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Abstract

Due to high prevalence of tuberculosis (TB) in developing countries where HIV

prevalence is also high, developing effective TB vaccines that will prevent infection

and reactivation of latent infection is a high priority. This is because patients

infected with HIV are at increased risk of developing active TB because of the high

rate of reactivation of latent infection and high degree of susceptibility to new

infection. Three mathematical models with TB vaccines were used to predict

the most effective epidemic-control strategy in reducing active TB cases. The

first model is with pre-exposure TB vaccines and treatment of TB, the second

with post-exposure vaccines and treatment of TB, and the last one with both

vaccines and treatment of TB. The comparison of effectiveness was based on the

reproduction rates and numerical analysis using the forward fourth order Runge-

Kutta scheme. The combined strategy was found to be the most effective as an

epidemic-control strategy.
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Chapter 1

Introduction

1.1 Epidemiology

Epidemiology may be defined as the study of the distribution and determinants

of disease in human populations. The purpose for which epidemiological investi-

gations are carried out may be considered under the following headings, although

a single investigation may serve more than one purpose.

1. Provision of data necessary for planning and evaluating health care.

2. Identification of determinants of disease so as to enable prevention.

3. Evaluation of methods used to control disease.

4. Description of the natural history of disease.

5. Classification of disease.

Mathematical epidemiology involves spatial modelling, (the application of meth-

ods on observed spatial data which would be a point, a line polygon or contin-

uous representing some process operating in space), statistical modelling, micro
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simulation modelling, (computer based data) and the application of differential

equations in these studies.

There are four basic types of epidemiological studies, namely descriptive, analytic,

intervention and evaluation studies. Descriptive studies are used to demonstrate

the patterns in which diseases are distributed in populations. Analytic studies are

planned investigations designed to test specific hypothesis. They aim to define

the causes or determinants of disease more precisely than is possible using de-

scriptive studies alone. Intervention studies are essentially experiments designed

to measure the efficiency and safety of particular types of health care intervention

(e.g treatment, prevention, control and the way in which health care is provided),

and evaluation studies attempts to measure the effectiveness of different health

services and programmes. They answer the very important questions, like ’have

there been any improvement in health status?’

1.2 Basic facts about tuberculosis

Tuberculosis (TB) remains one of the leading causes of illness and death in the

world. It is a bacterial infectious disease caused by Mycobacterium tuberculo-

sis (and occasionally by Mycobacterium bovis and Mycobacterium africunum).

These are also called tubercle bacilli. One third of the world’s population is

estimated to be infected with the bacilli [18].

According to [12], tubercle bacilli can remain dormant in the tissues and persist

for many years. General sources of information on TB dynamics suggest that TB

is hard to transmit. Nonetheless, under the right conditions a single person with

active TB can infect many people.

[8] states that transmission occurs by the airborne spread of infectious droplets.

The source is a person with TB of the lung who is coughing. Coughing produces
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tiny infectious droplets, which under suitable conditions may cause transmission.

Transmission generally occurs indoors where droplet nuclei can stay in the air

for a long time. Two factors determine an individual’s risk of exposure: the

concentration of the droplet nuclei in the air and the length of time he breathes

that air. An individual’s risk of infection depends on the extent of exposure to

the droplet nuclei and his susceptibility to infection. The risk of a susceptible

individual is therefore high with close, prolonged, indoor exposure to a person

with sputum smear-positive pulmonary TB (tuberculosis of the lung), that is if

an individual has evidence of the bacilli in his sputum, and the more bacilli one

has the more infectious he becomes.

The spread of HIV infection has led to a dramatic increase in TB cases in eastern

and southern Africa and threatens to do so elsewhere. [6]. Current epidemiologi-

cal studies strongly support the claim that exposed individuals (infected but not

yet clinically ill) are unable to transmit the tubercle bacillus but only individuals

with active TB (infected and already ill from the disease) are capable of spreading

the bacteria.[4]

[9] states that exposed TB individuals may remain in this latent stage (infected

but not clinically ill and not infectious) for variable periods of time (in fact, may

die without ever developing active TB). Among generally healthy persons, infec-

tion with TB is highly likely to be asymptomatic. Data from a variety of sources

suggest that the life time risk of developing clinically evident TB after being

infected is approximately 10%, with 90% likelihood of the infection remaining

latent. According to [4], the longer we carry the bacteria the less likely we are

to develop active TB unless our immune system becomes seriously compromised,

(weakened) by other diseases , for example HIV/AIDS.

The progression to active TB is not uniform but is closely linked to various other

factors such as nutritional status and/or access to decent medical care and living
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conditions [2]. The risk of developing active TB is highest within the first two

years of infection, although a few individuals (about 14% ) do develop active TB

within the first two years of infection [17]. Therefore an intervention that targets

persons with recent infection, such as identifying contacts of active cases, could

be particulary effective as an epidemic control measure.

According to [14] and [13], at greater ages, the immunity of persons who have

been previously infected may wane, and they may be then at risk of developing

active TB as a consequence of either exogenous re-infection (that is acquiring a

new infection from another infectious individual) or endogenous re-activation of

latent bacilli (that is re-activation of a pre-existing dormant infection).

Patients infected with HIV are at increased risk of developing active TB because

of the high rate of reactivation of latent infection and high degree of suscepti-

bility to new infection. [5] and [16]. TB rate vary with age, gender and race.

Advancing age, male gender, and non-white race are all independently associ-

ated with an increase incidence of tuberculosis. In addition, in the United States

TB disproportionately afflicts certain sub-populations such as American Indians

and Blacks [15]. The following groups of populations are also at high risk of TB

infection [8]:

• HIV infected individuals

This group falls under the immuno-compromised population. HIV infection

is the strongest risk factor yet identified for progression to active TB.

• Persons with certain medical conditions

Other medical conditions that produce immune suppression have been as-

sociated with TB, presumably by causing reactivation of latent infection.

• Migrant agricultural workers

Due to prolonged exposure in poor ventilated places, are also at high risk
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of infection.

• Homeless persons

The practice of bad habits, such as abuse of drugs and alcohol, unprotected

sex which may lead to HIV infection, contribute to the activation of latent

infection in the homeless.

• Patients and health care workers

The aggregation of people in the homes and hospitals provides conditions

for TB transmission.

• Residents and workers in correctional facilities

This is because of expanding prison population leading to overcrowded pris-

ons, relatively high rates of HIV infection in prison inmates, and high TB

rates in the communities from which the majority of inmates originate.

1.3 TB vaccines and treatment

Latent and active TB can be treated with antibiotics. But TB treatment has

side effects (sometimes quite serious), like eye problems and insomia, and takes

a long time. Carriers of the bacilli who have not developed TB disease can be

treated with a single drug INH; unfortunately, it must be taken religiously for

6-9 months. Treatment for those with active TB requires the simultaneous use of

three drugs, for example, a combination of INH, Ethambitol and Streptomycin,

for a period of at least 12 months. Lack of compliance (i.e patients not finishing

the drugs or not taking them at the right time) with these drug treatments (a

very serious problem) not only may lead to a relapse but to the development of

antibiotic resistant TB - one of the most public health problems facing society

today [4].
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A TB vaccine called BCG (Bacillus of Calmette and Guerin) has been available

for many decades. It is a bovine strain of Mycobacterium tuberculosis that lost

its virulence after growth in the laboratory for many years [11]. It is cheap, but its

effectiveness in preventing TB infection is controversial [12]. Results of field trials

of the vaccine have differed widely, some indicating protection rates as high as 70%

to 80%, others indicating the vaccine was completely ineffective in preventing TB

[12]. Potential problems associated with the generalized use of the BCG vaccine

in some populations are closely associated to the fact that vaccinated individuals

will test positive for TB. It becomes therefore nearly impossible to be able to

detect the prevalence of a disease in a population (like the Argentina population)

where most individuals are vaccinated.

Since TB remains one of the leading causes of death and illness in the world

and its treatment has side effects and long, there is a need to develop vaccines

that will either prevent infection (pre-exposure) or prevent/slow progression to

disease (post-exposure). There is a great need indeed since even the only available

vaccine so far (BCG) has a controversial efficiency in preventing infection with

TB.

1.4 Previous work done

In 1998, [7] stated that preventive therapy (the use of isoniazid or other anti-TB

drugs aiming to sterilize latent infection with Mycobacterium tuberculosis and

thus prevent progression to active disease), has been demonstrated by several

large-randomized controlled trials that it is effective in preventing TB in individ-

uals dually infected with HIV and Mycobacterium tuberculosis. However, studies

of the feasibility of preventive therapy demonstrate that the process required for

targeting appropriate individuals to exclude active TB, to deliver preventive ther-

apy and to achieve adherence is complex and insufficient.
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In 2000, [17] et al used a mathematical model of a TB epidemic to evaluate the

potential effect of an intervention program targeting recently infected persons as

an epidemic-control measure. They used one mathematical model which showed

the transmission of TB between susceptible individuals, exposed (infected) in-

dividuals, who were divided into those who progress to early latent period and

those who progress to long-term latent period, and the active TB cases.

From the model equations they calculated the reproductive rate, R0 (a very useful

summary parameter that quantifies the transmission potential of a pathogen,

defined as the number of secondary infectious cases produced when one infectious

individual is introduced into a population where everyone is susceptible.) By

setting Ro=1, they were able to calculate the rates of effective treatment for

active TB, effective treatment of early latent infection, and effective treatment

for long-term latent infection that would eliminate the epidemic.

They concluded that the impact of therapy for early latent TB infection is greatest

when treatment rates for active TB are lower. If the treatment rate for active TB

is increased from 50% to 60%, adding therapy for latent TB infection substantially

reduces TB incidence. In contrast, if the treatment rate for active TB is increased

from 50% to 80%, the additional impact of increasing therapy for early latent

infection is less important in determining the decline in TB incidence. However,

even when treatment rates for active TB are high, treatment for early latent TB

infection may be necessary to eliminate tuberculosis.

Due to one of the complexities of tuberculosis (vaccinated individuals but not

yet infected may test positive to TB) this results may not be reliable because in

most cases one may target the wrong people who have no effect at the end. [10]

and [3] improved this work.

[10] and [3] used two simple mathematical models (one a pre-exposure vaccine

and the other a post-exposure vaccine model) to provide general insight into the
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effects of vaccination on TB epidemics. They discussed how these models can be

used as health policy tools to identify which vaccines are ’equivalent’ (in terms

of their potential epidemic-control effects), to design control strategies and to

predict the epidemiological impact of different vaccination strategies.

Their model analysis was based on the R0 value. They also included three mech-

anisms in their models in which a vaccine could fail. They were the ’take’, the

’degree’ and the ’duration’ mechanisms.

The term ’take’ specifies the fraction of vaccinated individuals in whom some

level of protective immunologic response is induced by the vaccine. The term

’degree’ specifies the degree of vaccine-induced protection assumed the vaccine

could confer in those individuals in whom the vaccine ’took’. ’Duration’ was the

time taken by the vaccine-induced immunity before decaying exponentially with

time in those vaccinated individuals in whom the vaccine ’took’ and induced a

certain degree of protection.

Their results showed that even moderately effective vaccines could have a signif-

icant effect on reducing TB epidemics if they can be coupled with moderate to

high treatment rates of active disease. We see that this work improves the above

work by [17] and company in July 2000. Their results agree. They also suggested

that it is necessary to develop both vaccines.

In many developing countries where the prevalence of latently infected individuals

is high, post-exposure vaccines will be the most effective in quickly and dramat-

ically reducing the incidence of tuberculosis. However, a pre-exposure vaccine is

necessary to prevent a substantial increase in new infections and may be more

effective than a post-exposure vaccine for the elimination of tuberculosis. It is

likely that the combination of a pre-exposure vaccine, a post-exposure vaccine and

treatment of active TB would be the most effective epidemic-control strategy for

tuberculosis elimination in developing countries. In developed countries, where
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the prevalence of latently infected individuals is low, then only a pre-exposure

vaccine (used in combination with a high level of treatment) will be necessary to

eliminate tuberculosis. [18] et al improved this work by considering other aspects

not just efficiency only, like cumulative percentage of infections prevented and

cumulative percentage of TB cases prevented.

[18] et al used mathematical models to compare the potential public health impact

of mass vaccination campaigns that used either pre- or post-exposure vaccines.

They assessed the public health impact in terms of the cumulative percentage

of infections prevented and the cumulative percentage of TB cases prevented.

They modelled the potential effect of vaccines in developing countries with a

high incidence and prevalence of infection.

They used two separate mathematical models to assess the effect of vaccination:

a pre-exposure and a post-exposure vaccine model. Their models are similar

to those developed by Lietman and Blower in 1999 but they extended them to

include the possibility of re-infection of latently infected persons. Their model

analysis included quantifying the effect of vaccine efficiency, duration of vaccine-

induced immunity, and vaccination coverage rates on the cumulative percentage of

infections and TB cases prevented, based on uncertainty and sensitivity analysis.

After the analysis of the two models, they concluded that pre-exposure vaccines

would be almost twice as effective as post-exposure vaccines in reducing the num-

ber of new infections. Post-exposure vaccines would initially have a substantially

greater impact, compared to pre-exposure vaccines, on reducing the number of

new cases of disease. However the effectiveness of post-exposure vaccines would

diminish over time, whereas the effectiveness of pre-exposure vaccines would in-

crease. Thus after 20 to 30 years, post- or pre-exposure vaccination campaigns

would be almost equally effective in terms of cumulative TB cases prevented.
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Even widely deployed and highly effective (50% - 90% efficiency) pre- or post-

exposure vaccines would only be able to reduce the number of TB cases by one

third. Finally they suggested that to achieve global control of TB, developing

a single TB vaccine that function as both a pre- and a post-exposure vaccine is

necessary.

This was great work indeed because their models and analysis covered most of

the complexities of TB. But I would suggest that they should have considered

countries with a high risk of progression to disease also not just high risk of

infection only as they stated. This would have helped in the numerical analysis

of the post-exposure TB vaccine.

Therefore there is a need to incorporate countries with a high prevalence of pro-

gression to disease also in such studies.

The project is a motivation from the work of Lietman et al in 2000 and Ziv et al in

2004. They both looked at how TB vaccines and treatment of active disease are

effective in eliminating TB cases. They both used separate models as stated in

the literature and both suggested that a combination of the three ( pre-exposure

vaccines, post-exposure vaccines and treatment of active TB) would be the best

in eliminating TB cases. We will try to develop a model that will include the

three control measures and then from the analysis we will be able to tell whether

it is really effective than the individual measures.

1.5 Aims

The main aim of the project is to model, using mathematical models, the effec-

tiveness of the combination of a pre-exposure TB vaccine, a post-exposure TB

vaccine and treatment of active TB as an epidemic-control strategy.
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1.6 Objectives

The main objectives are:

1. to review previous models on TB vaccines and treatment to find out what

has been done and what can be done.

2. to develop the following models:

• the basic TB transmission model

• a model with treatment of active TB

• a model with pre-exposure TB vaccine and treatment of TB

• a model with post-exposure TB vaccine and treatment of TB

• a model with pre-exposure, post-exposure TB vaccines and treatment

of TB.

3. to analyse the models by

• calculating the reproduction numbers of the models

• finding the equilibrium states and classifying them as disease-free or

endemic and express them in terms of R0 where possible.

• analysing the stability in each state.

• analysing the R0

• carrying out numerical analysis

4. to compare the results with those of previous researches and suggest future

work to be done.
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Chapter 2

The Basic TB Transmission

Model

The model was developed by [3] et al. No major alterations and additions were

done for consistency.

2.1 Variables

The host population was divided into:

Xu - Untreated, unvaccinated susceptible individuals (not yet infected but capable

when exposed).

Lu - Untreated, unvaccinated latently infected individuals (those that are infected

but not yet infectious or clinically ill).

T - Active TB cases (those that are ill from the disease and infectious)
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2.2 Parameters

π- The recruitment rate.

β- The probability of transmission.

ν- The rate of developing active TB.

µ- Natural death rate.

µT - Death rate due to disease.

p- The probability of progression to active disease.

2.3 Assumptions

• Transmission occurs through contact between a susceptible individual and

an infectious individual.

• The net rate at which new infected individuals arise is proportional to

the number of susceptible individuals Xu, times the number of infectious

individuals T , times the probability of transmission from T to Xu, β, i.e

βXuT.

• TB is a fatal disease, that is TB kills.

• After being infected, a susceptible individual may either develop active TB

immediately after infection at a probability p or become latently infected

with probability 1 − p.

• Active TB cases are due to endogenous re-activation of latent bacilli only,

with exogenous cases insignificant.
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• There is no natural immunity against infection and against progression to

active disease.

We then represent the information above in form of a compartmental model, as

shown in figure 2.1.

π

µXuXu

Lu

T

µLu

(1 − p)βXuT

νLu

(µ + µT )T

pβXuT

Figure 2.1: Compartmental Model 1

Individuals enter the susceptible population at rate π. Uninfected-unvaccinated

individuals (Xu), are infected at rate βT (t), and then either progress to active

disease (T ) immediately after infection with probability p, or progress to latent

infection with probability 1 − p. Latently infected individuals (Lu) progress to

active disease because of reactivation of latent infection at rate ν. Individuals

with active TB die at a rate µT due to the disease. All persons die naturally at

rate µ.

We then develop time dependent differential equations for each compartment by

adding what goes into a compartment and subtracting what comes out as follows:
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2.4 Model equations

dXu

dt
= π − µXu − βXuT, (2.1)

dLu

dt
= (1 − p)βXuT − (µ + ν)Lu, (2.2)

dT

dt
= pβXuT + νLu − (µ + µT )T. (2.3)

2.5 Equilibrium states

These are the solutions of the model equations when equated to zero. From the

above system we have:

π − µXu − βXuT = 0, (2.4)

(1 − p)βXuT − (µ + ν)Lu = 0, (2.5)

pβXuT + νLu − (µ + µT )T = 0. (2.6)

From equation (2.5) Lu = (1−p)βXuT
µ+ν

.

Substituting Lu into equation (2.6)⇒ pβXuT + ν (1−p)βXuT
µ+ν

− (µ + µT )T = 0.

From above we have after factoring out T that T ∗ = 0, or

X∗
u = (µ+µT )(µ+ν)

β(pµ+ν)
.

Substituting T ∗ = 0 in equation (2.4) gives X∗
u = π/µ.

T ∗ = 0 into equation (2.6) ⇒ L∗
u = 0.

Then our disease free equilibrium state, P0 is given by
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P0 = (X∗
u, 0, 0) = (π/µ, 0, 0).

Which exists readily since π/µ > 0.

For the endemic equilibrium state we solve as follows:

Using X∗
u = (µ+µT )(µ+ν)

β(pµ+ν)
,

from equation (2.4) we have that

T =
π

βXu

− µ

β
.

Substituting X∗
u above gives

T ∗ =
π(pµ + ν)

(µ + µT )(µ + ν)
− µ

β
,

T ∗ =
βπ(pµ + ν)

µ(µ + µT )(µ + ν)
− 1.

From equation (2.5) we have that

Lu =
(1 − p)βXuT

µ + ν
.

⇒ Lu =
(1 − p)βXu

µ + ν
(

π

βXu
− µ

β
),

⇒ Lu =
1 − p

µ + ν
(π − µXu),
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⇒ L∗
u =

1 − p

µ + ν
(π − µ(µ + µT )(µ + ν)

β(pµ + ν)
),

⇒ L∗
u =

1 − p

µ + ν
(1 − µ(µ + µT )(µ + ν)

βπ(pµ + ν)
).

This values gives the endemic (disease persists) equilibrium state Pe.

Pe = (X∗
u, L∗

u, T
∗) =

(
(µ+µT )(µ+ν)

β(pµ+ν)
, 1−p

µ+ν
(1 − µ(µ+µT )(µ+ν)

βπ(pµ+ν)
), βµ(pµ+ν)

µ(µ+µT )(µ+ν)
− 1

)
.

For existence, the values of L∗
u and T ∗ should be defined and non zero, that is we

should have infected people who will progress to active disease and infect others.

We then find the condition for L∗
u and T ∗ to be positive and greater than zero.

L∗
u =

1 − p

µ + ν
(1 − µ(µ + µT )(µ + ν)

βπ(pµ + ν)
) > 0,

⇒ 1 − µ(µ + µT )(µ + ν)

βπ(pµ + ν)
> 0,

⇒ 1 >
µ(µ + µT )(µ + ν)

βπ(pµ + ν)
,

⇒ βπ(pµ + ν)

µ(µ + µT )(µ + ν)
> 1.

And

T ∗ =
βπ(pµ + ν)

µ(µ + µT )(µ + ν)
− 1 > 0,

⇒ βπ(pµ + ν)

µ(µ + µT )(µ + ν)
> 1.

32



2.6 The Reproduction Number, R0

The method used to derive the value of R0 is the method by Drekmann and

Heesterbeek (1990,1992). We arrange the model equations in such a way that

the first m equations are involving infected classes. Then we find the matrix

Fi, which gives the rate of appearance of new infections in each compartment i.

Matrix Vi gives the rate of transfer of individuals out of compartments i, minus

the rate of transfer of individuals into compartments i.

We then find the linearized form or the Jacobian matrix for Fi and Vi, evaluated

at P0, and denote them as F and V respectively. The generation matrix G is the

product of F and the inverse of V .

that is

G = FV −1.

Then the value of R0 will be the dominant eigenvalue of G. For the above system

of equations,we arrange them as follows:

dLu

dt
= (1 − p)βXuT − (µ + ν)Lu,

dT

dt
= pβXuT + νLu − (µ + µT )T,

dXu

dt
= π − µXu − βXuT.

so that m = 2 and

Fi =


(1 − p)βXuT

pβXuT


, Vi =


 (µ + ν)Lu

(µ + µT )T − νLu


 .

F =


0 (1 − p)βπ/µ

0 pβπ/µ


, V =


(µ + ν) 0

−ν (µ + µT )


 .

V −1 =
1

(µ + ν)(µ + µT )


µ + µT 0

ν µ + ν


 .

33



G =
βπ

µ(µ + ν)(µ + µT )


ν(1 − p) (1 − p)(µ + ν)

νp p(µ + ν)


 .

To solve for the eigenvalues of G, we let

a = ν(1 − p),

b = (1 − p)(µ + ν),

c = νp,

d = p(µ + ν).

∣∣∣G − λI
∣∣∣ =

βπ

µ(µ + ν)(µ + µT )

∣∣∣∣∣∣
a − λ b

c d − λ

∣∣∣∣∣∣
= 0.

Solving for λ we get the following equation

λ2 − (a + d)λ + ad − bc = 0. (2.7)

It can be shown that ad − bc = 0, so equation(2.7) reduces to

λ(λ − (a + d)) = 0. (2.8)

Which solves to

λ1 = 0, (2.9)

and

λ2 =
βπ(pµ + ν)

µ(µ + ν)(µ + µT )
. (2.10)

Clearly our dominant eigenvalue is λ2 which corresponds to our R0 according to

the method.Thus

R0 =
βπ(pµ + ν)

µ(µ + ν)(µ + µT )
,
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=
[βπ

µ

][pµ + ν

ν + µ)

][ 1

µ + µT

]
.

Now expressing the endemic equilibrium points in terms of R0 we have,

X∗
u =

π

µR0

,

L∗
u =

(1 − p)π

µ + ν
(1 − 1

R0

),

T ∗ =
µ

β
(R0 − 1).

From above it can be noted that X∗
u, L∗

u, T
∗ are defined for R0 > 1, thus Pe exist

if R0 > 1, that is the disease will persist if we have more than one new infectious

case produced when one infectious individual is introduced into a population

where everyone is susceptible.

2.6.1 Analysis of the reproduction number

We have calculated the value of R0 above and we found that it is given by:

R0 =
[βπ

µ

][pµ + ν

ν + µ

][ 1

µ + µT

]
.

This rate depends linearly on;

• the average number of susceptible individuals that one infectious case infects

per unit time,βπ
µ

.

• the mean infectious period, 1
µ+µT

, and

• the probability that an infected individual will develop into an infectious

case, pµ+ν
ν+µ

, which can be splitted into p+ ν(1−p)
µ+ν

where p is the probability by

which an infected individual develops active TB immediately after infection

and ν(1−p)
µ+ν

is the probability by which an infected individual will progress

to latent infection after infection.
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It is the product of the three cases. An epidemic control strategy will target to

reduce these values. We shall compare the other values of R0 for the other models

to the above value of R0 in terms of efficiency in reducing it.

2.7 Stability Analysis of P0 and Pe by the Lin-

earization Method

We say P0 or Pe is stable if all the eigenvalues of the linearised matrix of the

system evaluated at each equilibrium state are negative.

For the above system of differential equations the Jacobian matrix is as follows:

J =




−µ − βT ∗ 0 −βX∗
u

(1 − p)βT ∗ −(µ + ν) (1 − p)βX∗
u

pβT ∗ ν pβX∗
u − (µ + µ∗

T )


 .

Evaluating J at P0 = (π/µ, 0, 0), we have

J(P0) =




−µ 0 −βπ/µ

0 −(µ + ν) (1 − p)βπ/µ

0 ν pβπ/µ − (µ + µT )


 .

To find the eigenvalues we solve the system

∣∣∣J(P0) − λI
∣∣∣ = 0,

which gives us
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∣∣∣J(P0) − λI
∣∣∣ =

∣∣∣∣∣∣∣∣∣

−µ − λ 0 −βπ/µ

0 −(µ + ν) − λ (1 − p)βπ/µ

0 ν (pβπ/µ − (µ + µT )) − λ

∣∣∣∣∣∣∣∣∣
= 0.

Solving the above system leads to

(−µ − λ)

∣∣∣∣∣∣
−(µ + ν) − λ (1 − p)βπ/µ

ν (pβπ/µ − (µ + µT )) − λ

∣∣∣∣∣∣
= 0,

⇒ −µ − λ = 0 (2.11)

or

(−(µ + ν) − λ)((pβπ/µ − (µ + µT )) − λ) − ν(1 − p)βπ/µ = 0. (2.12)

From equation (2.11) we have that

λ1 = −µ.

Solving equation (2.12) for the other two roots, we let

a = µ + ν,

b = pβπ/µ − (µ + µT ),

c = ν(1 − p)βπ/µ.

So that we have (2.12) as

(−a − λ)(b − λ) − c = 0,

−((a + λ)(b − λ)) − c = 0,

λ2 + (a − b)λ − (ab + c) = 0,
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⇒ λ2,3 =
−(a − b) ± √

(a − b)2 + 4(ab + c)

2
,

⇒ λ2 =
−(a − b) +

√
(a − b)2 + 4(ab + c)

2
,

⇒ λ3 =
−(a − b) − √

(a − b)2 + 4(ab + c)

2
.

From above, λ1 is readily negative, and for λ2,3 to be negative we should have

the following situation.

−(a − b) ± √
(a − b)2 + 4(ab + c)

2
< 0,

−(a − b) ±
√

(a − b)2 + 4(ab + c) < 0,

±
√

(a − b)2 + 4(ab + c) < a − b,

squaring both sides gives

(a − b)2 + 4(ab + c) < (a − b)2,

4(ab + c) < 0,

ab + c < 0.

Now substituting for the values of a, b, and c we have that

(µ + ν)(pβπ/µ − (µ + µT )) + ν(1 − p)βπ/µ < 0,
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(µ + ν)βπ/µ − (µ + ν)(µ + µT ) + ν(1 − p)βπ/µ < 0,

((µ + ν)p + ν(1 − p))βπ/µ < (µ + ν)(µ + µT ),

(pµ + ν)βπ

µ(µ + ν)(µ + µT )
< 1,

R0 < 1.

Thus P0 is stable for R0 < 1.

Stability Analysis for Pe.

For the endemic state, we shall use the points expressed in terms of R0. Substi-

tuting the equilibrium points into the Jacobian matrix we have:

J(Pe) =




−µ − β µ
β
(R0 − 1) 0 −µβ π

µR0

(1 − p)β µ
β
(R0 − 1) −(µ + ν) (1 − p)β π

µR0

pβ µ
β
(R0 − 1) ν pβ π

µR0
− (µ + µT )


 ,

which reduces to,

J(Pe) =




−µR0 0 −βπ/R0

µ(1 − p)(R0 − 1) −(µ + ν) (1−p)βπ
µR0

µp(R0 − 1) ν pβµ
µR0

− (µ + µT )


 .

Solving for the eigen values of

∣∣∣J(Pe) − λI
∣∣∣ = 0,

we have the following matrix
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∣∣∣J(Pe) − λI
∣∣∣ =

∣∣∣∣∣∣∣∣∣

−µR0 − λ 0 −βπ/R0

µ(1 − p)(R0 − 1) −(µ + ν) − λ (1−p)βπ
µR0

µp(R0 − 1) ν ( pβµ
µR0

− (µ + µT )) − λ

∣∣∣∣∣∣∣∣∣
= 0,

(−µR0−λ)

∣∣∣∣∣∣
−(µ + ν) − λ (1−p)βπ

µR0

ν ( pβπ
µR0

− (µ + µT )) − λ

∣∣∣∣∣∣
−βπ

R0

∣∣∣∣∣∣
µ(1 − p)(R0 − 1) −(µ + ν + λ)

µp(R0 − 1) ν|

∣∣∣∣∣∣
= 0.

From above letting

a = µ + ν,

b =
pβπ

µR0
− (µ + µT ),

c = ν
(1 − p)βπ

µR0
,

d = νµ(1 − p)(R0 − 1).

We have the following equation;

λ3 + (µR0 + (a − b))λ2 + (µR0(a − b) − (ab + c) + γ)λ + (e − (ab + c)µR0) = 0,

where

γ =
µpβπ

R0

(R0 − 1),

e =
βπd

R0
+

µpβπ

R0
(R0 − 1)(µ + ν).

If again we let

a1 = µR0 + (a − b),

a2 = µR0(a − b) − (ab + c) + γ,

a3 = e − (ab + c)µR0.
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such that the above equation is

λ3 + a1λ
2 + a2λ + a3 = 0.

Using the Routh-Hurwitz Stability Criterion which states that if all the eigenval-

ues of the above equation have strictly negative real parts then

a1 > 0, a3 > 0, and a1a2 − a3 > 0.

So we say that Pe is stable if the following are true;

a1 = µR0 + a − b > 0,

µR0 + (µ + ν) −
(pβπ

µR0

− (µ + µT )
)

> 0,

(pµ + ν)βπ

(µ + ν)(µ + µT )
+ (µ + ν) −

(pβπ

µR0

− (µ + µ)
)

> 0.

This is possible for;

pβπ

µR0

− (µ + µT ) < 0,

pβπ

µ(µ + µT )
− R0 < 0,

pβπ

µ(µ + µT )
− (pµ + ν)βπ

µ(µ + ν)(µ + µT )
< 0,

βπ

µ(µ + µT )

(
p − pµ + ν

µ + ν

)
< 0,

βπ

µ(µ + µT )

(ν(p − 1)

µ + ν

)
< 0.

The above inequality is possible for

p − 1 < 0.

⇒ p < 1.

a3 =
βπd

R0
+

µpβπ

R0
(R0 − 1)(µ + ν) − (ab + c)µR0 > 0.

For the last term ab + c we find that p < 1 as above, so we analyse the first two

terms.

βπ

R0

[
νµ(1 − p)(R0 − 1)

]
+

µpβπ

R0

[
(R0 − 1)(µ + ν)

]
> 0,
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βπ

R0

(R0 − 1)
[
νµ(1 − p) + µp(µ + ν)

]
> 0,

βπ(1 − 1

R0

)
[
µ(pµ + ν)

]
> 0.

The inequality holds for

1 − 1

R0

> 0,

⇒ R0 > 1.

a1a2 − a3 > 0,
[
µR0 + (a − b)

][
µR0(a − b) − (ab + c) + γ

]
−

[
e − (ab + c)µR0

]
> 0.

It can be observed that analysis of the last condition will give the same results

as for the first two conditions because of the presence of similar terms.

Thus Pe is stable for R0 > 1 and p < 1.
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Chapter 3

The Transmission Model with

Treatment

The model was developed by [4]. The dynamics of treating the latently infected

individuals and for those with antibiotic resistant TB were not considered.

3.1 Variables

The host population was divided as above, for the basic model without treatment.

3.2 Parameters

In addition to the parameters for the basic model, we have φ, which is the treat-

ment rate of active TB.

43



π

µXuXu

Lu

T

µLu

(1 − p)βXuT

νLu

(µ + µT + φ)T

pβXuT

Figure 3.1: Compartmental Model 2

3.3 Assumptions

The assumptions for the model with treatment are the same as before. An addi-

tional assumption is that the treated individuals get permanent immunity against

TB.

In figure 3.1, we present the data in a compartmental model.

Individuals enter the susceptible population at rate π. Uninfected-unvaccinated

individuals (Xu) are infected at rate βT (t), and then either progress to active

disease (T ) immediately after infection with probability p, or progress to latent

infection with probability 1 − p. Latently infected individuals (Lu) progress to

active disease because of re-activation of latent infection at rate ν. Individuals

with active TB either die at a rate µT or receive effective treatment at a rate

φ. All individuals in the different classes die naturally at rate µ. The model

equations are as follows.
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3.4 Model Equations

dXu

dt
= π − µXu − βXuT, (3.1)

dLu

dt
= (1 − p)βXuT − (µ + ν)Lu, (3.2)

dT

dt
= pβXuT + νLu − (µ + µT + φ)T. (3.3)

3.5 Equilibrium states

Like for the basic model, we equate the model equations to zero and solve for

Xu, Lu and T .

π − µXu − βXuT = 0, (3.4)

(1 − p)βXuT − (µ + ν)Lu = 0, (3.5)

pβXuT + νLu − (µ + µT + φ)T = 0. (3.6)

From equation(3.5)

Lu =
(1 − p)βXuT

µ + ν
.

Substituting Lu into equation (3.6) we have

pβXuT + ν
(1 − p)βXuT

µ + ν
− (µ + µT + φ)T = 0.

If we factor out T , we get

T ∗ = 0,

or

X∗
u =

(µ + µT + φ)(µ + ν)

β(pµ + ν)
.

Substituting T ∗ = 0 into equation (3.4) and equation (3.5) we get

X∗
u = π/µ,
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and

L∗
u = 0.

Thus our disease free state P0,

P0 = (X∗
u, 0, 0) = (π/µ, 0, 0).

Which exists readily since π/µ > 0.

Next we solve for the endemic equilibrium points.

From equation (3.4)

T =
π

βXu

− µ

β
.

Substituting

X∗
u =

(µ + µT + φ)(µ + ν)

β(pµ + ν)
,

we have that

T ∗ =
π(pµ + ν)

(µ + ν)(µ + µT + φ)
− µ

β
,

⇒ T ∗ =
βπ(pµ + ν)

µ(µ + ν)(µ + µT + φ)
− 1.

Solving for L∗
u using X∗

u and T ∗ we have that

L∗
u =

(1 − p)

µ + ν
(1 − µ(µ + µT + φ)(µ + ν)

βπ(pµ + ν)
).

Thus Pe, is given by

Pe = (X∗
u, L∗

u, T
∗) =

(
(µ+µT +φ)(µ+ν)

β(pµ+ν)
, (1−p)

µ+ν
(1− µ(µ+µT +φ)(µ+ν)

βπ(pµ+ν)
), βπ(pµ+ν)

µ(µ+ν)(µ+µT +φ)
−1

)
.

Pe exists for
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T ∗ =
βπ(pµ + ν)

µ(µ + ν)(µ + µT + φ)
− 1 > 0,

⇒ βπ(pµ + ν)

µ(µ + ν)(µ + µT + φ)
> 1.

And

L∗
u =

(1 − p)

µ + ν
(1 − µ(µ + µT + φ)(µ + ν)

βπ(pµ + ν)
) > 0,

⇒ 1 >
µ(µ + µT + φ)(µ + ν)

βπ(pµ + ν)
,

⇒ βπ(pµ + ν)

µ(µ + µT + φ)(µ + ν)
> 1.

Thus unless βπ(pµ+ν)
µ(µ+µT +φ)(µ+ν)

> 1, Pe will not exist.

3.6 The Reproduction number, R
(1)
0

Using the same method as for the basic model, we calculate R
(1)
0 for the model

with treatment.
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Fi =


(1 − p)βXuT

pβXuT


, Vi =


 (µ + ν)Lu

(µ + µT + φ)T − νLu


 .

F =


0 (1−p)βπ

µ

0 pβπ
µ


, V =


µ + ν 0

−ν µ + µT + φ


 .

G = FV −1 =
βπ

µ(µ + µT + φ)(µ + ν)


(1 − p)ν (1 − p)(µ+)

pν p(µ + ν)


 .

Solving
∣∣∣G − λI

∣∣∣ = 0 we have that

λ1 = 0,

and

λ2 =
βπ(pµ + ν)

µ(µ + µT + φ)(µ + ν)
.

λ2 corresponds to the value of R
(1)
0 ,

R
(1)
0 =

[βπ

µ

][ 1

µ + µT + φ

][pµ + ν

µ + ν

]

3.6.1 Analysis of the Reproduction Number

From above calculations, we have that

R
(1)
0 =

[βπ

µ

][ 1

µ + µT + φ

][pµ + ν

µ + ν

]
.

Expressing R
(1)
0 in terms of R0, which is for the basic model, we have
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R
(1)
0 = R0

(µ + µT )

(µ + µT + φ)
.

R
(1)
0 has a fraction, µ+µT

µ+µT +φ
which reduces R0. So treatment of active TB reduces

the cases of the disease by reducing the infectious period. We can therefore say

that, treatment of active TB, as a control strategy, has positive results.

3.7 Stability Analysis of P0 and Pe by the lin-

earization method

As before, we find the linearized form of the model, then evaluate it at P0 or at

Pe. We then find the eigenvalues of the Jacobian matrix. If they are all negative,

then we conclude that P0 or Pe is stable, or just find the condition when the

eigenvalues will be negative.

The Jacobian for the system is as follows:

J =




−µ − βT ∗ 0 −βX∗
u

(1 − p)βT ∗ −(µ + ν) (1 − p)βX∗
u

pβT ∗ ν pβX∗
u − (µ + µT + φ)


 .

Evaluated at P0 and solving

|J(P0) − λI| = 0,

we have the following

|J(P0) − λI| =

∣∣∣∣∣∣∣∣∣

−µ − λ 0 −βπ/µ

0 −(µ + ν) − λ (1 − p)βπ/µ

0 ν (pβπ/µ − (µ + µT + φ)) − λ

∣∣∣∣∣∣∣∣∣
= 0.

49



If we let

a = µ + ν,

b = pβπ/µ − (µ + µT + φ),

c = ν(1 − p)βπ/µ.

We get the reduced equation

(−µ − λ)(−a − λ)(b − λ) − c) = 0.

⇒ λ1 = −µ.

From the above equation we solve for the other two roots and get that

λ2,3 =
−(a − b) ± √

(a − b)2 + 4(ab + c)

2
,

⇒ λ2 =
−(a − b) +

√
(a − b)2 + 4(ab + c)

2
.

And

⇒ λ3 =
−(a − b) − √

(a − b)2 + 4(ab + c)

2
.

λ1 is negative, we then establish a condition for λ2,3 to be negative.

λ2,3 =
−(a − b) ± √

(a − b)2 + 4(ab + c)

2
< 0,
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⇒ −(a − b) ±
√

(a − b)2 + 4(ab + c) < 0,

⇒ ±
√

(a − b)2 + 4(ab + c) < (a − b),

squaring both sides gives

(a − b)2 + 4(ab + c) < (a − b)2,

4(ab + c) < 0,

ab + c < 0.

Substituting back for the values of a, b and c, we have:

(µ + ν)(pβπ/µ − (µ + µT + φ)) + ν(1 − p)βπ/µ < 0,

(µ + ν)pβπ/µ − (µ + ν)(µ + µT + φ) + ν(1 − p)βπ/µ < 0,

βπ/µ((µ + ν) + ν(1 − p)) < (µ + ν)(µ + µT + φ),

(pµ + ν)βπ

µ(µ + ν)(µ + µT + φ)
< 1,

R0 < 1.

Thus P0 is stable if R0 < 1.

Stability Analysis for Pe

For simplicity of our equations, we first express the endemic equilibrium points

in terms of R0 then analyse the stability.

In terms of R
(1)
0 , we have

X∗
u =

π

µR
(1)
0

,

51



T ∗ =
µ

β
(R

(1)
0 − 1),

L∗
u =

(1 − p)π

µ + ν
(1 − 1/R

(1)
0 ).

Clearly Pe exists for R
(1)
0 > 1 that is Pe exists when we have more than one

new infectious case produced when one infectious individual is introduced into a

population where everyone is susceptible.

The Jacobian matrix

J =




−µ − βT ∗ 0 −βX∗
u

(1 − p)βT ∗ −(µ + ν) (1 − p)βX∗
u

pβT ∗ ν pβX∗
u − (µ + µT )


 ,

evaluated at Pe = ( π

µR
(1)
0

, (1−p)π
µ+ν

(1 − 1/R
(1)
0 ), µ

β
(R

(1)
0 − 1) gives

J(Pe) =




−µR
(1)
0 0 −βπ

µR
(1)
0

µ(1 − p)(R
(1)
0 − 1) −(µ + ν) (1 − p) βπ

µR
(1)
0

pµ(R
(1)
0 − 1) ν pβπ

µR
(1)
0

− (µ + µT + φ)




,

|J(Pe) − λI| =

∣∣∣∣∣∣∣∣∣∣

−µR
(1)
0 − λ o −βπ

µR
(1)
0

µ(1 − p)(R
(1)
0 − 1) −a − λ (1 − p) βπ

µR
(1)
0

e ν b − λ

∣∣∣∣∣∣∣∣∣∣
= 0.
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After letting

a = µ + ν,

b =
pβπ

µR
(1)
0

− (µ + µT + φ),

c = ν(1 − p)
βπ

µR
(1)
0

,

d = νµ(1 − p)(R
(1)
0 − 1),

e = µp(R
(1)
0 − 1).

We have the following equation:

−(µR
(1)
0 + λ)(−(a + λ)(b − λ) − c) − βπ

µR
(1)
0

(d + (a + λ)e) = 0,

−(µR
(1)
0 + λ)(λ2 + (a − b)λ − (ab + c)) − βπd

µR
(1)
0

− βπea

µR
(1)
0

− βπeλ

µR
(1)
0

= 0,

−(µR
(1)
0 +λ)λ2−(µR

(1)
0 +λ)(a−b)λ+(µR

(1)
0 +λ)(ab+c)− βπ

µR
(1)
0

(d+ae)−βπeλ

µR
(1)
0

= 0,

λ3+(µR
(1)
0 +a−b)λ2+(µR

(1)
0 (a−b)−(ab+c)+

βπe

µR
(1)
0

)λ+
βπ

µR
(1)
0

(d+ae)−µR
(1)
0 (ab+c) = 0.

Let

a1 = µR
(1)
0 + a − b,

a2 = µR
(1)
0 (a − b) − (ab + c) +

βπe

µR
(1)
0

,

a3 =
βπ

µR
(1)
0

(d + ae) − µR
(1)
0 (ab + c).
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We have the following equation

λ3 + a1λ
2 + a2λ + a3 = 0.

By the Routh-Hurwitz Stability , if the eigenvalues are negative, then;

a1 = µR
(1)
0 + a − b > 0,

µR
(1)
0 + µ + ν −

[ pβπ

µR
(1)
0

− (µ + µT + φ)
]

> 0.

This is possible for:

pβπ

µR
(1)
0

− (µ + µT + φ) < 0,

pβπ

µ(µ + µT + φ)
− R

(1)
0 < 0,

pβπ

µ(µ + µT + φ)
− (pµ + ν)βπ

µ(µ + ν)(µ + µT + φ)
< 0,

βπ

µ(µ + µT + φ)

(
p − pµ + ν

µ + ν

)
< 0,

βπ

µ(µ + µT + φ)

(ν(p − 1)

µ + ν

)
< 0.

The above inequality is possible for

p − 1 < 0.

⇒ p < 1.

a3 =
βπ

µR
(1)
0

(d + ae) − µR
(1)
0 (ab + c) > 0.

It can be shown that ab + c = 0, then we are left with analyzing

βπ

µR
(1)
0

(d + ae) > 0,

βπ

µR0
µν(1 − p)(R0 − 1) +

βπ

µR0
(µ + ν)(R0 − 1)µp > 0,

βπ

µR0
(R0 − 1)

[
µν(1 − p) + (µ + ν)µp

]
> 0,
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βπ

µR0

(R0 − 1)
[
µ(pµ + ν)

]
> 0.

The above inequality holds for

R0 − 1 > 0.

⇒ R0 > 1.

a1a2 − a3 > 0,

[
µR

(1)
0 +a−b

][
µR

(1)
0 (a−b)−(ab+c)+

βπµp(R
(1)
0 − 1)

µR
(1)
0

]
−

[ βπ

µR
(1)
0

(d+ae)−µR
(1)
0 (ab+c)

]
> 0.

It can be observed that analysis of the last condition will give the same results

as for the first two conditions because of the presence of similar terms.

Thus Pe is stable for R0 > 1 and p < 1.
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Chapter 4

Transmission Model with

Pre-exposure TB Vaccines and

Treatment of Active Disease

The model was developed by [18] et al. The fact that vaccine may wane over time

was not considered. It was also assumed that natural immunity is not enough to

offer some protection and that TB cases are due to re-activation of latent bacilli

not due to exogenous re-infection.

4.1 Variables

The host population was divided into the following groups:

Xu- Unvaccinated susceptible individuals.

Xv- Vaccinated susceptible individuals.

Lu- Unvaccinated latently infected individuals.
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Lv- Vaccinated latently infected individuals.

T - Active TB cases.

4.2 Parameters

We have the following parameters used in this model:

π- The recruitment rate.

c- The fraction of the vaccinated susceptible individuals.

µ- The natural death rate.

µT - Death rate due to active disease.

β - The probability of transmission.

p - Probability of developing active TB immediately after infection.

φ - Effective treatment rate.

ε1 - The probability of protection from infection.

ε2 - The probability of protection from progressing to active TB.

ε3 - The probability of protection from reactivation of latent infection.

4.3 Assumptions

• We assume that vaccine takes quite a long time to wane so vaccine waning

will have not much effect on the models.

• Vaccine offers some degree of protection from infection, developing active
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disease soon after infection and re-activation of the latent bacilli.

• Not every susceptible individual will be vaccinated, as a result we have the

fraction c, which denotes the vaccinated portion of susceptible individuals.

In figure 4.1 we present the above information in a compartmental model.

Xu Xv

Lu
Lv

T

cπ(1 − c)π

µXu
µXv

(1 − ε2p)ε1βXvT

µLvµLu
ε3νLvνLu

(µ + µT + φ)T

pε1ε2βXvT

(1 − p)βXuTpβXuT

Figure 4.1: Compartmental Model 3

Individuals enter the susceptible population at rate π, and a fraction c of them

are vaccinated. Uninfected-unvaccinated individuals (Xu) are infected at rate

βT (t), and then either progress to active disease (T ) immediately after infection

with probability p, or progress to latent infection with probability 1−p. Latently

infected individuals (Lu) progress to active disease because of re-activation of

latent infection at rate ν. Uninfected-vaccinated persons (Xv) are protected from

infection by probability ε1. Vaccinated individuals who become latently infected

(Lv) are protected from rapid progression to active disease by probability ε2. It is

assumed that the vaccine may offer some protection from re-activation of latent
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infection by probability ε3. Individuals with active TB either die at a rate µT or

receive effective treatment at a rate φ.

4.4 Model equations

dXu

dt
= (1 − c)π − µXu − βXuT, (4.1)

dXv

dt
= cπ − µXv − ε1βXvT, (4.2)

dLu

dt
= (1 − p)βXuT − (µ + ν)Lu, (4.3)

dLv

dt
= (1 − ε2p)ε1βXvT − (µ + ε3ν)Lv, (4.4)

dT

dt
= pβXuT + ε1ε2pβXvT + νLu + ε3νLv − (µ + µT + φ)T. (4.5)

4.5 Equilibrium States

Equating equation (4.1) to (4.5) to zero, we solve for Xu, Xv, Lu, Lv and T .

(1 − c)π − µXu − βXuT = 0, (4.6)

cπ − µXv − ε1βXvT = 0, (4.7)

(1 − p)βXuT − (µ + ν)Lu = 0, (4.8)

(1 − ε2p)ε1βXvT − (µ + ε3ν)Lv = 0, (4.9)

pβXuT + ε1ε2pβXvT + νLu + ε3νLv − (µ + µT + φ)T = 0. (4.10)

From equation (4.8) and (4.9) we have that:

Lu =
(1 − p)βXuT

µ + ν
,
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and

Lv =
(1 − ε2p)ε1βXvT

µ + ε3ν
.

Substituting Lu and Lv into equation (4.10) we have:

pβXuT + ε1ε2pβXvT + ν
(1 − p)βXuT

µ + ν
+ ε3ν

(1 − ε2p)ε1βXvT

µ + ε3ν
− (µ + µT + φ)T = 0.

Factoring out T from the above equation gives:

T ∗ = 0,

or

pβXu + ε1ε2pβXv +
ν(1 − p)βXu

µ + ν
+

ε3ν(1 − ε2p)ε1βXv

µ + ε3ν
− (µ + µT + φ) = 0.

i.e

(p +
1 − p

µ + ν
)βXu + (ε1ε2p +

ε1ε3(1 − ε2p)

µ + ε3ν
)βXv − (µ + µT + φ) = 0.(4.11)

With T ∗ = 0, into equation (4.6), we have:

X∗
u =

(1 − c)π

µ
.

Into equation (4.7) T ∗ = 0 gives:

X∗
v =

cπ

µ
.
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Into equation (4.8), T ∗ = 0 gives:

L∗
u = 0,

and into equation (4.9),

L∗
v = 0.

Hence the disease free equilibrium state Po,

P0 = (X∗
u, X∗

v , 0, 0, 0) =
((1 − c)π

µ
,
cπ

µ
, 0, 0, 0

)
.

Which exists for 0 < c ≤ 1.

We now solve for the endemic equilibrium states.

From equation (4.6)

T =
1

βXu
((1 − c)π − µXu).

Substituting T into equation (4.7), we have;

cπ − µXv − ε1βXv
1

βXu

((1 − c)π − µXu) = 0,

cπβXu − µβXuXv − ε1β(1 − c)πXv + µε1βXvXu = 0,

cπβXu − ε1(1 − c)πβXv + (ε1 − 1)µβXuXv = 0. (4.12)
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From equation (4.11), let

q = p +
ν(1 − p)

µ + ν
,

r = ε1ε2p +
ν(1 − ε2p)ε1ε3

µ + ε3ν
,

s = µ + µT + φ.

Such that we have

qβXu + rβXv − s = 0. (4.13)

From (4.13)

Xv =
s − qβXu

rβ
.

Substituting Xv into equation (4.12) we have

(ε1 − 1)µqβX2
u − (cπβr + ε1(1 − c)πqβ + (ε1 − 1)µs)Xu + ε1(1 − c)πs = 0.

From above let

t = (ε1 − 1)µqβ,

u = cπβr + ε1(1 − c)πqβ + (ε1 − 1)µs,

v = ε1(1 − c)πs.

So that we have

tX2
u − uXu + v = 0.

⇒ X∗
u =

u ±√
u2 − 4tv

2t
,
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⇒ X∗
v =

s

rβ
− q(u ±√

u2 − 4tv)

2rt
.

From equation (4.6)

T ∗ =
1

β
(
(1 − c)π

X∗
u

− µ).

Substituting for X∗
u, we have

T ∗ =
1

β
(

2(1 − c)πt

u ±√
u2 − 4tv

− µ).

From equation (4.8)

L∗
u =

(1 − p)βXuT

µ + ν
,

L∗
u =

(1 − p)βXu

µ + ν
(
(1 − c)π

βXu
− µ

β
),

L∗
u =

(1 − p)

µ + ν
((1 − c)π − µXu),

L∗
u =

(1 − p)

µ + ν
((1 − c)π − µ(

u ±√
u2 − 4tv

2t
)).

Doing the same for Lv, we have from equation (4.9)

L∗
v =

(1 − ε2p)ε1βXvT

µ + ε3ν
,
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L∗
v =

(1 − ε2p)ε1βXv

µ + ε3ν
(

cπ

ε1βXv

− µ

ε1β
),

L∗
v =

(1 − ε2p)

µ + ε3ν
(cπ − µXv),

L∗
v =

(1 − ε2p)

µ + ε3ν

(
cπ − µ

( s

rβ
− q(u ±√

u2 − 4tv)

2rt

)
.

Hence the coordinates of Pe,

Pe =
(

u±√
u2−4tv
2t

, s
rβ

− q(u±√
u2−4tv)

2rt
, (1−p)

µ+ν

(
(1 − c)π − µ(u±√

u2−4tv
2t

)
)
, (1−ε2p)

µ+ε3ν

(
cπ −

µ( s
rβ

− q(u±√
u2−4tv)

2rt
)
)
, 1

β
( 2(1−c)πt

u±√
u2−4tv

− µ
)
.

Pe exists for

X∗
u =

u ±√
u2 − 4tv

2t
> 0,

u ±
√

u2 − 4tv > 0,

u2 > u2 − 4tv,

tv > 0,

[
(ε1 − 1)µ

(pµ + ν

µ + ν

)
β
][

ε1(1 − c)π(µ + µT + φ)
]

> 0.

The inequality holds for

ε1 − 1 > 0 or 1 − c > 0.

⇒ ε1 > 1 or c < 1.
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4.6 The Reproduction Number, R
(2)
0

We now calculate the reproduction number for the model using the same method

as above.

Fi =




(1 − p)βXuT

(1 − ε2p)ε1βXvT

pβXuT + pε1ε2βXvT


, Vi =




(µ + ν)Lu

(µ + ε3ν)Lv

(µ + µT + φ)T − νLu − ε3νLv


 .

F =




0 0 (1 − p)βXu

0 0 (1 − ε2p)ε1βXv

0 0 pβXu + pε1ε2βXv


, V =




µ + ν 0 0

0 µ + ε3ν 0

−ν −ε3ν µ + µT + φ


 .

V −1 =




1
µ+ν

0 ν
(µ+ν)(µ+muT +φ)

0 1
µ+ε3ν

−ε3ν
(µ+ε3nu)(µ+µT +φ)

0 0 1
µ+µT +φ


 .

G = FV −1 =




0 0 (1−p)(1−c)βπ
µ(µ+µT +φ)

0 0 (1−ε2p)ε1βcπ
µ(µ+µT +φ)

0 0 pβ(1−c)π+pε1ε2βcπ
µ(µ+µT +φ)


 .

Solving the equation

|G − λI| = 0,

we have

λ1 = 0,

and

λ2 =
pβ(1 − c)π + pε1ε2βcπ

µ(µ + µT + φ)
.
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λ2 is the dominant eigenvalue which corresponds to the value of R0. Thus

R0 =
[βπ

µ

][ 1

µ + µT + φ

][
1 − c + ε1ε2c

][
p
]
.

4.6.1 Analysis of the Reproduction Number

Expressing R
(2)
0 in terms of R0 we have

R
(2)
0 = R0

(µ + ν)(µ + µT )((1 − c) + ε1ε2c)p

(µ + µT + φ)(pµ + ν)
.

It can be noted that R
(2)
0 reduces R0 in three ways. The first one is by reducing

the mean infectious period by the factor φ. Secondly, the total probability of de-

veloping active TB, ν(1−p)
ν+µ

+ p, by that it does not have the term ν(1−p)
ν+µ

. Thirdly

by further reducing p by the factor 1 − c + ε1ε2c. So we may consider the in-

troduction of pre-exposure TB vaccines as a successful epidemic control strategy

and more effective than treatment of active disease alone.

4.7 Stability Analysis of P0 and Pe by the lin-

earization Method.

P0 is stable if the eigenvalues of the linearized form of the system evaluated at

P0 are all negative.
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The linearized form J , for the third model is as follows:

J =




−µ − βT ∗ 0 0 0 −βX∗
u

0 −µ − ε1βT ∗ 0 0 −ε1βX∗
v

(1 − p)βT ∗ 0 −(µ + ν) 0 (1 − p)βX∗
u

0 (1 − ε2p)ε1βT ∗ 0 −(µ + ε3ν) (1 − ε2p)ε1βX∗
v

pβT ∗ pβε1ε2T
∗ ν ε3ν pβX∗

u + pε1ε2βX∗
v − (µ + µT + φ)




.

Evaluated at P0 = ( (1−c)π
µ

, cπ
µ

, 0, 0, 0) we get:

J(P0) =




−µ 0 0 0 −β(1−c)π
µ

0 −µ 0 0 −ε1βcπ
µ

0 0 −(µ + ν) 0 (1−p)β(1−c)π
µ

0 0 0 −(µ + ε3ν) (1−ε2p)ε1βcπ
µ

0 0 ν ε3ν
pβ(1−c)π

µ
+ pε1ε2βcπ

µ
− (µ + µT + φ)




.

If we let,

a = µ + ν,

b =
(1 − p)β(1 − c)π

µ
,

c = µ + ε3ν,

d =
(1 − ε2p)ε1βcπ

µ
,

γ =
pβ(1 − c)π

µ
+

pε1ε2βcπ

µ
− (µ + µT + φ).

and solve

|J(P0) − λI| = 0,
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we get:

|J(P0) − λI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ − λ 0 0 0 −β(1−c)π
µ

0 −µ − λ 0 0 −ε1βcπ
µ

0 0 −a − λ 0 b

0 0 0 −c − λ d

0 0 ν ε3ν γ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

(−µ − λ)(−µ − λ)

∣∣∣∣∣∣∣∣∣

−a − λ 0 b

0 −c − λ d

ν ε3ν γ − λ

∣∣∣∣∣∣∣∣∣
= 0,

−µ − λ = 0, −µ − λ = 0,

⇒ λ1 = λ2 = −µ.

(−a − λ)

∣∣∣∣∣∣
−c − λ d

ε3ν γ − λ

∣∣∣∣∣∣
+ b

∣∣∣∣∣∣
0 −(c + λ)

ν ε3ν

∣∣∣∣∣∣
= 0,

−(a + λ)(−(c + λ)(γ − λ) − dε3ν) + bν(c + λ) = 0,

(a + λ)(c + λ)(γ − λ) + (a + λ)dε3ν + bcν + bνλ = 0,

(a + λ)(−λ2 + (γ − c)λ + cγ) + adε3ν + dε3νλ + bcν + bνλ = 0,

λ3 + (a − γ + c)λ2 + (a(c − γ) − cγ − bν − ε3νd)λ + (−bcν − adε3ν − acγ) = 0.
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Let

a1 = a − γ + c,

a2 = a(c − γ) − cγ − bν − ε3νd,

a3 = −bcν − adε3ν − acγ.

So that we have

λ3 + a1λ
2 + a2λ + a3 = 0.

By the Rourth-Hurwitz Stability Criterion, if the eigenvalues above have negative

real parts, then

a1 = a + c − γ > 0,

(µ + ν) + (µ + ε3ν) −
[

pβπ(1−c+ε1ε2c)
µ

− (µ + µT + φ)
]

> 0.

The above inequality is satisfied for

pβπ(1 − c + ε1ε2c)

µ
− (µ + µT + φ) < 0,

pβπ(1 − c + ε1ε2c)

µ
< (µ + µT + φ),

pβπ(1 − c + ε1ε2c)

µ(µ + µT + φ)
< 1,

R0 < 1.

a3 = −(bcν + adε3ν + acγ) > 0,

a3 = bcν + adε3ν + acγ < 0,
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[
(1−p)(1−c)βπν

µ
(µ+ε3ν)

]
+

[
(µ+ν)( (1−ε2p)cε1βπ

µ
)ε3ν

]
+

[
(µ+ν)(µ+ε3ν)(pβπ(1−c+ε1ε2c)

µ
−

(µ + µT + φ))
]

< 0.

The above is possible if:

pβπ(1 − c + ε1ε2c)

µ
− (µ + µT + φ) < 0

⇒ R0 < 1

The same conditions are observed for the third condition of the criterion because

of the presence of similar terms.

Analysis for Pe

The equilibrium points for the endemic state are too big and manual analysis is

a bit tricky and too long. So we will not use numerics at this point.
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Chapter 5

Transmission Model with

Post-exposure TB Vaccines and

Treatment of active TB

The model was developed from the work of [18] et al, where the following cases

were not considered, vaccine waning, natural immunity and re-infection of latently

infected individuals.

5.1 Variables

The host population was divided into the following groups:

Xu - Unvaccinated susceptible individuals.

Lu - Unvaccinated latently infected individuals.

Lv - Vaccinated latently infected persons.
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T - Active TB cases.

5.2 Parameters

The parameters used are as follows:

χ - The rate at which the latently infected individuals are vaccinated.

π- The recruitment rate.

µ- The natural death rate.

β- The probability of transmission.

ε3 - The probability of protection from reactivation of latent infection.

p- The probability of progressing to active disease immediately after infection.

ν- The rate of reactivation of latent bacilli.

µT - Death rate due to TB.

φ - Effective treatment rate.

5.3 Assumptions

The assumptions for the model are the same as for the model with pre-exposure

vaccines, with an exception of those assumptions about vaccinated susceptible

individuals because we do not have them.

In figure 5.1 is the compartmental model representing the above information

about the model.
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Xu

Lu

T

π

χLu

µLu ε3νLvνLu

µXu
(1 − p)βXuT

(µ + µT + φ)T

Lv

µLv

pβXuT

Figure 5.1: Compartmental Model 4

Individuals enter the population at rate π. They become infected at rate βT (t)

and then either progress rapidly to active disease with probability p or progress

to latent infection (Lu) with probability 1− p. latently infected individuals (Lu)

progress to active disease at rate ν due to re-activation of latent infection. La-

tently infected individuals may also be vaccinated at a rate χ. Vaccinated-latently

infected individuals (Lv) are protected from re-activation of latent infection by

probability ε3. Individuals with active TB either die at rate µT or receive effective

treatment at a rate φ. The average life expectancy is 1/µ.
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5.4 Model Equations

dXu

dt
= π − µXu − βXuT, (5.1)

dLu

dt
= (1 − p)βXuT − (χ + µ + ν)Lu, (5.2)

dLv

dt
= χLu − (µ + ε3ν)Lv, (5.3)

dT

dt
= pβXuT + νLu + ε3νLv − (µ + µT + φ)T. (5.4)

5.5 Equilibrium Points

At equilibrium we have the following solutions of the above system:

π − µXu − βXuT = 0, (5.5)

(1 − p)βXuT − (χ + µ + ν)Lu = 0, (5.6)

χLu − (µ + ε3ν)Lv = 0, (5.7)

pβXuT + νLu + ε3νLv − (µ + µT + φ)T = 0. (5.8)

From equation (5.6) and (5.7) we have the following respectively:

Lu =
(1 − p)βXuT

χ + ν + µ
,

Lv =
χLu

µ + ε3ν
,

=
χ(1 − p)βXuT

(µ + ε3ν)(χ + ν + µ)
.
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Substituting Lu and Lv into equation (5.8) we have

pβXuT + ν (1−p)βXuT
χ+ν+µ

+ ε3ν
χ(1−p)βXuT

(µ+ε3ν)(χ+ν+µ)
− (µ + µT + φ)T = 0.

If we factor out T from above we get

T ∗ = 0,

and

(p + ν
(1 − p)

χ + ν + µ
+ ε3ν

χ(1 − p)

(µ + ε3ν)(χ + ν + µ)
)βXu − (µ + µT + φ) = 0. (5.9)

With T ∗ = 0 into equation (5.5) we have that

X∗
u = π/µ.

In equation (5.6)

L∗
u = 0.

In equation (5.7)

L∗
v = 0.

Hence we have our P0 given by

P0 = (X∗
u, 0, 0, 0) = (π/µ, 0, 0, 0).

Which exists readily since π/µ > 0.

Now solving for the endemic equilibrium points, from equation (5.9) let
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q = p + ν (1−p)
χ+ν+µ

+ ε3ν
χ(1−p)

(µ+ε3ν)(χ+ν+µ)
,

r = µ + µT + φ.

Then we have

qβXu − r = 0.

⇒ Xu =
r

qβ
.

From equation (5.5)

T ∗ =
π

βX∗
u

− µ

β

⇒ T ∗ =
qπ

r
− µ

β
.

From equation (5.6)

L∗
u =

(1 − p)βX∗
uT ∗

χ + ν + µ
,
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=
(1 − p)βX∗

u

χ + ν + µ
(

π

βX∗
u

− µ

β
),

=
1 − p

χ + µ + ν
(π − µX∗

u),

=
1 − p

χ + ν + µ
(π − µr

βq
).

From equation (5.7)

L∗
v =

χL∗
u

µ + ε3ν
,

=
χ(1 − p)

(µ + ε3ν)(χ + ν + µ)
(π − µr

qβ
).

Thus

Pe = (X∗
u, L∗

u, L
∗
v, T

∗) =
(

r
qβ

, 1−p
χ+ν+µ

(π − µr
βq

), χ(1−p)
(µ+ε3ν)(χ+ν+µ)

(π − µr
qβ

), qπ
r
− µ

β

)
.

Next we establish the conditions for the equilibrium points to be defined.

X∗
u is readily defined because r > 0.

T ∗ = qπ
r
− µ

β
> 0,
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⇒ qπ
r

> µ
β
,

⇒ (βπ
µ

)( 1
µ+µT +φ

)q > 1.

L∗
u = 1−p

χ+ν+µ
(π − µr

βq
) > 0,

⇒ π > µr
βq

,

⇒ βπq
µr

> 1,

⇒ (βπ
µ

)( 1
µ+µT +φ

)q > 1.

L∗
v = χ(1−p)

(µ+ε3ν)(χ+ν+µ)
(π − µr

qβ
) > 0,

⇒ π − µr
qβ

> 0,

⇒ (βπ
µ

)( 1
µ+µT +φ

)q > 1.

Where

q =
p(χ + µ)+

χ + ν + µ
+

χε3ν(1 − p)

(µ + ε3ν)(χ + µ + ν)
.

5.6 The Reproduction Number, R
(3)
0

As for the previous models, we calculate R
(3)
0 for this model.

Fi =




(1 − p)βXuT

0

pβXuT


, Vi =




(χ + ν + µ)Lu

(µ + ε3ν)Lv − χLu

(µ + µT + φ)T − νLu − ε3νLv


 .
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F =




0 0 (1 − p)βXu

0 0 0

0 0 pβXu


, V =




χ + ν + µ 0 0

−χ µ + ε3ν 0

−ν −ε3ν µ + µT + φ


 .

V −1 =




1
χ+ν+µ

−χ
(χ+ν+µ)(ε3ν+µ)

χε3ν+ν(µ+ε3ν)
(χ+µ+ν)(µ+ε3ν)(µ+µT +φ)

0 1
µ+ε3ν

−εν
(µ+εT ν)(µ+µT +φ)

0 0 1
µ+µT +φ


 .

G = FV −1 =




0 0 (1−p)βπ
µ(µ+µT +φ)

0 0 0

0 0 pβπ
µ(µ+µT +φ)


 .

Solving |G − λI| = 0,

we have

λ1 = λ2 = 0,

and

λ3 =
pβπ

µ(µ + µT + φ)
.

λ3 is the dominating eigenvalue and therefore equal to R
(3)
0 .

i.e

R
(3)
0 =

(βπ

µ

)( 1

µ + µT + φ

)(
p
)
.

81



5.6.1 Analysis of the Reproduction Number

The Reproduction number for this model depends linearly on the average number

of susceptible individuals that one infectious case infects per unit time,βπ/µ, the

mean infectious period, 1
µ+µT +φ

, and the probability that an infected individual

will develop into an infectious case p. It does not depend on the probability of

progressing to latent infection which reduces the total probability that an infected

individual will develop into an infectious case.

That is

R0 =
[βπ

µ

][ 1

µ + µT + φ

][
p
]
.

The missing term, ν(1−p)
µ+ν

of the total probability of developing into an infectious

case, reduces the total probability pµ+ν
µ+ν

hence reducing R0. The mean infectious

period 1
µ+ν

is also reduced by a factor φ. Expressing R
(3)
0 in terms of R0 we have

R
(3)
0 = R0

(µ + ν)(µ + µT )p

(µ + µT + φ)(pµ + ν)
.

Compared to R
(2)
0 , we see that it has a missing term that is capable of reducing

p, which reduces R0 further. Thus it is less effective in reducing R0 than R
(2)
0 ,

but better than R
(1)
0 . Thus in terms of R0 only, the pre-exposure vaccine model

with treatment is effective than the post-exposure vaccine model with treatment.
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5.7 Stability Analysis of P0 by the Linearization

Method

As before, we find the linearized matrix of the system and evaluate it at P0 and

then find the eigenvalues of J . If they are all negative then we conclude that P0

is stable.

J =




−µ − βT ∗ 0 0 −βX∗
u

(1 − p)βT ∗ −(χ + ν + µ) 0 (1 − p)βX∗
u

0 χ −(µ + ε3ν) 0

pβT ∗ ν ε3ν pβX∗
u − (µ + µT + φ)




.

Evaluating J at P0 = (π/µ, 0, 0, 0) we have

J(P0) =




−µ 0 0 −βπ
µ

0 −(χ + ν + µ) 0 (1−p)βπ
µ

0 χ −(µ + ε3ν) 0

0 ν ε3ν
pβπ
µ

− (µ + µT + φ)




.

If we let

a = χ + ν + µ,

b = (1 − p)βπ/µ,

c = µ + ε3ν,

γ =
pβπ

µ
− (µ + µT + φ).

and solve

|J(P0) − λI| = 0,
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we have

|J(P0) − λI| =

∣∣∣∣∣∣∣∣∣∣∣∣

−µ − λ 0 0 −βπ
µ

0 −a − λ 0 b

0 χ −c − λ 0

0 ν ε3ν γ − λ

∣∣∣∣∣∣∣∣∣∣∣∣

= 0,

which reduces to

(−µ − λ)

∣∣∣∣∣∣∣∣∣

−a − λ 0 b

χ −c − λ 0

ν ε3ν γ − λ

∣∣∣∣∣∣∣∣∣
= o.

−µ − λ = 0 ⇒ λ1 = −µ

Solving for the other three roots from the 3 by 3 matrix we have

λ3 + (c − γ + a)λ2 + ((c − γ)a − cγ − bν)λ + (−cγa − bχε3ν − bνc) = 0.

Let

a1 = c − γ + a,

a2 = (c − γ)a − cγ − bν,

a3 = −cγa − bχε3ν − bνc.

⇒ λ3 + a1λ
2 + a2λ + a3 = 0.

By the Routh-Hurwitz Stability Criterion as for above models, if the eigenvalues

are negative, then

a1 = c − γ + a > 0,
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a3 = −cγa − bχε3ν − bνc > 0,

a1a2 − a3 =
(
c − γ + a

)(
(c − γ)a − cγ − bν

)
+

(
(c − γ)a + cγ + bν

)
> 0.

Substituting back for the values of a, b, c and γ we have

a1 = (µ + ε3ν) −
[

pβπ
µ

− (µ + µT + φ)
]

+ (χ + ν + µ) > 0.

This is possible when γ < 0, that is

pβπ

µ
− (µ + µT + φ) < 0,

pβπ

µ
< (µ + µT + φ),

⇒ pβπ

µ(µ + µT + φ)
< 1,

⇒ R0 < 1.

a3 =
[
(µ+ ε3ν)

(
pβπ
µ

− (µ+ µT + φ)
)
(χ + ν + µ)

]
+

[
(p−1)βπν

µ
(χε3 + µ+ ε3ν)

]
< 0.

We consider a3 < 0 because a3 is negative.

For a3 < 0 then

γ =
pβπ

µ
− (µ + µT + φ) < 0,

⇒ pβπ

µ(µ + µT + φ)
< 1,

⇒ R0 < 1.

The same conditions as above are observed for the third part of the criterion,

a1a2 − a3 > 0 because of the presence of similar terms.

Analysis for Pe
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Due to the size of the endemic equilibrium points, finding the conditions for Pe to

be stable manually, will be a bit cumbersome. At this point, we will not consider

numerical analysis.
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Chapter 6

Model With Combined

Pre-exposure Vaccine,

Post-exposure Vaccine and

Treatment of active disease

The model was developed from the work of [17] and [18] et al from their pre- and

post-exposure vaccines models. We tried to combine the two models so that we

have vaccination both before and after infection. We shall find out the effect of

the two vaccines when combined.

6.1 Variables

The host population for the model is divided into:

• Xu - the unvaccinated susceptible individuals.
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• Xv - the vaccinated susceptible individuals.

• Lu - the unvaccinated latently infected individuals.

• Lv - the vaccinated latently infected individuals.

• T - the active tb cases.

6.2 Parameters

We have the following parameters used in this model:

π- The recruitment rate.

c- The fraction of the vaccinated susceptible individuals.

µ- The natural death rate.

µT - Death rate due to active disease.

β - The probability of transmission.

p - Probability of developing active TB immediately after infection.

φ - Effective treatment rate.

ε1 - The probability of protection from infection.

ε2 - The probability of protection from progressing to active TB.

ε3 - The probability of protection from reactivation of latent infection.

χ - The rate at which the latently infected individuals are vaccinated.
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6.3 Assumptions

• Transmission occurs through contact between a susceptible individual and

an infectious individual.

• The net rate at which new infected individuals arise is proportional to

the number of susceptible individuals Xu, times the number of infectious

individuals T , times the probability of transmission from T to Xu, β, i.e

βXuT.

• TB is a fatal disease, that is TB kills.

• After being infected, a susceptible individual may either develop active TB

immediately after infection at a probability p or become latently infected

with probability 1 − p.

• Active TB cases are due to endogenous re-activation of latent bacilli only,

with exogenous cases insignificant.

• There is no natural immunity against infection and against progression to

active disease.

• Treated individuals get permanent immunity against TB.

• We assume that vaccine takes quite a long time to wane so vaccine waning

will have not much effect on the models.

• Vaccine offers some degree of protection from infection, developing active

disease soon after infection and re-activation of the latent bacilli.

• Not every susceptible individual will be vaccinated, as a result we have the

fraction c, which denotes the vaccinated portion of susceptible individuals.

Figure 6.1 shows the compartmental model.
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Xu Xv

Lu Lv

T

cπ
(1 − c)π

χLu

(1 − ε2p)ε1βXvT

µLvµLu ε3νLvνLu

µXu
µXv

(1 − p)βXuT

pε1ε2βXvT

(µ + µT + φ)T

pβXuT

Figure 6.1: Compartmental Model 5

Individuals enter the susceptible population at rate π, and a fraction c of them

are vaccinated. Uninfected-unvaccinated persons (Xu) are infected at rate βT (t),

and then either progress to active disease (T ) immediately after infection with

probability p, or progress to latent infection with probability 1 − p. Latently

infected individuals (Lu) may be vaccinated at a rate χ or progress to active

disease because of re-activation of latent infection at rate ν.

Uninfected-vaccinated individuals (Xv) are protected from infection by proba-

bility ε1. Vaccinated individuals who become latently infected (Lv) are protected

from rapid progression to active disease by probability ε2. It is assumed that the

vaccine may offer some protection from re-activation of the latent infection by

probability ε3. Persons with active TB either die at a rate µT or receive effective

treatment at rate φ. The average life expectancy is 1/µ.
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6.4 Model Equations

dXu

dt
= (1 − c)π − βXuT − µXu, (6.1)

dXv

dt
= cπ − ε1βXvT − µXv, (6.2)

dLu

dt
= (1 − p)βXuT − (χ + ν + µ)Lu, (6.3)

dLv

dt
= (1 − ε2p)ε1βXvT + χLu − (µ + ε3ν)Lv, (6.4)

dT

dt
= pβXuT + pε1ε2βXvT + νLu + ε3νLv − (µ + µT + φ)T. (6.5)

6.5 Equilibrium Points

We now find the equilibrium points by solving the above system when at equi-

librium.

(1 − c)π − βXuT − µXu = 0, (6.6)

cπ − ε1βXvT − µXv = 0, (6.7)

(1 − p)βXuT − (χ + ν + µ)Lu = 0, (6.8)

(1 − ε2p)ε1βXvT + χLu − (µ + ε3ν)Lv = 0, (6.9)

pβXuT + pε1ε2βXvT + νLu + ε3νLv − (µ + µT + φ)T = 0. (6.10)

From equation (6.8)

Lu =
(1 − p)βXuT

χ + ν + µ
.
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From equation (6.9)

Lv =
(1 − ε2p)ε1βXvT

µ + ε3ν
+

χLu

µ + ε3ν
,

⇒ Lv =
(1 − ε2p)ε1βXvT

µ + ε3ν
+

χ(1 − p)βXuT

(χ + ν + µ)(µ + ε3ν)
.

Substituting Lu and Lv into equation (6.10) we get

pβXuT + pε1ε2βXvT + ν (1−p)βXuT
χ+ν+µ

+ ε3ν( (1−ε2p)ε1βXvT
µ+ε3ν

+ χ(1−p)βXuT
(χ+ν+µ)(µ+ε3ν)

)−

(µ + µT + φ)T = 0.

From the above equation, if we factor out T we get that

T ∗ = 0,

or

(p + ν(1−p)
χ+ν+µ

+ χ(1−p)
(χ+ν+µ)(µ+ε3ν)

)βXu + (pε1ε2 + ε3ν(1−ε2p)ε1
µ+ε3ν

)βXv

−(µ + µT + φ) = 0. (6.11)

With T ∗ = 0 into equation

(6.6) ⇒ X∗
u =

(1 − c)π

µ
.
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(6.7) ⇒ X∗
v =

cπ

µ
.

(6.8) ⇒ L∗
u = 0.

(6.9) with L∗
u = 0

⇒ L∗
v = 0.

Which gives the value of P0,

P0 = (X∗
u, X∗

v , 0, 0, 0) =
((1 − c)π

µ
,
cπ

µ
, 0, 0, 0

)
.

Which exists for 0 < c ≤ 1.

We next solve for the endemic equilibrium state.

From equation (6.6)

T =
(1 − c)π

βXu
− µ

β
.

Substituting T into equation (6.7) we get

cπ − (ε1βXv)((1 − c)π − µXu)

βXu
− µXv = 0,

cπβXu − ε1βXv((1 − c)π − µXu) − µβXuXv = 0,
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cπβXu − ε1(1 − c)πβXv − (1 − ε1)µβXuXv = 0. (6.12)

From equation (6.11) let

q = p +
ν(1 − p)

χ + ν + µ
+

χ(1 − p)

(χ + ν + µ)(µ + ε3ν)
,

r = pε1ε2 +
ε3ν(1 − ε2p)ε1

µ + ε3ν
,

s = µ + µT + φ.

So that (6.11) is

qβXu + rβXv − s = 0.

Making Xv the subject from above we get

Xv =
s − qβXu

rβ
.

Substituting Xv into equation (6.12) we have

cπβXu − (ε1(1−c)π)(s−qβXu)
r

− (1 − ε1)µXu
s−qβXu

r
= 0,

which reduces to

(1 − ε1)µqβX2
u + (cπrβ − (1 − ε1)µs + ε1(1 − c)πqβ)Xu − ε1(1 − c)πs = 0.

If we let

t = (1 − ε1)µqβ,

u = cπrβ − (1 − ε1)µs + ε1(1 − c)πqβ,

v = ε1(1 − c)πs.

94



We have the above equation as

tX2
u + uXu − v = 0. (6.13)

⇒ X∗
u =

−u ±√
u2 + 4tv

2t
.

Substituting X∗
u into X∗

v

⇒ X∗
v =

s − qβ

rβ
(
−u ±√

u2 + 4tv

2t
).

Substituting X∗
u into equation (6.6) and solving for T ∗ we get

T ∗ =
2t(1 − c)π

β(−u ±√
u2 + 4tv)

− µ

β
.

With X∗
u and T ∗ into equation (6.8) we solve for L∗

u

⇒ L∗
u =

1 − p

χ + ν + µ
((1 − c)π − µ(

−u ±√
u2 + 4tv

2t
)).

With X∗
u, X∗

v , L∗
u and T ∗ we solve for L∗

v

⇒ L∗
v = 1−ε2p

µ+ε3ν
(cπ−µ( s−qβ

rβ
(−u±√

u2+4tv
2t

)))+ χ(1−p)
(χ+ν+µ)(µ+ε3ν)

((1−c)π−µ(−u±√
u2+4tv
2t

)).

Thus the corresponding coordinates of Pe.
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Pe = (X∗
u, X∗

v , Lu∗, Lv∗, T ∗) =
(

−u±√
u2+4tv
2t

, s−qβ
rβ

(−u±√
u2+4tv
2t

),

1−p
χ+ν+µ

((1 − c)π − µ(−u±√
u2+4tv
2t

)),

1−ε2p
µ+ε3ν

(cπ − µ( s−qβ
rβ

(−u±√
u2+4tv
2t

))) + χ(1−p)
(χ+ν+µ)(µ+ε3ν)

((1 − c)π − µ(−u±√
u2+4tv
2t

)),

2t(1−c)π

β(−u±√
u2+4tv)

− µ
β

)
.

Which exists when the equilibrium points are defined.

X∗
u =

−u ±√
u2 + 4tv

2t
> 0,

⇒ −u ±
√

u2 + 4tv > 0,

⇒ u ±
√

u2 + 4tv < 0,

⇒ u2 < u2 + 4tv,

⇒ tv > 0.

[
(1 − ε1)µqβ

][
(1 − c)ε1πs

]
> 0,

[
(1− ε1)µβ

(p(χ + µ) + ν

χ + µ + ν
+

χ(1 − p)

(χ + ν + µ)(µ + ε3ν)

)][
(1−c)ε1π(µ+µT +φ)

]
> 0.

This occurs when

1 − ε1 > 0, 1 − p > 0, 1 − c > 0

⇒ ε1 < 1, p < 1 and c < 1.

X∗
v =

s − qβ

rβ
(
−u ±√

u2 + 4tv

2t
) > 0,

⇒ −u ±√
u2 + 4tv

2t
> 0.

which will be positive for the same conditions as for X∗
u above.
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L∗
u =

1 − p

χ + ν + µ
((1 − c)π − µ(

−u ±√
u2 + 4tv

2t
)) > 0,

(1 − c)π

µ
− (

−u ±√
u2 + 4tv

2t
) > 0,

2t(1 − c)π

µ
> −u ±

√
u2 + 4tv,

(
2t(1 − c)π

µ
)2 +

4t(1 − c)πu

µ
+ u2 > u2 + 4tv,

(
2t(1 − c)π

µ
)2 +

4t(1 − c)πu

µ
− 4tv > 0,

The term (2t(1−c)π
µ

)2 is readily positive, we then analyze the other two terms.

4t(1 − c)πu

µ
− 4tv > 0,

4t
((1 − c)πu

µ
− v

)
> 0,

(1 − c)πu

µ
− v > 0,

(1 − c)
[
π/µ(cπrβ − (1 − ε1)µs + ε1(1 − c)πqβ) − ε1π(µ + µT + φ)

]
> 0.

The above holds if

1 − c > 0 ⇒ c < 1

ε1 − 1 > 0 ⇒ ε1 > 1

1 − ε2p > 0 ⇒ ε2p < 1

1 − p > 0 ⇒ p < 1

Analysis of the other terms give the same conditions as above.

97



6.6 The Reproduction Number,R
(4)
0

Fi =




(1 − p)βXuT

(1 − ε2)ε1βXuT

pβXuT + pε1ε2βXuT


 , Vi =




(χ + ν + µ)Lu

(µ + ε3ν)Lv − χLu

(µ + µT + φ)T − νLu − ε3νLv


 .

F =




0 0 (1 − p)βXu

0 0 0(1 − ε2p)ε1βXv

0 0 pβXu + pε1ε2βXv


 , V =




χ + ν + µ 0 0

−χ µ + ε3ν 0

−ν −ε3ν µ + µT + φ


 .

V −1 =




1
χ+ν+µ

χ
(χ+ν+µ)(µ+ε3ν)

−ε3ν+ν(µ+ε3ν)
(χ+ν+µ)(µ+ε3ν)(µ+µT +φ)

0 1
µ+ε3ν

−ε3ν
(µ+ε3ν)(µ+µT +φ)

0 0 1
µ+µT +φ


 .

G = FV −1 =




0 0 (1−p)β(1−c)π
µ(µ+µT +φ))

0 0 (1−ε2p)ε1βcπ
µ(µ+µT +φ)

0 0 (p(1−c)+pε1ε2c)βπ
µ(µ+µT +φ)


 .

R
(4)
0 =

[βπ

µ

][ 1

µ + µT + φ

][
(1 − c) + ε1ε2c

][
p
]
.

6.6.1 Analysis of the Reproduction Number

R
(4)
0 =

[βπ

µ

][ 1

µ + µT + φ

][
(1 − c) + ε1ε2c

][
p
]
.

This value is equal to R
(2)
0 , which is the reproduction number for the model

with pre-exposure TB vaccines. This result might be revealing the importance

and effectiveness of pre-exposure vaccines in reducing TB cases. It shows that the

average number of TB cases reduced by this strategy is the same as that by the

latter. The introduction of post-exposure vaccines does not make a significant
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change in the number of TB cases reduced compared to pre-exposure vaccines

alone.

6.7 Stability Analysis of P0 by the Linearization

Method

We next establish when P0 is stable, by finding the eigenvalues of the linearized

form evaluated at P0. If all the eigenvalues are negative, we will then conclude

that P0 is stable, or find the condition for the eigenvalues to be negative.

The linearized form J of the system is as follows:

J =




−βT − µ 0 0 0 −βXu

0 −ε1βT − µ 0 0 −ε1βXv

(1 − p)βT 0 −(χ + ν + µ) 0 (1 − p)βXu

0 (1 − ε2p)ε1βT χ −(µ + ε3ν) (1 − ε2p)ε1βXv

pβT pε1ε2βT ν ε3ν pβXu + pε1ε2βXv − (µ + µT + φ)




.

Evaluating J at P0 = ( (1−c)π
µ

, cπ
µ

, 0, 0, 0) we get

J(P0) =




−µ 0 0 0 −β(1−c)π
µ

0 −µ 0 0 −ε1βcπ
µ

0 0 −(χ + ν + µ) 0 (1−p)β(1−c)π
µ

0 0 χ −(µ + ε3ν) (1−ε2p)ε1βcπ
µ

0 0 ν ε3ν
pβ(1−c)π

µ
+ pε1ε2βcπ

µ
− (µ + µT + φ)




.
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For simplicity we let

a = χ + ν + µ,

b =
(1 − p)β(1 − c)π

µ
,

c = µ + ε3ν,

d =
(1 − ε2p)ε1βcπ

µ
,

γ =
pβ(1 − c)π

µ
+

pε1ε2βcπ

µ
− (µ + µT + φ).

And then solve for the eigenvalues of J(P0)

|J(P0) − λI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ − λ 0 0 0 −β(1−c)π
µ

0 −µ − λ 0 0 −ε1βcπ
µ

0 0 −a − λ 0 b

0 0 χ −c − λ d

0 0 ν ε3ν γ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0.

⇒ (−µ − λ)(−µ − λ)

∣∣∣∣∣∣∣∣∣

−a − λ 0 b

χ −c − λ d

ν ε3ν γ − λ

∣∣∣∣∣∣∣∣∣
= 0.

⇒ λ1 = λ2 = −µ.

And

(−a − λ)((−c − λ)(γ − λ) − dε3ν) + b(χε3ν + ν(c + λ)) = 0,

which reduces to

λ3 +(c+a−γ)λ2+(ac−dε3ν +−bν−cγ−γa)λ−(acγ +adε3ν +bχε3ν +bcν) = 0.
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Let

a1 = c + a − γ,

a2 = ac − dε3ν + −bν − cγ − γa,

a3 = −(acγ + adε3ν + bχε3ν + bcν).

⇒ λ3 + a1λ
2 + a2λ + a3 = 0.

By the Routh-Hurwitz Stability Criterion used before,

a1 = c + a − γ > 0,

⇒
[
µ + ε3ν

]
+

[
χ + ν + µ

]
−

[pβπ(1 − c + ε1ε2c)

µ
− (µ + µT + φ)

]
> 0.

The inequality holds if

pβπ(1 − c + ε1ε2c)

µ
− (µ + µT + φ) < 0,

pβπ(1 − c + ε1ε2c)

µ(µ + µT + φ)
< 1,

R0 < 1.

a3 = −(acγ + adε3ν + bχε3ν + bcν) > 0

⇒ acγ + adε3ν + bχε3ν + bcν < 0

⇒ acγ + adε3ν + bν(χε3 + c) < 0

⇒
[
(χ+ν+µ)(µ+ε3ν)

(
pβπ(1−c+ε1ε2c)

µ
−(µ+µT +φ)

)]
+

[
(χ+ν+µ)

(
(1−ε2p)ε1βcπ

µ

)
ε3ν

]
+

[
(1−p)(1−c)βπν

µ
(χε3 + (µ + ε3ν))

]
< 0

The summation of the three terms above is negative if we have the following
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conditions

γ =
pβπ(1 − c + ε1ε2)

µ
− (µ + µT + φ) < 0

⇒ pβπ(1 − c + ε1ε2)

µ
< µ + µT + φ

⇒ pβπ(1 − c + ε1ε2)

µ(µ + µT + φ)
< 1

⇒ R0 < 1

d =
(1 − ε2p)ε1βcπ

µ
< 0, ⇒ 1 < ε2p

b =
(1 − p)β(1 − c)π

µ
< 0 ⇒ 1 < p or 1 < c

.

a1a2 − a3 > 0
(
c + a − γ

)(
ac − dε3ν − γ(c + a) − bν

)
+

(
acγ + adε3ν + bν(χε3 + c)

)
> 0

It can be observed that for the product a1a2 to be positive, γ ,d and b has to

be negative. We have already analyzed the conditions for γ < 0 ,d < 0, b < 0

above. It can be noted also that if a3 < 0, the inequality holds, and a3 is readily

negative. Thus we have the same conditions as above for a1 > 0 and a3 > 0 for

the third part of the criterion to hold.

Analysis of Pe

Due to the size of the endemic equilibrium points, finding the conditions for Pe to

be stable manually, will be a bit cumbersome. At this point, we will not consider

numerical analysis.
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Chapter 7

Numerical Analysis by the

Fourth Order Runge-Kutta

Scheme

Numerical analysis were carried out for the models using the above mentioned

method. Numerical values of the parameters taken from [3] were used and the

change in behavior of the graphs noted and discussed. The iterative process by

the fourth order Runge-Kutta scheme is given by

Yn+1 = Yn +
1

6
(k1 + 2k2 + 2k3 + k4)

where

k1 = hf(xn, yn)

k2 = hf(xn + 1/2h, yn + 1/2k1)

k3 = hf(xn + 1/2h, yn + 1/2k2)

k4 = hf(xn + h, yn + k3).

The values of the parameters used are given in table 7.1:
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value value

π 0.2

β
0.005

µ 0.013

µT
0.461

φ 0.8

p 0.001

c 0.9

0.5ε1

ε2 0.4

ε3 0.005

χ 0.1

parameter parameter

Table 7.1: List of parameter values used in Numerical analysis

The initial populations were estimated in table 7.2 Xu = 50000and Lu = 1000

were used for the first 2 models. Xu = 40000 and Lu = 800 were used for models

3 to 5. To maximize convergence, we ran 1000 points. The matlab programmes

are given in the appendix.

In figure 7.1 to 7.5, are the graphs of the active TB individuals against time.

From figure 7.1 we can see that the graph is increasing to about 1400 individuals

by the second year. It is quite a sharp and fast increase. By the tenth year

there were about 2700 individuals. The graph stopped increasing by the seventh

year and started to decrease after the tenth year. This is because during the

seventh year, the initial susceptible population was almost zero. So there were

no more people coming into the active TB class. They started decreasing because

of natural death and death due to the disease. We can can see how terrible the

endemic can be without any control measures.

When we introduce treatment, the rate at which TB invades the population
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variable value

Xu

Xv
10 000

Lu
1 000, 800

Lv 200

T 100

50000, 40000

Table 7.2: List of variable values used in Numerical Analysis

decreases. There is a small reduction in the total number of TB cases observed

during the first year, about 30% decrease. Then the graph rises again. By the

second year there were about 750 individuals compared to 1400 for the first model.

By the tenth year there were about 1000 individuals which is an improvement

compared to the first model. So treatment has a positive effect in reducing

TB cases but a very small effect and for a short period of time. Which means

treatment needs to be enhanced for better results.

The introduction of pre-exposure vaccines shows a great improvement compared

to treatment alone. There is a very significant decrease in the TB cases by about

85% until the fifth year. Which means that the period of effectiveness is now

extended to five years instead of two years for the model with treatment, and the

TB cases reduced have been increased also. But after the fifth year we notice

an increase again in the TB cases. Which means that pre-exposure vaccines

with treatment is very effective but the effectiveness diminishes with time. If we

extend the time to 30 years the graph will still be increasing.
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With post-exposure vaccines and treatment, the graph decreases, reducing about

75% of active TB cases. The number of cases reduced is smaller compared to

that of the pre-exposure vaccines. But the good thing about this model is that

the graph keeps on approaching zero.If we extend the time to 30 years the graph

will still be decreasing. Which means that the effectiveness of the post-exposure

vaccines does not diminish with time, but increases.

In figure 7.5, we observe how the two vaccines together with treatment give best

results. The TB cases are reduced by about 87%. The graph keeps on approaching

zero. Which means that the combination of the three control measures give better

results than the individual strategies. While the number of TB cases is kept

minimum, the effectiveness also increases with time. If we extend the time to 30

years the graph will still be decreasing.

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000
Active TB Cases 1

Figure 7.1: Active TB Cases 1
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Figure 7.2: Active TB Cases 2
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Figure 7.3: Active TB Cases 3
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Figure 7.4: Active TB Cases 4

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100
Active TB Cases 5

Figure 7.5: Active TB Cases 5
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Model Validation and Conclusion

The efficiency of the reproduction numbers of the models have been discussed.

Results from numerical analysis also have been interpreted. From the former,

it was concluded that pre-exposure vaccines are the most effective since even

with the combined model the value of the reproduction number was the same

as for the pre-exposure vaccines alone. From the latter, it was revealed that the

effectiveness of pre-exposure vaccines diminishes with time while for the post-

exposure increases. We observed how the graph of the pre-exposure vaccines

started increasing after 5 years and that of the post-exposure decreasing.

In the combined strategy we saw how the two vaccines together gave best results.

While the number of TB cases reduced was kept at maximum, the effectiveness

was maintained. We noted that the graph kept approaching zero. Thus the com-

bination of the vaccines together with high treatment rates is best in eliminating

TB cases.

The results agree with the recommendations of [10]. Indeed the combination

of a pre-exposure vaccine, a post-exposure vaccine, and treatment of active TB

is the most effective epidemic-control strategy for TB elimination in developing

countries, where the prevalence of both infection and reactivation of latent bacilli

is high.

[18] et al found that the effectiveness of post-exposure vaccines would diminish

over time, whereas that of pre-exposure vaccines would increase. This contrast
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might be from the fact that their analysis was based in developing countries

with a high incidence and prevalence of infection only. The prevalence of reac-

tivation of latent infection was not considered. As a result the effectiveness of

the post-exposure vaccines will become less significant with time because it was

assumed there are fewer individuals who needed the post-exposure vaccines. I

strongly believe that if both cases (infection and reactivation of latent bacilli)

were considered, the results would be different.

Due to the increasing prevalence of HIV infection in developing countries, the

models should be developed to include interactions between HIV as future work.

Population age-structures included, would make the models more realistic be-

cause HIV prevalence vary significantly with age. The assumptions should be

extended to allow the occurrence of TB cases more than once, that is recovered

individuals becoming susceptible again. This is because of the fact that HIV in-

fection has no cure, thus as long as an individual is HIV positive, he will remain

highly susceptible to TB infection even after successful treatment. Such models

can be used to identify the best strategies for the elimination of TB where HIV

infection rates are high. This is because HIV infection is the strongest risk factor

yet identified for progression to active TB and the infected individuals are highly

susceptible.
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Appendix

Matlab Programme for the basic TB transmission model

clear T = 10; h = 0.01;

Xu0 = 50000; Lu0 = 1000; Tu0 = 100;

pie = 0.2; mu = 0.013; beta = 0.005; p = 0.001; nu = 0.00527; muT = 0.461;

Xu(1) = Xu0; Lu(1) = Lu0; Tu(1) = Tu0;

t(1) = 0; n = T/h;

for i = 2:n

k11 = h * (pie - mu * Xu0 - beta * Xu0 * Tu0);

k21 = h * (pie - mu * (Xu0+h/2) - beta * (Xu0+h/2) * (Tu0+k11/2));

k31 = h * (pie - mu * (Xu0+h/2) - beta*(Xu0+h/2)*(Tu0+k21/2));

k41 = h * (pie - mu *(Xu0 +h) - beta *(Xu0+h) *(Tu0+k31));

k12 = h* ((1-p)* beta * Xu0 * Tu0 - (mu +nu) * Lu0);

k22 = h * ((1-p) * beta *(Xu0+h/2)*(Tu0+k12/2) - (mu+nu)*(Lu0+h/2));

k32 = h * ((1-p) * beta * (Xu0+h/2) *(Tu0+k22/2)-(mu+nu)*(Lu0+h/2));
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k42 = h * ((1-p) * beta*(Xu0+h) *(Tu0+k32) - (mu+nu)* (Lu0+h));

k13 = h*(p*beta*Xu0*Tu0 + nu*Lu0 - (mu+muT)*Tu0);

k23 = h*(p*beta*(Xu0+h/2)*(Tu0+k13/2) + nu*(Lu0+h/2) - (mu + muT)*(Tu0+k13/2));

k33 = h*(p*beta*(Xu0+h/2)*(Tu0+k23/2) + nu*(Lu0+h/2) - (mu + muT)*(Tu0+k23/2));

k43 = h*(p*beta*(Xu0+h)*(Tu0+k33) + nu*(Lu0+h) - (mu+muT)*(Tu0+k33));

t(i) = i*h; Xu(i) = Xu0 + 1/6*(k11 + 2*k21 + 2*k31 + k41);

Lu(i) = Lu0 + 1/6 *(k12 + 2*k22 + 2*k32 + k42);

Tu(i) = Tu0 + 1/6 *(k13 + 2*k23 + 2*k33 + k43);

Xu0 = Xu(i); Lu0 = Lu(i); Tu0 = Tu(i);

end

figure(10) plot(t,Xu,’b’) title(’Susceptibles 1’)

figure(11) plot(t,Lu,’r’) title(’Latently Infected Individuals 1’)

figure(12) plot(t,Tu,’g’) title(’Active TB Cases 1’)

Programmes for the other model equations are similar. The only difference is

with the k’s, which will vary according to the equations.
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