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Abstract

This paper is an investigation of the possible effects of vaccination and treatment

on the dynamics of HIV-AIDS in a varying population. The devastating global

impact of HIV has increased research efforts to find an effective vaccine, or drugs

that would reduce the progression and transmission rate of the disease. Antiretro-

viral drugs used in treatment, such as AZT(zidovudine), ddc(didieosyinosine) are

presently used as a chemotherapy treatment of HIV-AIDS.

The models discussed in this study are basically theoretical models since vacci-

nation is not yet available, especially in the developing countries like Zimbabwe.

First, an SIR model was used to define the general sense of modelling an infectious

disease. We then discussed the general AIDS model to describe the dynamics of

the disease in a situation without any intervention programs in place. Stability

analysis was looked at using mathematical analysis. A model when vaccination

policy is in effect was also discussed. Critical conditions for the eradication of

the disease were derived. For the sake of arguments, numerical simulations on

the effect of vaccination were carried out for the cases when the proportion vac-

cinated is below and when it is above the critical proportion.

Next we assumed a case when treatment alone is used as a control strategy for

the control of the disease and when a combination of treatment and vaccination

was used. Stability analysis was carried out for each model and critical conditions

were derived. With these critical values we would be able to know the minimum

portion of susceptible individuals to be vaccinated and the infectives to be treated

so that we can effectively control the dynamics of the disease.
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Chapter 1

INTRODUCTION AND

STATEMENT OF THE

PROBLEM

AIDS is the fourth leading cause of death globally and the leading cause in

Africa. As of the year 1996, approximately 23 million people were HIV positive

worldwide. The latest number of HIV positive individuals worldwide stood at 42

million by end of 2003. Of the 42 million HIV positive individuals, 29 million were

Africans. In 2003 alone, 3 million Africans died of AIDS [?]. The data given above

shows that the situation is getting worse and requires serious intervention. The

devastating global impact of HIV has increased research efforts to find an effective

vaccine, or drugs that would reduce the progression and transmission rate of HIV.

These efforts have been mildly successful since HIV evolves resistance to drugs

and mutates extremely fast [?]. To date there is no vaccine even though there

are candidate vaccines on trial. There are a number of antiretroviral drugs that

have provided relief to sufferers but are not a cure. Antiretroviral drugs used in

treatment, such as AZT(Zidovudine), ddc(didieosyinosine) also work temporarily,

and required a combination of drugs to be effective to avoid drug resistance.
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1.1 Research Overview

Mathematical models have been developed to describe the effects of vaccination

and treatment on the dynamics of HIV-AIDS in a population. Models were formu-

lated using systems of nonlinear ordinary differential equations and then analysed

mathematically to provide, through certain threshold conditions, insights on the

dynamics of the disease as influenced by the implementation of vaccination and

treatment programs. A vaccination program could involve several components

such as education as well as a clinical vaccination. Analysis of the mathematical

models leads to the derivation of very important parameter, commonly known

as the basic reproduction number, R0, which is a dimensionless quantity measur-

ing the average number of secondary infections caused by an infective individual

introduced into a completely susceptible population. In epidemiology R0 deter-

mines whether a disease will invade the host population or not. Such behaviour

can be stated as follows in epidemiological terms: If the average number of sec-

ondary infections caused by an average infective is less than one, a disease will die

out, but if it exceeds one then an epidemic will result [?]. Numerical simulations

were also carried out on vaccination alone for the cases when φ < φ∗ and φ > φ∗.

1.2 Aims and Objectives

The main aims of this thesis are:

-To study the effect of vaccination on the spread of the disease,

-To study the effect of treatment on the spead of the disease,

-To study the combined effect of vaccination and treatment on the spread of the

disease ,

-To contribute to policy formulation for implementation of intervention strategies
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on the spread of HIV-AIDS.

1.3 Thesis Outline

Chapter 1 covers preliminary examples that will serve as an introduction to some

terminology and results already known. I begin Chapter 2 by presenting a basic

HIV model as an SIR type. A disease is classified as an SIR if it confer immunity

to the recovered individuals. With HIV-AIDS, once infected you are infected

forever and you are only removed by death. In this model the total population

is divided into three groups-susceptibles, infectives and those with full blown

AIDS. There is a constant replenishment from outside into the host population.

Chapter 3 looked at vaccination as a control strategy. Threshold conditions for

the control of the disease by vaccination were derived and numerical simulations

were carried out. Chapter 4 looked at treatment and finally, Chapter 5 focused on

an integrated intervention where vaccination and treatment strategies are carried

out at the same time.

1.4 Work done by others

Ying-Hen Hsieh.Shin-Pyng Shen looked at the effects of density-dependent treat-

ment and behaviour change on the dynamics of HIV transmission. In their work,

they proposed a model for heterosexual transmission of HIV-AIDS in a vary-

ing population. They made an assumption that treatment induces behavioural

change in treated individuals.They made this assumption because of its socio-

economic implications which is important for public health considerations since

density- dependent treatment-behaviour change may be more cost -saving than

a program where treatment-behaviour change occurs linearly with respect to the
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number of infecteds. In their model formulation, the active population in each sex

is divided into three classes, susceptibles, untreated infecteds, and treated infect-

eds. The two -sex model is then reduced to one-sex model using the conservation

law of total sexual contacts which simply assumes that each heterosexual contact

involves only one male and one female. It is assumed that the detected infect-

eds are taken into treatment which leads to a change in either sexual behaviour,

transmission probability, and -or incubation time. Denoting R0 as the average

number of individuals recruited during the period of infectiousness of an infected

individual, Ying Hseh concluded that if R0 > 1, the infected population increases

and the susceptible population decreases going to extinction and if R0 < 1, the

infected population decreases and the susceptible population increases. It was

then concluded that for the model with nonlinear treatment rate, the treatment

program has no effect at all on the asymptotic behaviour of either the propor-

tions or the population size. Their results showed that an intervention program

with density-dependent treatment-behaviour change rate, while less costly than

that of a linear treatment rate can not change the course of the epidemic if the

disease was able to spread without treatment-behaviour change. The results for

the reduction to one-sex model also show that, under the condition of conserva-

tion of total contacts given for their model, targeting strategy aiming prevention

program at either sex is viable in the sense that we need only to consider the

dynamics of one-sex model but the choice of either sex makes no difference on

the outcome.

Shu-Fang Hsu Schimitz [?], looked at the effects of education,vaccination and

treatment on HIV transmission in a population with genetic heterogeneity.This

paper extended the idea from Shu-Fang Schmitz [?] by introducing a compart-

ment of those suceptibles who receive education on HIV and study its effects

on the disease dynamics. In their model, education means counselling to have

fewer sex partners, abstain, and- or otherwise reduce risky behaviour. Their goal

was to investigate effects of education, temporary vaccination and treatmenton

14



HIV transmission in a homosexually active population with genetic heterogene-

ity. Following Hsu Schmitz [?], they classified the homosexually active population

into three classes of susceptible individuals: non-resistant, partially resistant and

fully resistant to HIV infection. Infected individuals are classified as rapid, nor-

mal and slow progressors. All the other model assumptions are the same as those

in Hsu Schmitz [?]. When modelling the effects of a public education campaign,

it was assumed that a certain number of individuals from the susceptible class

are educated at a given rate. Individuals in the educated class are those on whom

education has had some effect in changing their behaviour to reduce potentially

infective contacts. They derived the basic reproduction number for treatment,

and derived conditions under which any (small) increase in treatment will reduce

the basic reproduction number. Their results showed that treatment does not in-

terfere with the effects of vaccination or education, in the sense that the presence

of a treatment program does not prevent vaccination or education from reduc-

ing the basic reproduction number. Comparing the effects of treatment to those

of vaccination or education proved difficult analytically and is only enlightening

when they considered parameter analysis. They also looked at the effects of ge-

netic resistance and results suggested that slower progressors do contribute less

to infection than faster progressors, in which case both effects of partial genetic

resistance are beneficial to the population as a whole. The variation of the model

reproductive number as a function of the rate of getting educated and the overall

effectiveness of the education campaign illustrated the impact of education on the

spread of HIV. It was found that the basic reproduction number will be below one

as long as the rate at which susceptibles go to the educated class is not close to 0

and the effectiveness of education is at least 60 percent effective. This means that

educating even some small portion of susceptible individuals about the dangers

of HIV will have a significant effect in reducing the generation of newly infective

persons. To see the impact of vaccination on the reproductive number, [?] plotted

the gragh of R0 as a function of vaccine effectiveness and duration of protection

against HIV. The results showed that R0 < 1 only if the duration of protection is
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close to zero and vaccine effectiveness is approaching one. That is, the program

is effective only when the vaccine’s protection is essentially complete, and either

lasts indefinitely or is renewed regularly before it can wane. In their conclusions,

it was noted that some integrated intervention strategies are far more superior to

those based on a single approach, although treatment programs may have effects

which counteract each other, and may cause genetic resistance.

1.5 Methodology and Techniques

Definition 1 Consider the differential equation dx
dt

= f(x) where x = x(t)ε<n is

a vector valued function of an independent variable (usually time) and ∪ −→ <n

is a smooth function defined on some subset ∪ ⊆ <n. System in which the vector

field does not contain time explictly,are called autonomous.

Definition 2 The system dy

dt
= f(t, y) is said to be asymptotically autonomous

on the set ∆ if and only if :

1)-limt−→∞ f(t, y) = h(y) for yε∆ and

2)-For every ε > 0 and every yε∆ there exists a δ(ε, y) > 0 such that | f(t, x) −
f(t, y) |< ε1 whenever | x − y |< δ for 0 ≤ t ≤ ∞.

1.6 Kermac and McKendrick Models

We can consider one of the most simplest epidemiological models of SIR type to

define terms and illustrate some of the techniques to be used in this research. In

1927, Kermac and McKendrick published a paper which involved the study of the

transmission dynamics of a communicable disease that provide permanent immu-

nity after recovery. Their model was used to study single epizootic outbreaks [?].

The assumptions of the model are that :
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-An average infective individual make an adequate contact, that is, a contact

sufficient to transmit infection.

-The probability of contact of an infective with a susceptible is S
N

.

-A fraction γ of infectives recover per unit time.

-The demographic effects can be ignored since the epidemic time scale is very

short.

The model equations are :

dS

dt
=

−βSI

N
, (1.1)

dI

dt
=

βSI

N
− γI, (1.2)

dR

dt
= γI, (1.3)

N(t) = S(t) + I(t). (1.4)

S denotes the number of susceptibles, I is the number of infecteds (assumed infec-

tious), and R is the number of recovered individuals (assumed to be permanently

immune). β is the average number of susceptibles infected by one infectious in-

dividual per unit of time while γ is the per capita recovery rate (at which an

infected individual leaves the I class). The disease free equilibrium point for this

model is P0 = (N, 0, 0) and the basic reproduction number is given by R0 = β

γ
.

The threshold theorem of Kermack and McKendrick says that if R0 > 1 then an

outbreak will take place while if R0 < 1 there will be no outbreaks.

The addition of vital dynamics to the SIR model of Kermack and McKendrick,

lead to the following system:
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dS

dt
= B − βSI

N
− µS, (1.5)

dI

dt
=

βSI

N
− (µ + γ)I, (1.6)

dR

dt
= γI − µR, (1.7)

dN

dt
= B − µN, (1.8)

N = S + I + R. (1.9)

B is the birth rate and µ is the per capita natural death rate both assumed con-

stant. The disease free equilibrium point of the model given above is given by

P0 = (B
µ
, 0.0). The Jacobian matrix of the system is





−βI∗

N
− µS∗ −βS∗

N

βI∗

N

βS∗

N
− (µ + γ)





and at the disease free equilibrium point, we get





−B −β

0 B − (µ + γ)



 .

Eigenvalues are −B and B−(µ+γ). Therefore, the disease free equilibrium point

is locally asymptotically stable if

B − (µ + γ) < 0,

that is, if R0 < 1 and unstable if R0 > 1.

The threshold theorem of Kermack and McKendrick in this setting says that if

R0 > 1 then an outbreak will take place and the disease will persist while if

R0 < 1 the disease will die out.
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Chapter 2

BASIC HIV MODEL

2.1 Introduction

The model for HIV follows the same pattern as the SIR model ([?]). The SIR

model differs from the Aids model by the common assumption that in the SIR

model, the recovered class consist of those individuals who after recovery, confer

immunity (which include deaths: dead individuals are still counted) and do not

become susceptible again. In the Aids model, all individuals will have full blown

Aids and are removed by death only.

2.2 Model formulation

We now formulate this model, by dividing the total population into three classes-

susceptibles (X0), infectives (X2) and the full blown AIDS (X4) as illustrated

by the compartmental model shown in fig 2.1. Let us consider an SIR type dis-

ease in the absence of vaccination and treatment but with a constant inflow of

susceptibles. Let X0(t) be the number of individuals of the population who are
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susceptible to an infection at time t and let X2(t) be the number of individuals of

the population who are infective at time t. The total population size at time t is

denoted by N(t), with N = X0 + X2, since X4 does not take part in the disease

dynamics. When an infective makes contact, the probability of producing a new

infection is X0

N
since a new infection can be made only when a contact is made

with a susceptible. Thus the rate of producing new infections is cβ0X0X2

N
where

β0 and c are constants. The population is replenished only through births. β0 is

the infectious constant rate per person in unit time and c is the mean number of

sexual contacts per person.

We assume that all new recruitments enter the susceptible class at a constant rate

and there is a disease induced death δ > µ for the full blown class. In summary,

the AIDS assumptions we have in this model are that X0, X2 and N are the

number of susceptibles, infectives and the total population, respectively. There

is a constant inflow of bN new members into the population in unit time who are

susceptibles. There is a constant per capita natural death rate µ > 0 in the X0,

X1 classes. There is a constant death rate δ > µ due to the disease in the full

blown AIDS class. A fraction ν ≥ 0 of infectives progress to the AIDS class in

unit time.

From fig 2.1, we have the following governing equations:

dX0

dt
= bN − cβ0X0X2

N
− µX0, (2.1)

dX2

dt
=

cβ0X0X2

N
− (µ + ν)X2, (2.2)

dX4

dt
= νX2 − (µ + δ)X4. (2.3)

Note that the first two equations do not depend on X4 and this clearly shows that

the X4 class does not influence the dynamics of the HIV-AIDS disease. Hence,

we can work with the first two equations. Therefore, the total population is the

sum of two classes, susceptibles and infectives, thus :

N(t) = X0(t) + X2(t).
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Figure 2.1: Compartmental model for the disease without intervention

It follows that dN
dt

= dX0

dt
+ dX2

dt
= (b − µ)N . The system is now asymptotically

autonomous, so we can define the limit value of N as follows:

lim
t−→∞

N(t) = lim
t−→∞

N0e
(b−µ)t = ∞

only if b > µ but N(t) → 0 if b < µ. Introducing non-dimensional variables

x0 = X0

N
, x2 = X2

N
, we have :
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dx0

dt
= b − β0x0x2 − bx0, (2.4)

dx2

dt
= cβ0x0x2 − bx2. (2.5)

2.3 Model Analysis

Setting the right hand of system (2.4)-(2.5) to zero, we get :

b − cβ0x
?
0x

?
2 − bx?

0 = 0, (2.6)

cβ0x
?
0x

?
2 − bx?

2 = 0. (2.7)

The system has two equilibrium points, namely disease free equilibrium point

given by

(x?
0, x

?
2) = (1, 0)

and the endemic equilibrium point given by :

(x?
0, x

?
2) = (

b

cβ0
,
cβ0 − b

cβ0
),

where cβ0 > b.

Using R0 , we can rewrite the equilibria.

(x∗
0, x

∗
2) = (

1

R0
, 1 − 1

R0
) = (

1

R0
,
R0 − 1

R0
).

Note that since x∗
2 ≥ 0 , the endemic equilibrium point exists if and only if

R0 ≥ 1.

Definition 3 The Basic Reproduction number, R0: The basic reproduction num-

ber, R0 = cβ0

b
, is the expected number of secondary cases produced, in a completely

susceptible population during the period of infectiousness by a typical infective in-

dividual.
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To study the local stability of a fixed point we linearize our system first. Given

the linearized matrix the, Jacobian matrix :

J|P0
=





−cβ0x
∗
2 − b −cβ0x

∗
0

cβ0x
∗
2 cβx∗

0 − b



 .

The Jacobian matrix at a disease-free equilibrium is given by:





−b −cβ0

0 cβ0 − b



 .

From the eigenvalues λ1 = −b and λ2 = cβ0 − b, one can easily see that the

disease free equilibrium is stable if cβ0 − b = b(R0 − 1) < 0, that is, if R0 < 1.

Now we can turn to an endemic equilibrium and study its stability closely. The

Jacobian matrix evaluated at the endemic equilibrium is given by:





−cβ0 −b

cβ0 − b 0



 .

The trace of this matrix is always negative and the determinant is positive as long

as cβ0 − b = (R0 − 1) > 0, that is , the same condition as the one for existence of

an endemic equilibrium.

Theorem 1 Consider system (2.4)-(2.5),

i)-the disease free equilibrium is locally asymptotically stable if R0 < 1 and un-

stable if R0 > 1.

ii)-the endemic equilibrium point is locally asymptotically stable if R0 > 1.

Heuristically, we can define R0 as the product of infection rate cβ0 and mean

duration of infection 1
b
. However, for more complicated models with several

infected compartments this simple heuristic definition of R0 is insufficient. A

more general basic reproduction number can be defined as the number of new

infections produced by a typical infective individual in a population at a disease
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free equilibrium. Note that for this model the basic reproduction depends on the

contact rate, β0, the mean number of sexual contacts, c and the rate at which

new susceptibles are introduced into the population, b.
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Chapter 3

SVIR MODEL

3.1 Introduction

An SVIR model is a Susceptible-Vaccinated-Infected-Removal model. Mass vac-

cination as a control mechanism attempts to lower the degree of susceptibility

of healthy individuals against a particular pathogenic agent, and in this case the

HIV agent.This has the effect of reducing the number of infectives in a popula-

tion, and maybe, the proportion of contacts with infected individuals giving rise

to the concept of ’herd immunity’.

The model described below differs from the SIS model formulated by Kribs-

Zaleta, [?], which assumes that the vaccine wears off at a constant rate θ.

3.2 Model Formulation

We now formulate this model, by dividing the population into four classes, namely

susceptibles (X0), vaccinated (X1), infectives (X2) and the full blown AIDS (X4).

Let us consider an SIR type disease when a vaccination program is in effect and
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there is a constant inflow of susceptibles through births. Let X0 be the number

of susceptibles, X1 the number of vaccinated, X2 the number of infecteds , X4

the number of full blown AIDS cases and N the total population. We model

new infections using the simple mass-action law, so
cβ0X0X2

N
+

c(1 − γ)β0X1X2

N
where β0 is the rate of contact sufficient to transmit the disease . We also as-

sume a constant progression rate ν1.The vaccine has the effect of reducing the

susceptibility to infection by a factor γ, 0 < γ < 1 so that γ = 0 means that the

vaccine is ineffective in preventing infection, while γ = 1 means that the vaccine

is completely effective. The rate at which the susceptible population is vaccinated

is φ.We assume that there is a disease related death and define δ to be the rate

of disease-related death, while µ is the rate of natural death that is not related

to the disease. The population is replenished at a rate bN where b is the birth

rate (see fig 3.1).

The dynamics of the disease are described by a system of differential Equations

given by:

dX0

dt
= bN − cβ0X0X2

N
− (φ + µ)X0, (3.1)

dX1

dt
= φX0 −

c(1 − γ)β0X1X2

N
− µX1, (3.2)

dX2

dt
=

cβ0X0X2

N
+

c(1 − γ)β0X1X2

N
− (ν1 + µ)X2, (3.3)

dX4

dt
= ν1X2 − (µ + δ)X4, (3.4)

dN

dt
= (b − µ)N − δX4, (3.5)

with X0(t) + X1(t) + X2(t) = N(t). This system is a special case of the system

studied by Kgosimore and Lungu [?].

Introducing non-dimensional variables xi = Xi

N
for i = 0, 1, 2, we obtain

dxi

dt
=

(dXi

dt
− xi

dN
dt

)

N
.

Since the variable X4 does not appear in the first three equations of the system

above we shall consider the equations (3.1) - (3.3) only so that we can take
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Figure 3.1: Compartmental model for the disease with vaccination

ν1 = 0. Clearly, the AIDS class does not influence the dynamics of this system.

This assumption leads to the reduced system:

dx0

dt
= b − cβ0x0x2 − (φ + b)x0,

dx1

dt
= φx0 − c(1 − γ)β0x1x2 − bx1,

dx2

dt
= cβ0x0x2 + c(1 − γ)β0x1x2 − bx2,

and
2

∑

i=0

xi = 1.
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Our resultant model is still a variable population model and our original objective

of investigating the effects of vaccinating susceptible individuals on the spread

of the disease can still be undertaken and is not affected by the simplifying as-

sumption made. This is the system that we will analyse in order to illustrate the

evolution of the disease. The equilibrium points for the model are obtained by

setting the right hand side of the above system to zero. That is :

b − cβ0x
∗
0x

∗
2 − (φ + b)x∗

0 = 0, (3.6)

φx∗
0 − c(1 − γ)β0x

∗
1x

∗
2 − bx∗

1 = 0, (3.7)

cβ0x
∗
0x

∗
2 + c(1 − γ)β0x

∗
1x

∗
2 − bx∗

2 = 0. (3.8)

From (3.6)-(3.8)

x∗
2[cβ0x

∗
0 + c(1 − γ)β0x

∗
1 − b] = 0,

which gives

x∗
2 = 0

or

cβ0x
∗
0 + c(1 − γ)β0x

∗
1 − b = 0.

The solution x∗
2 = 0 leads to the disease free equilibrium point

(x∗
0, x

∗
1, x

∗
2) = (

b

φ + b
,

φ

φ + b
, 0).

To compute the endemic equilibrium we make use of
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cβ0x
∗
0 + c(1 − γ)β0x

∗
1 − b = 0. (3.9)

Now, from equation(3.9) we have

x∗
1 =

φx0

b + c(1 − γ)β0x
∗
2

=
bφ

(b + φ + cβ0x
∗
2)(b + β0c(1 − γ)x∗

2)
.

Substituting for x∗
0 and x∗

1 in (3.9) we obtain

B1x
∗
2
2 + B2x

∗
2 + B3 = 0, (3.10)

where

B1 = c2β2
0(1 − γ),

B2 = cβ0[(φ + b)(1 − γ)β0 + b] − (1 − γ)cβ0,

B3 = (φ + b)b(1 − { cβ0

b + φ
+

φcβ0(1 − γ)

b(b + φ)
})

= b[b + φ][1 − R]

where R =
cβ0

b + φ
+

φ(1 − γ)cβ0

b + φ
.

Defining R0 =
cβ0

b
and R0v =

(1 − γ)cβ

b
, see [?], we have

R =
b

b + φ
R0 +

φ

b + φ
R0v

and

x2 =
−B2 +

√

B2
2 − 4B1(φ + b)[1 − R]

2B1
.

Theorem 2 The endemic equilibrium point of (3.10) exists if R > 1.
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3.3 Stability analysis

We first construct the Jacobian matrix J = Df(xi) where D = ∂
∂xj

for i, j =

0, 1, 2.

J =











−cβ0x
?
2 − (φ + b) 0 −cβ0x

?
0

φ −c(1 − γ)β0x
?
2 − b −c(1 − γ)β0x

?
1

cβ0x
?
2 c(1 − γ)β0x

?
2 cβ0x

?
0 + c(1 − γ)β0x

?
1 − b











.

At the disease free equilibrium point P0 = ( b
φ+b

, φ

φ+b
, 0), the Jacobian matrix

becomes:














−(φ + b) 0 cβ0b

φ+b

φ −b
−c(1 − γ)β0φ

φ + b

0 0
c(1 − γ)β0φ

φ + b
+

cbβ0

φ + b
− b















and the eigenvalues of J|P0 are obtained from λ such that | J|P0 − λI |= 0

The eigenvalues are −(φ + b),−b,
cβ0b

φ + b
+

c(1 − γ)β0φ

φ + b
− b. For stability of the

disease free equilibrium
cβ0b

φ + b
+

c(1 − γ)β0φ

φ + b
− b < 0 which leads to:

R(φ) =
cβ0

φ + b
+

c(1 − γ)β0φ

b(φ + b)
,

=
b

b + φ
R0 +

φ

b + φ
R0v

where R0 =
cβ0

b
and R0v =

(1 − γ)cβ0

b
. Here, R0 is the basic reproduction num-

ber in the absence of intervention and R0v is the basic reproduction number for

the population where all individuals are vaccinated and R(φ) is the vaccination

basic reproduction number.
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3.4 Model Analysis

Now we can study the stability of the endemic equilibrium.The Jacobian matrix

evaluated at the endemic equilibrium is given by:











−cβ0x
∗
2 − (φ + b) 0 −cβ0x

∗
0

φ −c(1 − γ)β0x
∗
2 − b −cβ0x

∗
1

cβ0x
∗
2 c(1 − γ)β0x

∗
2 cβ0x

∗
0 + c(1 − γ)β0x

∗
1 − b











.

The trace of this matrix is always negative and the determinant is positive as

long as cβ0x
∗
0 + c(1 − γ)β0x

∗
1 − b < 0, that is, the same condition as the one for

existance of an endemic equilibrium. In summary there is change in stability as

R(φ) increases across R(φ) = 1.

Theorem 3 If R(φ) < 1, the disease free equilibrium is locally asympotically sta-

ble,and the endemic equilibrium unstable. If R(φ) > 1, the disease free equilibrium

does not exist and the endemic equilibrium exists, and is locally asymptotically

stable where R(φ) =
cβ0

φ + b
+

cβ0(1 − γ)φ

b(φ + b)
is the vaccination reproduction number.

3.5 Analysis of the Vaccination Reproduction

number

In this section, we determine the necessary and sufficient conditions that slow

down the development of the disease and that reduce the reproduction number

below the threshold of one. For vaccination, this is done by looking at ∆φ which

shows the differences between the basic reproduction number and the reproduc-

tion numbers due to vaccination . A positive difference in this case mean that

vaccination is effective in lowering infectivity[?]. We also look at the derivative

31



and critical value of the reproductive numbers of vaccination .

To investigate long term expected effect of vaccination as a control strategy for

the spread of HIV-AIDS, we address the problem in which vaccination is available

to a proportion of the population.

We seek to derive conditions under which vaccination alone can slow down or

eradicate the disease.The reproduction number in the presence of a vaccination

strategy φ is

R(φ) = R0{
b + (1 − γ)φ

φ + b
}.

We can see that R(φ) is a decreasing function of φ with R(0) = R0.

Let us assume that all susceptibles are vaccinated immediately, that is , φ → ∞.

We see that

R(φ) = R0{
b + (1 − γ)φ

φ + b
}

= R0{1 − γφ

φ + b
} < R0.

lim
φ→∞

R(φ) = lim
φ→∞

R0{1 −
γφ

φ + b
}

= R0 lim
φ→∞

{1 − γφ

φ + b
}

= (1 − γ)R0 < R0.

When R0 < 1, the disease cannot develop into an epidemic, and vaccination will

not be necessary in this case. If R0 > 1, we want to consider the vaccination

strategy that reduces the reproduction number R(φ) to below the threshold of

one.
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We consider this as a problem of finding the critical value φ∗ for which a vacci-

nation program succeeds in slowing down or in eradicating the disease.

We first look at the difference between the reproduction number R0 and R(φ)

which satisfies the Hsu-Schmitz [?] condition that

∆φ = R0 − R(φ) = R0 − R0(
b + (1 − γ)φ

φ + b
),

=
γφ

φ + b
R0 > 1

and then, on differentiating the vaccination reproduction number R(φ) with re-

spect to φ gives

dR(φ)

dφ
= R0{

(φ + b)(1 − γ) − [b + (1 − γ)φ]

(φ + b)2
,

which simplifies to :

dR(φ)

dφ
=

−γbR0

(φ + b)2
< 0.

Clearly, this condition is necessary for slowing down the development of the dis-

ease. This result is true from the fact that R(φ) is a decreasing function of φ.

We can determine the critical fraction φ∗ for which the vaccination program suc-

ceeds in reducing R(φ) below the threshold of one.

Setting the vaccination reproduction number equal to one, that is,

R(φ) = 1,

we get

φ∗ =
b(R0 − 1)

1 − (1 − γ)R0

> 0
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and that it exists for R0 > 1 > (1 − γ)R0. Note that for R0 > (1 − γ)R0 > 1,

there is no φ for which R(φ) < 1. Therefore, for R0 > (1 − γ)R0 > 1 the disease

will remain endemic in the population.

3.6 Numerical Simulations on the effect of Vac-

cination on HIV Transmission

As shown in the previous sections, the dynamics of the HIV transmission may be

controlled by vaccinating the susceptible individuals.

In order to obtain numerical hints about the discussed conditions we analyse

simulations of the model with vaccination for a given set of parameters [?].

Table 3.1: approximate values/year for the parameters and variables used in the
numerical simulations.

c mean number of sexual contacts per person 5
γ mean reduction factor in susceptibility due to vaccination 0.6
β0 the infectious constant rate 0.05
µ natural death rate 0.02
b mean birth rate 0.03
ν1 progression rate to the full blown AIDS class 0.23
δ disease-induced death rate 0.88
S susceptible population 5000
V vaccinated population 4950
I infected population 50
A full blown AIDS population 0
N total population 10000
φ∗ critical value of the proportion of susceptibles vaccinated 0.264
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Figure 3.2: Model simulation (3.1)-(3.4) on the effects of vaccinating a proportion
φ = 0.001 < φ∗

3.7 Numerical results on the effect of vaccinat-

ing a proportion φ < φ∗

By vaccinating a proportion φ < φ∗ of susceptibles, it can be seen from figure 3.2

below that the number of susceptible individuals (X0 or S) will increase with

time and the number of vaccinated individuals (X1 or V ) will decrease.

There will be a ‘fake’ decline in the number of infected individuals (X2 or I)

due to vaccination for the first 20 years but in the long run the HIV infected

individuals will increase.

Also the number of individuals with full blown AIDS (X4 or A) will rise to
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a peak during the first 20 years and then start to decline before they start to

increase again after 60 years.

Looking at the vaccination reproduction numbers which settle at R(φ) = 8.0699,

we can see that the number of new cases of infections produced by an infected

individual in a population that is vaccinated below the critical proportion φ∗ will

increase.

3.8 Numerical results on the effect of vaccinat-

ing a proportion φ > φ∗

Vaccinating a proportion φ > φ∗ of susceptibles will result in a decrease in the

number of susceptibles to below 1000 and then levels off in the long run (see figure

3.3 below). The vaccinated individual population (X1 or V ) will rise during

the first 10− 15 years and level off in the long run above 8000 because a greater

proportion φ = 0.5 has been vaccinated. The infected individual population

(X2 or I) decreases to zero during the first 20 years and there will not be any

new cases of infection. Full blown AIDS cases (X4 or A) will rise slightly for

the first 5 − 12 years before it come to zero cases.

Clearly, vaccination is effective in eradicating the HIV virus provided a proportion

greater than the critical proportion φ∗ of susceptibles is vaccinated. The value

of the vaccination reproduction numbers which settles at R(φ) = 0.6289 clearly

support this fact since new cases of infection produced by an infected individual

in a population which is vaccinated at a proportion φ > φ∗ is below one.

Note 1 Note that some of the parameter values used in the simulation are quoted

in [?] and some are there for the sake of arguments.
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Figure 3.3: Model simulation (3.1)-(3.4) on the effects of vaccinating a proportion
φ = 0.5 > φ∗
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Chapter 4

TREATMENT MODEL

4.1 Introduction

Treatment also reduces the viral load of infected individuals thereby decreasing

the level of infectiousness and hopefully the rate of transmission[?].

4.2 Model Formulation

Assuming that all infected individuals are identified immediately after infection

we can consider treatment where ρ is the proportion of the treated infected indi-

viduals. ν is the rate of progression of the untreated infected individuals into the

AIDS class and ν1 is the rate of progression of the treated infected individuals

into the AIDS class where ν > ν1. δ is the death rate due to the disease.We

illustrate the disease dynamics by means of a compartmental model given below.
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Figure 4.1: Compartmental model for the disease with treatment

The differential equations for the compartment presented above are:

dX0

dt
= bN − cβ0X0X2

N
− µX0, (4.1)

dX2

dt
=

cβ0X0X2

N
− (ρ + µ + ν)X2, (4.2)

dX3

dt
= ρX2 − (µ + ν1)X3, (4.3)

dX4

dt
= ν1X3 + νX2 − (µ + δ)X4, (4.4)

and dN
dt

= (b − µ)N where N = X0 + X2 + X3.
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Introducing non-dimensional variables xi = Xi

N
for i = 0, 2, 3, we obtain

dxi

dt
=

(dXi

dt
− xi

dN
dt

)

N
.

As in the previous model, we consider the first three equations and assume that

ν = 0 and ν1 = 0. This eliminates the AIDS class and leads to the reduced

system:

dx0

dt
= b − cβ0x0x2 − bx0, (4.5)

dx2

dt
= cβ0x0x2 − (ρ + b)x2, (4.6)

dx3

dt
= ρx2 − bx3, (4.7)

dN

dt
= (b − µ)N, (4.8)

where x0 + x2 + x3 = 1.

The model is still a variable population model and our objective to investigate

effects of treating infected individuals on the disease can still be done and is not

affected by the simplifying assumption made.

4.3 Model Analysis

By setting the right hand side of the above system to zero we get:

b − cβ0x
∗
0x

∗
2 − bx∗

0 = 0,

cβ0x
∗
0x

∗
2 − (ρ + b)x∗

2 = 0,

ρx∗
2 − bx∗

3 = 0.

For the disease free equilibrium point, we consider a case when x∗
2 = 0. From the

first condition of the system above, we get x∗
0 = 1 and therefore the disease free

equilibrium point becomes

P0 = (1, 0, 0).
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The endemic equilibrium point of system is obtained when cβ0x
∗
0 = ρ + b, which

gives:

x∗
0 =

ρ + b

cβ0

.

After come calculations, we get the endemic equilibrium point as:

Pe = (
ρ + b

cβ0
,
b[cβ0 − (ρ + b)]

cβ0(ρ + b)
,
[ρ(cβ0 − (ρ + b)]

cβ0(ρ + b)
), cβ0 − (ρ + b) > 0.

To study the local stability of the fixed points we linearize our system first. The

Jacobian matrix is given by:

J =





−cβ0x
∗
2 − b −cβ0x

∗
0

cβ0x
∗
2 cβ0x

∗
0 − (ρ + b)



 .

The Jacobian matrix at the disease free equilibrium is given by :





−b −cβ0

0 cβ0 − (ρ + b)



 .

and its eigenvalues are −b and cβ0 − (ρ + b). Therefore, the disease free equilib-

rium point is stable if cβ0 − (ρ + b) < 0.

Now, we can turn to the endemic equilibrium and study its stability. The Jaco-

bian matrix evaluated at the endemic equilibrium is given by:







−b{cβ0 − (ρ + b)} − b −(ρ + b)

b{cβ0 − (ρ + b)}
ρ + b

0






.

The trace of this matrix is always negative and the determinant is positive as long

as R(ρ) > 1, that is, the same condition as the one for existence of an endemic

equilibrium. We can summerise these results as follows:

Theorem 4 If R(ρ) < 1 the disease free equilibrium is locally asymptotically and

unstable if R(ρ) > 1.

If R(ρ) > 1 the endemic equilibrium point is locally stable.
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4.4 Analysis of the treatment reproduction num-

ber R(ρ)

At present, in most developing countries there are no vaccination programs due

to high costs when purchasing these drugs. However, some of the HIV-AIDS

infected individuals can afford the cost of antiretroviral drugs as treatment, and

in Zimbabwe, the government introduced an AIDS levy to all its workers, both

private and civil servants and they are channeling a portion of this money to

the purchasing of antiretroviral drugs that they administer to some of the needy

infected individuals.

For this reason, the analysis of the treatment reproduction number R(ρ) is very

important under the prevailing conditions and the results could help planners or

policy makers make informed decisions when designing treatment control strate-

gies. The treatment reproduction number in this case is given by R(ρ) =
cβ0

ρ + b
.

We now consider the extent and the conditions treatment alone can slow down

or eradicate the disease. It can be clearly seen that R(ρ) is a decreasing function

of ρ and R(0) = R0, R(∞) = 0. Therefore, R0 > R(ρ). If R0 < 1, the disease

cannot establish itself in the population and treatment will not be necessary. The

condition R0 > 1 will be of interest. One can ask ’for what critical value of ρ

can the reproduction number R(ρ) be kept below the threshold of one?’. Such a

problem is solved as follows:

First, the Hsu Schmitz [?] difference between R0 and R(ρ) gives:

∆ρ = R0 − R(ρ) = cβ0(
1

b
− 1

ρ + b
) =

cβ0ρ

ρ + b
> 0. (4.9)

If we differentiate R(ρ) with respect to ρ we get :

dR(ρ)

dρ
=

−cβ0

(ρ + b)2
< 0. (4.10)
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From (4.9) and (4.10) , we can see that a necessary condition for slowing down

the growth of the disease is R0 > R(ρ).

Now we want to determine a critical value ρ∗ that will reduce R(ρ) below the

threshold of one. Equating R(ρ) one, we get

cβ0

ρ + b
= 1

which gives

ρ∗ = b(R0 − 1)

as the critical choice of ρ for which treatment succeeds in bringing R(ρ) to below

the threshold one and that ρ∗ exists for R0 > 1 > R(ρ).
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Chapter 5

VACCINATION AND

TREATMENT MODEL

5.1 Introduction

In this section we investigate the effect of a combined intervention strategy and

consider a case when both vaccination and treatment programs are carried out

at the same time. The model formulated below differs from that in Lungu and

Kgosimore [?] in that it does not distinguish between infectives as to whether they

were vaccinated or not vaccinated as susceptibles . We assume that the untreated

infecteds progress to the AIDS class at a rate ν1 and the treated infecteds progress

to the AIDS class at a rate ν2, where ν1 > ν2. Also the treated infectives are not

infectious due to behaviour change.

5.2 Model Formulation

In this case we consider the compartmental model given below.
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Figure 5.1: Compartmental model for the disease with vaccination and treatment

The compartmental differential eqations are:

dX0

dt
= bN − cβ0X0X2

N
− (φ + µ)X0 + ωX1, (5.1)

dX1

dt
= φX0 −

c(1 − γ)β0X1X2

N
− (µ + ω)X1, (5.2)

dX2

dt
=

cβ0X0X2

N
+

c(1 − γ)β0X1X2

N
− (ρ + µ + ν1)X2, (5.3)

dX3

dt
= ρX2 − (ν2 + µ)X3, (5.4)

dX4

dt
= ν2X3 + ν1X2 − δX4, (5.5)
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and N =
∑3

i=0 Xi since X4 does not take part in disease dynamics.

Introducing non-dimensional variables xi = Xi

N
for i = 0, 1, 2, 3 and setting ν1 =

ν2 = 0, we obtain:
dxi

dt
=

(dxi

dt
− xi

dN
dt

)

N
.

We get the reduced system:

dx0

dt
= b − cβ0x0x2 − (φ + b)x0 + ωx1, (5.6)

dx1

dt
= φx0 − c(1 − γ)β0x1x2 − (ω + b)x1, (5.7)

dx2

dt
= cβ0x0x2 + c(1 − γ)β0x1x2 − (ρ + b)x2, (5.8)

dx3

dt
= ρx2 − bx3, (5.9)

dN

dt
= (b − µ)N, (5.10)

and
∑3

i=0 xi = 1. This model is still a variable population model and our objective

of investigating the effects of treating and vaccinating infected individuals on the

disease can still be undertaken.

5.3 Model Analysis

Setting the right hand side of the above system to zero, we get:

b − cβ0x
∗
0x

∗
2 − (φ + b)x∗

0 + ωx∗
1 = 0,

φx∗
0 − c(1 − γ)β0x

∗
1x

∗
2 − (ω + b)x∗

1 = 0,

cβ0x
∗
0x

∗
2 + c(1 − γ)β0x

∗
1x

∗
2 − (ρ + b)x∗

2 = 0.

For the disease free equilibrium point, we consider a case when x∗
2 = 0. We get

the disease free equilibrium point:

P0 = (
(ω + b)

(φ + ω + b)
,

φ

(φ + ω + b)
, 0, 0).
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For the endemic equilibrium point of the system we consider a case when

x∗
1 =

(ρ + b) − cβ0x
∗
0

c(1 − γ)β0
.

We obtain:

x∗
0 =

(ω + b)(ρ + b) + c(1 − γ)β0(ρ + b)x∗
2

φc(1 − γ)β0 + (ω + b)cβ0 + c2β2
0(1 − γ)x∗

2

,

x∗
1 =

(ρ + b)φc(1 − γ)β0 + [(ρ + b)c2β2
0(1 − γ) + c(1 − γ)β0(ρ + b)]x∗

2

c(1 − γ)β0[φc(1 − γ)β0 + (ω + b)cβ0 + c2β2
0(1 − γ)]x∗

2

and

Ex2
∗2 + Dx∗

2 + F = 0 (5.11)

where

E = c2β2
0(1 − γ)2(ρ + b),

D = (φ+b)c(1−γ)2β0(ρ+b)−2ωc(ρ+b)β0(1−γ)+cβ0(1−γ)(ω+b)(ρ+b)−c2(1−γ)2β2
0b,

F = (φ+b)(1−γ)(ω+b)(ρ+b)−[ω(ρ+b)φ(1−γ)+c(1−γ)β0b(ω+b)+c(1−γ)2bφβ0]

= (1 − γ)(ρ + b)(ω + φ + b)(1 − R(φ, ρ))

where R(φ, ρ) =
cβ0b[(ω + b) + (1 − γ)φ]

(ρ + b)[(φ + b)(ω + b) − ωφ)]
.

Theorem 5 The endemic equilibrium point of system (5.1)-(5.5) exists if and

only if R(φ, ρ) > 1

Therefore, the endemic equilibrium point is Pe = (x∗
0, x

∗
1, x

∗
2, x

∗
3) where

x∗
2 =

−D +
√

D2 − 4EF

2E
> 0 since E > 0 and F < 0.
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5.4 Computation of R(φ, ρ)

R(φ, ρ) is the basic reproduction number due to vaccination and treatment. We

can compute this threshold parameter using Diekmann’s method, [?]. We sort

the compartments so that the first two compartments correspond to infected in-

dividuals, that is,

dX2

dt
=

cβ0X0X2

N
+

c(1 − γ)β0X1X2

N
− (ρ + µ + ν1)X2, (5.12)

dX3

dt
= ρX2 − (ν2 + µ)X3, (5.13)

dX0

dt
= bN − cβ0X0X2

N
− (φ + µ)X0 + ωX1, (5.14)

dX1

dt
= φX0 −

c(1 − γ)β0X1X2

N
− (µ + ω)X1. (5.15)

Redefining the state variables as follows:

y = (y0, y1, y2, y3)
′

= (x2, x3, x0, x1)
′

, and defining xs as the set of two infective

groups as follows:

xs = (x2, x3) = (y0, y1), we can apply the technique by van den Driesche and

Watmough to obtain

dy

dt
= f = F − V, (5.16)

where f = (f0, f1, f2, f3)
′

.

The system (5.6)-(5.9) becomes

dy0

dt
= cβy2y0 + c(1 − γ)βy3y0 − (ρ + b)y0, (5.17)

dy1

dt
= ρy0 − by1, (5.18)

dy2

dt
= b − cβ0y2y0 − (φ + b)y2 + ωy3, (5.19)

dy3

dt
= φy2 − c(1 − γ)β0y3y0 − (b + ω)y3. (5.20)
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Let Fi(y), i = 0, 1, 2, 3 be the rate of appearance of new infections in the com-

partment i. That is,

F(y) =

















cβ0y2y0

N
+

c(1 − γ)β0y3y0

N

0

0

0

















,

V+
i (y), i = 0, 1, 2, 3 be the rate of transfer of individuals into compartment i by

all other means, and is given by

V =

















0

ρy0

bN + ωy3

φX0

















,

V−
i be the rate of transfer of individuals out of compartment i by all other means,

and

V− =



















(µ + ρ)y0

µy1

cβ0y2y0

N
+ (φ + µ)y2

c(1 − γ)β0y3y0

N
+ (µ + ω)y3



















.

Therefore

V = V− − V+ =

















(µ + ρ)y0

µy1 − ρy0

(φ + µ)y2 − (bN + ωy3)

c(1 − γ)β0y3y0

N
+ (µ + ω)y3

















.

The disease transmission model becomes dyi

dt
= fi(y) = Fi(x)−Vi(y), i = 2, 3, 0, 1.

Assumptions as in van den Driesche and Watmough [?]

A1)-each function of (5.16) is continously differentiable at least twice in each
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variable,

A2) since each function represents a direct transfer of individuals, they are all non-

negative, that is if y = (y0, y1, y2, y3) ≥ 0 then Fi(y),V+
i ,V−

i ≥ 0, i = 0, 1, 2, 3,

A3)-if a compartment is empty,then there can be no transfer of individuals out

of the compartment by death,infection, nor any other means, that is, if yi = 0

then V−
i = 0 for i = 2, 3,

A4)-Fi(x) = 0 if i = 2, 3,

A5)-if y0 = y1 = 0,then Fi(y) = 0 and Vi
+(y) = 0 for i = 0, 1,

A6)-if F(y) is set to zero, then all eigenvalues of DF(y) | P0 negative real parts.

Lemma 1 If P0 = (x∗
0, x

∗
1, 0, 0) is a disease free equilibrium of (5.16) and fi(x)

satisfying assumptions (A1)-(A6), then the derivatives DF(x) evaluated at P0

and DV(x) | P0 are partitioned as:

DF(x) | P0 =





F 0

0 0



 ,

DV(x) | P0 =





V 0

J3 J4





where F and V are the 2 × 2 matrices defined by :

F = [
∂Fi

∂xj

| P0]

and

V = [
∂Vi(x)

∂xj

| P0], i, j = 2, 3.

F ≥ 0, V is non-singular and all eigenvalues of J3 and J4 have positive real parts.
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proof 1 For details of the proof, see [?].

Theorem 6 Consider the disease transmission model given by (5.16) with f(x)

satisfying (A1)-(A6). If P0 is a disease free equilibrium of the model, then P0

is locally asymptotically stable if R(φ, ρ) < 1, but unstable if R(φ, ρ) > 1, where

R(φ, ρ) = ρ(FV −1) and ρ(FV −1) is the spectral radius of FV −1.

proof 2 Let J1 = F − V . Since V is a non-singular M-matrix and F is non-

singular, −J1 = V − F has the Z sign pattern[?]. ⇒ s(J1) < 0 ⇔ −J1 is

a non-singular M matrix where s(J1) denotes the maximum real part of all the

eigenvalues of the matrix J1 (spectral abscissa of J1). Since FV −1 is non-negative

−J1V
−1 = (V − F )V −1

= I − FV −1

also has the Z sign pattern. Applying Lemma 5 of [?],with H = V and B =

−J1 = V −F ⇒ −J1 is a non-singular matrix ⇔ I −FV −1 is a non-singular M-

matrix. Since FV −1 is non-negative, all eigenvalues of FV −1 have magnitude

less than or equal to ρ(FV −1). Thus I − FV −1 is a non-singular M-matrix

⇔ ρ(FV −1) < 1. ⇒ s(J1) < 0 ⇔ R(φ, ρ) < 1. Similarly

s(J1) = 0 ⇔ −J1

is a singular matrix

⇔ I − FV −1

is a singular M matrix

⇔ ρ(FV −1) = 1.

Using Lemma 1 and the above theorem, to the model (5.17)-(5.20), we get

F =





cβ0y
∗
2

N
+

c(1 − γ)β0y
∗
3

N
0

0 0



 , V =





µ + ρ 0

−ρ µ



 .
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The inverse of matrix V is given by

V −1 =







1

µ + ρ
0

ρ

µ(ρ + µ)

1

µ







and

FV −1 =







cβ0y
∗
2 + c(1 − γ)β0y

∗
3

N(µ + ρ)
0

0 0






.

The spectral radius of FV −1 is

ρ(FV −1) =
cβ0y

∗
2 + c(1 − γ)β0y

∗
3

N(µ + ρ)
< 0

if the disease free equilibrium point is stable. On substituting

y∗
2 =

bN [(φ + µ)(µ + ω) − φω)] + ωφbN

(φ + µ)[(φ + µ)(µ + ω) − φω]
,

y∗
3 =

φbN

(φ + µ)(µ + ω) − φω
;

into ρ(FV −1) we get

R(φ, ρ) =
cβ0b[(ω + b) + (1 − γ)φ]

(ρ + b)[(φ + b)(ω + b) − ωφ)]

5.5 Stability analysis

To study the local stability of a fixed point one can linearize the system first.

The Jacobian matrix is

J =











−cβ0x
?
2 − (φ + b) ω −cβ0x

?
0

φ −c(1 − γ)β0x
?
2 − (b + ω) −c(1 − γ)β0x

∗
1

cβ0x
?
2 c(1 − γ)β0x

?
2 cβ0x

?
0 + c(1 − γ)β0x

?
1 − (ρ + b)











.
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The Jacobian matrix at the disease free equilibrium is :

















−(φ + b) ω
−cβ0b(ω + b)

(φ + b)(ω + b) − ωφ

φ −(ω + b)
−c(1 − γ)β0φb

(φ + b)(ω + b) − ωφ

0 0
cβ0b(ω + b) + c(1 − γ)β0φb

(φ + b)(ω + b) − ωφ
− (ρ + b)

















.

By looking at eigenvalues, one can see that the disease free equilibrium is stable if

cβ0b(ω + b) + c(1 − γ)β0φb

(φ + b)(ω + b) − ωφ
− (ρ + b) < 0.

This condition can be written as

(ρ + b)(R(φ, ρ) − 1) < 0

where

R(φ, ρ) =
cβ0b[(ω + b) + (1 − γ)φ]

(ρ + b)[(φ + b)(ω + b) − ωφ)]
.

Now we can turn to an endemic equilibrium and study its stability.The Jacobian

matrix evaluated at the endemic equilibrium is :











−cβ0x
∗
2 − (φ + b) ω −cβ0x

∗
0

φ −c(1 − γ)β0x
∗
2 − (ω + b) −c(1 − γ)β0x

∗
1

cβ0x
∗
2 c(1 − γ)β0x

∗
2 cβ0x

∗
0 + c(1 − γ)β0x

∗
1 − (ρ + b)











,

where

x∗
0 =

(ω + b)(ρ + b) + c(1 − γ)β0(ρ + b)x∗
2

φc(1 − γ)β0 + c2β2
0(1 − γ)x∗

2 + (ω + b)cβ0
,

x∗
1 =

(ρ + b)φc(1 − γ)β0 + [(ρ + b)c2β2
0(1 − γ) + c(1 − γ)β0(ρ + b)]x∗

2

c(1 − γ)β0[φc(1 − γ)β0 + c2β2
0(1 − γ)]x∗

2] + (ω + b)cβ0

,
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and

x∗
2 =

−D +
√

D2 − 4(1 − γ)(ρ + b)(ω + φ + b)(1 − R(φ, ρ))E

2E
. The trace of this

matrix is always negative and the determinant is positive as long as

cβ0x
∗
0 + c(1 − γ)β0x

∗
1 − (ρ + b) < 0.

Theorem 7 1)-The disease free equilibrium point of system (5.1)-(5.5) is locally

asymptotically stable if R(φ, ρ) < 1 and unstable if R(φ, ρ) > 1.

2)-The endemic equilibrium point of (5.6)-(5.9) is locally asymptotically stable if

R(φ, ρ) > 1.

5.6 Effects of a combination of Treatment and

Vaccination as a control strategy

We finally consider an intervention program in which a proportion φ of suscepti-

bles is vaccinated, and a proportion ρ of infected individuals is treated(provided

with Antiretroviral drugs). The reproduction number R(φ, ρ) which is defined as :

R(φ, ρ) = R(ρ)
b[(ω + b) + (1 − γ)φ]

[(φ + b)(ω + b) − ωφ]

= R(ρ)[1 − γφ

ω + b + φ
] < R(ρ)

is a decreasing function of φ and ρ . Setting off vaccination and treatment, we

get R(0, 0) = R0. Also R(0, ρ) = R(ρ), R(φ, 0) = R(φ) when ω = 0.

Let us consider a situation when R(φ, ρ) > 1 and look at the critical values of φ

and ρ such that a vaccination and treatment program can slow down or eradicate

the disease.

Like we did before, we calculate the Hsu Schmitz difference between R0 and
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R(φ, ρ) which is given by:

∆φ,ρ =
cβ0

b
{1 − b2[(ω + b) + (1 − γ)φ]

(ρ + b)(φb + ω2 + ωb)
} > 0

and on differentiating R(φ, ρ) partially with respect to φ and ρ, we obtain

∂R(φ, ρ)

∂φ
=

cβ0b

(ρ + b)
{ [(φ + b)(ω + b) − ωφ](1 − γ) − b[(ω + b) + (1 − γ)φ]

[(φ + b)(ω + b) − ωφ]2
},

∂R(φ, ρ)

∂ρ
=

−cβ0b[(ω + b) + (1 − γ)φ][(φ + b)(ω + b) − ωφ]

(ρ + b)2[(φ + b)(ω + b) − ωφ]2
,

∂2R(φ, ρ)

∂φ∂ρ
=

−cβ0b{[(φ + b)(ω + b) − ωφ](1 − γ) − b{(ω + b) + (1 − γ)φ}][[(φ + b)(ω + b) − ωφ]2]

(ρ + b)2[(φ + b)(ω + b) − ωφ]4
.

The conditions ∆φ,ρ > 0 ,∂R(φ,ρ)
∂φ

< 0, ∂R(φ,ρ)
∂ρ

< 0 and ∂2R(φ,ρ)
∂φ∂ρ

< 0 yield the fol-

lowing sufficient conditions:

(ρ + b)[(φ + ω)(ω + b) − ωφ] > b2φ(ω + b)(1 − γ)

and

b[(ω + b) + (1 − γ)φ] > [(φ + b)(ω + b) − ωφ](1 − γ).

For the critical values φ∗ and ρ∗ for the success of vaccination and treatment

respectively, we find the values of φ and ρ such that R(φ, ρ) = 1.

This gives:

φ∗ =
cβ0b(ω + b) − b(ρ + b)(ω + b)

(ρ + b)(ω + b) − [cβ0b(1 − γ) + ω(ρ + b)]

and

ρ∗ =
b{cβ0[(ω + b) + (1 − γ)φ] − [(φ + b)(ω + b) − ωφ]}

(φ + b)(ω + b) − ωφ
.
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Therefore, the combination of vaccination and treatment program would succeed

in lowering the reproduction number R(φ, ρ) below the threshold one only if the

proportion φ > φ∗ of susceptibles is vaccinated, the proportion ρ > ρ∗ of normal

infectives is treated.

The results show that the success of a vaccination and treatment program is cer-

tain when the conditions

(ρ + b)[(φ + ω)(ω + b) − ωφ] > b2φ(ω + b)(1 − γ)

and

b[(ω + b) + (1 − γ)φ] > [(φ + b)(ω + b) − ωφ](1 − γ)

are satisfied.
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Chapter 6

CONCLUSIONS

The purpose of this study is to take a close look at the effects of vaccination

and treatment on HIV-AIDS dynamics. To a simple AIDS model we studied

the effects of vaccination first. The result of our mathematical analysis indicates

that a vaccination campaign can succeed if a proportion φ > φ∗ is vaccinated as

this has the effect of lowering R0 below 1. That is, we can manage to control

the disease if we vaccinate a proportion φ of susceptible individuals. If all the

susceptibles are vaccinated immediately, the basic reproduction number will be

reduced by a factor (1 − γ). If the quality of the vaccine is also improved and

education campaigns on behaviour change are effective so that γ = 1, we see that

R(φ) = (1 − γ)R0 will be reduced to zero, meaning that there will not be any

new cases of infection.

We have seen in our analysis that R(φ) is a decreasing function of the vaccination

parameter φ. Clearly, there are benefits associated with this strategy.

For a model with treatment, it was seen that a proportion ρ > ρ∗ must be treated

in order for a treatment policy to be effective. The reproduction number R(ρ) is

a decreasing function of the treatment parameter ρ. Again we can clearly see the

benefits of treatment.

In the case of a combined effect of vaccination and treatment, the result tells us

59



that the combined intervention strategy is more effective than a single strategy.

Vaccinating a proportion φ > φ∗ and treating a proportion ρ > ρ∗ can effectively

control the dynamics of the disease provided the sufficient conditions derived in

the combined strategy are met.

These theoretical and numerical results obtained are in agreement with those

found by Lungu and Kgosimore, ([?]) and Shu-Fang ([?],[?]).
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Appendix A

Appendix

Programs used for the numerical simulations on the model with vacci-

nation:

function dydt = vaccination(t,y) global b c beta0 phi mu gamma nu1

delta N mu=0.02; c=5; nu1=0.23; b=0.03; gamma=0.98; delta=0.88;

beta0=0.05; N=10000; phi=0.5; dydt = [b*N - (mu + phi)*y(1) -

c*beta0*y(3)*y(1)/N; phi*y(1) - mu*y(2) - c*(1 - gamma)*beta0*y(2)*y(3)/N;

c*(1-gamma)*beta0*y(2)*y(3)/N + c*beta0*y(3)*y(1)/N - (mu + nu1)*y(3);

nu1*y(3) - (mu + delta)*y(4)];

R = c*beta0/(phi + b) + c*(1 - gamma)*beta0*phi/(b*(phi+b))

2):

[t,y] = ode45(’vaccination’,[0 80],[5000;4950;50;0]); figure plot(t,y(:,1),’-

’,t,y(:,2),’+’,t,y(:,3),’o’,t,y(:,4),’.’) title(’Solution of the Immunology

Model’); xlabel(’time t’); ylabel(’Solution y’); legend (′y′
1,
′ y′

2,
′ y′

3,
′ y′

4,
′ y′

5)

figure subplot(2,2,1) plot(t,y(:,1)); xlabel(’time t (years)’); ylabel(’S’);

subplot(2,2,2) plot(t,y(:,2)); xlabel(’time t’); ylabel(’V’);
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subplot(2,2,3) plot(t,y(:,3)); xlabel(’time t (years)’); ylabel(’I’);

subplot(2,2,4) plot(t,y(:,4)); xlabel(’time t (years)’); ylabel(’A’);
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