, rendered 

the data (satellite) less useful for the modeling exercise, and was only used in the monthly 

comparisons. The simulated potential yield results of a modified environment under a 5 

MJ/m2/day reduction gives the approximate results one would obtain using current satellite 

estimates (an average 25 % decrease was used, but actual average percentage decrease obtained 

from Table 5.1 (C/A X 100 %) is 28.2 %). The results reflect the sensitivity of potential yield to 

errors in radiation measurements.  

 

 Therefore the available ground based observations of surface solar radiation datasets were 

adequate for the radiation characterization of the country as well as the modeling application. 

However, future validation of the satellite estimates for Zimbabwe is imperative, because while 

the old data set might appear reasonably useful now and for this type of limited study, it will not 

be adequate in applications that require more precision and accuracy. The earth’s radiation 

balance is likely to change under a changing climate scenario; hence there is a need to 

periodically update the radiation climate database.  
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Typically when one looks at the radiation variation on a monthly basis, it is noticed that winter 

months have the least difference between ground based measurements and satellite estimates 

because of the lack of significant cloud cover (Figure 5.1). The sensitivity of surface solar 

radiation to cloud types and cover, was also highlighted in the experiments carried out by 

Gautier et al., (1998). 
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Figure 5.1 Graphical representation of the percentage difference of satellite based 

radiation to ground based measurements.  

 

This relationship between solar radiation and cloud cover is important for crop modeling as well 

as climate change studies because of the link between cloud cover and hours of bright sunshine.  

 

5.2.2 Solar radiation and crop yield 

Solar radiation at the surface is one of the major determinants of crop yield. When crop leaves 

absorb sunlight falling on them, the energy gained is used to drive the photosynthesis engine for 

the generation of plant tissue among other uses. Therefore the period when this energy is 

required by the crop should coincide with the period of maximum insolation to yield the best 

results. 
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The variations in mean monthly radiation for different stations in Zimbabwe were calculated for 

the period 1991 to 2000 (Figure 5.2). All the radiation curves except the Beitbridge curve depict 

a sinusoidal curve with two peaks in an annual cycle. One peak, occurred approximately in 

February and the other peak occurred in October. The radiation minima occurred in June/July. 

Beitbridge peaks only in December/January because of its latitudinal position (22º 13’S); the 

sun is overhead once a year. 
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Figure 5.2 Mean monthly solar radiation cycle at different sites 

 

This radiation cycle is important for relatively short season crops, like sorghum that are 

sensitive to radiation at particular phenological stages (Woods, 2000). In the model simulation 

exercise involving these data, the results in chapter 4 indicate that the highest potential yield for 

sorghum was achieved when the crop was planted in January or September. Looking at the 

radiation trend, it is not difficult to understand why; the crop will grow under plenty of sunshine 

which is good for vegetative growth. However, if there is a reduction in radiation during this 

vegetative period due to excessive cloud cover, the biomass productivity will be reduced. 

Sugarcane on the other hand would not be affected the same way because of relatively long 

growing period (12 months growth cycle). Therefore radiation information should be taken into 

account particularly when planning for two crops per year, as would be the case for sweet 

sorghum to make it competitive with sugarcane. As far as Jatropha curcas plant is concerned, 

research is still going on to establish the relationship between crop yield and radiation 
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5.3 Potential Yield  
 

5.3.1 Introduction 
The simulation of potential yield was done using the Introductory to Cropping Simulation 

(ICSim) tool of DSSAT4. The Cropping Simulation Model gives two results, (1) the crop yield 

under the existing climatic conditions and (2) automatically computes the potential yield. For 

the purposes of this work, the main focus was on potential yield in terms of biomass production 

and its sensitivity to environmental modifications as well as different varieties (sweet sorghum 

versus grain sorghum). That means the water and nutrition supply are considered non-limiting, 

i.e. they are assumed adequate for the needs of the plant throughout the growing period. The 

designers of the DSSAT4 program had the additional notion of calculating what is known as 

yield gap when comparing the yields given under the two scenarios described above, but this is 

not done in the present study since the current focus is on potential yield. Furthermore, 

simulation was done on two different varieties of sorghum; grain sorghum (Pioneer 8333) and 

sweet sorghum (Keller). The potential yields obtained under existing climatic conditions are the 

principal reference yield of all the other simulations. 

 

5.3.2 Potential yield under existing environmental conditions at different sites 
In the comparisons of potential yields under existing environmental conditions (Figure 4.3), for 

the sweet sorghum variety Keller, the highest yield was observed in Karoi and Masvingo (12803 

kg/ha), Natural region IIa and Natural Region IV respectively. The lowest potential yield was 

obtained in Buffalo Range (10505 kg/ha), Natural Region V. Incidentally, Harare (Belvedere) 

which falls under Natural Region IIa (12301 kg/ha) had a relatively low yield compared to its 

counterpart within the same region, Karoi. When these potential yield results are combined with 

the radiation results, it is apparent that the areas with the highest radiation values tend to 

produce a higher yield. For example Karoi has the highest annual radiation (Figure 5.2) has a 

correspondingly high potential yield. The only exception is Harare (Belvedere) that has the 

lowest radiation figures but produce a higher yield than that of Buffalo Range (represented by 

Beitbridge in Figure 5.2). The influence of temperature on potential yield is an added factor to 

the influence of radiation. Obviously there is a more complex interaction between temperature 

and radiation on crop yield that can not be explained through these simple simulations; field 

experiments are required to verify the results. 

 

5.3.3 Potential Yield under a Modified Environment 

 The ranking order of relative potential yields of sites from highest to lowest is unchanged even 

when the environment is altered or modified; Karoi still produces a relatively high yield 

compared to the other sites under a temperature or radiation modified climate and Buffalo 

Range produces the lowest result of the four sites. 
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The conclusion to be drawn from these results is that Natural Region IIa and Natural Region IV 

have a greater potential of producing sweet sorghum, of the Keller variety, from the sites 

considered in this study. Further simulations complimented by field experiments are necessary 

to have a complete assessment of the whole country. Woods et al., (2004) had encouraging 

results from field trials with the Keller variety over the SE of Zimbabwe. 

 

5.3.4 Potential yield versus length of growing period (LGP)  

Normally the length of the growing period should be proportional to the amount of above 

ground fresh matter produced (Figure 5.3), for the simple reason that there is more time for 

exposure to sunlight and hence enhanced photosynthesis leading to accumulation of dry matter. 

However, the results obtained in this study did not produce convincing evidence of this 

hypothesis. This aspect was borne out by the comparison of the arbitrary comparison tool 

‘productivity rate’ (PR). A comparison of the potential yield versus the length of the growing 

period under existing climate, reveals that the Masvingo site has a shorter growing period (by 

more than a month!) compared to Karoi for the same yield. This leads to a high productivity rate 

for Masvingo relative to Karoi, and this aspect is repeated for the other sites as well, particularly 

Buffalo Range, where the low overall potential yield is compensated by a high productivity rate 

(Table 4.5) 

 

From these results, depending on the management strategy, a decision to cultivate a certain fuel 

crop in a suitable location should not just consider the potential yield in isolation but should 

factor in the length of the growing period. In related studies contacted in the SE of Zimbabwe 

by Woods (2000), the complex relationship between planting date, yield and length of growing 

period were captured in Figure 5.3. There is fairly good agreement between the results of this 

particular study and the work done by Woods (2000).     
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Figure 5.3 The influence of Planting Date on Yield and Length of Growing Period of 

Sweet Sorghum (Source: Woods, 2000) 

 

Figure 5.4 summaries the productivity rate (PR) for all sites under different environmental 

conditions. The Masvingo site has the highest PR of the four sites under existing climatic 

conditions as well as under modified environmental conditions, followed by Karoi then Buffalo 

Range. Harare has the lowest PR of all sites under any condition. However, most noticeable is 

that the PR for all sites is highest under a 2ºC degree increase in maximum temperature. This 

implies that temperature influence on PR dominates other factors under consideration here. 

 

Current trends in sorghum crop cultivation in the country have targeted the low rainfall regions 

of Lowveld and Masvingo as a drought mitigation strategy; in view of these results, Karoi could 

in future play a bigger role in sorghum production as a cash crop for ethanol production.  
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 Figure 5.4: Productivity rate (PR) at different sites under different environmental 

conditions. 

 

From a management point of view the length of the growing period for Keller over Karoi is 5 to 

6 months whereas it takes about 3 to 4 months for maturity to be reached over Masvingo site. In 

view of this information, Masvingo site could be more favourable than Karoi when it comes to 

comparison of period of maturity in relation to final potential yield. The difference in length of 

growing period will need to be verified by field experiments before investment into the bio-fuel 

industry with sweet sorghum as a feedstock is encouraged. 

 

 Therefore more information is needed by the farmer to make an informed decision that takes 

into account all the pertinent variables in the cultivation of a fuel crop. The current discussion is 

only focusing on the potential yield and the climatic variables but investigations need to be 

widened, more importantly the cost variable will need to be included in any investment decision 

on the production of bio-ethanol. Although a brief overview of the economics of production of 

bio-fuel is given at the end of this chapter, it is not a major theme of this thesis. 

 
 
 
 

 

0

5

10 

15 

20 

25 

30 

35 

40 

45 

50 

karoi masvingo harare buf_range

Site

 

ext_climate +2degC -5MJm2



 85

5.4 Sensitivity tests discussion 
 
The preceding discussion has focused on the results obtained of potential biomass production 

under current conditions. However, the figures portrayed have also included potential biomass 

production obtained under modified environmental conditions (Section 5.2.3). The picture that 

emerges suggests that potential yield will generally decrease under the modification scenarios 

considered here. The reasons for the decrease in potential yield can only be assumed without 

experimental results to validate model simulated results. In the case for temperature, an increase 

in the maximum temperature can cause a decrease in potential yield if the optimum threshold 

temperature for the crop has been exceeded. Similarly, a reduction in surface solar radiation 

reduces the photosynthetic processes and hence reduces carbon assimilation. This information 

helps researchers who are interested in the future agricultural scenarios under climate change. 

 

5.4.1 Different varieties compared 

The sensitivity test on the sorghum varieties compared a sweet variety to a grain variety. The 

comparison of the potential yields was done for Keller (sweet variety) and Pioneer 8333 (grain 

variety) for the Karoi site only. It is assumed other sites will produce more or less the same 

trends in the differences between the varieties. 

 

The comparison of the two sorghum varieties Pioneer 8333 (grain) and Keller (sweet) indicates 

that the sweet variety has a higher potential yield in Karoi under existing climate conditions 

except for the crop planted in July. Otherwise, the grain variety gives a higher yield potential 

under most of the modified environments. However there is no statistically significant 

difference in the biomass production as found out earlier (R2 = 0.8619 and the z-score is 0.098) 

 

 In conclusion, the simulations on varieties suggest that the potential biomass production is 

independent on the sorghum variety. What is important to note is that during the simulation of 

the sweet sorghum variety Keller, it was necessary to modify the crop coefficients that drive the 

crop growth and development within the model. It is through these modifications that much of 

the difference in potential yield can be explained. Table 5.2 below summaries the main crop 

coefficients used for the two sorghum varieties. 
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Table 5.2 Summary of the sorghum varieties crop coefficients used in DSSAT v4.0.2.0 

(Hoogenboom et al., 2003; for Pioneer 8333 and Woods, 2000; personal communication for 

Keller) 

Variety  P1 P20 P2R P5 G1 G2 PHINT

Pioneer 8333 325.0 15.50 30.0 540.0 11.0 6.0 49.0 

Keller 495.0 11.80 30.0 540.0 0.0 6.0 49.0 

 

Key: 

 P1: Thermal time from seeding emergence to the end of the juvenile phase  (expressed 

in degree days above a base temperature of 8ºC) during which the plant is not 

responsive to changes in photoperiod.  

 P20: Critical photoperiod or the longest day length (hours) at which development occurs 

at a maximum rate. At values higher than P20, the rate of development is reduced. 

 P2R: Extent to which phasic development leading to panicle initiation (expressed in 

degree day) is delayed for each hour increase in photoperiod above P20. 

 P5: Thermal time (degree days above a base temperature 8ºC) from beginning of grain 

filling (3-4 days after flowering) to physiological maturity. 

 G1: Scaler for relative leaf size. 

 G2: Scaler for the partitioning of assimilates to the panicle (head). 

 PHINT: Phylochron interval; interval in thermal time (degree days) between successive 

leaf tip appearance.  
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5.5 Conversion efficiency of biomass yield to bio-ethanol 
 

In the final analysis, what is required is the energy carrier in the form of liquid fuel as bio-

ethanol or bio-diesel. The current study was comparing the potential of the three fuel crops, 

sweet sorghum, sugarcane and jatropha.  

 

5.5.1 Conversion efficiency of sweet sorghum 

While it has not been possible to simulate potential productivities for all the crops using the 

available weather data, some estimates are available in literature that have been verified by field 

trials (Woods, 2000) of the conversion efficiencies of the different fuel crops. It is worth noting 

that the simulated potential yields for sweet sorghum in this study are less than theoretical yields 

obtained elsewhere (Woods et al., 2004; Marcello et al., 1997; Grassi, 1996).  However, 

Kulkarmi et al., (1997) gave results of yields obtained in China as 5.25 tons/grains/y ha, and 

15.7 ton ligno-cell/y ha and 7.3 ton/sugar/y ha; for South Central Europe, the yield was 5 ton 

grains/y ha 5 ton ligno-cell/y ha and 8ton/sugar/y ha. These results are generally of the same 

order of magnitude as those obtained in the current simulated potential yields. Woods (2000) 

used an average sweet sorghum potential yield of 60 ton/ha in calculating the bio-ethanol 

production, whereas in the simulated results in this study, the highest potential yield was 

slightly above 12 t/ha. Daliannis (1997) found stem dry matter yields of about 30 t/ha for 

European countries Greece, south Italy, and south Spain. Kulkarmi et al., (1997) also came up 

with a theoretical yield of about 5 600 liters per hectare for sweet sorghum that is comparable 

with Woods’ estimate.  

 

 Another critical point to bear in mind is that the production of ethanol from sugarcane (12 

months growing cycle) is about twice that from sweet sorghum based on  a 120 days growing 

cycle. Therefore, for sweet sorghum to compete with sugarcane in terms of productivity, at least 

two crops will have to be grown in one year.  

 

5.5.2 Potential Yield of Sugar Cane 

Unfortunately in this project, it has not been possible to simulate sugarcane potential yields 

using the DSSAT version 4.0.2.0 because the crop model is still undergoing modifications to 

change it from the previous DOS version (DSSAT version 3.5) to the Windows version i.e. 

DSSAT4. Hence, the author relied mainly on data from literature sources particularly work 

previously done by Woods (2000) in the southeast of Zimbabwe. In addition some data is 

available from DSSAT v3.5 experimental work done in South Africa.  These data should serve 

to highlight, though marginally, the significant aspects of sugarcane potential yields in 

Zimbabwe. 
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5.5.2.1 Productivity of sugarcane in Zimbabwe  

The final sugar yield on any project depends on cane tonnage, sugar content of the cane and on 

the cane quality. It is important that the cane is harvested at the most suitable moment when the 

economic optimum of recoverable sugar per area is reached. Cane tonnage at harvest can vary 

between 50 and 150 ton/ha, which depends particularly on the length of the total growing period 

and on whether it is a ratoon or a plant crop. In Zimbabwe yields of 120 ton/ha are normal but 

higher yields have been achieved under experimental conditions (personal communication, 

Triangle Ltd.). 

 

Good yields in the humid tropics where the crop is totally rain fed, range between 70 to 100 

ton/ha cane compared to 110 to 150 ton/ha in the dry tropics and subtropics under irrigation 

(Woods, 2000). The water utilization efficiency for harvested yield for cane containing 80 % 

moisture is 5 to 8 (kg/m3) and for sucrose containing no moisture 0.6 to 1.0 kg/m3.  

 

Woods, (2000) illustrated the different components and the variation between species of 

sugarcane and sweet sorghum by analysis of above ground fresh matter composition.  Figure 5.5 

shows how the fresh weight mass, at harvest, is partitioned between the major products, water, 

sugars, stem fibre, tops and leaves and dissolved solids. Figure 5.6 shows the variations in the 

partitioning rate for the components indicated. Most noticeable is the sharp increase in fibre 

partitioning after the peak in sugar accumulation. This fact is critical when considering the 

timing of harvesting and crushing the cane for the production of ethanol and use of by products 

like fibre. 
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Figure 5.5  Above ground fresh matter composition for sweet sorghum and sugarcane 
(Source: Woods, 2000) 

Woods in his work on sugarcane composition noted that crop quality varied significantly 

throughout the season as shown by Figure 5.6. 

 
Figure 5.6 Variations in the rate of partitioning for the various components (Source: 
Woods, 2000) 
 [ERF is estimated recoverable fermentables; ERC is estimated recoverable crystals] 
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Figure 5.6 shows the trends in sugar and fibre content of delivered sugarcane stems throughout 

the harvesting season (1998) at Triangle (Wenman, 1999). The graph information is useful for 

management purposes; for example when to harvest a sugarcane crop for optimum recoverable 

fermentables or sugar crystals. 

 

5.5.2.2. Comparative Productivity in South Africa 

The results shown in Table 5.3 were extracted from the DSSAT version 3.5 Crop simulation for 

sugarcane for an experiment carried out in South Africa in 1989. 

 

Table 5.3 Simulated and measured results for a South African experiment 

Variable  Predicted Measured

Sucrose yield (kg/ha) 21531 16800 

Harvest Index 55.0 48.0 

Biomass yield 57760 - 

Leaf Area Index 3.0 2.6 

  

Other details pertaining to above experiment: 

 Planting date – June 1, 1989 

 Row spacing – 120.0 cm 

 Plant density – 13.3 per m2 

 Cultivar – NCo 376  
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5.6 Conversion efficiency to bio-fuel for the different fuel crops 
 

Sugarcane has a theoretical conversion efficiency of 10 350 litres per hectare or 600 litres of 

anyhydrous  ethanol (EtOH) per ton of sugar. It would appear that the production of ethanol 

from sugarcane is almost double the productivity from sweet sorghum (about 5 746 litres per 

hectare). But more importantly is the fact that sugarcane takes 12 months to mature whereas 

sweet sorghum matures in about 120 days (Zimbabwe trials) depending on variety. That means 

theoretically it is possible and desirable to grow at least two sweet sorghum crops in one 

sugarcane season to ensure its competitiveness with sugarcane ethanol yields. 

 

5.6.1 Potential Yield of Jatropha  
The potential yield of jatropha used in this work is mostly from literature and some experiments 

that were done in Zimbabwe in the early nineties. In the literature quoted from the Ministry of 

Science and Technology (Cultivation and Management of Jatropha Curcas, August, 2005), it 

was estimated a potential productivity of about 5 000 kg of dry seed per hectare per annum 

could be obtained under optimal conditions. However, the productivity varies from the date of 

planting to the year of maturity as indicated by the summary table (Table 5.4): 

 

Table 5.4 Potential seed productivity of Jatropha curcas according to maturity.  

Source: Ministry of Science and Technology, 2005 (Zimbabwe). 

PRODUCTIVITY (kg/ha/year 

Year Fruit Seed 

1 610.7 91.5 

2 3 000 450.0 

3 18 666.7 2 800.0 

4 26 666.7 4 000.0 

5 33 333.3 5 000.0 

 

 

The productivity of the jatropha plant is dependent on management practices, for example at Art 

Farm, near Harare (Highveld) wider spacing gave higher yields (2tons/ha) than close spacing 

(0.5 ton/ha) in the same year. Unfortunately the spacing was not specified. Soil types; were also 

found to influence plant yield. In relatively poor soils the yields are about 1 kg of seed per tree. 

In lateritic soils the yields are 0.75 kg to 1.0 kg per tree. Under low input conditions (no 

fertilizer, minimal weeding and pest control), yields can range between 3 000 – 5 000 kg per 

hectare (Ministry of Science and Technology, 2005). Therefore while the Jatropha curcas plant 

is capable of surviving under marginal soil and climatic conditions, its yield is affected by them. 

In Zimbabwe, jatropha is mostly grown as a hedge in Mutoko and Mhondoro. 
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5.6.2 Conversion efficiency of the jatropha seed oil to biediesel  

 In a case study by Jeremy Woods (Rosillo-Calle et al., 2006), a simple feasibility assessment of 

producing bio-diesel from Jatropha curcas was done. The seeds are assumed to comprise 65 % 

of the total mass of the dry fruit and the   seeds contain 19.0 % oil and 4.7 % polyphenol. 

Planting densities and yields as already mentioned are highly site-specific. Woods (2006) 

assumed 2500 plants per hectare can be planted and each plant can produce at least 1 kg of 

Jatropha fruit annually – then the total fruit mass obtained per hectare = 2500 kg. Therefore: 

 Seed mass = 65 % of 2500 = 1625 kg 

 Assuming a 60 % oil content of the seed (Zimbabwe trials assume 35% seed oil 

content), the total amount of oil that can be recovered from the Jatropha fruit will be 

975 kg/ha = 36855 MJ/ha 

 The extraction efficiency of oil expellers is approximately 60 % so the final 

recoverable oil yield is calculated as 22000 MJ/ha (585 kg oil/ha)   

 

Given that the development status of jatropha as a commercial crop is currently at a very early 

stage, great care should be taken in evaluating potential yields that could be obtained. The 

results obtained by Woods would differ from samples from trials conducted in Zimbabwe 

through the production assumptions inherent in the calculations. 

 

5.6.3 Comparison of conversion efficiencies of the different fuel crops 
The potential energy conversion efficiencies of the three fuel crops are shown below (Table 

5.5). The potential bio-fuel yield to be expected from the different fuel crops are useful as a 

decision making tool on what crop to invest in for a sustainable bio-fuel industry. However, 

these figures do not include the production costs and hence it is necessary to factor in the 

element of costs before establishment of a bio-fuel industry.  

 
Table 5.5 Potential conversion efficiencies of the different fuel crops 
Feedstock Theoretical yield Source 

Sweet sorghum (Keller 

cultivar) 

5 746 litres per hectare Woods (2000) 

Sugarcane 10 350 litres per hectare Woods (2000) 

Jatropha curcas plant 585 kg oil per hectare Rosillo-Calle et al.,(2006) 
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5.7 Economics of Bio-Fuel Production 
 

5.7.1 Introduction 
The discussion of bio-fuel production cannot be limited to the issues of production and 

processing alone but needs an overall evaluation of the economic viability of the whole 

production chain. Such factors like availability of land, input costs, labour costs, transport costs, 

processing infrastructure and marketing have to be considered in planning for the establishment 

of a bio-fuel industry. In practice, this entails a ‘cost-benefit’ analysis that systematically 

reviews the complete chain from crop production through harvesting and transport to processing 

of the bio-fuels until marketing.     

 

The major activities that need to be considered when evaluating the economics of bio-fuels are:-  

 Land Preparation 

 Planting 

 Crop growth and Management 

 Harvesting 

 Loading 

 Transport 

 Unloading 

 Juice extraction 

 Conversion 

 Ethanol  

 

Woods (2000) in his study on the integration of sweet sorghum-sugarcane mix for bio-energy 

and crystalline sugar production identified factors or methods of optimizing bio-energy 

production, for example: 

 Year round agricultural production for efficient utilization of land, labour and 

equipment. 

 Increasing the efficiency with which biomass is converted to bio-fuels. 

 Minimizing potential problems, primarily logistical. 

 Maximizing potential benefits (environmental, economic, social). 

 

The overall aim is to enhance the economic viability of the bio-energy project. In the cultivation 

of sweet sorghum and sugar cane, the final outputs (bio-fuel) of the production chain are closely 

coupled to the agronomic productivity of biomass per unit area, with the post-harvest processing 

simply defining the efficiency with which the products are isolated from the ‘residues’.  
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5.7.2 Land Availability 

The viability of bio-fuel production systems to transport costs and therefore distances is very 

sensitive. Therefore a detailed evaluation of land availability is a necessary prerequisite for any 

future bio-fuel project. In Zimbabwe, the assumption is that land for bio fuel crop cultivation is 

readily available but there are no official figures available to verify this assertion. Studies will 

need to be carried out identify suitable areas with the most suitable climatic conditions. These 

studies should link availability of land and the proximity to processing plants in view of the 

transport costs that will be incurred. 

 

5.7.3 Productivity of the fuel crops 

As discussed earlier, while ‘potential’ yield was the main goal of this research, the ‘actual’ yield 

under existing climatic conditions need to be assessed for the different regions of Zimbabwe 

before final establishment of a bio-fuel industry. The requirements of the different fuel crops 

and their suitability in the various regions of the country are a necessary prerequisite in the 

planning process. For example the availability of water can be a limiting factor for cultivation of 

sugarcane in some parts of Zimbabwe, particularly in areas like Masvingo (Region IV) and 

Buffalo Range (Region V) where the highest yields are forecast by model simulation under non-

limiting conditions. It has already been established through various trials worldwide that sweet 

sorghum production will require significantly less water per litre of ethanol production than 

sugarcane i.e. 1.4 and 2.7 m3l-1 EtOH for sweet sorghum and sugarcane derived ethanol 

production respectively (Woods, 2000).  

 

Representative (realistic) yields for both sweet sorghum and sugarcane with irrigation were 

given as, 60 tfab ha-1 (46 tstems) yields for sweet sorghum over 4 months growth period, and 150 

tfab ha-1 (115 tstems) for sugarcane over a 12 months growth period.  

 

5.7.4 Fibre Production 

To improve the utility of sweet sorghum, fibre produced as residue (by product) from the 

crushing process during extraction of the fermentable sugars has a number of potential uses: 

• Can be burnt to provide stem for electricity generation to run the mills for the sugar 

crystallization process. Can also be used in the fermentation and distillation for ethanol 

production. 

• Leaves are also a source of energy – but it is important to note that the primary sink for 

nitrogen and other nutrients is the leaves and excessive removal (> 50% of total leaf 

biomass) may result in decreased soil fertility (Bransbeck and Cortez in press; Woods 

et al., 1994) 
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5.7.5 Energy Balance 

For a bio-fuel production system to be successful it must demonstrate strongly positive energy 

balance i.e. the energy content of the bio-fuels produced must be greater than the energy 

required to produce the bio- fuels (dominated by fossil fuel). In his trials Woods (2000) 

demonstrated a positive ration of 1.9 for the sugarcane-based production of ethanol, electricity, 

and crystalline sugar at Triangle Ltd. A predicted energy balance for ethanol and electricity only 

from both sugarcane and sweet sorghum of 3.3 and 4.7 was calculated.  

 

In common with all biomass crops, both the energy balance and the economic viability of the 

system are very sensitive to the transport component. For example, for sweet sorghum with an 

average transport distance of 15 km (one way) about one third of the total energy required to 

produce and deliver the crop to the mill is consumed by haulage. The two largest energy 

consumers for both sweet sorghum and sugarcane are the fertilizers and transport inputs 

requiring approximately 70 % of the total inputs. Transport is the greatest single energy input 

(Figure 5.7).   

fertilizer
34%

transport
39%

tillage
16%

irrigation
8%

others
3%

Figure 5.7 The various energy consumers in the production cycle of sweet 

sorghum from trials in the SE of Zimbabwe (adapted from Woods, 2000) 

Evaluating the overall economics of bio-fuels production system at the micro-level is beyond 

the scope of this work.  
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5.8 A Market for Ethanol  
 

The overriding assumption for the production of bio-fuel is that there will be a market for the 

commodity. The ethanol should be able to sell competitively against mineral fuel and this brings 

us to the assumed costs per unit volume that would make it cost effective. Sorghum-derived 

ethanol would be competitive with conventional gasoline if produced at a cost below US$0.80 

per litre at current (2007) prices. There are two possible markets for the bio-fuel produced, 

internal and external. In view of the national energy security concerns highlighted at the 

beginning, the domestic market should form the backbone of the overall ethanol market. The 

World Markets, while they hold the potential to earn the country foreign currency, could prove 

to be less organized and less certain given the novelty of trading in bio-energy (Rosillo-Calle et 

al., 2006)  

 

The increased demand for fuel ethanol has resulted almost entirely from the fuel alcohol 

programs of Brazil, USA and more recently France, who have adopted these programs in 

response to environmental and rural development pressures. 

 

Given the recent concerns over climate change and the need to reduce green house gases 

(GHGs), where a good energy balance can be demonstrated in bio-ethanol production(>2), may 

increase demand significantly over the next decades.  

 

5.9 Clean development mechanism (CDM) of the Kyoto Protocol 1997)  
 

Lastly, in the assessment of the economic viability of the production of bio-ethanol or bio-

diesel, it is important (especially for developing countries) to consider the impact of the “Clean 

Development Mechanism” (CDM) to the UNFCCC.  This mechanism was crafted at the Kyoto 

Protocol (1997) as one of the ways in which developed countries who are Party to the 

Convention are obliged to cut greenhouse gas emissions by 5% for the period 2008 to 2012 of 

the 2000 emissions baseline can reduce their emissions. The developed countries are 

encouraged to engage developing countries (non Annex 1 Parties) who are not obliged to reduce 

greenhouse gas emissions through ‘clean’ technology transfer projects, whereby it will be 

proven that by adopting such measures, the host country’s assumed reduction in emissions 

(quantified in equivalent CO2 emissions) will be credited to the donor country for qualification 

in their reduction targets. This facility if adopted  by African countries (Zimbabwe included) 

could offset the production costs of bio-fuel production and make it a profitable investment. 

Rural communities would stand to gain from the cultivation of fuel crops as a cash crop if 

properly managed. 
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CHAPTER 6: CONCLUSION  
 

6.1 Introduction 
 
The main aim of this study was to assess the agro-climatic potential of fuel crops in Zimbabwe. 

This was done through simulation of the potential yield of sweet sorghum,  using the DSSAT 

version 4.0 Crop Simulation Model under existing climatic conditions in Zimbabwe.. The 

potential yields for Sugarcane and Jatropha were obtained from literature sources. 

 

The outcomes of the research effort were two fold; (1) revised surface solar radiation maps 

using satellite data and (2) simulation of potential yield of sweet sorghum variety Keller. 

6.2 Revised radiation maps 
 

The outcome of revised solar radiation maps was not successful due to the large differences (> 

20 %) that were found between satellite surface solar radiation observations and ground based 

measurements.  However, the potential of using satellite data for radiation measurements 

remains a feasible proposition and better option given the few ground observation network for 

radiation currently in Zimbabwe. Research work to validate the satellite data with ground based 

data is a necessary prerequisite before this source of data can be relied upon. 

6.3 Simulated potential biomass production 
 

The simulated potential biomass production for sweet sorghum (Keller) were found to be 

generally high for Karoi site (Natural Region IIa) and Masvingo (Natural Region IV). Although 

yields obtained over Buffalo Range were found to be relatively low, the productivity rate for the 

area was found to be quite high, more than over Karoi. High productivities for the sweet 

sorghum fuel crop were also linked to date of planting, with generally low yields for crops 

planted in winter. However, for the sugarcane and jatropha fuel crops, planting date is only 

critical for young plants susceptible to frost.   

 

6.3.1 Sensitivity of sorghum yield to environmental changes. 

Potential yields were found to decrease generally for the environmental changes simulated; (i) a 

maximum temperature rise of 2 ºC and (ii) reduction in surface solar radiation of 5 MJ/m2/day. 

Potential yields also vary between varieties, but not significantly, as exemplified by the two 

sorghum varieties; Keller (sweet variety) and Pioneer 8333 (grain variety). 

 

In conclusion, the results are not an end in themselves but a means to an end. The debate of bio-

fuel production is quite involved linking diverse scientific disciplines; crop science, modeling, 
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GIS, agro-technology transfer, economics, Trade, Power generation, vehicle engine 

specification, climate change among others. Results of the study and other literature sources 

suggest that the climate of Zimbabwe is suited to the cultivation of fuel crops. Logistics of land 

availability, level of mechanization, infrastructure development and transportation have 

implications on the economic viability of bio-fuel and shall need to be considered in any future 

plans to invest in the production of bio-fuel for the transport sector. Furthermore, the by-

products of the processing chain are an important factor in the economic equation of bio-fuel 

production. And so is the Market (internal and external) which will ultimately determine the 

viability of the bio-energy industry. 

 

The Agro-technology Integrated Package (AIP) developed by Woods (2000) can factor in not 

only the crop modeling but the influence of introducing novel technology in the production 

system. Further development of the model could provide a useful tool in evaluating the 

economic viability of the bio-fuel production in Zimbabwe, particularly when using sweet 

sorghum or sugarcane as feedstock. 
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6.4 Recommendations 
 

The establishment of a bio-fuel industry is imperative for the sustainability of our national 

development goals as well as our energy security concerns. National policy on bio-fuels and 

their sustainable development is needed to provide a legal instrument for investment. 

 

The establishment of a national Bio-fuel R & D unit involving stakeholders to spearhead the 

development of a Bio-energy Industry in Zimbabwe would be ideal. Among its mandate, the 

task force could look atamong other things; 

 Suitable crops 

 Suitable land 

 Agricultural system identification 

 Vehicles use of ethanol blend 

 Complete agro-climatic mapping for fuel crops 

 Climate Change and CDM and 

 Satellite based radiation data 

6.5 Future Issues 
 

The application of crop simulation models has become more acceptable in the agricultural 

community during the last few years. For any application of a crop model, weather data is one 

of the key inputs. Hence the need for continuous weather data collection for all regions, a denser 

weather observation network with more frequently observed parameters. Automatic weather 

stations require that standards are developed for weather station equipment and sensors, 

installation and maintenance. There is also need for a uniform file format for storage and 

distribution of data. 

 

More importantly, there still seems a large gap between the products generated by crop 

simulation models and decision support systems, and the application of these products by the 

potential user, be they farmers, consultants, extension workers, to local or regional or national 

policy and decision makers.     
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