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Abstract 
 
The main objective of this study was to validate satellite-based rainfall estimation 
algorithms over the Limpopo Basin. The satellite rainfall estimation was done using 
four algorithms which combine infrared and passive microwave data. These are Climate 
Prediction Centre (CPC) Morphing (CMORPH), Multiple Precipitation Analysis 
(MPA), Precipitation Estimation Remotely Sensed Information using Neural Network 
(PERSIANN), and Naval Research Laboratory Blended (NRLB) methods. The 
validation was done by comparing satellite rainfall estimates with daily gauge data 
collected from Botswana, Mozambique, South Africa and Zimbabwe and three-daily 
moving area average rainfall with three-daily gauge data during 2005/2006 rainfall 
season. The gauge data were averaged into grid boxes of 0.25o x 0.25o resolution, using 
the inverse weighting interpolation method and the satellite estimates were developed 
using pixel by pixel at resolution of 0.25o. A surface mask was used over the Limpopo 
Basin. 
 
A variety of validation statistics were used to measure different aspects of each 
algorithm quality, based on contingency tables, and threshold rain of 1 mm/day. All the 
algorithms showed some skill in estimating rainfall with coefficients of determination 
ranging from 0.528 to 0.69. Both CMORPH and MPA algorithms exhibited high values 
of coefficient of determination. The values ranged from 0.5495 to 0.7767 by moving the 
daily area average rainfall to every three days. The statistical results showed that the 
CMORPH algorithm performed better than the other three methods. All satellite 
estimation methods overestimated rainfall with a positive bias which ranged from 0.2 to 
0.3. The mean absolute error and root-mean square error ranged from 2.5 – 5.2 and 5.7 
– 8.9 mm/day, respectively. The errors were caused by the sparse rain gauge network 
quality of rain gauge data and inadequacy in the satellite estimation algorithms. The 
Heidke skill score ranged from 0.19 to 0.28. 
 
The study concluded that CMORPH performed better than the other techniques 
although all methods overestimate rainfall in the region. The satellite rainfall estimation 
algorithms can perform better if there is improvement of rainfall measurement 
infrastructure and data exchange within the Limpopo Basin between the four countries. 
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Chapter 1  INTRODUCTION 

 
1.0 Introduction and General Context of the Problem 
 

Water is one of the most abundant substances in the earth-atmosphere system and it is 

fundamental to the sustenance of most human and animal life.  

 

In many parts of Africa, where the agriculture is rainfed, inadequate rainfall can mean 

crop failure and famine while too much rainfall can lead to devastating floods. For 

instance, Mozambique experienced drought conditions in 1998 and severe flooding in 

2000 and 2001 (Layberry et al., 2006). The floods of 2000 also affected Malawi, South 

Africa, and Zimbabwe, but in Mozambique the impact of the phenomenon was more 

severe than in other countries. About 700 hundred people were reported to have died, 

145 thousand hectares of various crops were washed away and some 90% of irrigation 

infrastructure were damaged or destroyed. The assessment carried out by World Bank 

indicated that the direct and indirect costs of damages amounted to 450 million United 

States dollars (International Reconstruction Conference, 2000). 

 

Determining the spatial and temporal distribution of rainfall is necessary for the 

management of water resources and for flood forecasting. It is also an essential 

component of any scientific investigation of the hydrologic cycle, the global water 

balance and large-scale global atmospheric modelling.  

 

Historically, the areal estimation of rainfall has been accomplished by use of rain 

gauges distributed over particular catchments (WMO, 1996). The rain gauge is a 

relatively simple instrument which samples the rain by capturing rain drops 

continuously over a fixed time interval. Rainfall amount is specified as the depth (mm) 

to which a flat horizontal impermeable surface would have been covered if no water 

were lost by run-off, evaporation or percolation.  

 

The major shortcoming of this instrumentation is that the measurement is only at certain 

points. It has been well documented that rainfall is highly spatial and temporal 

variability (Arkin and Janowiak, 1993). Although there are a vast number of rainfall 

gauges world-wide, they are not adequate to define the rainfall input for most needs. 
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According to WMO (1996), a representative gauge density is one gauge every 15 km2, a 

condition rarely met by most hydro-meteorological services. The result of this is that 

most rainfall events are not recorded especially in the Limpopo basin where most of the 

rainfall is convective. With a good network of rain gauges it is possible to map rainfall 

over small areas but this approach is not practical for large areas, remote land areas of 

the globe or for oceans. The quantitative estimation of precipitation is a problem of 

major importance, especially in the tropics due to the significant role of tropical 

precipitation in the global energy budget and the atmospheric general circulation 

(Jobard and Desbois, 1992). 

 

Although a conventional rain gauge network gives rainfall observations at a daily time 

scale, throughout much of the African continent the network is inadequate both in terms 

of spatial and temporal coverage, while radar, a remote sensing instrument, is generally 

not a feasible proposition due to cost and inadequate infrastructure (Grimes et al., 

2003). 

 

Recognizing the practical limitations of rain gauges, scientists have increasingly turned 

to remote sensing as a possible means for quantifying the rainfall input to the globe. It 

should be stressed, however, that remote sensing is at present, and will continue as a 

supplement to, rather than a replacement for, more traditional methods of rainfall 

assessment. The measurement of rainfall by rain gauges is fraught with some problems, 

but those relatively simple instruments will long continue to provide the data against 

which rainfall assessments by other means must be adjusted. Satellites measure an 

integral of space at a point in time. Visible and infrared techniques derive qualitative or 

quantitative estimates of rainfall from satellite imagery through indirect relationships 

between energy reflected by clouds (or cloud brightness temperatures) and measured 

precipitation. A number of methods have been developed and tested during the past 20 

years with a measured degree of success (WMO, 1996).  

 

Satellite-based rainfall estimation is needed to address issues such as rainfall 

occurrence, amount and distribution at all temporal scales for a number of applications 

in meteorology, climatology, hydrology and environmental sciences. 

 
In order to use these rainfall estimates appropriately it is essential to know of their 

accuracy and expected error characteristics. This is done by validating the satellite 
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precipitation estimates against “ground truth” from rain gauge and/or radar 

observations, but time and space scales have to be matched. 

 

1.1 Objectives 

1.1.1 Main objective 
 
The main objective of this study is to investigate the use of satellite rainfall estimation 

methods over the Limpopo River Basin. 

 

1.1.2 Specific objectives 
 
The specific objectives are: 
 

• to carry out a literature survey of existing methods of rainfall estimation using 

satellites;  

• to generate daily rainfall estimates over the Limpopo Basin using satellite-based 

rainfall estimation methods, and 

• to validate the satellite-based rainfall estimates over the Limpopo Basin. 

 

1.2 Potential Benefits of the Research 
 

The Limpopo basin stretches across Botswana, Mozambique, South Africa and 

Zimbabwe. Effective management of this basin is important for all countries. This has 

already been recognized by the creation of the Limpopo Commission between the 

countries to facilitate sustainable development within the basin. Natural events, such as 

droughts, floods have direct impacts on the economies of member countries. This 

interdependency is further recognized by creation of two Trans-frontier Game Parks 

between Mozambique, South Africa and Zimbabwe.  

 

The monitoring of rainfall over the Limpopo Basin is very important in order to prevent 

losses of flora and fauna due to floods and/or drought. Since the region is very large, the 

use of remote sensing to obtain rainfall estimation needs to be investigated. This will 

establish a critical foundation for the improved sustainable management of the basin.  
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1.3 Thesis Layout 
 
This thesis is composed of 5 chapters. Chapter 1 contains the introduction and relevant 

information on rainfall measurement problems, and alternative ways to overcome them. 

The chapter includes the main and specific objectives of the study together with the 

potential benefits of the research. Relevant background on meteorological satellites and 

literature review on satellite-based rainfall estimation methods are presented in Chapter 

2. Details of material and methods used in the study are described in Chapter 3. These 

include the study area, satellite data sources and processing, and the validation 

methodology. The discussion of the results is presented in Chapter 4. Finally, the 

conclusions and recommendations are outlined in Chapter 5. 
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Chapter 2  LITERATURE REVIEW 
 

2.0  Introduction  
 
A satellite is any object that orbits another object. Weather satellites are satellites that 

are primarily used to monitor earth's weather and climate. There are many operational 

meteorological satellites that can be used for monitoring the weather over different parts 

of the globe. The satellites have different spatial and temporal resolutions and provide a 

stream of invaluable data in support of operational meteorology and many other 

disciplines. In recent years, the applications of these satellites have grown far beyond 

the dreams of those who designed and operated the systems. One of the applications of 

weather satellites is the monitoring of precipitation. Several satellite precipitation 

algorithms have been developed to estimate rainfall from visible, thermal infrared (TIR) 

and microwave radiation using satellite imagery (Barrett, 1970).  

 

This chapter provides a background on meteorological satellites and a summary of 

various satellite-based rainfall estimation methods. 

 

2.1 Background on Meteorological Satellites  
 

Meteorological satellites measure radiation coming from the earth and its atmosphere. 

This radiation may be reflected solar radiation i.e. by the surface, clouds, water vapour 

and aerosols, or it may be terrestrial radiation emitted by the earth’s surface, atmosphere 

and clouds. The earth’s atmospheric gases are affected differently by different 

wavelengths of radiation. Meteorological satellites have been designed to take 

advantage of these responses to observe different aspects of the earth and its atmosphere 

(Harries, 2000). The radiometer is the instrument used to measure the intensity of the 

radiant energy received in a specific wavelength band. When the radiometer collects a 

certain amount of energy it registers a count, which is proportional to the intensity of the 

radiation received. The relationship between radiation and counts is established by the 

radiometer’s calibration. The area viewed by the radiometer is called a footprint and its 

total radiation is assigned to a pixel centred at the middle of the footprint. In order to 

build an image of earth of a reasonable size, a scanning system is employed to 

physically change the direction in which the radiometer is pointing. A complete image 
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is built up when all the pixels in the image have been assigned a value by the radiometer 

(Rao et al., 1990). 

 

There are two kinds of meteorological satellites, geostationary and polar-orbiting. 

Geostationary meteorological satellites orbit the equator at the same rate the earth spins 

and hence they remain at nearly an altitude of about 36000 km above one point on the 

equator. This position allows continuous monitoring of a specific region. Geostationary 

meteorological satellites are also important because they use a “real time” data system, 

meaning that the satellites transmit images to the receiving system on the ground as 

soon as the sensor takes the picture (Schmetz et al., 2002). Successive cloud 

photographs from these satellites can be put into a time-lapse movie sequence to show 

the cloud movement, dissipation, or development associated with weather fronts and 

storms. This information is a great help in forecasting the progress of large weather 

systems. The observation area of a geostationary satellite is limited within its field of 

view, and the information of its imagery is useful in the area between 70o N and 70o S 

(EUMETSAT, 1998). The main advantages of geostationary satellites are that they 

observe the earth from a fixed position above the equator and they can be used to 

monitor the change of meteorological phenomena including cloud motion of tropical 

cyclones and/or depressions at short time intervals.  

 

Polar-orbiting satellites closely parallel the earth’s meridional lines. These satellites 

pass over the north and south polar regions on each revolution. As the earth rotates to 

the east beneath the satellite, each pass monitors an area to the west of the previous 

pass. Eventually, the satellite covers the entire globe. Polar-orbiting satellites have the 

advantage of photographing clouds directly beneath them (EUMETSAT, 1998). Thus, 

they provide sharp pictures in polar regions, where photographs from a geostationary 

meteorological satellite are distorted because of the low angle at which the satellite 

“sees” this region. In any period of 24 hours each polar satellite can view the entire 

planet, once during daylight and once at night (Schmetz et al., 2002). Polar orbiters also 

circle the earth at a much lower altitude (about 850 km) than geostationary 

meteorological satellites and provide detailed photographic information about objects, 

such as violent storms and cloud systems (Ahrens, 2000). The polar satellites carry a 

much wider variety of instrumentation than the geostationary satellites and can observe 

the planet in far more details, but less frequency. 
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The whole globe can be effectively observed by the good/dense combination of 

observing system composed of both geostationary and polar orbiting meteorological 

satellites (Figure 2.1). The combination of the geostationary, polar orbiting and Tropical 

Rainfall Measuring Mission meteorological satellites makes up the space segment of the 

Global Observing System (GOS) under the World Weather Watch (WWW) program 

promoted by the World Meteorological Organization (WMO) (EUMETSAT, 1998).  

 

 
Figure 2.1: Global system of meteorological satellites in 2003. 

(Source: www.eumetsat.org, 2007) 
 
Advances in satellite-based remote sensing have enabled scientists to develop 

precipitation estimates having near-global coverage, thereby providing data for regions 

where ground-based networks are sparse or unavailable (Sorooshian et al., 2000). 

However, this advantage is offset by the indirect nature of the satellite observables (e.g., 

cloud-top reflectance or thermal radiance) which have then to be related to surface 

precipitation amount (Petty and Krajewski, 1996). 

 

In general, satellite-based precipitation estimation algorithms use information from two 

primary sources. The visible (VIS) and infrared (IR) channels from geosynchronous 

satellites are used to establish a relationship between cloud-top conditions and rainfall 

rates at the base of the cloud. This relationship can be developed at relatively high 

spatial (4 km x 4 km) and temporal resolution (30 minutes).  
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The first imaging sensors aboard meteorological satellites measured radiation in the VIS 

band (0.4 – 0.7 µm). VIS imagery generally offers the highest spatial resolution and 

provides a view of the earth that closely matches our senses (Stanley and Thomas, 

1995). Land, clouds, and ocean are easily discernible. The obvious limitation to VIS 

data is that they are available only from the sunlit portion of the earth, as effectively 

data is lost during night time. 

 

The IR channels are most often between 1 and 30 µm. The most common IR band for 

meteorological satellites is in the 10 – 12.5 µm window, in which the atmosphere is 

relatively transparent to radiation upwelling from the earth surface. When the word 

infrared is used alone to describe an image, it is nearly always in the 10 – 12.5 µm 

window rather than in another portion of the electromagnetic spectrum. IR radiation is 

related to the temperature of the emitting body and because of that the troposphere 

generally cools with night and it helps to interpret the atmospheric processes occurring 

within the scene. An important characteristic of the IR channels is their ability to 

provide images at night. This provides continuous coverage of cloud evolution over a 

full 24 – hour period (Stanley and Thomas, 1995). 

 

Microwave is an electromagnetic radiation having wavelengths between approximately 

1 x 103 µm and 1 x 106 µm (corresponding to 0.3 and 300-GHz frequency) bounded on 

the short wavelengths side by far infrared and on the long wavelength side by very high 

frequency radio waves. Passive systems operating at these wavelengths are sometimes 

called passive microwave systems. The microwave (MW) channels from low-orbiting 

satellite are used to more directly infer precipitation rates by penetrating the cloud, but a 

low-orbiting satellite can retrieve only one or two samples per day from one area. 

Microwave radiation is sensitive to an array of surface and atmospheric parameters, 

including precipitation, cloud water, water vapour, water droplets phase, soil moisture, 

surface temperature, atmospheric temperature and ocean surface wind speed. 

 

The relative strengths and weaknesses of various sources (Yilmaz et al., 2005) have 

been exploited in the development of algorithms that combine and make the best use of 

each source. 
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2.1.1 Meteosat Second Generation 
 

Meteosat Second Generation (MSG) is a European geostationary meteorological 
satellite launched in 22 August 2002 operated by European Organization for 
Exploitation of Meteorological Satellites (EUMETSAT). MSG is spin stabilized and 
capable of greatly enhanced earth observations (Schmetz et al., 2007). The satellite has 
a 12 – channel imager, known formally as the spinning enhanced visible and infrared 
imager (SEVIRI). This radiometer has eight spectral channels in the thermal infrared 
(TIR), three channels in the visible (VIS) spectrum and a broadband high resolution on 
visible channel (www.eumetsat.org). The eight TIR channels and three VIS channels 
have a sampling resolution of 3 km at nadir and scan the full disk of the earth 
(www.eumetsat.org). The high resolution VIS channel provides images with 1 km 
sampling at nadir. Data rate limitations confine the high-resolution VIS images to half 
the earth in an east-west direction (EUMETSAT, 2004). Table 2.1 shows characteristics 
of MSG 12 channels spectrum and the main observational applications. 
 

Table 2.1: Characteristics of Meteosat Second Generation  
 

Channel 

No 

Spectral 

Band (µm) 

Characteristics of 

spectral band (µm) 

 

Main observational application 

1 VIS0.6 0.56 – 0.71 Surface, clouds, wind fields 

2 VIS0.8 0.74 – 0.88 Surface, clouds, wind fields 

3 NIR1.6 1.50 – 1.78 Surface, cloud phase 

4 IR3.9 3.48 – 4.36 Surface, clouds, wind fields 

5 WV6.2 5.35 – 7.15 Water vapour, high level clouds, 

atmospheric instability 

6 WV7.3 6.85 – 7.85 Water vapour, atmospheric instability 

7 IR8.7 8.30 – 9.10 Surface, clouds, atmospheric instability 

8 IR9.66 9.38 – 9.94 Ozone 

9 IR10.8 9.80 – 11.80 Surface, clouds, wind fields, 

atmospheric instability 

10 IR12.0 11.00 – 13.00 Surface, clouds, atmospheric instability 

11 IR13.4 12.40 – 14.40 Cirrus cloud height, atmospheric 

instability 

12 HRV 0.40 – 1.10 Surface, clouds 

(Source: EUMETSAT, 1998) 
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2.2 Satellite-based Rainfall Estimation Methods 
 

Precipitation estimation methods are divided into four categories, based on whether they 

use the following data: 

i) visible and infrared,  

ii) passive microwave, 

iii) radar, and  

iv) combined infrared and microwave data.  

 

2.2.1 Visible and Infrared Techniques 
 
The development of visible (VIS) and infrared (IR) techniques has a long history and 

relies upon the relationship between cloud top characteristics and the rainfall falling 

from the cloud. Although this relationship can be somewhat tenuous many techniques 

have been developed. One of them is the geostationary operational environmental 

satellite (GOES) precipitation index (GPI) (Arkin and Meisner, 1987). The technique 

relies upon the fraction of cloud colder than 235 K in the IR with a fixed rain rate. This 

method provides a useful benchmark by which to assess other algorithms. More 

complex algorithms have been developed with varying degrees of success. Recent 

techniques have included the operational GOES IR rainfall estimation technique, or 

auto-estimator (Vicente et al., 1998, 2001) and the GOES multispectral rainfall 

algorithm (GMSRA) (Ba and Gruber, 2001). The auto-estimator utilises data from the 

GOES 10.7 µm channel through a regression against radar to generate rainfall estimates, 

while the GMSRA uses all five channels from the GOES instrument. Information 

provided by the growth rate of clouds and the spatial gradients is used to discriminate 

between rain clouds and non-raining cirrus clouds, with the GMSRA incorporating 

cloud-top particle information. 

 

Both techniques use an additional moisture correction factor to account for evaporation 

of rain falling from the clouds and not reaching the surface. According to Ba and Gruber 

(2001), correlations between the surface data and the auto-estimator were slightly less 

than that of the GPI but substantial improvements are seen in the bias and root-mean 

square error (RMSE). 
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Similar improvements were seen with the GMSRA not only in the RMSE and bias, but 

also the correlation (Vicente et al., 1998; Ba and Gruber, 2001).  

 

Visible and infrared techniques are grouped together because they share a common 

characteristic: the radiation does not penetrate through the cloud. VIS and IR techniques 

estimate precipitation falling from the bottom of the cloud based on radiation coming 

from the top and/ or the side of the cloud, depending on viewing geometry. According 

to Stanley and Thomas (1995), VIS and IR precipitation estimation schemes are 

necessarily indirect; a cloud’s brightness or equivalent blackness temperature may be 

related to the rain falling from it, but the raindrops themselves are not directly sensed. 

 

Early research using data from polar-orbiting satellites (prior to the era of geostationary 

satellites) pursued a wide range of avenues, including relating 3-hour precipitation 

probability to IR window brightness temperatures (Lethbridge, 1967), estimating daily 

rainfall from visible (Follansbee, 1973) and IR (Follansbee and Oliver, 1975) data, and 

estimating monthly rainfall based on nephanalyses (charts of cloud type and coverage) 

constructed from polar-orbiting satellite overpasses (Barrett, 1970). 

 

The advent of geostationary satellites made VIS/IR-based satellite precipitation 

estimates (SPEs) useful for operational evaluation of extreme-precipitation events, 

because the time interval involved (15 minutes at present) is much more compatible 

with the time scale of these events than the time interval between the overpasses of a 

polar-orbiting satellite (Scofield and Kuligowski, 2003). This dramatic increase in the 

availability of IR and VIS imagery was accompanied by a similarly dramatic increase in 

the number of techniques for retrieving precipitation estimates from these data. The 

more notable algorithms include the so-called Griffith–Woodley technique (Griffith et 

al., 1978); the GOES precipitation index (Arkin and Meisner, 1987), and the 

convective–stratiform technique (Adler and Negri, 1988). Many of these algorithms 

were initially developed for large time and space scales, but the scales have become 

finer as instrumentation has improved and the data-processing capacity has increased. 

 

In this vein, Scofield and Oliver (1977) pioneered the first operationally applied meso- 

scale storm algorithms that could be modified for a variety of extreme weather 

situations (Borneman, 1988). A fairly recent development has been the development of 

SPE algorithms that use artificial neural network techniques, which provide a flexible 
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framework for using information about cloud spatial characteristics instead of simply 

relying on brightness temperature values alone. 

 

The main weakness of VIS/IR-based techniques is that they infer the surface rainfall 

from the cloud-top characteristics. However, more direct measurements of rainfall are 

possible with algorithms utilizing passive microwave (PMW) data. Barrett and Martin 

(1981) divide visible and infrared techniques into five categories: cloud indexing, life 

history, bispectral, cloud model techniques and artificial neural networks. 

 

2.2.1.1 Cloud – indexing technique 
 

This technique was the first to be developed to estimate rainfall from space. It is based 

on the assumption that the probability of rainfall over a given area is related to the 

amount and type of cloudiness present over this area (Stanley and Thomas, 1995). The 

approach is, therefore, to perform a cloud structure analysis (objective and subjective) 

based on the definition of criteria relating cloudiness to a coefficient (or index) of 

precipitation. The general approach for cloud indexing methods involving infrared 

observations is to derive a relationship between a precipitation index (PI) and a function 

of the cloud surface area, S[Tb], associated with the background brightness temperature, 

Tb [K] colder than a given threshold temperature, To [K]. This relation is generally 

expressed as: 

 

 

[ ]∑+=
i

biio TSAAPI .                                                                          (2.1) 

for Tb < To 

where Ao (mm/h) and Ai (mm) are constants to be determined empirically. 

 

The most widely used of these algorithms is the GPI in which a rainfall amount of 3 mm 

is associated with each hour of cold cloud duration (CCD) [Ao = 0 mm, A1 = 3 mm/h in 

Eq. (2.1)]. For the GPI, the temperature threshold is normally taken as 235 K (Grimes et 

al., 2003). Although the GPI gives good results over tropical oceans, it is known to 

overestimate rainfall amounts over the land. The following problems are associated with 

the technique:  
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• the bias created by the potential presence of high-level non-precipitating clouds 

such as cirrus;  

• the satellite measurements represent instantaneous observations integrated over 

space while rain gauge observations are integrated over time at a given site, and  

• the relationships derived for a given region and period of time may not be 

applicable for a different region and season. 

 

Other problems include difficulties in defining rain/no rain boundaries and inability to 

cope with the rainfall patterns at the meso or local scales. 

 

One of the first methods of rainfall estimation using this principle was developed by 

Follansbee at National Earth Satellite Service (NESS) in the United States of America 

(USA).  It was the first method to use the National Oceanic and Atmospheric 

Administration (NOAA) polar-orbiting satellite data, and it assumes the following 

relationship: 

 

  oA
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                                                                  (2.2) 

 

where R is average rainfall across the broad study area for each 24 hour period; Ao is 

the area under study; A1, A2 and A3 are areas of Ao covered by the three most important 

types of rain-producing clouds (cumulonimbus, cumulus congestus, and nimbostratus); 

and K1; K2 and K3 are empirical coefficients. This method therefore only considered 

convective clouds in the low latitudes. To take into account the diurnal variability of 

cloud in rain in these low latitudes, the equation was simplified to: 

 

oA
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R 11=                                                                                 (2.3) 

 

Empirical rainfall intensity weights are applied to these percentages (Rao et al., 1990): 

1.0 for cumulonimbus, 0.25 for nimbostratus and 0.02 for cumulus congestus. Visible 

and infrared pictures are used to determine the cloud types and the percentages of the 

area occupied by each type. Local climatologies can be used to adapt the weighting 

factors to specific areas. 
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2.2.1.2 Bispectral techniques 
 
This techniques relies on the assumption that clouds that are bright in visible images are 

much more likely to precipitate than dark clouds because brightness is related to optical 

depth and thus to cloud thickness. Clouds that are cold in infrared images are more 

likely to precipitate than warm clouds because cold clouds have higher tops than warm 

clouds (Stanley and Thomas, 1995). Bispectral methods attempt to combine these rules 

by considering that clouds which have the best chance of raining are both cold and 

bright (Lethbridge, 1967). Lesser amounts (lower probabilities) of precipitation can be 

expressed from cold-but-dark clouds (cirrus) and bright-but-warm clouds (stratus). 

 

2.2.1.3 Life-history techniques 
 

The approach is based on the observation of a series of consecutive images obtained 

from a geostationary satellite (WMO, 1996). Life-history techniques take into account a 

cloud’s life cycle. As with most satellite techniques, life-history techniques go back to 

the earliest days when the necessary data became available. The interval between 

consecutive pictures must be short. An example is the Wisconsin method developed by 

Stout et al. (1979) who related volumetric rain rate (Rv) to cumulonimbus cloud area 

and areal change for estimation of tropical oceanic convective rainfall by the 

relationship: 

 

dt
dAaAaRv 10 +=                                                                             (2.4) 

 

where A is the cloud area at time t, and a0 and a1 are empirically determined 

coefficients. The basis of this method is the observation that plots of area and 

volumetric rain rate for particular clouds show similar shapes, but cloud area lags 

behind rainfall. Implied here is the condition that there exists a threshold which defines 

an area closely related to production of rain. The coefficients are normally calculated 

from combining measurements by least squares regression of satellite cloud area on 

radar volumetric rain rate, Barrett and Martin (1981). Problem with this method is how 

to get instantaneous real-time values of rainfall (Stout et al, 1979). Coefficients used in 

this method are given in Table 2.2. 
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Table 2.2: Regression Coefficients  
 

 
Band 

 
a0 (m/s)  

 
a1 (m) 

Visible 5.2 x 10-7 2.6 x 10-3 

Infrared 5.4 x 10-7 2.8 x 10-3 

(Source: Stanley and Thomas, 1995) 

 

It has been observed that the amount of precipitation associated with a given area cloud 

is also related to its stage of development, therefore, two clouds presenting the same 

aspect (from the VIS/IR images point of view) may produce different quantities of rain 

depending on whether they are growing or decaying (Rao et al., 1990).  

 

Using half-hourly GOES data in the global atmospheric research programme (GARP) 

Atlantic tropic experiment (GATE) area, Stout et al. (1979) adopted a threshold count 

of 172 to define rain clouds in the visible channel, and 160 for clouds with temperatures 

of about 250 K in the infrared (Stanley and Thomas, 1995). 

 

A widely applied precipitation-estimation technique is the Griffith-Woodley technique 

(Griffith et al., 1976; Woodley et al., 1980). This is a diagnostic method for estimating 

rainfall over large areas (104 to 105 km2) and for long time scales (12 to 24 hours) by the 

use of VIS and IR GOES imagery. Its algorithm is based on the knowledge that areas of 

active convection and rainfall, mainly in the tropics, are brighter (colder) than other 

areas in VIS (IR) pictures. The algorithm uses hourly imagery.  

 

To estimate the precipitation from single cloud, the cloud-defined as anything colder 

than 253 K – is first followed for its entire lifetime to determine its maximum areal 

extent. Clouds that merge or split are determined, and the resulting clouds are treated as 

new clouds. The major advantage of this method is that it can be automated, and the 

weakest part of the technique seems to be the process of tracking clouds throughout 

their lifetimes before assigning precipitation. 
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2.2.1.4 Cloud model techniques 
 

To improve precipitation estimation techniques based on VIS and IR satellite data, it is 

believed that it is necessary to build the theory of the physics of the cloud into the 

retrieval process. One way to do this is through the use of cloud models (Stanley and 

Thomas, 1995). 

 

The earliest such attempt was by Gruber (1973), who noted that Kuo’s (1965) 

parameterization of convection could be used to relate fractional cloud cover to rain 

rate. Another use of cloud is in adjusting calibration coefficients. Most of the above 

techniques were developed in a particular location. The changes necessary to apply 

them elsewhere are not obvious, according to Stanley and Thomas (1995). Wylie (1979) 

attempted to use the one-dimensional cloud model and adjusted the satellite rain 

estimates and obtained substantially improved results. 

 

The convective-stratiform technique (CST) is an example of the cloud model technique 

and uses the IR (10.5 - 12.6 µm channel) imagery from the GOES to identify 

thunderstorm cloud tops and assign corresponding rain rates (Adler and Negri, 1988). 

Minima in the brightness temperatures are determined to be convective centres 

(thunderstorms). The average rain rate over the rain area of a cell is based on 

calculations using volume rainfall rates and dividing by the convective rain area. The 

rain rates are assigned in a spiral fashion, from the convective centre outward until the 

calculated areal extent is filled. 

 

Adler and Mack (1984) studied the ability of a one-dimensional cloud model to explain 

differences in cloud top temperature-rain rate relationships in Florida and Oklahoma. 

Adler and Negri (1988) applied the results of Adler and Mack (1984) in a tropical 

precipitation estimation scheme that they called the convective-stratiform technique 

(CST). The technique can be applied in four ways. 

 

Firstly, a one-dimension cloud model is run using a actual movement representative 

sounding as input. The outputs are (1) a relationship between cloud top temperature and 

rain rate and (2) a relationship between cloud top temperature and raining area. 
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Secondly, IR satellite data are analysed. Local minima in the IR temperatures are found 

and screened to eliminate thin, non precipitating cirrus. The remaining minima are 

assumed to be convective elements protruding from the top of cirrus anvils. Around 

each convective element the modal temperature in an area approximately 80 km on all 

sides is calculated. The average of all anvil temperatures is used as a threshold for 

stratiform precipitation. 

 

Thirdly, precipitation is assigned to the convective elements. The rain rate and raining 

area are determined from the cloud-top temperature using the output of one-dimension 

cloud model. To map the rain, the calculated rain rate is assigned to pixels in a spiral 

fashion. Starting at the centre of the temperature minimum, and continuing until the 

raining area is reached. 

 

Finally, to every point that is colder than the stratiform threshold and that did not 

receive any convective precipitation, a 2 mm/h stratiform rain rate is assigned. 

 

The Scofield and Oliver method (Scofield and Oliver, 1977) is another approach of the 

cloud model technique that uses GOES infrared and high-resolution visible images to 

make half-hourly or hourly rainfall estimates for deep convective systems of tropical air 

masses. Estimates of convective rainfall are computed by comparing the changes in 

cloud character that are observed between two consecutive images of enhanced IR and 

high-resolution VIS data. The Scofield and Oliver method is quite different from other 

visible-infrared techniques in that it is not automated.  

 

2.2.1.5 Artificial Neural Network techniques 

 
An artificial neural network (ANN) provides a computationally efficient way of 

determining an empirical, possibly nonlinear relationship between a number of 

‘‘inputs’’ and one or more ‘‘outputs.’’ In addition, the ANN has been shown to be 

effective in extracting significant features from noisy data and for this reason the most 

common applications have been in the field of pattern recognition. For more detailed 

description of neural networks see Grimes et al. (2003). 
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Many studies have been performed using an ANN approach in atmospheric science 

(Hsieh and Tang, 1998). In the field of remote sensing, an ANN approach has also been 

used by Aires et al. (2001) for retrieval of surface temperature and atmospheric water 

vapour from satellite data. Recently ANN algorithms for rainfall monitoring have been 

successfully applied by Hsu et al. (1997), Tsintikidis et al. (1997), and Bellerby et al. 

(2000). In the case of the precipitation estimation from remotely sensed information 

using artificial neural networks (PERSIANN) system described by Hsu et al. (1997), 

the inputs are satellite thermal infrared temperatures and their spatial derivatives plus a 

parameter that classifies the underlying surface as land, sea, or coast. The algorithm was 

then adapted to use passive microwave data (Sorooshian et al., 2000). 

 
The neural network is used to discriminate between rain rates of different cloud patterns 

via a ‘‘self-organizing feature map.’’ A big improvement was noticed if the network 

was continually updated by calibration against available real-time infrared data. 

Sorooshian et al. (2000) reported that good results could be achieved by real-time 

updating with tropical rainfall measuring mission (TRMM) precipitation radar. 

Tsintikidis et al. (1997) compared an ANN approach with linear regression for rainfall 

estimation over the ocean from special sensor microwave imager (SSM/I) passive 

microwave data and found that the ANN performed better than the regression for the 

same input. 

 

In the method described by Bellerby et al. (2000), the input parameters are brightness 

temperatures and their spatial derivatives for three IR and one VIS sensor on the GOES 

geostationary satellite. The output is the instantaneous rain rate. Calibration and 

validation was carried out using TRMM precipitation radar data, and the method was 

shown to perform consistently better than a locally calibrated GPI technique. 

 

2.2.2 Passive Microwave techniques 
 

Satellite passive microwave (PMW) data provide a direct method for rainfall estimation 

through the emission-based retrieval of atmospheric liquid water over ocean or 

scattering-based retrieval of precipitation ice above the freezing level over land or 

ocean. Unfortunately the passive microwave techniques have poorer spatial resolution 

due to longer wavelengths than IR techniques (Visser et al., 2004) and low temporal 

resolution for they are usually flown on polar orbiters. Therefore, it is not useful for 
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short-term precipitation estimations, unless combined with geostationary IR or other 

orbiting data. 

 

Although the high spatial and temporal resolution of VIS/IR data from geostationary 

satellites make them ideally suited for SPE, the relationship between rainfall rate and 

the characteristics of the cloud tops is indirect and is best suited for convective 

precipitation, for which the cloud-top height and cloud depth are somewhat related.  

 

These difficulties have led to a body of research into using microwave data to produce 

SPEs (Scofield and Kuligowski, 2003). Information about cloud thickness and water/ice 

content can be inferred from microwave radiances because only heavily precipitating 

clouds are optically thick in the microwave spectrum. This is done using one of two 

approaches. Emission algorithms compare the emissions of cloud water at low 

microwave frequencies with the values that would be expected if no cloud were present, 

which is best done over a radiometrically cold surface such as the open ocean, so that 

clouds appear to be warm. Scattering algorithms estimate the backscattering of 

upwelling microwave radiation by ice particles in the clouds by comparing the (low) 

cloud brightness temperature with the relatively high values that would be observed if 

no cloud were present. 

 

Early work using the emission approach included that of Weinman and Guetter (1977), 

who used 37-GHz data from the electrically scanning microwave radiometer on the 

Nimbus-6 satellite. Spencer (1986) developed a more quantitative algorithm for 37-GHz 

data from the scanning multichannel microwave radiometer on Nimbus-7. The advent of 

the SSM/I and, in particular, its introduction of an 85.5-GHz channel led to the 

development of scattering algorithms that were much more robust over land than were 

emission algorithms and resulted in substantial improvements in the ability to estimate 

rainfall from microwave radiance data (e.g. Barrett et al., 1988; Spencer et al., 1989).  

 

Despite the time limitations of observations from polar-orbiting satellites, Ferraro et al. 

(2000) have demonstrated that microwave-based SPEs are useful for meso-scale storm 

analysis and forecasting. However, the most useful application appears to be in using 

microwave SPEs in conjunction with GOES data. TRMM also offers an opportunity to 

investigate the use of multiple instruments in conjunction for SPE, because the TRMM 

satellite carries not only the TRMM microwave imager (TMI) but also a precipitation 
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radar, VIS and IR sensors, and a lightning detector. Microwave SPEs have also proven 

to be useful as a basis for short-term forecasts of precipitation from tropical systems 

making landfall (Visser et al., 2004). The original technique, developed for GOES data 

by Spayd and Scofield (1984), has evolved into an automated tropical rainfall potential 

(TRaP) technique that combines SSM/I, advanced microwave sensor unit (AMSU), and 

TMI based estimates of rainfall with storm-track forecasts to produce forecasts of 24-

hour precipitation prior to landfall (Ferraro et al., 2002). 

 

Current PMW sensors used for estimation of rainfall include the Defence 

Meteorological Satellite Program (DMSP) SSM/I and the TRMM microwave imager 

(TMI). The SSM/I is a (near) polar-orbiting sensor aboard the DMSP platforms of the 

F-13, F-14, and F-15 satellites, and although there are usually two or three usable 

sensors at any one time resulting in a maximum of six overpasses per day, some regions 

receive only one overpass per day. The addition of the TMI sensor, in a low inclination 

orbit, only provides a modest increase in the daily coverage. Results from the series of 

precipitation intercomparison projects (PIP) (Adler et al., 2001) and the algorithm 

intercomparison programme (AIP) (Ebert et al., 1996) showed that the PMW algorithms 

are more accurate than the IR-based algorithms in terms of instantaneous rainfall 

estimates. However, the IR techniques provide better long-term estimates than the 

PMW techniques due to better temporal sampling: geostationary IR data nominally 

provides 48 samples each day (from Meteosat) compared with a maximum of 6 from the 

SSM/I sensors. Adler et al. (1993) noted that opportunities exist to improve 

precipitation estimates by combining the two types of data so that the strengths of 

individual algorithms are maintained rather than the weaknesses.  

 

The IR data available globally every quarter hour is used as means to propagate PMW-

derived precipitation features, producing spatially and temporally complete global 

precipitation analyses, (Joyce et al., 2004). These data provide good measurements of 

cloud-top properties; IR data is used to detect cloud systems and to determine their 

movement. The propagation of the cloud system is measured using, a method called 

cloud system advection vectors (CSAVs). This is an automated method that uses visible 

imagery. An interactive spatial lag correlation process is used to determine cloud system 

speed and direction as follows. At a given 5o latitude/longitude grid box that contains 8 

km pixel resolution IR data at t = 0, a spatial correlation is performed among the IR 

pixel brightness temperatures in that grid box with those in the same domain but from 
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the t + 1/2 hour image. This process is repeated, but with each iteration, the spatial 

domain of the t + 1/2 hour grid box is shifted pixel by pixel in the zonal meridional 

directions. A primary domain is defined for each satellite, demarked by the midpoints 

between the nadir positions of primary and neighbouring satellites. Within each domain, 

CSAVs are derived solely from the primary satellite IR unless the daily image count 

falls below half of the overlapping neighbouring satellite daily image count; in this case, 

information from neighbouring satellite is used instead. When an image is missing for a 

particular half hour, vectors are determined by a linear temporal interpolation between 

the nearest past and future half-hourly vectors, weighted by the temporal distance from 

the missing time. 

 

In case of microwave the propagation process of the PMW derived rainfall begins by 

spatially propagating initial fields of 8 km half-hourly instantaneous PMW analysis 

estimates (t + 0 hour) forward in time, by the discrete distance of the corresponding 

zonal and meridional vectors. Two auxiliary fields that are maintained along with each 

precipitation estimate are 1) time stamp (t = 0 for instantaneous), in which the column is 

propagated forward to produce analyses at t + 0.5 hour using IR-derived propagation 

vectors. This analysis is actually propagated one more time step to t + 1.5 hour, but in 

this case all values are overwritten by precipitation estimates from an updated PMW 

scan that became available at the t + 1.5 hour time step. 

 

In addition to propagating rainfall estimates forward in time, a completely separate 

process is invoked in which instantaneous rainfall analyses are spatially propagated 

backward in time using the same propagation vectors used in the forward propagation, 

except for reversing the sign of those vectors. 

 

2.2.3 Tropical Rainfall Measuring Mission 
 
The tropical rainfall measuring mission (TRMM) is a joint National Aeronautical and 

Space Administration (NASA) and National Space Development Agency of Japan 

(NASDA) mission designed to measure tropical rainfall and its diurnal variability on a 

monthly time scale and in area of 105 km2 (Visser et al., 2004). TRMM was launched in 

1998 and it orbits at an altitude of 350 km with a 35o inclination angle, which causes it 

to sample all local times every 23 days. Five instruments which measure various related 

aspects of precipitation are on board, namely:  
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(a) Precipitation radar (PR) – electronically scanning radar operating at 13.8-GHz; 

and spatial resolution of 4.3 km2;  

(b) TRMM microwave imager (TMI) – a nine channel radiometer that operates at 

five frequencies that are quite similar to the frequencies of SSM/I instrument, 

and makes measurements from 10 to 91-GHz. However, the TMI offers higher 

spatial resolution (4.6 x 6.9 km) than SSM/I (13 x 15 km) because of the 

relatively lower TRMM orbit (Joyce et al., 2004),  

(c) Visible and infrared scanner (VIRS) – a five channel imaging radiometer (0.63, 

1.6, 3.75, 10.7, and 12.0 µm) with 2 km resolution;  

(d) Lightning imaging sensor (LIS), and  

(e) Clouds and earth’s radiation energy system (CERES). Due to the lower orbit of 

the satellite, the resolutions of the sensor are much improved upon that of the 

SSM/I, resulting in a maximum resolution of 7 by 5 km at 85-GHz (Pan and 

Barnsley, 1999). 

 

The precipitation weather radar provides three-dimensional structure of rainfall, 

particularly of the vertical distribution; quantitative rainfall measurements over land as 

well as over ocean and improvements in the overall TRMM precipitation retrieval 

accuracy by combined use of active (PR) and passive (TMI) and VIRS sensor data. The 

VIRS is a five-channel imaging spectral radiometer with bands in the wavelength range 

from 0.63 - 12 µm, and is similar to the advanced very high resolution radiometer 

(AVHRR) instrument (Visser et al., 2004). 

 

2.2.4 Combined Infrared and Passive Microwave techniques 
  

Several forms of combined infrared and passive microwave techniques (IR – PMW) 

techniques have been developed to take advantage of the individual strengths of the IR 

and the PMW data. All of the available PMW data are converted to precipitation 

estimates on individual fields of view (FOVs), each dataset is averaged to the 0.25o 

spatial grid over the time range ± 90 minutes from the nominal 3-hourly observation 

time (0000, 0300, …2100 UTC). The gridding is “forward’- each FOVs is averaged into 

the grid box(es) that contains its centre – except the AMSU-B gridding is “backward” – 

each FOV is approximately apportioned to the grid box(es) it occupies. All of these 

estimates are adjusted to a “best” estimate using probability matching of precipitation 

rate histograms assembled from coincident data (Huffman et al., 2007).  
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One of the combined IR-PMW methods was developed by Adler et al. (1993) by 

modifying the GPI and the convective–stratiform technique (Adler and Negri, 1988) 

rain-rate values by comparing the IR results with that of an 85-GHz based algorithm 

over monthly timescales. This work has been extended to multisensor combined 

precipitation techniques currently used by the global precipitation climatology project 

(GPCP), which combine estimates by using weights based upon error estimates 

assigned to the individual components derived from monthly rainfall products. 

Kummerow and Giglio (1995) tested both fixed IR/variable rain-rate and variable 

IR/fixed rain-rate techniques over the Pacific atolls, again based upon monthly 

relationships. The universally adjusted GPI (UAGPI), described by Xu et al. (1999) 

used the scattering index (SI) of Ferraro and Marks (1995) to produce an optimal IR 

rain/no-rain threshold and optimal conditional rain rates in order to reduce the total error 

between the IR-based and the PMW based rainfall estimates. These techniques have a 

similar methodology: the adjustment of the IR product by the PMW product(s). Other 

methods use the PMW rainfall retrievals to calibrate against the IR temperatures so that 

the IR temperatures alone can be used to generate the rainfall.  

 

Miller et al. (2001) developed a technique that generates rainfall from IR and PMW 

data using a linear brightness temperature (Tb) to rain-rate relationship. The common 

problem with the IR–PMW techniques has been the choice of the calibration domain. 

Many techniques, such as Adler et al. (1993) and Xu et al. (1999), use temporal 

domains spanning entire months to provide robust calibrations. However, while the 

monthly calibrations will reflect the climatological variations in the IR–PMW 

relationship they do not respond to the sub-monthly changes in the relationships. 

Instantaneous calibrations based upon coincident IR–PMW values have been utilized by 

Miller et al. (2001) and Turk et al. (2000), and have the advantage of responding to 

changes in the calibration over short-term periods. 

 

Estimates from instruments based on GOES and polar operational environmental 

satellite (POES) possess a number of complementary strengths and weaknesses. 

Whereas VIS/IR-based estimates from GOES rely only on information from near the 

top of the cloud (i.e., cloud-top height, and in some cases microphysical information 

near the cloud top), microwave-based estimates from GOES are based on the 

concentration of water and ice throughout the cloud. However, these estimates are much 
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less frequent and have lower spatial resolution than the GOES data, making the GOES 

data necessary for analyzing heavy precipitation that occurs at relatively small scales in 

space and time. 

 

A major problem facing the calibration of satellite estimates with validation data is the 

matching of the datasets both temporally and spatially. Errors noted by Kidd et al. 

(2003) include systematic errors due to satellite–ground misregistration that lead to a 

significant drop in statistical accuracy. Temporally coincident data are rarely achieved 

and several minutes leeway between the two datasets is often required. This can lead to 

displacement in position and changes in the spatial form of the precipitation. Finally, 

physical differences between satellite retrievals and validation retrievals exist and it is 

not realistic to assume that the satellite measurements will replicate those of the 

validation data precisely. These include resolution differences, viewing angles, and 

response to hydrometeors, and the characteristics of rainfall also need to be recognized 

(Joyce et al., 2004). 

 

In this way the observed frequency distribution of rain rates would be reflected in the 

resulting algorithm product. The technique can also be used to evaluate the relationship 

between two datasets where a regression line would not be meaningful. The premise of 

the cumulative histogram matching technique is that the measured rainfall is correct and 

that the satellite retrieval should produce a frequency distribution of rainfall rates 

similar to the microwave distribution over a certain region (Kidd et al., 2003). Thus for 

a selected region the values of the satellite IR brightness temperatures and collocated 

measured rainfall (the PMW estimates) are accumulated into histograms that in turn is 

transformed into a cumulative histogram. These cumulative histograms are then 

matched so that the occurrence of heaviest measured rainfall is associated with the 

values of the satellite IR brightness temperature linked to be heaviest rainfall. The 

region over which the data is accumulated is primarily dependent upon the number of 

data points available: this need to be large enough for a reasonable sample size, but 

small enough to represent any local characteristics (Kidd et al., 2003).  

 

Note that the IR cumulative histogram is inverted since high temperatures are associated 

with no rain. The IR rain–no-rain threshold is the temperature with the same cumulative 

frequency as that of the PMW defined non-raining frequency. Increasingly colder IR 

temperatures are assigned increasingly higher rain rates so that the final distribution of 
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IR assigned rain rates is the same as that determined by the PMW data (Snijders, 1991). 

The technique therefore assumes a monotonically increasing rain-rate relationship with 

decreasing IR temperature with the premise that colder IR cloud-top temperatures are 

associated with higher rainfall than warmer clouds (Kidd et al., 2003). The final 

relationship is that the rain–no-rain threshold is set at about 240 K, with temperatures of 

220 and 210 K having rain rates of about 5 and 12.5 mm/h, respectively. 

 

2.2.4.1  CMORPH technique  
 

The Climate Prediction Centre morphing (CMORPH) is a technique developed at the 

National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Centre 

(CPC). It is used to estimate global precipitation at very high spatial and temporal 

resolution by combining precipitation estimates derived from passive microwave 

observations exclusively, and uses spatial propagation information from geostationary 

data to propagate passive microwave features (Joyce et al., 2004). At a given location, 

the shape and intensity of the precipitation features in the intervening half hour periods 

between microwave scans are determined by performing a time-weighting interpolation 

between microwave-derived features that have been propagated forward in time from 

the previous microwave observation and those that have been propagated backward in 

time from the following microwave scan. This latter step is referred as "morphing" of 

the features.  

 

The propagation process is illustrated graphically in Figure 2.2. An initial 0330 GMT 

time analysis of instantaneous PMW rainfall (t = 0 hours) consisting of two clusters 

over a region in South Pacific (Fig. 2.2a, leftmost) is propagated forward to produce 

analyses at t + 0.5 and t + 1 hour (Fig. 2.2a) using IR-derived propagation vectors. This 

analysis is actually propagated one more time step to t + 1.5 hour, but in this case all 

values are overwritten by precipitation estimates from an updated PMW scan (Fig. 2.2a, 

rightmost column) that became available at the t + 1.5 hour time step (0500 GMT). The 

continuity of the propagated rainfall clusters in the t + 0.5 and t + 1.0 hour fields can be 

appreciated by comparing them with the updated PMW analysis (Fig. 2.2a, rightmost 

column), although in this case, the propagation rate appears to be slightly slow. 
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Figure 2.2: Description of the propagation and morphing process for a region in the 
South Pacific (Source: Joyce et al., 2004) 
 
In addition to propagating rainfall estimates forward in time, a completely separate 

process is invoked in which instantaneous rainfall analysis are spatially propagated 

backward in time using the same propagation vectors used in the forward propagation, 

except for reversing the sign of those vectors. The results are stored separately from 

those computed in the forward propagation process. Thus for the above example, t = 1.5 

hours updated observed PMW precipitation (Fig. 2.2b, rightmost column) is propagated 

backward to the t = 0 hour time frame (Fig. 2.2b, leftmost column). When all 

propagated fields have been computed, the t = 0 hour analysis that contains observed 

data overwrites the propagated estimates for that time stamp. The backward propagation 

procedure begins at least 5 hours beyond the initial analysis time in order to have a 

nearly globally complete field of backward-propagated rainfall estimates due to the 

temporal sampling considerations imposed by the orbital nature of the spacecraft (Joyce 

et al., 2004). This constraint delays the operational availability of CMORPH by 5 hours 
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previous to the most current half hour of combined PMW rainfall input analysis. 

However, by propagating the rainfall analysis temporally in both directions, the 

propagation speed and direction is improved over doing this in a single direction only. 

To this point, only the propagation of PMW derived rainfall patterns, when and where 

PMW data are not available, has been shown. However, a simple propagation of the 

features themselves will not change the character of those features but will merely 

translate them to new positions. Changes in the intensity and shape of the rainfall 

features are accomplished by inversely weighting both forward and backward. 

Although the precipitation estimates are available on a grid with a spatial resolution of 8 

km (at the equator), the resolution of the individual satellite derived estimates is coarser 

typically 12 x 15 km.  

 

The PMW derived precipitation estimates that are presently used in CMORPH are 

generated from observations obtained from the NOAA polar-orbiting operational 

meteorological satellites, the DMSP, and from TRMM satellites (Kummerow and 

Giglio, 1995). The PMW instruments aboard these satellites are the AMSU-B, the 

SSM/I, and the TMI, respectively. 

 

Rainfall estimates derived from the TMI and SSM/I instruments are in very good 

agreement as is expected since the two sensors are quite similar in design, and the 

differences that do exist between them are attributed largely to the different retrieval 

footprint resolutions because they are flown at different altitudes. However, rainfall 

derived from the AMSU-B algorithm differs in many respects from SSM/I and TMI 

rainfall techniques (Joyce et al., 2004). The algorithms that are applied to these data 

generate precipitation estimates using similar channels, because the SSM/I and TMI 

instruments are equipped with channels that detect both emission and scattering 

signatures. 

 

The strengths of the CMORPH algorithm is that the inaccuracies of the use of IR data 

for rainfall estimation are eliminated through the sole use of passive microwave 

retrievals for rainfall derivation. Both forward and backward in time spatial propagation 

of PMW rainfall extends the use of relatively accurate, however, instantaneous PMW 

estimation into spatially and temporally complete precipitation analyses. CMORPH 
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adequately propagates rainfall that moves relatively in synchronous with associated high 

elevation cloud cover.  

 

The CMORPH is related to the following weaknesses: Rainfall that develops, matures, 

and decays (i.e. especially warm season afternoon convective complexes over land) 

between all available satellites PMW swaths will obviously not be detected by the 

PMW estimated rainfall used as input into CMORPH. Rainfall that does not move in 

synchronous with associated high elevation cloud cover will not benefit from the IR 

derived propagation of CMORPH. An example of this would be the common horizontal 

wind shear found in South America resulting from a persistent upper level anti-cyclone, 

west of the continent, equator-ward pushing cirrus that emanating from rainfall 

complexes often propagating southward (Joyce et al., 2004). 

 

2.2.4.2 NRL blended technique  
 
The Naval Research Laboratory blended (NRLB) satellite technique is based upon area-

dependent statistical relationships derived from a precise, near real-time ensemble of 

collocated passive microwave (PMW) and infrared (IR) pixels from any or all low 

earth-orbiting (LEO) and geostationary satellites (Turk et al., 2003), respectively, as 

their individual orbits and sensor scan patterns continuously intersect in space and 

observation time. 

 

Near real-time digital datasets are maintained on an anonymous file transfer protocol 

(ftp) site, in a simple-to-read binary rectangular map projection. The technique is 

developed to work at a very basic level and then can work with additional capabilities 

depending upon which satellite datasets, channels, and ancillary data are available. This 

technique requires (at a minimum) the basic 11 µm longwave IR window channel. The 

spatial resolution is 0.1o finest scale. The maximum time scale is any multiple of 3 hour 

(6, 12, 24, 48, etc). Temporal scale instantaneous, but 3-hourly accumulations are the 

shortest time-interval accumulation. 

 

2.2.4.3. PERSIANN technique  
 
The Precipitation Estimation from Remotely sensed information using artificial neural 

networks (PERSIANN) is an IR and PMW merged estimation method that uses neural 
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network function procedures to estimate 15 min rainfall rates at 0.25° x 0.25° spatial 

resolution using infrared brightness temperature images provided by geostationary 

satellites (GOES – 8/9/10, GMS - 5, and Meteosat-8), and TRMM TMI instantaneous 

rain from NASA, and a previously calibrated neural network mapping function. The 

system classifies satellite images according to cloud-top IR brightness temperature and 

texture at around the estimation pixel (Sorooshian, et al., 2000). The PERSIANN 

system rainfall product covers 50°S to 50°N globally, (Janowiak et al., 2000). The 

estimated PERSIANN 30-minute rain rates are aggregated to 6-hour accumulated.  

 

2.2.4.4.  Multiple Precipitation Analysis technique 
 
The Multiple Precipitation Analysis (MPA) algorithm is a combination of merged 

TRMM high quality (HQ) microwave estimates and the variable rain rate (VAR) IR 

estimates that are rescaled to monthly data (Huffman, et al., 2003). It produces gridded 

estimates on a 3-hour temporal resolution and 0.25o spatial resolution in a global belt 

extending from 50o S to 50o N latitude (Huffman et al., 2001). The MPA estimates are 

produced in four stages: 

(a) the microwave precipitation estimates are calibrated and combined,  

(b) infrared precipitation estimates are created using the calibrated microwave 

precipitation,  

(c) the microwave and IR estimates are combined, and  

(d) rescaling to monthly data is applied. 

 
(a)  Microwave precipitation estimates 

 
The passive microwave data available are converted to precipitation estimates to be 

used, then each dataset is averaged to the 0.25o spatial grid over the time range 90 

minutes from the nominal observation time. All of these estimates are adjusted to a best 

estimate (Huffman et al., 2001) using probability matching of precipitation rate 

histograms assembled from coincident data. 

 
(b) Infrared precipitation estimates 

 
The MPA uses two different IR datasets for creating the complete record of 3-hourly 

0.25o gridded base temperatures. Histograms of time-space matched HQ precipitation 

rates and IR brightness temperatures, each represented on the same 3-hourly 0.25o grid, 

are accumulated for a month, and then used to create spatially varying calibration 
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coefficients that convert IR brightness temperatures to precipitation rates. After 

calculation of the HQ-IR calibration coefficients, these are applied to each 3-hourly IR 

dataset during the month (Huffman et al., 2001). 

 

(c) Combined microwave and infrared precipitation estimates 
 

In this stage, a “best” estimate of precipitation is provided in each grid box at each 

observation time. The process of combining passive microwave estimates is relatively 

well-behaved because the sensors are quite similar and is used for most retrievals. For 

combining the HQ and VAR estimates, the physically-based HQ estimates are taken “as 

is” where available and the remaining grid boxes are filled with VAR estimates. 

According to Huffman et al. (2001), this scheme provides the “best” local estimates, at 

the expense of a time series that is from datasets displaying heterogeneous statistics. 

 
(d) Rescaling to monthly data 

 
The final step in generating MPA is the indirect use of rain gauge data. All available 3-

hourly HQ + VAR estimates are summed over a calendar month to create a monthly 

multi-satellite product. 

 

2.3 Comment  
 

Monitoring rainfall from satellite imagery is an attractive alternative as it has the 

potential for good spatial coverage, is available in near real time and is relatively 

inexpensive to access. Most of algorithms for satellite-based rainfall monitoring rely on 

simple empirical algorithms that make use of geostationary thermal infrared data, 

sometimes by combining the passive microwave imagery from polar-orbiting satellites 

or rain gauge data available via Global Telecommunications System (GTS). 

 

The combined infrared and passive microwave estimates provides good spatial and 

temporal resolution. In this study, four methods that combine infrared and passive 

microwave data were selected. These are CMORPH, MPA, NRLB and PERSIANN. 

The methods were selected because of availability of satellite data and ease of 

comparison between the methods in different regions of the world. 
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Chapter 3  DATA and METHODS 
 

3.0 Introduction 
 
Mozambique has three main river basins namely the Limpopo, Save and Zambezi 

basins. All these basins are prone to weather extremes such as droughts and floods. It is 

therefore necessary to investigate the effects of rainfall variability on the hydrology of 

the river basins. Heavy rains in northern South Africa, southern Botswana and 

Zimbabwe flow directly into the Limpopo basin causing floods. Floods produce a major 

negative impact on the region’s macro-economic performance, the environment and 

people’s welfare which is why individual governments are attempting to mitigate and 

manage this threat. Despite these efforts, planning for floods remains inadequate leading 

to loss of human and animal life. This is the reason why this area was selected for this 

study. 

 

To estimate areal rainfall over the Limpopo basin using satellite data, four algorithms 

that combine infrared and passive microwave data, namely, Climate Prediction Centre 

morphing (CMORPH), the precipitation estimation from remotely sensed information 

using artificial neural networks (PERSIANN), the multiple precipitation analysis 

(MPA), and the Naval Research Laboratory blended (NRLB) were used.  

 

The following sections describe the characteristics of the study area, source of satellite 

and gauge data, and the validation procedures applied in this study. 

 

3.1 Description of the Study Area 
 
The Limpopo Basin (Figure 3.1) is almost circular in shape with a mean altitude ranging 

from 0 - 1000 m above sea level. It lies between latitudes 20°S - 25°S and longitudes 

25°E - 35°E. The total surface area drained by the basin is estimated at about 412 938 

km2. Of the basin’s total area, about 44 percent is occupied by South Africa, 21 percent 

by Mozambique, almost 19 percent by Botswana and 16 percent by Zimbabwe (Boroto, 

2000).  
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Figure 3.1: Map of study area showing the Limpopo Basin and the riparian countries 

(Source: Atlas for Disaster Preparedness and Response in the Limpopo Basin, 2003) 

 

The Limpopo River has a relatively dense network of more than 20 tributaries, though 

most of these tributaries have either seasonal or episodic flows. In historical times, the 

Limpopo was a strong-flowing perennial river but is now regarded as a weak perennial 

river where flows frequently cease. According to FAO (2001), during drought periods, 

no surface water is present over large stretches of the middle and lower reaches of the 

river. 

 

The Elefantes (or Olifants in South Africa) part of the lower Limpopo section, has the 

largest river catchment area. The Elefantes and its major tributaries bring the most water 

to the Limpopo. Figure 3.2 shows the course of the Limpopo river and its major 

tributary, the Elephantes. 
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Figure 3.2: Course of the Limpopo River and its major tributary, the Elefantes/Olifants 

(Source: Atlas for Disaster Preparedness and Response in the Limpopo Basin, 2003) 

 

The basin consists largely of undulating terrain between ranges of hills and mountains. 

The northward flowing (South African) tributaries of the Limpopo river have incised 

deep gorges through the hills and mountain ranges that are visible as erosional 

remnants. Elsewhere, the river valleys are broad and flat-bottomed with river channels 

that are slightly or moderately incised into the surrounding parent material (Schulze, 

1997). 

 

The upstream portion of the Limpopo is characteristically flat with kopjes and small 

hills rising not more than 200 m above the general level and occasional elongated ridges 

of more resistant strata forming the only local relief. The relief is more pronounced in 

the south-eastern corner where the quartzites of the Transvaal Sequence, which form the 

ridges of the Magaliesberg and the Witwatersrand, have been deeply incised by the river 

to depths of up to 600m. The Waterberg Plateau forms another area of more pronounced 

relief on the eastern side of the central portion of the basin (FAO, 2001).  

 

Large portions of the central and western parts of the Limpopo Basin (especially in the 

Shingwedzi and Letaba sub-catchments) have very little or poor drainage, and are 
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usually considered to be endorheic (internally draining). These areas are often marked 

by the formation of saltpans or clay-bottomed pans where rainfall collects and 

evaporates. These areas are generally subjected to mechanical (physical) weathering 

processes, in contrast to the predominance of chemical weathering processes in the 

wetter headwater regions of most tributaries. The Mozambique portion of the Limpopo 

basin consists of gently undulating terrain with numerous small tributary streams and 

pools forming part of the Changane drainage system. This tributary rises close to the 

Zimbabwe - Mozambique border, meanders across the Mozambique coastal plain and 

joins the Limpopo River very close to its mouth on the coast near the town of Xai-Xai. 

A belt of heavy textured soils connecting the Limpopo and Incomati river systems 

suggests that the Limpopo previously also entered the Indian Ocean via Maputo Bay 

(Atlas for Disaster Preparedness and Response in the Limpopo Basin, 2003).  

 

The dominant soil types of the basin are moderately deep sandy to sandy-clay loams in 

the south, grading to shallower sandy soils in the north and deeper sandy soils in the 

west and east. There are few extensive areas of black vertisols in the southern parts of 

the basin. Deep layers of wind-blown Kalahari sands cover large areas of the western 

portion of the Limpopo Basin, while the sandy soils of the eastern (Mozambique) 

portion are derived from old, unconsolidated marine sands. The valley bottom soils 

along all of the tributary rivers and the Limpopo main channels are generally of 

colluvial or alluvial origin (Mafoko, 1990 and Dennett, 1987). 

 

The Limpopo River Basin is a characterized by summer rainfall, generally with low 

precipitation. The overall feature of the mean annual precipitation is that it decreases 

fairly uniformly westwards from the northern reaches of the Drakensberg Escarpment 

across the interior plateau, however, rainfall is highest on the Drakensberg Escarpment 

because of its orographic effect (Schulze, 1997). There is also a north-south gradient 

towards the Limpopo River. Rainfall varies from a low of 200 mm in the hot dry areas 

to 1500 mm in the high rainfall areas. The majority of the catchment receives less than 

500 mm of rainfall per year. The hot dry areas receiving about 200 – 400 mm of annual 

rainfall are located mostly within the main Limpopo River Valley itself. The severe 

droughts observed during the early 1990s and the recent exceptional floods in the 

Limpopo valley in 2000 illustrate the extreme variability of rainfall and runoff in the 

basin.  
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Three wind systems have been identified as having a strong influence on the basin’s 

climate. These are the tropical cyclones from the Indian Ocean; the southeasterly wind 

systems that bring rainfalls from the Indian Ocean; and the inter-tropical convergence 

zone (ITCZ), which in some years moves sufficiently far southwards to influence 

rainfalls in the northern parts of the basin (Lindesay, 1998). 

 

Air temperatures across the basin show a marked seasonal cycle, with highest 

temperatures recorded during the early summer months and lowest temperatures during 

the cool, dry winter months. In summer, daytime temperatures may exceed 40º C, while 

in winter temperatures may fall to below 0º C. The air temperatures are closely related 

to altitude, and also to proximity to the ocean. The mean maximum temperature in most 

of the Limpopo basin, notably South Africa, Botswana and Zimbabwe, varies from 

about 30 - 34º C in the summer to 22 - 26º C in winter. The mean minimum daily 

temperature in most areas lies between 18 - 22º C in summer and 5 - 10º C in winter 

(Atlas for Disaster Preparedness and Response in the Limpopo Basin, 2003).  

 

3.2 Source of Satellite Data  
 
In this study the four algorithms (CMORPH, MPA, NRLB and PERSIANN) used two 

main satellite datasets, namely visible (VIS)/infrared (IR) and passive microwave data. 

The VIS/ IR data were collected from the geostationary operational environmental 

satellite (GOES) and from European organization for the exploitation of meteorological 

satellites (EUMETSAT). These are GOES-9 at 155 E, GOES-10 at 135 W, GOES-12 

at75 W, and Meteosat second generation (MSG) at 5E. The GOES satellites use the 

visible and infrared spin scan radiometer (VISSR) sensor. The MSG covers a global 

region between 60o S and 60o N. The IR data on MSG was measured by radiometer 

called spinning enhanced visible and infrared imager (SEVIRI) in the IR10.8 µm 

channel. In this channel, the instrument measures earth surface, cloud top temperatures, 

wind fields and atmospheric instability (EUMETSAT, 1998). Detection of cirrus and 

inference of total precipitable water vapour over sea is also provided by the sensor in 

the IR13.4 µm channel. The IR data is at temporal and spatial resolution of 15 minutes 

and 3 km respectively.  

National Oceanic and Atmospheric Administration (NOAA), Defence Meteorological 

Satellite programme (DMSP) and from Earth-orbiting system (EOS) Aqua satellites.  
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The passive microwave (PMW) satellite-based rainfall algorithms which derive 

precipitation utilize data from low-earth orbiting satellite sensors, which sample wide 

swaths of Earth in either a conical or across-track scan pattern. The current operational 

constellation includes the Tropical rainfall measuring mission (TRMM) microwave 

imager (TMI) and its companion precipitation radar (PR), three advanced microwave 

sounding units (AMSU-B) onboard NOAA-15/16/17, the advanced microwave 

scanning radiometer (AMSR-E), onboard EOS-Aqua, three special sensor microwave 

imager (SSM/I); on board DMSP F-13/14/15. The AMSU-B measures atmospheric 

emissions in the 50 to 60-GHz range for profiling the temperature of clouds (Rao et al., 

1990), and the SSM/I is seven channel linearly polarized PMW radiometer operating at 

four frequencies, namely 19.35, 22.235, 37.0 and 85.5-GHz. Table 3.1 shows the 

characteristics of the satellites and the data required for each algorithm. 

 
Table 3.1: Characteristics of satellites and data required for the algorithms 

 
Satellite Type of data Sensor 

 
Algorithms 

Meteosat - 8 (MSG) IR SEVIRI 
 

CMORPH, MPA, NRLB 
and PERSIANN 

GOES-9, 10, 12 IR VISSR CMORPH, MPA, NRLB 
and PERSIANN 

NOAA (15, 16, 17,) PMW AMSU-B 
 

CMORPH, MPA, NRLB 
and PERSIANN 

DMSP (13, 14, 15) PMW SSMI 
 

CMORPH and MPA 

TRMM PMW TMI CMORPH, MPA and 
PERSIANN 

Aqua PMW AMSR-E 
 

CMORPH and MPA  

 
 

3.2.1 Algorithm processing 
  

The combined infrared and passive microwave rainfall algorithms (CMORPH, MPA, 

NRLB and PERSIANN) use three key stages to process the datasets: 

(i) dataset generation,   

(ii) calibration, and 

(iii) application.  
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(i) Dataset generation 

 

• Rainfall estimates from the PMW are remapped to a 0.1o grid for each 30 

minute period centred on the hour and half-hour. 

• IR derived rainfall data are subsampled to a 0.1o grid by using a 3 x 3 

mean filter to average the 4 km data and generate a mean cloud-top 

temperature over 12 km x 12 km area. This approximates the maximum 

resolution of the PMW rainfall estimates. 

• Each collocated PMW and IR pixel for each 30 minutes (±15 minutes) 

and 0.1o x 0.1o area is entered into a database that records histograms of 

IR temperatures (75 - 329 k) and PMW rainfall estimates (0.0 – 51.1 

mm/h). All data-present regions of the database are then saved onto disk 

for later use. 

 

(ii) Calibration procedure 

 

The calibration procedure requires that sufficient data be used to ensure a stable 

relationship between the IR and PMW datasets. The current techniques carry out a 

calibration procedure once per day using a temporally and spatially weighted 

aggregation of the data from the database. The operational scenario uses data for do 

(current day) back to d-4 (day minus four) and is accumulated using an arbitrarily 

derived linear weighting function (i.e., do has a weight of 1, d-1 = 0.8, d-2 = 0.6, etc.). 

After the data has been aggregated temporarily it is then smoothed spatially through the 

use of a 5o x 5o Gaussian filter. Thus separate histograms of collocated IR temperatures 

and PMW rainfall rates are generated. These are converted into cumulative histograms 

and are then matched through the use of a cumulative histogram matching approach so 

that the coldest IR temperatures are assigned the highest rainfall. These relationships for 

each 0.1o x 0.1o area are saved as a lookup table that enables efficient processing of 

subsequent calculations. 

 

(iii) Application 

 

Each 30 min image is then processed using the current calibration at the subsampled IR 

resolution of 12 km to generate rainfall. 



 

38  
 

3.2.2 Satellite product development 
 
This section describes the development of satellite product by CMORPH algorithm. The 

CMORPH satellite-based rainfall estimation is developed in two levels: 

 

(i) Product development level 1  
 
The CMORPH algorithm develops 30 minute, 8-km matrices of all PMW sensors 

combined rainfall, and calibrates to TRMM TMI. After this stage it maps all PMW 

rainfall into rectilinear 0.0727 latitude/longitude resolution (8-km at equator), 30 minute 

arrays for each sensor-type/algorithm. Then calibration of each sensor-type/algorithm 

rainfall to TMI is done by using frequency matching, heaviest to lightest rain rates, and 

separates for 10 degree latitude bands, and surface type.  

 

By using PMW from AMSU-B, propagation vector matrices are developed every 30 

minutes at 2.5o resolution then is created the cloud system advection vector (CSAV) 

arrays from spatial lag correlation of successive 30 minute merged IR also using the 

2.5o resolution. The PMW rainfall propagation vector matrices are produced by tuning 

CSAV to spatially and temporally matched radar rainfall propagation. 

 

(ii)  Product development level 2  

 

The propagation and morphing of PMW precipitation is done as follows:  

Spatially propagate, forward in time, 8 - km combined PMW rainfall from “past” orbits 

using rainfall propagation matrices. In a separate processing, spatially propagate, 

backward in time, 8- km combined PMW rainfall from “future” orbits using rainfall 

propagation matrices. Then morph rainfall by inversely weighting both forward and 

backward propagated rainfall by the respective temporal distance from observed PMW 

precipitation. The output is a 30 minute 0.0727 latitude/longitude (8 km at equator) 

CMORPH. 

 

3.3 Source of Rainfall Data 
 
The rainfall data used in this study was measured using rain gauges in the Limpopo 

basin. The data was obtained from the National Institute of Meteorology of 

Mozambique (12 rain gauges), South African Weather Service (70 rain gauges), 
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Meteorological Service of Botswana (5 rain gauges), and from Meteorological Services 

Department of Zimbabwe (3 rain gauges), for the period 1 October 2005 - 31 March 

2006. The study period was selected taking into account the availability of satellite data 

for the study area. 

 

3.4 Validation  
 
The time scale of primary interest to this study is daily rainfall validation, largely 

because the bulk of the rain gauge observations available for use in algorithms 

validation are 24 hour accumulations. Four satellite rainfall algorithms (CMORPH, 

MPA, NRLB and PERSIANN) producing 24 hours accumulated rainfall estimates on 

daily basis in near-real time were evaluated. The satellite rainfall estimates were 

validated using rain gauge data over the Limpopo Basin for the rainfall season 

corresponding to the period 1 October 2005 to 31 March 2006. Very little rainfall was 

recorded over the basin during the season, as shown in Figure 3.3. The months of 

January and February 2006 recorded an average rainfall of about 55 mm/month. The 

total area average rainfall observed in the area was 195 mm, less than the average 

rainfall that is normally observed in the region. 
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Figure 3.3: Monthly average rain gauge in the Limpopo Basin during 2005/2006 rainfall 

season (for 90 rain gauges)  
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The rainfall data was averaged into grid boxes of 0.25o x 0.25o, using the inverse-

weighting interpolation method. The satellite estimates were developed also using 0.25o 

resolution. A surface mask was used over the Limpopo Basin. Figure 3.4 shows the 

flow of rain gauge and satellite data for validation process. 

 
 

 
Figure 3.4: Overview of data flow in validation process. 
 

 

A variety of validation approaches were used to measure different aspects of algorithm 

quality. To measure skill for rain occurrence, continuous statistics such as frequency 

bias are evaluated. The bias indicates whether the estimation system has a tendency to 
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underestimate (bias < 1) or overestimate (bias > 1) events. This is the measure of 

relative frequencies.  

In order to measure the fraction of observed events that were correctly estimated, 

probability of detection (POD) was calculated. The POD represents how often real 

precipitation events are detected by the techniques. It ranges from zero (no detection) to 

one (perfect detection). Also in the same range (0-1) is the false alarm ratio (FAR) 

which represents how often false precipitation events are registered (given no actual 

event). To measure the fraction of observed and/or estimated events that were correctly 

estimated, equitable threat score (ETS) was calculated. The perfect score is 1 and ETS 

ranges from -1/3 to 1. Zero indicates no skill. The Hanseen & Kuipers score (HKS) or 

true skill statistic was calculated to indicated the ability of the estimation to separate the 

“yes’ cases from the “no” cases, and it ranges from -1 to 1. In addition, to get more 

representative idea of real accuracy (Ebert et al., 1996) both in situations where rare 

events are involved and in situations where climatological frequencies of the categories 

are nearly equal, the critical success index (CSI) was calculated. It evaluates the fraction 

of observed and/or estimation rainfall that were correctly estimated, and ranges from 0 

to 1. To quantify errors in rain amount, the mean absolute error, the root-mean square 

error (RMSE), and the correlation coefficient were calculated. The several of the 

statistics used in this study were calculated from 2 x 2 contingency table in which 1 

mm/day is the threshold for rain versus non rain occurrence (Table 3.2). The definitions 

of these statistical parameters are presented in Appendix I. 

 
Table 3.2: Contingency table for categorical statistics used in the study 
 

Event estimated 
 

 

Yes No 
 

 
 
Total observed 

Yes h (hits) f (false alarm) h + f 
 

No m (misses) z (correct 
negative) 

m + z 

 
 

Event 
observed 

Total estimated h+m f+z h + f + m + z 
 

(Source: after Stephenson, 2002) 
 
Here: hits (h) represents observed rain correctly detected, miss (m) is observed rain not 

detected, false alarm (f) is rain detected but not observed, and correct negative or null 

event (z) means no rain observed nor detected. 
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3.5 Software used for “data processing” 
 

The processing of rain gauge data was done using interactive data language (IDL) 

software. For this study the IDL was LINUX based software and provides maps and 

some statistical tests. This software was developed at the University of Minnesota in the 

USA (www msi.umn.edu). 
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Chapter 4   RESULTS and DISCUSSION 
 

4.0 Introduction 
 
Rain gauge data is the only ground-based data available for validating the satellite -

based rainfall estimation over the majority of Southern Africa. Unfortunately rain 

gauges are not without error themselves when measuring precipitation due to the 

interactions of the gauge and their microenvironment (Layberry et al., 2006). 

Additionally, as mentioned above, gauge data over much of the subcontinent are 

sparsely distributed.  

 

Flitcroft et al. (1989) analysed data from a dense rain gauge network in West Africa and 

showed that the standard deviation of individual point values used to represent a given 

pixel (10 x 10 km) average rainfall was approximately 10 mm and this value was almost 

independent of rainfall quantity. They also found a systematic bias in that gauge 

measurements of high rainfall amounts were likely to overestimate the pixel average 

rain. It is reasonable to suppose that convective rainfall associated with the ITCZ 

elsewhere in Africa would display similar variability. 

 

This chapter presents the study outputs in the form of maps for the daily area average 

satellite estimates and observed rainfall, tables and graphs for analysis of the statistical 

parameters, and the chapter includes the main constraints found during the analysis of 

the results. 

 

4.1 Results  

 
The variability of the results of satellites estimates and gauge data at daily basis is 

analysed and discussed in this section. Both satellite estimates and gauge rainfall 

correspond to the daily area average for the Limpopo basin during 2005/2006 rainfall 

season. 

 
 
 
 
 



 

44  
 

4.1.1 Comparison of satellite rainfall estimation with rain gauge data 
 
The multi-algorithm map is a quick-look display of the rain gauge analysis and all of the 

satellite-based rainfall estimates. This display enables an easy comparison of different 

products, by using the “eyeball” or visual method. Figure 4.1 shows a comparison 

between the CMORPH algorithm and gauge daily area average rainfall for 25 February 

2006 over the Limpopo basin which represents one of the best results at daily basis for 

the study period. The validation results for MPA, NRLB, and PERSIANN methods for 

the same day are given in Figures 4.2, 4.3 and 4.4, respectively.  

 

A scatter plot (lower left) shows the direct correspondence between the estimates and 

the analysed rain amounts. The occurrence of precipitation for matched observed: 

estimated values are shown in the lower left. Ideally the portions of colour within each 

of the estimated and observed bars should be equal but in this case the CMORPH 

algorithm estimate overestimates the rainfall. 

 

The accumulation of precipitation by intensity is shown immediately below the 

occurrence bars. The bar length is normalized by the maximum of the estimated and 

observed total. This provides information on the contribution of precipitation intensities 

to the precipitation total. On the centre bottom is the descriptive statistics, with 

contingency table, and finally, the basic set of statistics is provided in the lower right.  

 

 
Figure 4.1: Validation of CMORPH algorithm for 25 February 2006 over the Limpopo 

Basin 
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Figure 4.2: Validation of MPA algorithm for 25 February 2006 over the Limpopo Basin 

 
 

 
 
Figure 4.3: Validation of NRLB algorithm for 25 February 2006 over the Limpopo 

Basin 
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Figure 4.4: Validation of PERSIANN algorithm for 25 February 2006 over the Limpopo 

Basin 

 

During 25 February 2006, all four satellite algorithms overestimated rainfall in the 

Limpopo Basin. The values of positives bias ranged from 1.1 – 1.9 and the root-mean 

square errors was at range between 9.3 – 14.9. The values of probability of detection 

(POD) and false alarm ratio (FAR) showed that the algorithms were good in detecting 

rainfall and it is also demonstrated by the Hanssen and Kuipers score (HKS) and the 

Equitable Threat score (ETS).The HKS and ETS ranged between 0.55 – 0.65 and 0.28 – 

0.38, respectively. Table 4.1 shows the summary of the statistical parameters for 25 

February 2006. 

 
Table 4.1: Summary of some statistical parameters for 25 February 2006 
 
 
Algorithms 

Root-mean 
square error 

 
Bias 

 
POD 

 
FAR 

 
HKS 

 
ETS 

CMORPH 14.9 1.6 0.90 0.43 0.62 0.36 
 

MPA 12.0 1.1 0.97 0.43 0.65 0.38 
 

NRLB 14.5 1.7 0.95 0.46 0.60 0.33 
 

PERSIANN 9.3 1.9 0.98 0.50 0.55 0.28 
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Figure 4.5 shows the scatter plot of the CMORPH rainfall estimates versus gauge data 

at pixel level for the 2005/2006 rainfall season. The maximum area average rainfall 

estimated by CMORPH and recorded by the gauge was 13.6 mm (on 7/1/2006) and 5.9 

mm (on 8/1/2006), respectively. It can be observed that there was generally a good 

agreement between the two methods shown by coefficient of determination (R2 = 

0.6279, n = 178 days). The CMORPH method shows mean absolute error of 3.6 

mm/day and root-mean square error of 7.3 mm/day. 
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Figure 4.5: Relationship between daily area average CMORPH estimates and gauge 

data 

 
The relationship between the MPA satellite estimates and gauge data at pixel level for 

the 2005/2006 rainfall season is shown in Figure 4.6. The maximum area average 

rainfall estimated by MPA and recorded by the gauge was 11.9 mm (on 6/1/2006) and 

5.9 mm (on 8/1/2006, respectively. There was generally good agreement between the 

two methods as shown by coefficient of determination (R2 = 0.6337, n = 178 days). The 

technique is associated with mean absolute error of 5.2 mm/day and root-mean square 

error of 6.9 mm/day. 
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Figure 4.6: Relationship between daily area average MPA estimates and gauge data 

 

The relationship between the NRLB satellite estimates and gauge data at pixel level for 

the 2005/2006 rainfall season is shown in Figure 4.7. The maximum area average 

rainfall estimated by NRLB and recorded by the gauge was 14.8 mm and 5.9 mm, (on 

8/1/2006), respectively. There was generally a good agreement between the two 

methods but with slightly lower coefficient of determination (R2 = 0.6085, n = 105 

days) when compared to the CMORPH and MPA algorithms. The method shows the 

mean absolute error of 3.3 mm/day and root-mean square error of 8.9 mm/day. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7: Relationship between daily area average NRLB estimates and gauge data 
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The relationship between the PERSIANN satellite estimates and gauge data at pixel 

level for the 2005/2006 rainfall season is shown in Figure 4.8. The maximum area 

average rainfall estimated by PERSIANN and recorded by the gauge was 18.0 mm and 

5.9 mm (on 8/1/2006), respectively. There was relatively poor agreement between the 

two methods as shown by a low coefficient of determination (R2 = 0.528, n = 176 days). 

The PERSIANN algorithm exhibit mean absolute error of 2.5 mm/day and root-mean 

square error of 5.7 mm/day. 
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Figure 4.8: Relationship between daily area average PERSIANN estimates and gauge 

data 

 

Table 4.2 gives the summary of some statistical parameters for the period of 2005/2006. 

The mean absolute error ranges from 2.5 – 5.2 mm/day and root-mean square error, 

from 5.7 – 8.9 mm/day. The MPA shows relatively high value of mean absolute error 

compared to the other methods, while NRLB has relatively high root-mean square error. 

This is associated with the unavailability of satellite data during the rainfall season. The 

magnitude of root-mean square errors is acceptable compared with studies carried out in 

Australia and United States of America. All satellite methods showed positive bias.  
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Table 4.2: Summary of some statistical parameters for the 2005/2006 rainfall season 
 

 
Method 

Mean absolute 
error (mm/day) 

RMSE 
(mm/day) 

 
Bias 

 
R2 

 
CMORPH 

 
3.6 

 
7.3 

 
0.3 

 
0.69 

 
MPA 

 
5.2 

 
6.9 

 
0.4 

 
0.6448 

 
NRLB 

 
3.3 

 
8.9 

 
0.3 

 
0.6085 

 
PERSIANN  

 
2.5 

 
5.5 

 
0.3 

 
0.528 

 

 

4.1.2 Comparison between three-daily moving area average and gauge data 
 

In order to evaluate the improvement of the area average rainfall data, analyses of 

moving average for three-days were considered. Figure 4.9 shows the relationship 

between the CMORPH three-daily moving area average estimates and daily area 

average gauge rainfall. The coefficient of determination (R2 = 0.7767) is considerably 

higher than the daily area average rainfall. 
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Figure 4.9: Relationship between three-daily moving area average CMORPH estimates 

and gauge data 
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Similar improvement was found for the MPA method. After moving the daily area 

average to three-days, the value of the coefficient of determination increased from 

0.6448 to 0.7725. Figure 4.10 shows the relationship between the MPA satellite-based 

estimation algorithm and gauge rainfall. 
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Figure 4.10: Relationship between three-daily moving area average MPA estimates and 

gauge data 

 

For the NRLB method the value of coefficient of determination for the three-daily 

moving area average (Fig. 4.11) showed slight difference from the daily area average 

which was 0.6506 and 0.652, respectively. 
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Figure 4.11: Relationship between three-daily moving area average NRLB estimates 

and gauge data 
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Similarly the PERSIANN method also had slightly different coefficient of 

determination between the three-daily moving area average and the daily area average. 

The value increased for 0.4016 to 0.5495 (see Fig. 4.8 and 4.12). The summary of the 

coefficients of determination of the four satellite-based estimation methods 

correspondent to daily area average and three-daily moving area average are given in 

Table 4.3.  
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Figure 4.12: Relationship between three-daily moving area average PERSIANN 

estimates and gauge data 

 

Table 4.3: Summary of coefficients of determination 
 
 
Methods 

 
R2 before moving the daily 
area average rainfall 

 
R2 after three-daily moving 
area average rainfall 

 
CMORPH 

 
0.69 

 
0.7767 

 
 
MPA 

 
0.6448 

 
0.7725 

 
 
NRLB 

 
0.6085 

 
0.652 

 
 
PERSIANN  

 
0.528 

 
0.5495 
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4.1.3  Analysis of performance of the algorithms 
 
In order to evaluate the performance of the satellite-based rainfall estimation methods, 

scatter plots of the critical success index (CSI) between the techniques were plotted. The 

CSI is a function of both false alarm ratio (FAR) and probability of detection (POD). 

The values of CSI help to understand and identify which satellite algorithm performed 

the best. Figure 4.13, shows the linear regression (1:1 linear relationship) between 

values of CSI obtained using CMORPH and MPA methods. The graph shows that the 

two methods are highly correlated with coefficient of determination of R2 = 0.9652. 

This leads to a good performance for the CMORPH and MPA satellite-based estimation 

methods in the Limpopo Basin. 
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Figure 4.13: Critical success index comparison between CMORPH and MPA for 
2005/2006 rainfall season 

 
 
Similar analysis of the performance of the algorithms was done for CMORPH and 

NRLB. Figure 4.14, shows the scatter plot of CSI values for the season. There is 

significant scatter showing very low correlation between the CMORPH and NRLB 

estimates. 
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Figure 4.14: Critical success index comparison between NRLB and CMORPH for 
2005/2006 rainfall season 
 
 
Figure 4.15 shows the linear regression between CMORPH and PERSIANN methods. 

There is also significant scatter showing very little correlation between both techniques.  
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Figure 4.15: Critical success index comparison between PERSIANN and CMORPH for 
2005/2006 rainfall season 
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Table 4.4 shows the summary of the overall performance of the CMORPH, MPA, 

PERSIANN, and NRLB satellite estimation algorithms, for the six months (October 

2005 to March 2006).  

Table 4.4: Summary of statistical parameters for the estimation algorithms for all 
rainfall season of 2005/2006 
 
 
Method 

 
POD 

 
FAR 

 
ETS 

 
HKS 

 
HSS 

 
CMORPH 

 
0.91 

 
0.19 

 
0.90 

 
0.29 

 
0.28 

 
MPA 

 
0.89 

 
0.17 

 
0.88 

 
0.26 

 
0.26 

 
PERSIANN 

 
0.89 

 
0.18 

 
0.83 

 
0.21 

 
0.21 

 
NRLB 

 
0.76 

 
0.17 

 
0.60 

 
0.23 

 
0.19 

 
 
It can be seen from the table that CMORPH has high values of POD and FAR compared 

to the other methods. The POD and FAR values range from 0.76 – 0.91 and 0.17 – 0.19, 

respectively. CMORPH and MPA exhibit slight differences between the values of skill 

scores (ETS, HKS and HSS). The two algorithms compared best with the gauge 

analysis over the Limpopo Basin in most of the statistics. The HSS shows the fraction 

of correct estimates after eliminating those that would have been correct due purely to 

random chance. The overestimation of rainfall (from high values of bias) leads the four 

algorithms having a greater POD and FAR meaning that there is good agreement 

between gauge and satellite estimates during the rainfall season . The dry conditions 

observed during the rainfall season of 2005 / 2006 contributed to the high values of 

FAR because the algorithms tended to over-predict the rainfall. 
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4.2 Discussions 
 
At the daily scale the CMORPH (R2 = 0.69, n = 178 days) and MPA (R2 = 0.6448, n = 

178 days) satellite-based estimation algorithms showed the highest values of coefficient 

of determination, followed by NRLB (R2 = 0.6085, n = 105 days), and PERSIANN (R2 

= 0.528, n = 176 days). This shows relatively good agreement between the CMORPH, 

MPA and NRLB with gauge rainfall and fair agreement between the PERSIANN and 

gauge rainfall.  

 

Results of three-daily moving area average rainfall for the four satellite-based 

estimation algorithms showed improvement of coefficients of determination (R2) values 

when compared with three-daily area average gauge rainfall. The values for CMORPH 

and MPA techniques increased from 0.69 to about 0.7767, and from 0.6448 to 0.7725, 

respectively, NRLB from 0.6085 to 0.652 and finally, for PERSIANN, from 0.528 to 

0.5495. The improvement in the coefficient of determination means that the temporal 

resolution of three days contributed for the accuracy of the satellite algorithms. 

 

All satellite-based estimation methods overestimate the variance of the recorded gauge 

amounts. This is demonstrated by the values of positive bias. This is largely as a result 

of comparing rain gauge point estimates of rainfall to satellite estimates averaged over 

at least 25 km2. Scofield (1987), Rosenfeld and Mintz (1988) and more recently 

McCollum et al. (2001) in their studies found also the positive bias between gauge 

measurements and satellite estimates in semi-arid regions. They attributed the positive 

bias to the significant evaporation which occurs in semi-arid regions between the cloud 

base and surface, before the precipitation reaches the ground.  

 

The MPA technique shows a significantly high value of mean absolute error (mean 

absolute error = 5.2 mm/day), relative to CMORPH, NRLB and PERSIANN. The 

NRLB shows a high value of root mean square error (RMSE = 8.9 mm/day), relative to 

the other methods. These errors are associated with the poor rain gauge network 

coverage in the study area, while the gauge observations may also be a significant 

source of scatter. For example only three rain gauges were used in southern Zimbabwe 

an area of about 66070 km2. The satellite algorithms are also sources of errors since 

they are indirect methods of rainfall estimation. The satellite sources of errors include 

the instrument calibration, the conversion retrieval to rain rates and also temporal 

sampling. 
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These results show that the methods are better than in identifying raining from non 

raining grid cells in the Limpopo basin. It can also be seen from value of the bias that all 

four methods tend to overestimate rainfall (bias > 1). The high value of bias for 

CMORPH leads to the method having a greater probability of detection (POD) and false 

alarm ratio (FAR). 

 

The average value of critical success index (CSI) during the rainfall season was 0.28 for 

CMORPH, 0.27 for MPA, 0.24 for NRLB and 0.22 for PERSIANN. These results show 

that CMORPH and MPA have good correlation and performed better than the 

PERSIANN and NRLB algorithms. The PERSIANN and NRLB algorithms are not 

using passive microwave data from DMSP, and it could be influenced in the 

performance of these two algorithms. 

 

The Heidke skill score (HSS) shows the success of the algorithm relative to using the 

mean observed rainfall as the estimate. A value of 0 indicates that the estimates are 

equivalent to using the mean observed values, whereas a value of 1 indicates perfect 

match of the observations. Any value greater than 0 therefore indicates the method is 

skilled. In this case, the result from the four algorithms shows values ranging from 0.21 

to 0.28 (see Table 4.2), meaning that all methods are skilled, but the results for 

CMORPH and MPA are better than PERSIANN and NRLB. CMORPH method 

outperforms the other three algorithms in almost every validation statistics, for the 

entire validation period.  

 

Similar results of skill were found by Joyce et al. (2004), when comparing the 

performance of CMORPH method and infrared and passive microwave combined 

methods, in the USA and Australia. The skill range was between 0.37 – 0.42 in USA, 

and from 0.26 – 0.36 in Australia. 
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Chapter 5 CONCLUSIONS and RECOMMENDATIONS 

 

5.0 Introduction 
 

Deriving accurate estimates of rainfall from satellite data at local scale and for short 

periods of time has long been a major problem in remote sensing. Techniques based on 

infrared data often rely on space/time averaging to ensure accuracy. Those on passive 

microwave data are limited to either instantaneous estimates or longer term averages 

such as monthly periods (Barrett and Beaumont, 1994). Satellite estimates from any 

specific system have uncertainties but they are improving. Combined estimates from 

different methods and systems reduce uncertainties and offer the best representation of 

precipitation in global scale. In this study, Four satellite rainfall estimation methods 

namely the Climate Prediction Centre Morphing (CMORPH), Multiple Precipitation 

Analysis (MPA), Precipitation Estimates from Remotely Sensed Information using 

Artificial Neural Networks (PERSIANN) and Naval Research Laboratory Blended 

(NRLB) that combine infrared data from Meteosat-8 satellite and passive microwave 

data from NOAA, DMSP, and TRMM satellites were used and validated against daily 

rain gauge data over the Limpopo basin, for 2005/2006 rainfall season. The validation 

was done by comparing satellite-based rainfall estimates with areal average rainfall 

measured by 90 rain gauges distributed across the basin. This section presents 

conclusions of the study and suggests some recommendations for further study. 

 

5.1 Conclusions 
 

This study leads to the following conclusions: 

 
• All the four methods showed some skill in estimating rainfall. There was 

relatively good agreement between CMORPH, MPA and NRLB algorithms and 

fair agreement between the PERSIANN algorithm and rain gauges. At the daily 

scale the CMORPH (R2 = 0.69) and MPA ((R2 = 0.6448) algorithms showed the 

highest values of coefficient of determination, followed by NRLB (R2 = 0.6085) 

and PERSIANN (R2 = 0.528).  

• The CMORPH and MPA performed better than PERSIANN and NRLB, 

according to the critical success index.  
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• The performance of the satellite-based estimation methods improved when 

three-daily moving area average rainfall was compared with three-daily area 

average gauge rainfall. The values increased from 0.69 to about 0.7767 for 

CMORPH and from 0.6448 to 0.7725. The values for NRLB increased from 

0.6085 to 0.652 and finally, for PERSIANN, from 0.528 to 0.5495. The 

improvement in the coefficient of determination means that the algorithm 

accuracy increased with time; 

• All the algorithms overestimated rainfall in quantity and spatially over the 

region, and this is a persistent feature of all algorithms with values of positive 

bias; 

• The dry conditions experienced during the 2005/2006 rainfall season could have 

affected the quality of rain gauge data and contributed negatively to the 

validation of satellite-based rainfall estimation algorithms because the satellite 

algorithms tended to over-predict rainfall. 

 

5.2 Recommendations 
 
The validation results for satellite rainfall estimation using the combined infrared and 

passive microwave methods in the Limpopo Basin, can improve if the rainfall 

measurement infrastructure and data exchange within the Limpopo Basin between the 

four countries improved. A similar study should be done during more rainfall seasons in 

order to improve the accuracy of estimated rainfall and should be extended to other river 

basins such as Save and Zambezi. 

 

The use of weather radar could greatly contribute to improved rainfall estimation. 

 

 

 

 

 

 

 

 

 



 

60  
 

REFERENCES 
 
Adler, R. F., and R. A. Mack, 1984: Thunderstorm cloud height rainfall rate relations 
    for use with satellite rainfall estimation techniques. J. Climate Appl. Meteor., 23,  
    208 – 296. 
 
Adler, R. F., and A. J. Negri, 1988: A satellite infrared technique to estimate tropical 
    convective and stratiform rainfall. J. Climate Appl. Meteor., 27, 30 – 51. 
 
Adler, R. F., P. R. Keehn, and I. M. Hakkarinen, 1993: Estimation of monthly rainfall 
    over Japan and surrounding waters from a combination of low-orbit microwave and  
    geosynchronous IR data. J. Appl. Meteor., 32, 335 – 356. 
 
Adler, R. F., C. Kidd, G. Petty, M. Morrisey, and M. H. Goodman, 2001: 
    Intercomparison of global precipitation products: The Third Precipitation  
    Project (PIP-3). Bull. Amer. Meteor. Soc., 82, 1377 – 1396. 
 
Ahrens, C. D., 2000: Meteorology Today. An Introduction to Weather, Climate and the  
    Environment. Sixth Edition.USA: Brooks/Cole. 
 
Aires, F. C., Prigent, W. B. Rossow, and M. Rothstein, 2001: A new neural network 
    approach including first guess for retrieval of atmospheric water vapour, cloud liquid  
    water path, surface temperatures and emissivities over land from satellite microwave  
    observations. J. Geophys. Res., 106 (D14), 14887 – 14907. 
 
Arkin, P.A., and J. E. Janowiak, 1993: Tropical and Subtropical Precipitation. In Atlas  
    of Satellite Observations related to Global Change. England: Cambridge University  
    Press. 
 
Arkin, P. A., and B. N. Meisner, 1987: The relationship between largescale convective  
    rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea.  
    Rev., 115, 51 – 74. 
 
Atlas for Disaster Preparedness and Response in the Limpopo Basin, 2003: 
    (CD – ROM). Republic of Mozambique. 
 
Ba, M. B., and A. Gruber, 2001: GOES Multispectral Rainfall Algorithm (GMSRA).  
    J. Appl. Meteor., 40, 1500 – 1514. 
 
Barrett, E. C., 1970: The estimation of monthly rainfall from satellite data.  
    Mon. Wea.  Rev., 98, 322 – 327. 
 
Barrett, E.C., and D. W. Martin, 1981: The use of Satellite Data in Rainfall  
    Monitoring. New York. Academic Press. 
 
Barrett, E. C., C. C. Kidd, and J.O. Bailey, 1988: The Special Sensor Microwave/ 
    Imager: A new instrument with rainfall monitoring potential. Int. J. Remote  
    Sens., 9, 1943 – 1950. 
 
Barrett, E. C., and M. J. Beaumont, 1994: Satellite rainfall monitoring: an  
    overview. Rem. Sen. Rev. 11, (1 - 4), 49 – 60. 
 



 

61  
 

Bellerby, T., M. Todd, D. Kniveton, and C. Kidd, 2000: Rainfall estimation  
    from a combination of TRMM precipitation radar and GOES multispectral  
    satellite imagery through the use of an artificial neural network. J. Appl. 
    Meteor., 39, 2115-2128. 
 
Borneman, R., 1988: Satellite rainfall estimating program of the NOAA/NESDIS 
    Satellite Analysis Branch. Natl. Wea. Dig., 13 (2), 7 – 15. 
 
Boroto, R. A. J., 2000: Limpopo River: Steps Towards Sustainable and Integrated  
    Water Resources Management. Department of Water Affairs and Forestry. South  
    Africa, Pretoria. 
 
Dennett, M. D. 1987: Variation of rainfall – the background to soil and water 
    management in dryland regions. Soil Use and Man., 3 (2), 47 – 57. 
 
Ebert, E. E., A. P. Arkin, R. J. Allam, G. E. Holpin, and A. Gruber, 1996:  
    Results from the GPCP algorithm intercomparison program. Bull. Amer.  
    Meteor. Soc., 77, 2875 – 2887. 
 
EUMETSAT, 1998: Directory of Meteorological Satellites Apllications.  
    Coordination Group for Meteorological Satellites (CGMS), EUM BR 08. 
 
EUMETSAT, 2004: MSG Interpretation Guide Version 1.0. (CD – ROM). November  
    2004  
 
FAO, 2001: Drought Impact Mitigation and Prevention in the Limpopo River Basin: A 
    Situation Analysis, FAO Sub-Regional Office for Southern and Eastern Africa,  
    Nairobi. 
 
Ferraro, R. R., and G. F. Marks, 1995: The development of SSM/I rain-rate  
    retrieval algorithms using ground based radar measurements. J. Atmos.  
    Technol., 12, 755 – 770. 
 
Ferraro, R. R., N. Weng, Grody, and L. Zhao, 2000: Precipitation characteristics over  
    land from the NOAA-15 AMSU sensor. Geophys. Res. Lett., 27, 2669 – 2672. 
 
Ferraro, R. R., P. Pellegrino, S. Kusselson, M. Turk, and S. Kidder, 2002:  
    Validation of SSM/I and AMSU-derived tropical rainfall potential (TraP)  
    during the 2001 Atlantic hurricane season. NOAA Tech. Rep. NESDIS 105, 43. 
 
Flitcroft, I. D., J. R. Milford, and G. Dugdale, 1989: Relating point area average  
    rainfall in semi-arid West Africa and the implications for rainfall estimates derived  
    from satellite data. J. Appl. Meteo., 28, 252 – 266. 
 
Follansbee, W. A., 1973: Estimation of average daily rainfall from satellite cloud  
    photographs. NOAA Tech. Memo. NESS 44, 39. 
 
Follansbee, W. A., and V. J. Oliver, 1975: A comparison of infrared imagery and video 
    pictures in the estimation of daily rainfall from satellite data. NOAA Tech. Memo.  
    NESS 62, 14. 
 
 



 

62  
 

Griffith, C. G., W. L. Woodley, S. Browner, J. Teijeiro, M. Maier, D. W. Martin, J.  
    Stout, and D. N. Sikdar, 1976: Rainfall estimation from geosynchronous satellite  
    imagery during daylight hours. NOAA Tech. Rep. ERL 356 – WMPO 7, Boulder, CO. 
 
Griffith, C. G., W. L. Woodley, P. G. Grube, D. W. Martin, J. Stout, and D. N. Sikdar, 
    1978: Rain estimates from geosynchronous satellite imagery: Visible and infrared  
    studies. Mon. Wea. Rev., 106, 1153 – 1171. 
 
Grimes, D. I. F., and M. Diop, 2003: Satellite-based rainfall estimation for river flow 

forecasting in Africa. Part I. Rainfall estimates and hydrological forecast. Hydrol. Sci. 
J., 48, 567 – 584. 

 
Gruber, A., 1973: Estimating rainfall in region of active convection. J. Appl. Meteor., 

12, 110 – 118. 
 
Harries, J. E. (2000): The Geostationary Earth radiation Energy experiment: Status and 

Science. Proceedings of the 2000 EUMETSAT Meteorological Satellite Data User’s 
Conference, Bologna, EUM-P29, 62 – 71. 

 
Hsieh, W. W., and B. Tang, 1998: Applying neural network models to prediction and 

data analysis in meteorology and oceanography. Bull. Amer. Meteor. Soc., 79,  
    1855 – 1870. 
 
Hsu, k., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Precipitation estimation from 

remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 
1176 – 1190. 

 
Huffman, G. J., R. F. Adler, M. Morrisey, D. T. Bolvin, S. Curtis, R. Joyce, B. 

McGavock, and J. Susskind, 2001: Global precipitation at one-degree daily resolution 
from multi-satellite observations. J. Hydrometeor., 2(1), 36 – 50. 

 
Huffman, G. J., R. F. Alder, E. F. Stocker, D. T. Bolvin, and E. J. Nelkin, 2003: 
    Analysis of TRMM 3-hourly multi-satellite precipitation estimates computed in  
    both real and post-real time: 12th AMS Conf. on Sat. Meteor. And Ocean, 9 - 13  
    February, Long Beach, CA. 
 
Huffman, J. G., R. F. Adler, D. T. Bolvin, G. Gu, E. J. Nelkin, K. P. Bowman, Y. Hong, 

E. F. Stocker, and D. B. Wolff, 2007: The TRMM multisatellite precipitation analysis 
(TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine 
scales. J. Hydrometeor., 8 (1), 38 – 55. 

 
International Reconstruction Conference. (CD – ROM). Republic of Mozambique and 

UNDP. Rome, 3 – 4 May, 2000. 
 
Janowiak, J. E., R. J. Joyce, and Y Yarosh, (2000): A real-time global half-hourly pixel-

resolution IR dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205 – 217. 
 
Jobard and Desbois, 1992: Remote sensing of rainfall over tropical Africa using  

Meteosat infrared imagery: sensitivity to time and space averaging. Int. J. Remote  
Sens, 13(14), 2683 – 2700. 
 
 



 

63  
 

Joyce, R. J., J. E Janowiak, P.A Arkin, and P Xie, 2004: CMORPH: A method that 
     produces global precipitation estimates from passive microwave and infrared data at  
    high spatial and temporal resolution. J. Hydrometeor., 5, 487 – 503. 
 
Kidd, C., 1999: Results of an infrared/passive microwave rainfall estimation technique. 
    Proc. Remote sensing Society, Cardiff, Wales, United Kingdom, Remote Sensing  
    Society, 685 – 689. 
 
Kidd, C., D. R. Kniveton, M. C. Todd, and T. J. Bellerby, 2003: Satellite rainfall  

estimation using combined passive microwave and infrared algorithms. J.  
Hydrometeor (AMS), 4(6), 1088 – 1104. 
 

Kummerow, C., and L. Giglio, (1995): A method for combining passive microwave  
    and infrared rainfall observations. J. Atmos. Oceanic technol., 12, 33 – 45. 
 
Kuo, H. L., 1965: On formation and intensification of tropical cyclones through  
    latent heat release by cumulus convection. J. Atmos. Sci., 22, 40 – 63. 
 
Layberry, R., D. R. Kniveton, M. C. Todd, C. Kidd, and T. J. Bellerby, 2006:  
    Daily precipitation over Southern Africa: A new resource for climate studies.  
    J. Hydrometeor (AMS), 7(1), 149 – 159. 
 
Lethbridge, M., 1967: Precipitation probability and satellite radiation data. Mon.  
    Wea. Rev., 95, 487 – 490. 
 
Lindesay, J., 1998: Present Climates of Southern Africa. In Climates of Southern  
    Africa. Present, Past and Future. Edited by Hobbs, J. E., Lindesay, J. A., and  
    Bridgman H. A. John Wiley and Sons. 
 
Mafoko, T. D. 1990: Soils and land suitability of the Lobatse area. FAO / UNDP GOB  
    Soil Mapping and Advisory Services Project BOT / 85 /011. Field Doc. 15.  
    Gaborone. 
 
McCollum, J. R., W.F. Krajewski, R.R. Ferraro, and M. B. Ba, 2001: Evaluation of  
    biases of satellite rainfall estimation algorithms over the continental United States.  
    J. Appl. Meteor., 41, 1065 – 1080. 
 
Miller, S. W., P. A. Arkin, and R. Joyce, 2001: A combined microwave/infrared rain 
     rate algorithm. Inte. J. Remote Sens., 22, 3285 – 3307. 
 
Pan, P., and M. Barnsley, 1999: Remote Sensing Society. Earth Observation from 
    Data to Information. RSS99. 
 
Petty, G., and W. F. Krajewisk, 1996: Satellite estimation of precipitation over land: 
    Hydrol. Sci. J., 41, 433 – 451. 
 
Rao, P. K., S. J. Holmes, R. K. Anderson, J. S. Winston, and P. E. Lehr, 1990:  
    Weather Satellites: System, Data, and Environmental Applications. American  
    Meteorological Society, Boston. 
 
Rosenfeld, D., and Y. Mintz, 1988: Evaporation of rain falling from convective  
    clouds as derived from radar measurements. J. Appl. Meteor., 27, 209 – 215. 



 

64  
 

Sanilders, F. L. 1991: Rainfall monitoring based on Meteosat data – A comparison of 
techniques applied to the Western Sahel. Int. J. Remote Sens., 12 1331 – 1347. 
 
Schmetz, J. P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An  
    Introduction to Meteosat Second Generation (MSG). Bull Amer. Meteor. Soc., 83,  
    977 – 992. 
Schulze, R. E. 1997: South African atlas of agro-hydrology. Report TT82/96. Pretoria. 
    Water Research Commission. 
 
Scofield, R. A. V. J., and Oliver, 1977: A Scheme for estimating convective rainfall 
    from satellite imagery. NOAA Tech. Memo. NESS 86, Washington D. C. 
 
Scofield, R. A., 1987: The NESDIS operational convective precipitation estimation  
    technique. Mon. Wea. Rev., 115, 1773 – 1792. 
 
Scofield, R. A., and R. J. Kuligowski, 2003: Status and outlook of operational  
    satellite precipitation algorithms for extreme-precipitation events. Weather and  
    Forecasting, 18, 1037 – 1050. 
 
Sorooshian, S., K. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: 
    Evaluation of PERSIANN system satellite-based estimates of tropical rain. Bull. 
    Amer. Meteor. Soc., 81, 2035 – 2046. 
 
Spayd, L. E., and R. A. Scofield, 1984: A tropical cyclone precipitation estimation  
    technique using geostationary satellite data. NOAA Tech. Memo. NESDIS 5, 36. 
 
Spencer, R. W., 1986: A satellite passive 37 GHz scattering-based method for  
    measuring oceanic rain rates. J. Climate Appl. Meteor., 25, 754 – 766. 
 
Spencer, R. W., H. M. Goodman, and R. E. Hood, 1989: Precipitation retrieval  
    over land and ocean with the SSM/I: Identification and characteristics of the  
    scattering signal. J. Atmos. Oceanic Technol., 6, 254 – 273. 
 
Stanley, Q. K., and H. V. Thomas, 1995: Satellite Meteorology. An Introduction. 
    United Kingdom. Academic Press. 
 
Stephenson, D. B., 2002: Glossary of Forecast Verification Terms. Wiley and Sons Ltd. 
 
Stout, J.E., W. D. Martin, and D. N. Sikdar, 1979: Estimating GATE rainfall with  
    geosynchronous satellite images. Mon. Wea. Rev., 107, 585 – 598. 
 
Tsintikidis, D., J. L. Huferman, N. Anagnostou, W. F. Krajewski, and T. F. Smith,  
    1997: A neural network approach to estimating rainfall from spaceborne  
    microwave data. IEEE Trans. Geosci. Remote Sens., 35, 1079 – 1092. 
 
Turk, F. J., J. Hawkins, E. A. Smith, F. S. Marzano, A. Mugnai, and V. Levizzani,  
    2000: Combining SSM/I TRMM and infrared geostationary satellite data in a  
    near- real time fashion for rapid precipitation updates: Advantages and limitations.  
    Proc. 2000. 
 
 
 



 

65  
 

Turk, F. J., E. E. Ebert, O. J. Oh, B. J. Sohn, V. Levizzani, E. A Smith, and R. R 
Ferraro, 2003: Validation of an operational global precipitation analysis at short time  
    scales. 12th AMS Conf. on Sat. Meteor. And Ocean, 9-13 February, Long Beach,  
    CA. 
 
Vicente, G. A., R. A. Scofield, W. P. Menzel, 1998: The operational GOES infrared 
    rainfall estimation technique. Bull. Amer. Meteor. Soc., 79, 1883 – 1898. 
 
Vicente, G. A., J. C. Davenport, and R. A. Scofield, 2001: The role of orographic and  
    parallax correction on real time high resolution satellite rain rate distribution.  
    Inte. J. Remote Sens., 23, 221 – 230. 
 
Visser, P. J. M, D. Dicks, I. T. H. Deyzel, and G. G. S. Pegram, 2004:Radar and  
    Satellite Products. Spatial Interpolation and Mapping of Rainfall (SIMAR). WRC  
    report No.1152/1/04. 
 
Weinman, J. A., and P. J. Guetter, 1977: Determination of rainfall distributions from  
    microwave radiation measured by the Nimbus 6 EMSR. J. Appl. Meteor., 16,  
    437 – 442. 
 
Wylie, D. P., 1979: An application of geostationary satellite rain estimation  
    technique to an extratropical area. J. Appl. Meteor., 18, 1640 – 1648. 
 
WMO, 1996: Guide to Meteorological Instruments and Methods of Observations. 
    Sixth Edition. WMO No.8. 
 
Woodley, W. L., C. G. Griffith, J. S. Griffin, and S. C. Stromatt, 1980: The inference of  
    GATE convective rainfall from SMS - 1 imagery. J. Appl. Meteor., 19, 388 – 408. 
 
www.eumetsat.org/WEBBOPS/msg_interpretation/powerPoints/Channels/Schmetz7jul
y.doc. Accessed on 20 May 2007. 
 
www.msi.umn.edu/software/idl/tutorial-9k. Accessed on 15 May 2007. 
 
Xu, L., X. Gao, S. Sorooshian, P. A. Arkin, and B. Imam, 1999: A microwave infrared 
    threshold technique to improve the GOES precipitation index. J. Appl. Meteor., 38,  
    569 – 579. 
 
Yilmaz, K. K., T. S. Hogue, H. Hsu, S Sorooshian, H. V. Gupta, and T. Wagener, 2005: 
    Intercomparison of rain gauge, radar, and satellite-based precipitation estimates with  
    emphasis on hydrologic forecasting. J. Hydrometeor. (AMS), 6 (4), 497 – 517. 
 
 
 
 
 
 
 
 
 
 
 



 

66  
 

APPENDIX 
 
Appendix I: Statistical parameters used in validation process 
 
Statistical 
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Where: 
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Oi= represents the i-th observation 
Ei= represents the i-th estimation  
N= series of estimation 
 
 


