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Abstract

The formation of a capsule of dense, fibrous extracellular matrix around a solid tumour is
a key prognostic indicator in a wide variety of cancers. However, the cellular mechanisms
underlying capsule formation remain unclear. One hypothesised mechanism is the expansive
growth hypothesis, which suggests that a capsule may form by rearrangement of existing
extracellular matrix without new matrix production. A mathematical model was proposed
to study the implications of this hypothesis by Perumpanani, Sherratt and Norbury in 1997.
The model consists of conservation equations for tumour cells and extracellular matrix and
exhibit travelling wave solutions in which a pulse of extracellular matrix, corresponding to
a capsule, moves in parallel with the advancing front of the tumour. This project is based
on the work done by Jonathan Sherratt in studying the expansive growth hypothesis. In
this work the author presents a detailed study of travelling wave behaviour in the tumour
model, the conditions for the existence of travelling waves and their key properties . The
analytical work suggests that the traveling waves are stable and are a biologically relevant
solution form for the model. Considering an improved model which includes a saturation in
the extent of matrix rearrangement per cell, the analytical results show that rate of matrix

movement and convection per cell will saturate at higher matrix densities.
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Chapter 1

Introduction and Literature Review

The World Health Organisation (WHO) predicts that global cancer rates of new cancers will
increase by 50 percent from 10 million in 2000 to 15 million in 2020. Cancer is currently
the second leading cause of death in developed countries and among the three top causes
of death for those over 15 years of age in developing countries. Factors considered respon-
sible for this trend include an aging population, world-wide trends in smoking prevalence,
increasing adoption of unhealthy lifestyles (e.g., a western diet) particularly in developing

countries, radiation, carcinogen infection in industries etc.

Cancer had been such a dark and fearful mystery because it takes so many forms. It can
strike any organ, any tissue, anywhere in the body. Some examples of cancer are: lung can-
cer, breast cancer, brain cancer, cancer of the colon, cancer of the larynx, kidney cancer, skin
cancers, cancers of the blood cells and the lymph glands. But despite this diversity, all can-
cers share certain characteristics. They are all diseases of individual cells, the basic building
blocks of plants and animals. Most of these cells have the capacity for infinite multiplication
and also for reversion to a more primitive and less specialised form (demonstrated by tissue
culture). This capacity for repeated multiplication is continually operating in the perfectly
healthy body, but always in a very carefully controlled manner. Cells of some kinds in the

human body age and die and are constantly being replaced by fresh offspring but always
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within the total ceiling of 10 to 12 trillion. Fault in this regulatory mechanism may lead to

pathologically thin skins.

Cancer occurs when a cell and its descendants(or sometimes two/more cells of different
kinds and their descendants) escape from this control, begin to behave in a renegade fashion
and is able to bequeath its independence through every succeeding generation. More pre-
cisely, a tumour arises when one of the cells (or sometimes a few) proliferates more rapidly
than its neighbours. This aggressive proliferation may be the result of a mutation which
encourages division, or one that makes the cell deaf to the inhibitory growth signals from its

neighbours.

In any case the result is a group of cells proliferatively outpacing the neighbouring cells
and producing a localised growth called a benign tumour. The cancer cell exploits his new
found freedom to the utmost. No longer need he stay in place, wait in a line for food,
nor perform any function for the benefit of the whole organism. He can reproduce at will,
building an immense clone of equally ruthless offspring. Suddenly he and his offspring can
travel throughout the body, taking over new areas of territory and, leaping in and out of the

circulatory systems, establish new colonies of equally ruthless aggressors in distant lands.

1.1 Key words

e tumour: a new growth usually in form of a lump or collections of abnormally growing
cells. The term solid tumour is used to distinguish between a localised mass of tissue
and leukemia. Leukemia is a type of tumour that takes on the fluid properties of the
organ it affects-the blood. Some examples of solid tumours are sarcomas, carcinomas,

lymphomas.

e extracellular matrix: it is the extracellular(outside the cell) substance of animal tissue
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that usually provides structural support to the cells in addition to performing various

other important functions.

e tumour encapsulation: formation of a capsule(dense band) of fibrous extracellular ma-

trix around a solid tumour.

1.2 Tumour Encapsulation

The presence of a capsule around a solid tumour is the most significant gross morphological
feature determining the clinical outcome. Solid tumours typically undergo an initial period
of avascular growth, after which they become quiescent for a long period. The dormant state
is ended by invasion into surrounding tissue and the onset of angiogenesis, the first steps
in the metastatic cascade. A very significant feature of the quiescent phase is the presence,
in some cases, of capsules of dense, fibrous extracellular matrix around the tumour. The
presence of a capsule is a key prognostic indicator, and this is thought to be due to the

capsule acting simply as a barrier to invasion and angiogenesis.

Tumours that are encapsulated (that is., having a dense band of surrounding extracellu-
lar matrix) have a favourable prognosis and only produce symptoms related to pressure
effects on surrounding tissue. Such tumours are known as benign (usually not harmful).
Malignant tumours are potentially lethal and may either arise denovo or in existing benign
tumours which may be encapsulated. In the later case the cancerous cells have to disrupt

the capsular barrier before spreading further.

Recent survival data comparisons for encapsulated and non-encapsulated tumours are avail-
able for a variety of cancers [1],[2]. For example, tumour encapsulation was identified as
the only important favourable prognostic feature relating to disease-free survival in data
for large hepatocellular carcinoma [1]. Despite this major clinical significance of tumour

encapsulation, the mechanisms responsible for capsule formation remain unclear.
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1.3 Theories of Tumour Encapsulation

There have been two schools of thought about the formation of a tumour capsule. Accord-
ing to the expansive growth hypothesis, a benign tumour becomes surrounded by a capsule
when the adjoining extracellular matrix is passively convected by the expanding tumour
and the cellular elements undergo pressure atrophy; the extracellular collageneous matrix
becomes condensed into a circumferential capsule. Here it is argued that remodelling of

existing extracellular matrix is responsible for the capsule formation.

It was observed that tumours growing within the lumen of a hollow organ, or on the sur-
face of the body, do not become encapsulated, a finding that confirms the hypothesis that
capsule can only be formed in situations where a tumour can exert pressure on surrounding
tissue [3]. According to the expansive growth hypothesis , the appearance of a fibrous cap-
sule is essentially a passive phenomenon, and the capsular collagen is derived from mature
pre-existing collagen rather than being newly deposited. The aggregation of extracellular
matrix represents the cumulative effect of a series of lower level interactions at the interface

of the expanding tumour and the convected extracellular matrix.

Another school of thought about the mechanism of capsule formation is the foreign — body
hypothesis where denovo cellular secretion of collagen plays an important role. This view is
essentially of an active process where the body mounts to a response akin to inflammation
to create a fibrous barrier. The controlling influence of encapsulation suggest that the en-

capsulated tumours may thus be shielded from cellular attack [4].

However, evidence from various sources suggests that the foreign-body hypothesis is unlikely.
For instance, none of the human tumours in which tumour-specific or tumour-associated anti-
gens have been identified are associated with an encapsulated growth edge [5]. Hence, at

best the foreign-body hypothesis has limited application [6].
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In particular, it is debated whether remodelling of existing extracellular matrix alone is
responsible for the capsule formation(the expansive growth hypothesis), or whether cellular
secretion of collagen plays a key role (the foreign body hypothesis). Evidence on either
side of this controversy comes primarily from pathological data. Hepatocellular carcinomas
are encapsulated more frequently when the diameter is greater than 2 cm, which is taken
to be evidence that the capsule forms by compression of adjacent extracellular matrix [7].
However, some research data showed no correlation between tumour size and either capsule

incidence or thickness [2].

These contrasting results are hard to evaluate because of the difficulty of performing experi-
mental tests. Among the most serious problems are the difficulty of reproducing experimental
samples which frequently are obtained after complex surgery, the variety of phenotypes in
any given patient, infection in human neoplasms which are in external or internal cavities,
changes produced by anti-tumour therapy, and the presence of cells other than cancer cells.
Moreover, in almost all human neoplasms there are large amounts of fibrous tissue, lympho-
cytes, and granulation tissue which are exceedingly difficult to separate from cancer cells.
One of the few such tests showed that production of collagen by macrophages is responsible
for the encapsulation of tumour implants in mice [8]. However, this may be different from

the mechanisms involved in naturally arising tumours.

In a situation such as this, where experimental investigation is very difficult, mathemati-
cal modelling provides a convenient way of testing hypotheses. This approach is applied in

this work to study the expansive growth hypothesis.

1.4 Objectives of the Project

e To provide a detailed background and analysis of the model of tumour encapsulation.

e To extend the analytical results to an improved model and finally discussing the bio-

logical implications of the model results.
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1.5 Waves

One of the cornerstones in the study of nonlinear partial differential equations (and, for that
matter, linear partial differential equations) is wave propagation. A wave is a recognisable
signal that is transferred from one part of the medium to another part with a recognisable
speed of propagation. Energy is often transferred as the wave propagates, but matter may
not be. Wave propagation is of fundamental importance in the following areas: fluid mechan-
ics(water waves, aerodynamics), acoustics(sound waves in air and liquids), biology(travelling
waves), chemistry (combustion and detonation waves), elasticity (earthquakes, water waves),

electromagnetic theory(optics, electromagnetic waves).

1.5.1 Travelling waves

The simplest form of a mathematical wave is a function of the form

u(z,t) = f(x — at) (1.1)

The density wu is the strength of the signal. At ¢ = 0 the wave has the form f(x), which is
the initial wave profile. Then f(x — at) represents the profile at time ¢, which is just the
initial profile translated to the right at spatial units. The constant a therefore represents
the speed of the wave. The form (1.1) represents a wave travelling to the right with speed a
while u(x,t) = f(x+at) represents a wave travelling to the left with speed a. These types of
waves propagate undistorted along the straight lines x — at = constant(or =+ at = constant)

in spacetime.

Time is usually regarded as varying from —oo to +o00, so that the wave is assumed to

have existed for all times. However, boundary conditions of the form
u(—o00,t) = constant  u(+o00,t) = constant (1.2)

are usually imposed. A wavefront type — solution to a partial differential equation is a

solution of the form u(z,t) = f(r=+at) subject to the boundary conditions (1.2) of constancy
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at plus and minus infinity (not necessarily the same constant); the function f is assumed
to have the requisite degree of smoothness defined by the partial differential equation (e.g.,
CY(R),C*(R),...). If u approaches the same constant at both plus and minus infinity, the

wavefront solution is called a pulse.

1.6 Formulation of The Model

The model consists of conservation equations for the densities of tumour cells and extracel-
lular matrix, denoted u(z,t) and c(z,t), respectively, where t and = denote time and space

in a one-dimensional spatial domain [10], [11]. The equations in dimensionless variables are:

ou 0 ou
G = S g
(1.3)
dc 0 ou
= = k2 lch(e) =
ot Oz {C (c) ax}
The assumptions are that A(.) and f(.) are continuously differentiable and satisfy the
following conditions:
f(0) = f(1) =0 with u > 0 for u € (0,1)
£(0) >0 and f(u) < f'(0)u for u € (0,1]
f(u) has only one turning point on (0,1) at u = u,,, say
h(c) > 0 and h'(c) <0 with A(1) > 0 (1.4)

The first and second conditions are standard assumptions for cell kinetic terms in the study
of scalar reaction-diffusion equations. The third constraint facilitates the calculations in

chapter 2, and is not at all restrictive from the viewpoint of applications.

The term f(u) represents cell division and death; f(0) must clearly be zero, and for simplic-
ity we assume throughout that the cell density is rescaled so that © = 1 is the equilibrium

level within the tumour, implying f(1) = 0. For simplicity we consider f(u) = u(1l — u).
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Random cell movement is assumed, and kinetics of extracellular matrix are neglected, in
keeping with the expansive growth hypothesis, so that the extracellular matrix density only

changes because of convection with the cells.

This convection does not imply large-scale movement of intact matrix by a cell; rather
it is the net result of local matrix movement and remodelling during cell movement. This
will increase with the local matrix density and is represented in the model as k.c. In prac-
tice, this term will saturate at high matrix densities, representing the limitation on matrix

reorganisation per cell.

The function h(c) is decreasing and is included in the model to represent the reduction
in cell motility at high matrix densities. I will investigate the cases of constant h(.) and
non-constant h(.), studying the existence and form of travelling wave solutions. Behaviour

in the case of non-constant h(.) depends on whether h(co) is zero or nonzero.
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Chapter 2

Analysis of the model

2.1 Solutions for constant h(.)

The presentation here is based on the work of Sherratt [10], where the model consists of the

following conservation equations

ou 0 ou
T fw) Oz [h(c)%},
(2.1)
dc 0 ou

where u(x,t) and c(z,t) are the densities of tumour cells and extracellular matrix, respec-
tively, and ¢ and = denote time and space in one dimensional spatial domain. Here f(u)
represents cell division and death. When h(.) is constant, then the first equation of (2.1) is
independent of ¢. In the context of tumour growth, one is concerned with the evolution of

equations (2.1) from initial data corresponding to a localised population of of tumour cells,
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and a uniform (nonzero) density of matrix, which I take to be ¢ = 1. We now have

ou 0 [, du
aZf(UH‘%{h%],
(2.2)
dc 0 |, 0u

where k is a parameter which reflects the strength of the extracellular matrix convection.

Taking f(u) = u(1l — ), the first equation of (2.2) becomes
up — Mgy = u(l — u) (2.3)

This equation is the much studied Fisher equation. It is convenient to introduce non-

dimensional quantities x*,t*, u* defined by
z* = (1/h)Y2%x, t'=t, u =u (2.4)
Using (2.4) and dropping the asterisks, equation (2.3) takes the non-dimensional form
U — Uy = u(l —u), z€R, t>0 (2.5)

In the spatially homogeneous problem, the stationary states are v = 0 and v = 1 which
are unstable and stable equilibrium solutions, respectively. It is then appropriate to look
for travelling wave solutions of (2.5) for which 0 < u < 1. Since we assumed that the cell
density is rescaled so that u = 1 is the equilibrium level within the tumour, we seek solutions

of (2.5) subject to
0<u(z,0)<1, z€R (2.6)
such that all derivatives of u vanish as |z| — oo, and
limg— _oou(z,t) =1, and lim,_ ou(z,t) =0, ¢>0. (2.7)

Physically the first condition implies that the density of the tumour cell has its maximum
as |z| — —oo and the second condition represents zero population as |x| — 4o00. For all

initial data of the type 0 < u(z,0) < 1,z € R, the solution of the type (2.5) is also bounded

20



by the same constants, i.e., 0 < u(z,t) < 1,z € R,¢t > 0 [12]. We note that equation (2.5)
is invariant under the transformation z — —z. So, that is why it is sufficient to consider

waves propagating to the right only. We seek a travelling wave solution of (2.5) in the form
u(z,t) =u(z),z=x —at (2.8)

where the wave speed a is to be determined and the waveform u(z) satisfies the boundary data

(2.7). We substitute (2.8) into (2.5) to obtain the nonlinear ordinary differential equation
u”(2) + au'(2) +u(z) —u?(z) =0 (2.9)

Writing Z—Z = v, equation (2.9) gives two first order equations.

du dv
P 0.u+ v, = u(u — 1) — av, (2.10)

implying that

dv u(u—1)—av

== % (2.11)
The system (2.10) has a simple interpretation in the Poincare phase plane. The singular
points of this system are the solutions of the equations
v =0, u(u—1)—av = 0. Thus two singular points: (u,v) = (0,0) and (1,0) which represent

the steady states. We follow the standard phase plane analysis to examine the nature of the

nonlinear autonomous system given by

¥ =p(u,v), ¢ =qlu,v)

The matrix associated with this system at the critical point (ug,vg) is

A— pu(u07U0) pv(u07U0)

Qu(uo, Uo) Qv(uo, Uo)

In the present problem, the matrix A at (0,0) is

0 1
Ao =

-1 —a
The matrix at (1,0) is
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0 1
Ao = X
—Q

The eigenvalues A of the matrix at (0,0) are given by
1
)\:—g[aq:\/a?—él] (2.12)

The eigenvalues are real, distinct and of the same sign if the discriminant D = a? — 4 > 0.
According to the theory of dynamical systems, the origin is a stable node for a > a,,;, = 2,
and, when a = a,,;, = 2, it is a degenerate node. If a? < 4, eigenvalues are complex with a

negative real part.

The eigenvalues of the matrix A at (1,0) are

A= %[—a + V¥, (2.13)

Here , \_ = i[-a— va®>+4] < 0 and Ay = i[—a+ V> +4] > 0. Hence the equilibrium
point (1,0) is a saddle point. Thus in this case, there is exactly one expanding and one
contracting direction. Both equilibrium points are hyperbolic since both the eigenvalues
have nonzero real part. The phase plane trajectories of the equation (2.9) for the travelling
wavefront solution for a > 2 shows that there is a unique separatrix joining the stable node
(0,0) with the saddle point (1,0) i.e., the global qualitative behaviour is obtained from the

local behaviour of the phase trajectories at the neighbourhood of each critical point. The

N

Figure 2.1: Phase plane trajectories for a > 2

travelling wave solution u(z) of (2.5) for a > 2, satisfying the boundary conditions (2.7), as
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z — Foo corresponds to the separatrix joining the singular points (1,0) and (0, 0), as shown
in Figure 2.1 and is a monotonically decreasing function of z when its first derivatives vanish
as z — Foo. A typical travelling wave solution (cline) u(z) for a > 2 is shown on Figure
2.2. We consider the stability of the travelling wave solutions of (2.5) in the form

u(z,t) = u(z), z = xr—at where a is the wave speed. Such solution is said to be asymptotically

stable if a small perturbation imposed on the system at time ¢ = 0 decays to zero, as t — oo.

u(z)

—
\

0

Figure 2.2: Traveling wave solution for a > 2

Introducing a coordinate frame moving with the wave speed a, that is, 2 = x — at, equation

(2.5) reduces to the form
U — aly = Uy, +u(l —u) (2.14)
We look for a perturbed solution of (2.5) in the form
u(z,t) =U(z) + ev(z, 1) (2.15)

where €(0 < € < 1) is a small parameter and the second term represents a small perturbation
from the given basic solution U(z). The perturbed state v(z,t) is assumed to have compact
support in the moving frame, that is, v(z,t) = 0 for |z| > d for some finite d > 0. Substituting

(2.15) into (2.14) gives the equation for the perturbed quantity, to order e,
vy — av,, = v, + (1 —20)v. (2.16)
Now, we seek solutions of this equation in the form
v(z,t) = V(2)exp(—At). (2.17)
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Substituting this solution into (2.16) gives the following linear eigenvalue problem
V' (z)+aV'(z)+ (A +1-20)V =0, (2.18)

where the growth factor A is an eigenvalue. Since the original perturbed state has a compact
support, we may take the boundary condition on V(z) as V(4+a) = 0. According to the
general theory of eigenvalue problems [22], the perturbation will grow in time if the eigen-
values A are negative, and hence the system will become unstable. On the other hand, if the
eigenvalues A are positive, then the perturbation will decay to zero, as t — oo, and hence
the system is asymptotically stable.

To reduce the problem to standard form, we introduce the transformation [17], [22]

v(z) = p(z)e:cp(—%az) (2.19)

so that the eigenvalue problem (2.18) reduces to the form

P+ =n(2)p=0 (2.20)
p(=1) =p(l) =0, (2.21)

where
n(z):a;—(l—QU) > 2U(z) > 0 for a > 2. (2.22)

This is a standard eigenvalue problem, and all its eigenvalues are real and positive provided
a > 2 [22], [31]. This means that small perturbations of the form (2.17) decay exponentially
to zero, as t — 0o. We conclude that the travelling wave solution of (2.5) is asymptotically

stable.
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2.1.1 c¢— wave solution for constant h(.)

The case h(.) is constant is made as a simplifying assumption. In reality, rates of cell move-
ment are significantly affected by local extracellular matrix. If A = 1, then the changes
in extracellular matrix density have no effect on cell motility. This case is relevant during
the early stages of tumour growth, in which extracellular matrix accretion on the surface of
the tumour is too low to significantly restrain its expansion. Thus, the study of the case
h(.) constant is done to obtain important mathematical insights into the behaviour of more

general forms of h(c).

The study of this case of constant h(.) is done analytically with two key objectives:

e to determine the value of k£ at which the c—wave changes form, and

e to determine the rate at which the peak of ¢ increases when k is above this value.

The main goal of the study of dynamical systems is to understand the long term behaviour
of states in a system for which there is a deterministic rule for how a state evolves. To
fulfill this goal let us rewrite the second equation of (2.1), in terms of coordinates 7 = ¢ and
z =x — at.

dc ou dc 0*u

where 2% is the flux of the tumour cells [9]. Consequently, by letting u(z,t) = u(z) where

z = x — at, we have a function that satisfy our partial differential equation (2.23). The plan
is to find a solution of our partial differential equation by constructing an integral surface as

a union of characteristic curves.

This first order partial differential equation can be solved using Lagrange method of charac-
teristics. We will use this method to determine the qualitative form of the solution ¢(z, 7).

We note that % >0 Vz, with % — 0 as z — Fo00, and 22712‘ nonzero except at the unique
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local maximum, at which the flux is maximum i.e., 24 = [ 2

, S = 8z) , say. This follows from

the shape of the travelling wave in the Fisher equation. The characteristic equations of (2.23)

are:
ﬁ B dz ~ —dc
L k(%) —a k%c'

In effect, by introducing these characteristic equations, we have reduced our partial differen-
tial equation (2.23) to a system of ordinary differential equations. We can then use ordinary
differential equation theory to solve the characteristic equations, then piece together these
characteristic curves to form a surface. Such a surface will provide us with a solution to
our partial differential equation (2.23). By the theory of ordinary differential equations, this
system of characteristic equations has a unique solution which satisfies the initial conditions.

Two characteristic functions are obtained from the above characteristic equations.

C

Crw(2)

pi(1,2) =7—G(z) and po(c,2) =

where ¢y (2) = and G(z) = — [ ¢(2)dz. A solution of ¢ is given by substituting

1
o
a—k%

a suitable choice of constant A(.) into the following:

thc(z> = ;i(&((‘_);) and  G(z) — 7 = G(h(.) (2.24)
where c¢o(x) = c¢(x,t = 0). Recall that the parameter k represents the strength of the ex-
tracellular matrix. Meanwhile, g—;‘ represents the flux of the tumour cells. Thus k’g—: is the
velocity at which extracellular matrix is being convected, while a is the speed of the tumour

wave.

The key determinant of the form of this solution is the sign of k(g—:)maz — a. If this ex-
pression is negative, then ps(c, z) is finite for all z so that a possible travelling wave solution
for ¢ is ¢(z,7) = cw(2), independent of 7. When a > k(g—g)mm, i.e., the velocity of the
extracellular matrix is slower than that of the tumour cell wave, only a fleeting ripple is

produced in the solution for c.
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However when k(%) > a at some points, the extracellular matrix at these points is
max
actually convected faster than the speed at which the tumour cell wave moves, causing a

build up of extracellular matrix. This shows that the qualitative behaviour depends crucially

a

>—. For k below this value,
Maz—co<z<oo[—h(.) 5]

on whether £ is above or below the critical value

¢ also evolves to a permanent form travelling wave solution. The wave form is in fact given

a

by the simple expression ¢, (2) = —2——.
Yy p p tw( ) [a-&-kh(.)%]

If ¢ is above the critical value, then the solution for ¢ again has a wave form but in this
case not of constant shape. Rather, the height of the peak in this wave front grows, without
limit, as time increases. Such growth is entirely consistent with the assumption of no matrix
production. The peak becomes thinner as it grows, so that the total density of matrix within

it is constant.

The assumption that A(.) is constant is mathematically very convenient, but biologically
it is unrealistic, since in practice rates of cell movement are significantly affected by local
extracellular matrix. In the next two sections, we consider travelling wave behaviour in the
more general case, studying separately the cases of h(oo) zero and nonzero. The results
depend on the assumption that h(.) and f(.) are continuously differentiable and satisfy the
conditions (1.4).
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2.2 Travelling waves when h(oc) =0

We now see if tumour invasion may be represented by travelling waves of the model (2.1)
when h(oco) = 0. Thus, we look for solutions which have a constant shape given by
u(z,t) =U(z), c(z,t)=C(2), z=uz—at,

and move in space at a constant speed a. Substituting these into the system (2.1) gives

fU)+aU +[URC)]) = 0,
(2.25)
al' + E[CU'WC)] = 0,

where prime denotes d/dz. The wave speed a enters the equation as a parameter, taken
a > 0 without loss of generality. We solve this model in the context of tumour growth on
the infinite  domain with boundary conditions

U—-0, C—lasz—oo,andU —1, C—1lasz— —x

with U > 0 for all z.

A solution of this type is illustrated in Figure 2.2 where the wave corresponds to the

advancing front of the tumour edge.

Proposition 2.1 When h(co) =0, and with f(.) and h(.) satisfying conditions (1.4), equa-
tions (2.25) have a solution of the type shown in Figure 2.2 if and only if a > 2[y/ f'(0)h(1)].

Proof

Integrating the second equation of (2.25) gives

U'h(C) = %(é - 1), (2.26)

since U' -0, C — 1 as z — £oo.

Recall that h(C') is a decreasing function. This implies that 1/h(C') is an increasing function
of C'. Our tumour model assumes that the density of the extracellular matrix is strictly
increasing, hence 1/C is a strictly decreasing function of C'. Consequently 1 — % is a strictly

increasing function of C.
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Therefore equation (2.26) implies that U’ is a strictly decreasing function of C'.
Also note that,
U’ = oo in the absence of extracellular matrix (C' = 0) whilst U’ = 0 when C' = 1. When

h(c0) is zero and C' = oo we have U’ = —oo as shown in Figure 2.3(a, b).

Figure 2.3c illustrates the inverse of the statement that U’ is a strictly decreasing func-
tion of C i.e., C is a strictly decreasing function of U’ and hence (1/C — 1).a/k = U'h(C)
is a strictly increasing function of U’, denoted by ¢(U’). This is shown in Figure 2.3d. The

choice of h(C') determines the form of ¢(.). However, in all cases we have following:

¢(—o0) = —a/k, $(0) = 0 and ¢(c0) = oc.

Substituting the expression U'h(C) = ¢(U’) into the first equation of the system (2.25)

gives

f(U)+aU" + ¢ (UU" = 0. (2.27)

Differentiating equation (2.26) with respect to U’ gives

s 0C —adC 1
h(C’)+Uh(C’)aU, = T
iac B —kC?h(C)
our — kC2U'N(C)+a
—kC?*(h(C))?

. . . .

o(U") = U'n(C)
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") (a) dU /dz \

h(C)dU/dz

C=1 dU/dz
1 —a/k

dU/dz

Figure 2.3: Schematic illustration of the derivation of the form of U’, from (2.26), when
h(oco) = 0. (a) The form of h(C) as a function of C'. (b) The form of U’h( ) = % )¢

a function of C. (¢) The form of C as a function of U’. (d) The form of ¢p(U’) = U'h(C )
(£ —1)% as a function of U’

Therefore

) = g li(e )
- ()

B 1 ca-owe)!
- {h<0>+ (h(C))? } ’ (2.28)

where

T 1+ Eun(C)
and C has the qualitative form illustrated in Figure 2.3c.
In particular, note that ¢/'(0) = h(1).
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Let us now study equation (2.27) in a phase plane to complete the proof of the existence of a
positive travelling wave solution. Here, we make use of methods developed by Kolmogorov,

Petrovskii and Piscounov for studying travelling wave solutions of Fisher’s equation.

It is often useful to rewrite an n'*—order differential equation as a system of first order
equations, and to recall the geometric interpretation of a differential equation as a vector

field. To this end, consider the change of variable U’ = % so that equation (2.27) becomes:

W
U= = W' = —y(W)[kf(U) + aW], (2.29)
where v(W) = 1/¢'(W/k) and the dependence on the parameter k is clearer.
Let us denote the global solution (the collection of all integral curves) to system (2.29) by
the flow or trajectory 7. We need to show that for functions f(.) satisfying conditions (1.4),
and equations (2.29) has two equilibrium points: (1,0) which is a saddle point, and (0, 0),

which is a stable node if a > 2[f/(0)/7(0)]"/? = 2[f'(0)h(1)]*/2, and a stable focus otherwise.

The travelling waves under consideration correspond to connections between the two equi-
librium points and thus to the trajectory 7. Thus there exist at most one wave for any given
a, with the wave existing if and only if 7 terminates at (0,0). If U > 0 and (0, 0) is a spiral

then this is not possible.

There are three possible ways in which 7 can leave the lower right quadrant (U > 0, W < 0)
when a > 2[f'(0)h(1)]*/? namely:

e 7 can pass through the positive U—axis. However, at the point of crossing we have

U>0,W =0, and W > 0, which contradicts equations (2.29).

e 7 can leave the lower right quadrant through the negative IW-axis. In this case, 7 must
first cross the line W = AkU, where X is one of the eigenvalues at (0,0), which are

real and negative for a above the critical value. Using boundary conditions (1.4) and
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recalling that W = AkU we see that at the point of this crossing

aw

i —aky(W) = k> f(U)(W) /W

< —aky(W) = KU (0)y(W)/W
= —aky(W) = ky(W)f'(0)/A

= Ay (W)/~(0)

using the eigenvalue equation A\* + ay(0)A + v(0) f/(0) = 0
Considering the relationship between C' and U’ when W < 0, we conclude that C' > 1.
When C > 1 and since 2'(C') < 0, equation (2.28) shows that

v(W)

v

1/h(C)
1/h(1)
7(0).

Y

Therefore when 7 crosses the line W = AkU we see that

dW/dU < Mk (A < 0), which is a contradiction.

e The third possibility is that whenever a > 2[f'(0)h(1)]*/2, T leaves the region U >
0,W < 0 by terminating at (0,0). This corresponds to a monotonically decreasing

travelling wave solution for U(z).

The corresponding solution for C'(z) is determined by its relationship with U’(z), which is

illustrated in Figure 2.3c¢ where C'(z) is a pulse wave form.
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2.3 Travelling waves when h(oco) > 0

Recall that h(c) is a nonnegative decreasing function representing the reduction in cell motil-
ity at high extracellular matrix density. In this section we assume that this reduction in cell
motility is positive at high matrix densities and that there is a limit of A as ¢ — oco. In
this case of h(oco) > 0, many of the arguments of the previous sections continue to hold.
More importantly, there still exist heteroclinic connections in the system (2.29) which cor-
respond to travelling wave solutions. Also the proof that such connections exist whenever

a > 2[\/f(0)h(1)] is still valid.

Most significantly, U’ and C' are now related differently from the qualitative form illustrated
in Figure2.3c. Here, 1/h(C') approaches a finite asymptote as C' — oo. Thus, U’ is a strictly
decreasing function of C', approaching —% as C — oo as illustrated in Figure 4(a,b).
Inversely, C' is a strictly decreasing function of U’ that is defined only for U’ > —% as
evidenced by Figure 2.4c. Depending on the form of h(C') as C' — oo, v may either approach
a finite positive value or +o0o0 as U’ — —W.

The trajectory 7 in the U — W phase plane only gives a solution of (2.25) when h(oco) > 0 and

it lies entirely above the line W = —ﬁ. To demonstrate this, the following propositions

are proved:
Proposition 2.2

(i) 7 has a unique minimum in the U — W plane, at the point (Upin, Winin), say.
(ii))  Win (< 0) is a strictly decreasing function of k.

(i) Winin — 0 as k — 0, and W, — —00 as k — oo.
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v |

C

h(oo)|
(o]
C
hC) Y (d)
C (c) .
~ h()]
dU/dz
—%
__a dU/dz
()]

Figure 2.4: Schematic illustration of the derivation of the form of U’ from (2.26), when

h(co) > 0. (a) The form of h(C) as a function of C. (b) The form of U’h( )= (& —1)% as

a function of C. (¢) The form of C' as a function of U’. (d) The form of ¢p(U’) = U’ h(C’) =

(% —1)# as a function of U’.

In order for the trajectory 7 to exist we assume that a > 2[\/f’(0)h(1)]. An important result
of this proposition is that the travelling pulse solution for C' has a unique maximum, whose

height increases strictly with £, tending to oo as k — k_;.

Proof 2.2(i)

Let us denote the curve W = —kf(U)/a by D;. We note that dW/dU > 0 if and only
if W lies above the curve D;. Also, the eigenvector along which 7 leaves (1,0) has a slope

equal to the product of £ and the corresponding eigenvalue which is equal to

L5020 4\ J0F — 0] < E(=Jat0) + a0 - r0)
CEP()

)
a
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and this is the slope of Dy at (1,0). Thus when U is close to 1, the trajectory 7 lies above
the curve D;. 7 will have a turning point when it crosses D;, and at such a point , 7 will
be horizontal in the U — W plane. Thus, our inference suggests that the first turning point
must occur when the slope of Dy is negative, that is, when U < w,,;,,. Here, we must recall
from conditions (1.4) that the function f(U) is assumed to have a unique local maximum at
U = Upmin, say. Consequently, 7 must have at least one first turning point, and we denote
it by (Unmin, Winin). We would require 7 to cross D; horizontally so that we have another
turning point. Here, U,,;, < u,, so that the slope of Dy is positive for U < U,,;,. However,
this is impossible since U decreases monotonically along 7. Hence there is a unique turning

point, as required.

Proof 2.2(ii)

We need to show that W, is a decreasing function of k i.e., for any two values of k
(k1 < ka), say, we must have W, (k1) < Winin(k2). Differentiating dW/dU (from equation
(2.29)) with respect to k gives

ok

|G| =~ le+ 2k
which is positive if and only if W lies between the U-axis and the curve W = =2k f(U)/a,
which we refer to as Ds. It is clear that the value of W on D, is exactly twice that on D; for
each U. Let us now consider any two values of k, ks, and k4, say, satisfying k3 < ky < 2k3.
Let us denote the curves Dy and Dy (or Dy and D) corresponding to k3 and k4 (or k4 and k3)

by Dy, and Dy, (or D, and D1k4) respectively. Similarly, let us represent the trajectories

corresponding to k3 and k4 by 7%, and 7, respectively.

Then the minimum of 7, lies on the curve Dy, , which lies between the U-axis and the curve

D2k3, since kg4 < 2k3. Thus the portions of the trajectories 7, and 74, between (1,0) and their
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respective minimum both lie in a region of the phase plane within which %(dW/ alu) > 0
for k € [ks, k). This implies that this portion of 73, lies strictly between the U-axis and
the corresponding portion of 74,, so that Wy, (ks) < Wiin(ks) as required. The required

monotonicity is satisfied since k3 and k4 are arbitrary within the specified restrictions.
Proof 2.2(iii)

Let us consider the equation for the nature (or shape) of the trajectories defined by

aw

= M (W)/1(0)

We see that dW/dU — oo as k — oco. Also, dW/dU — 0 as k — 0 for all U € (0,1) and
W > 0. Thus, the proof is completed.

36



Chapter 3

Saturation in matrix remodelling rate

In keeping with the expansive growth hypothesis, random cell movement is assumed, and
kinetics of extracellular matrix are neglected so that the extracellular matrix density only
changes because of convection with the cells. This convection will increase with the local

extracellular matrix density and is represented in model (1.3) as k.c.

In practice, this term will saturate at high extracellular matrix densities, representing the
limitation on matrix reorganisation per cell. In this chapter saturation is included, by replac-
ing the constant k in (1.3) by k.6(c), where 0(c) is a continuously differentiable decreasing

function of ¢, with (1) = 1.

This result in the following model:

ou 0 ou

Er f(u) %[h(c)%]
(3.1)

Oc 0 ou

ot k’%[Ch(CW(C}%]

The results in sections 2.2 and 2.3 can be easily extended to these equations also. Travelling
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wave solutions of (3.1) have the form
u(z,t) =U(2), c(x,t) =C(z), z=x—at where a is the wave speed , and thus satisfy the
ordinary differential equations
f(U)+aU" + [UKWC)]) =0
(3.2)
aC + kCh(CY0(C)U' = a,
using notation as in section 2.2. Our approach is based on the prediction that the early
growth of a tumour has the form of a travelling wave moving outwards from an initial size

of disease into the surrounding normal tissue [9]. Following the work in section 2.2 i.e.,

integrating the second equation of (3.2) and letting ¢(.) = U’h(C), we get
fU) +aU' + ¢(UU" =0, (3.3)

The notation of writing with a tilde the amended forms of the various functions in sections

2.2 and 2.3 is adopted in this chapter.

Therefore

0 = ali(e e

4 aC 0(C)
- kCQG(C)W[1+C(1_0) 0(0)1

h(CPO(C)1 +0(C)C(1 = C)/6(C)]
h(C)O(C) + [h(C)0'(C) + W (C)O(C)C(1 - C)

B ( 1 C(1 - C)K(C) (3.0

h(C) " RO+ O~ 0)9’(0)/9(0)]>

oC

Here i

has been calculated using the second equation of (3.2) in a manner directly analo-
gous to that used in section 2.2. Writing W = kU’ then gives a coupled system of ordinary

differential equations analogous to equations (2.29):
U =W/k, W =-AW)kfU)+ aW], (3.5)
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where 7(W) = 1/¢'(W/k). The function 7(.) inherits the qualitative form of y(.). In addi-
tion, when W < 0, the function 7(.) satisfies the key inequality (W) > 4(0). Therefore,
there exists heteroclinic connection between (1,0) and (0,0) in the U — Wphase plane for

this amended system, as is proved in Proposition 2.1 in section 2.2.

In particular, for functions satisfying conditions (1.4), the system (3.5) has two equilibrium
points: (1,0) which is a saddle point and (0, 0) which is a stable node if a > 2[\/f"(0)/~(0)],
and a stable focus otherwise. The minimum wave speed is not affected by the change in the
model since 7(0) is independent of §(.) . Thus, for wave speeds greater than or equal to this
minimum value, a travelling wave solution of (3.1) exists for all values of k& when A(.) and
6(.) are such that h(c0).0(c0) = 0.

Conversely, when both h(oo) and 6(oco) are nonzero, a travelling wave solution exists for k

below a unique, critical value.

3.1 Comparing the original and the amended model

Recall that the change made to the model in this chapter corresponds to limiting the extent
of matrix convection. We therefore, expect the peak in the C wave form for the original
model to be higher than for the amended model (with saturation) for given functions h(.)
and f(.), and a given value of k for which travelling waves exist for both models. Thus, we

need to show that this intuitive expectation is correct.

The assumption that 0(.) is a continuously differentiable and decreasing function implies that
#'(C) < 0 for all C. Comparing equations (2.28) and (3.4) shows that [1/¢'(C)] > [1/¢/(C)]
for a given value of C' > 1. However, we cannot extend the corresponding inequality to
v(W) and 4(W) since these are not necessarily monotonic functions. Thus, the comparison

of trajectories in the U — W plane is made difficult.

Therefore, we choose to work in the U —C phase plane which makes comparison of wave forms
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easier although it is a more difficult system to work with when considering the existence of
travelling waves [10]. The equations follow directly from the two systems of equations (2.25)

and (3.2) from the original and the amended model respectively:

- —a(1-1/C)
kh(C)
(3.6)
o kC?f(U) B aC(C —1)
a h(C)
for the original model, and
- —a(1-1/C)
kO(C)h(C)
(3.7)
KO(C)C2f(U)  aC(C—1)
¢ = - 0(1—0)0'(2()0)

for the amended model.

In this system of ordinary differential equations, a travelling wave solution corresponds to
a heteroclinic connection between the equilibrium points (0,1) and (1,1). The existence of
such a connection has important implications regarding the dynamics of both models. As
mentioned earlier, our goal is to compare these solutions for given functions A(.), f(.), a, and

k such that both systems have a travelling wave solution.

Let us denote the corresponding trajectories in the U — C' plane by 7 for the original model
(1.1) and 7 for the amended model (3.1). Likewise, we represent the points on these trajec-
tories at which the extracellular matrix wave i.e., C'— wave has its unique local maximum

as Ui, and Umin; respectively.

Considering the portion U € (ﬁmm, 1) of the trajectory 7, and making use of equations

(3.7), it follows that along 7,

dC KO(C)Cf(U)  a(C—1)
w<0:> . > H(C)

40



a(C—1)  kCFU) a(C—1) kCO)CFU) _ (3.8)

~ ThC) a5 RO p

Now, considering the original model, equations (3.6) imply that along 7 we have

dC  kC?h(C)[a(C —1)  kCF(U)
du a(C’—l){ MC)  a }

Applying the conditions #(C) < 1, C > 1, and ¢'(C) < 0 along the portion U € (Upin, 1)

of the curve 7 we find the slope of 7 using equations (3.8) as

ac o KCP(O) |alC=1) _ KCOO)SU)
dU a(C-1) h(C) a
a(C—1) kCO(C)f(U)
9(CIKC2h(C) o
S T {[1+hc?1—0)9f(0)/9(0)11 ; (3.9)

Therefore in the system (3.6), all trajectories pass through the portion U € (U,n, 1) of the
curve T in the direction of increasing C. Here, the trajectories can be analysed along two

lines namely:

e along the line U = Umm, C > 1, where the main technical result is that U’ < 0.

e along C'=1, U € (0,1), where the second equation of (3.6) implies that
C'=kf(U)/a> 0.

Therefore, all trajectories leave the portion of the phase plane between 7,

C =1, and U = Uppin. At the equilibrium point (1,0), both slopes of 7 and 7 are the same
at (1,0) since the eigenvector is independent of 6(.)).

However, for U close to 1, 7 lies outside the portion of the phase plane between 7,C = 1,

and U = U,,;,.

Hence, 7 must remain outside the portion 7,C' = l,and U = Upnin for U € (Umm, 1) and
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thus the extracellular matrix wave of the original model must reach a value that is at least
as large as the value of the amended model. Thus the travelling wave in the original model,
corresponding to 7, has a maximum value of C' at least as large as that for the amended
model, corresponding to 7. Interestingly, we have shown that our intuitive expectation at

the beginning of this section is indeed correct.
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Chapter 4

Discussions

In this work, we have studied the expansive growth hypothesis which suggests that a dense
fibrous capsule forms by remodelling of existing extracellular matrix, without any new matrix
production. The model solutions all have the form of a pulse of extracellular matrix moving
ahead of the growing tumour, corresponding to a fibrous capsule. The predicted density of
the matrix in the capsule correlates directly with the parameter k, which represents the rate

of local matrix movement and remodelling per cell.

Most importantly, this implies that the capsule density is not correlated with either the
speed at which the tumour grows (which is independent of k) or its size. This explains the
wide discrepancies between studies attempting to correlate tumour size and capsule incidence
or thickness. It also contradicts the conventional intuition that these should be correlated if
the capsule forms without matrix production. Thus a challenge for future work is to study

the correlation between capsule density and some measure of the parameter k.

When saturation in the extent of matrix rearrangement per cell is included, the results
show that rate of matrix movement and convection per cell will saturate at higher matrix
densities. Analysis of the case when there is both new matrix secretion and remodelling

occur, would enable investigation of tumour encapsulation in a broader context, thus is a
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significant challenge for future work.
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