SYNTHESIS AND OPTICAL CHARACTERISATION OF C-SiO₂ AND C-NiO SOL-GEL COMPOSITE FILMS FOR USE AS SELECTIVE SOLAR ABSORBERS.

BY

GIBION MAKIWA

A THESIS SUBMITTED AS PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE MASTER OF SCIENCE DEGREE IN APPLIED PHYSICS

DEPARTMENT OF PHYSICS FACULTY OF SCIENCE UNIVERSITY OF ZIMBABWE MAY 2006

DECLARATION

This	thesis i	s my	original work and has not been submitted	for examination in any other
Univ	ersity.			
				Date
			Makiwa G	_
			Department of Physics	
			University of Zimbabwe	
This	thesis ha	as beer	submitted with our approval as University su	ipervisors:
Main	supervi	sor:	Dr L. Olumekor	_
			Department of Physics	
			University of Zimbabwe	
Co-sı	uperviso	r:	Mr G. Katumba	_
			Department of Physics	
			University of Zimbabwe	

ABSTRACT

Carbon-silica (C-SiO₂) and carbon-nickel oxide (C-NiO) composite films were fabricated on aluminium and steel substrates by the sol-gel technique. The substrates were cleaned before spin coating took place. The precursor for carbon was sucrose, that for silica was tetraethyl orthosilicate (TEOS) and that for NiO was nickel acetate. The precursor sols were prepared and used to spin coat the cleaned substrates. Coated substrates were heat treated to carbonise them at different temperatures.

Optical measurements were performed using a LISR-3101 UV/Vis/NIR spectrophotometer and an M500 IR spectrophotometer to determine solar absorptance and thermal emittance of each sample. The overall goal was to obtain efficient solar absorbers by optimising the optical properties.

The effects of polyethylene glycol (PEG) content, sucrose (SUC) content and spin coating speed on the optical characteristics were investigated for C-NiO samples. Addition of PEG resulted in an increase in both the absorptance and emittance. The experiments showed that increasing SUC content increases the absorptance and lowers the emittance. The absorptance was found to increase with spin coating speed.

The results for C-NiO samples show that the limit for absorptance is 0.94 and that for the emittance is 0.12. The optimum figures achieved in a single C-NiO sample are 0.63 for absorptance and 0.11 for emittance.

The results for $C-SiO_2$ samples show that the limit for absorptance is 0.95 and that for the emittance is 0.55. The optimum figures achieved in a single $C-SiO_2$ sample are 0.93 and 0.56.

ACKNOWLEDGEMENTS

Gratitude is expressed to my supervisors Dr L. Olumekor and Mr G. Katumba for their invaluable guidance and supply of chemicals used throughout the whole period that I have been doing this work. I thank Dr Olumekor for being fatherly and for teaching me to evaluate my work regularly.

I would like to acknowledge the Chief technician, Mr Butau and other technical staff for helping me in various ways. I thank them for providing a good working environment that motivated me to continue working.

I thank my classmates for the ideas we shared and for the constructive criticism i got from them. Special mention goes to Vitalis Musara for the brilliant ideas he shared about the experiment on noise.

Mr Chipindu is also thanked for the encouragement. His caring attitude was a good motivator.

My wife Gladys and daughter Ginna deserve special mention for their support and encouragement. As a caring father I feel I did not give them the time they deserved.

CONTENTS

				Page
Γ	DECL	ARATI	ON	ii
A	ABSTI	RACT		iii
A	ACKN	OWLE	DGEMENTS	v
C	CONT	ENTS		vi
I	LIST C	F TAB	PLES	X
I	LIST OF FIGURES			xi
I	LIST C	F APP	ENDICES	xiv
CHAPTER 1. INTRODUCTION				
1	.1.	Genera	.1	1
1	.2.	Object	ives of the study	3
1	.3.	Scope	of the study	5
CHAPTER 2.			THEORETICAL BACKGROUND	
2	2.1.	Introdu	action	6
2	2.2.	Electro	omagnetic radiation	6
		2.2.1.	Solar radiation	6
		2.2.2.	Thermal radiation	8
		2.2.3.	Radiation tables	9
2	2.3.	Solar c	ollectors	10
		2.3.1.	Flat plate solar collectors	11

2.4.	Fabric	ation of spectrally selective solar absorber coatings	13
	2.4.1.	Introduction to the sol-gel technique	13
	2.4.2.	The chemistry of the sol-gel technique	13
	2.4.3.	The sol-gel coating process	16
	2.4.4.	The spin-coating deposition technique	16
	2.4.5.	Heat treatment of coatings	18
2.5.	Spectr	ally selective solar absorbing surfaces	19
	2.5.1.	Solar absorptance and thermal emittance of spectrally	
		selective solar absorbers	19
		2.5.1.1. Reflection of spectrally selective solar absorber surfaces	25
	2.5.2.	Designs of spectrally selective solar absorbers	26
		2.5.2.1. Intrinsic absorber	26
		2.5.2.2. Semiconductor-metal tandem	27
		2.5.2.3. Multilayer absorber	28
		2.5.2.4. Metal-dielectric composite	29
		2.5.2.5. Textured surfaces	30
		2.5.2.6. Solar transmitting coating/blackbody-like absorber	31
		2.5.2.7. Selective solar paint coatings	31
	2.5.3.	Engineering of optical constants	32
	2.5.4.	Absorber materials for high temperatures	38
2.6.	Optica	al characterization instruments	39
	2.6.1.	The UV/Vis/NIR LISR-3100 spectrophotometer	39

2.6.2. The M500 IR spectrophotometer

vii

40

CHAPTER 3.		EXPERIMENTAL PROCEDURE		
3.1.	Introduction			
3.2.	Cleani	ng of substrate	44	
	3.2.1.	Sample pre-wash	44	
	3.2.2.	Removal of oxide layer	44	
3.3.	Prepar	ation of C-NiO sol	45	
	3.3.1.	Chemicals	45	
	3.3.2.	Preparation steps	45	
3.4.	Prepar	ation of C-SiO ₂ sol	48	
	3.4.1.	Chemicals	48	
	3.4.2.	Preparation steps	48	
3.5.	Synthe	esis	49	
3.6.	Heat-t	reatment of samples	50	
3.7.	Optical characterization			
	3.7.1.	UV/Vis/NIR measurements	51	
	3.7.2.	IR measurements	51	
CHAPTER 4.		RESULTS AND DISCUSSION		
4.1.	Introd	uction	52	
4.2.	Infrare	ed spectroscopy	52	
4.3.	Analys	sis of C – NiO composite films	53	
	4.3.1.	Effect of amount of carbon precursor (SUC) on C-NiO/Al		
		samples	55	
	4.3.2.	Effect of amount of PEG on C-NiO/Al samples	58	

1	X

	4.3.3.	Effect of speed of spin coating on C-NiO/Al samples	60
	4.3.4.	Effect of heat-treatment temperature on C-NiO/Al samples	62
	4.3.5.	Effect of heat-treatment temperature on NiO/steel samples	64
	4.3.6.	Effect of heating steel substrates in air	67
4.4.	Analys	sis of C – SiO ₂ composite films	67
	4.4.1.	Effect of heat-treatment temperature on C-SiO ₂ /Al samples	70
	4.4.2.	Effect of heat-treatment temperature on C-SiO ₂ /steel samples	72
4.5.	Limits	of absorptance and emittance	74
CHAPTER 5.		CONCLUSIONS AND RECOMMENDATIONS	
5.1.	Conclu	usions	76
5.2.	Recon	nmendations and suggestions for further research	78
REFERENCE	ES		79
APPENDICE	S		85

LIST OF TABLES

		Page
Table 3.1.	Heat treatment temperature and chemical compositions used in the	
	preparation of NiO sols	47
Table 3.2.	Heat treatment temperature and chemical compositions used in the	
	preparation of SiO ₂ sols	49
Table 4.1.	The dependence of the ratio of solar absorptance to thermal	
	emittance of C-NiO/Al samples with SUC content	58
Table 4.2.	The dependence of the ratio of solar absorptance to thermal	
	emittance for C-NiO/Al samples with PEG content	60
Table 4.3.	The dependence of the ratio of solar absorptance to thermal	
	emittance for C-NiO/Al with spin coating speed	62
Table 4.4.	The dependence of the ratio of solar absorptance to thermal	
	emittance of C-NiO/Al with heat treatment temperature	64
Table 4.5.	The dependence of the ratio of solar absorptance to thermal	
	emittance of C-NiO/steel with heat-treatment temperature	66
Table 4.6.	The dependence of the ratio of solar absorptance to thermal	
	emittance of C-SiO ₂ /Al with heat-treatment temperature	71
Table 4.7.	The dependence of the ratio of solar absorptance to thermal	
	emittance of C-SiO ₂ /steel samples with heat-treatment temperature	73
Table C1.	Fraction of blackbody radiation energy between zero and λT for even	
	increments of λT	89
Table C2.	Fraction of blackbody radiation energy between zero and λT for even	
	increments of λT	90

LIST OF FIGURES

		Page
Figure 2.1.	Solar hemispherical spectral irradiance for air mass 1.5 (ISO, 1992)	
	and blackbody spectral emittance at 100 0 C, 200 0 C and 300 0 C	7
Figure 2.2.	Cross-sectional view of a flat plate solar collector design used for	
	domestic hot water application	11
Figure 2.3.	Illustration of the spin coating process	17
Figure 2.4.	Solar absorptance and thermal emittance of a typical commercial	
	spectrally selective solar absorber. Adapted from an unspecified source	24
Figure 2.5.	Reflectance from ideal and opaque surfaces	25
Figure 2.6.	Schematic design of an intrinsic absorber	27
Figure 2.7.	Schematic design of a semiconductor-metal tandem absorber	27
Figure 2.8.	Schematic design of a multilayer absorber	29
Figure 2.9.	Schematic design of a metal-dielectric composite	30
Figure 2.10.	Schematic design of a surface textured solar absorber	31
Figure 2.11.	Schematic design of a solar transmitting coating	31
Figure 2.12.	Microstructures of (a) aggregate, (b) separated-grain structures for a	
	two component medium, (c) and (d) are random unit cells (RUC) to	
	derive the effective dielectric function of the aggregate (Bruggeman	
	model) and separated grain (Maxwell-Garnett) structures, respectively	36
Figure 2.13.	The optics of the LISR-3100 spectrometer	39
Figure 2.14.	The optical diagram of the M500 IR spectrophotometer	40
Figure 2.15.	The reflectance accessory with a sample fitted in place	41

Figure 3.1.	Flow diagram of preparation of solar absorber coatings by the sol-gel	
	spin coating process	43
Figure 3.2.	The non-dispensing cycle of the P-6708D spin coater	49
Figure 3.3.	The heat-treatment process	50
Figure 4.1.	Reflectance spectrum obtained when the reference mirror was in the	
	sample position	53
Figure 4.2.	Spectral reflectance of a NiO sample without SUC	54
Figure 4.3.	Effect of amount of SUC on C-NiO/Al samples	55
Figure 4.4.	Effect of amount of PEG on C-NiO/Al samples	59
Figure 4.5.	Effect of speed of spin coating on C-NiO/Al samples	61
Figure 4.6.	Effect of heat-treatment temperature on C-NiO/Al samples	63
Figure 4.7.	Effect of heat-treatment temperature on C-NiO/steel samples	65
Figure 4.8.	Effect of heating steel substrates in air	67
Figure 4.9.	Spectral reflectance of a C-SiO ₂ sample	68
Figure 4.10.	Comparison of spectra from two spectrophotometers: FTIR Bomem-	
	Michelson 110 with integrating sphere and Buck M500 IR without	69
Figure 4.11.	Effect of heat-treatment temperature on C-SiO ₂ /Al samples	70
Figure 4.12.	Effect of heat-treatment temperature on C-SiO ₂ /steel samples	72
Figure 4.13.	Scatter graph of absorptance and emittance of all types of C-NiO samples	
	used in this investigation	74
Figure 4.14.	Scatter graph of absorptance and emittance of all types of C-NiO samples	
	used in this investigation	75
Figure D1.	The structure of NiO samples as the SUC content was varied: (a) 0 g SUC	,
	(b) 6 g SUC, (c) 7 g SUC, (d) 8 g SUC, (e) 9 g SUC, (f) 10 g SUC,	

		xiii
	(g) 11 g SUC and (h) 12 g SUC	91
Figure D2.	Structure of C-SiO ₂ samples heated at (a) 300 °C, (b) 350 °C,	
	(c) 400 °C, (d) 450 °C, (e) 500 °C and (f) 550 °C	92
Figure D3.	Structure of C-NiO samples heated at (a) 300 °C, (b) 350 °C,	
	(c) 400 °C, (d) 450 °C, (e) 500 °C and (f) 550 °C	93

LIST OF APPENDICES

	I	Page
APPENDIX A: List of	of symbols and abbreviations	85
APPENDIX B: Defin	nitions	88
APPENDIX C: Black	kbody radiation data	89
APPENDIX D: The s	structure of some of the prepared sample	91