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Abstract

In this thesis, we consider a stochastic control problem in both finite and infinite
time interval, with a terminal state constraint. We consider two approaches in
solving the problem i.e, the Maximum Principle and the Dynamic programming

approach.
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Chapter 1

Some Mathematical

Preliminaries

1.0.1 Introduction

We begin with a review of some basic definitions and theory closely related to clas-
sical stochastic control. Both the dynamic programming method and the maxi-
mum principle method are discussed as well as the relation between them. Also
formulated are the corresponding verification theorems involving the Hamilton-

Jacobi Bellman(HJB) equation.

Definition 1 A stochastic process [4] is a family {X; = X (t,w),t > 0,w € Q}
of random variables defined on a probability space (2, F,P) where in this case F
denotes the subsets of ) that are events and are called F-measurable and with P a
probability measure assigning to any event in F its probability i.e., P : F — [0, 1]
such that

1. P(0) =0,P(w) =1



2. If By, By, .... € F and {B;}32, is disjoint (i.e., B;NB; =0, i+ j) then

PUEB) =S P(B)

The set of events corresponding to the information available at time t is denoted
by F; C F i.e., if an event B is in F;, then at time t, this event is known to be

true or false. A good example of a stochastic process is the Brownian motion.

Definition 2 A one-dimensional Brownian motion is a stochastic process By(w)
such that

1. P[B,(w) =x] =1 i.e., the process starts at a point x att = 0.

2. It has independent increments i.e., if 0 < t; <ty < ... < t,,, then

B,, — B, B, ,—DB:, ,, ...,By, B, are independent.

m m—1) m—1

3. For s <t, By — By is normally distributed with mean 0 and variance t — s.
4. By 1s continuous in t.
5. It has stationary increments i.e., if s < t, By — By and B;_y — By have the

same probability law.

Definition 3 Let U be the collection of all open subsets of 2 and let G, be the
smallest o-algebra generated by U. If Q2 = R™, then the family B = G, is called
the Borel o-algebra on ) and the elements B = B are called the Borel sets. More

on this reader is refered to [2]

Definition 4 Stochastic Differential Equations
A stochastic differential equation(S.D.E) is of the form

dX,

% = b(t,Xt) + O'(t, Xt)Wt, b(t, l‘) € R, O'(t,[[‘) eR (1].)

where Wy 1s a 1-dimensional white noise.

The Ito interpretation of (1.1) is that X, satisfies the stochastic integral equation
t t

X = Xo +/ b(s, X,)ds +/ o(s, Xs)dBs or in the differential form (1.2)
0 0
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dXt = b(t,Xt)dt+U<t7Xt>dBt (13)

Thus a(one-dimensional) Ito process(or stochastic integral) is a stochastic process

X on (Q,F,P) of the form (1.2).

Theorem 1 Consider the following SDE in R™ : X(0) =z € R" and
dX(t) = a(t, X (t))dt + o(t, X (t))dB(t)
where
a:[0,7T] x R" — R",
o:[0,7] x R" — R™™
satisfy the following conditions:

(At most linear growth) There exists a constant C' < oo such that
| ot,z) |>+ | alt,z) P<COA+ |z ?) V¥V zeR™
(Lipschitz continuity) There exists a constant D < oo such that
lo(t,z) —olt,y) I” + | alt.z) —alt,y) I
<D|z—yl]* V x,y cR"

Then, there ezists a unique cadlag adapted solution X (t) such that
E[| X(t) )] <o V t

Proof
See [1]

Martingales

An n-dimensional stochastic process {M;};>o on (2, F,P) is called a martingale
with respect to a filtration {M;}>o if

(i) M; is M-measurable for all t.

(ii) E[| M; |] < oo for all t and,

(iii) E[M, | My] = M, for all s > ¢.



Properties of Conditional Expectation

Let X be a stochastic process with E[X;] < oo

(a) E[E[X | M]] = E[X], M — o-algebra.

(b) E[X | M] = X if X is M-measurable.

(c) E[X | M] = E[X] if X is independent of M.

(d) E[YX | M] =YE[X | M] if Y is M-measurable.

Example
E[B,e* | F,] = B,E[e*P" | F,] since B, is F, — measurable

— BSE[€QB,572BS+QBS f‘s]
= BSeQBSE[ez(Bt_BS) Fs
= BSeQBSE[GQ(Bt_BS)} since B; — B, is F, independent
= B, E[e?Br]
— Bse2BS 62(t73).

NOTE

When «(t,z) = a(z),and o(t,z) = o(z) then we have the time homogeneous
case. In the above theorem, by the term “ unique”, we mean that any other Ito
process with the same properties is equal to X almost everywhere. A unique
solution in this sense is sometimes called a strong solution or strong uniqueness.
We also have weak uniqueness where any two solutions are identical in law i.e.,

they have the same finite-dimensional distributions.
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1.0.2 The Ito Formula

Let X (t) € R™ be an Ito process of the form
dX(t) = a(t,w)dt + o(t,w)dB(t)

where o : [0,7] x Q@ — R" ; 0 : [0,T] x Q@ — R™™ are adapted processes such
that the integrals exist. Also in this case B(t) is an m-dimensional Brownian
motion.
Let f € C'2([0,T] x R") — R.
Then Y (t) = f(¢,X(t)) is again an Ito process, and

dY (t) = %dt + é g—i(aidt +0,dB(t)) + 1 i (oo™) ) dt. (1.4)

i ———
2 £ ! 00
2,7=1

The one dimensional version of this Ito-formula is

dY (t) = a—f(t, X(t))dt—l—a—f(t, X(t))(adt+odB(t))+ Lo

= 5 o 5@(15,)(@))02@)6# (1.5)

If we choose to describe the motion of a small particle suspended in a moving
liquid, subject to random molecular bombardments, then a reasonable mathe-
matical model for the position X; of the particle at time ¢ would be a stochastic
differential equation of the form (1.1) where b(t, x) € R? is the velocity of the fluid
at the point z at time ¢ and W, € R?® denotes ‘white noise’ and o(t,z) € R3*3.

In a stochastic differential equation of the form
dXt = b(t, Xt)dt + U(t, Xt>dBt
where X; € R", b(t,x) € R", o(t,z) € R*™™ and B, is m-dimensional Brownian

motion, we will call b the drift velocity and ¢ the diffusion coefficient.

11



We note that the solution of a stochastic differential equation may be thought
of as the mathematical description of the motion of a small particle in a moving
fluid and such stochastic processes are called Ito diffusions. We thus develop

some of the most basic properties and results about Ito diffusions.

The next section introduces a class of stochastic processes that share what is
called the ‘Markov property’: the future is independent of the past, given the
present values of the process. Markov models are important models of security
prices, because they are often realistic representations of the true prices and yet

the Markov property leads to simplified computations.

1.0.3 The Markov Property

Definition 5 A (time homogeneous) Ito diffusion is a stochastic process X, (w) =

X(t,w) : [0,00) x Q — R™ satisfying a stochastic differential equation of the form
dX; =b(Xy)dt + o(Xy)dBy, t>8, Xg=1Tuieiinnn, (a)

where By is m-dimensional Brownian motion.
The unique solution of (a) is denoted by X; = X;*, t > s. If s = 0, we write
X7 for Xto’x where in this case we have assumed that b and o do not depend on

t but only on x.

Consider

s+h
X, = x+/ b(X") du+/ o(X:2*)dB,

h h
= a:+/ b(XE) dv+/ o(X25,)dB,, u=s+v
0 0

12



where BU = Bsiy— Bs, v2>0.
On the other hand,

h h
X0 = g 4 / b(X2)dv + / 7(XO%)dB,
0 0

{B,}s>0 and { B, },> have the same Q-distributions and thus by the weak unique-

ness of the solution of the stochastic differential equation (a),

(X35 o and  {X3" s

have the same Q-distributions i.e., {X;}+>0 is time homogeneous.

Definition 6 Let P and () be measures on a o-algebra U. The measure () is
absolutely continuous w.r.t P if for each A € U,P(A) =0 = Q(A) = 0. The
relation indicated by Q) << P.

If Q << P and P << Q, the measures are said to be equivalent and are related

as follows, Q) ~ P.

Markov property: The future behavior of the process given what has happened
up to time ¢ is the same as the behavior obtained when starting the process at
X;.

We now want to prove that X; satisfies this property.

NB: F; is the o-algebra generated by {B,,r < t}. Similarly, we let M; be the
o-algebra generated by {X,,r < t}. Since X, is measurable with respect to F;,
then M; C F;.

Theorem 2 (The Markov property for Ito diffusions)
Let f be a bounded Borel function from R™ — R. Then fort,h >0,

E°[f(Xern) | 2] = EV[f(X)]

13



Proof

From the theorem, X; is a markov process with respect to the family of o-algebras
{Fi}+>0. Since M, C F; this implies that X, is also a Markov process with respect
to the o-algebras { M, };>¢.

Now by using the properties of conditional expectation

E*f(Xen) [ Fi] = EFET[f(Xegn) | Fil | My
= E[EY[f(Xh) | 7] | My]
= ET[E™[f(Xn)] | M
= E™[f(Xp)]

Since EXt[f(X})] is M-measurable

The Strong Markov Property

If the time t is replaced by a random time 7(w) of a more general type called
stopping time, then the strong Markov property states that a relation of the form

(a) continues to hold.

Definition 7 Let {N,;} be an increasing family of o-algebras, N; C Q. A function

7:Q — [0,00) is called a strict stopping time w.r.t N if

{w;T(w) <t} € Ny, forall t>0
In other words, on the basis of the knowledge of A, it should be possible to
decide whether or not 7 < ¢ has occurred since

{w;T(w) <t} is N; measurable.

14



Definition 8 Let T be a stopping time w.r.t {N;} and let N, be the smallest
o-algebra containing Ny for allt > 0. Then the o-algebra N, consists of all sets
N € N4, such that

Nn{r<t}eN, foral t>0

Theorem 3 The Strong Markov property for Ito diffusions.
Let f be a bounded Borel function on R™, and 7 a stopping time w.r.t Fy, T < 00
a.s.
Then
E*[f(Xrin) | F] =EX[f(Xn)] ¥V h >0

The Generator of an Ito Diffusion

Definition 9 Let X (t) € R" be a(time homogeneous) Ito diffusion. Then the
generator A of X is defined on functions f : R" — R by
1
Af(z) = lim g{E”[f(Xt)] — f(z)} if the limit exists

t—0t

where B2[f(X,)] = E[f(X{”)], X@(0) = .

Theorem 4 Let X; be the Ito diffusion
dX; = a(X(t))dt + o(X(t))dB(t)

Suppose f € CZ(R™). Then the generator A of x is given by

A0 = @+ L oo w0
Proof 1
af (Xy) 1 PP f(X)

df(X,) = dxW 4 = dxDax0)
[COEDY ax, T 2Zaxax,

i 7,7
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But X! = a®(X,)dt + ¥, aildBt(i). This implies that

_ 3f Pl i) 5 0)
1 0 f T
aX dt+z DaB, + +5 > XX, (0.07); jdt

Since dX" - dx? = (ooT);;dt. This implies that

E°[f(X0)) = fa) _ 1 {E '
t t

) Xs)ds] }

N %{E Z% /0 Tz%(aﬁ)m(xs)ds] —f(x)}

We observe that if g(s) is continuous, then

limM = lim@ = ¢(0)

t—0 t t—0 1

Thus to calculate lim,_,o w, we observe that X (0) = x and from the

above observation we obtain
R af T D’ f
Af(a) =3 a@)5-+3 LS (0o 5o, @

i=1 i,j=1
Dynkin’s formula

Let X (t) € R™ be a jump diffusion and let f € CZ(R™). Let 7 be a stopping time
i.e., 7 is the first exit time such that E*[7] < oo.

Then
B LX) = f(o)+ B | [ ArCxas

Proof 2 Tto’s formula on dX; = a(X;)dt + o(X;)dB; yields

0
df (X;) = 3)? dt+ZaX ocVdB, + = ZanX(UJT)wdt

16



which gives
' 0f w1 [~ O N Of
_ (@) Z — (oo,
f(Xy) f(X0)+/0 ;axioz ds+2/0 ZZjaXian(aa )uder/O ;8&
Now let t = 7(w) be a stopping time, then
_ ‘N9 w7 r  *f / N9
f(X,) = f(XO)—i—/O Z;@Xi& ds+2/0 %:(OJ )UaXiandsﬁL i zi:aXia dB;

= f(Xo) + /OT Af(Xs)ds + /OTZ of a¥dB,

O'(i)dBS

0X;

Therefore

E[f(X,)] = f(z) + E{ | Af(ngs} ¥ E{ | > j)ga@st]

Lemma

If 7(w) is a stopping time with E* (1) < oo and f is a bounded function, then

E{/OTZf(s,w)st] =0

Proof

Let t be any real number, then

IE[/O f(s,w)dBS] :E{/O J (8, W)X fwss<r(w)}dBs

where typ = min{7,t}.

From the definition of a stopping time, X {uw.s<r(w)} 15 Fs-measurable. Then X {uw;s<r(w) f(s, w)
18 adapted.

Therefore

t
E|:/ X{w;sﬁ‘r(w)}f(sa w)st =0
0

Thus Dynkin’s formula is shown.

17



Model

If we assume that the price process is represented by the model
dXt = b(Xt)dt + O'(Xt)dBt

with the generator given by

_Pf
A b(z )i
/= Z Z 7 dx;0x;
Then we have two types of utility or reward functions.

(1) Instantaneous Reward : g(x)
Suppose that 7 is a stopping or terminal time, then g(X;) is the terminal reward

one gets when stopping at time 7 where in this case g(X,) is given by
9(X7) = ;. X;

«; is the number of units in stock 7, 1 =1,2,3,...,n
One can easily note that the terminal reward is the utility we get when we stop

at time 7.

(2) Accumulated Reward: f(x)

Jy [(X:)dt = utility of holding X; from 0 to 7.

f is interpreted as the running reward or utility function from time ¢ = 0 to time
t=r.

Thus the total reward when stopping at some time 7 is the sum of the two types

of rewards i.e.,
| fxa s g(x)
0

Also, the price might be discounted back to the time of start of the production
and thus, the running reward will change to include the discount factor e~%¢,
where ¢ is the discount rate. Thus our function ® will be such that

B(y) = supEY [ | et gt x)

T

18



Instead of finding the supremum over all possible stopping times, we will find the
supremum over all Fi-adapted processes {u,} with values in U. Such a control u*
- if it exits - is called an optimal control and ® is called the optimal performance

or the value function.
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Chapter 2

Stochastic Control

Let S € R* be a fixed domain which is the solvency region and consider a stochas-

tic process Y (t) = Y"(t) of the form
dY (t) =b(Y(t),u(t))dt + o(Y(t),u(t))dB(t)

Y(0)=ye€ RF
where

b:RF xu —RF o:RFxu— RF™

are given functions and u € R¥ is a given Borel set. The process u(t) = u(t, w)
where u(t,w) : [0,00) X ¢ — w is the control process which is assumed to be
adapted and cadlag. A process u(t,w) is called Fi-adapted if for each ¢t > 0, the
function w — u(t,w) is Fy-measurable. A cadlag process is one which is right
continuous with left limits. We consider a performance criterion J = J® (y) of

the form

W (y) = EW [ | s, utepae + v

where T' = inf{t > 0 : Y"(¢t) ¢ S} is the bankruptcy time and f and g are

continuous functions.

21



Admissible Control

The control process u is said to be admissible if the corresponding stochastic

differential equation(S.D.E)

dY (t) = b(Y (t), u(t))dt + o(Y (), u(t))dB(t)
Y(0) =y e RF

has a unique strong solution Y (¢) for all y € S and

E@)[/O FOY (), u(t)dt + g(Y(T))| < oo

Thus if we let A be the set of all admissible controls, then the stochastic control
problem is to find the value function ®(y) and an optimal control u* € A defined
by ®(y) = sup,e 4 J ™ (y) = J@)(y) where the supremum is taken over all Fim.

adapted process u; with values in U.

Such a control u* if it exists - is called an optimal control and ® is called the

optimal performance or the value function.

Examples of types of Controls

(1) Deterministic or Open Loop Controls:
In this type of control, we have functions of the form (¢, w) = u(t) i.e., a function
that does not depend on w. It is one in which the output of the system is not

involved in its control.

(2) Closed Loop or Feedback Controls:

In this case, we have processes u; which are M;-adapted i.e., for each ¢, the

22



function w — U(t,w) is M;-measurable, where M, is the o-algebra generated
by X¥; s <t. Generally, it compares the output(or some function of the output)

with the input and forms an error actuating signal from their difference.

(3) Linear Filtering problem and Deterministic Controls:

In this type of control, the controller has only partial knowledge of the state of the
system and these controls are the ones in which the stochastic control problem
will be linked to the filtering problem and it forms the so called stochastic linear
regulator problem. The controller only has (noisy) observations R; of X, given

by an Ito process of the form

dR; = a(t, X;)dt +~(t, X,)d B,

where B is a Brownian motion(not necessarily related to B). Hence, the con-
trol process u; must be adapted with respect to the o-algebra N, generated by
Ry s < t. If the above equation is linear and the performance function is inte-
gral quadratic, then the stochastic control problem splits into a linear filtering
problem and a corresponding deterministic control problem. This is called the

Separation Principle.

(4) Markov controls:

Under these controls, the functions u(t, w) are of the form u(t, w) = uy(t, X¢(w))
for some function ug : R™! — u C R*.

We will assume that v does not depend on the starting point y = (s,z). The
value that we choose at time ¢ only depends on the state of the system at this
time. These are called Markov controls because with such u, the corresponding

process X; becomes an Ito diffusion, in particular a Markov process.
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2.0.4 Dynamic Programming

We are going to consider Markov controls only i.e., v = u(t,w) and introducing

Y, = (s +t, Xs4¢), the system equation becomes

dY (t) = b(Y (t), u(t))dt + o (Y (t), u(t))dB(1)

Then for each choice of the function u, the solution ¥; = ¥,* is an Ito diffusion

with generator A given by

Aply) = A9(y)
= a(y) + z:bi(y,u(y))a Z'(y) + % Z(UUT)ij(yaU(?/))

i=1 ij=1

0%
3%3%

(y)

If only Markov controls are considered, the Hamilton Jacobi-Bellman(HJB) equa-
tions provide a very nice solution to the stochastic control problem. It is interest-
ing to note that considering Markov controls only is too restrictive but fortunately
one can always obtain as good performance with a Markov control as with an

arbitrary ,7-"t(m)—adapted control, at least if some extra conditions are satisfied.

In this section we will formulate a verification theorem for the optimal control
problem which is analogous to the classical Hamilton-Jacobi-Bellman(HJB) for

(continuous) Ito diffusions.

Theorem 5 (HJB for optimal control)(See [2])
Let ¢ be a bounded function and twice differentiable i.e., ¢ € C*(S)N C(S) and
suppose the function ¢ satisfies the following:

(i)
A’d(y) + fly,v) <0 VyesS, vel.
(it)
o(Y(T)) € 0S if T<oo Yued

24



(iii)
limo(Y(t) = gY(T)) as V ue A, T <oo
(iv)
{6(Y(7)}r<r

is uniformly integrable V v € A and y € S
) )
2| [ 1070wl P <oo
0

Then ¢(y) > ®(y) V ye€ S

Moreover, suppose that for each y € S, there exists v = u(y) € U such that
(vi)
A"Wo(y) + f(y,aly)) =0

and
(vii)

{o(Y @ (1)} rer
1s uniformly integrable.

Suppose u*(t) = u(Y(t)) € A

Then u* is an optimal control and

Proof 3 Assume that ¢ satisfies (i) and(iii).
Let u e A. Put T, = min(n,T) where n =1,2,3, ....

25



Then by the Dynkin formula, we have

B0 ()] = o)+ 0] [ vty )]

But from (i)

Thus
Th

EVo(V ()] < ¢<y>—Ey{ f<Y<t>,u<t>>dt]

0

This gives
Tn

FOV (), ult))dt + ¢<Y<Tn>>]

0

oy) > E{

Taking the limit as n — oo, we get

n—o0

o(y) > lim inny[ / f<Y<t>,u<t>>dt+g<Y<T>>] — )

Since u € A was arbitrary, we conclude that

dly) > (y) Yy € Sevrnnn, (1)

Now if u(t) = a(Y(t)) is such that (vi) holds, then by the above calculations we

have

Example 1 See [3]

Suppose the wealth X (t) = X (t) of a person with consumption rate u(t) > 0
satisfies the following mean reverting Ornstein-Uhlenbeck stochastic differential
equation

dX(t) = (u— pX(t) —u(t))dt + odB(t), t>0

26



X(0)=z2>0
Fix T > 0 and define
u? ()

To—s
JW (s, x) = E*® [/ e ——2dt + AX (T, — s)e™°T
0 v

where p, p,0,0,T,0 > 0,7 € (0,1) and A > 0 are constants.

Solution

In this case we are going to use dynamic programming to find the value function
O (s, x) and the optimal consumption rate(control) u*(t) such that
®(s,z) = sup JW (s, z) = J“)(s,2)
u(.)
Firstly, note that

To T
o [0 s
s Y 0 Y

where T'="T, — s = inf{t > 0; Y**(t,z) € G} with G = {(s,z);s < T,}.

Let Y(t) =[s+t,X(t)] fort >0,Y = (s,2).

We let A be the differential operator which coincides with the generator of Y (t),
then the generator of Y (t) is

A'ly) = A"¢(s, )

99

_ Do ,0%¢
- 8S+<M_px_u)8x+ 0(93:2

1
2
So the conditions of the HJB for optimal control get the form

(i) A%p(s,x) —{—e“ss%(t) <0 Vu>0,s<T

(1) p(Y(T)) € 0s if T <oo Vue A

27



(iii) BY | [T{| o(Y(£) V(Y (1)) [Pdt| < oo

(iv) (T, x) = A\ve T

(v) {d(Y (7)) }r<r is uniformly integrable.

(vi) Al¢p(s, x) + e_‘;s% =0fors<T

(vii) {d(Y D (1)) }r<7 is uniformly integrable.

Now we try a function ¢ of the form
o(s,x) = h(s) + k(s)z

for suitable functions h(s), k(s). Then the conditions (i)-(vii) get the form

,
h'(s) + K (s)x + (u— pr —u)k(s) + 6_65% <0

forall s <T,, u=>0.

(w) k(T)=X, WT)=0

(vi)” h'(s)+ K (s)x+ (u— pr —0)k(s) —1—6_58% = 0 where @ is a possible candidate

for optimal control.
(vii)” The function {h(T) + k(7)X(7)}r<1 is uniformly integrable.
Let
5s W
o) = (s) + K (s)a+ (= p = h(s) +¢7
then the maximum of g is obtained at the critical points

99 _

i.e., when ZZ

Thus we have

e —k(s) =0

28



Therefore

From (vi)’ we have

(1) K'(s) — pk(s) = 0, k(T) = A
= k(s) = Aef®
= k(s) = Aerts™T)

(2) W(s) + (s — ik(s) + e =0
Therefore h/(s) = e%k(s)ﬁ[l — 2] —pk(s) < 0
Hence, since h(T,) =0, for s < T, we have h(s) >0

Therefore we conclude that
o(s,x) = h(s)+k(s)z >0

and we are left to prove that the function ¢ satisfies all the conditions of the

theorem.

i)
A%(y) + f(y,v) <0

This is true by construction of the function.

ii)
oY (1) =h(T)+ k(T)x =0+ Az = Az € 0S
iii)
th_{% o(Y(t) = }LII%(h(t) +k(t)z) =h(T)+ k(T)r = Xz = g(Y(T)) a.s Yu

We show that (iv)-(vii) also hold and conclude that

— T
(0+p)s—p } s T

u(s) = AT exp { 1

1s the optimal control.
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Example 2 Consider the stochastic control problem
dX; = audt + udB;, Xo=2x2>0
where By € R and a € R is a given constant and

O(s, z) = sup E**[(X7)"]

u

where 0 < r < 1 and T is the minimum between o and t; where 19 = inf{t >

s; Xy = 0} and ty, being a given future time(constant).

Solution

Using the HJB theorem, we must have

9%, 06 1 ,0%
9s " War T3 g S

Since F*(Y;) =0
o(Yy) = (Xp)" forall y € OrG

Thus
00, 06 1,0%
P 9s T Wor T2V a2 [ T
Define
0¢ 0¢p , 0%

h<v)_8s+ 8_+§ 92 for fited t and x....(1)

The optimal control is found by differentiating h(v) with respect to v. If 2 o f > 0,
no mazrimum exists.

2
Assume % < 0, then

R (v) =0 iff




) 9?
where ¢, = a—i) and ¢pr = 87‘5

NB: v = u*(Y;) is our candidate for optimal control.

We must check that h(u*) = 0. Thus

0 1
M) = 92+ a0, + 5u o

Taking (1) and (2), then

06 —ady 1 —ap,\*,
s T, ”’”5( e ) P =0

Which simplifies to
dp  a*(¢.)* _

P50 o O (3)
Since K(Y;) = X/, our trial solution is ¢(t,x) = g(t)x". Thus (3) becomes
a’r
") — ————g(t) =
J16) = 550 =0

Solving and applying the terminal conditions g(T) = 1, we get that

o(0) = exp (5 0= 1)

and thus
2

é(t, 1) = 2" exp (—2(:_T 5 (t — T))

Thus our optimal control becomes

axr

w (i) = 1—r

Now to calculate the optimal performance. Our Stochastic differential equation

becomes
2
dXt == ar dt+ @ dBt
1—r 11—
Solving it we get
(1 —2r)a’t a
X, = B
: $“p(2a—ry'+1—rt

Now to calculate the value function,
O(s, z) = E[(X7)"]
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(5,0 = [aroxp (U 20T )]

Which simplifies to

B(s) = 2" exp (L>

Stochastic Control Problems with Terminal Conditions

Most types of Markov controls u that are considered in many applications have
constraints. As an example, they have constraints in terms of the probabilistic
behavior of Y,* at the terminal time ¢ = 7. If we have such problems, they
can often be handled by applying a kind of “Lagrange multiplier” method as
described below.

Consider the problem of finding the value function ®(y) and the optimal control
u*(y) such that

d(y) = Sup J“(y) (2.1)
where
=g | [ P k) (22)

and where the supremum is taken over the space K of all Markov controls w :

R"*! — U C R¥ such that
EY[M;(Y;)] =0, i=1,2,...,1
where M = (Mj, ..., M;) : R*! — R! is a given continuous function,
EY[| M;(Yr) [] < oo

for all y, u.
Now we introduce a related unconstrained problem as follows:

For each A € R' and each Markov control u define
T
3) =B | [ o KO+ 3 210 23)
0
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where - denotes the inner product in R'. The problem will be to find ®,(y) and
u}(y) such that

y(y) = sup Ji(y) = Sy (y) (2.4)

uelU

without terminal conditions.

Theorem 6 Suppose that for all A\ € A C R we can find ®,\(y) and u5 solving
the unconstrained stochastic control problem (2.3-2.4). Moreover, suppose that

there exists A\, € A such that
EY[M (Y, )] = 0

Then ®(y) := ®y,(y) and u* := u} solves the constrained stochastic control

problem (2.1-2.2).

Proof 4 Let u be a Markov control and A € A. Then by the definition of u} we

have

T
EY [/ FU(Y,"™)dt + K (Y + AM(YT“)} = (y)
0

which follows that

IMy) > Ji(y)

_ B [ /0 P e+ K0 + )\M(YT“*)} .............. (o)

In particular, if A\ =\, and u € K then
EY [M(Y;f;")} —0=E [M(Y;f)}
and hence by (a), we have

J"% (y) > J(y) forall u €K
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2.0.5 The Maximum Principle For Stochastic Control

The maximum principle states that “Any optimal control along with optimal state
trajectory must solve the Hamiltonian system, which is a two point boundary
value problem plus a maximum condition of a function called the Hamiltonian”.
The mathematical significance of the maximum principle lies in that maximising
the Hamiltonian is much easier than the original control problem that is infinite
dimensional. Let (2, F, {F:}+>0, P) be a given filtered probability space satisfying
the usual conditions on which an m-dimensional standard Brownian motion B(t)

is given. We consider the following controlled system

dX(t) = b(t,x(t), u(t))dt + o(t, x(t),u(t))dB(t), te[0,T]
X(0)==x (2.5)

with the performance criterion J(u) of the form

[ / £t 2(8), u()dt + g(X(T)) (2.6)

where
b:[0,T] xR"x U — R"
o:[0,T] x R" x U — R™™
f:0,T]xR"xU — R
and

g:R" — R"

The process u(t) = u(t,w), t € [0,7], w € Q is our control process, and has
values in a given closed set U C R*. We also require that u(t,w) gives rise to a
unique strong solution X (t) = X®(¢) of (1) for t € [0, 7.
If
T
| [ 1700 e+ max{0.0(X(1)}| < o0
0
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then such controls are admissible and the set of all admissible controls is denoted
by A. Thus, if u € A and X (t) = X®(¢) is the corresponding solution of (2.5),

we call (u, X') an admissible pair.

We define
b(t,z,u) = (by(t,z,u), ..., bp(t, x,u))

o(t,z,u) = (o' (t,z,u), ...,0™(t,z,u))

where

ol (t,r,u) = (o1(t, 2, u), ..y oni(t,z,u), 1<j<n

We now make the following assumptions:

a) {Fi}i>0 is the natural filtration generated by B; augmented by all the P-null
sets in f.

b) (U, d) is a separable metric space and 7' > 0.

¢) The maps b, 0, fand h are measurable and there exists a constant L > 0 and

a modulus of continuity w : [0, 00) — [0, 00) such that for
o(t,z,u) = b(t,x,u),o(t,z,u), f(t,z,u), h(x)
we have

| o(t,z,u)—p(t,z,0) |[< L | z—2 | +w(d(u,u)) ¥V te[0,T], z,z€R", wuaelU

| o(t,0,u) |[< L; ¥V (t,u) €[0,T] xU

d) The maps b, o, f and h are C? in x. Moreover there exist a constant L > 0
and a modulus of continuity w : [0, 00) — [0, 00) such that for ¢ = b,0, f,h we
have

| ety u) — @u(t,&,0) | < L|x—2|+w(d(u,d))
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| @xm(txau) - @xx(t7j7ﬁ) | < m(| rT—x | +d(uaﬁ'))

The first assumption signifies that the system noise is the only source of uncer-
tainty in the problem and the past information about the noise is available to the
controller. Now we define U[0,7T] := {u: [0,T] x Q — u :u is F; — adapted}.
For any u(.) € U[0,T] , the state equation (2.5) admits a unique solution z(.) =
x(.,u(.)) and the cost functional (2.6) is well defined. In the case that x(.) is the
solution of (2.5) corresponding to u(.) € u[0,T], we call (z(.),u(.)) an admissible
pair and x(.) an admissible state process.

Now we can state our problem as to maximize (2.5) over u[0,7] and any u(.) €

U|0, T satistying

J(u*) = iléBJ(u)

is called an optimal control.
If X* = X®) is the corresponding solution of (2.5), then (X*, u*) is called an

optimal pair.

We now introduce the Hamiltonian H : [0,7] x R" x U x R™ x R™™ — R which

is given by
H(t,z,u,p,q) = f(t,z,u) + b (t,z,u)p + tr(o” (t,2,u)q)

We will assume that H is differentiable with respect to . The adjoint equa-
tion(corresponding to the admissible pair (u, X) in the unknown adapted pro-

cesses p(t) € R ¢(t) € R™™ is the backward stochastic differential equation
dp(t) = —VLH(t, X (8),u(t), p(t), a(t))dt + a(t)dB(2)

with terminal conditions



The above equation is the first order adjoint equation and p(.) is the first order

adjoint process. From now on, we will assume that
T
E[/ {ooT(t, X (t),u(t))}dt| < oo Yuec A
0

From equation (2.7), the unknown is a pair of { F; };>0-adapted processes (p(.), ¢(.)).
We call the equation a backward stochastic differential equation(BSDE). The key
issue is that the equation is to be solved backwards since the terminal value is
given and the solution (p(.), ¢(.)) is required to be {F;}i>o-adapted.

The adjoint variable p(.) corresponds to the so called price or the marginal value
of the resource represented by the state variable in economic theory. In this
section, we have noted that the maximum principle is nothing but the so called
duality principle : Minimising the total cost amounts to maximising the

total contribution of the marginal value.

Theorem 7 A Sufficient Mazimum Principle.
Let (4, X) be an admissible pair and suppose that there exists an adapted solution

(p(t),q(t)) of the corresponding adjoint equation (4) satisfying

ol [ o 0)ar] < oo

Moreover, suppose that

A

H(t, X (1), a(t), p(t),4(t)) = sup H(t, X (1), u(t), (¢), 4(t))

uelU

for allt € [0,T] and that

~

H(x) :=max H(t,x,u,p(t),q(t))

uelU
exists and is a concave function of x for all t € [0,T].

Then the pair (ﬁ,f() is an optimal pair.

For more on this and the proof of the theorem, details in [6]
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Relation to Dynamic Programming

Without proof, we just state the relation between the Maximum Principle and
Dynamic Programming. In the diffusion case, the relation between the maximum

principle and Dynamic Programming is well known.

Theorem 8 Suppose the state X (t) = XW(t) of a controlled diffusion in R™ is
given by
dX(t) =b(t, X (), u(t))dt + o(t, X (t), u(t))dB(t)

Let X*(t) be the solution of the above stochastic differential equation correspond-
ing to an optimal control u*(t). Then, under some conditions the two adjoint

processes p(t), q(t) for the jump diffusion case are given by

pm:%mww

(0) = D0 7t X0 () 3 (070

where V (t,x)is the value function.

Example 3 Suppose the wealth X (t) = X™(t) of a person with consumption
rate u(t) > 0 satisfies the following Levy type mean reverting Ornstein- Uhlenbeck

stochastic differential equation
dX(t) = (u—pX(t) —u(t))dt + cdB(t) t>0

X0)=x>0
Fix T'> 0 and define
u(t)

To
JW(s,z) = E® [/ e O —2dt + A\X (T, — s)
s gl

where p,p,0,0, T, > 0,7 € (0,1) and A > 0 are constants. The Hamiltonian
gets the form
H(t, v, u,p.q) = f(t,z,u) + b (tz,u)p + tr(o’ (t,z,u)q)

gl
= e_ét%+(p—px—u)p+aq 0<t<T
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and the adjoint equation becomes

dp(t) = —(—pp)dt + q(t)dB(t)
p(T) = A

This implies that

dp(t) = ppdt + q(t)dB(t)
p(T) = A

From the above equations, A and p are deterministic and so we guess that q(t) = 0
and this gives
dp(t) = ppdt
= Inp(t) = pt + ¢ where ¢ is a constant of integration
= p(t) = Ae?* where A = e°
Applying boundary conditions
p(T) =A== Ae!T = A= e T

Therefore
p(t) = Ae/"T)
Now
H(EX (0,050, 4(0) = = + (0= pX (1) = )0
This is mazimal when: %—5 =0
This implies that e=%a ™1 — p(t) = 0
=gt = ﬁ(t)e&

_ )\ep(th)+§t

— )\e(p+5)tpr

Therefore

a(t) = ATTe T

39



With p(t), ¢(t) as given above, we see that all the conditions of the mazimum

principle are satisfied.
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Chapter 3

The Problem

Suppose that the fortune at time ¢ is given by dX; = u(t)dt + cdB(t) where u; is
the consumption rate. The performance criterion J"(s,x) is the expected total

discounted consumption i.e.,
T
J'(s,x)=FE [/ e (X (t) + Ou(t)?)dt
0

with the boundary conditions X (0) = 0, E[X(T)] = M where T, 4,¢,0,0 and M
are constants.

We firstly note that the above problem is a minimisation problem.

d(y) = iI&f J(y) = ing {/OT e M (eX (t) + Gu(t)z)dt]

= —sup {E UOT —e (X (1) +0u(t)2)dt} }

u

Thus, the problem becomes a maximisation problem.
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Solution

3.0.6 The Maximum Principle

In this case the problem can be reformulated as
T
—sup F {/ —e M (eX (1) + Qu(t)?)dt — e TN(X(T) — M)
u 0

In this case, the Hamiltonian gets the form

H(t,z,u,p,q) = —cxe ® — Oue™ + oq + up (3.1)
Hence the adjoint equations become

dp(t) = ce™®dt + q(t)dB(t)
p(T) = —Xe™ T (3.2)

Since A and ¢ are deterministic, we guess that ¢ = 0 and this gives

—ce % — — e T
p) = S 33)

Let @ € A be a candidate for the optimal control with corresponding X and D, q.
Then
H(t, Xo ur, B, G) = —cXoe™ — gue™ + up + o

This is maximal when

H
o —0= 200 +p=0
ou
5 0t
A bie
pu— -4
== (A —¢)eltTD
= 550 (3.5)
But dXt = Utdt —+ O'dBt
Substituting for u; and solving where X (0) = 0, we get
t (A=) (6N — )T
= Ao VA= | 5, (3.6)

200 2620 20%0
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But we are given that E[X(T)] = M, thus

' (6A—c¢)  (6A—c)e T

M==%6""200 = ag T
Solving for A\, we get
A Sy 2620M + 6T — 25%00T
) d(e 9T —1)
Substituting for A into (3.5), we get
At) = c eOt=1) 19820M + 6T — 26%00T
YT 750 T 200 e=0T —
_o(1 =€) 4 0e%(200M + T — 2660T) (@)
= BT p Ty e
Also
v - _ c SE=T) 12520M + 0T — 26%00T
b 200 20% =T — 1
N e T (2620M + 6T — 26%00T + B
2620 e — 1 7o
—a(=1+€T) + (260M + T — 2600T)(—1 + €°*) + 2000 B,(—1 + €°T) )
B 200(—1 + e7T)
and
() = C s e (26%0M + 0T — 26%00T
o= =5c 5 eoT — 1
_ Gty 200M + cT' — 2600T (©
= —3€ i c

We are also going to consider the dynamic programming approach in solving the

above problem.
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3.0.7 Dynamic Programming Approach

Since we are given the probabilistic behavior of X' at the terminal time ¢ = T,
we apply a kind of “Lagrange Multiplier” method and our value function becomes

o(y) = inf J™(y) = —sup{-J"™(y)}
ucA ucA

= —supk [/ —e M eX () + Qu(t)?)dt — N(X(T) — M)e™°T
ucA 0

where \ € R.
Thus from the HJB’s

v

2
= a—w#—sup{ —cxe_at—9v26_5t+va—¢+ L ;20 w}

0 = wp{F%uxy+uﬁ¢xu@}

ot . ox 27 022
and Y(T,x) = —\(x — M)e™T
We try to find a solution ¢ of the form

W(t,x) = a(t) + b(t) ... (1)

where a(t),b(t) are deterministic continuous and differentiable functions. We

need to find a(t) and b(t) such that

sup{F”(t,x)—i—(L”lp)(t,:c)} =0 for t<T

and (T, x) = — Xz — M)e™T........... (2)
where a(T) = —Xe T and b(T) = AMe°T for us to get (2).
Therefore, for each (¢,x), we try to find the value v = wu(¢, x) which maximizes

the function

H(w) = F'(t,x)+ (L°¢Y)(t,x)

= d(t)x+V(t) — cre™® — hv?e™® + va(t).....(3)
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The maximum of this expression is obtained when %—Ij =0

i.e when —20ve™ + a(t) =0
Therefore

v=u(t,z) = %e& ......... (4)

If we substitute (4) into the HJB equation (3), we get the following

0 = d(t)x+V(t)—cre™® — 0(%2)6&)26_& + (%;)e‘”)a(t)

t2
a(t) oot

_ (¢ b(t) — —ét
a'(t)r +b'(t) — cre™ + 0

This is zero when

(1) a'(t) — ce™ =0 = a(t) = ce 0t

a(t) = —ge_& + B, But a(T) =X

Thus

Therefore

a(t) = 5 L (5)

a2 eét
(2) b'(t) + 2B =0

If we substitute for a(t) and solving for b(t) we get

1 2 2
b(t) = 1052 <—%e‘5t —2c%te™T + %ea(t*ﬂ) + 2e6\t — 2eAe’T) 4 (5)\26&) +E,

But b(T) = A\Me~T

Therefore

1
Ey = AMe™T — W(QCA((ST — 1) 4 6X%T — 2c2Te™T)

Thus from (4)

—c(e% — e=0T) bt — \§edt=T)

ult) = 260
c NN —¢)
= T g 5T
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With this value of u, we solve the differential equation for X;

dXt = Utdt + O'dBt
ct ((S)\ — C) 5(t—T)

X, = —— — B+ FE
TMT T g ¢ 0TS
But X(0) =0
00T 5\
Er — _
= = gm0 o)
Therefore
P eﬂsT(aA— )(1—e™) + 0B
"7 250 a2t T OV T OO
In order to solve for A, applying Theorem (6), we have E[X*(T)] = M
T —oT
S M=—-" 4 S (6N —)(1—eT) 40T

200 2020
Thus we have for A = A,

Vo © N 200M + T — 2600T
0 e 9T — 1

With this value of A, then X; becomes
20M0 c(1 =0T —eT)  ceoT ct
X,=(1-¢" - - — o5 T8
= (1= (259(1 Ty T T 25%9(1—eT) 2020 ) 250 77
B 1
©200(—1+ T
Now u(t) becomes

1
ul) = Ssga—em
1

= g oy [l =€) + 8¢ (—T ~ 20Mb + 2000 Br)] o (6)

) [(1— ™) (—cT — 20M0) — ct(—1+ ") 4+ 200(—1 + *")o B]

[—c 4 ce®T — 262 MBe® — c5Te® + 26°00 Bre®

Since u(t) is the consumption process, it is always positive and we also expect
that its increasing with increasing time. We check these conditions on equations
(a) and (6). Equation (6) simplifies to

o 1 _oT at .
ut) = o5 = [e(1 =€) + 6e”(cT + 20M6 — 2600 Br)]
1 [
200(—1 + e97T)

> 0 for 26°M6e® > 26°00 Bre® + c(’T — 1 — 6Te™)

¢ — ce®T 4 e6Te® + 262 MOe’ — 2(5290'BT€&}
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Also

§e%(cT + 20M O — 2600 By
20(—1 + e97)
202 M 0e® + cdTe® — 2600 Bredt
20(—1 + €°T)
> (0 since 202M6O > 26%00Br — 6T

Since the derivative is positive, it shows that the consumption is increasing with
increasing time.

Now, we consider the deterministic case i.e., when o = 0.

u(t) = 259(_11+ T [e(1 — eT) 4 6% (T + 26M0)]
1
200(—1 + e°7T) [

> 0 for 262MOe® > c(e‘sT —1- (5T€6t)

c—ce®l + c6Ted + 252M9€5t}

At t =0, we have

1
ult) = Sppcir e |
> 0 for 26°M6 > c(e‘ST —1-9T)

26° MO — c(e”" — 1 — 6T)]

For t > 0, we have

6’ (cT + 26 M0)
20(—1+ €°T)
> 0 for 20MO+cT >0

At t = 0, we have positive consumption yet we are starting with an initial fortune
of zero. This means that the consumer will have to start consuming at some time

0 < s <T. Thus we are faced with a new optimisation problem. We now solve
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the problem in the interval [s, T,].

In this case our performance criterion becomes

E57 / v —e (X (1) + Ou(t)?)dt — N(X(T,) — M)e™°T]

= E[/OT —e (X (1) 4+ Qu(t)?)dt — N(X(T) — M)e™T]

where T' =T, — s = inf{t > 0;Y**(¢t,z) ¢ G} with G = {(s,x);s < T,}
Just like in the previous case our v becomes

—c+ ce¥6=T) — §)\e%s

u(s) = 250

Now dX, = u.ds + odB,

Solving, we get

—cs c A
X, =— v b(s—=T) Y 6s B,+ E
250 T 2520° 95p° TOPsTE

But in this case X(0) =x; >0

Thus El =T — 266296_6T + T?G

Therefore
A c

6T _ _0s
256 252 1) T o5 .
Now E[X*(T)] = M, thus

X5:I1+(

A c cT
M = o —oT 1 — ory 7 B
Tt (o5 ~ gzt M=) m g toBr
Solving for A\, and since A = \,, we have
1 2 2 2 C T

Substituting this value of A into u and simplifying, we get

1

_ 8T _ ds 2 . ds
u(s) = 550(1 — ) [c(e 1) — cd0Te® +25°0(xy + 0By — M)e]............ (7)

Also X simplifies to

1

X, — -
s I se — e

[(260M —26021 +cT —2000 Br)(1—e°*)—cs(1—e’T) 42500 By(1—eT)]
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Considering equation (7)

1
u(s) = 250(—1 + 7 [l

—14 &)+ edTe® +26%°0(M — x1 — o Br)e’]

!/ 1 S S
u'(s) = 200(—1 + eo7) [€0°Te™ 4+ 26°0(M — 21 — 0 Br)e”™
1
~200(—1 + e7) [c6T¢* +20°0(M — 21 — 0 Br)e™]

> 0 for ¢>0, >0 and M > 21+ 0By

We shall summarise the results of the above problem as follows:

Theorem 9 Let X} be the controlled process and consider the following stochas-

tic control problem

dXt = Utdt + O'dBt
with the performance criterion defined by
T
JU(s,x) =FE {/ e (X (t) + Qu(t)?)dt
0

where X(0) =0, E[X(T)] =M and T,0,c,0,0, M are constants.

(a) The optimal value function is given by

—ce % + (¢ — d\)e T

O(t,x) = 5 x
1 s 2, o7, C 5(t—2T) 5(t—T) 2 5t
+49(52 —ge —2c*te™ " + ge + 2¢Ot — 2che + 0%
1
+AMe™T — W(ZC)\((ST — 1) 4+ 62T — 262Te™T)

(b) The control u* is given by

1

) = S5 — o

[—c(1 —€) + 5’ (—cT — 26 M0 + 2500 Br)]

It is also of interest to investigate the behaviour of the control process and the

value function for large values of T'. Thus we come up with the following corollary.
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Corollary 1 For large values of T, i.e., as T — oo, our control process gets the

form
1
(a) lim w(t) = lim 550~ o) [—c(1 —e™") + e’ (—cT — 26M6 + 2500 Br)]
C
= - > .
550" c>0, >0

and 1s negative.

(b)

Tlim O(t,x) — oo

The value function diverges for large values of T.

Remark
Now we consider the connection between the Dynamic Programming and the
Maximum Principle.

09 —ce ™ + (¢ — d\)e T
C Or J

p(t)

which is the same with p(t) in equation (3.3).

Also ¢q(t) = % = 0 which compares well with our value of ¢ = 0.

Conclusion

We note that for T small the consumption value or control is dependent on time
only. But for large values of T' the condition that u(t) > 0 is violated and our
control in this case becomes constant. A well known case (see [1]), Chapter 11,

Exercise 11.12 where both the state and control are quadratic i.e.,
Js,z) = E U e (X2 (t) + OuP(t))dt|

the control is feedback in form i.e., depends on the state and this is the only

striking difference with the problem under consideration.
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