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Abstract

In this thesis, we consider a stochastic control problem in both finite and infinite

time interval, with a terminal state constraint. We consider two approaches in

solving the problem i.e, the Maximum Principle and the Dynamic programming

approach.
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Chapter 1

Some Mathematical

Preliminaries

1.0.1 Introduction

We begin with a review of some basic definitions and theory closely related to clas-

sical stochastic control. Both the dynamic programming method and the maxi-

mum principle method are discussed as well as the relation between them. Also

formulated are the corresponding verification theorems involving the Hamilton-

Jacobi Bellman(HJB) equation.

Definition 1 A stochastic process [4] is a family {Xt = X(t, w), t ≥ 0, w ∈ Ω}

of random variables defined on a probability space (Ω,F ,P) where in this case F

denotes the subsets of Ω that are events and are called F-measurable and with P a

probability measure assigning to any event in F its probability i.e., P : F → [0, 1]

such that

1. P (∅) = 0, P (ω) = 1
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2. If B1, B2, .... ∈ F and {Bi}∞i=1 is disjoint (i.e., Bi ∩Bj = ∅, i 6= j) then

P (∪∞i=1Bi) =
∞∑
i=1

P (Bi)

The set of events corresponding to the information available at time t is denoted

by Ft ⊂ F i.e., if an event B is in Ft, then at time t, this event is known to be

true or false. A good example of a stochastic process is the Brownian motion.

Definition 2 A one-dimensional Brownian motion is a stochastic process Bt(w)

such that

1. P [Bo(w) = x] = 1 i.e., the process starts at a point x at t = 0.

2. It has independent increments i.e., if 0 < t1 < t2 < ... < tm, then

Btm −Btm−1 , Btm−1 −Btm−2 , ..., Bt1 , Bt0 are independent.

3. For s < t, Bt −Bs is normally distributed with mean 0 and variance t− s.

4. Bt is continuous in t.

5. It has stationary increments i.e., if s ≤ t, Bt − Bs and Bt−s − B0 have the

same probability law.

Definition 3 Let U be the collection of all open subsets of Ω and let Gu be the

smallest σ-algebra generated by U . If Ω = Rn, then the family B = Gu is called

the Borel σ-algebra on Ω and the elements B = B are called the Borel sets. More

on this reader is refered to [2]

Definition 4 Stochastic Differential Equations

A stochastic differential equation(S.D.E) is of the form

dXt

dt
= b(t,Xt) + σ(t,Xt)Wt, b(t, x) ∈ R, σ(t, x) ∈ R (1.1)

where Wt is a 1-dimensional white noise.

The Ito interpretation of (1.1) is that Xt satisfies the stochastic integral equation

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs or in the differential form (1.2)
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dXt = b(t,Xt)dt+ σ(t,Xt)dBt (1.3)

Thus a(one-dimensional) Ito process(or stochastic integral) is a stochastic process

Xt on (Ω,F ,P) of the form (1.2).

Theorem 1 Consider the following SDE in Rn : X(0) = x ∈ Rn and

dX(t) = α(t,X(t))dt+ σ(t,X(t))dB(t)

where

α : [0, T ]× Rn → Rn,

σ : [0, T ]× Rn → Rn×m

satisfy the following conditions:

(At most linear growth) There exists a constant C <∞ such that

‖ σ(t, x) ‖2 + | α(t, x) |2≤ C(1+ | x |2) ∀ x ∈ Rn.

(Lipschitz continuity) There exists a constant D <∞ such that

‖ σ(t, x)− σ(t, y) ‖2 + | α(t, x)− α(t, y) |2

≤ D | x− y |2 ∀ x, y ∈ Rn.

Then, there exists a unique cadlag adapted solution X(t) such that

E[| X(t) |2] <∞ ∀ t

Proof

See [1]

Martingales

An n-dimensional stochastic process {Mt}t≥0 on (Ω,F ,P) is called a martingale

with respect to a filtration {Mt}t≥0 if

(i) Mt is Mt-measurable for all t.

(ii) E[|Mt |] <∞ for all t and,

(iii) E[Ms | Mt] = Mt for all s ≥ t.
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Properties of Conditional Expectation

Let X be a stochastic process with E[Xt] <∞

(a) E[E[X | M]] = E[X], M− σ-algebra.

(b) E[X | M] = X if X is M-measurable.

(c) E[X | M] = E[X] if X is independent of M.

(d) E[Y X | M] = Y E[X | M] if Y is M-measurable.

Example

E[Bse
2Bt | Fs] = BsE[e2Bt | Fs] since Bs is Fs − measurable

= BsE[e2Bt−2Bs+2Bs | Fs]

= Bse
2BsE[e2(Bt−Bs) | Fs]

= Bse
2BsE[e2(Bt−Bs)] since Bt −Bs is Fs independent

= Bse
2BsE[e2Bt−s ]

= Bse
2Bse2(t−s).

NOTE

When α(t, x) = α(x), and σ(t, x) = σ(x) then we have the time homogeneous

case. In the above theorem, by the term “ unique”, we mean that any other Ito

process with the same properties is equal to X almost everywhere. A unique

solution in this sense is sometimes called a strong solution or strong uniqueness.

We also have weak uniqueness where any two solutions are identical in law i.e.,

they have the same finite-dimensional distributions.
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1.0.2 The Ito Formula

Let X(t) ∈ Rn be an Ito process of the form

dX(t) = α(t, w)dt+ σ(t, w)dB(t)

where α : [0, T ] × Ω → Rn ; σ : [0, T ] × Ω → Rn×m are adapted processes such

that the integrals exist. Also in this case B(t) is an m-dimensional Brownian

motion.

Let f ∈ C1,2([0, T ]× Rn) → R.

Then Y (t) = f(t,X(t)) is again an Ito process, and

dY (t) =
∂f

∂t
dt+

n∑
i=1

∂f

∂xi

(αidt+ σidB(t)) +
1

2

n∑
i,j=1

(σσT )ij
∂2f

∂xi∂xj

dt. (1.4)

The one dimensional version of this Ito-formula is

dY (t) =
∂f

∂t
(t,X(t))dt+

∂f

∂x
(t,X(t))(αdt+σdB(t))+

1

2

∂2f

∂x2
(t,X(t))σ2(t)dt (1.5)

If we choose to describe the motion of a small particle suspended in a moving

liquid, subject to random molecular bombardments, then a reasonable mathe-

matical model for the position Xt of the particle at time t would be a stochastic

differential equation of the form (1.1) where b(t, x) ∈ R3 is the velocity of the fluid

at the point x at time t and Wt ∈ R3 denotes ‘white noise’ and σ(t, x) ∈ R3×3.

In a stochastic differential equation of the form

dXt = b(t,Xt)dt+ σ(t,Xt)dBt

where Xt ∈ Rn, b(t, x) ∈ Rn, σ(t, x) ∈ Rn×m and Bt is m-dimensional Brownian

motion, we will call b the drift velocity and σ the diffusion coefficient.
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We note that the solution of a stochastic differential equation may be thought

of as the mathematical description of the motion of a small particle in a moving

fluid and such stochastic processes are called Ito diffusions. We thus develop

some of the most basic properties and results about Ito diffusions.

The next section introduces a class of stochastic processes that share what is

called the ‘Markov property’: the future is independent of the past, given the

present values of the process. Markov models are important models of security

prices, because they are often realistic representations of the true prices and yet

the Markov property leads to simplified computations.

1.0.3 The Markov Property

Definition 5 A (time homogeneous) Ito diffusion is a stochastic process Xt(w) =

X(t, w) : [0,∞)×Ω → Rn satisfying a stochastic differential equation of the form

dXt = b(Xt)dt+ σ(Xt)dBt, t ≥ s, Xs = x...............(a)

where Bt is m-dimensional Brownian motion.

The unique solution of (a) is denoted by Xt = Xs,x
t , t ≥ s. If s = 0, we write

Xx
t for X0,x

t where in this case we have assumed that b and σ do not depend on

t but only on x.

Consider

Xs,x
s+h = x+

∫ s+h

s

b(Xs,x
u )du+

∫ s+h

s

σ(Xs,x
u )dBu

= x+

∫ h

0

b(Xs,x
s+v)dv +

∫ h

0

σ(Xs,x
s+v)dB̃v, u = s+ v
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where B̃v = Bs+v −Bs, v ≥ 0.

On the other hand,

X0,x
h = x+

∫ h

0

b(X0,x
v )dv +

∫ h

0

σ(X0,x
v )dBv

{B̃v}v≥0 and {Bv}v≥0 have the same Q-distributions and thus by the weak unique-

ness of the solution of the stochastic differential equation (a),

{Xs,x
s+h}h≥0 and {X0,x

h }h≥0

have the same Q-distributions i.e., {Xt}t≥0 is time homogeneous.

Definition 6 Let P and Q be measures on a σ-algebra U . The measure Q is

absolutely continuous w.r.t P if for each A ∈ U , P (A) = 0 ⇒ Q(A) = 0. The

relation indicated by Q << P .

If Q << P and P << Q, the measures are said to be equivalent and are related

as follows, Q ∼ P .

Markov property: The future behavior of the process given what has happened

up to time t is the same as the behavior obtained when starting the process at

Xt.

We now want to prove that Xt satisfies this property.

NB: Ft is the σ-algebra generated by {Br, r ≤ t}. Similarly, we let Mt be the

σ-algebra generated by {Xr, r ≤ t}. Since Xt is measurable with respect to Ft,

then Mt ⊆ Ft.

Theorem 2 (The Markov property for Ito diffusions)

Let f be a bounded Borel function from Rn → R. Then for t, h ≥ 0,

Ex[f(Xt+h) | Ft] = EXt(w)[f(Xh)]
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Proof

From the theorem, Xt is a markov process with respect to the family of σ-algebras

{Ft}t≥0. SinceMt ⊆ Ft this implies that Xt is also a Markov process with respect

to the σ-algebras {Mt}t≥0.

Now by using the properties of conditional expectation

Ex[f(Xt+h) | Ft] = Ex[Ex[f(Xt+h) | Ft] | Mt]

= Ex[EXt [f(Xh) | Ft] | Mt]

= Ex[EXt [f(Xh)] | Mt]

= EXt [f(Xh)]

Since EXt [f(Xh)] is Mt-measurable

The Strong Markov Property

If the time t is replaced by a random time τ(w) of a more general type called

stopping time, then the strong Markov property states that a relation of the form

(a) continues to hold.

Definition 7 Let {Nt} be an increasing family of σ-algebras, Nt ⊆ Ω. A function

τ : Ω → [0,∞) is called a strict stopping time w.r.t Nt if

{w; τ(w) ≤ t} ∈ Nt, for all t ≥ 0

In other words, on the basis of the knowledge of Nt, it should be possible to

decide whether or not τ ≤ t has occurred since

{w; τ(w) ≤ t} is Nt measurable.
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Definition 8 Let τ be a stopping time w.r.t {Nt} and let N∞ be the smallest

σ-algebra containing Nt for all t ≥ 0. Then the σ-algebra Nτ consists of all sets

N ∈ N∞ such that

N ∩ {τ ≤ t} ∈ Nt for all t ≥ 0

Theorem 3 The Strong Markov property for Ito diffusions.

Let f be a bounded Borel function on Rn, and τ a stopping time w.r.t Ft, τ <∞

a.s.

Then

Ex[f(Xτ+h) | Ft] = EXτ [f(Xh)] ∀ h ≥ 0

The Generator of an Ito Diffusion

Definition 9 Let X(t) ∈ Rn be a(time homogeneous) Ito diffusion. Then the

generator A of X is defined on functions f : Rn → R by

Af(x) = lim
t→0+

1

t
{Ex[f(Xt)]− f(x)} if the limit exists

where Ex[f(Xt)] = E[f(X
(x)
t )], X(x)(0) = x.

Theorem 4 Let Xt be the Ito diffusion

dXt = α(X(t))dt+ σ(X(t))dB(t)

Suppose f ∈ C2
0(Rn). Then the generator A of x is given by

Af(x) =
n∑

i=1

αi(x)
∂f

∂xi

+
1

2

n∑
i,j=1

(σσT )ij(x))
∂2f

∂xi∂xj

(x) (1.6)

Proof 1

df(Xt) =
∑

i

∂f(Xt)

∂Xi

dX
(i)
t +

1

2

∑
i,j

∂2f(Xt)

∂Xi∂Xj

dX
(i)
t dX

(j)
t
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But dX
(i)
t = α(i)(Xt)dt+

∑
l σildB

(i)
t . This implies that

df(Xt) =
∑

i

∂f

∂Xi

dX
(i)
t +

1

2

∑
i,j

∂2f

∂Xi∂Xj

dX
(i)
t dX

(j)
t

=
∑

i

∂f

∂Xi

α(i)dt+
∑

i

∂f

∂Xi

σ(i)dBt +
1

2

∑
i,j

∂2f

∂Xi∂Xj

(σ.σT )i,jdt

Since dX
(i)
t · dX(j)

t = (σσT )ijdt. This implies that

Ex[f(Xt)]− f(x)

t
=

1

t

{
Ex

[
f(x) +

∫ t

0

∑
i

∂f(Xs)

∂Xi

α(i)(Xs)ds

] }

+
1

t

{
Ex

[
1

2

∫ T

0

∑
i,j

∂2f(Xs)

∂Xi∂Xj

(σ.σT )i,j(Xs)ds

]
− f(x)

}

We observe that if g(s) is continuous, then

lim
t→0

∫ t

0
g(s)ds

t
= lim

t→0

g(t)

1
= g(0)

Thus to calculate limt→0
Ex[f(Xt)]−f(t)

t
, we observe that X(0) = x and from the

above observation we obtain

Af(x) =
n∑

i=1

α(i)(x)
∂f

∂xi

+
1

2

n∑
i,j=1

(σσT )ij(x)
∂2f

∂xi∂xj

(x)

Dynkin’s formula

Let X(t) ∈ Rn be a jump diffusion and let f ∈ C2
0(Rn). Let τ be a stopping time

i.e., τ is the first exit time such that Ex[τ ] <∞.

Then

Ex[f(X(τ))] = f(x) + Ex

[∫ τ

0

Af(Xs)ds

]

Proof 2 Ito’s formula on dXt = α(Xt)dt+ σ(Xt)dBt yields

df(Xt) =
∑

i

∂f

∂Xi

α(i)dt+
∑

i

∂f

∂Xi

σ(i)dBt +
1

2

∑
i,j

∂2f

∂Xi∂Xj

(σ.σT )i,jdt
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which gives

f(Xt) = f(X0)+

∫ t

0

∑
i

∂f

∂Xi

α(i)ds+
1

2

∫ t

0

∑
i,j

∂2f

∂Xi∂Xj

(σσT )ijds+

∫ t

0

∑
i

∂f

∂Xi

σ(i)dBs

Now let t = τ(w) be a stopping time, then

f(Xτ ) = f(X0) +

∫ τ

0

∑
i

∂f

∂Xi

α(i)ds+
1

2

∫ τ

0

∑
i,j

(σσT )ij
∂2f

∂Xi∂Xj

ds+

∫ τ

0

∑
i

∂f

∂Xi

σ(i)dBs

= f(X0) +

∫ τ

0

Af(Xs)ds+

∫ τ

0

∑
i

∂f

∂Xi

σ(i)dBs

Therefore

Ex[f(Xτ )] = f(x) + E
[ ∫ τ

0

Af(Xs)ds

]
+ E

[ ∫ τ

0

∑
i

∂f

∂Xi

σ(i)dBs

]

Lemma

If τ(w) is a stopping time with Ex(τ) <∞ and f is a bounded function, then

E
[ ∫ τ

0

∑
f(s, w)dBs

]
= 0

Proof

Let t be any real number, then

E
[ ∫ t0

0

f(s, w)dBs

]
= E

[ ∫ t

0

f(s, w)χ{w;s≤τ(w)}dBs

]
where t0 = min{τ, t}.

From the definition of a stopping time, χ{w;s≤τ(w)} is Fs-measurable. Then χ{w;s≤τ(w)}f(s, w)

is adapted.

Therefore

E
[ ∫ t

0

χ{w;s≤τ(w)}f(s, w)dBs

]
= 0

Thus Dynkin’s formula is shown.
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Model

If we assume that the price process is represented by the model

dXt = b(Xt)dt+ σ(Xt)dBt

with the generator given by

Af =
∑

i

b(x)
∂f

∂xi

+
∑
i,j

(σσT )ij
∂2f

∂xi∂xj

Then we have two types of utility or reward functions.

(1) Instantaneous Reward : g(x)

Suppose that τ is a stopping or terminal time, then g(Xτ ) is the terminal reward

one gets when stopping at time τ where in this case g(Xτ ) is given by

g(Xτ ) = αiXi

αi is the number of units in stock i, i = 1, 2, 3, ..., n.

One can easily note that the terminal reward is the utility we get when we stop

at time τ .

(2) Accumulated Reward: f(x)∫ τ

0
f(Xτ )dt = utility of holding Xt from 0 to τ .

f is interpreted as the running reward or utility function from time t = 0 to time

t = τ .

Thus the total reward when stopping at some time τ is the sum of the two types

of rewards i.e., ∫ τ

0

f(Xτ )dt+ g(Xτ )

Also, the price might be discounted back to the time of start of the production

and thus, the running reward will change to include the discount factor e−δt,

where δ is the discount rate. Thus our function Φ will be such that

Φ(y) = sup
τ≤T

Ey

[ ∫ τ

0

e−δtf(Xt)dt+ g(τ,Xτ )

]
18



Instead of finding the supremum over all possible stopping times, we will find the

supremum over all Ft-adapted processes {ut} with values in U . Such a control u∗

- if it exits - is called an optimal control and Φ is called the optimal performance

or the value function.
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Chapter 2

Stochastic Control

Let S ∈ Rk be a fixed domain which is the solvency region and consider a stochas-

tic process Y (t) = Y u(t) of the form

dY (t) = b(Y (t), u(t))dt+ σ(Y (t), u(t))dB(t)

Y (0) = y ∈ Rk

where

b : Rk × u −→ Rk σ : Rk × u −→ Rk×m

are given functions and u ∈ Rk is a given Borel set. The process u(t) = u(t, w)

where u(t, w) : [0,∞) × ϕ −→ u is the control process which is assumed to be

adapted and cadlag. A process u(t, w) is called Ft-adapted if for each t ≥ 0, the

function w −→ u(t, w) is Ft-measurable. A cadlag process is one which is right

continuous with left limits. We consider a performance criterion J = J (u)(y) of

the form

J (u)(y) = E(y)

[ ∫ T

0

f(Y (t), u(t))dt+ g(Y (T ))

]

where T = inf{t > 0 : Y u(t) 6∈ S} is the bankruptcy time and f and g are

continuous functions.
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Admissible Control

The control process u is said to be admissible if the corresponding stochastic

differential equation(S.D.E)

dY (t) = b(Y (t), u(t))dt+ σ(Y (t), u(t))dB(t)

Y (0) = y ∈ Rk

has a unique strong solution Y (t) for all y ∈ S and

E(y)

[ ∫ T

0

f(Y (t), u(t))dt+ g(Y (T ))

]
<∞

Thus if we let A be the set of all admissible controls, then the stochastic control

problem is to find the value function Φ(y) and an optimal control u? ∈ A defined

by Φ(y) = supu∈A J
(u)(y) = J (u?)(y) where the supremum is taken over all F (m)

t -

adapted process ut with values in U .

Such a control u? if it exists - is called an optimal control and Φ is called the

optimal performance or the value function.

Examples of types of Controls

(1) Deterministic or Open Loop Controls:

In this type of control, we have functions of the form u(t, w) = u(t) i.e., a function

that does not depend on w. It is one in which the output of the system is not

involved in its control.

(2) Closed Loop or Feedback Controls:

In this case, we have processes ut which are Mt-adapted i.e., for each t, the

22



function w −→ U(t, w) is Mt-measurable, where Mt is the σ-algebra generated

by Xu
s ; s ≤ t. Generally, it compares the output(or some function of the output)

with the input and forms an error actuating signal from their difference.

(3) Linear Filtering problem and Deterministic Controls:

In this type of control, the controller has only partial knowledge of the state of the

system and these controls are the ones in which the stochastic control problem

will be linked to the filtering problem and it forms the so called stochastic linear

regulator problem. The controller only has (noisy) observations Rt of Xt given

by an Ito process of the form

dRt = a(t,Xt)dt+ γ(t,Xt)dB̂t

where B̂ is a Brownian motion(not necessarily related to B). Hence, the con-

trol process ut must be adapted with respect to the σ-algebra Nt generated by

Rt; s ≤ t. If the above equation is linear and the performance function is inte-

gral quadratic, then the stochastic control problem splits into a linear filtering

problem and a corresponding deterministic control problem. This is called the

Separation Principle.

(4) Markov controls:

Under these controls, the functions u(t, w) are of the form u(t, w) = u0(t,Xt(w))

for some function u0 : Rn+1 → u ⊂ Rk.

We will assume that u does not depend on the starting point y = (s, x). The

value that we choose at time t only depends on the state of the system at this

time. These are called Markov controls because with such u, the corresponding

process Xt becomes an Ito diffusion, in particular a Markov process.

23



2.0.4 Dynamic Programming

We are going to consider Markov controls only i.e., u = u(t, w) and introducing

Yt = (s+ t,Xs+t), the system equation becomes

dY (t) = b(Y (t), u(t))dt+ σ(Y (t), u(t))dB(t)

Then for each choice of the function u, the solution Yt = Y u
t is an Ito diffusion

with generator A given by

Aφ(y) = Auφ(y)

=
∂φ

∂t
(y) +

k∑
i=1

bi(y, u(y))
∂φ

∂yi

(y) +
1

2

k∑
i,j=1

(σσT )ij(y, u(y))
∂2φ

∂yi∂yj

(y)

If only Markov controls are considered, the Hamilton Jacobi-Bellman(HJB) equa-

tions provide a very nice solution to the stochastic control problem. It is interest-

ing to note that considering Markov controls only is too restrictive but fortunately

one can always obtain as good performance with a Markov control as with an

arbitrary F (m)
t -adapted control, at least if some extra conditions are satisfied.

In this section we will formulate a verification theorem for the optimal control

problem which is analogous to the classical Hamilton-Jacobi-Bellman(HJB) for

(continuous) Ito diffusions.

Theorem 5 (HJB for optimal control)(See [2])

Let φ be a bounded function and twice differentiable i.e., φ ∈ C2(S) ∩ C(S̄) and

suppose the function φ satisfies the following:

(i)

Avφ(y) + f(y, v) ≤ 0 ∀y ∈ S, v ∈ U.

(ii)

φ(Y (T )) ∈ ∂S if T <∞ ∀ u ∈ A
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(iii)

lim
t→T

φ(Y (t)) = g(Y (T )) a.s ∀ u ∈ A, T <∞

(iv)

{φ(Y (τ))}τ≤T

is uniformly integrable ∀ u ∈ A and y ∈ S

(v)

Ey

[ ∫ T

0

{| σT (Y (t))v̄φ(Y (t)) |2}dt
]
<∞

Then φ(y) ≥ Φ(y) ∀ y ∈ S

Moreover, suppose that for each y ∈ S, there exists v = û(y) ∈ U such that

(vi)

Aû(y)φ(y) + f(y, û(y)) = 0

and

(vii)

{φ(Y (û)(τ))}τ≤T

is uniformly integrable.

Suppose u∗(t) := û(Y (t)) ∈ A

Then u∗ is an optimal control and

φ(y) = Φ(y) = J (u∗)(y) ∀y ∈ S

Proof 3 Assume that φ satisfies (i) and(iii).

Let u ∈ A. Put Tn = min(n, T ) where n = 1, 2, 3, ....
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Then by the Dynkin formula, we have

Ey[φ(Y (Tn))] = φ(y) + Ey

[ ∫ Tn

0

Auφ(Y (t))dt

]
But from (i)

Auφ ≤ −fu

Thus

Ey[φ(Y (Tn))] ≤ φ(y)− Ey

[ ∫ Tn

0

f(Y (t), u(t))dt

]
This gives

φ(y) ≥ Ey

[ ∫ Tn

0

f(Y (t), u(t))dt+ φ(Y (Tn))

]
Taking the limit as n→∞, we get

φ(y) ≥ lim
n→∞

inf Ey

[ ∫ T

0

f(Y (t), u(t))dt+ g(Y (T ))

]
= J (u)(y)

Since u ∈ A was arbitrary, we conclude that

φ(y) ≥ Φ(y) ∀y ∈ S...........(1)

Now if u(t) = û(Y (t)) is such that (vi) holds, then by the above calculations we

have

φ(y) = J (û)(y) ≤ Φ(y)...........(2)

Combining equations (1) and (2), we get

φ(y) = Φ(y) = J (u∗)(y) ∀y ∈ S

Example 1 See [3]

Suppose the wealth X(t) = X(u)(t) of a person with consumption rate u(t) ≥ 0

satisfies the following mean reverting Ornstein-Uhlenbeck stochastic differential

equation

dX(t) = (µ− ρX(t)− u(t))dt+ σdB(t), t > 0
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X(0) = x > 0

Fix T > 0 and define

J (u)(s, x) = Es,x

[ ∫ To−s

0

e−δtu
γ(t)

γ
dt+ λX(To − s)e−δT

]
where µ, ρ, σ, θ, T, δ > 0, γ ∈ (0, 1) and λ > 0 are constants.

Solution

In this case we are going to use dynamic programming to find the value function

Φ(s, x) and the optimal consumption rate(control) u?(t) such that

Φ(s, x) = sup
u(.)

J (u)(s, x) = J (u?)(s, x)

Firstly, note that

Es,x

[ ∫ To

s

e−δtu
γ(t)

γ
dt

]
= Es,x

[ ∫ T

0

e−δ(s+t)u
γ(t)

γ
dt

]
where T = To − s = inf{t > 0;Y s,x(t, x) 6∈ G} with G = {(s, x); s < To}.

Let Y (t) = [s+ t,X(t)] for t ≥ 0, Y = (s, x).

We let A be the differential operator which coincides with the generator of Y (t),

then the generator of Y (t) is

Auφ(y) = Auφ(s, x)

=
∂φ

∂s
+ (µ− ρx− u)

∂φ

∂x
+

1

2
σ2∂

2φ

∂x2

So the conditions of the HJB for optimal control get the form

(i) Auφ(s, x) + e−δs uγ(t)
γ
≤ 0 ∀ u ≥ 0, s < T

(ii) φ(Y (T )) ∈ ∂s if T <∞ ∀u ∈ A
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(iii) Ey

[ ∫ T

0
{| σ(Y (t))∇φ(Y (t)) |2}dt

]
<∞

(iv) φ(T, x) = λxe−δT

(v) {φ(Y (τ))}τ<T is uniformly integrable.

(vi) Aûφ(s, x) + e−δs ûγ

γ
= 0 for s < T

(vii) {φ(Y (û)(τ))}τ≤T is uniformly integrable.

Now we try a function φ of the form

φ(s, x) = h(s) + k(s)x

for suitable functions h(s), k(s). Then the conditions (i)-(vii) get the form

h′(s) + k′(s)x+ (µ− ρx− u)k(s) + e−δsu
γ

γ
≤ 0

for all s < To, u ≥ 0.

(iv)’ k(T ) = λ, h(T ) = 0

(vi)’ h′(s)+k′(s)x+(µ−ρx− û)k(s)+e−δs ûγ

γ
= 0 where û is a possible candidate

for optimal control.

(vii)’ The function {h(τ) + k(τ)X(τ)}τ≤T is uniformly integrable.

Let

g(u) = h′(s) + k′(s)x+ (µ− ρx− u)k(s) + e−δsu
γ

γ

then the maximum of g is obtained at the critical points

i.e., when ∂g
∂u

= 0.

Thus we have

e−δsuγ−1 − k(s) = 0
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Therefore

u = û = (k(s)eδs)
1

γ−1

From (vi)’ we have

(1) k′(s)− ρk(s) = 0, k(T ) = λ

⇒ k(s) = Aeρs

⇒ k(s) = λeρ(s−T )

(2) h′(s) + (µ− û)k(s) + e−δs ûγ

γ
= 0

Therefore h′(s) = e
δs

γ−1k(s)
γ

γ−1 [1− 1
γ
]− µk(s) < 0

Hence, since h(To) = 0, for s < To we have h(s) > 0

Therefore we conclude that

φ(s, x) = h(s) + k(s)x ≥ 0

and we are left to prove that the function φ satisfies all the conditions of the

theorem.

i)

Avφ(y) + f(y, v) ≤ 0

This is true by construction of the function.

ii)

φ(Y (T )) = h(T ) + k(T )x = 0 + λx = λx ∈ ∂S

iii)

lim
t→T

φ(Y (t)) = lim
t→T

(h(t) + k(t)x) = h(T ) + k(T )x = λx = g(Y (T )) a.s ∀u

We show that (iv)-(vii) also hold and conclude that

û(s) = λ
1

γ−1 exp

{
(δ + ρ)s− ρT

γ − 1

}
s < T

is the optimal control.
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Example 2 Consider the stochastic control problem

dXt = audt+ udBt, X0 = x > 0

where Bt ∈ R and a ∈ R is a given constant and

Φ(s, x) = sup
u

Es,x[(XT )r]

where 0 < r < 1 and T is the minimum between τ0 and t1 where τ0 = inf{t >

s;Xt = 0} and t1, being a given future time(constant).

Solution

Using the HJB theorem, we must have

∂φ

∂s
+ au

∂φ

∂x
+

1

2
u2∂

2φ

∂x2
≤ 0

Since F u(Yt) = 0

φ(Yt) = (XT )r for all y ∈ ∂RG

Thus

sup
v

{
∂φ

∂s
+ av

∂φ

∂x
+

1

2
v2∂

2φ

∂x2

}
= 0

Define

h(v) =
∂φ

∂s
+ av

∂φ

∂x
+

1

2
v2∂

2φ

∂x2
for fixed t and x.....(1)

The optimal control is found by differentiating h(v) with respect to v. If ∂2φ
∂x2 > 0,

no maximum exists.

Assume ∂2φ
∂x2 < 0, then

h′(v) = aφx + vφxx

h′(v) = 0 iff

v = −a φx

φxx

= u∗(Yt)..........(2)
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where φx = ∂φ
∂x

and φxx = ∂2φ
∂x2

NB: v = u∗(Yt) is our candidate for optimal control.

We must check that h(u∗) = 0. Thus

h(u∗) =
∂φ

∂s
+ au∗φx +

1

2
u∗2φxx

Taking (1) and (2), then

∂φ

∂s
+ a(

−aφx

φxx

)φx +
1

2

(
−aφx

φxx

)2

φxx = 0

Which simplifies to
∂φ

∂s
− a2

2

(φx)
2

φxx

= 0............(3)

Since K(Yt) = Xr
t , our trial solution is φ(t, x) = g(t)xr. Thus (3) becomes

g′(t)− a2r

2(r − 1)
g(t) = 0

Solving and applying the terminal conditions g(T ) = 1, we get that

g(t) = exp

(
− a2r

2(r − 1)
(t− T )

)
and thus

φ(t, x) = xr exp

(
− a2r

2(r − 1)
(t− T )

)
Thus our optimal control becomes

u∗(Yt) =
ax

1− r

Now to calculate the optimal performance. Our Stochastic differential equation

becomes

dXt =
a2x

1− r
dt+

ax

1− r
dBt

Solving it we get

Xt = x exp

(
(1− 2r)a2t

2(1− r)2
+

a

1− r
Bt

)
Now to calculate the value function,

Φ(s, x) = E[(XT )r]
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Φ(s, x) = E
[
xr exp

(
(1− 2r)a2rT

2(1− r)2
+

ar

1− r
BT

)]
Which simplifies to

Φ(s) = xr exp

(
a2r(T − s)

2(1− r)

)

Stochastic Control Problems with Terminal Conditions

Most types of Markov controls u that are considered in many applications have

constraints. As an example, they have constraints in terms of the probabilistic

behavior of Y u
t at the terminal time t = T . If we have such problems, they

can often be handled by applying a kind of “Lagrange multiplier” method as

described below.

Consider the problem of finding the value function Φ(y) and the optimal control

u∗(y) such that

Φ(y) = sup
u∈U

Ju(y) (2.1)

where

Ju(y) = Ey

[∫ T

0

F u(Y u
t )dt+K(Y u

T )

]
(2.2)

and where the supremum is taken over the space K of all Markov controls u :

Rn+1 → U ⊂ Rk such that

Ey[Mi(Y
u
T )] = 0, i = 1, 2, ..., l

where M = (M1, ...,Ml) : Rn+1 → Rl is a given continuous function,

Ey[|Mi(Y
u
T ) |] <∞

for all y, u.

Now we introduce a related unconstrained problem as follows:

For each λ ∈ Rl and each Markov control u define

Ju
λ (y) = Ey

[∫ T

0

F u(Y u
t )dt+K(Y u

T ) + λ ·M(Y u
T )

]
(2.3)
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where · denotes the inner product in Rl. The problem will be to find Φλ(y) and

u∗λ(y) such that

Φλ(y) = sup
u∈U

Ju
λ (y) = J

u∗λ
λ (y) (2.4)

without terminal conditions.

Theorem 6 Suppose that for all λ ∈ Λ ⊂ Rl we can find Φλ(y) and u∗λ solving

the unconstrained stochastic control problem (2.3-2.4). Moreover, suppose that

there exists λo ∈ Λ such that

Ey[M(Y
u∗λo
T )] = 0

Then Φ(y) := Φλo(y) and u∗ := u∗λo
solves the constrained stochastic control

problem (2.1-2.2).

Proof 4 Let u be a Markov control and λ ∈ Λ. Then by the definition of u∗λ we

have

Ey

[ ∫ T

0

F u∗λ(Y
u∗λ
t )dt+K(Y

u∗λ
T ) + λM(Y

u∗λ
T )

]
= J

u∗λ
λ (y)

which follows that

J
u∗λ
λ (y) ≥ Ju

λ (y)

= Ey

[ ∫ T

0

F uλ(Y uλ
t )dt+K(Y uλ

T ) + λM(Y uλ
T )

]
..............(a)

In particular, if λ = λo and u ∈ K then

Ey

[
M(Y

u∗λo
T )

]
= 0 = Ey

[
M(Y u

T )

]
and hence by (a), we have

Ju∗λo (y) ≥ Ju(y) for all u ∈ K
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2.0.5 The Maximum Principle For Stochastic Control

The maximum principle states that “Any optimal control along with optimal state

trajectory must solve the Hamiltonian system, which is a two point boundary

value problem plus a maximum condition of a function called the Hamiltonian”.

The mathematical significance of the maximum principle lies in that maximising

the Hamiltonian is much easier than the original control problem that is infinite

dimensional. Let (Ω,F , {Ft}t≥0,P) be a given filtered probability space satisfying

the usual conditions on which an m-dimensional standard Brownian motion B(t)

is given. We consider the following controlled system

dX(t) = b(t, x(t), u(t))dt+ σ(t, x(t), u(t))dB(t), t ∈ [0, T ]

X(0) = x (2.5)

with the performance criterion J(u) of the form

J(u(.)) = E
[ ∫ T

0

f(t, x(t), u(t))dt+ g(X(T ))

]
(2.6)

where

b : [0, T ]× Rn × U −→ Rn

σ : [0, T ]× Rn × U −→ Rn×m

f : [0, T ]× Rn × U −→ R

and

g : Rn −→ Rn

The process u(t) = u(t, w), t ∈ [0, T ], w ∈ Ω is our control process, and has

values in a given closed set U ⊂ Rk. We also require that u(t, w) gives rise to a

unique strong solution X(t) = X(u)(t) of (1) for t ∈ [0, T ].

If

E
[ ∫ T

0

| f(t,X(t), u(t)) | dt+ max{0, g(X(T ))}
]
<∞
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then such controls are admissible and the set of all admissible controls is denoted

by A. Thus, if u ∈ A and X(t) = X(u)(t) is the corresponding solution of (2.5),

we call (u,X) an admissible pair.

We define

b(t, x, u) = (b1(t, x, u), ..., bn(t, x, u))′

σ(t, x, u) = (σ1(t, x, u), ..., σm(t, x, u))

where

σj(t, x, u) = (σ1j(t, x, u), ..., σnj(t, x, u))
′, 1 ≤ j ≤ n

We now make the following assumptions:

a) {Ft}t≥0 is the natural filtration generated by Bt augmented by all the P -null

sets in f .

b) (U, d) is a separable metric space and T > 0.

c) The maps b, σ, fand h are measurable and there exists a constant L > 0 and

a modulus of continuity w : [0,∞) → [0,∞) such that for

ϕ(t, x, u) = b(t, x, u), σ(t, x, u), f(t, x, u), h(x)

we have

| ϕ(t, x, u)−ϕ(t, x̂, û) |≤ L | x−x̂ | +w(d(u, û)) ∀ t ∈ [0, T ], x, x̂ ∈ Rn, u, û ∈ U

| ϕ(t, 0, u) |≤ L; ∀ (t, u) ∈ [0, T ]× U

d) The maps b, σ, f and h are C2 in x. Moreover there exist a constant L > 0

and a modulus of continuity w : [0,∞) → [0,∞) such that for ϕ = b, σ, f, h we

have

| ϕx(t, x, u)− ϕx(t, x̂, û) | ≤ L | x− x̂ | +w(d(u, û))
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| ϕxx(t, x, u)− ϕxx(t, x̂, û) | ≤ w(| x− x̂ | +d(u, û))

The first assumption signifies that the system noise is the only source of uncer-

tainty in the problem and the past information about the noise is available to the

controller. Now we define U [0, T ] := {u : [0, T ] × Ω → u : u is Ft − adapted}.

For any u(.) ∈ U [0, T ] , the state equation (2.5) admits a unique solution x(.) =

x(., u(.)) and the cost functional (2.6) is well defined. In the case that x(.) is the

solution of (2.5) corresponding to u(.) ∈ u[0, T ], we call (x(.), u(.)) an admissible

pair and x(.) an admissible state process.

Now we can state our problem as to maximize (2.5) over u[0, T ] and any ū(.) ∈

U [0, T ] satisfying

J(u∗) = sup
u∈A

J(u)

is called an optimal control.

If X∗ = X(u∗) is the corresponding solution of (2.5), then (X∗, u∗) is called an

optimal pair.

We now introduce the Hamiltonian H : [0, T ]×Rn×U ×Rn×Rn×m → R which

is given by

H(t, x, u, p, q) = f(t, x, u) + bT (t, x, u)p + tr(σT (t, x, u)q)

We will assume that H is differentiable with respect to x. The adjoint equa-

tion(corresponding to the admissible pair (u,X) in the unknown adapted pro-

cesses p(t) ∈ Rn, q(t) ∈ Rn×m is the backward stochastic differential equation

dp(t) = −∇xH(t,X(t), u(t), p(t), q(t))dt+ q(t)dB(t)

with terminal conditions

p(T ) = ∇xg(X(T )) t < T (2.7)
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The above equation is the first order adjoint equation and p(.) is the first order

adjoint process. From now on, we will assume that

E
[ ∫ T

0

{σσT (t,X(t), u(t))}dt
]
< ∞ ∀u ∈ A

From equation (2.7), the unknown is a pair of {Ft}t≥0-adapted processes (p(.), q(.)).

We call the equation a backward stochastic differential equation(BSDE). The key

issue is that the equation is to be solved backwards since the terminal value is

given and the solution (p(.), q(.)) is required to be {Ft}t≥0-adapted.

The adjoint variable p(.) corresponds to the so called price or the marginal value

of the resource represented by the state variable in economic theory. In this

section, we have noted that the maximum principle is nothing but the so called

duality principle : Minimising the total cost amounts to maximising the

total contribution of the marginal value.

Theorem 7 A Sufficient Maximum Principle.

Let (û, X̂) be an admissible pair and suppose that there exists an adapted solution

(p̂(t), q̂(t)) of the corresponding adjoint equation (4) satisfying

E
[ ∫ T

0

{q̂q̂T (t)}dt
]
<∞

Moreover, suppose that

H(t, X̂(t), û(t), p̂(t), q̂(t)) = sup
u∈U

H(t, X̂(t), u(t), p̂(t), q̂(t))

for all t ∈ [0, T ] and that

Ĥ(x) := max
u∈U

H(t, x, u, p̂(t), q̂(t))

exists and is a concave function of x for all t ∈ [0, T ].

Then the pair (û, X̂) is an optimal pair.

For more on this and the proof of the theorem, details in [6]
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Relation to Dynamic Programming

Without proof, we just state the relation between the Maximum Principle and

Dynamic Programming. In the diffusion case, the relation between the maximum

principle and Dynamic Programming is well known.

Theorem 8 Suppose the state X(t) = X(u)(t) of a controlled diffusion in Rn is

given by

dX(t) = b(t,X(t), u(t))dt+ σ(t,X(t), u(t))dB(t)

Let X∗(t) be the solution of the above stochastic differential equation correspond-

ing to an optimal control u∗(t). Then, under some conditions the two adjoint

processes p(t), q(t) for the jump diffusion case are given by

pi(t) =
∂v

∂xi

(t,X∗(t))

qik(t) =
n∑

j=1

σjk(t,X
∗(t), u∗(t))

∂2v

∂xi∂xj

(t,X∗(t))

where V (t, x)is the value function.

Example 3 Suppose the wealth X(t) = X(u)(t) of a person with consumption

rate u(t) ≥ 0 satisfies the following Levy type mean reverting Ornstein-Uhlenbeck

stochastic differential equation

dX(t) = (µ− ρX(t)− u(t))dt+ σdB(t) t > 0

X(0) = x > 0

Fix T > 0 and define

J (u)(s, x) = Es,x

[ ∫ To

s

e−δtu
γ(t)

γ
dt+ λX(To − s)

]
where µ, ρ, σ, θ, T, δ > 0, γ ∈ (0, 1) and λ > 0 are constants. The Hamiltonian

gets the form

H(t, x, u, p, q) = f(t, x, u) + bT (t, x, u)p + tr(σT (t, x, u)q)

= e−δtu
γ

γ
+ (µ− ρx− u)p+ σq 0 ≤ t ≤ T0
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and the adjoint equation becomes

dp(t) = −(−ρp)dt+ q(t)dB(t)

p(T ) = λ

This implies that

dp(t) = ρpdt+ q(t)dB(t)

p(T ) = λ

From the above equations, λ and ρ are deterministic and so we guess that q(t) = 0

and this gives

dp(t) = ρpdt

⇒ lnp(t) = ρt+ c where c is a constant of integration

⇒ p(t) = Aeρt where A = ec

Applying boundary conditions

p(T ) = λ⇒ λ = AeρT ⇒ A = λe−ρT

Therefore

p(t) = λeρ(t−T )

Now

H(t, X̂(t), u, p̂(t), q̂(t)) = e−δtu
γ

γ
+ (µ− ρX̂(t)− u)p̂(t)

This is maximal when: ∂H
∂u

= 0

This implies that e−δtûγ−1 − p̂(t) = 0

⇒ ûγ−1 = p̂(t)eδt

= λeρ(t−T )+δt

= λe(ρ+δ)t−ρT

Therefore

û(t) = λ
1

γ−1 e
(ρ+δ)t−ρT

γ−1
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With p̂(t), q̂(t) as given above, we see that all the conditions of the maximum

principle are satisfied.
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Chapter 3

The Problem

Suppose that the fortune at time t is given by dXt = u(t)dt+ σdB(t) where ut is

the consumption rate. The performance criterion Ju(s, x) is the expected total

discounted consumption i.e.,

Ju(s, x) = E

[∫ T

0

e−δt(cX(t) + θu(t)2)dt

]

with the boundary conditions X(0) = 0, E[X(T )] = M where T, δ, c, θ, σ and M

are constants.

We firstly note that the above problem is a minimisation problem.

Φ(y) = inf
u
Ju(y) = inf

u
E

[∫ T

0

e−δt(cX(t) + θu(t)2)dt

]
= − sup

u

{
E

[∫ T

0

−e−δt(cX(t) + θu(t)2)dt

]}

Thus, the problem becomes a maximisation problem.
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Solution

3.0.6 The Maximum Principle

In this case the problem can be reformulated as

− sup
u
E

[∫ T

0

−e−δt(cX(t) + θu(t)2)dt− e−δTλ(X(T )−M)

]
In this case, the Hamiltonian gets the form

H(t, x, u, p, q) = −cxe−δt − θu2e−δt + σq + up (3.1)

Hence the adjoint equations become

dp(t) = ce−δtdt+ q(t)dB(t)

p(T ) = −λe−δT (3.2)

Since λ and c are deterministic, we guess that q̂ = 0 and this gives

p̂(t) =
−ce−δt − (δλ− c)e−δT

δ
(3.3)

Let û ∈ A be a candidate for the optimal control with corresponding X̂ and p̂, q̂.

Then

H(t, X̂t, ut, p̂t, q̂t) = −cX̂te
−δt − θu2e−δt + up̂+ σq̂

This is maximal when

∂H

∂u
= 0 ⇒ −2θûe−δt + p̂ = 0

⇒ ût =
p̂te

δt

2θ
(3.4)

=
−c− (δλ− c)eδ(t−T )

2δθ
(3.5)

But dXt = utdt+ σdBt

Substituting for ut and solving where X(0) = 0, we get

Xt = − ct

2δθ
− (δλ− c)eδ(t−T )

2δ2θ
+

(δλ− c)e−δT

2δ2θ
+ σBt (3.6)
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But we are given that E[X(T )] = M , thus

M = − cT

2δθ
− (δλ− c)

2δ2θ
+

(δλ− c)e−δT

2δ2θ
+ σT

Solving for λ, we get

λ =
c

δ
+

2δ2θM + cδT − 2δ2θσT

δ(e−δT − 1)

Substituting for λ into (3.5), we get

û(t) = − c

2δθ
− eδ(t−T )

2δθ

(
2δ2θM + cδT − 2δ2θσT

e−δT − 1

)
=

c(1− eδT ) + δeδt(2δθM + cT − 2δθσT )

2δθ(−1 + eδT )
........................(a)

Also

Xt = − ct

2δθ
− eδ(t−T )

2δ2θ

(
2δ2θM + cδT − 2δ2θσT

e−δT − 1

)
+

e−δT

2δ2θ

(
2δ2θM + cδT − 2δ2θσT

e−δT − 1

)
+ σBt

=
−ct(−1 + eδT ) + (2δθM + cT − 2δθσT )(−1 + eδt) + 2δθσBt(−1 + eδT )

2δθ(−1 + eδT )
...(b)

and

p(t) = −c
δ
e−δt − e−δT

δ

(
2δ2θM + cδT − 2δ2θσT

e−δT − 1

)
= −c

δ
e−δt +

2δθM + cT − 2δθσT

−1 + eδT
.................(c)

We are also going to consider the dynamic programming approach in solving the

above problem.
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3.0.7 Dynamic Programming Approach

Since we are given the probabilistic behavior of Xu
t at the terminal time t = T ,

we apply a kind of “Lagrange Multiplier” method and our value function becomes

Φ(y) = inf
u∈A

J (u)(y) = − sup
u∈A

{−J (u)(y)}

= − sup
u∈A

E

[∫ T

0

−e−δt(cX(t) + θu(t)2)dt− λ(X(T )−M)e−δT

]

where λ ∈ R.

Thus from the HJB’s

0 = sup
v

{
F v(t, x) + (Lvψ)(t, x)

}
=

∂ψ

∂t
+ sup

v

{
− cxe−δt − θv2e−δt + v

∂ψ

∂x
+

1

2
σ2∂

2ψ

∂x2

}
and ψ(T, x) = −λ(x−M)e−δT

We try to find a solution ψ of the form

ψ(t, x) = a(t)x+ b(t)...........(1)

where a(t), b(t) are deterministic continuous and differentiable functions. We

need to find a(t) and b(t) such that

sup
v

{
F v(t, x) + (Lvψ)(t, x)

}
= 0 for t < T

and ψ(T, x) = −λ(x−M)e−δT ............(2)

where a(T ) = −λe−δT and b(T ) = λMe−δT for us to get (2).

Therefore, for each (t, x), we try to find the value v = u(t, x) which maximizes

the function

H(v) = F v(t, x) + (Lvψ)(t, x)

= a′(t)x+ b′(t)− cxe−δt − θv2e−δt + va(t).....(3)
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The maximum of this expression is obtained when ∂H
∂v

= 0

i.e when −2θve−δt + a(t) = 0

Therefore

v = û(t, x) =
a(t)

2θ
eδt.........(4)

If we substitute (4) into the HJB equation (3), we get the following

0 = a′(t)x+ b′(t)− cxe−δt − θ(
a(t)

2θ
eδt)2e−δt + (

a(t)

2θ
eδt)a(t)

= a′(t)x+ b′(t)− cxe−δt +
a(t)2

4θ
eδt

This is zero when

(1) a′(t)− ce−δt = 0 ⇒ a′(t) = ce−δt

a(t) = −c
δ
e−δt + E1 But a(T ) = −λe−δT

Thus

E1 = −λe−δT +
c

δ
e−δT

Therefore

a(t) =
−ce−δt + (c− δλ)e−δT

δ
.........(5)

(2) b′(t) + a2(t)eδt

4θ
= 0

If we substitute for a(t) and solving for b(t) we get

b(t) =
1

4θδ2

(
−c

2

δ
e−δt − 2c2te−δT +

c2

δ
eδ(t−2T ) + 2cδλt− 2cλeδ(t−T ) + δλ2eδt

)
+E2

But b(T ) = λMe−δT

Therefore

E2 = λMe−δT − 1

4θδ2
(2cλ(δT − 1) + δλ2eδT − 2c2Te−δT )

Thus from (4)

u(t) =
−c(e−δt − e−δT )eδt − λδeδ(t−T )

2δθ

= − c

2δθ
− eδ(t−T )(δλ− c)

2δθ
, t < T.
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With this value of u, we solve the differential equation for Xt

dXt = utdt+ σdBt

⇒ Xt = − ct

2δθ
− (δλ− c)

2δθ
eδ(t−T ) + σBt + E5

But X(0) = 0

⇒ E5 =
e−δT

2δ2θ
(δλ− c)

Therefore

Xt =
−ct
2δθ

+
e−δT

2δ2θ
(δλ− c)(1− eδt) + σBt

In order to solve for λ, applying Theorem (6), we have E[Xλo(T )] = M

⇒M = − cT

2δθ
+
e−δT

2δ2θ
(δλo − c)(1− eδT ) + σT

Thus we have for λ = λo

λ =
c

δ
+

2δθM + cT − 2δθσT

e−δT − 1

With this value of λ, then Xt becomes

Xt = (1− eδt)

(
2δMθ

2δθ(1− eδT )
− c(1− δT − e−δT )

2δ2θ(1− eδT )
− ce−δT

2δ2θ

)
− ct

2δθ
+ σBt

=
1

2δθ(−1 + eδT )

[
(1− eδt)(−cT − 2δMθ)− ct(−1 + eδT ) + 2δθ(−1 + eδT )σBt

]
Now u(t) becomes

u(t) =
1

2δθ(1− eδT )
[−c+ ceδT − 2δ2Mθeδt − cδTeδt + 2δ2θσBT e

δt]

=
1

2δθ(1− eδT )

[
−c(1− eδT ) + δeδt(−cT − 2δMθ + 2δθσBT )

]
.............(6)

Since u(t) is the consumption process, it is always positive and we also expect

that its increasing with increasing time. We check these conditions on equations

(a) and (6). Equation (6) simplifies to

u(t) =
1

2δθ(−1 + eδT )

[
c(1− eδT ) + δeδt(cT + 2δMθ − 2δθσBT )

]
=

1

2δθ(−1 + eδT )

[
c− ceδT + cδTeδt + 2δ2Mθeδt − 2δ2θσBT e

δt
]

≥ 0 for 2δ2Mθeδt ≥ 2δ2θσBT e
δt + c(eδT − 1− δTeδt)
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Also

u′(t) =
δeδt(cT + 2δMθ − 2δθσBT

2θ(−1 + eδT )

=
2δ2Mθeδt + cδTeδt − 2δ2θσBT e

δt

2θ(−1 + eδT )

≥ 0 since 2δ2Mθ ≥ 2δ2θσBT − cδT

Since the derivative is positive, it shows that the consumption is increasing with

increasing time.

Now, we consider the deterministic case i.e., when σ = 0.

u(t) =
1

2δθ(−1 + eδT )

[
c(1− eδT ) + δeδt(cT + 2δMθ)

]
=

1

2δθ(−1 + eδT )

[
c− ceδT + cδTeδt + 2δ2Mθeδt

]
≥ 0 for 2δ2Mθeδt ≥ c(eδT − 1− δTeδt)

At t = 0, we have

u(t) =
1

2δθ(−1 + eδT )

[
2δ2Mθ − c(eδT − 1− δT )

]
≥ 0 for 2δ2Mθ ≥ c(eδT − 1− δT )

For t > 0, we have

u′(t) =
δeδt(cT + 2δMθ)

2θ(−1 + eδT )

≥ 0 for 2δMθ + cT ≥ 0

At t = 0, we have positive consumption yet we are starting with an initial fortune

of zero. This means that the consumer will have to start consuming at some time

0 < s < T . Thus we are faced with a new optimisation problem. We now solve
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the problem in the interval [s, To].

In this case our performance criterion becomes

Es,x[

∫ To

s

−e−δt(cX(t) + θu(t)2)dt− λ(X(To)−M)e−δT ]

= E[

∫ T

0

−e−δ(s+t)(cX(t) + θu(t)2)dt− λ(X(T )−M)e−δT ]

where T = To − s = inf{t > 0;Y s,x(t, x) 6∈ G} with G = {(s, x); s < To}

Just like in the previous case our u becomes

u(s) =
−c+ ceδ(s−T ) − δλeδs

2δθ

Now dXs = usds+ σdBs

Solving, we get

Xs =
−cs
2δθ

+
c

2δ2θ
eδ(s−T ) − λ

2δθ
eδs + σBs + E1

But in this case X(0) = x1 > 0

Thus E1 = x1 − c
2δ2θ

e−δT + λ
2δθ

Therefore

Xs = x1 + (
λ

2δθ
− c

2δ2θ
e−δT )(1− eδs)− cs

2δθ
+ σBs

Now E[Xλo(T )] = M , thus

M = x1 + (
λo

2δθ
− c

2δ2θ
e−δT )(1− eδT )− cT

2δθ
+ σBT

Solving for λo and since λ = λo, we have

λ =
1

δ(1− eδT )
[2δ2θM − 2δ2θx1 + cδT − 2δ2θσBT ] +

c

δ
e−δT

Substituting this value of λ into u and simplifying, we get

u(s) =
1

2δθ(1− eδT )
[c(eδT − 1)− cδTeδs + 2δ2θ(x1 + σBT −M)eδs]............(7)

Also Xs simplifies to

Xs = x1+
1

2δθ(1− eδT )
[(2δθM−2δθx1+cT−2δθσBT )(1−eδs)−cs(1−eδT )+2δθσBs(1−eδT )]
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Considering equation (7)

u(s) =
1

2δθ(−1 + eδT )
[−c(−1 + eδT ) + cδTeδs + 2δ2θ(M − x1 − σBT )eδs]

u′(s) =
1

2δθ(−1 + eδT )
[cδ2Teδs + 2δ3θ(M − x1 − σBT )eδs]

=
1

2δθ(−1 + eδT )
[cδTeδs + 2δ2θ(M − x1 − σBT )eδs]

≥ 0 for c ≥ 0, θ > 0 and M ≥ x1 + σBT

We shall summarise the results of the above problem as follows:

Theorem 9 Let Xu
t be the controlled process and consider the following stochas-

tic control problem

dXt = utdt+ σdBt

with the performance criterion defined by

Ju(s, x) = E

[∫ T

0

e−δt(cX(t) + θu(t)2)dt

]
where X(0) = 0, E[X(T )] = M and T, δ, c, θ, δ,M are constants.

(a) The optimal value function is given by

Φ(t, x) =
−ce−δt + (c− δλ)e−δT

δ
x

+
1

4θδ2

(
−c

2

δ
e−δt − 2c2te−δT +

c2

δ
eδ(t−2T ) + 2cδλt− 2cλeδ(t−T ) + δλ2eδt

)
+λMe−δT − 1

4θδ2
(2cλ(δT − 1) + δλ2eδT − 2c2Te−δT )

(b) The control u∗ is given by

u∗(t) =
1

2δθ(1− eδT )

[
−c(1− eδT ) + δeδt(−cT − 2δMθ + 2δθσBT )

]

It is also of interest to investigate the behaviour of the control process and the

value function for large values of T . Thus we come up with the following corollary.
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Corollary 1 For large values of T , i.e., as T →∞, our control process gets the

form

(a) lim
T→∞

u(t) = lim
T→∞

1

2δθ(1− eδT )

[
−c(1− eδT ) + δeδt(−cT − 2δMθ + 2δθσBT )

]
= − c

2δθ
, c ≥ 0, θ > 0.

and is negative.

(b)

lim
T→∞

Φ(t, x) →∞

The value function diverges for large values of T .

Remark

Now we consider the connection between the Dynamic Programming and the

Maximum Principle.

p(t) =
∂Φ

∂x
=
−ce−δt + (c− δλ)e−δT

δ

which is the same with p(t) in equation (3.3).

Also q(t) = ∂2φ
∂x2 = 0 which compares well with our value of q = 0.

Conclusion

We note that for T small the consumption value or control is dependent on time

only. But for large values of T the condition that u(t) ≥ 0 is violated and our

control in this case becomes constant. A well known case (see [1]), Chapter 11,

Exercise 11.12 where both the state and control are quadratic i.e.,

Ju(s, x) = E

[∫ ∞

s

e−δt(X2(t) + θu2(t))dt

]
,

the control is feedback in form i.e., depends on the state and this is the only

striking difference with the problem under consideration.
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