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Abstract

The subject matter of this report is the vibrating behavior of thin shells of rev-
olution when the generating line has a point of inflection at s*. At this point
s*, the curvature changes its sign. We develop from the deformation of a shell of
revolution and obtain the natural frequency of vibration using Lord Rayleigh ’s
method.

We make use of the law of conservation of energy which states that, at equilib-
rium, the total kinetic energy is equal to the total potential energy. We then
equate the kinetic energy, J,,,(which is proportional to the square of the natural
frequency, w,) to the total potential energy, J,. To solve the integrals we make
use the Laplace’s method and a programme from mathematica and then compare

the two results.
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Chapter 1

Construction of a shell theory

1.1 Preliminaries

The applications of shell structures has been found in many fields of engineer-
ing, notably civil, mechanical and aeronautical. Considerable effort has been
expended on the development of rigorous theories to describe the behavior of
shells in the elastic range as realistically as possible. Such rigorous formulations
have led to sets of differential equations for which analytical solutions are either
yet to be found or those that are available are not very interesting from an engi-
neering point of view.

The problems faced by engineers, physicists and applied mathematicians involve
difficulties such as nonlinear governing equations and boundary conditions, vari-
able coefficients and complex boundary shapes that preclude exact solutions.
The development of numerical formulations such as finite element methods has
seen the gradual cessation of attempts to find analytical solutions to rigorous
formulation of shell behavior. The finite element method is a general numerical
procedure that can be used to tackle any shell problem to any desired degree

of accuracy. Initially, one only needs to understand the response of the basic
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individual elements making up a shell structure (rather than the response of the
whole structure), and then to assemble such elements by enforcing compatibility
of displacements between the elements and their common nodes, and equilibrium
of forces and moments at all nodes as well as constraint conditions at the bound-
ary nodes of the structures. In this way, the overall response of the complete
structure is predicted.

While such a solution approach is effective from the practical viewpoint of ob-
taining actual values of stresses and displacements in a structure, it is not very
efficient for the effect of varying a single parameter. We need to obtain some
insight into the character of the solutions and their dependence on certain pa-
rameters. Often one or more of the parameters become either very large or very
small. These situations are difficult to treat by straight forward numerical pro-
cedure. We shall employ the methods of perturbation or asymptotic expansions
in terms of a small or large parameter or coordinate. These are analytic methods

that can provide an accurate approximation.

1.2 Early shell structures

Man-made shell structures have been in existence for many centuries. One of
the earliest applications of the shell as a structural form is represented by the
several domes that have been constructed for the purpose of providing for temples,
cathedrals, monuments and other buildings. Notable historical examples include
the Pantheon ofancient Rome, built around 2000 years ago; the Taj Mahal of

India built in the seventeenth century just to mention a few.
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1.3 Modern shell applications

The generally high strength-to-weight ratio of the shell form, combines with its
inherent stiffness, has formed the basis of mordern applications of shell structures.
As may be seen in more detail in the historical account of Sechler, developments
over the past 200 years in various sectors of human activity have opened up nu-
merous fields of application for shells. Among these are thin concrete roofs, such
as the hyperbolic paraboloidal roof of buildings like halls.

Apart from roofing, shells find applcations in many other fields. In industry, boil-
ers, pressure vessels and associated piping are further examples of shell structures
in metal construction. Hollow members of largee industrial steel strutures such
as offshore oil platforms, are another example of shell applications, as are bodies
of transportation structures such as motor vehicles, ships, aircraft and spacecraft.
The great diversity of shell applications is seen in the curved panels of world fa-
mous Thames Barrier in London, and the giant egg-shaped sewage digestors that
are becoming a familiar sight on the landscape of countries such as Germany.

A shell may be defined as a relatively thin structural element, in which the ma-
terial of the element is bound between two curved surfaces a relatively small
distance apart. The behavior of a shell is usually modelled on the basis of its
middle surface (alternatively referred to as midsurface), which is the locus of

interior points equidistant from the two bounding surfaces of the shell.

1.4 Introduction

The second half of the twentieth century has been, in many ways, a fruitful
period in the development of applied mechanics. Among the many problems
that would come into the purview of mechanics would be that of the dynamic

response of elastic structural systems, and elements of those systems, to dynamic
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loading. An important element in a structural system is an element which has
one dimension, called thickness, much smaller than other dimensions. Shells
(also Beams and Plates) form a class of such elements. The property of thickness
being considerably smaller than any other length justifies the construction of
two dimensional mathematical models which are simpler but more limited than
the corresponding three-dimensional models. Consequently, the mathematical
models of shells can recognise only those features in the input that are averaged
over distances comparable to thickness.

A thin shell is a body that is bounded primarily by two closely spaced curves.
Shell theory may be viewed as a two-dimensional subset of elasticity which is
valid for certain structures. The solution to three-dimensional elasticity problem
is tough. In elasticity theory there are three basic sets of equations- equilibrium,
kinematic (strain-displacements) and constitutive (Hookes law). We shall begin

our development of shell theory by stating the basic assumptions.

1.5 Assumptions

There are four principal assumptions that are used to establish thin shell theory.
these assumptions first adopted by Kirchhoff for the plates and later extended to
shells by Love are sometimes referred to as the Love-Kirchhoff assumptions. We
state them as follows-

1. One dimension is considerably smaller than the other two; so we can speak of
a thin shell.

-As a measure of thinness, we say that the ratio of a shell thickness, h, to one of
the radii of curvatures, R; is small i.e }% < 1.

2. The shell deflections are assumed to be small.

-This implies that the products of deformation quantities occurring in the rele-
vant governing equations theory may be neglected, ensuring that the system is

described by a set of geometrically linear equations. Also this assumption allows
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us to refer all equilibrium and kinematic equations to the original undeformed
reference state of the shell.

3. We take the stress in the direction normal to the thin dimension to be negli-
gible.

-This assumption is justified because the shell has already been assumed to be
thin. However, the assumption is not valid in the vicinity of concentrated trans-
verse loads, even if the shell is thin.

4. We assume that a line originally normal to the shell reference surface remains
unstrained.

-This implies that the direct strain in the direction normal to the middle surface

and due to transverse shear forces are all zero.

1.6 Distribution of extensional and flexural ef-

fects in shells

For shells, the relative proportions of extensional and flexural effects at a given
point depend on several factors such as the type of shell surface (synclastic,
anticlastic, or developable), support conditions, loading configuration, and the

proximity of edges and certain discontinuities.

Synclastic surfaces are those with positive Gaussian curvature. Gaussian cur-
vature is defined as the product of the two principal curvatures (the maximum
and minimum) at a given point of a curved sufarce, such curvatures occuring in
two planes called the principal planes, which are perpendicular to each other.
As is clear from Fig.1.1(a), for a synclastic surface, the centres of maximum and
minimum curvature at a given point lie on the same side of the surface, so that

the surface, when suitably oriented in space, can hold liquid around the point.
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(a) o .
Ellipticparaboloid

Paraboloido frevolution

(®) O@

Hyperbolico frevoltigperbolicparaboloid

Clircularcone

Figure 1.1: Types of shell structures: (a) synclastic (b) anticlastic (c¢) developable

Anticlastic surfaces posses negative Gaussian curvature, the centres of maximum
and minimum curvatures at any given point on the surface lying on the opposite
sides of the surface, so that the surface is 'saddle’-shaped and therefore incapable
of holding liquid around an arbitrary point no matter how the surface is oriented
in space (Fig 1.1(b)). Developable surfaces, as the name applies, are those that
can be flattened into a plane surface, either directly od after making a single line
cut in the surface (Fig.1.1(c)); they are charaterised by zero Gaussian curvature
and, as such, cannot hold liquid around an arbitrary point on the surface (the
liquid would simply run off along the direction of zero curvature!)|[2].

For synclastic shells, in particular, if both the shell geometry (i.e. shell thickness,
midsurface slope in any arbitrary direction, and principal radii of curvature) and
surface loads are varying smoothly (i.e. exhibiting no discontinuities in the varia-
tion of the shellgeometrical parametres and loading components over the surface
of the shell, nor in their first derivative with respect to arc length along a given
direction), then extensional effcts generally predomonate in the interior regions
of the shell, while in the edge zones bordering the supports, extensional and flex-
ural effects usually become equally significant for most practical constructions of

supports. Such localization of bending effects to the boundary zonea of the shell
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is also noted, but to a reduced extent, in developable shells; in anticlastic shells,
bending emanating from the edges of the shell may propagate along certain di-
rections deeply into the interior of the shell, a behaviour not unlike the bending

in beams and plates.

1.7 The Geometry of shells

Our discussion is restricted to surfaces of revolution. A surface of revolution is
obtained by rotation of a plane curve about an axis lying in the plane of the
curve. This curve is called the meridian and its plane is the meridian plane. The
intersection of the surface with the plane perpendicular to the axis of rotation

are parallel circles and are called parallels. If we rotate the above curve about

AN
¢ AN

AN g
%memdmn
r

Ry

¢ .

e

Figure 1.2: shell geometry

the axis of rotation &, we obtain the shell of revolution that is shown below in
Figl.2. The directions x, y and z are perpendicular to each other. For such a

shell the lines of principal curvatures are its meridians and parallels.

Figl.2 shows the following nomeclature
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Figure 1.3: Shell of Revolution

¢ is the angle between the axis of the shell and the shell normal at the point
under consideration on the middle surface of the shell.

0 is the angle between r and the defined line &

Ry is the radius of curvature of the meridian.

Ry is the length of the normal between any point on the middle surface and the
axis of rotation.

r is the radius of curvature of the parallel
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1.8 External Loadings

The external loads consists of body forces that act on the element and surface
forces that act on the upper and lower surfaces of the shell element. All loadings
under consideration at any point on the shell can be resolved into three compo-
nents in the x, y and z directions. The x-direction is parallel to the tangent to
the meridian. The y-direction is parallel to the tangent to the parallel circles.
The z-direction is normal to the surface of the shell. The dead weight p (weight
per unit area) for a shell of revolution can be resolved into load per unit area
in the z, y and z directions, respectively, in the following manner as shown by
fig.1.3
Pz = psing py =0 p- = Cos ¢

The external forces are resisted by internal forces, or stresses which are in equi-
librium with the external forces. The internal forces consists of membrane forces,

transverse shears, bending moments and twisting moments.

Figure 1.4: Loading components from deadweight
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1.9 Internal Stresses

The external forces are resisted by internal forces, or stresses which are in equi-
librium with the external loads. It is convenient to investigate the stresses along
a meridian and parallel, which which are defined by the angles ¢ and 6. 1. The
membrane forces (Ng, Ny, Nyg, Nge), which act in the plane of the surface of the
shell, are shown in Figl.4

Ny, Np= normal inplane forces per unit length.

Figure 1.5: membrane forces

Nyg, Nyp= inplane shear forces per unit length.
2. The transverse shear forces per unit length ), and )y are shown in Figl.5.

Q¢, Qo= transverse shear forces per unit length.

parallel

Figure 1.6: transverse shear forces

3. The bending moments M, and My per unit length and twisting moments Mg
and Mpygs per unit length are shown in Figl.6.
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Figure 1.7: Bending and Twisting Moments

1.10 Condition of Equilibrium

We now determine the conditions for equilibrium of the shell element under ex-
ternal loads. We shall derive the equations arising by virtue of the demands
of equilibrium and the compatibility of deformations by considering an individ-
ual differential shell element. These equations are relations between differential
quantities or between differential changes in the internal forces and therefore are
called differential equations. If the differential element is imagined separated
from the loaded shell, it is stressed by ten internal components which must be in

equilibrium with the external loads. These components are
Ng, No, Nog: Noo, Qo, Qo, My, My, Myg, Mo,
To determine these components, there are only six known equilibrium equations-
Y F=0 > M,=0
Y F,=0 > M, =0
Y F.=0 > M.=0

where ) F; is the sum of the forces in the i-direction (i = z,y, z) and Y M, is

the sum of the moments about the 7 axis.
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1.11 Membrane Theory for Shells of Revolution

Let us assume that each member of the shell element is stressed only axially. End
moments and shears are zero, and the shell is analysed as an internally statically

determinate structure. Thus as a result of this assumption we have
Qs =Qp=My=Myg=Myg=Mps =0
Consequently only four unknowns remain, the membrane forces:
Ny, Ng, Nog, Ngg.

If a shell theory includes only membrane forces in the analysis, it is called a
membrane theory. The components of the external loading are designated by X,
Y and Z, which act in the z,y, z directions respectively and are in units of force.

The forces shown are on one end only. On the opposite ends the forces will be

N¢T‘d9
[ Nyordb
3 NogRodo

Figure 1.8: Forces on a differential element

differentially changed

a) Nyrdf with change of ¢ becomes Nyrdf + %(N¢rd9)d¢

b) NgRsd¢ with change of § becomes NyRsd¢p + %(N9R¢d¢)d€

¢) NyyRyd¢ with change of § becomes Ny, Ryd¢ + %(N%R(bdqﬁ)de
d) Nyerdf with change of ¢ becomes Nyyrdf + %(N¢grd9)d¢

The loading components are

e) X = p,rdiR4do,
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f) Y = p,rddRsdg,

g) Z = p,rdiR,do.

The forces acting on the differential element must be in static equilibrium. Since
there are no forces which would produce moments about the x and y axis we have
> M,=0and ) M, =0.

We now consider the moments about the z — axis which are given by
> M. = NyyrdfRydé — NogRyderdo = 0.
Where the values of higher order terms are neglected. This leads to the relation
Ngg = Nysg.

If we continue with this analysis considering » F, =0, > F, = 0 and > F, =0,
we arrive at the following system of equations, which consists of two differential

equations and one algebraic equation,

0 IN,
a—¢(N¢Rgsm¢) +— ;’9 Ry — NyRycos0 + p, Ry Rysing = 0, (1.1)
ONy 0 , .
WP% + a—¢(N¢9R¢sm¢) + NyogRycosd + py Ry Rosing = 0, (1.2)
N¢R9 + N9R¢ —i—sz¢R9 = 0. (13)

The equations (1.1), (1.2), and (1.3) are used to evaluate the membrane forces

Ny, Ny, and Ny for any loading condition.

1.12 Hooke’s Law

Hooke’s law relates the strains, €,_,€g,, with the corresponding stresses, o4 and
09

1 1
€. = (09 —v09) €. = (05 — voy) (1.4)
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or

FE
1—12

oy = (€g. + vea, ), (1.5)

E
1—0v2

0-9 = (EQZ + V€¢z)7 (16>

where E is Young’s modulus of elasticity and v is Poison’s ratio for the shell
material. The influence of the stress and strain in the z—direction is small and

will not be considered in this report.

1.13 Deformation of an element of a shell

Let ABCD(Figl.8) represent an infinitely small element cut out from a shell by
two pairs of adjacent planes normal to the middle surface of the shell and contain-
ing its principal curvatures. Denote by R, and R, the radii of principal curvatures
in the zz and yz planes respectively. We shall take the coordinate axes x and
y tangent at O to the lines of principal curvatures and the z-axis normal to the
middle surface. The thickness of the shell which we will assume to be constant,
we denote by h < 1.

Let us begin with a simple case in which, during bending, the lateral faces of

Figure 1.9: Deformation of an element of a shell
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the element ABCD rotate only with respect to their lines of intersection with
the middle surface. Let R! and R/ be the values of the radii of curvature after

deformation. Then the unit elongations of a thin lamina at a distance z from the

middle surface are,
_ 1 1 _ 1 1
“-rrmow) 9T rEm o)
If the corresponding unit elongations of the middle surface in the z— and y—directions
are denoted by €; and € respectively. Also by the assumption stated earlier, h
is small in comparison with the radii of curvature such that - and - can be

neglected in comparison with the unit. We shall neglect also the effect of the

elongations €; and e, on the curvatures. Thus

1 1

€r = €1 — Z(R_; - R_a;> =€ — K% (1.7)
1 1

€, =€ —2(—= — =) = €3 — Koz (1.8)

‘ R, R,

where k1 and ko are the changes of curvature.
Assuming that there are no normal stresses and using the expressions above we

obtain the the expressions for the components of stress given below

FE
1—12

Oy = €1 + veo — 2(Ky + VKs)]

oy = [e2 + vey — z(ko + VK.

1—v?
The resultant forces which act on the middle surface of the shell and the bending

moments per unit length are given by

and also
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M, = / zoydz = —D(ke + VK1)

w\:

where D =

Con31der1ng the element of the shell, as in figl.8, and neglecting the strain energy
due to shearing forces ), and @, we find that the strain energy of the element
is equal to the work done on the element by the bending moment M,dy and
M,dz and the twisting moments M,,dy and M,,dx. Since we neglect the effect
of vertical shearing forces on the curvature of the deflection surface, the strain

energy due to bending moments will be represented by the expression

2 82 8 w O*w

derived in the theory of plates for the case pure bending. The strain energy of
a deformed shell consists of two parts: (1) the strain energy due to bending and
(2) the energy due to stretching of the middle surface. The maximum potential

energy for the shell element is thus given by

D w 0w *w 0w
s — // Tt G - — (e Pedy (19)

The energy due to the stretching of the middle surface is given by

=5 [ Jite+er - 20-viee - ewlia (110)

Since the elongations, €; and €; on the curvatures has been neglected, the energy

J. shall be assumed to be zero.
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Chapter 2

Rayleigh Method

The inextensional vibrations of thin shells were first studied by Lord Rayleigh in
the second half of the twentieth century, and since that time his procedure has
been used to estimate natural frequencies for various shell shapes. In consider-
ing the deformation of a thin shell the most important question which presents
itself is whether the middle surface does, or does not, undergo extension. The
common mathematical models for thin shells admit a strain energy expression
that consists of two parts: extensional (stretching or membrane) and flexural (or
bending). In general, the inextensional energy is produced by the extensional and
shear strains in the middle surface, and it is proportional to the thickness. But
by Love-Kirchoff’s assumption 3 mentioned earlier, these strains are assumed to
be small and therefore negligible. Flexural energy is produced by the changes in
curvature and torsion of the middle surface, and it is also proportional to thick-
ness.

Lord Rayleigh proposed the hypothesis that the low frequency modes must be
flexural and that for a sufficiently thin shell, the contribution of extensional en-
ergy to the total strain energy must be negligible. Following his hypothesis, Lord
Rayleigh assumed that during vibration the displacement field is such that the

two extensional and the shearing strain of the middle surface are zero. He then
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went on and obtained the three displacement components which he called inex-
tensional displacements. These displacements shall be denoted by w, u, and v.
w is in the direction parallel to the tangent of the meridian, u is in the direction
parallel to tangent of the parallel circles and v is in the direction normal to the
meridian. The displacements u and v shall be assumed to be small as compared
to w.

Lord Rayleigh used the inextensional displacements to calculate approximate nat-
ural frequencies from the identification of the strain and kinetic energies (Rayleigh
Principle). Since the kinetic energy is proportional to thickness and to the square
of the frequency, and flexural energy is proportional to the cube of thickness, Lord
Rayleigh concluded that the natural frequency is proportional to thickness.
Now, let us assume that the shell is vibrating freely. By the law of conserva-
tion of energy, at equilibrium the total kinetic energy (which we shall denote as
T = w?J,) is equal to the total potential energy (denoted by U = J,). Thus we
have that

where the expressions for the kinetic and potential energies are given by

J, = //w2[w2 + v? + u?)dA, (2.1)

and after substituting into (1.9) the changes of curvatures k;, k2 and K13 we

obtain

ER? )
JH = m / /[(lil + l€2) — 2(1 - I/)(lﬁllig - ng)]dA, (22)

where E is the young modulus, h is the thickness of the shell, v is poison’s ratio
and the changes of curvatures are given by

k1 = —w" + (k)

ke = B'B7Y(kyu — w') + mB~Y(mB~'w + kyv),

k1o = mB~'w' + mB'B7?w — mB~kiu + Bky(B ).

Since E, h and v do not play an important role in the asymptotic solution, to be
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discussed in the next chapter, we have put the multiplier = 1. This also

ER3
3(1-v?)
simplifies our expressions. Again we note that u and v are small compared to w

i.e w > u and w > v. The above equations are therefore reduces to
"

J, = //w2w2dA,
K1 = —w,

ko = —B'B~'w' + m?B~ 2w,
K12 = mB~'w' + mB'B~?w.

The displacement w(s, m) shall be represented in the form of the combination of

the Airy function, U(n) and its derivative d({h(]”) as follows,
_ ey
'LU(S, m) =w (Sam)U(ﬁ) tw (s,m) d ’ (23)
n
where U(n) is a solution of of the Airy equation,
d*U
d_772 + 77U =0, n= mgg(s) (2.4)
((s) is a rapidly changing function whichwe shall derive shortly. w*) are asymp-
totic series of the form,
k) — k() Zm_2lw(k’l)(s), k=1,2. (2.5)

We are mainly interested in the leading term of our asymptotic series thus we

put [ = 0 so that

wV = m &0 gnd  w® =m0 (2.6)
where

w0 = —(k,B) o0 30 = _(k,B)! (2.7)

V0 = (¢'B'kyY) 73, = (I<|¢'B k)2, (2.8)
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Now substituting (2.8) into (2.7) we obtain
Wt = —(kB) (B k) (2.9)
and

w0 = (ks B) (B ky ) 7. (2.10)

Again substituting equations (2.9) and (2.10) into (2.3) we have the full expan-

sion of w(s,m), i.e

w(s,m) = —(kZB)*%(mW)g’U(n) + m”f2<s)|g|g"fl—g). (2.11)

We pause for a moment and express ¢ and U(n) wholly in terms of s. In general,
the generating line of our shell of revolution has the form z = a — bsinc(s — s*).
For this report we shall take a = 2, b = ¢ =1 and s* = 0, where s* is a turning
point. By a turning point, we mean the point at which the curvature changes its
sign from positive to negative. Thus the generating line of our shell of revolution

is therefore given by [6],
z =2 — sins. (2.12)

Firstly, we are going to evaluate the expression for ( which is given by

w - Q)
_ (g/os(z—sms))gds

3 3
= (5(25 + coss — 1)) :
Since coss ~ 1 for all s < 1, {(s) is therefore given by

C(s) = (33)3. (2.13)

The equation



possess two linearly independent solutions U; and Us,, and their asymptotic be-

havior is given by the following formulas

and

1 -
Uy = §7T71(77)_i6 :

For the Airy function in (2.11), we shall define it to be U(n) := U;(n), and drop
U, so that we can speak of a bounded solution which will not misbehave when
one parameter becomes very large.

We now write n and § as functions of s alone i.e

n=mi((s) = (3ms)3 (2.14)

and

§ = m/ |z|ds

= m/ |2 — sinsl|ds
0
2ms.

We are now in a position to write the Airy function U(n) and its derivative ‘fi—g

as functions of s alone. The double integral in expressions (2.1) and (2.2) will be

converted to a single integral, where this single integral is evaluated with respect

to s. Thus we have

1
Un) = iﬂ_%(Sms)_é6_2m‘9 (2.15)
and
a1
d—g = gﬂ_%(?)ms)_%e_%”. (2.16)

Substituting these equations into the expression for w(s, m) we obtain
_1 1 s 1 o
w(s,m) = —(kaBw) 2[m" "6 4+ Z—lm”’2 §](3s)2 e . (2.17)
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For simplicity of the expression we put K’ = —(kng)_%[m“_% + %m“f‘r 8 | so

that
w(s,m) = K'(3s)7 e 2™, (2.18)
w = —mK'[2(3s)% + O(m™1)]e 2" (2.19)

and
w” =m?K'[4(3s)"2 + O(m™")]e 2™, (2.20)

where all the derivatives are with respect to s.
We then express the curvatures k1, ko and k12 in terms of s and try to compute

the two integrals in (2.1) and (2.2). Now if we substitute

K2 = 16m*K"(3s) te '™, (2.21)
k2 = [B'BT'K"(1+m?B ?)]}(3s) te M, (2.22)
k3, = [mB'B?K' —2m?B 'K']*(3s) e 4™, (2.23)
Kiky = 4mB'B'K"(1+m?B?)(3s) e ™ (2.24)

From expression (A), we have that the natural frequencies of vibration are ex-

pressed as a quotient of the kinetic energy and potential energy as follows:
J
2 K
W= — 2.25
- (2.25)

where J,, and J, are given by (2.1) and (2.2) respectively.

Let us first note, from expression (2.18) and (2.21) to (2.24), that there is a
common integrand, s~'e~#™* that will appear in both the numerator and de-
nominator of (2.25). What seems to be the logical thing to do is to divide the
numerator and denominator by this value and conclude that these natural fre-
quencies depend on some constant function of m, the number of waves in the

circumferential direction, and the Poison’s ratio v. But, this is only possible if
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the value of the integral is known to be finite. If it is infinite or zero then the
expression for the natural frequencies is indeterminate. We shall develop the
method of Laplace for evaluating integrals of real variable and use these methods

or theorems to evaluate our integral.
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Chapter 3

Asymptotic Methods

3.1 Watson’s Lemma

Consider an integral of the form

I(a) = /000 q(t)e *dt. (3.1)

A direct way of computing (3.1) is to substitute the Maclaurin’s expansion for
q(t)
q(t) = q(0) +tq(0) +t2¢"(0) + -+,

and integrating term by term. This formal process suggest a natural extension:
can a similar asymptotic result be constructed by termwise integration in cases
when the expansion of ¢(t) near ¢ = 0 is in terms of non-integer powers of ¢?

Watson (1918) supplied an answer which state that it is immaterial whether the
expansion of ¢(t) ascends merely in regularly spaced powers, or whether the series
converges or is merely asymptotic. The general result is illustrated sufficiently
well by the following theorem [5] which is probably the most frequently used re-

sult for deriving asymptotic expansions.
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Theorem 1 Let q(t) be a function of the real variable t such that

Q(t):Zant’”ﬁ:tﬁ(a0+a1t+a2t2+...) ﬂ>_1
n=0

where q(t) is reqular on [0,b] and neart =0, ag > 0. If

I(a) = /0 J()etdt

then

Proof:
We want to show that VN € N,

We first note that

Thus if
b
I(a) = / F(t,a)dt,  Flt,a) = q(t)e ™,
0

we have that

~

—
e

N~—
I

/0 "P(t o)dt + / Bt o)t

q(t) is regular on the interval [¢, b] and hence bounded. Thus we have

|F(t,a)| <M < o0, on e, 0]
b b
|/ F(t,a)dt| < /|Me_atdt|
€ € b
= M/ e dt
1 —ae 1 —ab
= m(ae e )

40
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which are exponentially small terms.

Put ¢(t) = tﬁ(zgzo ant™ + O(tN*1) | this implies that

I(a) ~ Z an/o tPtre=dt + exponentially  small  terms

n=0

We put at = u, hence dt = %‘. Thus

e t < Ut
n_—o _ —u
an/O t7rTeT Mt = an/o aﬁMHe du

ab+n+1
Qn
= ,@+n+1r<5+"+1)
Hence
L a,l(B+n+1)
Ho) =)~ — (3.4)
n=0

In the notion of the integrand of expression (3.1), ¢(s) = s~!, for which if we
compare its series expansion which only consists of ag, we notice that § = —1
which contradicts Watson’s lemma which requires that 8 > —1. We now develop

a generalisation of the integral (3.1), which was originated by Laplace.

3.2 Laplace’s Method

Consider the integral

I(a) = /b e Pg(t)dt, (3.5)

in which a, b, p(t) and ¢(t) are independent of the positive parameter a. Either
a or b or both may be infinite. Laplace (1820) originated the following powerful
method for approximating I(a). The peak value of the factor e=*?®) occurs at
a point t = to, say, at which p(¢) is a minimum. When « is large, this peak

is very sharp, and the graph of the integrand suggests that the overwhelming

41



contribution to the integral comes from the neighborhood of t3. Accordingly,
we replace p(t) and ¢(t) by the leading terms in series expansions in ascending
powers of (t — ty), and then extend the integration limits to oo or —oo. The
resulting integral is explicitly evaluable and yields the required approximation.
Suppose, that ¢y = a, p(a) > 0 and g(a) # 0. Then Laplace’s procedure is
expressed by

b
I(a) = /e—a(p(a)Jr(t—a)p’(a))q(a)dt

b
_ q(a)eapw>j[ polt-a)(@) g

q(a)efap(a)

1 oab-a)p(@)y
w%)( ‘ )

If we define
I(m) = / s tem4msds
0

with m = «, a = 0, p(s) = 4s and ¢(s) = s~!, we find that ¢(0) does not exist.
We proceed with Laplace’s methods and try to develop a general procedure for
evaluating I(m).

Without any loss of generality, let us assume that a is finite and the minimum of
p(t) occurs at t = a. With precisely formulated conditions on p(t) and ¢(t) it was
prooved in Olver that the Laplace approximation is asymptotic to the integral as
a — 0.

We suppose that the limits a and b are independent of the large parameter o, a
being finite and b(> a) finite or infinite. The functions p(t) and ¢(t) are indepen-
dent of «, p(t) being real and ¢(t) either real or complex[5, 10]. In addition to
these assumptions

(i) p(t) > p(a) when t € (a,b)

(ii) p/(t) and ¢(t) are continuous in a neighborhood of a, except possibly at a.
(iii) as t—a from above p(t) — p(a) ~ P(t —a)*, q(t) ~ Q(t — a)* and we require
that the first of these relations be differentiable. Here P, and A are constants
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and Q is either real or complex constant.
f e~ P g(t)dt converges absolutely throughout its range for all suf-

ﬁmently large Q.

Theorem 2 With all the conditions listed above

oS

Proof:
From conditions (ii) and (iii), a number k£ can be found which is close to a to
ensure that in (a, k], p/(t) is continuous and positive and ¢(t) is continuous. Since

p(t) is increasing in (a, k), we define

v :=p(t) — p(a)

and take it as the new integration variable in this interval. Now that v and ¢ are

continuous functions of each other

eP(@) /k e POg(t)dt = /P e f(v)dv, (3.7)
a 0

where

p=pl)—p(a),  F)=a(yr = 1

We can clearly see that p is finite and positive, and f(v) is continuous when

v € (0, p]. Since v~P(t — a)" as t — a, we have that

t—a~(z)h (0= 0%)
and hence after differentiation we have
Qui!
v
fw)~—= (v —07).
pP

As a result of this relation we rearrange the integral (3.7) in the form

/P e f(v)dv = Q} h ey dy — ei(a)} +ea(a), (38)
0 MP; 0
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where

OO —av, -1 g —av U%_l
e1(a) = e or dv, ea(a) = [ e *(f(v) — —)dv
P 0 uPu

the first term on the right hand side of equation (3.8) is evaluable by the use of
Euler’s integral and immediately yields the required approximation (3.6).
Secondly, given an arbitrary positive number e, we make p small enough(by choos-

ing k sufficiently close to a) to ensure that

Quit _ Qui
vk vk
[f(0) = =——| < e (3.9)
pPw pPv
Then by the use of Euler’s integral we have
Q A 1
lea(@)| < e=T() (3.10)
B CH(Pa)
Thirdly, in the notation of the incomplete Gamma function we have
1A e P
e1(a) = T (=, pa) = O( ) (3.11)
an Q

for large a.

The proof of Theorem 2 is completed by making « large enough to guarantee
that the right hand side of (3.11) is bounded and small.

Theorem 2 confirms the predicton of this section that in a wide range of circum-
stances the asymptotic form of the integral (3.5) for large a depends solely on
the behaviour of the integrand near the minimum of p(t).

Now substituting (2.21) to (2.24) into (2.2) we have the expression

16
kzi/[g m?K"” — (B'B'K'(1—m?B?))? + 8vmB' B ' K"
0

(1+m?B™%) +2(1 —v)(mB'B*K' — 2m*B'K')?|ste™"™ds.  (3.12)
Putting
16
1”:-ganﬂ—(B‘U?Kﬂl—nﬂB_%f+8wnBTTTKQU+WfB_%+2ﬂ—yﬂnﬁ?B‘U(—QnﬂBY?fL

we have

JH:T/ s te M (s, (3.13)
0



Again if we substiute (2.18) into (2.3) we have
J, = / w?s e tms s, (3.14)
0
Let us denote by I(m), the integral

I(m)—/ s te MM s, (3.15)
0

and use the results of theorem 2 to evaluate this integral. We first take the

integral to co by making use of the fact that

([

where the last term on the right hand side of (2.13) are exponentially small terms.

Thus (2.12) becomes
I(m) ~ / s tetms(s. (3.17)
0

In the notion of theorem 2, q(s) = s~! and p(s) = 4s. We note that the minimum
of p(s) in the integration range occurs at s = 0, thus we put a = 0. From these
choices of p(s) and ¢(s) and theorem 2 we have that

P=4, =1, 2=0Q =1 and p(0) =0.

Hence

Q A\ e—apr(a) B
I(m) ~ ;F(;) (Pa)% =T1'(0). (3.18)

The Gamma function originated as a solution of an interpolation problem for the

factorial function, where we have

T(n+1)=nl (3.19)

From the notion of 3.19, n = —1, we have that the right hand side of (3.19)

will be indeterminant. Thus Laplace’s procedure collapses. Again from Euler’s

F(z):/ e tdt.
0

This requires that Rez > 0 and in our case Rez = 0 which also collapse.

integral of second order,
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Conclusion

The two theorems discussed in this work have all collapsed or have failled to
provide a solution to our problem. I will conculde that further investgation on the
evaluation of this integral will be appropriate. I will live it in the indeterminate

state and wish to develop my problem as my PHD starting point.
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