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We are considering the low frequency vibrations of a thin shell of revolution with a curvature
which changes sign. Integrals of the equilibrium equations and stress-strain relations are
represented in the form of asymptotic series and their solutions as a combination of the Airy
function and its derivative. In application known exact analytical solutions are rather rare,
in most cases approximate analytic solutions, i.e. asymptotic methods based on expansions

in powers of small or large parameters occupy a central role.
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Introduction

Most problems in Applied Mathematics involving difficulties such as nonlinear governing
equations and boundary conditions, variable coefficients and complex boundary shapes pre-
clude exact solutions. Consequently exact solutions are approximated with ones using nu-
merical techniques, analytical techniques or a combination of both. We need to obtain some
insight into the character of the solutions and their dependence on certain parameters. Often
one or more of the parameters becomes either very large or very small. Typically these are
very difficult situations to treat by straight-forward numerical procedure. The analytical

method that can provide an accurate approximation is by asymptotic expansions.

This thesis is largely influenced by Professor M.B. Petrov and P.E. Tovstik [I2] paper, which
examines the role of turning points on shells of revolution with low frequency vibrations and

how the resulting solutions behave.

The thesis focuses on the general idea introduced by Langer, where he realized that any
attempt to express the asymptotic expansions of the solutions of turning point problems in
terms of elementary functions must fail in regions containing the turning point. A uniformly
valid expansion must be expressed in terms of the solution of non-elementary functions
which have the same qualitative features as the equation, for example, Airy equations and
the exploration of the shell of revolution with emphasis on the negative Gaussian curvature

region where the instability occurs due to low frequency vibrations.

This thesis consists of 4 Chapters. Historical developments, refinements and definitions are
provided in Chapter 1. This Chapter also contains a number of examples and applications
illustrating the practical use of shells. The concept of surfaces is introduced and the basic

equilibrium and stress-strain relations are derived using the Love-Kirchhoff assumptions.

The concept of Airy functions as solutions of the Airy equation is introduced in Chapter 2.

Using Bessel functions of the first kind, it is shown that the Airy functions have an oscillatory
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character for negative values of the argument. The Chapter ends with a discussion of the

Liouville’s differential equation and turning points.

Chapter 3 deals with a shell of revolution with low frequency vibrations of sign-changing
curvature. It begins with a brief account of the derivation of the governing equations and
the use of separating variables. Principal sections in this Chapter are asymptotic solutions,
zeroth approximation, first approximation, Airy solutions and the variational approach to
the boundary conditions. The Chapter ends with the conclusion, where it has been shown
that, in the region with negative Gaussian curvature both solutions oscillate and in the
remaining region, where the curvature is positive, both Airy functions and the unknown

displacements and stresses exponentially increase or decrease.

Chapter 4 deals with the numerical and asymptotic aspects of the theory. It begins with an
example, where different values of the eigenvalue are found for different shell thickness and

the results tabulated and compared.

12



Chapter 1

Two-Dimensional Shell Theories

1.1 Historical Developments in Linear Shell Theory

An investigation of the general theory of shells, based on the Kirchhoff hypothesis concerning
the deformation of plates, was first attempted by Aaron in 1874, when he considered bending
behaviour. On the basis of the same Kirchhoff assumptions, Love derived in 1888, the basic
equations that govern the behaviour of thin elastic shells. Subsequent theoretical efforts have
been directed towards improvements of Love’s formulation and the solution of the associated

differential equations [2].

1.1.1 Refinements

Fligge in 1934 and Byrne in 1944 independently developed a more general set of shell equa-
tions by retaining all the first-approximation assumptions of Love except, one on thinness.
Further refinements in the theory, from the period 1948-1958 included the incorporation of
the effects of transverse normal stress and transverse shear deformations. These additional
refinements are justifiable in the case of thin shells. In 1963, the refined theories of E.Reissner
and Naghdi were made invariant under different coordinate system, by Naghdi, this being
more of a mathematical refinement of the formulation than an extension of the physical
validity of the theory [2.
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1.1.2 What is a Shell?

To quote Flugge, a shell is the “... materialization of a curved surface.” So it is, in definition
a matter of geometry and not of material, for example, a parachute, a concrete roof, a bubble,

or even the surface of a liquid can all be treated as shells [IJ.

1.1.3 Early Shell Structures

Man-made shell structures have been in existence for many centuries. One of the earliest
applications of the shell as a structural form is represented by the several domes that have
been constructed for the purpose of providing roofing for temples, cathedrals, monuments
and other buildings. Notable historical examples include the Pantheon of ancient Rome, St
Peter’s Cathedral in Rome and the Taj Mahal of India, built in the seventeenth century by
the Mogul Emperor, Shah Jahan [2]. Shells were first used by the creator of the earth and its
inhabitants. The list of natural shell-like structures is long, and the strength properties of
some of them are remarkable. Egg shells range in size from the smallest insects to the large
ostrich eggs, and cellular structures are the building blocks for both plants and animals.
Bamboo is basically a thin-walled cylindrical structure, as is the root section of a bird’s
feather. The latter structural element develops remarkable load-carrying abilities in both

bending and torsion [7].

1.1.4 Modern Shell Applications

The general high strength-to-weight ratio of the shell form, combined with its inherent stiff-
ness, has formed the basis of modern applications of shell structures. Among these are
thin concrete shell roofs, thin-walled hyperbolic concrete cooling towers at a thermal power
station, cylindrical concrete silos for the storage of grain, elevated conical concrete water
reservoir and large storage vessels for oil and industrial chemicals. In industry, boilers,
pressure vessels and associated piping are further examples of shell structures in metal con-
struction. Hollow members of large industrial steel structures, such as offshore oil platforms
are another example of shell applications, as are bodies of transportation structures such as
motor vehicles, ships, aircrafts, missiles and spacecrafts. The essential property of all the
above shell structures that distinguishes them from other structural forms is, as Calladine
points out, the possession of both ‘surface’ and ‘curvature’. This combination endows shells

with their characteristic strength and stiffness [2.
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1.1.5 General Aspects of the Membrane Theory of Shells

The membrane theory of shells had its origins in the work of Lamé and Clapeyron who in
1828, had considered shells of revolution loaded symmetrically with respect to their axes.
The theory is applicable to either completely flexible membranes (for example, an inflated
tyre tube or toy balloon), which have negligible bending stiffness, or shells with finite bending
rigidity but in which the moments that are developed are so small as to be negligible (i.e.
the state of stress is essentially momentless), owing to the geometry of the shell, the nature
of the boundary conditions at the shell edges and the manner in which the applied loading is
distributed. The bending theory of shells, takes account of both extensional (i.e. in-plane)

effects and flexural (i.e. bending, twisting and shearing) effects within the shell material [2].

1.2 Elements of the Theory of Surfaces

The behaviour of a shell is usually modelled on the basis of its middle surface (alternatively
referred to as midsurface), which is the locus of interior points equidistant from the two
bounding surfaces of the shell. As coordinate lines we will use the ‘lines of curvature’ of the
undisplaced middle surface of the shell wall, together with normals to this surface. These
lines of curvature are defined as lines along which the twist is zero, and is shown in the
theory of continuous surfaces that there are always at least two such systems of lines, and
that these systems are orthogonal to each other, that is tangents to two such lines at the
point where they intersect will be at right angles to each other. The shell boundaries follow
or are normal to these lines of symmetry and hence coincide with the lines of curvature and

the coordinate lines [2].

We introduce the system of orthogonal curvilinear coordinates «; and s which coincide
with the lines of curvature of the middle surface, S, of the shell, which is a body bounded
primarily by two closely spaced curved surfaces. Let a point M on S be determined by the
radius vector r = r(ay, ay), where r is the position vector from the origin O to points on the

surface, (aq, az)-plane [g].

The shell fills the volume

h
(a17a2) € Ga |Z| S §a

where z is the distance along the normal to the middle surface and h is the shell thickness.
Let I' = OG be the boundary of the domain G. The shell is said to be thin if its relative
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middle surface

Figure 1.1: Middle surface of a shell element

thickness % is small, where R is the characteristic length [J].

For shells, the relative proportions of extensional and flexural (bending) effects at a given
point depend on several factors such as type of shell surface (synclastic, anticlastic, or de-
velopable), support conditions, loading configuration and the proximity of edges and certain
discontinuities. Synclastic surfaces are those with positive Gaussian curvature, while anti-
clastic surfaces are those that possess negative Gaussian curvature, and developable surfaces
are those that can be flattened into a plane surface, either directly or after making a single

straight-line cut in the surface, they are characterized by zero Gaussian curvature [2].

For synclastic shells, if both the shell geometry (i.e. shell thickness, middle surface slope
in any arbitrary direction and principal radii of curvature) and surface loads are smoothly
varying (i.e. exhibiting no discontinuities in the variation of the shell geometrical components
of the shell, nor in their first derivative with respect to arc length along a given direction),
then extensional effects generally predominate in the interior regions of the shell while in the
edge zones bordering the supports, extensional and flexural effects become equally significant

for most practical constructions of supports [2].

Consider base vectors a; and as of the surface which are to be defined by

or or

A = — Ay = —.
80417 8062

The infinitesimal vector connecting two points on the surface with coordinates a; and (a; +

day) for i = 1,2 is given by

or or
dr = —d —d
' 8041 ot 8042 a2
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Figure 1.2: Coordinate directions and stress resultants on a curved thin shell differential
element

the length of this vector is therefore determined by
(ds)? = dr - dr = Z a;ajdo;doy,
i,
where the quadratic form (ds)? which determines the line element ds on the surface is called

the first fundamental form of the surface. The length of the base vectors are denoted by A;
and Ay and is given by

A =lal = (@ -ay), fori=1,2 .

We introduce local orthogonal system of coordinates by means of the unit vectors e, e; and

n, where

1o
N A1 60417

or

don

A1:’

e , (1-2), n=e; Xe,.

In this section (1 <> 2) means the formula with 1 and 2 interchanged is also valid. The first
and second quadratic forms of the surface are
I = ds* = A2do? + Ado?,
2

A A2
I = ﬁda%—l—idag,

where ds is the arc length on the surface, A; and A, are Lamé’s coefficients, R; and Rs

are the principal radii of curvature. Geometry of the middle surface is determined by the
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changes of the coefficients of the first and second fundamental forms of the surface, I and
I1. The moment intensities are satisfied everywhere on the middle surface [8]. We also use
the notation k; = R, 1 where k = kyky denotes the Gaussian curvature of the surface at a
point. If ks = 0, k; # 0, then the surface is said to have zero Gaussian curvature (parabolic).
For k£ > 0, positive Gaussian curvature (elliptic) and if k£ < 0, negative Gaussian curvature
(hyperbolic) [2].

The variables u, v, w are the displacements of the middle surface point, which are caused
directly by the loading. The w displacements usually tend to produce v displacements which
are in general much smaller than the w displacements. In turn the v displacements tend to
produce u displacements which are much smaller than the v displacements and hence even

smaller compared to the w displacements [2].

For the chosen coordinate system A;, Ay, Ry and Ry are related as follows

o (o) * s ()|~ v
and the unit vectors eq, e; and n are also related as follows
(%‘1 - —%el, (1-2) [ (1.5)

1.2.1 The Love-Kirchhoff Assumptions

1. The shell thickness is negligibly small in comparison with the least radius of curvature
of the shell middle surface.

2. Strains and displacements that arise within the shell are small which implies that
products of deformation quantities in the derivation theory may be neglected, ensuring
that the system is described by a set of geometrically linear equations. This makes it
possible to formulate the equilibrium conditions of the deformed middle surface with

reference to the original position of the middle surface prior to deformation.

3. Linear elements normal to the unstrained middle surface remain straight during defor-

mation and suffer no extensions. This means that if the initial and final positions on
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the middle surface are known, the initial and final positions of all points of the shell
wall will also be known, hence the strains everywhere can be calculated in terms of the

displacements of the middle surface alone.

4. The component of stress normal to the middle surface is small compared with other
components of stress and may be neglected in the stress-strain relationships. It permits
the displacement of every point in the shell wall, hence the strains and stresses at every
point, to be defined in terms of the displacement of one surface such as the middle
surface of the shell wall. This represents in effect the reduction of the problem from
a three- to a two-dimensional one. Errors due to this approximation are negligible
for thin shells of homogeneous materials under most loading conditions for practical

interest [2].

1.2.2 Geometry of the Middle Surface and its Deformations

In the linear approximation, the tangential (membrane) surface deformations, 1, £o and w,

are as by

1 8u1 1 8A1 w

= — - — 12 1.6
°1 Al 8&1 + AlAQ 8042 2 R17 ( - )7 ( )
1 8u2 1 aAl
- _ = 1.7
1 Al 6041 A1A2 80[2 b1, w w1 * w2 ( )
the angles of rotation y; and v, of the normal n are equal to
1 ow wu
H=—ar— -5 (12 [, (1.8)

where for an isotropic, homogeneous elastic solid, the in-plane constitutive law is given by

the plane stress equations

1
g1 = E(O'l—I/O'Q),
= o2 vo)
Eo = E 09 voy),
or
E
oy = 1_y2(81+l/82),
E
09 = 1_y2(52+1/€1),
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and & is the elongation per unit length (extension) in the direction of the a;-curve and E

is the Young’s modulus [I]. The bending surface deformations, x1, k2 and 7, are as by

1 871 1 8A1

= —— - 1 2 1.
1 Al 8&1 A1A2 8042 2 ( < ), ( 9>
1 oy 1 0A; w1
= —— S 1.1
7 Low Adon 2w B (1.10)

1.2.3 Equilibrium Equations and Elasticity Relations

The equations of equilibrium of an element of the middle surface for small deformations are

O(ATy) 04y O(AiSy) | 04, AAQ

e "Bt T gar G T Q1+ A A F, = 0, (1 2),(111)
8%2?1) + 8%;?2) + Ai A <£11 + % +F ) = 0, (1.12)

A1 AyQ + 8(21;11‘11) + a(gi@ + gﬁf Hy, = 0, (1.13)

Sy — Sg+%—% = 0, (1.14)

where T;, S; and @); are the projections of the stress-resultant of the internal forces acting in
the cross-section a; = const, on the unit vectors e, e; and n, H; and M; are the projections
of the stress-couples of the internal forces, and Fi, F5 and F,, are the projections of the
distributed external load. The Kirchhoff-Love’s hypotheses, which generally assume that
a shell element, normal to the middle surface before deformation, does not change length
and remains normal to the middle surface after deformation, lead to the elasticity relations
introduced by V.V. Novozhilov

K(1- h?
Ty = K(e1 + ves), g = K1-v) <w + T), (1 2), (1.15)
2 6y
Ml :D(Hl—FVﬁg), H1 :H:D(l—V)T, (116)
Eh Eh?
K=—— D=———-— 1.1
1—v? 12(1 — v?)’ (1.17)

where K is extensional rigidity, D is bending rigidity and v is Poisson’s ratio (here it is
supposed that the shell material is homogeneous and isotropic). The F; are proportional to
the eigenvalue \. In case of vibrations F; = —A\u;, w? = E’\ , where p is the density and w

is the unknown natural frequency [§].
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Figure 1.3: A shell of revolution

1.2.4 Shell of Revolution

The middle surface is a surface of revolution which is formed by rotating a plane curve (the
meridian) about a straight line in the plane of the curve (the axis of rotation). It will be
assumed that the axis of rotation is vertical, so that the parallel circles of latitude of the shell,
which are the intersections of the shell middle surface with planes perpendicular to its axis
of revolution, lie in horizontal planes. Shells of revolution find application in the design of
pressure vessels, liquid-filled tanks, roof domes and cooling towers. For these structures, the
principal loading conditions are usually axisymmetric, so that every meridian of the shell of
revolution deforms in the same manner, and there is no relative transverse shearing between
adjacent portions of the shell when viewed in the plane of a circle of latitude of the shell
of revolution. In this axisymmetrical case, the loading, the constant forces, couples and the

displacements are assumed to be functions of ¢ only (complete rotational symmetry) [2.

To describe the vibrations of shells of revolution, it is convenient to introduce as curvilin-
ear coordinates, a; and as, the arc length, s, of the generator and the angle, ¢, in the

circumferential direction (see Fig 1.3) [§].
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In this case
doN -1 B
A =1, Ay =B, R1:<—> . Ry=
ds

where B is the distance between a point on the middle surface and the axis of symmetry and

9= ——
sin @’

0 is the angle between the normal to the surface and the axis of symmetry. The functions
B, R; and R, depend only on s, and do not depend upon ¢, where R; is the distance
from a point on the surface to the corresponding centre of curvature and R, is the radius
of curvature of the second principal section and is the length measured on a normal to the

meridian between its intersection with the axis of rotation and the middle surface [§.

For a conical shell, B and Ry are linear functions of s (B = Ry cos «, where « is the angle
at the top of the cone), and for a cylindrical shell we may take B = Ry = 1 (by properly

choosing the non-dimensional variables) [S].

If the shell is bounded by two parallels, which are formed when we have the intersection of
the surface with planes perpendicular to the axis of rotation and are parallel circles, s; and
s9 or is in a form of a cupola, then since all the coefficients do not depend upon ¢, we can

separate the variables,

w(s,p) =w(s)e"™?, m=0,1,2,..., (1.18)

where m is the number of waves in the circumferential direction [§.

1.2.5 The Construction of a Shell Theory

In elastic theory there are three basic sets of equations namely equilibrium, kinematic (strain-
displacement), and constitutive (Hooke’s law). In shell theory, analysis of structures which
physically have three-dimensional but which can be modelled as two-dimensional surfaces,
for this we shall develop the equilibrium relations and limited to static isothermal loading of

isotropic shells [I].

1.2.6 Deriving the Equations of Equilibrium

To formulate a complete set of equilibrium equations, we should write down a complete

Lagrangian

L=T—(U,+V)
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Figure 1.4: Shell differential element

where T=kinetic energy, U.=strain energy, V= potential of applied edge and surface loads,

and then properly apply Hamilton’s principle,

t2

5 [Lat—o.

t1

Now we switch to a consideration of the strain energy in a shell. By definition

1
U, = 5/ (O’161 + 09e9 + 7’12712) av, (1'19)
Vv
then
oU, = / (01561 + 090e9 + 7’125712) av, (1'20)
v

as a consequence of the linearity of the constitutive law applied by equation ([LI9). For the

volume element

dV = AlAQdOéldOéde, (121)

and then substituting we find

.- [f] [(

surf. z

av.

01 0 02 0 T12
— | (de] + 2dK1) + ( - )(55 + 20Ky) + < - )(5w2+257'2)
1+R—1> ! 1+ & 2 1+ £

23



If we substitute for the volume element ([C2T))
5U€ = //(N1(58(1]+M15/€1+N25€2+M2(5/€2+N125W1+N21(SWQ+M12(5T1—|—M2157'2) AlAQdOéldOéz.

We shall ignore the kinetic energy (thus restricting ourselves to static problems) and include

only a normal surface loading, i.e.,

V4 / / gn(01, az)w(as, o) Ay Aydasda,

so that
oV =+ // gnow Ay Asdardas. (1.22)
But,
oU, = // (N16e) + Mk + Nadeh + Mabka + Sow + 2HET*) Ay Asdandas.

Thus the strain energy due to the shell deformation is now reduced to a surface integral

involving the energy of stretching and bending the surface.

Now by use of the principle of minimum potential energy, we see that

5(U€ + V) = // (N15€(1) -+ N25€(2) + Sow -+ M1(5/€1 + M25/<;/2 -+ 2HOT" —+ qnéw) AlAQdOéldOéz,

where
et 2=
ThN=n+=—=7+ =,
1R ERS
and defining two new stress variables,
My, M
S = Nig——— =Ny — —,
2= 2T h

1
H = §(M12 + Msy),

and, defining a system of stress resultants, as follows

Ny, My] = / o (1 + E) dz, (1.23a)
)

dz, (1.23b)

dz, (1.23¢)

()
[Nzl,]\/[m]:/_ ol (1+i> dz. (1.23d)



Thus we would define shear force resultants as follows

Q2 = /h Ton (1 + Ril) dz. (1.24)

Then, the term that we would add to the strain energy variation is

5Ue|add = ///(7’1”5’71n + Tgn5’}/2n) AlAngéldOégdZ.

then,

1 (00w A
0V1n = A (?«1 — E(Sul + A 551)

1 { 96w A,
0Yon = A—2 (@ — R#25U2 + A25ﬁ2>

so that using the definitions ((L24)), the additional energy variation terms are

5U\add_//

surf.

150} a9 A
Q14 S —5U1 +A1061 | + Q24 S —2(5102 + A2, | | dodovs.
day Oas Ry

We shall conveniently leave the shear forces and twisting moments in their original untrans-
formed state, i.e. as in the following equation

5U€ = //(Nl(s{f(l]—'—Mlé/‘il+N25€8—|—M2(5/€2—|—N125W1—|—N215WQ+M12(5T1—|—M2157'2) AlAQdOéldOéz
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SU. —
Ue // 8062 R1
06 0A 00
o (4,20 0% ss ) 4y (4,200
8061 8062 3042

+ %5% + A1A25—w + My | Ay 900 + %551
8061 R

2 Oas day

douy  0Ay odu,  0A,
Niop| Ap—= — —— Not| Aj—— — —= 1.2
+ 12< 2 Do, Dory 5U1> + 21( 1 Dory 5U2> (1.25)
903y  OA 66, OA,
M| A - My | A _ 2
+ 12( 2 Do, Doty 551) + 21( 1 Bory Doy 551)
odw ou
+ Q1| Ao+ AiAs | 08 — —+

09 1)
+ Q2 Al—w + A1 Ay | 065 — o2 daqdas.

Then variation of equations (L2Z2),([C2H) yields the equations of equilibrium (CIT) to (CI4)
.

Thus we shall vary
A
Nl (AQ 85U1 + a—l 5U2 + A1A25—w>
8041
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Chapter 2

Airy Functions

The solutions of the second order linear differential equation
d*u
dz?

are called Aury functions. These functions are closely related to the cylindrical functions

= zu, (2.1)

namely Bessel functions, and play an important role in the theory of asymptotic represen-

tations of various special functions arising as solutions of linear differential equations [A].

By a cylindrical function we mean a solution of the second-order linear differential equation
d*u 1du V2
gu, 1——>u:0, 2.2
dz? + zdz + ( 22 (2:2)
where z is a complex variable and v is a parameter which can take the arbitrary real or

complex values [5].

2.1 Integral Representations of Ai(z) and Bi(z)

For real values of z the Airy integral is defined by

2 123
Ai(z) = 3—\7/f i cos< ; sinhy) cosh%dy, z > 0. (2.3)

1
After making the substitution sinh% = 52_%t this gives the following representation
, 1 [ 1,
Ai(z) = — COS(—t + zt) dt, z>0, (2.4)
T Jo 3

27



where the integrand does not decay as t — oo making the integral converge because of the
negative and positive parts of the rapid oscillations tend to cancel one another out and that

for real values of z and the Airy integral of Bi(z) is

Bi(z) = 1 /000 [exp(—%t?’ + zt) + sim(%t‘3 + Zt)] dt, z>0 [ (2.5)

™

The Airy equation has no singular points except at z = co. Every other point in the z-plane
is an ordinary point and so two linearly independent series expansions about it (formally

with indicial values 0 = 0 and o = 1) can be found. Those about z = 0 take the forms

[e.9] o0

E a,z" and E b,z" ", The corresponding recurrence relations are

) = 1+<3><2>+<6><5>53><2>+“ ’
wl) = P am t meae T

The ratios of successive terms for the two series are thus

an+32n+3 23
—_— = , and
A 2" (n+3)(n+2)
buiaz™™ 53
bzt (n44)(n+3)

It follows from the ratio test that both series are absolutely convergent for all z. A similar
argument shows that the series for their derivatives are also absolutely convergent for all z.
Any solution of the Airy equation is representable as a superposition of the two series and so
is analytic for all finite z, it is therefore an integral function with only singularity at infinity
1]

Another form of solution of the Airy equation is one that takes the form of a contour integral

in which z appears as a parameter in the integral. Consider the contour integral

u(z) = / f(t) exp(zt) dt, (2.6)

in which a,b and f(t) to be chosen. Substituiting (28 into ZT) yields

b b
/ t2f(t) exp(zt) dt = / zf(t) exp(zt) dt,

P df(t)

= ezl — [

a

exp(zt) dt.
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If we could choose the limits a and b so that the end-point contributions vanish, then the
Airy equation would be satisfied by (), provided f(t) satisfies
df (t)

TH221))=0, = f(t) = Aexp (—%t?’) >

where A is any constant. To make the end-point contributions vanish we must choose a and
b such that .
exp(—gt3 + Zt) =0 for both values of ¢.

This can only happen if |a| — oo and |b| — oo and, even then, only if the real part of
3 is positive. Setting t = is, where s is real and —oco < s < oo, converts the integral

representation of Ai(z) to

Ai(z) = %/ exp {z (%53 + zs)} ds.

Now the exponent in this integral is an odd function of s and so the imaginary part of the

integrand contributes nothing to the integral. What is left is therefore

1 [ 1
Ai(z) = ;/0 cos (553 + zs) ds.

This shows explicitly that when z is real, so is Ai(z). All solutions except the one called
Ai(z) tend to oo as z (real) takes on increasingly large positive values. Its behaviour for
negative real values of z, is that Ai(z) oscillates almost sinusoidally in this region, except
for a relatively slow increase in frequency and an even slower decrease in amplitude as —z
increases. The solution Bi(z) is chosen to be the particular function that exhibits the same
behaviour as Ai(z) except that it is in quadrature with Ai(z2), i.e., it is g out of phase with
it [T1].

General solutions of (E1]) can be expressed in terms of Bessel functions of imaginary argu-

ment of order v = ig. Two linearly independent solutions of (Z1I) are

uy = Ai(z) = %\/E[Ié(g“) iy

us = Bi(z) = %[L%(O i

where ( = z%, are called Airy functions of the first and second kind respectively, where

[GCRI )

Bi(z) is defined as the solution with the same amplitude of oscillations as Ai(z) as z — —o0

B
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Replacing I, by the series expansion

o0 ( )u+2k
= . |2 < oo, |argz| <, (2.10)
kZ:O Fk+)INk+v+1)
we obtain the expansions
o »3k+1

Mg

Ai(z) =

, |z < 00, 2.11
k+sktr k+2) 2032’”%!@!F(k+§) i (211)

k=0
0 3k 0 3k+1

c 2
BZ z - \/g 5 + ’ o < 0, 519
(2) ; 3*HIEID(k + 2) ; SPSRIT(k + ) E (2.12)

where I'(z) is the gamma function and may be regarded as the generalization of the factorial
function to non-integer and/or negative arguments and which shows that the Airy functions

are entire functions of z and are real for real z [3].

A complex function is said to be analytic, if it is complex differentiable at every point and

if it is analytic at all finite points of the complex plane, is said to be entire [9].

We can write the first expansion (ZITI) as

Ai(z) :3—%ZF( 3 )S”;!_( )(\/_z) 2] < oo. (2.13)

Asymptotic representations of the Airy functions for large |z| are

Ai(z) = %Z‘ie_c[l%—Q(M_%)], |argz|§2§—5, (2.14)
Bi(z) = Varief[1+0(2|7%)], |argz| gg—é, (2.15)

2
where ¢ = gz% [B.

The standard solutions Ai(z) and Bi(z) have the initial values

1 1
Ai(0) = —=Bi(0) = = , 2.16
O = PO = (2.16)
1 1
A7 (0) = ——=Bi'(0) = —— , 2.17
O = ~ PO = (2.17)
and satisfy the Wronskian relation
Ai(z)Bi' (z) — Ai'(2)Bi(z) = 1 . (2.18)
T
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When z is positive Ai(z), Bi(z), — Ai'(z) and Bi'(z) are all positive and monotonic, when

z is negative these functions are oscillatory, with diminishing period as z — —oo [].

The Airy functions of argument —z can be expressed in terms of Bessel functions of the first

kind, J,, of order v = :I:% as

Ai(=2) = VIO + 1), gl < T (219)
1
Bi—) = (2)'[74© -] el < T (220)
Ai(—z) =~ Lz_% cos(¢ — z), z — 00, (2.21)
NLG 4
Bi(—2) ~ —%zi sin(¢ — g), 2 — oo, (2.22)
where ¢ = gz%, which shows that the Airy functions have an oscillatory character for large

negative values of the argument [3.

2.2 Asymptotic Behaviour of Airy Functions

The precise asymptotic behaviour is given by

Ai(2) —ﬁz efiroe),
Ai(2) = — YT e [1 + 0(2—5)},
Bi(z) = =11+ 0( 7))
Bil(z) = %2464 1+0( 1),
as 2 — 00, where ( = %Z and
Ai(z) = %m—% cost+0(|212)

Ai'(z) = %Mi [sin@ + O(|z\*%)},
Bi() = ——=|2| 4 [sinf + O(|z 1)),

Bi(2) = ==l [cos 0+ O(:l ).
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2
as z — —oo, where = g\z|% —% 4.

2.3 Liouville’s Differential Equation

ax p y ’ '

for large positive A, where x is a real variable and a < x < b, has solution

)= ay cos[A [ \/p(z) dz] + by sin[A [ /p(x) dz] (2.24)

V(@) ’

for positive p(z) and

_agexp[A [ V=p(x) da] + by exp[-A [ /—p(x) da] (2.25)

- v/ —p(z) ’

for negative p(z) [6]. These approximations are valid as long as z is away from the zeros
of p(x). Equations (Z24)) and (ZZ5) show that y is oscillatory on one side of a zero of p(x)
while it is exponential on the other side, hence such a zero is called a transition point. 1t is
also called a turning point because in classic mechanics it is the point at which the kinetic
energy of an incident particle is equal to its potential energy and that the particle therefore
reverses direction. The point x = ¢ is called a turning point or a transition point of order «

where « is the order of the zero of p(z) at x = ¢ [f].

Assuming p(x) has a zero in (a,b) and therefore a zero of p(x) will be called a transition
point of the differential equation, and also that p(x) has a simple pole at x = ¢, another zero
ina <z <b, then p'(x) >0, p(c) =0, p'(c)#0, so that

p(z) <0, when a <z <cg,

p(z) >0, when c¢<ax <),

so there seems to be no simple elementary functions for which describes the transition from
monotonic to oscillatory behaviour, then the asymptotic forms will involve some higher

transcendental functions, for example, Airy functions [10].
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Chapter 3

Low Fequency Vibrations of Shell of
Revolution of Sign-Changing

Curvature

3.1 Governing Equations

We now consider the vibration of a shell of revolution rotating around its axis of symmetry
with a generating line which has a point of inflection as a result the sign of curvature of the

middle surface changes.

On the middle surface we have curvilinear coordinates (s, ), where s is the arc length of

the generating line for which s; < s < s9 and ¢ is the angle in the circumferential direction.

In this case

where A; and Ay are Lamé’s coefficients as introduced in Chapter 1. The shell is bounded
by two parallels and all the coefficients do not depend upon ¢, and therefore we can separate

the variables,

u, v, w(s, @) =w(s)e™, m=012,..., (3.1)
where m is the number of waves in the circumferential direction.
We introduce the following relations for the forces (77, Ts, S) and displacement components
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Figure 3.1: A shell of sign-changing curvature
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(u,v,w) after separating the variables

Ti(s, ) = Ti(s) cos m, u(s, p) = u(s) cosmep, (3.2)
T5(s, ) = Ty(s) cos me, v(s, p) = v(s) sinmy, (3.3)
S(s,p) = S(s)sinmep, w(s, ) = mw(s) cosmep. (3.4)

Since we consider the shell dynamics, more precisely free vibrations, then the load projections

are simply the forces of inertia, which are proportional to the frequency parameter A\, where

_pw?
-2,

where p is the density, ' is Young’s modulus and w is the unknown natural frequency.

A

The equations of equilibrium are from ([LIIl) and substituting A; = 1, Ay = B,a; = s and

a9 =, we get
J(BTy) 0B oS B
-4+ — - — BF, =
Os ds * + %) RlQl +Bh =0,

from (3.2) and (3.3), we have

O(B(s)T f(;) cosmp) 31(3; iS) Ty(s) cos mp+

Differentiating term by term, we have

0S(s) sinmep N (1)
O dp

B
S(s)sinmep = ﬁQl — BF},
1

dB drT dB B
diS)Tl(S) cos mgp—i—B(s)% cos mgp—%Tg(s) cos mp+S(s)mcosmy = EQl—BFl,
dividing by cosmy # 0, we have
dB dly dB B
—T1T+B— — —T: S=—Q, — BF;
ds 1T P Tt e = R @ Bl

grouping terms and dividing by B # 0,
dly 1dB m. G

ah 1ab o oy Mme @ g
7 TBas h-h)+pS L

dB
denoting e to be B’, giving
s

dT, B’ m.,

h2
We have by definition that Fy = FhAu and Q)1 = ELl and therefore combining we have

ary, B m h?
- E(T1 —Ty) + ES = EL1 — Eh)u. (3.5)
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From (CTI)) interchanging the indices we have

oI, 0(BS) 0B, B
) 0s +8SS_R2Q2 Bl

after separating variables, we have

O(T1(s) cosmep) N J(B(s)S(s) sinmep _ 0B(s)

B
S(s)sinmep = ?QQ — BF;,
2

Op ds 0s
differentiating term by term yields
dB d dB B
—T5(s)msin mgo—i—%&'(s) sinmy+ B(s) 5(s) sin my-+ %S(s) sinmy = R—QQ—BFQ,
2

and dividing by sinmey # 0 and B # 0, we have

dsS B’ m Q-
— 4+ 2—=85 - =T, = = - F
s "B B R ¥
h2
we have by definition that Fy = Ehlv and Qs = ELQ and therefore combining we have

dsS B’ m h?
— +2—=S5 — =Ty = —Ly — Eh)\v. .
S 2 B S BT2 12L2 v (3 6)

Simplifying we have

T T
B(s)( 1(3)}(;(135m90+ 2(8);jsm90+Fn> o

dividing by B # 0 and cosmey # 0, we have

T, R
L2 Y Bhaw 3.7
B R 12 v (37)

1
By definition, ¢ = E—h(Tl — vT3), we have

O(u(s) cosmep) w(s)cosmp 1 B
s 7 = %h (T (s) cosme — vT5(s) cosmey),

differentiating and dividing by cos m¢p # 0, we have
du w o Tl — I/TQ

ds R, Eh (3.8)
1
Interchanging indices and defining e = E—h(Tg —vT1), we have
1 i 1 0B 1
e 8(0(8);:01(1 m@)+56828)u(3) COSmgo—%(;SWP = ﬁ(TQ(S) cos mp—vTi(s) cosmey),
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differentiating and dividing by cos my # 0, we have

m B’ w
EU"—EU— R_2 (TQ—VTl)
2(1
By definition, w = wy + wy and w = ( ;—hu)S we have
Jd(v(s) sinmep 1 0B(s) . 1 O(u(s)cosmy)
Os B(s) 0s vls)sinmep + B(s) Op

differentiating and dividing by sinmyp # 0, yields

dv B m

s B B"~
grouping terms yields

m d (v

et (3

B" T 4 \B

2(1+v)S8

By definition, Ly, k =1, 2,3 are the momentum terms.

The equilibrium equations are therefore

dTl B ! m

% + E(Tl - T2) BS
dS B’ m
-~ 2_ _ -
ds + S B

T, T

Ry + Ry

h2
—L1 EhAU,
12
h2
—L2 Eh/\v,
12
h2
— L3 — Ehw,
12

(3.9)

(3.10)

(3.11)

and the deformation-displacement relations together with the elasticity relations are given

by

du w

ds R1
m +B’ w
B' T B R,
m d /v
-5+ 85 ()
B TP \B

37

T1 — VT2

Eh
T, — v}

Eh 7’
2(14+v)S

Eh

(3.12)



Together the governing equations are

dT) B’ m h?
das B’ m h?
2 yoZ s "p = L, Ehx
P Ly L B DL v,
T, T h?
i N L Y 570
TR, 1273 v
du w . T1 — VT2
ds Ry - Eh
m N B’ w Ty —vT
B'"BY R, =~ ~ En
m d (v 2(1+v)S
Dl (3) - 10
BT 4\ B Eh

The system of ordinary differential equations (BI0]) and (BI2)) has order eight and is complete

with respect to six unknown variables u, v, w, T}, T, and S.

Assume that the middle surface satisfies the following conditions
Ry >0, Ri'(s,) =0, (Ry*(s4)) <0, (3.13)
and

Ry >0 if 51 <5< sy,
Ry <0 if s, <s< 359,

where s, is a turning point and R;' # 0 and s # s,.

On the negative Gaussian part of the shell

1

m e~ h73, A~ h3, (3.14)
and for the positive Gaussian part of the shell
A~ (3.15)

and the boundary conditions are strong enough to exclude pure bending.

3.1.1 Asymptotic Solutions

We now consider the integrals of the systems (BI1) and (BI2) assuming (BI4)). Four solu-
tions of (BITl) and (BIZ) are boundary effect integrals and the other four integrals describe

38



the main stress state, where the index of variation is % (from the shell of negative Gaussian

curvature).

The general idea of the method belongs to Langer, who realized that any attempt to express
the asymptotic expansions of the solutions of turning point problems in terms of elementary
functions must fail in regions containing the turning points. A uniformly valid expansion for
all s must be expressed in terms of the solution of non-elementary functions which have the

same qualitative features as the equation, for example, Airy functions [6].

1 1
The functions —, — and B are sufficiently smooth.
1 It

We are going to use x for any of the variables in (BI1l) and BI2) i.e. u,v,w,T},T» and S.

For s > s,, we have the representation

S0

z, =m'® Z mFx ) (s) exp{m/ In ds}, n=1234. (3.16)
k=0

As for s # s,, we have

) = w0 =\ a6l =al) =~ g

qi(s) = gs(s),

hence s, is a turning point, so the coefficients " in BI4) are irregular.

and for s = s,,

For the asymptotic representation of solutions, let all unknowns x(s,m) from (BII) and
[BI2) be represented in the form of the combination of the Airy function U(n) and its

derivative Un) as
dn
au
(s, m) = 2 (s, m)U () + 2 (s, m) . (317)
n
where U(n) is solution of the Airy equation
d*U >
g T =0, n=mig(s), (3.18)
and functions #®) are formal series of (BIX),
g k) = (@) Z m~ 2D (s), k=1,2, (3.19)
1=0
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i.e. if they are substituted into the differential equation as if the infinite series were conver-
gent, the differential equation is satisfied. However, the infinite series involved in the formal

series are in general divergent.

We have the unknowns &, 2! and index of intensity v, which are found by substituting

aUu
BTID) into BI) and (BIZ) and equating coefficients by m?U and m? e

n

3.1.2 Zeroth Approximation

We consider the zeroth approximation solution for the case when [ = 0 in the series (BI9)

i.e.

1
e (s,m) = m”l(x):p(l’o)—i—Q(—Q), when k=1,
m

1
2@ (s,m) =m0 +Q(_2>’ when k=2,
m
then the asymptotic series (BI1) becomes
du
z(s,m) = m" @0y (n) + m”(“)x(z’o)#, (3.20)
n
where the terms z**) are functions of s for k = 1,2.
. L : 2 d*U
Differentiating (BI7) noting that n = m3&(s) and el = —nU, we have
dz(s) 1 (2) dx (1,0) au
— @) 2 g 1 (z ) (1,0)
ds " ds m ds
o (x)dx 0 dU @ 20 4 d <dU>
ds dn ds \ dn
dz(10) dU dn dz@9 dU
_ @ U+ @010 Y (@47
" ds m dn ds o Cds dn
@520 4 <dU>@
dn\dn/ ds
dz(10) dU dn dz9 U
_ @) U () (10) 4V () 427 AU
" ds tm dn ds tm ds dn
d d-U dn
72(2) 1.(2,0)
tm dn? ds’
since n = msé (s), differentiating gives
dy = mig(s)ds,
d
d_z = m3g(s), (3.21)



substituting (BZI]) into the above gives

dx dz(H0) ,dU
b S C) B o o m(2) 1 (1,0),
ds ds m § dn
2,0)
+m® )dx( d—U — 2@ RO mSeeims U
ds dn ’
and grouping terms, we have
dx dz(10) dU 4 dz?9 du
= gm@ gy v (z)+2,.(1,0) Y 2(@)+3 el (20017 (z) 3.22
ds " ds +&m * dn - & tm ds d77 ( )

The membrane integrals are the solutions of the membrane equations (BI1]) when they are
homogeneous equations. For low-frequency vibrations of shell of revolution with m waves in

circumferential direction, the following expressions are obtained when equating coefficients

dTy n B’
ds B
substituting (B2Z0)and ([B22) into (B2Z3), we have

(Th — To) + %S =0, (3.23)

(1 0) dU 4 dT (29 qu

0 =mnth—r— ds gm%(Tl 10 dn e 1(270) o S ds d77
B (1,0 2,0 dU 1,0 2,0 dU
<m71( )T )U )Tl( ) dn _ mW1(T2)T1( )U m72(T2)T2( ) dn

L) g0 4 () g0 U
B dn |’

equating coeflicients of U, gives

1,0) /

dTy 4 20 1 B 1,0 1,0
le(Tl) ds 72(T1)+3§§/T1( )_i_Ele(S)-Hs(l,O)_'_E<m71(T1)T1( )_m71(T2)T1( ) =0,

and those after equating coefficients of an are
Ui
(2,0)

/ 'Yl(Tl)‘f’%T(lvO)
&m ot ds B

<m72(T1)T1(270) _ mw(Tz)TQ(ZO)) + %m72(5)+15(270) —0.

For
dsS B’

— 2—5——T 0, 3.24
ds + B ( )
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substituting (B20)and B22) into [B24), we have

1,0 2,0
0= mn@BM e guo U et cpgeoy e U
dn ds dn
B’ aUu 1 au
711(S) ¢(1,0) 72(S) ¢(2,0) il 71 (T2)+1n(1,0) ¥ (T2)+17(2,0)
—I—ZB( SYUIU 4+ mre) S dn) B<m T U+m T, dn)
equating coefficients of U,
71(S) dsto Y2(S)+4 ¢ ¢/ ©(2,0) B 71(S) @(1,0) 1 71 (T2)+17(1,0)
and equating the coefficients of o we have
U
2,0)
&mn S)+35(1 0 ™22 ds' + lemw(s)s(lo) _ lm72(T2)+1T2(2’0) =0.
ds B
For
T T
Rﬁll + é —0, (3.25)

substituting (B20)and (B22) into (B23), we have

1 dU 1 dUu
o ~v1(T1) T (1,0) U TI)T(2 0) ’YI(TQ T(l 0) U Y2 (T2) T(2 0) =0
7 <m tm | TR tm an ] =Y

equating coefficients of U,
(1,0) (1,0)

T T
7(Th) 1 Y1(T2) Z2 =0
m i +m Ry ,

dU
and equating the coefficients of o e have
n

(2,0) (2,0)
72(Th) 1 Y2(T2) Z2 —0.
m R +m R

The last group of integrals called the bending ones, may be obtained from the bending
equations after we put all deformations 1, eo and w to be equal to zero in equations (BI2).

Hence their zeroth approximations are, for

du_w (3.26)
ds Rl ’ )
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substituting (B20)and B22) into (B20), we have

du(1 0) dU du®9 quU
0= 1 (u) U ~1 (u)+ 1 ,0) 2 (u 1,.(2,0) 0 mY? (w)
" ds +&m dn - & ds dn
B’ dU 1 dU
= 71 (1), (1LO) 7 72(u),,(2,0) m(w),,(1LO) 7 2(w),,,(2:0)
+B<m U +m dn) R1<m +m dn)

equating coefficients of U,

(130) !
u) d“d e+ gy (20) Rimmmw(lm L Bmega0 Z g
S 1

and equating the coefficients of o e have
n

2,0 !
5,10 4y Ul Lm0 + Em”(“)u(zvo) =0.
ds R1
For
m B’ w
- —u——=0 3.27
B'tTB" R (3.27)
coefficients of U are
L me,a0 L w00 _
B Ry ’
dU
coefficients of — are
n
1,20 _ L), 20 _ g
R, ’
and for
m d /v
M+ BE (—) —0, 3.28
5" TP \B (3.28)
coefficients of U are
1,0 !
_ L, 00 4 @ @Y e e 4 Bmw,00 _ g
B ds ’
and coefficients of o are
n
1 d (2,0) B’
Bmw(u>+1 w0 L @+3¢/,(10) 4 () ’Uds - m2®),,(20) _



We now consider the equilibrium conditions for the shell of revolution and free vibrations

for the zeroth approximation after equating coefficients, thus these relations are obtained

1
— T + 5500 =0, (3.29)

1
/T(LO) _5(2,0) = 0
f 1 _'_ B Y
1

§§/S(2,0)+ET2(1,0) = 0,
1
¢t — =" = 0. (3.30)

Equating the terms in powers of m, we have

(Th)

m" =) — (1) = (1) = a,

mnTHE S+
2
71(T1)+§ = 7(S)+1,
2
Oél—i‘g—l = ’}/Q(S),
1
’}/Q(S) = 1 — g

m T = ) — 50 (T)) = 35(Th) = s,

m(9)+1 m2(T)+3,
4
NS +1 = y(h)+ 3
4
’71(5) = Q9 + g — 1,
1

’}/1(5) = a9+ —.

Considering the bending conditions for the shell of revolution and free vibrations for the
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zeroth approximation after equating coefficients, we have the following relations

I a0, 100

— 70 0 g
Ry +322
LT(2,0)+LT(2,0) _ 0
Rl 1 RQ 2 9

1
1,.(2,0) (1,0) = 0
e + ,

1
0 — 20—
1 1

S0 _ 10 =

B R,

éwm_éwm>:0’
%U(LO) — @0 = o,
_éﬂmm_gw@m 0

Equating the terms in powers of m, the following results are obtained |,

let v1(u) = o,
72(u) = Oy,
mw(U)Jr% — mm (w)’
4
Yo (u) + 3 = 7 (w),
4
n(w) = ox+ 3
m+3 mw(w)’
2
Y(u) + 3 = Yo (w),
2
Y(w) = a;+ 3
mn @+ = p@+s
4
Nnu)+1 = 72(U)+§>
4
71(U)+1—§ = 7(v),
1
72(v) = o1 — 3



B H1=3 = )
M) = as+ %
Collectively we have
Yi(u) = o, Yo(u) = g, Yi(w) = as + %, (3.31)
Yo(w) = a; + g, Y2(v) = oy — %, 1(v) =g + %, (3.32)
S =m -z @ =aty @) =mB)=e  (333)

From these zeroth approximation, the equation for (s) may be obtained in the following
way. Using (B29) and rearranging to have
1 §(1,0)

= = &Y,

S0 = BegT0) (3.34)
and substituting ([B34) into ([B30), we have
1
derareo - Lo — o

B
1 neo b reo
—T° —T1,"7 = 0.
RV TR
In matrix form, these two equations are
1
2
O AV
1 720 | = 0.
— — 2
Ry R
To obtain non-trivial solutions the determinant of the system should be zero i.e.
1
§€)B —%
1 =0
R, R
cross-multiplying gives
! QB 1
€ers, 1L
R BR,
£’ _ 1
Ry BR;’
Ry
ne _ 2
g(g ) - BgRl r



Since we are dealing with the part containing the negative Gaussian curvature, Ry Ry < 0,

> (0 and making r > 0

R
but Ry > 0, therefore R; < 0. Hence —Ej > 0, therefore _BQRl

= ¢ > 0 and s > s, on the negative Gaussian curvature part.
g€ =7
squaring both sides since 7 > 0, ¢ >0 and V2 = |r|, but r > 0, hence V72 = |r| = r,
Vee =,

but,
d§
\/EE "

integrating both sides on the negative Gaussian curvature part,

[etae - /:rds,

3.1.3 First Approximation

When considering the first approximation, the set of equilibrium equations are as follows

d;; @ (T = Ty) + 55 =0,
ds B’
B % 2—52— %Tz_ 0,
7+ T = g (B = Bae) ¢ s (g - )
and the equations for the bending ones are
3—7; - Rﬁl = T D,
%U—F%u—}% = Ty — V1,
—%u-i— Bjs (;) — 2(1+v)S.
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Consider the case when [ = 1 and substitute into (BId), we have

20 = @00 | pm@-2,00 | o (%)
m

()

2@ = @) 1 20) () -2,20) |

IS

and hence ([BI7) becomes

(s,m) = (mw)x(lm 4 mm(m)—%(l,l)) UL (mw@)x(zm X mw(m)—2x(2,1)> Z_U. (3.35)
U

Differentiating expression (B3H) with respect to s, the expression obtained is

dz dz(H0) dzb dU dn
& (@ 1o (@)=2 )U i <mvl(m)x(1,0) + m%(m)—%(l,l)) as an
ds ( ds ds dn ds
dz20) dz@DN dU d /dU\ dn
72() 72 () -2 )_ ( ¥2(2) 1 (2,0) | 72 (3)—2 (2,1>> @ <_> an
+< ds tm ds alnjL me m v dn\dn/ds
1,0 1,1
_ <m71(:v)£ L n@-292 )>U +mi¢ <mn (@) (10) 4 (z)ﬂx(l,n) av
ds ds dn
dz20) dxZVN dU d?U d
72() 72 ()2 )_ ( ¥2(2) p(2.0) | 72 (2)—2 <2,1>) @ an
+ (m s +m 15 n + |m z +m x an? ds
1,0 1,1
_ <mm<x> oD @-2dT )>U+ (gmn(x)%x(lm n gmw)éx(l,n)d_U
ds ds dn
2,0 2,1
n (mw ndz®0 - da ))d_U b _eem <m72(w)x(2,0) n mw(w)—?x(?,l)) I
ds ds / dn
1,0 1,1
= <m71($) da?) 4+ ()2 2! )>U + (g'm%(w)Jr%x(lvO) + mn @50 1)) av
ds ds dn
2,0
. (mw(m) df”; - mw(w)—%(ll)) ‘é_U _ <§gmw(x>+%x(2,0) L &/mw(m)—éxm))U
S U
(3.36)
For the equilibrium equation
ATy, B m
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substituting (B30) and ([B30d) into (B37) and rearranging terms

(1,0) (1,1)
0— (mw(Tl)& + mvl(Tl)—2&>U n <£/m%(Tl)+§T1(1,o) " gm%(Tl)_ng(Ln)ﬂ
ds ds dn
+ (geme T 4 g1 )y
B’ au
+= [(mwl(Tl)Tl(l,o) n mm(Tl)—QTl(m)U n (m'yg(Tl)T1(2,0) n mw(Tl)_ng(m)) d_}
n
B/ 1(L2 1,0 1(T%)— 1,1 o (Ts 2.0 o (To)— 2.1 dU
B [l o e i)
L m [( 71(8) G(L,0) 4 (S)-2 5(1,1>> U+ <m72(5) §20) 4 n($)-2g2.1) au ]
B dnl’
(3.38)
equating coefficients of U,
(1,0)
w0 o w-2pen B a0 _ s pao) L L sie-1gan _
m g &&m "+ A T, m T, +Bm S 0,
s
substituting ([B31), we have
1 dT(lvo) B/
Es(l,l)mag—g _ &/maQ—ng(zl) e ;S 1 = (Tl(l,o) _ T2(1’0)> ’
dividing by me2=3 and cross-multiplying by B, we have
: [dT™ B
g1 — BSS’Tl(2’1) _ me—oet3 ;3 4 = <T1(1’0) -~ T2(1,0)> ’
hence
91 dT(l’O) B . )
SO0 = BT — | S+ (1 - ) | (3.39)

Equating coefficients of o

n
2,.(1,0 4,11 ®0) T2
0= £/m71(T1)+§T1( ,0) + é“/m’Yl(Tl)*ng( 1) + m’YQ(Tl) ;S + m’Y2(T1)*2 ;S

L m <m72(5) §20) | ()2 5(2,1>) ,

sy

leading to

(2,0)
e (T) dT; B’
ds B

m72(T1)T1(2=0) _ m72(T2)T2(270) + émwg(S)—ls(Zl) + flm%(Tl)_%Tl(l’l) — 0,
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substituting (B31]) we have

LT
m —_—
ds B

m? T1(2’0) — m*? T2(2’0)

B

+ lmalf%S(Zl) + £/ma1,

st =0,

making SV subject of formula, dividing by m™~3 and cross-multipying by B we get

(2,0)
g21) — _Bngl(l,l) " dTy
s

For s B
m
— +2=5-=T,=0
s “B° BTV
equating coefficients of U,we get
d.51,0)
T2(1,1) _ —§§’BS(2’1) + m® | B S + 23/5(1,0)] ’
s
and for v
dn

2,1 20)
TQ( A) E’BS(M) + m®

From

T, T,
1229
Ry - Ry ’
we have after equating coefficients of U
T1(1,1) . T2(1’1) Y
Ry Ry 7
) d
and from the coefficients of o
U
T1(2,1) T2(2’1) Y

_'_
Ry Ry
From the bending equations, we have for

a5

equating the coefficients of U, we have

dvH0)
s

U(l’l) — _§§,U(2’1) + m(51

20

e +2B'520
ds

B : Y <T1(2’0) _ T2(2,0)>

] |

—2B(1 +v)SH0 |

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)



and that from the coefficients of T

n
2,1 7, (1,1 5 dv®9) 7,.(2,0 2,0
u?Y = By 4 y — B9 —92B(1+v)S®Y . (3.49)
s
For J
u o w
— —— =T, — T 3.50
ds R, U (3:50)
the coefficients of U, gives
B/
Wy = e e | Blpao g <T2(1’0) . ny“]’) , (3.51)
B B
au
and the coefficients from s gives
n
W) = B2 on s [EU(ZO) — R, (T2(2’0) - z/Tl(z’O))}, (3.52)
B B
where
4 2
512062—CY1+§, (sQIOél—OéQ—Fg, (353)
when 6; = d, = 0, we have
4
ap = -+ 3
2
ay = o1+ 3

and therefore values of d;, for i = 1,2 are as follows
4
when OQIO, 042:—5 :>(51:O, 52:2,

2
CYQIO, 042:—5 :>52:0, 51:2

The consistency conditions for the next approximation give the leading terms for the so-
lutions, for example, the leading terms of the asymptotic expansions for the membrane

equations for a stress, T} are as follows

du

T = m O[T 4 0(m™) | U 4™ [ T20 1 0(m™%)| ==,
n

but
1 (Th) = n(Tz) = a,

ol



Yo (T1) = 72(132) = ag,

and if oy =0, a0 = —%, then
T oy |(1,0) -2 az) [(2,0) o ]1dU
1= T 4 0(m )| U+ me) | TR0 4 O(m )]d—n’
7(10) 2 — 2 [(20) _o\]14dU
= |1+ 0 )| U 4 E [T 0
and if ap =0, a1 = —%, then
~2[n(1,0) 2 (2 o] aU
T\ =m 3[T1 +0(m )}U+[T1 +0(m )]d—n’

and the others have the following
1
_EU(I,O) . m%££IU(27O) — 0’
w10 — —m%&’v(2’0),

1
from — w0 = m1}(2’0)

R B ’

L 0 J RN
from ETl( )+ ETQ( ) 0,
R
1,0 2 (1,0
together the leading terms are as follows, where, for example, u(? is replaced by u(Y,
2 3.1 1
T1(1) _ 2Ehr Ry < B )2@’ g _ —ETP,
(Rl — R2)2 §,R2 ds £B
R 1
T = —éTf”, u = —msgg Bu®, (3.54)
Y 1
@ _ " 3(/2)5 @ _ Mt o)
v —& 7))V w 7 U
and for the other two solutions, the leading terms are, for example
aUu
uw=mn® [U(l’o) + Q(m’z)} U+ m® [U(Q’O) + Q(m’z)} -
Ui
and if ] = 0,062 = —%,

w =m0 O U+ [o20 + ()] T
— ! [,U(l,O) +Q(m’2)]U+m*§ [,U(z,o) +Q(m,g)] C;—Z’

o2



and in the case a, =0, a; = —%,

1 1 d
u = m2tspt0) £ O(m U +m* s [U(Q’O) + Q(md)} d—g’
= m3[00 4 O(m U +m~ [ @0) +Q(m_2)]%,

and the remaining terms have the following

1

(roy — M @0
—v = —w'Y,
B R
w0 — mTi%U(l,o)’
from —u?Y =m 35’ (1.0)
B
420 — m—gngv(l,O)’
I o, 1 20
f — 1P 1% =0
rom Rl + R2 ,
R
2,0 2 (2,0
together the leading terms are
2ERR? B3¢\ zdy 1
Y =& —R12)2< %) SW = ms BET,
R
TP = —EQTP, u® = m3 By, (3.55)
1
U(): 3(5/ )y, w():—B U(),
where y satisfies the differential equation
d dy f
—(rg7l) + 2y =0, (3.56)
2R2B! Am?R 6p2
and where ¢(s) = m M and f,g ~ 1.

Rl — R 1T 121 — 12)g

The differential equation (BA6) is derived from rearranging the equation (BZ3) to obtain an
expression for SV and substitute into equation (F3d), we have

ds@o
S

(1,0)
(2 1) ff 'B2T (2 1) _ — B + 23/5(2,0 g g2l dT + B <T(1 ,0) T(l,O))
ds 2 )

solving this equation together with

2,1 2,1
" T " — mg/\w@m _ ﬂ(ﬂz)%@m
Rl RQ 33 12(1 — 1/2) B2 ’
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we get

d R m3\ h?m m2\ 2
‘(B /T(l,o)> T(l,o)( g2 g //> B (2,00 ( ) (20 _
ds< S )+ IS B — 4B ) = 12(1— 12) v ’

which gives the differential equation (BDH]).

In (B54) and (BRH) the omitted terms are sufficiently small, for example, in (B354

(V[N

Tl(l) ~ m*%, SO wm ™ uWem s, 0@ ~1 and w® ~m

and in (B359)

)

, u® ~ m™, oW ~1 and w® ~m

=
2
3|
Q
2
3
o
wlp

3.2 Solution to the Differential Equation (8.50)

For the general second order differential equation
d*y

dy
i P(l’)% + Q(r)y =0,

a point x = xg is an ordinary point of the differential equation, if we can find two linearly
independent solutions in the form of a power series centred at xg,

Y= Z Ch(x — 20)",
n=0

and is called a regular singular point if both (z — zo)P(z) and (z — x9)?Q(x) are analytic at

xo and if not then it is an irregular singular point [T0].

If x = x¢ is a regular singular point, by method of Frobenius, then there exists at least one

solution of the form

Yy = ($ - $0)p Z Cn@ - on)n,
n=0

[e.9]
- Z C"(x - x0>n+p’
n=0
where p is a constant to be determined [T0].

The differential equation (BhH) in expanded form is

Py d(rg)dy | f
N — 4+ =—y=0
9 ds? + ds ds * ry ’
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and assuming the solution to be in the form
o
y=3 Cu(s—s5.)""7,
n=0

after differentiating, gives the relations

dy

= Z (n+p)Cy(s — s,)" P71

d -
3 = D ()t 1)Culs =),

ds?

and substituting into the differential equation, gives

0=(s—5)7 Y (n+p)(n+p—1)Culs — 5,772

n=0
1 e | —
#3050 A5 4 o= 0) Y Culs =
0=3" (n+p)(ntp—1Culs 5"
n=0
1 - )
T DL S RO SCHIR e
collecting terms, we have
o 1 o )
S+ p)n+p—5)Cals — 50"+ Culs — 5.)"7E =0,
n=0 2 n=0
for n =0,
1 = 1 . .
p(ﬁ - 5)00(8 — 5P 4 ; (n+p)(n+p— 5)0"(8 — 8P nz_o Cls — 5,)"7~3 =0,
factoring out (s — s,)?,
! > 1 >
(5—54)P p(p—i)Co(s—s*)_%—i—; (n+p)n+p-— Q)C”(S — s*)”—%-f-nzzo Chn(s — s*)”_%] =0,

VAR > 1 —— 1
_ p _ — - — — kiﬁ — kii =
(s=s.)" |p(p=5 ) Cols=s.) +k§0:(k+1+p)(k+p+Q)Ckﬂ(s » +k§0:ck(s » ] 0,
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collecting like terms

(3_3*>p[p( ")Cos—s* 3+§:(k+p+1 )(k+p+ )Gk+1+ck)<s—s*)k~

k=0
but 1
p(p—§>0020, (k+p+1)(k+p+ )Ck+1+0k—0

from

p< —%)Cozo,:m( —%):o, for Cy 0,

then, the two values of p are
1

éa
and therefore, the two linearly independent solutions of (Bh8) have the expansions

pr =0 and py =

for py =0, y1=ao+ai(s—s.)+--,
and
1 i 5
for p2:§, Yo = bo(S—S*)Q —|—b1(3—3*)2+...’

Y2 = (8—3*)%(170—}—1)1(5—5*)+...).

To get regular functions 2*) in ([E54)) we should put y = y, and in {E55) y = y1. Since for

s > 8., Ry <0 and R;(s.) = 0o, then from the equation

r? = — It
B2R;’

in the neighbourhood of the point s,, we have by Taylor’s expansion

dB

B(S) = B( )"‘% (5—3*)_}-...’
dR
RQ(S) = R2(5*) d—82 (3—5*)4_...,
1 1 dR\ 1
Ry(s) - R1(S)+(ds> 5*(8_8*)+""
1
noting that R;(s.) = oo, then ~ 0.
1(5*)
Thus from (BX1), we have
Rz(s*)-l—dd% (5 —84) + - iR,
7"2(3)—_ Sx - y (8_8*)_|_ ,
[B(S*)—F@ (s—s*)+...] s s

o6

(3.57)

(3.58)
(3.59)

(3.60)



expanding the denominator

1 dB 1 (dB\’
21—-1 —2 I . | =
BT = B 2p]| S*)+BQ(ds> * ]
_ #_ @ ( )_|_
- B%(s,) ds 1,0 ’

therefore simplifying, gives

dR{\ R,
2 _
rs) = (d—) B2

and taking square roots, we have that

(5 = 54) + O(s — s4),

Sx

S

e~ (s—s,)2.

Substituting f,g ~ 1 and r ~ (s — s*)% into the differential equation (B56), we have

1d?y 1 _ady Y
(3—5*) @‘1‘5(5—5*) £+m_07
d*y 1 dy y

-9 —0
ds? * 2(s —s,) ds - (s — s4) ’

which shows that (Bh8) has at s = s, a regular singular point.

3.2.1 Airy Solutions

Let us take two solutions of equation (BIF))

Ui(n) = Ai(—n) , Us(n) = Bi(-n), (3.61)

then the functions (B54) and E53) give four solutions of EIZ). Consider their linear

combination as .y
x = Z Crri(s,m), (3.62)
k=1

where C} are arbitrary constants, x; and x5 are constructed in accordance with formulae

B24) and BRH), for U = U; and x5 and x4 for U = Us.

The leading terms of asymptotic solution of (B&l) have the following terms

Ui(n) =25 % cos g, Un(n) =721 % sin o, (n — o0),
1
Vi) = g2 (—n) " 5e ™, Ua(n) = 72 (=) 75", (1 — o), (3.63)
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where ¢ = %77% — % and § = %(—77)%.

From (B63) it follows that all solutions, xy, oscillate for s > s, (£ > 0,7 > 0) which is a
typical situation for the asymmetric vibrations (and loss of stability ) of the shells of negative
Gaussian curvature. For s < s,, solutions, z; and x, exponentially decrease with increase of

s« — s, and z3 and x4 increasing.

Four solutions from (B62), for s > s, we get

T, ~ Vi[(=C} cosp — CYsinp)y) + (—C3 sin p + CY cos ¢)y}],
S Va[(—CY sin g + Cf cos p)ys + (C3 cos p + Cf sin )],
u Va[(—CY cos p — CYsin )yp + (—C9sin o + CF cos )1, (3.64)
v & Vi[(—CYsing + Cf cos ©)ys + (CF cos p + Cf sin )],

and from [B52), for s < s, the four solution are
N L o s 0.6\, |- 0.5,/
T, ~ —V1<§Cle + Cse >y2+\V1\(§Cze — Cje )yl,

1 1
S~ V(500 — 8t )y — IVal (5C8e 7 + Ce o,

1 1
TR —%(50?675 + Cé,)e‘s)yz + |V (503675 - Cffeé)yl, (3.65)
1 1
VR V4<§C?e_5 - Cge‘S)yQ — | V4l <§C’ge_5 + 0266>y1,
where
B 2R2r|  /Blr|\z ! 5
Vi Ve, Vo= o (S0 sin(— R, 6= / ds,
1 7] 2 2 (R, — Ry)2 \ 1R, (sign(—F1))? m ) r|ds
Blr|\3 . s
%_%w, Vi= (W—g) (sign(—Ry))z, @zm/s*rds—g,
and
C0 = Cym' 6"
From ¢ = —%(—77)% and substituting n = m3¢, we have



and from ¢ = %77% — %, we have

2< %£>§’ T
= —(m - —
2 3 1
2 3 T
= §m§2—z,
2 3
2 3 s 372
= —--m rds —I,
3 2 s 4
s T
= ds — —.
m rds 1

Coefficients Vj for s > s, are positive and for s < s,, pure imaginary, but the products Vjys-

in (BGH) are real.

To find T5 and w use the approximate formulae

T2 = __Tla w = V. (366)

3.3 Boundary Value Problem

Using the constructed integrals for solution of boundary value problems, restricting ourselves
with tangential boundary conditions. Also suppose that edges s = s; and s = s, for

s1 < S, < sg9 are sufficiently far from s = s,.

Let on s = sy, there be at least one tangential fix (constant)(fixed either u or v or both) for

excluding bending at the positive part of the shell.

Approximate solutions may be obtained if the linear combination of solutions decrease near

S = S71.

Let
r = leL‘l + CQZL‘Q. (367)

The error done has order exp(—2m f;* 7| ds).
We give the following equations for frequency for different boundary conditions of s = ss,

for u = v = 0, equation ([B64) gives
— Cf cos ¢pys — CF sin py; = 0, (3.68)
— O} sin pys + C5 cos py; = 0, (3.69)

29



multiplying ([B:68) by cos ¢ and ([B89) by sin ¢ and adding the two we have
—Clya =0, =y =0,
multiplying (B68) by sin ¢ and ([B6Y) by cos ¢ and adding the two we have
209y =0, =y =0,
together
y1y2 = 0.
For u = S = 0, equation (B&4) gives

— Y sin gy, + Cy cos gy = 0,
— Y cos pys — C sin py; =0,

multiplying ([BZ3) by cos pys and ([BZ4) by sin pyh and adding the two we have
cos” w1y + sin® yryy = 0.
For v = T} = 0 equation (BG4 gives

— OV sin gy, + CF cos py; = 0,
— O cos py, — Cysinpy = 0,

multiplying (B0) by cos ¢y, and (BZD) by sin ¢y, and adding the two we have
sin? @y ya + cos® py1yh = 0.
For 71 = S = 0, equation (BG4) gives

— O cos py, — Cy sin gy = 0,
— CY sin py, + Cy sin pyy = 0,

multiplying (B79) by sin ¢ and [BX0) by cos ¢ and adding the two we have
203y, =0, =y =0,

and multiplying (BZ9) by cos ¢ and (B0) by sin ¢ and adding the two we have
— 20y, =0, =y, =0,
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together

y1ys =0, (3.83)
grouping them together gives
Y1y =0 for u=v=0, (3.84a)
Y1y sin? @ + yo1fi cos? o =0 for u=.S5=0, (3.84Db)
Y11y cos® o +ypyfisinfp =0 for v =T, =0, (3.84c¢)
yiys =0 for Ty =S5 =0, (3.84d)

where functions y,y; and ¢ are evaluated for s = s5. Equations (B84]) do not depend on

boundary conditions at s = s;.

3.3.1 Variational Approach

When m ~ h™3 is fixed then from equations ([BR4) we can find eigenvalues A ~ hi. The
smallest frequency may be found while changing m. In case (a) for the smallest frequency
we have estimate (BI4)). In case (b) and (c) there is a possibility for further decrease of
frequency when decreasing m, if the shell has the so called eigensizes (the same as for shells
of negative curvature). For example in (c), our task is to find the smallest A > 0 for which
there exists a solution for (B11l) and (BI2) satisfying boundary conditions and also we should

find an m which corresponds to this \.

To find approximate solutions we shall substitute functions (B:64]) into tangential boundary

conditions (B&4)). Consider different variations of boundary conditions

1. if on both s = s; and s = sy are (B84al), form equation for different A is

yl(SQ) =0,
2. for the case s = s; in (B84al) and s = s9, either in (B.834H) or (B84d), we have
yi(SQ) =0,

3. if both s = 51 and s = sy then for the same ([B.840) and (B84d) is
Yiyasin® o +yypcos® o =0, on s = s, (3.85)
or if different

Yiyacos® p +yiyhsin® o =0, on s = ss. (3.86)
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We have the differential equation

%(rg(s)%) B 12$fy2) zgg + /\mrf(S)y(S) =0, (3.87)

considering these variations in detail, taking into account that

yi(s1) =0, yi(s1) =1, wa(s1) =1, wi(s1) =0, (3.88)

we see that the first and second variations i.e. 1 and 2 lead to a typical Sturm-Liouville

problem : Find A for which there exists solution of equation (B=87) satisfying conditions
y(s1) = y(sg) =0, in the first variation,

and

y(s1) = y'(s2) =0, in the second variation. (3.89)

One should find the smallest A\ for different m. Consider a variational method for simple

formulas,

hence A = )\, follows from

[l _'_ 12m6h22 [2
. (1—-v2)
A = —_— | 3.90
%}3( i, (3.0

where

52 dun 2 52 2 52 S 2
[1:/ rg(s)(d—i> ds, [2:/ T;J(S)ds, 132/ @d&

The Wronskian of (B81) is

/ / g(sl)
- = 91
Ya(8)ya(s) = yals)als) == 2 (3.91)
then conditions (B8H) and (BZ6) may be rewritten in the form
y1(s2)ys(s2) = o) P, (3.92)
9(s2)
y1(s2)ys(s2) = 1) cos” g, (3.93)
9(s2)
where
= (s)—m/s2 Tt %ds (3.94)
¥ =@(S2) = . | B2R, . .

Let us consider (B03) corresponding to the fourth variant of boundary conditions.
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3.3.2 [Eigensizes

If the boundary conditions at s; and s, are such that there are constraints only on one of the
two tangential displacements (u or v) the so called eigensizes exist. These are sizes of a shell
which are such that for a given boundary condition, for example, u(sq) = S(s2) = 0 and a

particular m the frequency of vibration decreases significantly due to non-trivial bending.

To find the sizes (eigensizes) of the shell and m such that cos ¢ = 0, we then get the Sturm-

Liouville problem containing differential equation (B7) and boundary conditions

y'(s1) =y'(s2) = 0. (3.95)
For general m, eigenvalue A = A\(m) may be found from ([B30) where y satisfies the conditions

B33).

For approximate evaluation of A(m) put y(s) = 1. Then

Am) ~ 12(T¥_hy2) / rj&( @&) . (3.96)

To check whether (B0 gives a critical load, we should consider other values of m. Let now

cos ¢ # 0, then y;(s) and ys(s) satisfy the integral equations

n(s) = rg(s) / S2ﬂ— / ( / / ;1 tl)dt1> ‘(”) (3.97)
0 dt
Ya(s) = / < (6) yz 751)@-

Exact solutions of (B01) may be found by iterative methods. This method converges quickly
if |=

< 1.

Let F’ < 1, then we get
r

[ ry(s1) -1 2 [ f(t) ot
ne) = [T we =1 [ </ () d“>g<t>' (399

Substituting (B0Y) into (BEX3) we get

A(m) =

cos? o n m*h?l,
m211]2 12(1 — 1/2)127

(3.99)
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where

Eigensizes corresponding to cos ¢ = 0 and the approximate formula ([B99) are valid only if

1
cos® p < 1, Em("h2 < 1

Taking into account that as m decreases the influence of two still not taken into account
facts : boundary conditions at s = sy and the type of boundary conditions on s = s;. In
case (d) as m decreases there is always reduction of frequency and these facts are getting
essential.

Conclusions

In the region s > s,(£ > 0,7 > 0) both the solutions oscillate. This is a typical situation for
the asymmetric vibrations (and loss of stability) of the shells of negative Gaussian curva-
ture. In the remaining region where the curvature is positive, both Airy functions, and the
unknown displacements and stresses exponentially increase or decrease. The low frequency

vibrations take place when the leading role belongs to the bending solutions.
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Chapter 4

Numerical Vs Asymptotic

As an example consider a shell whose middle surface is got as a result of rotation of the
curve

z=a—bsinc(r —z,), 1 <z < Ty,

about the OX axis. At z = z, there is change in sign of curvature. So we have, observing
that

ds®* = da®+ d2?,

ds® = da* + (b*c? cos®[c(z — w,)|d2?,
= [1+4 b°c* cos®le(z — x.,)]]d2?,
ds = &(x)dx,

where ® = /1 + b2c2 cos2[c(z — z.)]. Therefore

s(x):/S ds:/mé(x)dx:/xcb(t)dt, (1) = (1 + B2 cos’[e(t — .)))

Let on both sides

S

—~
H;
[a—y

N—

u=v=w=M =0, =21, . (4.2)

For the formal approximation of the smallest eigenvalue, we use the first of equations (B84al).

To construct y; and ys solutions of equation (B1H) take the following initial conditions

d 2B2P?
yi(ret+e) = 1, % __T*Ji ;
T lxy+te R2g dals —
1

d
vz +¢) = V& %

B (4.3)
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Put

e=10"" a=2 b=c=1, 2,=0, .ng—xlzg, v =0.3.

As a result of the solution by Runge-Kutta fourth order of problem (BX2H) and (E3) as
h =0.003 and h = 0.01 it happens that the smallest eigenvalue is when ys(z2, \) = 0.

Denote the found A as A, from the variational approach and solve the equations (BITl),
BI2) and (E2) numerically, denoting the smallest eigenvalue found as \,,.

For the different number of waves m, the values of the frequency parameter \ are presented

in the following tables for different values of h.

m |5 6 7 8 9 10
Aac | 0.0437 | 0.0431 | 0.0307 | 0.0306 | 0.0328 | 0.0347
Anp | 0.0408 | 0.0336 | 0.0311 | 0.0306 | 0.0330 | 0.0351

Table 4.1: when A = 0.01

m |9 10 11 12 13 14
Aae | 0.0153 | 0.0139 | 0.0135 | 0.0136 | 0.0141 | 0.0148
Anp | 0.0156 | 0.0144 | 0.0138 | 0.0138 | 0.0142 | 0.0152

Table 4.2: when h = 0.003

From these tables there is good agreement.

4.1 Graphs

In the region s > s.(¢ > 0,17 > 0) the solutions oscillate. In the remaining region, both Airy
functions, and the unknown displacements and stresses exponentially increase or decrease as

shown by the graphs below.
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Plot of asymptotic solution for the force v(s)
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Figure 4.1: Asymptotic solution for the force v(s)

Plot of the asymptotic solution for the force u(s)
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Figure 4.2: Asymptotic solution for the force u(s)
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Plot of the asymptotic solution of the force w(s)
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Figure 4.3: Asymptotic solution for the force w(s)

Plot of the asymptotic solution for the force Tl(s)
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Figure 4.4: Asymptotic solution for the force T7(s)
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Plot of the asymptotic solution for the force Tz(s)

Figure 4.5: Asymptotic solution for the force T5(s)

Plot of the asymptotic solution for the force S(s)
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Figure 4.6: Asymptotic solution for the force S(s)
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