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We are considering the low frequency vibrations of a thin shell of revolution with a curvature
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Introduction

Most problems in Applied Mathematics involving difficulties such as nonlinear governing

equations and boundary conditions, variable coefficients and complex boundary shapes pre-

clude exact solutions. Consequently exact solutions are approximated with ones using nu-

merical techniques, analytical techniques or a combination of both. We need to obtain some

insight into the character of the solutions and their dependence on certain parameters. Often

one or more of the parameters becomes either very large or very small. Typically these are

very difficult situations to treat by straight-forward numerical procedure. The analytical

method that can provide an accurate approximation is by asymptotic expansions.

This thesis is largely influenced by Professor M.B. Petrov and P.E. Tovstik [12] paper, which

examines the role of turning points on shells of revolution with low frequency vibrations and

how the resulting solutions behave.

The thesis focuses on the general idea introduced by Langer, where he realized that any

attempt to express the asymptotic expansions of the solutions of turning point problems in

terms of elementary functions must fail in regions containing the turning point. A uniformly

valid expansion must be expressed in terms of the solution of non-elementary functions

which have the same qualitative features as the equation, for example, Airy equations and

the exploration of the shell of revolution with emphasis on the negative Gaussian curvature

region where the instability occurs due to low frequency vibrations.

This thesis consists of 4 Chapters. Historical developments, refinements and definitions are

provided in Chapter 1. This Chapter also contains a number of examples and applications

illustrating the practical use of shells. The concept of surfaces is introduced and the basic

equilibrium and stress-strain relations are derived using the Love-Kirchhoff assumptions.

The concept of Airy functions as solutions of the Airy equation is introduced in Chapter 2.

Using Bessel functions of the first kind, it is shown that the Airy functions have an oscillatory
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character for negative values of the argument. The Chapter ends with a discussion of the

Liouville’s differential equation and turning points.

Chapter 3 deals with a shell of revolution with low frequency vibrations of sign-changing

curvature. It begins with a brief account of the derivation of the governing equations and

the use of separating variables. Principal sections in this Chapter are asymptotic solutions,

zeroth approximation, first approximation, Airy solutions and the variational approach to

the boundary conditions. The Chapter ends with the conclusion, where it has been shown

that, in the region with negative Gaussian curvature both solutions oscillate and in the

remaining region, where the curvature is positive, both Airy functions and the unknown

displacements and stresses exponentially increase or decrease.

Chapter 4 deals with the numerical and asymptotic aspects of the theory. It begins with an

example, where different values of the eigenvalue are found for different shell thickness and

the results tabulated and compared.
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Chapter 1

Two-Dimensional Shell Theories

1.1 Historical Developments in Linear Shell Theory

An investigation of the general theory of shells, based on the Kirchhoff hypothesis concerning

the deformation of plates, was first attempted by Aaron in 1874, when he considered bending

behaviour. On the basis of the same Kirchhoff assumptions, Love derived in 1888, the basic

equations that govern the behaviour of thin elastic shells. Subsequent theoretical efforts have

been directed towards improvements of Love’s formulation and the solution of the associated

differential equations [2].

1.1.1 Refinements

Flügge in 1934 and Byrne in 1944 independently developed a more general set of shell equa-

tions by retaining all the first-approximation assumptions of Love except, one on thinness.

Further refinements in the theory, from the period 1948-1958 included the incorporation of

the effects of transverse normal stress and transverse shear deformations. These additional

refinements are justifiable in the case of thin shells. In 1963, the refined theories of E.Reissner

and Naghdi were made invariant under different coordinate system, by Naghdi, this being

more of a mathematical refinement of the formulation than an extension of the physical

validity of the theory [2].
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1.1.2 What is a Shell?

To quote Flügge, a shell is the “. . . materialization of a curved surface.” So it is, in definition

a matter of geometry and not of material, for example, a parachute, a concrete roof, a bubble,

or even the surface of a liquid can all be treated as shells [1].

1.1.3 Early Shell Structures

Man-made shell structures have been in existence for many centuries. One of the earliest

applications of the shell as a structural form is represented by the several domes that have

been constructed for the purpose of providing roofing for temples, cathedrals, monuments

and other buildings. Notable historical examples include the Pantheon of ancient Rome, St

Peter’s Cathedral in Rome and the Taj Mahal of India, built in the seventeenth century by

the Mogul Emperor, Shah Jahan [2]. Shells were first used by the creator of the earth and its

inhabitants. The list of natural shell-like structures is long, and the strength properties of

some of them are remarkable. Egg shells range in size from the smallest insects to the large

ostrich eggs, and cellular structures are the building blocks for both plants and animals.

Bamboo is basically a thin-walled cylindrical structure, as is the root section of a bird’s

feather. The latter structural element develops remarkable load-carrying abilities in both

bending and torsion [7].

1.1.4 Modern Shell Applications

The general high strength-to-weight ratio of the shell form, combined with its inherent stiff-

ness, has formed the basis of modern applications of shell structures. Among these are

thin concrete shell roofs, thin-walled hyperbolic concrete cooling towers at a thermal power

station, cylindrical concrete silos for the storage of grain, elevated conical concrete water

reservoir and large storage vessels for oil and industrial chemicals. In industry, boilers,

pressure vessels and associated piping are further examples of shell structures in metal con-

struction. Hollow members of large industrial steel structures, such as offshore oil platforms

are another example of shell applications, as are bodies of transportation structures such as

motor vehicles, ships, aircrafts, missiles and spacecrafts. The essential property of all the

above shell structures that distinguishes them from other structural forms is, as Calladine

points out, the possession of both ‘surface’ and ‘curvature’. This combination endows shells

with their characteristic strength and stiffness [2].
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1.1.5 General Aspects of the Membrane Theory of Shells

The membrane theory of shells had its origins in the work of Lamé and Clapeyron who in

1828, had considered shells of revolution loaded symmetrically with respect to their axes.

The theory is applicable to either completely flexible membranes (for example, an inflated

tyre tube or toy balloon), which have negligible bending stiffness, or shells with finite bending

rigidity but in which the moments that are developed are so small as to be negligible (i.e.

the state of stress is essentially momentless), owing to the geometry of the shell, the nature

of the boundary conditions at the shell edges and the manner in which the applied loading is

distributed. The bending theory of shells, takes account of both extensional (i.e. in-plane)

effects and flexural (i.e. bending, twisting and shearing) effects within the shell material [2].

1.2 Elements of the Theory of Surfaces

The behaviour of a shell is usually modelled on the basis of its middle surface (alternatively

referred to as midsurface), which is the locus of interior points equidistant from the two

bounding surfaces of the shell. As coordinate lines we will use the ‘lines of curvature’ of the

undisplaced middle surface of the shell wall, together with normals to this surface. These

lines of curvature are defined as lines along which the twist is zero, and is shown in the

theory of continuous surfaces that there are always at least two such systems of lines, and

that these systems are orthogonal to each other, that is tangents to two such lines at the

point where they intersect will be at right angles to each other. The shell boundaries follow

or are normal to these lines of symmetry and hence coincide with the lines of curvature and

the coordinate lines [2].

We introduce the system of orthogonal curvilinear coordinates α1 and α2 which coincide

with the lines of curvature of the middle surface, S, of the shell, which is a body bounded

primarily by two closely spaced curved surfaces. Let a point M on S be determined by the

radius vector r = r(α1, α2), where r is the position vector from the origin O to points on the

surface, (α1, α2)-plane [8].

The shell fills the volume

(α1, α2) ∈ G, |z| ≤ h

2
,

where z is the distance along the normal to the middle surface and h is the shell thickness.

Let Γ = ∂G be the boundary of the domain G. The shell is said to be thin if its relative
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Figure 1.1: Middle surface of a shell element

thickness
h

R
is small, where R is the characteristic length [8].

For shells, the relative proportions of extensional and flexural (bending) effects at a given

point depend on several factors such as type of shell surface (synclastic, anticlastic, or de-

velopable), support conditions, loading configuration and the proximity of edges and certain

discontinuities. Synclastic surfaces are those with positive Gaussian curvature, while anti-

clastic surfaces are those that possess negative Gaussian curvature, and developable surfaces

are those that can be flattened into a plane surface, either directly or after making a single

straight-line cut in the surface, they are characterized by zero Gaussian curvature [2].

For synclastic shells, if both the shell geometry (i.e. shell thickness, middle surface slope

in any arbitrary direction and principal radii of curvature) and surface loads are smoothly

varying (i.e. exhibiting no discontinuities in the variation of the shell geometrical components

of the shell, nor in their first derivative with respect to arc length along a given direction),

then extensional effects generally predominate in the interior regions of the shell while in the

edge zones bordering the supports, extensional and flexural effects become equally significant

for most practical constructions of supports [2].

Consider base vectors a1 and a2 of the surface which are to be defined by

a1 =
∂r

∂α1

, a2 =
∂r

∂α2

.

The infinitesimal vector connecting two points on the surface with coordinates αi and (αi +

dαi) for i = 1, 2 is given by

dr =
∂r

∂α1
dα1 +

∂r

∂α2
dα2,
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Figure 1.2: Coordinate directions and stress resultants on a curved thin shell differential
element

the length of this vector is therefore determined by

(ds)2 = dr · dr =
∑

i,j

aiajdαidαj,

where the quadratic form (ds)2 which determines the line element ds on the surface is called

the first fundamental form of the surface. The length of the base vectors are denoted by A1

and A2 and is given by

Ai = |ai| =
√

(ai · ai), for i = 1, 2 [3].

We introduce local orthogonal system of coordinates by means of the unit vectors e1, e2 and

n, where

e1 =
1

A1

∂r

∂α1
, A1 =

∣

∣

∣

∂r

∂α1

∣

∣

∣
, (1 ↔ 2), n = e1 × e2.

In this section (1 ↔ 2) means the formula with 1 and 2 interchanged is also valid. The first

and second quadratic forms of the surface are

I = ds2 = A2
1dα2

1 + A2
2dα2

2,

II =
A2

1

R1
dα2

1 +
A2

2

R2
dα2

2,

where ds is the arc length on the surface, A1 and A2 are Lamé’s coefficients, R1 and R2

are the principal radii of curvature. Geometry of the middle surface is determined by the
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changes of the coefficients of the first and second fundamental forms of the surface, I and

II. The moment intensities are satisfied everywhere on the middle surface [8]. We also use

the notation ki = R−1
i , where k = k1k2 denotes the Gaussian curvature of the surface at a

point. If k2 = 0, k1 6= 0, then the surface is said to have zero Gaussian curvature (parabolic).

For k > 0, positive Gaussian curvature (elliptic) and if k < 0, negative Gaussian curvature

(hyperbolic) [2].

The variables u, v, w are the displacements of the middle surface point, which are caused

directly by the loading. The w displacements usually tend to produce v displacements which

are in general much smaller than the w displacements. In turn the v displacements tend to

produce u displacements which are much smaller than the v displacements and hence even

smaller compared to the w displacements [2].

For the chosen coordinate system A1, A2, R1 and R2 are related as follows

∂

∂α2

(A1

R1

)

=
1

R2

∂A1

∂α2
, (1 ↔ 2), (1.1)

1

A1A2

[

∂

∂α1

( 1

A1

∂A2

∂α1

)

+
∂

∂α2

( 1

A2

∂A1

∂α2

)

]

= − 1

R1R2
, (1.2)

and the unit vectors e1, e2 and n are also related as follows

∂e1

∂α1

= − 1

A2

∂A1

∂α2

e2 +
A1

R1

n, (1.3)

∂e2

∂α1

=
1

A2

∂A1

∂α2

e1, (1.4)

∂n

∂α1

= −A1

R1

e1, (1 ↔ 2) [3]. (1.5)

1.2.1 The Love-Kirchhoff Assumptions

1. The shell thickness is negligibly small in comparison with the least radius of curvature

of the shell middle surface.

2. Strains and displacements that arise within the shell are small which implies that

products of deformation quantities in the derivation theory may be neglected, ensuring

that the system is described by a set of geometrically linear equations. This makes it

possible to formulate the equilibrium conditions of the deformed middle surface with

reference to the original position of the middle surface prior to deformation.

3. Linear elements normal to the unstrained middle surface remain straight during defor-

mation and suffer no extensions. This means that if the initial and final positions on
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the middle surface are known, the initial and final positions of all points of the shell

wall will also be known, hence the strains everywhere can be calculated in terms of the

displacements of the middle surface alone.

4. The component of stress normal to the middle surface is small compared with other

components of stress and may be neglected in the stress-strain relationships. It permits

the displacement of every point in the shell wall, hence the strains and stresses at every

point, to be defined in terms of the displacement of one surface such as the middle

surface of the shell wall. This represents in effect the reduction of the problem from

a three- to a two-dimensional one. Errors due to this approximation are negligible

for thin shells of homogeneous materials under most loading conditions for practical

interest [2].

1.2.2 Geometry of the Middle Surface and its Deformations

In the linear approximation, the tangential (membrane) surface deformations, ε1, ε2 and ω,

are as by

ε1 =
1

A1

∂u1

∂α1

+
1

A1A2

∂A1

∂α2

u2 −
w

R1

, (1 ↔ 2), (1.6)

ω1 =
1

A1

∂u2

∂α1
− 1

A1A2

∂A1

∂α2
u1, ω = ω1 + ω2, (1.7)

the angles of rotation γ1 and γ2 of the normal n are equal to

γ1 = − 1

A1

∂w

∂α1

− u1

R1

, (1 ↔ 2) [8], (1.8)

where for an isotropic, homogeneous elastic solid, the in-plane constitutive law is given by

the plane stress equations

ε1 =
1

E
(σ1 − νσ2),

ε2 =
1

E
(σ2 − νσ1),

or

σ1 =
E

1 − ν2
(ε1 + νε2),

σ2 =
E

1 − ν2
(ε2 + νε1),
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and ε1 is the elongation per unit length (extension) in the direction of the α1-curve and E

is the Young’s modulus [1]. The bending surface deformations, κ1, κ2 and τ , are as by

κ1 = − 1

A1

∂γ1

∂α1
− 1

A1A2

∂A1

∂α2
γ2, (1 ↔ 2), (1.9)

τ = − 1

A2

∂γ1

∂α2
+

1

A1A2

∂A2

∂α1
γ2 +

ω1

R2
[8]. (1.10)

1.2.3 Equilibrium Equations and Elasticity Relations

The equations of equilibrium of an element of the middle surface for small deformations are

∂(A2T1)

∂α1
− ∂A2

∂α1
T2 +

∂(A1S2)

∂α2
+

∂A1

∂α2
S1 −

A1A2

R1
Q1 + A1A2F1 = 0, (1 ↔ 2), (1.11)

∂(A2Q1)

∂α1

+
∂(A1Q2)

∂α2

+ A1A2

(

T1

R1

+
T2

R2

+ Fn

)

= 0, (1.12)

A1A2Q2 +
∂(A2H1)

∂α1

+
∂(A1M2)

∂α2

+
∂A2

∂α1

H2 = 0, (1.13)

S1 − S2 +
H1

R1

− H2

R2

= 0, (1.14)

where Ti, Si and Qi are the projections of the stress-resultant of the internal forces acting in

the cross-section αi = const, on the unit vectors e1, e2 and n, Hi and Mi are the projections

of the stress-couples of the internal forces, and F1, F2 and Fn are the projections of the

distributed external load. The Kirchhoff-Love’s hypotheses, which generally assume that

a shell element, normal to the middle surface before deformation, does not change length

and remains normal to the middle surface after deformation, lead to the elasticity relations

introduced by V.V. Novozhilov

T1 = K(ε1 + νε2), S1 =
K(1 − ν)

2

(

ω +
h2τ

6R2

)

, (1 ↔ 2), (1.15)

M1 = D(κ1 + νκ2), H1 = H = D(1 − ν)τ, (1.16)

K =
Eh

1 − ν2
, D =

Eh3

12(1 − ν2)
, (1.17)

where K is extensional rigidity, D is bending rigidity and ν is Poisson’s ratio (here it is

supposed that the shell material is homogeneous and isotropic). The Fi are proportional to

the eigenvalue λ. In case of vibrations Fi = −λui, ω2 = Eλ
ρ

, where ρ is the density and ω

is the unknown natural frequency [8].

20



o

:

s

ϕ

Figure 1.3: A shell of revolution

1.2.4 Shell of Revolution

The middle surface is a surface of revolution which is formed by rotating a plane curve (the

meridian) about a straight line in the plane of the curve (the axis of rotation). It will be

assumed that the axis of rotation is vertical, so that the parallel circles of latitude of the shell,

which are the intersections of the shell middle surface with planes perpendicular to its axis

of revolution, lie in horizontal planes. Shells of revolution find application in the design of

pressure vessels, liquid-filled tanks, roof domes and cooling towers. For these structures, the

principal loading conditions are usually axisymmetric, so that every meridian of the shell of

revolution deforms in the same manner, and there is no relative transverse shearing between

adjacent portions of the shell when viewed in the plane of a circle of latitude of the shell

of revolution. In this axisymmetrical case, the loading, the constant forces, couples and the

displacements are assumed to be functions of ϕ only (complete rotational symmetry) [2].

To describe the vibrations of shells of revolution, it is convenient to introduce as curvilin-

ear coordinates, α1 and α2, the arc length, s, of the generator and the angle, ϕ, in the

circumferential direction (see Fig 1.3) [8].
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In this case

A1 = 1, A2 = B, R1 =
(dθ

ds

)

−1

, R2 =
B

sin θ
,

where B is the distance between a point on the middle surface and the axis of symmetry and

θ is the angle between the normal to the surface and the axis of symmetry. The functions

B, R1 and R2 depend only on s, and do not depend upon ϕ, where R1 is the distance

from a point on the surface to the corresponding centre of curvature and R2 is the radius

of curvature of the second principal section and is the length measured on a normal to the

meridian between its intersection with the axis of rotation and the middle surface [8].

For a conical shell, B and R2 are linear functions of s (B = R2 cos α, where α is the angle

at the top of the cone), and for a cylindrical shell we may take B = R2 = 1 (by properly

choosing the non-dimensional variables) [8].

If the shell is bounded by two parallels, which are formed when we have the intersection of

the surface with planes perpendicular to the axis of rotation and are parallel circles, s1 and

s2 or is in a form of a cupola, then since all the coefficients do not depend upon ϕ, we can

separate the variables,

w(s, ϕ) = w(s)eimϕ, m = 0, 1, 2, . . . , (1.18)

where m is the number of waves in the circumferential direction [8].

1.2.5 The Construction of a Shell Theory

In elastic theory there are three basic sets of equations namely equilibrium, kinematic (strain-

displacement), and constitutive (Hooke’s law). In shell theory, analysis of structures which

physically have three-dimensional but which can be modelled as two-dimensional surfaces,

for this we shall develop the equilibrium relations and limited to static isothermal loading of

isotropic shells [1].

1.2.6 Deriving the Equations of Equilibrium

To formulate a complete set of equilibrium equations, we should write down a complete

Lagrangian

L = T − (Ue + V )
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Figure 1.4: Shell differential element

where T=kinetic energy, Ue=strain energy, V = potential of applied edge and surface loads,

and then properly apply Hamilton’s principle,

δ

t2
∫

t1

L dt = 0.

Now we switch to a consideration of the strain energy in a shell. By definition

Ue =
1

2

∫

V

(

σ1ε1 + σ2ε2 + τ12γ12

)

dV , (1.19)

then

δUe =

∫

V

(

σ1δε1 + σ2δε2 + τ12δγ12

)

dV , (1.20)

as a consequence of the linearity of the constitutive law applied by equation (1.19). For the

volume element

dV = A1A2dα1dα2dz, (1.21)

and then substituting we find

δUe =

∫∫∫

surf. z

[(

σ1

1 + z
R1

)

(δε0
1 + zδκ1) +

(

σ2

1 + z
R2

)

(δε0
2 + zδκ2) +

(

τ12

1 + z
R2

)

(δω2 + zδτ2)

]

dV .

23



If we substitute for the volume element (1.21)

δUe =

∫∫

(N1δε
0
1+M1δκ1+N2δε

0
2+M2δκ2+N12δω1+N21δω2+M12δτ1+M21δτ2) A1A2dα1dα2.

We shall ignore the kinetic energy (thus restricting ourselves to static problems) and include

only a normal surface loading, i.e.,

V = +

∫∫

qn(α1, α2)w(α1, α2) A1A2dα1dα2,

so that

δV = +

∫∫

qnδw A1A2dα1dα2. (1.22)

But,

δUe =

∫∫

(

N1δε
0
1 + M1δκ1 + N2δε

0
2 + M2δκ2 + Sδω + 2Hδτ ∗

)

A1A2dα1dα2.

Thus the strain energy due to the shell deformation is now reduced to a surface integral

involving the energy of stretching and bending the surface.

Now by use of the principle of minimum potential energy, we see that

δ(Ue + V ) =

∫∫

(N1δε
0
1 + N2δε

0
2 + Sδw + M1δκ1 + M2δκ2 + 2Hδτ ∗ + qnδw) A1A2dα1dα2,

where

τ ∗ = τ1 +
ω2

R1
≡ τ2 +

ω1

R2
,

and defining two new stress variables,

S = N12 −
M21

R2
= N21 −

M12

R1
,

H =
1

2
(M12 + M21),

and, defining a system of stress resultants, as follows

[N1, M1] =

∫ h

2

−
h

2

σ1

(

1 +
z

R2

)

dz, (1.23a)

[N2, M2] =

∫ h

2

−
h

2

σ2

(

1 +
z

R1

)

dz, (1.23b)

[N12, M12] =

∫ h

2

−
h

2

τ12

(

1 +
z

R2

)

dz, (1.23c)

[N21, M21] =

∫ h

2

−
h

2

τ21

(

1 +
z

R1

)

dz. (1.23d)
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Thus we would define shear force resultants as follows

Q1 =

∫ h

2

−
h

2

τ1n

(

1 +
z

R2

)

dz,

Q2 =

∫ h

2

−
h

2

τ2n

(

1 +
z

R1

)

dz. (1.24)

Then, the term that we would add to the strain energy variation is

δUe|add =

∫∫∫

(τ1nδγ1n + τ2nδγ2n) A1A2dα1dα2dz.

then,

δγ1n =
1

A1

(

∂δw

∂α1
− A1

R1
δu1 + A1δβ1

)

,

δγ2n =
1

A2

(

∂δw

∂α2
− A2

R2
δu2 + A2δβ2

)

,

so that using the definitions (1.24), the additional energy variation terms are

δUe|add =

∫∫

surf.

[

Q1A2

(

∂δw

∂α1
− A1

R1
δu1 + A1δβ1

)

+ Q2A1

(

∂δw

∂α2
− A2

R2
δu2 + A2δβ2

)]

dα1dα2.

We shall conveniently leave the shear forces and twisting moments in their original untrans-

formed state, i.e. as in the following equation

δUe =

∫∫

(N1δε
0
1+M1δκ1+N2δε

0
2+M2δκ2+N12δω1+N21δω2+M12δτ1+M21δτ2) A1A2dα1dα2.
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Thus we shall vary

δUe =

∫∫

[

N1

(

A2
∂δu1

∂α1

+
∂A1

∂α2

δu2 + A1A2
δw

R1

)

+ M1

(

A2
∂δβ1

∂α1

+
∂A1

∂α2

δβ2

)

+ N2

(

A1
∂δu2

∂α2

+
∂A2

∂α1

δu1 + A1A2
δw

R2

)

+ M2

(

A1
∂δβ2

∂α2

+
∂A2

∂α1

δβ1

)

+ N12

(

A2
∂δu2

∂α1
− ∂A1

∂α2
δu1

)

+ N21

(

A1
∂δu1

∂α2
− ∂A2

∂α1
δu2

)

+ M12

(

A2
∂δβ2

∂α1
− ∂A1

∂α2
δβ1

)

+ M21

(

A1
∂δβ1

∂α2
− ∂A2

∂α1
δβ1

)

+ Q1

(

A2
∂δw

∂α1
+ A1A2

(

δβ1 −
δu1

R1

))

+ Q2

(

A1
∂δw

∂α2
+ A1A2

(

δβ2 −
δu2

R2

))]

dα1dα2.

(1.25)

Then variation of equations (1.22),(1.25) yields the equations of equilibrium (1.11) to (1.14)

[1].
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Chapter 2

Airy Functions

The solutions of the second order linear differential equation

d2u

dz2
= zu, (2.1)

are called Airy functions. These functions are closely related to the cylindrical functions

namely Bessel functions, and play an important role in the theory of asymptotic represen-

tations of various special functions arising as solutions of linear differential equations [5].

By a cylindrical function we mean a solution of the second-order linear differential equation

d2u

dz2
+

1

z

du

dz
+
(

1 − ν2

z2

)

u = 0, (2.2)

where z is a complex variable and ν is a parameter which can take the arbitrary real or

complex values [5].

2.1 Integral Representations of Ai(z) and Bi(z)

For real values of z the Airy integral is defined by

Ai(z) =
2
√

z

3π

∫

∞

0

cos
(2z

3
2

3
sinh y

)

cosh
y

3
dy, z > 0. (2.3)

After making the substitution sinh
y

3
=

1

2
z−

1
2
t this gives the following representation

Ai(z) =
1

π

∫

∞

0

cos
(1

3
t3 + zt

)

dt, z ≥ 0, (2.4)
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where the integrand does not decay as t → ∞ making the integral converge because of the

negative and positive parts of the rapid oscillations tend to cancel one another out and that

for real values of z and the Airy integral of Bi(z) is

Bi(z) =
1

π

∫

∞

0

[

exp
(

−1

3
t3 + zt

)

+ sin
(1

3
t3 + zt

)]

dt, z ≥ 0 [5]. (2.5)

The Airy equation has no singular points except at z = ∞. Every other point in the z-plane

is an ordinary point and so two linearly independent series expansions about it (formally

with indicial values σ = 0 and σ = 1) can be found. Those about z = 0 take the forms
∞
∑

n=0

anz
n and

∞
∑

n=0

bnzn+1. The corresponding recurrence relations are

u1(z) = 1 +
z3

(3)(2)
+

z6

(6)(5)(3)(2)
+ · · · ,

u2(z) = z +
z4

(4)(3)
+

z7

(7)(6)(4)(3)
+ · · · .

The ratios of successive terms for the two series are thus

an+3z
n+3

anzn
=

z3

(n + 3)(n + 2)
, and

bn+3z
n+4

bnzn+1
=

z3

(n + 4)(n + 3)
.

It follows from the ratio test that both series are absolutely convergent for all z. A similar

argument shows that the series for their derivatives are also absolutely convergent for all z.

Any solution of the Airy equation is representable as a superposition of the two series and so

is analytic for all finite z, it is therefore an integral function with only singularity at infinity

[11].

Another form of solution of the Airy equation is one that takes the form of a contour integral

in which z appears as a parameter in the integral. Consider the contour integral

u(z) =

∫ b

a

f(t) exp(zt) dt, (2.6)

in which a, b and f(t) to be chosen. Substituiting (2.6) into (2.1) yields

∫ b

a

t2f(t) exp(zt) dt =

∫ b

a

zf(t) exp(zt) dt,

= [f(t) exp(zt)]ba −
∫ b

a

df(t)

dt
exp(zt) dt.

28



If we could choose the limits a and b so that the end-point contributions vanish, then the

Airy equation would be satisfied by (2.6), provided f(t) satisfies

df(t)

dt
+ t2f(t) = 0, ⇒ f(t) = A exp

(

−1

3
t3
)

,

where A is any constant. To make the end-point contributions vanish we must choose a and

b such that

exp
(

−1

3
t3 + zt

)

= 0 for both values of t.

This can only happen if |a| → ∞ and |b| → ∞ and, even then, only if the real part of

t3 is positive. Setting t = is, where s is real and −∞ < s < ∞, converts the integral

representation of Ai(z) to

Ai(z) =
1

2π

∫

∞

−∞

exp

[

i

(

1

3
s3 + zs

)]

ds.

Now the exponent in this integral is an odd function of s and so the imaginary part of the

integrand contributes nothing to the integral. What is left is therefore

Ai(z) =
1

π

∫

∞

0

cos

(

1

3
s3 + zs

)

ds.

This shows explicitly that when z is real, so is Ai(z). All solutions except the one called

Ai(z) tend to ±∞ as z (real) takes on increasingly large positive values. Its behaviour for

negative real values of z, is that Ai(z) oscillates almost sinusoidally in this region, except

for a relatively slow increase in frequency and an even slower decrease in amplitude as −z

increases. The solution Bi(z) is chosen to be the particular function that exhibits the same

behaviour as Ai(z) except that it is in quadrature with Ai(z), i.e., it is
π

2
out of phase with

it [11].

General solutions of (2.1) can be expressed in terms of Bessel functions of imaginary argu-

ment of order ν = ±1

3
. Two linearly independent solutions of (2.1) are

u1 = Ai(z) =
1

3

√
z
[

I
−

1
3
(ζ) − I 1

3
(ζ)
]

≡ 1

π

√

z

3
K 1

3
(ζ), |argz| <

2π

3
, (2.7)

u2 = Bi(z) =

√

z

3

[

I
−

1
3
(ζ) + I 1

3
(ζ)
]

, |argz| <
2π

3
, (2.8)

(2.9)

where ζ =
2

3
z

3
2 , are called Airy functions of the first and second kind respectively, where

Bi(z) is defined as the solution with the same amplitude of oscillations as Ai(z) as z → −∞
[5].
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Replacing Iν by the series expansion

Iν(z) =

∞
∑

k=0

( z
2
)ν+2k

Γ(k + 1)Γ(k + ν + 1)
, |z| < ∞, |argz| < π, (2.10)

we obtain the expansions

Ai(z) =

∞
∑

k=0

z3k

32k+ 2
3 k!Γ(k + 2

3
)
−

∞
∑

k=0

z3k+1

32k+ 4
3 k!Γ(k + 4

3
)
, |z| < ∞, (2.11)

Bi(z) =
√

3

[

∞
∑

k=0

z3k

32k+ 2
3 k!Γ(k + 2

3
)

+

∞
∑

k=0

z3k+1

32k+ 4
3 k!Γ(k + 4

3
)

]

, |z| < ∞, (2.12)

where Γ(x) is the gamma function and may be regarded as the generalization of the factorial

function to non-integer and/or negative arguments and which shows that the Airy functions

are entire functions of z and are real for real z [5].

A complex function is said to be analytic, if it is complex differentiable at every point and

if it is analytic at all finite points of the complex plane, is said to be entire [9].

We can write the first expansion (2.11) as

Ai(z) = 3−
2
3

∞
∑

k=0

Γ(k+1
3

) sin 2π
3

(k + 1)

k!
(
√

3z)k, |z| < ∞. (2.13)

Asymptotic representations of the Airy functions for large |z| are

Ai(z) =
1√
π

z−
1
4 e−ζ [1 + O(|z|− 3

2 )], |argz| ≤ 2π

3
− δ, (2.14)

Bi(z) =
√

πz−
1
4 eζ [1 + O(|z|− 3

2 )], |argz| ≤ π

3
− δ, (2.15)

where ζ =
2

3
z

3
2 [5].

The standard solutions Ai(z) and Bi(z) have the initial values

Ai(0) =
1√
3
Bi(0) =

1

3
2
3 Γ(2

3
)
, (2.16)

Ai′(0) = − 1√
3
Bi′(0) = − 1

3
1
3 Γ(1

3
)
, (2.17)

and satisfy the Wronskian relation

Ai(z)Bi′(z) − Ai′(z)Bi(z) =
1

π
[4]. (2.18)

30



When z is positive Ai(z), Bi(z), −Ai′(z) and Bi′(z) are all positive and monotonic, when

z is negative these functions are oscillatory, with diminishing period as z → −∞ [4].

The Airy functions of argument −z can be expressed in terms of Bessel functions of the first

kind, Jν , of order ν = ±1

3
as

Ai(−z) =
1

3

√
z
[

J
−

1
3
(ζ) + J 1

3
(ζ)
]

, |argz| ≤ 2π

3
, (2.19)

Bi(−z) =
(z

3

)
1
3
[

J
−

1
3
(ζ) − J 1

3
(ζ)
]

, |argz| ≤ 2π

3
. (2.20)

Ai(−z) ≈ 1√
π

z−
1
4 cos(ζ − π

4
), z → ∞, (2.21)

Bi(−z) ≈ − 1√
π

z−
1
4 sin(ζ − π

4
), z → ∞, (2.22)

where ζ =
2

3
z

3
2 , which shows that the Airy functions have an oscillatory character for large

negative values of the argument [5].

2.2 Asymptotic Behaviour of Airy Functions

The precise asymptotic behaviour is given by

Ai(z) =
1

2
√

π
z−

1
4 e−ζ

[

1 + O(z−
3
2 )
]

,

Ai′(z) = −
√

π

2
z

1
4 e−ζ

[

1 + O(z−
3
2 )
]

,

Bi(z) =
1√
π

z−
1
4 eζ
[

1 + O(z−
3
2 )
]

,

Bi′(z) =
1√
π

z
1
4 eζ
[

1 + O(z−
3
2 )
]

,

as z → ∞, where ζ =
2

3
z

3
2 and

Ai(z) =
1√
π
|z|− 1

4

[

cos θ + O(|z|− 3
2 )
]

,

Ai′(z) =
1√
π
|z| 14

[

sin θ + O(|z|− 3
2 )
]

,

Bi(z) = − 1√
π
|z|− 1

4

[

sin θ + O(|z|− 3
2 )
]

,

Bi′(z) =
1√
π
|z| 14

[

cos θ + O(|z|− 3
2 )
]

,
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as z → −∞, where θ =
2

3
|z| 32 − π

4
[4].

2.3 Liouville’s Differential Equation

Consider
d2y

dx2
+ [λ2p(x) + r(x)]y = 0, (2.23)

for large positive λ, where x is a real variable and a ≤ x ≤ b, has solution

y =
a1 cos[λ

∫
√

p(x) dx] + b1 sin[λ
∫
√

p(x) dx]
4
√

p(x)
, (2.24)

for positive p(x) and

y =
a2 exp[λ

∫
√

−p(x) dx] + b2 exp[−λ
∫
√

−p(x) dx]
4
√

−p(x)
, (2.25)

for negative p(x) [6]. These approximations are valid as long as x is away from the zeros

of p(x). Equations (2.24) and (2.25) show that y is oscillatory on one side of a zero of p(x)

while it is exponential on the other side, hence such a zero is called a transition point. It is

also called a turning point because in classic mechanics it is the point at which the kinetic

energy of an incident particle is equal to its potential energy and that the particle therefore

reverses direction. The point x = c is called a turning point or a transition point of order α

where α is the order of the zero of p(x) at x = c [6].

Assuming p(x) has a zero in (a, b) and therefore a zero of p(x) will be called a transition

point of the differential equation, and also that p(x) has a simple pole at x = c, another zero

in a ≤ x ≤ b, then p′(x) > 0, p(c) = 0, p′(c) 6= 0, so that

p(x) < 0, when a ≤ x < c,

p(x) > 0, when c < x ≤ b,

so there seems to be no simple elementary functions for which describes the transition from

monotonic to oscillatory behaviour, then the asymptotic forms will involve some higher

transcendental functions, for example, Airy functions [10].
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Chapter 3

Low Fequency Vibrations of Shell of

Revolution of Sign-Changing

Curvature

3.1 Governing Equations

We now consider the vibration of a shell of revolution rotating around its axis of symmetry

with a generating line which has a point of inflection as a result the sign of curvature of the

middle surface changes.

On the middle surface we have curvilinear coordinates (s, ϕ), where s is the arc length of

the generating line for which s1 ≤ s ≤ s2 and ϕ is the angle in the circumferential direction.

In this case

A1 = 1, A2 = B,

where A1 and A2 are Lamé’s coefficients as introduced in Chapter 1. The shell is bounded

by two parallels and all the coefficients do not depend upon ϕ, and therefore we can separate

the variables,

u, v, w(s, ϕ) = w(s)eimϕ, m = 0, 1, 2, . . . , (3.1)

where m is the number of waves in the circumferential direction.

We introduce the following relations for the forces (T1, T2, S) and displacement components
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Figure 3.1: A shell of sign-changing curvature
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(u, v, w) after separating the variables

T1(s, ϕ) = T1(s) cos mϕ, u(s, ϕ) = u(s) cosmϕ, (3.2)

T2(s, ϕ) = T2(s) cos mϕ, v(s, ϕ) = v(s) sinmϕ, (3.3)

S(s, ϕ) = S(s) sinmϕ, w(s, ϕ) = mw(s) cosmϕ. (3.4)

Since we consider the shell dynamics, more precisely free vibrations, then the load projections

are simply the forces of inertia, which are proportional to the frequency parameter λ, where

λ =
ρω2

E
,

where ρ is the density, E is Young’s modulus and ω is the unknown natural frequency.

The equations of equilibrium are from (1.11) and substituting A1 = 1, A2 = B, α1 = s and

α2 = ϕ, we get
∂(BT1)

∂s
− ∂B

∂s
T2 +

∂S

∂ϕ
− B

R1
Q1 + BF1 = 0,

from (3.2) and (3.3), we have

∂(B(s)T1(s) cos mϕ)

∂s
− ∂B(s)

∂s
T2(s) cosmϕ+

∂S(s) sin mϕ

∂ϕ
+

∂(1)

∂ϕ
S(s) sinmϕ =

B

R1

Q1−BF1,

Differentiating term by term, we have

dB(s)

ds
T1(s) cos mϕ+B(s)

dT1(s)

ds
cos mϕ−dB(s)

ds
T2(s) cosmϕ+S(s)m cos mϕ =

B

R1

Q1−BF1,

dividing by cosmϕ 6= 0, we have

dB

ds
T1 + B

dT1

ds
− dB

ds
T2 + mS =

B

R1
Q1 − BF1,

grouping terms and dividing by B 6= 0,

dT1

ds
+

1

B

dB

ds
(T1 − T2) +

m

B
S =

Q1

R1
− F1,

denoting
dB

ds
to be B′, giving

dT1

ds
+

B′

B
(T1 − T2) +

m

B
S =

Q1

R1
− F1.

We have by definition that F1 = Ehλu and Q1 =
h2

12
L1 and therefore combining we have

dT1

ds
+

B′

B
(T1 − T2) +

m

B
S =

h2

12
L1 − Ehλu. (3.5)
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From (1.11) interchanging the indices we have

∂T2

∂ϕ
+

∂(BS)

∂s
+

∂B

∂s
S =

B

R2
Q2 − BF2,

after separating variables, we have

∂(T1(s) cos mϕ)

∂ϕ
+

∂(B(s)S(s) sin mϕ

∂s
=

∂B(s)

∂s
S(s) sin mϕ =

B

R2

Q2 − BF2,

differentiating term by term yields

−T2(s)m sin mϕ+
dB(s)

ds
S(s) sin mϕ+B(s)

dS(s)

ds
sin mϕ+

dB(s)

ds
S(s) sin mϕ =

B

R2
Q2−BF2,

and dividing by sin mϕ 6= 0 and B 6= 0, we have

dS

ds
+ 2

B′

B
S − m

B
T2 =

Q2

R2

− F2,

we have by definition that F2 = Ehλv and Q2 =
h2

12
L2 and therefore combining we have

dS

ds
+ 2

B′

B
S − m

B
T2 =

h2

12
L2 − Ehλv. (3.6)

Simplifying we have

B(s)

(

T1(s) cos mϕ

R1
+

T2(s) cos mϕ

R2
+ Fn

)

= 0,

dividing by B 6= 0 and cos mϕ 6= 0, we have

T1

R1
+

T2

R2
=

h2

12
L3 − Ehλw. (3.7)

By definition, ε1 =
1

Eh
(T1 − νT2), we have

∂(u(s) cos mϕ)

∂s
− w(s) cosmϕ

R1

=
1

Eh
(T1(s) cos mϕ − νT2(s) cos mϕ),

differentiating and dividing by cos mϕ 6= 0, we have

du

ds
− w

R1
=

T1 − νT2

Eh
. (3.8)

Interchanging indices and defining ε2 =
1

Eh
(T2 − νT1), we have

1

B(s)

∂(v(s) sin mϕ)

∂ϕ
+

1

B

∂B(s)

∂s
u(s) cosmϕ−w(s) cos mϕ

R2
=

1

Eh
(T2(s) cos mϕ−νT1(s) cosmϕ),
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differentiating and dividing by cos mϕ 6= 0, we have

m

B
v +

B′

B
u − w

R2
=

1

Eh
(T2 − νT1). (3.9)

By definition, ω = ω1 + ω2 and ω =
2(1 + ν)S

Eh
, we have

∂(v(s) sin mϕ

∂s
−− 1

B(s)

∂B(s)

∂s
v(s) sin mϕ +

1

B(s)

∂(u(s) cos mϕ)

∂ϕ
=

2(1 + ν)S

Eh
,

differentiating and dividing by sin mϕ 6= 0, yields

dv

ds
− B′

B
− m

B
u =

2(1 + ν)S

Eh
,

grouping terms yields

− m

B
u + B

d

ds

( v

B

)

=
2(1 + ν)S

Eh
. (3.10)

By definition, Lk, k = 1, 2, 3 are the momentum terms.

The equilibrium equations are therefore

dT1

ds
+

B′

B
(T1 − T2) +

m

B
S =

h2

12
L1 − Ehλu,

dS

ds
+ 2

B′

B
S − m

B
T2 =

h2

12
L2 − Ehλv, (3.11)

T1

R1

+
T2

R2

=
h2

12
L3 − Ehλw,

and the deformation-displacement relations together with the elasticity relations are given

by

du

ds
− w

R1
=

T1 − νT2

Eh
,

m

B
v +

B′

B
u − w

R2
=

T2 − νT1

Eh
, (3.12)

−m

B
u + B

d

ds

( v

B

)

=
2(1 + ν)S

Eh
.
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Together the governing equations are

dT1

ds
+

B′

B
(T1 − T2) +

m

B
S =

h2

12
L1 − Ehλu,

dS

ds
+ 2

B′

B
S − m

B
T2 =

h2

12
L2 − Ehλv,

T1

R1
+

T2

R2
=

h2

12
L3 − Ehλw,

du

ds
− w

R1
=

T1 − νT2

Eh
,

m

B
v +

B′

B
u − w

R2
=

T2 − νT1

Eh
,

−m

B
u + B

d

ds

( v

B

)

=
2(1 + ν)S

Eh
.

The system of ordinary differential equations (3.11) and (3.12) has order eight and is complete

with respect to six unknown variables u, v, w, T1, T2 and S.

Assume that the middle surface satisfies the following conditions

R2 > 0, R−1
1 (s∗) = 0, (R−1

1 (s∗))
′ < 0, (3.13)

and

R1 > 0 if s1 ≤ s < s∗,

R1 < 0 if s∗ < s ≤ s2,

where s∗ is a turning point and R−1
1 6= 0 and s 6= s∗.

On the negative Gaussian part of the shell

m ∼ h−
1
3 , λ ∼ h

2
3 , (3.14)

and for the positive Gaussian part of the shell

λ ∼ 1, (3.15)

and the boundary conditions are strong enough to exclude pure bending.

3.1.1 Asymptotic Solutions

We now consider the integrals of the systems (3.11) and (3.12) assuming (3.14). Four solu-

tions of (3.11) and (3.12) are boundary effect integrals and the other four integrals describe
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the main stress state, where the index of variation is 1
3

(from the shell of negative Gaussian

curvature).

The general idea of the method belongs to Langer, who realized that any attempt to express

the asymptotic expansions of the solutions of turning point problems in terms of elementary

functions must fail in regions containing the turning points. A uniformly valid expansion for

all s must be expressed in terms of the solution of non-elementary functions which have the

same qualitative features as the equation, for example, Airy functions [6].

The functions
1

R1

,
1

R2

and B are sufficiently smooth.

We are going to use x for any of the variables in (3.11) and (3.12) i.e. u, v, w, T1, T2 and S.

For s > s∗, we have the representation

xn = mγ(x)
∞
∑

k=0

m−kx(k)
n (s) exp

{

m

∫ s

s0

qn ds
}

, n = 1, 2, 3, 4. (3.16)

As for s 6= s∗, we have

q1(s) ≡ q2(s) =

√

R2

B2R1

, q3(s) ≡ q4(s) = −
√

R2

B2R1

,

and for s = s∗,

q1(s) = q3(s),

hence s∗ is a turning point, so the coefficients x
(k)
n in (3.16) are irregular.

For the asymptotic representation of solutions, let all unknowns x(s, m) from (3.11) and

(3.12) be represented in the form of the combination of the Airy function U(η) and its

derivative
dU(η)

dη
as

x(s, m) = x(1)(s, m)U(η) + x(2)(s, m)
dU(η)

dη
, (3.17)

where U(η) is solution of the Airy equation

d2U

dη2
+ ηU = 0, η = m

2
3 ξ(s), (3.18)

and functions x(k) are formal series of (3.18),

x(k) = mγk(x)
∞
∑

l=0

m−2lx(k,l)(s), k = 1, 2, (3.19)
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i.e. if they are substituted into the differential equation as if the infinite series were conver-

gent, the differential equation is satisfied. However, the infinite series involved in the formal

series are in general divergent.

We have the unknowns ξ, x(k,l) and index of intensity γk, which are found by substituting

(3.17) into (3.11) and (3.12) and equating coefficients by mpU and mp
dU

dη
.

3.1.2 Zeroth Approximation

We consider the zeroth approximation solution for the case when l = 0 in the series (3.19)

i.e.

x(1)(s, m) = mγ1(x)x(1,0) + O
( 1

m2

)

, when k = 1,

x(2)(s, m) = mγ2(x)x(2,0) + O
( 1

m2

)

, when k = 2,

then the asymptotic series (3.17) becomes

x(s, m) = mγ1(x)x(1,0)U(η) + mγ2(x)x(2,0) dU(η)

dη
, (3.20)

where the terms x(k,0) are functions of s for k = 1, 2.

Differentiating (3.17) noting that η = m
2
3 ξ(s) and

d2U

dη2
= −ηU , we have

dx(s)

ds
= mγ1(x) dx(1,0)

ds
U + mγ1(x)x(1,0) dU

ds

+ mγ2(x) dx(2,0)

ds

dU

dη
+ mγ2(x)x(2,0) d

ds

(dU

dη

)

= mγ1(x)dx(1,0)

ds
U + mγ1(x)x(1,0) dU

dη

dη

ds
+ mγ2(x) dx(2,0)

ds

dU

dη

+ mγ2(x)x(2,0) d

dη

(dU

dη

)dη

ds

= mγ1(x)dx(1,0)

ds
U + mγ1(x)x(1,0) dU

dη

dη

ds
+ mγ2(x) dx(2,0)

ds

dU

dη

+ mγ2(x)x(2,0) d
2U

dη2

dη

ds
,

since η = m
2
3 ξ(s), differentiating gives

dη = m
2
3 ξ′(s)ds,

dη

ds
= m

2
3 ξ′(s), (3.21)
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substituting (3.21) into the above gives

dx

ds
= mγ1(x) dx(1,0)

ds
U + mγ1(x)x(1,0)m

2
3 ξ′

dU

dη

+ mγ2(x) dx(2,0)

ds

dU

dη
− mγ2(x)x(2,0)m

2
3 ξξ′m

2
3 U,

and grouping terms, we have

dx

ds
= mγ1(x)dx(1,0)

ds
U + ξ′mγ1(x)+ 2

3 x(1,0) dU

dη
− mγ2(x)+ 4

3 ξξ′x(2,0)U + mγ2(x) dx(2,0)

ds

dU

dη
. (3.22)

The membrane integrals are the solutions of the membrane equations (3.11) when they are

homogeneous equations. For low-frequency vibrations of shell of revolution with m waves in

circumferential direction, the following expressions are obtained when equating coefficients

of U and
dU

dη
.

For

dT1

ds
+

B′

B
(T1 − T2) +

m

B
S = 0, (3.23)

substituting (3.20)and (3.22) into (3.23), we have

0 = mγ1(T1) dT
(1,0)
1

ds
U + ξ′mγ1(T1)+ 2

3 T
(1,0)
1

dU

dη
− mγ2(T1)+ 4

3 ξξ′T
(2,0)
1 U + mγ2(T1)dT

(2,0)
1

ds

dU

dη

+
B′

B

(

mγ1(T1)T
(1,0)
1 U + mγ2(T1)T

(2,0)
1

dU

dη
− mγ1(T2)T

(1,0)
1 U − mγ2(T2)T

(2,0)
2

dU

dη

)

+
m

B

(

mγ1(S)S(1,0)U + mγ2(S)S(2,0) dU

dη

)

,

equating coefficients of U , gives

mγ1(T1) dT
(1,0)
1

ds
−mγ2(T1)+ 4

3 ξξ′T
(2,0)
1 +

1

B
mγ1(S)+1S(1,0) +

B′

B

(

mγ1(T1)T
(1,0)
1 −mγ1(T2)T

(1,0)
1

)

= 0,

and those after equating coefficients of
dU

dη
are

ξ′mγ1(T1)+ 2
3 T

(1,0)
1 + mγ2(T1) dT

(2,0)
1

ds
+

B′

B

(

mγ2(T1)T
(2,0)
1 −mγ2(T2)T

(2,0)
2

)

+
1

B
mγ2(S)+1S(2,0) = 0.

For

dS

ds
+ 2

B′

B
S − m

B
T2 = 0, (3.24)
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substituting (3.20)and (3.22) into (3.24), we have

0 = mγ1(S)dS(1,0)

ds
U + ξ′mγ1(S)+ 2

3 S(1,0) dU

dη
− mγ2(S)+ 4

3 ξξ′S(2,0)U + mγ2(S) dS(2,0)

ds

dU

dη

+ 2
B′

B

(

mγ1(S)S(1,0)U + mγ2(S)S(2,0) dU

dη

)

− 1

B

(

mγ1(T2)+1T
(1,0)
2 U + mγ2(T2)+1T

(2,0)
2

dU

dη

)

,

equating coefficients of U ,

mγ1(S)dS(1,0)

ds
− mγ2(S)+ 4

3 ξξ′S(2,0) + 2
B′

B
mγ1(S)S(1,0) − 1

B
mγ1(T2)+1T

(1,0)
2 = 0,

and equating the coefficients of
dU

dη
we have

ξ′mγ1(S)+ 2
3 S(1,0) + mγ2(S) dS(2,0)

ds
+ 2

B′

B
mγ2(S)S(2,0) − 1

B
mγ2(T2)+1T

(2,0)
2 = 0.

For

T1

R1
+

T2

R2
= 0, (3.25)

substituting (3.20)and (3.22) into (3.25), we have

1

R1

(

mγ1(T1)T
(1,0)
1 U + mγ2(T1)T

(2,0)
1

dU

dη

)

+
1

R2

(

mγ1(T2)T
(1,0)
2 U + mγ2(T2)T

(2,0)
2

dU

dη

)

= 0,

equating coefficients of U ,

mγ1(T1)T
(1,0)
1

R1
+ mγ1(T2)T

(1,0)
2

R2
= 0,

and equating the coefficients of
dU

dη
, we have

mγ2(T1)T
(2,0)
1

R1
+ mγ2(T2)T

(2,0)
2

R2
= 0.

The last group of integrals called the bending ones, may be obtained from the bending

equations after we put all deformations ε1, ε2 and ω to be equal to zero in equations (3.12).

Hence their zeroth approximations are, for

du

ds
− w

R1
= 0, (3.26)
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substituting (3.20)and (3.22) into (3.26), we have

0 = mγ1(u)du(1,0)

ds
U + ξ′mγ1(u)+ 2

3 u(1,0)dU

dη
− mγ2(u)+ 4

3 ξξ′u(2,0)U + mγ2(u) du(2,0)

ds

dU

dη

+
B′

B

(

mγ1(u)u(1,0)U + mγ2(u)u(2,0) dU

dη

)

− 1

R1

(

mγ1(w)w(1,0)U + mγ2(w)w(2,0)dU

dη

)

,

equating coefficients of U ,

mγ1(u) du(1,0)

ds
− mγ2(u)+ 4

3 ξξ′u(2,0) − 1

R1
mγ1(w)w(1,0) +

B′

B
mγ1(u)u(1,0) = 0,

and equating the coefficients of
dU

dη
, we have

ξ′mγ1(u)+ 2
3 u(1,0) + mγ2(u) du(2,0)

ds
− 1

R1
mγ2(w)w(2,0) +

B′

B
mγ2(u)u(2,0) = 0.

For

m

B
v +

B′

B
u − w

R2
= 0, (3.27)

coefficients of U are

1

B
mγ1(v)+1v(1,0) − 1

R2
mγ1(w)w(1,0) = 0,

coefficients of
dU

dη
are

mγ2(v)+1v(2,0) − 1

R2

mγ2(w)w(2,0) = 0,

and for

− m

B
u + B

d

ds

( v

B

)

= 0, (3.28)

coefficients of U are

− 1

B
mγ1(u)+1u(1,0) + mγ1(v) dv(1,0)

ds
− mγ2(v)+ 4

3 ξξ′v(2,0) +
B′

B
mγ1(v)v(1,0) = 0,

and coefficients of
dU

dη
are

− 1

B
mγ2(u)+1u(2,0) + mγ1(v)+ 2

3 ξ′v(1,0) + mγ2(v) dv(2,0)

ds
+

B′

B
mγ2(v)v(2,0) = 0.
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We now consider the equilibrium conditions for the shell of revolution and free vibrations

for the zeroth approximation after equating coefficients, thus these relations are obtained

− ξξ′T
(2,0)
1 +

1

B
S(1,0) = 0, (3.29)

ξ′T
(1,0)
1 +

1

B
S(2,0) = 0,

ξξ′S(2,0) +
1

B
T

(1,0)
2 = 0,

ξ′S(1,0) − 1

B
T

(2,0)
2 = 0. (3.30)

Equating the terms in powers of m, we have

mγ1(T1) = mγ1(T2) =⇒ γ1(T1) = γ1(T2) = α1,

mγ1(T1)+ 2
3 = mγ2(S)+1,

γ1(T1) +
2

3
= γ2(S) + 1,

α1 +
2

3
− 1 = γ2(S),

γ2(S) = α1 −
1

3
.

mγ2(T1) = mγ2(T2) =⇒ γ2(T1) = γ2(T2) = α2,

mγ1(S)+1 = mγ2(T1)+ 4
3 ,

γ1(S) + 1 = γ2(T1) +
4

3
,

γ1(S) = α2 +
4

3
− 1,

γ1(S) = α2 +
1

3
.

Considering the bending conditions for the shell of revolution and free vibrations for the
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zeroth approximation after equating coefficients, we have the following relations

1

R1
T

(1,0)
1 +

1

R2
T

(1,0)
2 = 0,

1

R1
T

(2,0)
1 +

1

R2
T

(2,0)
2 = 0,

ξξ′u(2,0) +
1

R1
w(1,0) = 0,

ξ′u(1,0) − 1

R1

w(2,0) = 0,

1

B
v(1,0) − 1

R2

w(1,0) = 0,

1

B
v(2,0) − 1

R2

w(2,0) = 0,

1

B
u(1,0) − ξξ′v(2,0) = 0,

− 1

B
u(2,0) − ξ′v(1,0) = 0.

Equating the terms in powers of m, the following results are obtained ,

let γ1(u) = α1,

γ2(u) = α2,

mγ2(u)+ 4
3 = mγ1(w),

γ2(u) +
4

3
= γ1(w),

γ1(w) = α2 +
4

3
.

mγ1(u)+ 2
3 = mγ2(w),

γ1(u) +
2

3
= γ2(w),

γ2(w) = α1 +
2

3
.

mγ1(u)+1 = mγ2(v)+ 4
3 ,

γ1(u) + 1 = γ2(v) +
4

3
,

γ1(u) + 1 − 4

3
= γ2(v),

γ2(v) = α1 −
1

3
.
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mγ2(u)+1 = mγ1(v)+ 2
3 ,

γ2(u) + 1 = γ1(v) +
2

3
,

γ2(u) + 1 − 2

3
= γ1(v),

γ1(v) = α2 +
1

3
.

Collectively we have

γ1(u) = α1, γ2(u) = α2, γ1(w) = α2 +
4

3
, (3.31)

γ2(w) = α1 +
2

3
, γ2(v) = α1 −

1

3
, γ1(v) = α2 +

1

3
, (3.32)

γ2(S) = α1 −
1

3
, γ1(S) = α2 +

1

3
, γ1(T1) = γ1(T2) = α1. (3.33)

From these zeroth approximation, the equation for ξ(s) may be obtained in the following

way. Using (3.29) and rearranging to have

1

B
S(1,0) = ξξ′T

(2,0)
1 ,

S(1,0) = Bξξ′T
(2,0)
1 , (3.34)

and substituting (3.34) into (3.30), we have

ξ(ξ′)2BT
(2,0)
1 − 1

B
T

(2,0)
2 = 0,

1

R1

T
(2,0)
1 +

1

R2

T
(2,0)
2 = 0.

In matrix form, these two equations are






ξ(ξ′)2B − 1

B
1

R1

1

R2







(

T
(2,0)
1

T
(2,0)
2

)

= 0.

To obtain non-trivial solutions the determinant of the system should be zero i.e.
∣

∣

∣

∣

∣

∣

∣

ξ(ξ′)2B − 1

B
1

R1

1

R2

∣

∣

∣

∣

∣

∣

∣

= 0,

cross-multiplying gives

ξ(ξ′)2B

R2
+

1

BR1
= 0,

ξ(ξ′)2B

R2
= − 1

BR1
,

ξ(ξ′)2 = − R2

B2R1
= r2.
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Since we are dealing with the part containing the negative Gaussian curvature, R1R2 < 0,

but R2 > 0, therefore R1 < 0. Hence −R2

R1
> 0, therefore − R2

B2R1
> 0 and making r > 0

=⇒ ξ > 0 and s > s∗ on the negative Gaussian curvature part.

ξ(ξ′)2 = r2,

squaring both sides since r > 0, ξ > 0 and
√

r2 = |r|, but r > 0, hence
√

r2 = |r| = r,

√

ξξ′ = r,

but,
√

ξ
dξ

ds
= r,

integrating both sides on the negative Gaussian curvature part,
∫

ξ
1
2 dξ =

∫ s

s∗

r ds,

2

3
ξ

3
2 =

∫ s

s∗

r ds,

ξ
3
2 =

3

2

∫ s

s∗

r ds,

ξ =
(3

2

∫ s

s∗

rds
)

2
3

.

3.1.3 First Approximation

When considering the first approximation, the set of equilibrium equations are as follows

dT1

ds
+

B′

B
(T1 − T2) +

m

B
S = 0,

dS

ds
+ 2

B′

B
S − m

B
T2 = 0,

T1

R1
+

T2

R2
=

m

Eh

(

Ehλw′′ − Ehλ
m2

B2
w
)

+
h2m

12(1 − ν2)

( d2

ds2
− m2

B2

)2

w,

and the equations for the bending ones are

du

ds
− w

R1

= T1 − νT2,

m

B
v +

B′

B
u − w

R2

= T2 − νT1,

−m

B
u + B

d

ds

( v

B

)

= 2(1 + ν)S.
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Consider the case when l = 1 and substitute into (3.19), we have

x(1) = mγ1(x)x(1,0) + mγ1(x)−2x(1,1) + O
( 1

m4

)

,

x(2) = mγ2(x)x(2,0) + mγ2(x)−2x(2,1) + O
( 1

m4

)

,

and hence (3.17) becomes

x(s, m) =
(

mγ1(x)x(1,0) + mγ1(x)−2x(1,1)
)

U +
(

mγ2(x)x(2,0) + mγ2(x)−2x(2,1)
)dU

dη
. (3.35)

Differentiating expression (3.35) with respect to s, the expression obtained is

dx

ds
=
(

mγ1(x)dx(1,0)

ds
+ mγ1(x)−2 dx(1,1)

ds

)

U +
(

mγ1(x)x(1,0) + mγ1(x)−2x(1,1)
)dU

dη

dη

ds

+
(

mγ2(x) dx(2,0)

ds
+ mγ2(x)−2 dx(2,1)

ds

)dU

dη
+
(

mγ2(x)x(2,0) + mγ2(x)−2x(2,1)
) d

dη

(dU

dη

)dη

ds

=
(

mγ1(x) dx(1,0)

ds
+ mγ1(x)−2 dx(1,1)

ds

)

U + m
2
3 ξ′
(

mγ1(x)x(1,0) + mγ1(x)−2x(1,1)
)dU

dη

+
(

mγ2(x) dx(2,0)

ds
+ mγ2(x)−2 dx(2,1)

ds

)dU

dη
+
(

mγ2(x)x(2,0) + mγ2(x)−2x(2,1)
)d2U

dη2

dη

ds

=
(

mγ1(x) dx(1,0)

ds
+ mγ1(x)−2 dx(1,1)

ds

)

U +
(

ξ′mγ1(x)+ 2
3 x(1,0) + ξ′mγ1(x)− 4

3 x(1,1)
)dU

dη

+
(

mγ2(x) dx(2,0)

ds
+ mγ2(x)−2 dx(2,1)

ds

)dU

dη
+ −ξξ′m

4
3

(

mγ2(x)x(2,0) + mγ2(x)−2x(2,1)
)

U

=
(

mγ1(x) dx(1,0)

ds
+ mγ1(x)−2 dx(1,1)

ds

)

U +
(

ξ′mγ1(x)+ 2
3 x(1,0) + ξ′mγ1(x)− 4

3 x(1,1)
)dU

dη

+
(

mγ2(x) dx(2,0)

ds
+ mγ2(x)−2x(2,1)

)dU

dη
−
(

ξξ′mγ2(x)+ 4
3 x(2,0) + ξξ′mγ2(x)− 2

3 x(2,1)
)

U.

(3.36)

For the equilibrium equation

dT1

ds
+

B′

B
(T1 − T2) +

m

B
S = 0, (3.37)

48



substituting (3.35) and (3.36) into (3.37) and rearranging terms

0 =
(

mγ1(T1) dT
(1,0)
1

ds
+ mγ1(T1)−2 dT

(1,1)
1

ds

)

U +
(

ξ′mγ1(T1)+ 2
3 T

(1,0)
1 + ξ′mγ1(T1)− 4

3 T
(1,1)
1

)dU

dη

+
(

ξξ′mγ2(T1)+ 4
3 T

(2,0)
1 + ξξ′mγ2(T1)− 2

3 T
(2,1)
1

)

U

+
B′

B

[(

mγ1(T1)T
(1,0)
1 + mγ1(T1)−2T

(1,1)
1

)

U +
(

mγ2(T1)T
(2,0)
1 + mγ2(T1)−2T

(2,1)
1

)dU

dη

]

− B′

B

[(

mγ1(T2)T
(1,0)
2 + mγ1(T2)−2T

(1,1)
2

)

U +
(

mγ2(T2)T
(2,0)
2 + mγ2(T2)−2T

(2,1)
2

)dU

dη

]

+
m

B

[(

mγ1(S)S(1,0) + mγ1(S)−2S(1,1)
)

U +
(

mγ2(S)S(2,0) + mγ2(S)−2S(2,1) dU

dη

]

,

(3.38)

equating coefficients of U ,

mγ1(T1) dT
(1,0)
1

ds
− ξξ′mγ2(T1)− 2

3 T
(2,1)
1 +

B′

B

(

mγ1(T1)T
(1,0)
1 −mγ1(T2)T

(1,0)
2

)

+
1

B
mγ1(S)−1S(1,1) = 0,

substituting (3.31), we have

1

B
S(1,1)mα2−

2
3 = ξξ′mα2−

2
3 T

(2,1)
1 − mα1

[

dT
(1,0)
1

ds
+

B′

B

(

T
(1,0)
1 − T

(1,0)
2

)

]

,

dividing by mα2−
2
3 and cross-multiplying by B, we have

S(1,1) = Bξξ′T
(2,1)
1 − mα1−α2+

2
3

[

dT
(1,0)
1

ds
+

B′

B

(

T
(1,0)
1 − T

(1,0)
2

)

]

,

hence

S(1,1) = Bξξ′T
(2,1)
1 − mδ2

[

dT
(1,0)
1

ds
+

B′

B

(

T
(1,0)
1 − T

(1,0)
2

)

]

. (3.39)

Equating coefficients of
dU

dη

0 = ξ′mγ1(T1)+ 2
3 T

(1,0)
1 + ξ′mγ1(T1)− 4

3 T
(1,1)
1 + mγ2(T1)dT

(2,0)
1

ds
+ mγ2(T1)−2 dT

(2,1)
1

ds

+
B′

B

[

mγ2(T1)T
(2,0)
1 + mγ2(T1)−2T

(2,1)
1 − mγ2(T2)T

(2,0)
2 + mγ2(T2)−2T

(2,1)
2

]

+
m

B

(

mγ2(S)S(2,0) + mγ2(S)−2S(2,1)
)

,

leading to

mγ2(T1) dT
(2,0)
1

ds
+

B′

B

[

mγ2(T1)T
(2,0)
1 − mγ2(T2)T

(2,0)
2

]

+
1

B
mγ2(S)−1S(2,1) + ξ′mγ1(T1)− 4

3 T
(1,1)
1 = 0,
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substituting (3.31) we have

mα2
dT

(2,0)
1

ds
+

B′

B

[

mα2T
(2,0)
1 − mα2T

(2,0)
2

]

+
1

B
mα1−

4
3 S(2,1) + ξ′mα1−

4
3 T

(1,1)
1 = 0,

making S(2,1) subject of formula, dividing by mα1−
4
3 and cross-multipying by B we get

S(2,1) = −Bξ′T
(1,1)
1 − mδ1

[

B
dT

(2,0)
1

ds
+ B′

(

T
(2,0)
1 − T

(2,0)
2

)

]

. (3.40)

For
dS

ds
+ 2

B′

B
S − m

B
T2 = 0, (3.41)

equating coefficients of U ,we get

T
(1,1)
2 = −ξξ′BS(2,1) + mδ1

[

B
dS(1,0)

ds
+ 2B′S(1,0)

]

, (3.42)

and for
dU

dη

T
(2,1)
2 = ξ′BS(1,1) + mδ2

[

B
dS(2,0)

ds
+ 2B′S(2,0)

]

. (3.43)

From
T1

R1

+
T2

R2

= 0, (3.44)

we have after equating coefficients of U

T
(1,1)
1

R1

+
T

(1,1)
2

R2

= 0, (3.45)

and from the coefficients of
dU

dη

T
(2,1)
1

R1
+

T
(2,1)
2

R2
= 0. (3.46)

From the bending equations, we have for

− m

B
u + B

d

ds

( v

B

)

= 2(1 + ν)S, (3.47)

equating the coefficients of U , we have

u(1,1) = −ξξ′v(2,1) + mδ1

[

dv(1,0)

ds
− 2B(1 + ν)S(1,0)

]

, (3.48)
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and that from the coefficients of
dU

dη

u(2,1) = Bξ′v(1,1) + mδ2

[

dv(2,0)

ds
− B′v(2,0) − 2B(1 + ν)S(2,0)

]

. (3.49)

For
du

ds
− w

R1
= T1 − νT2, (3.50)

the coefficients of U , gives

w(1,1) =
R1

B
v(1,1) + mδ2

[

B′

B
R2u

(1,0) − R2

(

T
(1,0)
2 − νT

(1,0)
1

)

]

, (3.51)

and the coefficients from
dU

dη
, gives

w(2,1) =
R2

B
v(2,1) + mδ1

[B′

B
u(2,0) − R2

(

T
(2,0)
2 − νT

(2,0)
1

)]

, (3.52)

where

δ1 = α2 − α1 +
4

3
, δ2 = α1 − α2 +

2

3
, (3.53)

when δ1 = δ2 = 0, we have

α1 = α2 +
4

3
,

α2 = α1 +
2

3
,

and therefore values of δi, for i = 1, 2 are as follows

when α1 = 0, α2 = −4

3
=⇒ δ1 = 0, δ2 = 2,

α2 = 0, α2 = −2

3
=⇒ δ2 = 0, δ1 = 2.

The consistency conditions for the next approximation give the leading terms for the so-

lutions, for example, the leading terms of the asymptotic expansions for the membrane

equations for a stress, T1 are as follows

T1 = mγ1(T1)
[

T
(1,0)
1 + O(m−2)

]

U + mγ2(T1)
[

T
(2,0)
1 + O(m−2)

]dU

dη
,

but

γ1(T1) = γ1(T2) = α1,
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γ2(T1) = γ2(T2) = α2,

and if α1 = 0, α2 = −4
3
, then

T1 = mα1

[

T
(1,0)
1 + O(m−2)

]

U + mα2)
[

T
(2,0)
1 + O(m−2)

]dU

dη
,

=
[

T
(1,0)
1 + O(m−2)

]

U + m−
4
3

[

T
(2,0)
1 + O(m−2)

]dU

dη
,

and if α2 = 0, α1 = −2
3
, then

T1 = m−
2
3

[

T
(1,0)
1 + O(m−2)

]

U +
[

T
(2,0)
1 + O(m−2)

]dU

dη
,

and the others have the following

− 1

B
u(1,0) − m

1
3 ξξ′v(2,0) = 0,

u(1,0) = −m
1
3 ξξ′v(2,0),

from
1

R2

w(2,0) =
m

B
v(2,0),

w(2,0) =
m

B
R2v

(2,0),

m
1
3 ξ′T

(1,0)
1 +

1

B
S(2,0) = 0,

S(2,0) = −m
1
3 ξ′BT

(1,0)
1 ,

from
1

R1
T

(1,0)
1 +

1

R2
T

(1,0)
2 = 0,

T
(1,0)
2 = −R2

R1
T

(1,0)
1 ,

together the leading terms are as follows, where, for example, u(1,0) is replaced by u(1),

T
(1)
1 = − 2EhrR2

1

(R1 − R2)2

( B3

ξ′R2

)
1
2 dy

ds
, S(2) = −m

1
3

ξB
T

(1)
1 ,

T
(1)
2 = −R2

R1

T
(1)
1 , u(1) = −m

1
3 ξξ′Bv(2), (3.54)

v(2) =
m−

1
3

r

(

ξ′
B

R2

)
1
2
y, w(2) =

mR2

B
v(2),

and for the other two solutions, the leading terms are, for example

u = mγ1(v)
[

v(1,0) + O(m−2)
]

U + mγ2(v)
[

v(2,0) + O(m−2)
]dU

dη
,

and if α1 = 0, α2 = −4
3
,

u = mα2+ 1
3

[

v(1,0) + O(m−2)
]

U + mα1−
1
3

[

v(2,0) + O(m−2)
]dU

dη
,

= m−1
[

v(1,0) + O(m−2)
]

U + m−
1
3

[

v(2,0) + O(m−2)
]dU

dη
,
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and in the case α2 = 0, α1 = −2
3
,

u = mα2+ 1
3 [v(1,0) + O(m−2)]U + mα1−

1
3

[

v(2,0) + O(m−2)
]dU

dη
,

= m
1
3 [v(1,0) + O(m−2)]U + m−1

[

v(2,0) + O(m−2)
]dU

dη
,

and the remaining terms have the following

1

B
v(1,0) =

m

R2

w(1,0),

w(1,0) =
mR2

B
v(1,0),

from
1

B
u(2,0) = m−

1
3 ξ′v(1,0),

u(2,0) = m−
1
3 ξ′Bv(1,0),

from
1

R1

T
(2,0)
1 +

1

R2

T
(2,0)
2 = 0,

T
(2,0)
2 = −R2

R1

T
(2,0)
1 ,

together the leading terms are

T
(2)
1 =

2EhR2
1

(R1 − R2)2

(B3ξ′

R2

)
1
2 dy

ds
, S(1) = m

1
3 Bξξ′T

(2)
1 ,

T
(2)
2 = −R2

R1

T
(2)
1 , u(2) = m−

1
3 Bξ′v(1), (3.55)

v(1) = m
1
3

( B

ξ′R2

)
1
2

y, w(1) =
mR2

B
v(1),

where y satisfies the differential equation

d

ds

(

rg
dy

ds

)

+
f

r
y = 0, (3.56)

and where g(s) =
2R2

1B
4

R2(R1 − R2)2
, f(s) =

λm2R2

2
− m6h2

12(1 − ν2)g
and f, g ∼ 1.

The differential equation (3.56) is derived from rearranging the equation (3.43) to obtain an

expression for S(1,1) and substitute into equation (3.39), we have

T
(2,1)
2 − ξξ′B2T

(2,1)
1 = B

dS(2,0)

ds
+ 2B′S(2,0) − ξ′B2dT

(1,0)
1

ds
+ B′

(

T
(1,0)
1 − T

(1,0)
2

)

,

solving this equation together with

T
(2,1)
1

R1
+

T
(2,1)
2

R2
=

m3λ

B3
w(2,0) − h2m

12(1 − ν2)

(m2

B2

)2

w(2,0),
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we get

d

ds

(

Bξ′T
(1,0)
1

)

+ T
(1,0)
1

(

ξ′B′
R2

R1
− 4Bξ′′

)

− m3λ

B2
w(2,0) − h2m

12(1 − ν2)

(m2

B2

)2

w(2,0) = 0,

which gives the differential equation (3.56).

In (3.54) and (3.55) the omitted terms are sufficiently small, for example, in (3.54)

T
(1)
1 ∼ m−

4
3 , S(2) ∼ m−1, u(1) ∼ m−

1
3 , v(2) ∼ 1 and w(2) ∼ m−

2
3 ,

and in (3.55)

T
(2)
1 ∼ m−

2
3 , S(1) ∼ m−

1
3 , u(2) ∼ m−1, v(1) ∼ 1 and w(1) ∼ m−

4
3 .

3.2 Solution to the Differential Equation (3.56)

For the general second order differential equation

d2y

dx2
+ P (x)

dy

dx
+ Q(x)y = 0,

a point x = x0 is an ordinary point of the differential equation, if we can find two linearly

independent solutions in the form of a power series centred at x0,

y =
∞
∑

n=0

Cn(x − x0)
n,

and is called a regular singular point if both (x− x0)P (x) and (x− x0)
2Q(x) are analytic at

x0 and if not then it is an irregular singular point [10].

If x = x0 is a regular singular point, by method of Frobenius, then there exists at least one

solution of the form

y = (x − x0)
p

∞
∑

n=0

Cn(x − x0)
n,

=
∞
∑

n=0

Cn(x − x0)
n+p,

where p is a constant to be determined [10].

The differential equation (3.56) in expanded form is

rg
d2y

ds2
+

d(rg)

ds

dy

ds
+

f

r
y = 0,
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and assuming the solution to be in the form

y =
∞
∑

n=0

Cn(s − s∗)
n+p,

after differentiating, gives the relations

dy

ds
=

∞
∑

n=0

(n + p)Cn(s − s∗)
n+p−1,

d2y

ds2
=

∞
∑

n=0

(n + p)(n + p − 1)Cn(s − s∗)
n+p−2,

and substituting into the differential equation, gives

0 = (s − s∗)
1
2

∞
∑

n=0

(n + p)(n + p − 1)Cn(s − s∗)
n+p−2

+
1

2
(s − s∗)

−
1
2

∞
∑

n=0

(n + p)Cn(s − s∗)
n+p−1 + (s − s∗)

−
1
2

∞
∑

n=0

Cn(s − s∗)
n+p,

0 =

∞
∑

n=0

(n + p)(n + p − 1)Cn(s − s∗)
n+p− 3

2

+
1

2

∞
∑

n=0

(n + p)Cn(s − s∗)
n+p− 3

2 +

∞
∑

n=0

Cn(s − s∗)
n+p− 1

2 ,

collecting terms, we have

∞
∑

n=0

(n + p)(n + p − 1

2
)Cn(s − s∗)

n+p− 3
2 +

∞
∑

n=0

Cn(s − s∗)
n+p− 1

2 = 0,

for n = 0,

p
(

p− 1

2

)

C0(s− s∗)
p− 3

2 +
∞
∑

n=1

(n + p)(n + p − 1

2
)Cn(s − s∗)

n+p− 3
2 +

∞
∑

n=0

Cn(s − s∗)
n+p− 1

2 = 0,

factoring out (s − s∗)
p,

(s−s∗)
p

[

p
(

p−1

2

)

C0(s−s∗)
−

3
2 +

∞
∑

n=1

(n + p)(n + p − 1

2
)Cn(s − s∗)

n− 3
2 +

∞
∑

n=0

Cn(s − s∗)
n− 1

2

]

= 0,

letting k = n − 1,

(s−s∗)
p

[

p
(

p−1

2

)

C0(s−s∗)
−

3
2 +

∞
∑

k=0

(k + 1 + p)(k + p +
1

2
)Ck+1(s − s∗)

k− 1
2 +

∞
∑

k=0

Ck(s − s∗)
k− 1

2

]

= 0,
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collecting like terms

(s − s∗)
p

[

p
(

p − 1

2

)

C0(s − s∗)
−

3
2 +

∞
∑

k=0

(

(k + p + 1)(k + p +
1

2
)Ck+1 + Ck

)

(s − s∗)
k− 1

2

]

= 0,

but

p
(

p − 1

2

)

C0 = 0, (k + p + 1)(k + p +
1

2
)Ck+1 + Ck = 0,

from

p
(

p − 1

2

)

C0 = 0, =⇒ p
(

p − 1

2

)

= 0, for C0 6= 0,

then, the two values of p are

p1 = 0 and p2 =
1

2
,

and therefore, the two linearly independent solutions of (3.56) have the expansions

for p1 = 0, y1 = a0 + a1(s − s∗) + · · · ,

and

for p2 =
1

2
, y2 = b0(s − s∗)

1
2 + b1(s − s∗)

3
2 + · · · ,

y2 = (s − s∗)
1
2

(

b0 + b1(s − s∗) + · · ·
)

.

To get regular functions x(k) in (3.54) we should put y = y2 and in (3.55) y = y1. Since for

s > s∗, R1 < 0 and R1(s∗) = ∞, then from the equation

r2 = − R2

B2R1
, (3.57)

in the neighbourhood of the point s∗, we have by Taylor’s expansion

B(s) = B(s∗) +
dB

ds

∣

∣

∣

s∗
(s − s∗) + · · · , (3.58)

R2(s) = R2(s∗) +
dR2

ds







s∗
(s − s∗) + · · · , (3.59)

1

R1(s)
=

1

R1(s∗)
+
(dR1

ds

)

−1




s∗
(s − s∗) + · · · , (3.60)

noting that R1(s∗) = ∞, then
1

R1(s∗)
∼ 0.

Thus from (3.57), we have

r2(s) = −
R2(s∗) + dR2

ds







s∗
(s − s∗) + · · ·

[

B(s∗) + dB
ds







s∗
(s − s∗) + · · ·

]2

[

dR1

ds







s∗
(s − s∗) + · · ·

]

,
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expanding the denominator

[B2]−1 = B−2

[

1 + 2
1

B

dB

ds







s∗
(s − s∗) +

1

B2

(

dB

ds

)2

+ · · ·
]

,

=
1

B2(s∗)
− 2B

dB

ds







s∗
(s − s∗) + · · · ,

therefore simplifying, gives

r2(s) =

(

dR1

ds

)

R2

B2







s∗
(s − s∗) + O(s − s∗),

and taking square roots, we have that

r ∼ (s − s∗)
1
2 .

Substituting f, g ∼ 1 and r ∼ (s − s∗)
1
2 into the differential equation (3.56), we have

(s − s∗)
1
2
d2y

ds2
+

1

2
(s − s∗)

−
1
2
dy

ds
+

y

(s − s∗)
1
2

= 0,

d2y

ds2
+

1

2(s − s∗)

dy

ds
+

y

(s − s∗)
= 0,

which shows that (3.56) has at s = s∗ a regular singular point.

3.2.1 Airy Solutions

Let us take two solutions of equation (3.18)

U1(η) = Ai(−η) , U2(η) = Bi(−η), (3.61)

then the functions (3.54) and (3.55) give four solutions of (3.17). Consider their linear

combination as

x =

4
∑

k=1

Ckxk(s, m), (3.62)

where Ck are arbitrary constants, x1 and x2 are constructed in accordance with formulae

(3.54) and (3.55), for U = U1 and x3 and x4 for U = U2.

The leading terms of asymptotic solution of (3.61) have the following terms

U1(η) = π−
1
2 η−

1
4 cos ϕ, U2(η) = π−

1
2 η−

1
4 sin ϕ, (η → ∞),

U1(η) =
1

2
π−

1
2 (−η)−

1
4 e−δ, U2(η) = π−

1
2 (−η)−

1
4 eδ, (η → ∞), (3.63)
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where ϕ = 2
3
η

3
2 − π

4
and δ = 2

3
(−η)

3
2 .

From (3.63) it follows that all solutions, xk, oscillate for s > s∗ (ξ > 0, η > 0) which is a

typical situation for the asymmetric vibrations (and loss of stability ) of the shells of negative

Gaussian curvature. For s < s∗, solutions, x1 and x2 exponentially decrease with increase of

s∗ − s, and x3 and x4 increasing.

Four solutions from (3.62), for s > s∗ we get

T1 ≈ V1[(−C0
1 cos ϕ − C0

3 sin ϕ)y′

2 + (−C0
2 sin ϕ + C0

4 cos ϕ)y′

1],

S ≈ V2[(−C0
1 sin ϕ + C0

3 cos ϕ)y′

2 + (C0
2 cos ϕ + C0

4 sin ϕ)y′

1],

u ≈ V3[(−C0
1 cos ϕ − C0

3 sin ϕ)y2 + (−C0
2 sin ϕ + C0

4 cos ϕ)y1], (3.64)

v ≈ V4[(−C0
1 sin ϕ + C0

3 cos ϕ)y2 + (C0
2 cos ϕ + C0

4 sin ϕ)y1],

and from (3.62), for s < s∗ the four solution are

T1 ≈ −V1

(1

2
C0

1e
−δ + C0

3e
δ
)

y′

2 + |V1|
(1

2
C0

2e
−δ − C0

4e
δ
)

y′

1,

S ≈ V2

(1

2
C0

1e
−δ − C0

3e
δ
)

y′

2 − |V2|
(1

2
C0

2e
−δ + C0

4e
δ
)

y′

1,

u ≈ −V3

(1

2
C0

1e
−δ + C0

3e
δ
)

y2 + |V3|
(1

2
C0

2e
−δ − C0

4e
δ
)

y1, (3.65)

v ≈ V4

(1

2
C0

1e
−δ − C0

3e
δ
)

y2 − |V4|
(1

2
C0

2e
−δ + C0

4e
δ
)

y1,

where

V1 =
B

|r|V2, V2 =
2R2

1|r|
(R1 − R2)2

(B|r|
πR2

)
1
2
(sign(−R1))

1
2 , δ = m

∫ s∗

s

|r| ds,

V3 =
|r|
B

V4, V4 =
(B|r|

πR2

)
1
2
(sign(−R1))

1
2 , ϕ = m

∫ s

s∗

r ds − π

4
,

and

C0
k = Ckm

(−1)k
6 .

From δ = −2
3
(−η)

3
2 and substituting η = m

2
3 ξ, we have

δ = −2

3

(

(

−m
2
3 ξ
)

3
2

)

,

= −2

3

(

−m
3

2

∫ s∗

s

|r| ds

)

,

= m

∫ s∗

s

|r| ds,
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and from ϕ = 2
3
η

3
2 − π

4
, we have

ϕ =
2

3

(

m
2
3 ξ
)

3
2 − π

4
,

=
2

3
mξ

3
2 − π

4
,

=
2

3
· 3

2
m

(
∫ s

s∗

r ds

)
2
3
·
3
2

− π

4
,

= m

∫ s

s∗

r ds − π

4
.

Coefficients Vk for s > s∗ are positive and for s < s∗, pure imaginary, but the products Vky2

in (3.65) are real.

To find T2 and w use the approximate formulae

T2 = −R2

R1
T1, w =

mR2

B
v. (3.66)

3.3 Boundary Value Problem

Using the constructed integrals for solution of boundary value problems, restricting ourselves

with tangential boundary conditions. Also suppose that edges s = s1 and s = s2 for

s1 < s∗ < s2 are sufficiently far from s = s∗.

Let on s = s1, there be at least one tangential fix (constant)(fixed either u or v or both) for

excluding bending at the positive part of the shell.

Approximate solutions may be obtained if the linear combination of solutions decrease near

s = s1.

Let

x = C1x1 + C2x2. (3.67)

The error done has order exp(−2m
∫ s∗

s1
|r| ds).

We give the following equations for frequency for different boundary conditions of s = s2,

for u = v = 0, equation (3.64) gives

− C0
1 cos φy2 − C0

2 sin ϕy1 = 0, (3.68)

− C0
1 sin ϕy2 + C0

2 cos ϕy1 = 0, (3.69)
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multiplying (3.68) by cosϕ and (3.69) by sin ϕ and adding the two we have

− C0
1y2 = 0, ⇒ y2 = 0, (3.70)

multiplying (3.68) by sin ϕ and (3.69) by cosϕ and adding the two we have

2C0
2y1 = 0, ⇒ y1 = 0, (3.71)

together

y1y2 = 0. (3.72)

For u = S = 0, equation (3.64) gives

− C0
1 sin ϕy′

2 + C0
2 cos ϕy′

1 = 0, (3.73)

− C0
1 cos ϕy2 − C0

2 sin ϕy1 = 0, (3.74)

multiplying (3.73) by cosϕy2 and (3.74) by sin ϕy′

2 and adding the two we have

cos2 ϕy′

1y2 + sin2 ϕy1y
′

2 = 0. (3.75)

For v = T1 = 0 equation (3.64) gives

− C0
1 sin ϕy2 + C0

2 cos ϕy1 = 0, (3.76)

− C0
1 cos ϕy′

2 − C0
2 sin ϕy′

1 = 0, (3.77)

multiplying (3.76) by cosϕy′

2 and (3.77) by sin ϕy2 and adding the two we have

sin2 ϕy′

1y2 + cos2 ϕy1y
′

2 = 0. (3.78)

For T1 = S = 0, equation (3.64) gives

− C0
1 cos ϕy′

2 − C0
2 sin ϕy′

1 = 0, (3.79)

− C0
1 sin ϕy′

2 + C0
2 sin ϕy′

1 = 0, (3.80)

multiplying (3.79) by sin ϕ and (3.80) by cosϕ and adding the two we have

2C0
2y

′

1 = 0, ⇒ y′

1 = 0, (3.81)

and multiplying (3.79) by cosϕ and (3.80) by sin ϕ and adding the two we have

− 2C0
1y

′

2 = 0, ⇒ y′

2 = 0, (3.82)

60



together

y′

1y
′

2 = 0, (3.83)

grouping them together gives

y1y2 = 0 for u = v = 0, (3.84a)

y1y
′

2 sin2 ϕ + y2y
′

1 cos2 ϕ = 0 for u = S = 0, (3.84b)

y1y
′

2 cos2 ϕ + y2y
′

1 sin2 ϕ = 0 for v = T1 = 0, (3.84c)

y′

1y
′

2 = 0 for T1 = S = 0, (3.84d)

where functions yk,y
′

k and ϕ are evaluated for s = s2. Equations (3.84) do not depend on

boundary conditions at s = s1.

3.3.1 Variational Approach

When m ∼ h−
1
3 is fixed then from equations (3.84) we can find eigenvalues λ ∼ h

2
3 . The

smallest frequency may be found while changing m. In case (a) for the smallest frequency

we have estimate (3.14). In case (b) and (c) there is a possibility for further decrease of

frequency when decreasing m, if the shell has the so called eigensizes (the same as for shells

of negative curvature). For example in (c), our task is to find the smallest λ > 0 for which

there exists a solution for (3.11) and (3.12) satisfying boundary conditions and also we should

find an m which corresponds to this λ.

To find approximate solutions we shall substitute functions (3.64) into tangential boundary

conditions (3.84). Consider different variations of boundary conditions

1. if on both s = s1 and s = s2 are (3.84a), form equation for different λ is

y1(s2) = 0,

2. for the case s = s1 in (3.84a) and s = s2, either in (3.84b) or (3.84c), we have

y′

1(s2) = 0,

3. if both s = s1 and s = s2 then for the same (3.84b) and (3.84c) is

y′

1y2 sin2 ϕ + y1y
′

2 cos2 ϕ = 0, on s = s2, (3.85)

or if different

y′

1y2 cos2 ϕ + y1y
′

2 sin2 ϕ = 0, on s = s2. (3.86)
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We have the differential equation

d

ds

(

rg(s)
dy

ds

)

− m6h2

12(1 − ν2)

y(s)

g(s)
+

λm4f(s)

r
y(s) = 0, (3.87)

considering these variations in detail, taking into account that

y1(s1) = 0, y′

1(s1) = 1, y2(s1) = 1, y′

2(s1) = 0, (3.88)

we see that the first and second variations i.e. 1 and 2 lead to a typical Sturm-Liouville

problem : Find λ for which there exists solution of equation (3.87) satisfying conditions

y(s1) = y(s2) = 0, in the first variation,

and

y(s1) = y′(s2) = 0, in the second variation. (3.89)

One should find the smallest λ for different m. Consider a variational method for simple

formulas,

hence λ = λ∗ follows from

λ∗ = min
m,y

(

I1 + m6h2

12(1−ν2)
I2

m4I3

)

, (3.90)

where

I1 =

∫ s2

s∗

rg(s)
(dy

ds

)2

ds, I2 =

∫ s2

s∗

y2

rg(s)
ds, I3 =

∫ s2

s∗

f(s)y2

r
ds.

The Wronskian of (3.87) is

y′

1(s)y2(s) − y1(s)y
′

2(s) =
g(s1)

g(s)
, (3.91)

then conditions (3.85) and (3.86) may be rewritten in the form

y1(s2)y
′

2(s2) = −g(s1)

g(s2)
sin2 ϕ, (3.92)

y1(s2)y
′

2(s2) = −g(s1)

g(s2)
cos2 ϕ, (3.93)

where

ϕ = ϕ(s2) = m

∫ s2

s∗

∣

∣

∣

R2

B2R1

∣

∣

∣

1
2
ds. (3.94)

Let us consider (3.93) corresponding to the fourth variant of boundary conditions.
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3.3.2 Eigensizes

If the boundary conditions at s1 and s2 are such that there are constraints only on one of the

two tangential displacements (u or v) the so called eigensizes exist. These are sizes of a shell

which are such that for a given boundary condition, for example, u(s2) = S(s2) = 0 and a

particular m the frequency of vibration decreases significantly due to non-trivial bending.

To find the sizes (eigensizes) of the shell and m such that cos ϕ = 0, we then get the Sturm-

Liouville problem containing differential equation (3.87) and boundary conditions

y′(s1) = y′(s2) = 0. (3.95)

For general m, eigenvalue λ = λ(m) may be found from (3.90) where y satisfies the conditions

(3.95).

For approximate evaluation of λ(m) put y(s) ≡ 1. Then

λ(m) ≈ m2h2

12(1 − ν2)

∫ s2

s∗

ds

rg(s)

(

∫ s2

s∗

f(s)

r
ds

)

−1

. (3.96)

To check whether (3.96) gives a critical load, we should consider other values of m. Let now

cos ϕ 6= 0, then y1(s) and y2(s) satisfy the integral equations

y1(s) = rg(s)

∫ s2

s∗

dt

g(t)
−
∫ s2

s∗

(

∫ t

s∗

f(t1)

r(t1)
y1(t1) dt1

)

dt

g(t)
, (3.97)

y2(s) = 1 −
∫ s2

s∗

(

∫ t

s∗

f(t1)

r(t1)
y2(t1) dt1

)

dt

g(t)
.

Exact solutions of (3.97) may be found by iterative methods. This method converges quickly

if

∣

∣

∣

∣

f

r

∣

∣

∣

∣

≪ 1.

Let

∣

∣

∣

∣

f

r

∣

∣

∣

∣

≪ 1, then we get

y1(s) =

∫ s2

s∗

rg(s1)

g(t)
dt, y2(s) = 1 −

∫ s2

s∗

(

∫ t

s∗

f(t1)

r(t1)
dt1

)

dt

g(t)
. (3.98)

Substituting (3.98) into (3.93) we get

λ(m) =
cos2 ϕ

m2I1I2
+

m4h2I1

12(1 − ν2)I2
, (3.99)
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where

I1 =

∫ s2

s∗

ds

rg
, I2 =

∫ s2

s∗

R2

2r
ds.

Eigensizes corresponding to cosϕ = 0 and the approximate formula (3.99) are valid only if

cos2 ϕ ≪ 1,
1

12
m6h2 ≪ 1.

Taking into account that as m decreases the influence of two still not taken into account

facts : boundary conditions at s = s2 and the type of boundary conditions on s = s1. In

case (d) as m decreases there is always reduction of frequency and these facts are getting

essential.

Conclusions

In the region s > s∗(ξ > 0, η > 0) both the solutions oscillate. This is a typical situation for

the asymmetric vibrations (and loss of stability) of the shells of negative Gaussian curva-

ture. In the remaining region where the curvature is positive, both Airy functions, and the

unknown displacements and stresses exponentially increase or decrease. The low frequency

vibrations take place when the leading role belongs to the bending solutions.
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Chapter 4

Numerical Vs Asymptotic

As an example consider a shell whose middle surface is got as a result of rotation of the

curve

z = a − b sin c(x − x∗), x1 ≤ x ≤ x2,

about the OX axis. At x = x∗ there is change in sign of curvature. So we have, observing

that

ds2 = dx2 + dz2,

ds2 = dx2 + (b2c2 cos2[c(x − x∗)]dx2,

= [1 + b2c2 cos2[c(x − x∗)]]dx2,

ds = Φ(x)dx,

where Φ =
√

1 + b2c2 cos2[c(x − x∗)]. Therefore

s(x) =

∫ s

s∗

ds =

∫ x

x∗

Φ(x) dx =

∫ x

x∗

Φ(t) dt, Φ(t) =
(

1 + b2c2 cos2[c(t − x∗)]
)

1
2 . (4.1)

Let on both sides

u = v = w = M1 = 0, x = x1, x2. (4.2)

For the formal approximation of the smallest eigenvalue, we use the first of equations (3.84a).

To construct y1 and y2 solutions of equation (3.56) take the following initial conditions

y1(x∗ + ε) = 1,
dy1

dx

∣

∣

∣

x∗+ε
= − 2B2Φ2f

R2g
dR−1

1

dx

∣

∣

∣

∣

∣

x=x∗

,

y2(x∗ + ε) =
√

ε,
dy2

dx

∣

∣

∣

x∗+ε
=

1

2
√

ε
. (4.3)
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Put

ε = 10−4, a = 2, b = c = 1, x∗ = 0, x2 = −x1 =
π

2
, ν = 0.3.

As a result of the solution by Runge-Kutta fourth order of problem (3.56) and (4.3) as

h = 0.003 and h = 0.01 it happens that the smallest eigenvalue is when y2(x2, λ) = 0.

Denote the found λ as λac from the variational approach and solve the equations (3.11),

(3.12) and (4.2) numerically, denoting the smallest eigenvalue found as λnp.

For the different number of waves m, the values of the frequency parameter λ are presented

in the following tables for different values of h.

m 5 6 7 8 9 10
λac 0.0437 0.0431 0.0307 0.0306 0.0328 0.0347
λnp 0.0408 0.0336 0.0311 0.0306 0.0330 0.0351

Table 4.1: when h = 0.01

m 9 10 11 12 13 14
λac 0.0153 0.0139 0.0135 0.0136 0.0141 0.0148
λnp 0.0156 0.0144 0.0138 0.0138 0.0142 0.0152

Table 4.2: when h = 0.003

From these tables there is good agreement.

4.1 Graphs

In the region s > s∗(ξ > 0, η > 0) the solutions oscillate. In the remaining region, both Airy

functions, and the unknown displacements and stresses exponentially increase or decrease as

shown by the graphs below.
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Figure 4.1: Asymptotic solution for the force v(s)
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Figure 4.2: Asymptotic solution for the force u(s)
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Figure 4.3: Asymptotic solution for the force w(s)
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Figure 4.4: Asymptotic solution for the force T1(s)
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Figure 4.5: Asymptotic solution for the force T2(s)
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Figure 4.6: Asymptotic solution for the force S(s)
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