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Abstract

The subject matter of this report is the vibrating behavior of thin shells of rev-

olution when the generating line has a point of inflection at s∗. At this point

s∗, the curvature changes its sign. We develop from the deformation of a shell of

revolution and obtain the natural frequency of vibration using Lord Rayleigh ’s

method.

We make use of the law of conservation of energy which states that, at equilib-

rium, the total kinetic energy is equal to the total potential energy. We then

equate the kinetic energy, Jν ,(which is proportional to the square of the natural

frequency, ω,) to the total potential energy, Jκ. To solve the integrals we make

use the Laplace’s method and a programme from mathematica and then compare

the two results.
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Chapter 1

Construction of a shell theory

1.1 Preliminaries

The applications of shell structures has been found in many fields of engineer-

ing, notably civil, mechanical and aeronautical. Considerable effort has been

expended on the development of rigorous theories to describe the behavior of

shells in the elastic range as realistically as possible. Such rigorous formulations

have led to sets of differential equations for which analytical solutions are either

yet to be found or those that are available are not very interesting from an engi-

neering point of view.

The problems faced by engineers, physicists and applied mathematicians involve

difficulties such as nonlinear governing equations and boundary conditions, vari-

able coefficients and complex boundary shapes that preclude exact solutions.

The development of numerical formulations such as finite element methods has

seen the gradual cessation of attempts to find analytical solutions to rigorous

formulation of shell behavior. The finite element method is a general numerical

procedure that can be used to tackle any shell problem to any desired degree

of accuracy. Initially, one only needs to understand the response of the basic
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individual elements making up a shell structure (rather than the response of the

whole structure), and then to assemble such elements by enforcing compatibility

of displacements between the elements and their common nodes, and equilibrium

of forces and moments at all nodes as well as constraint conditions at the bound-

ary nodes of the structures. In this way, the overall response of the complete

structure is predicted.

While such a solution approach is effective from the practical viewpoint of ob-

taining actual values of stresses and displacements in a structure, it is not very

efficient for the effect of varying a single parameter. We need to obtain some

insight into the character of the solutions and their dependence on certain pa-

rameters. Often one or more of the parameters become either very large or very

small. These situations are difficult to treat by straight forward numerical pro-

cedure. We shall employ the methods of perturbation or asymptotic expansions

in terms of a small or large parameter or coordinate. These are analytic methods

that can provide an accurate approximation.

1.2 Early shell structures

Man-made shell structures have been in existence for many centuries. One of

the earliest applications of the shell as a structural form is represented by the

several domes that have been constructed for the purpose of providing for temples,

cathedrals, monuments and other buildings. Notable historical examples include

the Pantheon ofancient Rome, built around 2000 years ago; the Taj Mahal of

India built in the seventeenth century just to mention a few.

16



1.3 Modern shell applications

The generally high strength-to-weight ratio of the shell form, combines with its

inherent stiffness, has formed the basis of mordern applications of shell structures.

As may be seen in more detail in the historical account of Sechler, developments

over the past 200 years in various sectors of human activity have opened up nu-

merous fields of application for shells. Among these are thin concrete roofs, such

as the hyperbolic paraboloidal roof of buildings like halls.

Apart from roofing, shells find applcations in many other fields. In industry, boil-

ers, pressure vessels and associated piping are further examples of shell structures

in metal construction. Hollow members of largee industrial steel strutures such

as offshore oil platforms, are another example of shell applications, as are bodies

of transportation structures such as motor vehicles, ships, aircraft and spacecraft.

The great diversity of shell applications is seen in the curved panels of world fa-

mous Thames Barrier in London, and the giant egg-shaped sewage digestors that

are becoming a familiar sight on the landscape of countries such as Germany.

A shell may be defined as a relatively thin structural element, in which the ma-

terial of the element is bound between two curved surfaces a relatively small

distance apart. The behavior of a shell is usually modelled on the basis of its

middle surface (alternatively referred to as midsurface), which is the locus of

interior points equidistant from the two bounding surfaces of the shell.

1.4 Introduction

The second half of the twentieth century has been, in many ways, a fruitful

period in the development of applied mechanics. Among the many problems

that would come into the purview of mechanics would be that of the dynamic

response of elastic structural systems, and elements of those systems, to dynamic
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loading. An important element in a structural system is an element which has

one dimension, called thickness, much smaller than other dimensions. Shells

(also Beams and Plates) form a class of such elements. The property of thickness

being considerably smaller than any other length justifies the construction of

two dimensional mathematical models which are simpler but more limited than

the corresponding three-dimensional models. Consequently, the mathematical

models of shells can recognise only those features in the input that are averaged

over distances comparable to thickness.

A thin shell is a body that is bounded primarily by two closely spaced curves.

Shell theory may be viewed as a two-dimensional subset of elasticity which is

valid for certain structures. The solution to three-dimensional elasticity problem

is tough. In elasticity theory there are three basic sets of equations- equilibrium,

kinematic (strain-displacements) and constitutive (Hookes law). We shall begin

our development of shell theory by stating the basic assumptions.

1.5 Assumptions

There are four principal assumptions that are used to establish thin shell theory.

these assumptions first adopted by Kirchhoff for the plates and later extended to

shells by Love are sometimes referred to as the Love-Kirchhoff assumptions. We

state them as follows-

1. One dimension is considerably smaller than the other two; so we can speak of

a thin shell.

-As a measure of thinness, we say that the ratio of a shell thickness, h, to one of

the radii of curvatures, Ri is small i.e h
Ri
� 1.

2. The shell deflections are assumed to be small.

-This implies that the products of deformation quantities occurring in the rele-

vant governing equations theory may be neglected, ensuring that the system is

described by a set of geometrically linear equations. Also this assumption allows
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us to refer all equilibrium and kinematic equations to the original undeformed

reference state of the shell.

3. We take the stress in the direction normal to the thin dimension to be negli-

gible.

-This assumption is justified because the shell has already been assumed to be

thin. However, the assumption is not valid in the vicinity of concentrated trans-

verse loads, even if the shell is thin.

4. We assume that a line originally normal to the shell reference surface remains

unstrained.

-This implies that the direct strain in the direction normal to the middle surface

and due to transverse shear forces are all zero.

1.6 Distribution of extensional and flexural ef-

fects in shells

For shells, the relative proportions of extensional and flexural effects at a given

point depend on several factors such as the type of shell surface (synclastic,

anticlastic, or developable), support conditions, loading configuration, and the

proximity of edges and certain discontinuities.

Synclastic surfaces are those with positive Gaussian curvature. Gaussian cur-

vature is defined as the product of the two principal curvatures (the maximum

and minimum) at a given point of a curved sufarce, such curvatures occuring in

two planes called the principal planes, which are perpendicular to each other.

As is clear from Fig.1.1(a), for a synclastic surface, the centres of maximum and

minimum curvature at a given point lie on the same side of the surface, so that

the surface, when suitably oriented in space, can hold liquid around the point.

19



�
�
�
��E

E
E
EE

(a)

(b)

(c)

Circularcone
Circularcylinder

Hyperbolicofrevolution

Ellipticparaboloid

Hyperbolicparaboloid

Paraboloidofrevolution

Figure 1.1: Types of shell structures: (a) synclastic (b) anticlastic (c) developable

Anticlastic surfaces posses negative Gaussian curvature, the centres of maximum

and minimum curvatures at any given point on the surface lying on the opposite

sides of the surface, so that the surface is ’saddle’-shaped and therefore incapable

of holding liquid around an arbitrary point no matter how the surface is oriented

in space (Fig 1.1(b)). Developable surfaces, as the name applies, are those that

can be flattened into a plane surface, either directly od after making a single line

cut in the surface (Fig.1.1(c)); they are charaterised by zero Gaussian curvature

and, as such, cannot hold liquid around an arbitrary point on the surface (the

liquid would simply run off along the direction of zero curvature!)[2].

For synclastic shells, in particular, if both the shell geometry (i.e. shell thickness,

midsurface slope in any arbitrary direction, and principal radii of curvature) and

surface loads are varying smoothly (i.e. exhibiting no discontinuities in the varia-

tion of the shellgeometrical parametres and loading components over the surface

of the shell, nor in their first derivative with respect to arc length along a given

direction), then extensional effcts generally predomonate in the interior regions

of the shell, while in the edge zones bordering the supports, extensional and flex-

ural effects usually become equally significant for most practical constructions of

supports. Such localization of bending effects to the boundary zonea of the shell
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is also noted, but to a reduced extent, in developable shells; in anticlastic shells,

bending emanating from the edges of the shell may propagate along certain di-

rections deeply into the interior of the shell, a behaviour not unlike the bending

in beams and plates.

1.7 The Geometry of shells

Our discussion is restricted to surfaces of revolution. A surface of revolution is

obtained by rotation of a plane curve about an axis lying in the plane of the

curve. This curve is called the meridian and its plane is the meridian plane. The

intersection of the surface with the plane perpendicular to the axis of rotation

are parallel circles and are called parallels. If we rotate the above curve about

-

+

r

W

φ Rθ

� meridian

)

ζ

Figure 1.2: shell geometry

the axis of rotation ξ, we obtain the shell of revolution that is shown below in

Fig1.2. The directions x, y and z are perpendicular to each other. For such a

shell the lines of principal curvatures are its meridians and parallels.

Fig1.2 shows the following nomeclature
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Figure 1.3: Shell of Revolution

φ is the angle between the axis of the shell and the shell normal at the point

under consideration on the middle surface of the shell.

θ is the angle between r and the defined line ξ

Rφ is the radius of curvature of the meridian.

Rθ is the length of the normal between any point on the middle surface and the

axis of rotation.

r is the radius of curvature of the parallel
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1.8 External Loadings

The external loads consists of body forces that act on the element and surface

forces that act on the upper and lower surfaces of the shell element. All loadings

under consideration at any point on the shell can be resolved into three compo-

nents in the x, y and z directions. The x-direction is parallel to the tangent to

the meridian. The y-direction is parallel to the tangent to the parallel circles.

The z-direction is normal to the surface of the shell. The dead weight p (weight

per unit area) for a shell of revolution can be resolved into load per unit area

in the x, y and z directions, respectively, in the following manner as shown by

fig.1.3

px = p sin φ py = 0 pz = cos φ

The external forces are resisted by internal forces, or stresses which are in equi-

librium with the external forces. The internal forces consists of membrane forces,

transverse shears, bending moments and twisting moments.

��

? ^
�φ φpzdA

pdApxdA

Figure 1.4: Loading components from deadweight
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1.9 Internal Stresses

The external forces are resisted by internal forces, or stresses which are in equi-

librium with the external loads. It is convenient to investigate the stresses along

a meridian and parallel, which which are defined by the angles φ and θ. 1. The

membrane forces (Nθ, Nφ, Nφθ, Nθφ), which act in the plane of the surface of the

shell, are shown in Fig1.4

Nφ, Nθ= normal inplane forces per unit length.
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Figure 1.5: membrane forces

Nθφ, Nφθ= inplane shear forces per unit length.

2. The transverse shear forces per unit length Qφ and Qθ are shown in Fig1.5.

Qφ, Qθ= transverse shear forces per unit length.
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Figure 1.6: transverse shear forces

3. The bending moments Mφ and Mθ per unit length and twisting moments Mφθ

and Mθφ per unit length are shown in Fig1.6.
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Figure 1.7: Bending and Twisting Moments

1.10 Condition of Equilibrium

We now determine the conditions for equilibrium of the shell element under ex-

ternal loads. We shall derive the equations arising by virtue of the demands

of equilibrium and the compatibility of deformations by considering an individ-

ual differential shell element. These equations are relations between differential

quantities or between differential changes in the internal forces and therefore are

called differential equations. If the differential element is imagined separated

from the loaded shell, it is stressed by ten internal components which must be in

equilibrium with the external loads. These components are

Nφ, Nθ, Nθφ, Nφθ, Qφ, Qθ, Mφ, Mθ, Mφθ, Mθφ

To determine these components, there are only six known equilibrium equations-

∑
Fx = 0

∑
Mx = 0

∑
Fy = 0

∑
My = 0∑

Fz = 0
∑

Mz = 0

where
∑

Fi is the sum of the forces in the i-direction (i = x, y, z) and
∑

Mi is

the sum of the moments about the i axis.
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1.11 Membrane Theory for Shells of Revolution

Let us assume that each member of the shell element is stressed only axially. End

moments and shears are zero, and the shell is analysed as an internally statically

determinate structure. Thus as a result of this assumption we have

Qφ = Qθ = Mφ = Mθ = Mφθ = Mθφ = 0

Consequently only four unknowns remain, the membrane forces:

Nφ, Nθ, Nθφ, Nφθ.

If a shell theory includes only membrane forces in the analysis, it is called a

membrane theory. The components of the external loading are designated by X,

Y and Z, which act in the x, y, z directions respectively and are in units of force.

The forces shown are on one end only. On the opposite ends the forces will be

6

-

?

� -

�

?

6

?+

?

�

X

Y

Z
NθRφdφ

Nφrdθ

Nφθrdθ
NθφRφdφ

Figure 1.8: Forces on a differential element

differentially changed

a) Nφrdθ with change of φ becomes Nφrdθ + ∂
∂φ

(Nφrdθ)dφ

b) NθRφdφ with change of θ becomes NθRφdφ + ∂
∂θ

(NθRφdφ)dθ

c) NθφRφdφ with change of θ becomes NθφRφdφ + ∂
∂θ

(NθφRφdφ)dθ

d) Nφθrdθ with change of φ becomes Nφθrdθ + ∂
∂φ

(Nφθrdθ)dφ

The loading components are

e) X = pxrdθRφdφ,
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f) Y = pyrdθRφdφ,

g) Z = pzrdθRφdφ.

The forces acting on the differential element must be in static equilibrium. Since

there are no forces which would produce moments about the x and y axis we have∑
Mx = 0 and

∑
My = 0.

We now consider the moments about the z − axis which are given by∑
Mz = NφθrdθRφdφ−NθφRφdφrdθ = 0.

Where the values of higher order terms are neglected. This leads to the relation

Nφθ = Nθφ.

If we continue with this analysis considering
∑

Fx = 0,
∑

Fy = 0 and
∑

Fz = 0,

we arrive at the following system of equations, which consists of two differential

equations and one algebraic equation,

∂

∂φ
(NφRθsinφ) +

∂Nφθ

∂θ
Rθ −NθRφcosθ + pxRφRθsinφ = 0, (1.1)

∂Nθ

∂θ
Rφ +

∂

∂φ
(NφθRφsinφ) + NφθRφcosφ + pyRφRθsinφ = 0, (1.2)

NφRθ + NθRφ + pzRφRθ = 0. (1.3)

The equations (1.1), (1.2), and (1.3) are used to evaluate the membrane forces

Nθ, Nθ, and Nφθ for any loading condition.

1.12 Hooke’s Law

Hooke’s law relates the strains, εφz , εθz , with the corresponding stresses, σφ and

σθ

εφz =
1

E
(σφ − νσθ) εθz =

1

E
(σθ − νσφ) (1.4)
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or

σφ =
E

1− ν2
(εφz + νεθz), (1.5)

σθ =
E

1− ν2
(εθz + νεφz), (1.6)

where E is Young’s modulus of elasticity and ν is Poison’s ratio for the shell

material. The influence of the stress and strain in the z−direction is small and

will not be considered in this report.

1.13 Deformation of an element of a shell

Let ABCD(Fig1.8) represent an infinitely small element cut out from a shell by

two pairs of adjacent planes normal to the middle surface of the shell and contain-

ing its principal curvatures. Denote by Rx and Ry the radii of principal curvatures

in the xz and yz planes respectively. We shall take the coordinate axes x and

y tangent at O to the lines of principal curvatures and the z-axis normal to the

middle surface. The thickness of the shell which we will assume to be constant,

we denote by h � 1.

Let us begin with a simple case in which, during bending, the lateral faces of

�
�

?

-

� 6

-
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M
y

z

xO

Rx Ry

dy
dxA

h

B
C

D

Figure 1.9: Deformation of an element of a shell
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the element ABCD rotate only with respect to their lines of intersection with

the middle surface. Let R′
x and R′

x be the values of the radii of curvature after

deformation. Then the unit elongations of a thin lamina at a distance z from the

middle surface are,

εx = − z
1− z

Rx

( 1
R′

x
− 1

Rx
) εy = − z

1− z
Ry

( 1
R′

y
− 1

Ry
).

If the corresponding unit elongations of the middle surface in the x− and y−directions

are denoted by ε1 and ε1 respectively. Also by the assumption stated earlier, h

is small in comparison with the radii of curvature such that z
Rx

and z
Rx

can be

neglected in comparison with the unit. We shall neglect also the effect of the

elongations ε1 and ε2 on the curvatures. Thus

εx = ε1 − z(
1

R′
x

− 1

Rx

) = ε1 − κ1z (1.7)

εy = ε2 − z(
1

R′
y

− 1

Ry

) = ε2 − κ2z (1.8)

where κ1 and κ2 are the changes of curvature.

Assuming that there are no normal stresses and using the expressions above we

obtain the the expressions for the components of stress given below

σx =
E

1− ν2
[ε1 + νε2 − z(κ1 + νκ2)]

σy =
E

1− ν2
[ε2 + νε1 − z(κ2 + νκ1)].

The resultant forces which act on the middle surface of the shell and the bending

moments per unit length are given by

Nx =

∫ h
2

−h
2

σxdz =
Eh

1− ν2
(ε1 + νε2)

Ny =

∫ h
2

−h
2

σydz =
Eh

1− ν2
(ε2 + νε1)

and also

Mx =

∫ h
2

−h
2

zσxdz = −D(κ1 + νκ2)
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My =

∫ h
2

−h
2

zσydz = −D(κ2 + νκ1)

where D = Eh3

1−ν2 is the flexural rigidity.

Considering the element of the shell, as in fig1.8, and neglecting the strain energy

due to shearing forces Qx and Qy, we find that the strain energy of the element

is equal to the work done on the element by the bending moment Mxdy and

Mydx and the twisting moments Mxydy and Myxdx. Since we neglect the effect

of vertical shearing forces on the curvature of the deflection surface, the strain

energy due to bending moments will be represented by the expression

V =
1

2
D

∫ ∫ [(∂2w

∂x2

)2
+

(∂2w

∂y2

)2
+ 2ν

∂2w

∂x2

∂2w

∂y2

]
dxdy

derived in the theory of plates for the case pure bending. The strain energy of

a deformed shell consists of two parts: (1) the strain energy due to bending and

(2) the energy due to stretching of the middle surface. The maximum potential

energy for the shell element is thus given by

Jmax =
D

2

∫ ∫
[(

∂2w

∂x2
+

∂2w

∂y2
)2 − 2(1− ν)

∂2w

∂x2

∂2w

∂y2
− (

∂2w

∂x∂y
)2dxdy (1.9)

The energy due to the stretching of the middle surface is given by

Jε =
D

2

∫ ∫
[(ε1 + ε2)

2 − 2(1− ν)(ε1ε2 − ε12)]dA. (1.10)

Since the elongations, ε1 and ε2 on the curvatures has been neglected, the energy

Jε shall be assumed to be zero.
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Chapter 2

Rayleigh Method

The inextensional vibrations of thin shells were first studied by Lord Rayleigh in

the second half of the twentieth century, and since that time his procedure has

been used to estimate natural frequencies for various shell shapes. In consider-

ing the deformation of a thin shell the most important question which presents

itself is whether the middle surface does, or does not, undergo extension. The

common mathematical models for thin shells admit a strain energy expression

that consists of two parts: extensional (stretching or membrane) and flexural (or

bending). In general, the inextensional energy is produced by the extensional and

shear strains in the middle surface, and it is proportional to the thickness. But

by Love-Kirchoff’s assumption 3 mentioned earlier, these strains are assumed to

be small and therefore negligible. Flexural energy is produced by the changes in

curvature and torsion of the middle surface, and it is also proportional to thick-

ness.

Lord Rayleigh proposed the hypothesis that the low frequency modes must be

flexural and that for a sufficiently thin shell, the contribution of extensional en-

ergy to the total strain energy must be negligible. Following his hypothesis, Lord

Rayleigh assumed that during vibration the displacement field is such that the

two extensional and the shearing strain of the middle surface are zero. He then
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went on and obtained the three displacement components which he called inex-

tensional displacements. These displacements shall be denoted by w, u, and v.

w is in the direction parallel to the tangent of the meridian, u is in the direction

parallel to tangent of the parallel circles and v is in the direction normal to the

meridian. The displacements u and v shall be assumed to be small as compared

to w.

Lord Rayleigh used the inextensional displacements to calculate approximate nat-

ural frequencies from the identification of the strain and kinetic energies (Rayleigh

Principle). Since the kinetic energy is proportional to thickness and to the square

of the frequency, and flexural energy is proportional to the cube of thickness, Lord

Rayleigh concluded that the natural frequency is proportional to thickness.

Now, let us assume that the shell is vibrating freely. By the law of conserva-

tion of energy, at equilibrium the total kinetic energy (which we shall denote as

T = ω2Jν) is equal to the total potential energy (denoted by U = Jκ). Thus we

have that

T = ω2Jν = Jκ = U (A)

where the expressions for the kinetic and potential energies are given by

Jν =

∫ ∫
ω2[w2 + v2 + u2]dA, (2.1)

and after substituting into (1.9) the changes of curvatures κ1, κ2 and κ12 we

obtain

Jκ =
Eh3

3(1− ν2)

∫ ∫
[(κ1 + κ2)

2 − 2(1− ν)(κ1κ2 − κ12)]dA, (2.2)

where E is the young modulus, h is the thickness of the shell, ν is poison’s ratio

and the changes of curvatures are given by

κ1 = −w′′ + (k1u)′

κ2 = B′B−1(k1u− w′) + mB−1(mB−1w + k2v),

κ12 = mB−1w′ + mB′B−2w −mB−1k1u + Bk2(B
−1v)′.

Since E, h and ν do not play an important role in the asymptotic solution, to be
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discussed in the next chapter, we have put the multiplier Eh3

3(1−ν2)
= 1. This also

simplifies our expressions. Again we note that u and v are small compared to w

i.e w � u and w � v. The above equations are therefore reduces to

Jν =

∫ ∫
ω2w2dA,

κ1 = −w′′,

κ2 = −B′B−1w′ + m2B−2w,

κ12 = mB−1w′ + mB′B−2w.

The displacement w(s, m) shall be represented in the form of the combination of

the Airy function, U(η) and its derivative dU(η)
dη

as follows,

w(s, m) = w(1)(s, m)U(η) + w(2)(s, m)
dU

dη
, (2.3)

where U(η) is a solution of of the Airy equation,

d2U

dη2
+ ηU = 0, η = m

2
3 ζ(s). (2.4)

ζ(s) is a rapidly changing function whichwe shall derive shortly. w(k) are asymp-

totic series of the form,

w(k) = mγk(s)

∞∑
l=0

m−2lw(k,l)(s), k = 1, 2. (2.5)

We are mainly interested in the leading term of our asymptotic series thus we

put l = 0 so that

w(1) = mγ1(s)w(1,0), and w(2) = mγ2(s)w(2,0), (2.6)

where

w(1,0) = −(k2B)−1v(1,0), w(2,0) = −(k2B)−1v(2,0) (2.7)

v(1,0) = (ζ ′B−1k−1
2 )−

1
2 , v(2,0) = (|ζ|ζ ′B−1k−1

2 )−
1
2 . (2.8)
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Now substituting (2.8) into (2.7) we obtain

w(1,0) = −(k2B)−1(ζ ′B−1k−1
2 )−

1
2 (2.9)

and

w(2,0) = −(k2B)−1(|ζ|ζ ′B−1k−1
2 )−

1
2 . (2.10)

Again substituting equations (2.9) and (2.10) into (2.3) we have the full expan-

sion of w(s, m), i.e

w(s, m) = −(k2B)−
1
2

(
mγ1(s)ζ ′U(η) + mγ2(s)|ζ|ζ ′dU

dη

)
. (2.11)

We pause for a moment and express ζ and U(η) wholly in terms of s. In general,

the generating line of our shell of revolution has the form z = a− bsinc(s− s∗).

For this report we shall take a = 2, b = c = 1 and s∗ = 0, where s∗ is a turning

point. By a turning point, we mean the point at which the curvature changes its

sign from positive to negative. Thus the generating line of our shell of revolution

is therefore given by [6],

z = 2− sins. (2.12)

Firstly, we are going to evaluate the expression for ζ which is given by

ζ(s) =
(3

2

∫ s

s∗
zds

) 2
3

=
(3

2

∫ s

0

(2− sins)
) 2

3
ds

=
(3

2
(2s + coss− 1)

) 2
3
.

Since coss ≈ 1 for all s � 1, ζ(s) is therefore given by

ζ(s) ∼=
(
3s

) 2
3
. (2.13)

The equation
d2U

dη2
+ ηU = 0
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possess two linearly independent solutions U1 and U2, and their asymptotic be-

havior is given by the following formulas

U1 =
1

2
π

−1
2 (η)−

1
4 e−δ,

and

U2 =
1

2
π

−1
2 (η)−

1
4 eδ.

For the Airy function in (2.11), we shall define it to be U(η) := U1(η), and drop

U2 so that we can speak of a bounded solution which will not misbehave when

one parameter becomes very large.

We now write η and δ as functions of s alone i.e

η = m
2
3 ζ(s) = (3ms)

2
3 (2.14)

and

δ = m

∫ s

s∗
|z|ds

= m

∫ s

0

|2− sins|ds

= 2ms.

We are now in a position to write the Airy function U(η) and its derivative dU
dη

as functions of s alone. The double integral in expressions (2.1) and (2.2) will be

converted to a single integral, where this single integral is evaluated with respect

to s. Thus we have

U(η) =
1

2
π−

1
2 (3ms)−

1
6 e−2ms (2.15)

and

dU

dη
=

1

8
π−

1
2 (3ms)−

5
6 e−2ms. (2.16)

Substituting these equations into the expression for w(s, m) we obtain

w(s, m) = −(k2Bπ)−
1
2 [mγ1− 1

6 +
1

4
mγ2− 5

6 ](3s)
−1
2 e−2ms. (2.17)
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For simplicity of the expression we put K ′ = −(k2Bπ)−
1
2 [mγ1− 1

6 + 1
4
mγ2− 5

6 ] so

that

w(s, m) = K ′(3s)
−1
2 e−2ms, (2.18)

w′ = −mK ′[2(3s)−
1
2 + O(m−1)]e−2ms (2.19)

and

w′′ = m2K ′[4(3s)−
1
2 + O(m−1)]e−2ms, (2.20)

where all the derivatives are with respect to s.

We then express the curvatures κ1, κ2 and κ12 in terms of s and try to compute

the two integrals in (2.1) and (2.2). Now if we substitute

κ2
1 = 16m2K ′2(3s)−1e−4ms, (2.21)

κ2
2 = [B′B−1K ′2(1 + m2B−2)]2(3s)−1e−4ms, (2.22)

κ2
12 = [mB′B−2K ′ − 2m2B−1K ′]2(3s)−1e−4ms, (2.23)

κ1κ2 = 4mB′B−1K ′2(1 + m2B−2)(3s)−1e−4ms. (2.24)

From expression (A), we have that the natural frequencies of vibration are ex-

pressed as a quotient of the kinetic energy and potential energy as follows:

ω2 =
Jκ

Jν

(2.25)

where Jκ and Jν are given by (2.1) and (2.2) respectively.

Let us first note, from expression (2.18) and (2.21) to (2.24), that there is a

common integrand, s−1e−4ms, that will appear in both the numerator and de-

nominator of (2.25). What seems to be the logical thing to do is to divide the

numerator and denominator by this value and conclude that these natural fre-

quencies depend on some constant function of m, the number of waves in the

circumferential direction, and the Poison’s ratio ν. But, this is only possible if
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the value of the integral is known to be finite. If it is infinite or zero then the

expression for the natural frequencies is indeterminate. We shall develop the

method of Laplace for evaluating integrals of real variable and use these methods

or theorems to evaluate our integral.
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Chapter 3

Asymptotic Methods

3.1 Watson’s Lemma

Consider an integral of the form

I(α) =

∫ ∞

0

q(t)e−αtdt. (3.1)

A direct way of computing (3.1) is to substitute the Maclaurin’s expansion for

q(t)

q(t) = q(0) + tq(0) + t2q′′(0) + · · · ,

and integrating term by term. This formal process suggest a natural extension:

can a similar asymptotic result be constructed by termwise integration in cases

when the expansion of q(t) near t = 0 is in terms of non-integer powers of t?

Watson (1918) supplied an answer which state that it is immaterial whether the

expansion of q(t) ascends merely in regularly spaced powers, or whether the series

converges or is merely asymptotic. The general result is illustrated sufficiently

well by the following theorem [5] which is probably the most frequently used re-

sult for deriving asymptotic expansions.
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Theorem 1 Let q(t) be a function of the real variable t such that

q(t) =
∞∑

n=0

ant
n+β = tβ(a0 + a1t + a2t

2 + · · · ) β > −1

where q(t) is regular on [0, b] and near t = 0, a0 > 0. If

I(α) =

∫ b

0

q(t)e−αtdt (3.2)

then

I(α) ≈
∞∑

n=0

Γ(n + β + 1)

αn+β+1
an. (3.3)

Proof:

We want to show that ∀N ∈ N,

I(α) ≈
N∑

n=0

Γ(n + β + 1)

αn+β+1
an + O(

1

αβ+N+2
).

We first note that ∫ b

0

=

∫ ε

0

+

∫ b

ε

.

Thus if

I(α) =

∫ b

0

F (t, α)dt, F (t, α) = q(t)e−αt,

we have that

I(α) =

∫ ε

0

F (t, α)dt +

∫ b

ε

F (t, α)dt.

q(t) is regular on the interval [ε, b] and hence bounded. Thus we have

|F (t, α)|≤M < ∞, on [ε, b]

|
∫ b

ε

F (t, α)dt| ≤
∫ b

ε

|Me−αtdt|

= M

∫ b

ε

e−αtdt

= m
( 1

α
e−αε − 1

α
e−αb

)
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which are exponentially small terms.

Put q(t) = tβ
( ∑N

n=0 ant
n + O(tN+1), this implies that

I(α) ∼
∞∑

n=0

an

∫ ε

0

tβ+ne−αtdt + exponentially small terms

We put αt = u, hence dt = du
α

. Thus

an

∫ ε

0

tβ+ne−αtdt = an

∫ ε

0

uβ+n

αβ+n+1
e−udu

∼ an

αβ+n+1

∫ ∞

0

uβ+ne−udu

=
an

αβ+n+1
Γ(β + n + 1).

Hence

I(α) ≈
∞∑

n=0

anΓ(β + n + 1)

αβ+n+1
. (3.4)

In the notion of the integrand of expression (3.1), q(s) = s−1, for which if we

compare its series expansion which only consists of a0, we notice that β = −1

which contradicts Watson’s lemma which requires that β > −1. We now develop

a generalisation of the integral (3.1), which was originated by Laplace.

3.2 Laplace’s Method

Consider the integral

I(α) =

∫ b

a

e−αp(t)q(t)dt, (3.5)

in which a, b, p(t) and q(t) are independent of the positive parameter α. Either

a or b or both may be infinite. Laplace (1820) originated the following powerful

method for approximating I(α). The peak value of the factor e−αp(t) occurs at

a point t = t0, say, at which p(t) is a minimum. When α is large, this peak

is very sharp, and the graph of the integrand suggests that the overwhelming
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contribution to the integral comes from the neighborhood of t0. Accordingly,

we replace p(t) and q(t) by the leading terms in series expansions in ascending

powers of (t − t0), and then extend the integration limits to ∞ or −∞. The

resulting integral is explicitly evaluable and yields the required approximation.

Suppose, that t0 = a, p(a) > 0 and q(a) 6= 0. Then Laplace’s procedure is

expressed by

I(α) =

∫ b

a

e−α(p(a)+(t−a)p′(a))q(a)dt

= q(a)e−αp(a)

∫ b

a

e−α(t−a)p′(a)dt

≈ q(a)e−αp(a)

αp′(a)
(1− e−α(b−a)p′(a)).

If we define

I(m) =

∫ s

0

s−1e−4msds

with m ≡ α, a = 0, p(s) = 4s and q(s) = s−1, we find that q(0) does not exist.

We proceed with Laplace’s methods and try to develop a general procedure for

evaluating I(m).

Without any loss of generality, let us assume that a is finite and the minimum of

p(t) occurs at t = a. With precisely formulated conditions on p(t) and q(t) it was

prooved in Olver that the Laplace approximation is asymptotic to the integral as

α →∞.

We suppose that the limits a and b are independent of the large parameter α, a

being finite and b(> a) finite or infinite. The functions p(t) and q(t) are indepen-

dent of α, p(t) being real and q(t) either real or complex[5, 10]. In addition to

these assumptions

(i) p(t) > p(a) when t ∈ (a, b)

(ii) p′(t) and q(t) are continuous in a neighborhood of a, except possibly at a.

(iii) as t→a from above p(t)− p(a) ∼ P (t− a)µ, q(t) ∼ Q(t− a)λ and we require

that the first of these relations be differentiable. Here P, µ and λ are constants

42



and Q is either real or complex constant.

(iv) I(α) =
∫ b

a
e−αp(t)q(t)dt converges absolutely throughout its range for all suf-

ficiently large α.

Theorem 2 With all the conditions listed above

I(α) ∼ Q

µ
Γ

(
λ

µ

)
e−αp(a)

(Pα)
λ
µ

(3.6)

Proof:

From conditions (ii) and (iii), a number k can be found which is close to a to

ensure that in (a, k], p′(t) is continuous and positive and q(t) is continuous. Since

p(t) is increasing in (a, k), we define

v := p(t)− p(a)

and take it as the new integration variable in this interval. Now that v and t are

continuous functions of each other

eαp(a)

∫ k

a

e−αp(t)q(t)dt =

∫ ρ

0

e−αvf(v)dv, (3.7)

where

ρ = p(k)− p(a), f(v) = q(t)
dt

dv
=

q(t)

p′(t)

We can clearly see that ρ is finite and positive, and f(v) is continuous when

v ∈ (0, ρ]. Since v∼P (t− a)µ as t → a, we have that

t− a∼(
v

P
)

1
µ (v → 0+)

and hence after differentiation we have

f(v)∼Qv
λ
µ
−1

µP
λ
µ

(v → 0+).

As a result of this relation we rearrange the integral (3.7) in the form∫ ρ

0

e−αvf(v)dv =
Q

µP
λ
µ

{
∫ ∞

0

e−αvv
λ
µ
−1dv − ε1(α)}+ ε2(α), (3.8)
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where

ε1(α) =

∫ ∞

ρ

e−αvv
λ
µ
−1dv, ε2(α) =

∫ ρ

0

e−αv
(
f(v)− Qv

λ
µ
−1

µP
λ
µ

)
dv

the first term on the right hand side of equation (3.8) is evaluable by the use of

Euler’s integral and immediately yields the required approximation (3.6).

Secondly, given an arbitrary positive number ε, we make ρ small enough(by choos-

ing k sufficiently close to a) to ensure that

∣∣f(v)− Qv
λ
µ
−1

µP
λ
µ

∣∣ < ε
Qv

λ
µ
−1

µP
λ
µ

. (3.9)

Then by the use of Euler’s integral we have

|ε2(α)| < ε
Q

µ
Γ
(λ

µ

) 1

(Pα)
λ
µ

. (3.10)

Thirdly, in the notation of the incomplete Gamma function we have

ε1(α) =
1

α
λ
µ

Γ
(λ

µ
, ρα

)
= O(

e−ρα

α
) (3.11)

for large α.

The proof of Theorem 2 is completed by making α large enough to guarantee

that the right hand side of (3.11) is bounded and small.

Theorem 2 confirms the predicton of this section that in a wide range of circum-

stances the asymptotic form of the integral (3.5) for large α depends solely on

the behaviour of the integrand near the minimum of p(t).

Now substituting (2.21) to (2.24) into (2.2) we have the expression

Jκ =

∫ s

0

[
16

3
m2K ′2 − (B−1B′K ′(1−m2B−2))2 + 8νmB′B−1K ′2

(1 + m2B−2) + 2(1− ν)(mB′B−2K ′ − 2m2B′K ′)2]s−1e−4msds. (3.12)

Putting

T =
16

3
m2K ′2−(B−1B′K ′(1−m2B−2))2+8νmB′B−1K ′2(1+m2B−2)+2(1−ν)(mB′B−2K ′−2m2B′K ′)2],

we have

Jκ = T

∫ s

0

s−1e−4msds. (3.13)
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Again if we substiute (2.18) into (2.3) we have

Jν =

∫ s

0

ω2s−1e−4msds. (3.14)

Let us denote by I(m), the integral

I(m) =

∫ s

0

s−1e−4msds, (3.15)

and use the results of theorem 2 to evaluate this integral. We first take the

integral to ∞ by making use of the fact that∫ s

0

=

∫ ∞

0

−
∫ ∞

s

, (3.16)

where the last term on the right hand side of (2.13) are exponentially small terms.

Thus (2.12) becomes

I(m) ∼
∫ ∞

0

s−1e−4msds. (3.17)

In the notion of theorem 2, q(s) = s−1 and p(s) = 4s. We note that the minimum

of p(s) in the integration range occurs at s = 0, thus we put a = 0. From these

choices of p(s) and q(s) and theorem 2 we have that

P = 4, µ = 1, λ = 0 Q = 1 and p(0) = 0.

Hence

I(m) ∼ Q

µ
Γ

(
λ

µ

)
e−αp(a)

(Pα)
λ
µ

= Γ(0). (3.18)

The Gamma function originated as a solution of an interpolation problem for the

factorial function, where we have

Γ(n + 1) = n!. (3.19)

From the notion of 3.19, n = −1, we have that the right hand side of (3.19)

will be indeterminant. Thus Laplace’s procedure collapses. Again from Euler’s

integral of second order,

Γ(z) =

∫ ∞

0

tz−1e−tdt.

This requires that Rez > 0 and in our case Rez = 0 which also collapse.
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Conclusion

The two theorems discussed in this work have all collapsed or have failled to

provide a solution to our problem. I will conculde that further investgation on the

evaluation of this integral will be appropriate. I will live it in the indeterminate

state and wish to develop my problem as my PHD starting point.
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