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Abstract

Treatment with antiretroviral drugs has been reported to delay progression of HIV

infection to AIDS, and may even lower the infectiousness of the infectives. This

study investigates the effects of treatment of HIV-1 with Reverse Transcriptase

Inhibitors (RTI’s) and Protease Inhibitors (PI’s) at cellular level. A threshold

parameter, Ncrit, which determines the outcome of the infection is established.

If NT < Ncrit, the infection dies out, while if Ncrit < NT , the infection persists

where NT is the number of virions produced by each infected CD4+−T cell. The

steady states are determined for the models under study. Numerical simulations

are presented to illustrate the stability of the endemic steady states.
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Chapter 1

INTRODUCTION AND

STATEMENT OF THE

PROBLEM

1.1 General overview

We want to show, in this thesis, that mathematical models can be used to describe

how therapy can help in lowering the load of the Human Immunodeficiency virus

type 1 (HIV-1). This research will concentrate on the immunology of HIV/AIDS

(Acquired Immunodeficiency Syndrome). Models describing the scenario are set

in terms of systems of nonlinear ordinary differential equations and are analyzed

for existence and stability of steady states solutions. The evolution of the disease

is also analyzed numerically in order to give the projections and direction of

treatment.
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1.2 Research overview

AIDS is a disease caused by HIV. It is spread primarily through three routes

namely: sexual intercourse, vertically (from mother to child) and intravenously

[8]. Its effects are more confined to the human defence system, that is, the

immunity of the human body. At the moment, AIDS as a disease cannot be

cured. Hence, it remains to use control strategies such as, the use of Reverse

Transcriptase inhibitors (RTI’s), and Protease Inhibitors (PI’s) to slow down the

development of the disease within an individual and hopefully lower the infectivity

of an individual [12].

A model is developed to describe the effects of RTI’s in trying to reduce the

impact of HIV-1 in an infected individual. Another model which incorporate the

combined effects of RTI’s and PI’s is developed. We can measure the effects of

these drugs on the number of virions produced by productively infected CD4+ −

T cells, through the parameter NT , which gives the number of virions being

produced from each dying infected CD4+−T cell. In analyzing the mathematical

models, a threshold parameter, Ncrit, is calculated across which there can be

exchange of stability of the steady states. Specifically, Ncrit, determines whether

the disease will establish itself, that is, for NT > Ncrit or whether it will fail to

establish itself for NT < Ncrit.

The main aims of my thesis are :

1. To investigate the effects of RTI’s on the transcription process of HIV-1.

2. To investigate the effects of the combined use of RTI’s and PI’s on HIV-1

infection.

3. To make recommendations towards policy formulations.
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To achieve these aims, we make use of three different models and show analytic

and numerical results for two of the models where treatment is administered. The

computer package used is MATLAB.

1.3 Thesis Outline

This work is divided into four chapters. The first chapter is the introduction to

immunology and statement of the problem, Chapter 2 looks at the review of a

modified basic model without treatment by Culshaw and Ruan in [5], Chapter

3 is also a review of model by Perelson and Callaway [1] with treatment using

RTI’s, Chapter 4 is the main problem of this thesis which has a model with

combined therapy using RTI’s and PI’s. The last section of this work has got the

discussions and conclusions on all the models delt with followed by the references

used thereof.

1.4 Motivation

The HIV/AIDS pandemic has reached epidemic proportions in most developing

countries. Forty-two (42) million individuals are living with HIV/AIDS of which

29 million are Africans [11]. The rate of infection in most developing countries

is very high and going up that rigorous intervention programmes are required

to slow down the rate of infection. Intervention can be in two forms, namely

vaccination and treatment with antiretroviral drugs. Vaccination, in the long run,

would help eradicate the epidemic but there is no vaccine (a weaker version of the

pathogen which elicit a primary immune response) for HIV/AIDS. However, there

are candidate vaccines which are currently on trial to determine their efficacy. As

a result treatment remains the most effective control strategy at the moment.
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1.5 HIV and the Immune System

Lymphocytes are a type of white blood cells which are a key component of the

immune system. They enable the body to produce antibodies against different

types of foreign agencies (antigens) that may invade the body. It is the intro-

duction of a foreign body into the body that stimulates an immune response to

remove the object as quickly as possible. The immune system remembers and

a second exposure to a foreign substance produces a more rapid and greater re-

sponse [3].

The are two types of immunity, namely: Humoral immunity and Cellular im-

munity. Macrophages are the cells that look for foreign agencies in the body.

They scavenge, engulf and examine the antigen directly. They then present their

findings to the CD4 positive T lymphocytes (CD4+ − T cells). A type of lym-

phocytes called B is activated to produce antibodies into the general circulation

to directly kill the antigen. On the other hand cellular immune response consti-

tutes the major defence against infection due to viruses, fungi and a few bacteria.

Lymphocytes precursors come from borne marrow and those that populate the

Thymus become transformed by the environment in this organ into lymphocytes

responsible for cellular immunity (T lymphocytes).

CD4+ − T cells (Helper T cells) have a glycoprotein CD4 on their surface hence

their name. They form the command center for the immune system. If an im-

mune response is necessary, they enhance a primary immune response where

they reproduce to elicit both humoral and cellular immunity. They activate the

CD8+−T cells ( effector cells or killer T cells or cytotoxic cells). These have got

a glycoprotein CD8 and hence their name. Once given a target, they seek out

18



and destroy cells infected with antigens and other foreign cells. If an immune re-

sponse is successful, certain cells of each type retain the knowledge of the attack.

These cells referred to as memory cells from B and T cells are readily converted

to killer cells by a later encounter with the same or closely related antigen [2].

HIV, like any other viruses has no ability to reproduce independently and so it

relies on a host to aid reproduction. HIV wreaks the most havoc on CD4+ − T

cells by causing their destruction and decline, and decrease the body’s ability

to fight against infection. When it infects the body, it targets CD4+ − T cells

receptors. A glycoprotein (gp120) on the surface of the HIV virion has a high

affinity for the CD4 protein on the surface of the CD4+ −T cells. The receptors

from the virions lock to those of the cell. The virus receptors then pull back and

force a contact with the cell membrane of the host cell. Binding takes place and

the virus penetrates the cell membrane [2].

Most viruses carry copies of their DNA and insert this into the host cell’s DNA.

HIV is a special type of retrovirus meaning that it stores its genetic information

as RNA rather than DNA. Single stranded RNA (ssRNA) is transcribed into sin-

gle stranded DNA (ssDNA) by the enzyme called reverse transcriptase. A second

strand of DNA is synthesized to form double stranded DNA. New virus particles

bud off from the surface of the host cell. This is the major difference between

HIV and other viruses. HIV has four stages of progression. The first stage is the

initial inoculation where the virus is introduced into the body, the second stage

is the initial transient which is a relatively short period of time when both T -cell

population and virus population are in great flux, the third stage is the clinical

latency which is the period of time when there are extremely large numbers of

virus and T cells undergoing incredible dynamics the result of which is an ap-

pearance of latency (disease steady state), and the fourth stage, the AIDS stage
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when T cells will drop to very low numbers and the virus growing without bound

resulting in death [2].

There are two main forms of HIV, HIV-1, and HIV-2. HIV-1 was discovered

by Luc Montagnier and his associates at the Institute of Pasteur in Paris 1983.

HIV-2 was first identified among patients in Cameroon in 1985. It is less virulent

and does not result in full blown AIDS though it is fatal. It is HIV − 1 which

is of particular importance in this thesis and we refer to it as simply HIV for the

sake of simplicity.

1.6 Statement of the problem

So many models have been developed to model the immunology of HIV. These

models have been used to explain different phenomena.

In [2], Kirschner looked at a basic three stage HIV model which he modified to

include treatment, time delay and to be age dependant. He established, using

computer simulations, that CD4+−T cell count is higher overally when treatment

is initiated at a later stage and chemotherapy administration does not affect the

overall outcome of treatment.

In [5], Culshaw and Ruan considered a threee stage model on HIV immunology

and also carried out computer simulations after introducing time delay. Their

results showed that the introduction of time delay on drug efficacy only produced

transient oscillations and does not disturb the stability of the endemic steady

state.

In [1], Perelson and Callaway considered various models on HIV/AIDS including

the one where there was administration of RTI’s monotherapy. They established
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that there is a linear relationship between the strength of the drug and the viral

load which is more appropriate for HIV modelling during RTI’s monotherapy. It

is this model that we modify to study the combined effects of RTI’s and PI’s on

the infectiousness of HIV.

21



22



Chapter 2

A MODEL WITHOUT

TREATMENT

2.1 Introduction

In this chapter a model for HIV is considered when there is no treatment. We

begin by presenting a three-stage model in [5]. Culshaw and Ruan looked at a

model with time delay. In this model we modify their model to ignore the time

delay part. We therefore concentrate on the rates of change of the populations

of CD4+ − T cells susceptible to infection (T ), Infected CD4+ − T cells (I) and

the free virus population (V ) as follows:

2.2 Model formulation

2.2.1 Susceptible CD4+ − T cells (T )

All uninfected CD4+ − T cells which proliferate at a rate λ per unit time are

assumed to be susceptible. The susceptible population is diminished by natural
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death (at a rate d) and by infection following contact with the virus (with prob-

ability k). The nonlinear ordinary differential equation describing the dynamics

of the susceptible CD4+ − T cells is given by

Ṫ = λ − dT − kV T,

where the force of infection kV T is the rate of infection for a susceptible T cell

with a viral particle within the body of an individual. This also measures the

incidence of infection.

2.2.2 Infected CD4+ − T cells (I)

This population increase through progression to infected cells of susceptible CD4+−

T cells. They are cleared by a blanket death (those that burst into virions and

those that die naturally) at a rate δ. This gives

İ = kV T − δI.

2.2.3 Virus cells (V )

These proliferate through progression to virus cells of virions from bursting in-

fected cells (by a rate NT δ). They diminish at a constant death rate c. This

gives

V̇ = NT δI − cV,

where NT is the number of virions produced by each infected dying CD4+ − T

cell.

In summary, we have the model given by the nonlinear system of ordinary differ-

ential equations. The model describing the scenario is
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Ṫ = λ − dT − kV T,

İ = kV T − δI, (2.1)

V̇ = NT δI − cV.

2.3 Finding the equilibrium points

The equilibrium solutions can be obtained from equating the right hand side of

(2.1) to zero, that is,

λ − dT ∗ − kV ∗T ∗ = 0, (2.2)

kV ∗T ∗ − δI∗ = 0, (2.3)

NT δI∗ − cV ∗ = 0. (2.4)

The disease free steady state is obtained when V ∗ = I∗ = 0. This gives Eo =

(λ
d
, 0, 0). The disease free steady state exists for all values of NT > 0. The

endemic steady state is obtained as follows: From (2.3)

V ∗T ∗ =
δ

k
I∗, (2.5)

then multiplying (2.4) by T ∗, we obtain

NT δI∗T ∗ − cV ∗T ∗ = 0,

NT δI∗T ∗ −
cδ

k
I∗ = 0,

(NT δT ∗ −
cδ

k
)I∗ = 0.

This gives

T ∗ =
c

kNT

, (2.6)
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substituting (2.6) into (2.2), we obtain

λ −
cd

kNT

−
c

NT

V ∗ = 0,

V ∗ =
λNT

c
−

d

k
,

=
λ

c
(NT −

cd

kλ
),

=
λ

c
(NT − Ncrit).

where

Ncrit =
cd

kλ
,

I∗ =
λ

δNT

(NT − Ncrit).

The endemic steady state is given by

E =

(

c

kNT

,
λ

δNT

(NT − Ncrit),
λ

c
(NT − Ncrit)

)

.

We therefore, have the following theorem

Theorem 1 The endemic steady state exists if and only if Ncrit < NT .

2.4 Stability analysis for the disease-free steady

state

Let

y1 = T −
λ

d
, y2 = I, y3 = V,

ẏ1 = Ṫ , ẏ2 = İ , ẏ3 = V̇ ,

then substituting these into the system (2.1) we obtain

ẏ1 = −dy1 −
kλ

d
y3 − ky3y1,

ẏ2 = −δy2 +
kλ

d
y3 + ky3y1,

ẏ3 = NT δy2 − cy3.
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We extract the linearized system to get












ẏ1

ẏ2

ẏ3













=













−d 0 −kλ
d

0 −δ kλ
d

0 NT δ −c

























y1

y2

y3













,

which is of the form Ẏ = AY , where Ẏ = (ẏ1, ẏ2, ẏ3)
T and y = (y1, y2, y3)

T .

We find the eigenvalues, β, of the Jacobian, A, of the linearized system by con-

sidering det(A − βI) = 0 as follows
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−d − β 0 −kλ
d

0 −δ − β kλ
d

0 NT δ −c − β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

−(d + β)[(δ + β)(c + β) −
kNT δλ

d
] = 0.

We observe that the eigenvalues are β = −d and the solutions of the quadratic

expression β2 + (δ + c)β + δc

(

1 − NT

Ncrit

)

= 0. Then the eigenvalues are

β1 = −d

β2,3 = −
δ + c

2
±

√

(

δ + c

2

)2

− δc

(

1 −
NT

Ncrit

)

If NT < Ncrit then all the eigenvalues are negative and we thus have the following

theorem

Theorem 2 The disease free steady state is stable for NT < Ncrit and is unstable

for NT > Ncrit.

2.5 Stability analysis for the endemic steady state

To establish the stability of the endemic steady state we linearize the system

(2.1) about E.
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Let

y1 = T −
c

kNT

, y2 = I −
λ

δ

(

1 −
NT

Ncrit

)

, y3 = V −
λ

c
(NT − Ncrit),

ẏ1 = Ṫ , ẏ2 = İ , ẏ3 = V̇ .

On substituting this into the system (2.1) we obtain the following nonlinear

system

ẏ1 = −(d +
kλ

c
(NT − Ncrit))y1 −

c

NT

y3 − ky1y3,

ẏ2 =
kλ

c
(NT − Ncrit)y1 − δy2 +

c

NT

y3 + ky1y3,

ẏ3 = NT δy2 − cy3.

The associated linear system is given by












ẏ1

ẏ2

ẏ3













=













−(d + kλ
c

(NT − Ncrit)) 0 − c
NT

kλ
c

(NT − Ncrit) −δ c
NT

0 NT δ −c

























y1

y2

y3













.

We Find the eigenvalues, β, of the linearized system by considering the determi-

nant.
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−e1 − β 0 − c
NT

e2 −δ − β c
NT

0 NT δ −c − β

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0,

where e1 = d + kλ
c

(NT − Ncrit), e2 = kλ
c

(NT − Ncrit).

−(e1 + β)

∣

∣

∣

∣

∣

∣

∣

−(δ + β) c
NT

NT δ −(c + β)

∣

∣

∣

∣

∣

∣

∣

+
c

NT

∣

∣

∣

∣

∣

∣

∣

e2 −(δ + β)

0 NT δ

∣

∣

∣

∣

∣

∣

∣

= 0,

−(e1 + β)[(δ + β)(c + β) − δc] + δce2 = 0,

β3 + (e1 + (δ + c))β2 + e1(δ + c)β − δce2 = 0,

β3 + Aβ2 + Bβ − C = 0,
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where A = e1 + δ + c, B = e1(δ + c), C = δce2,

A = d + δ + c +
kλ

c
[NT − Ncrit],

B =
kλ

c
(δ + c)[NT − Ncrit],

C = kδλ[NT − Ncrit].

Applying the Routh-Hurwitz conditions we observe that A, B, C are positive if

and only if NT > Ncrit and

AB − C = (δ + c)(e1 + δ + c)e1 − δe2,

= (δ + c)e2
1 + (δ + c)2e1 − δe2,

= (δ + c)e2
1 + (δ2 + c2)e1 + δc(2e1 − e2),

= (δ + c)e2
1 + (δ2 + c2)e1 + δc(2d + e2),

> 0.

It follows that all the eigenvalues of the system have negative real parts. We can

summarize the results as follows:

Theorem 3 The endemic steady state E is asymptotically stable if

NT > Ncrit
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Chapter 3

THE MODEL WITH RTI’s

TREATMENT

3.1 Introduction

Reverse Transcriptase Inhibitors (RTI’s) prevent HIV-1 from infecting CD4+−T

cells by hindering the reverse transcription of HIV-1 RNA into DNA. The most

effective way of modelling RTI’s is to consider the effect of the drug at cellular

level. Uninfected CD4+ − T cells are grouped into those which do and do not

respond to the drug. The effects of the drug is measured by the rate at which

target cells are transferred to a pool of infection resistant cells and by the amount

the viral infectivity is reduced in the pool of infection resistant cells [1].
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3.2 Model formulation

We present a four-stage model in [1]. The model shows the rate of change of

the populations of CD4+ − T cells susceptible to infection (T ), CD4+ − T cells

containing active drugs with susceptibility to infection (Td), Infected CD4+ − T

(I) cells and the free virus population (V ) as follows:

3.2.1 Susceptible CD4+ − T cells (T )

All uninfected CD4+ − T cells which proliferate at a rate λ per unit time are

assumed to be susceptible. The susceptible population is diminished by natural

death (at a rate d) and by infection following contact with the virus (with proba-

bility k). Upon treatment they are moved to a class of Td cells (at a rate r). The

nonlinear ordinary differential equation describing the dynamics of the T cells is

given by:

Ṫ = λ − dT − kV T − rT,

where the force of infection kV T is the rate of infection for a susceptible T cells

with a viral particle within the body of an individual. This also measures the

incidence of infection.

3.2.2 CD4+ − T cells containing active drug with suscep-

tibility to infection (Td)

This population increases through resistance by T cells to infection (at a rate r)

when treatment has been applied. It diminishes by natural death (at a rate d)

and by infection through contact with the virus (with probability k(1 − εRT )).

This gives:
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Ṫd = rT − dTd − (1 − εRT )kV Td,

where εRT denotes the drug efficacy and 1 − εRT denotes the proportion of Td

cells susceptible to infection. The force of infection k(1 − εRT )V Td is the rate of

infection for a susceptible Td cell with a virus. We note that when the drug is

perfect, that is εRT = 1, no Td cells are infected and when the drug is ineffective,

that is εRT = 0, all Td cells are infected because they have no protection.

3.2.3 Infected CD4+ − T cells (I)

This population increase through progression to infected cells of susceptible CD4+−

T cells and susceptible CD4+ − T cells with active drug. They are cleared (by

bursting and natural death) at a rate δ. This gives:

İ = kV (T + (1 − εRT )Td) − δI.

If the drug is perfect, then the gain to this population is through the infection of

unprotected T cells only.

3.2.4 Virus cells (V )

These proliferate through progression to virus cells of virions from bursting in-

fected cells (by a rate NT δ). They diminish at a constant death rate c. This

gives:

V̇ = NT δI − cV,

where NT is the number of virions produced by each productively infected cell.
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In summary, we have the model given by the nonlinear system of differential

equations. The model describing the scenario is

Ṫ = λ − dT − kV T − rT,

Ṫd = rT − dTd − (1 − εRT )kV Td,

İ = kV (T + (1 − εRT )Td) − δI, (3.1)

V̇ = NT δI − cV.

3.3 Finding the disease free steady state

The disease free steady state is obtained when V ∗ = I∗ = 0 and is given by

Eo = (To, Tdo
, Io, Vo) = (

λ

d + r
,

rλ

d(d + r)
, 0, 0).

3.4 Determining the Basic reproduction num-

ber

The most fundamental quantity of any model of pathogen dynamics is the Basic

reproduction number, Ro, which quantifies replicative capacity of HIV [14]. We

proceed using the method in [13]. The distinction between the infected and

uninfected compartments plays a vital role in the definition and calculation of

Ro of the model. For this reason, the definition and calculation of Ro of the

model is not inferred from the structure of the model alone but also from the

distinction between infective compartments and uninfected compartments in the

cell compartments. We sort the compartments of infected and uninfected cells.

The first m compartments should correspond to infected cells and the rest to
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uninfected cells. We then define Fi as the rate of appearance of new infections in

compartment i, V−

i as the rate of transfer of cells out of compartment i, V+
i as

the rate of transfer of cells into compartment i. We also define matrices F=Fi,

V=V−

i − V+
i and the model is then defined as u̇ = F − V

D(F(Eo)) =







F 0

0 0






, D(V(Eo)) =







V 0

P Q







where the matrices F and P are nonnegative, matrix Q has eigenvalues with

positive real part, and V is a nonsingular M-matrix. We then define the next

generation matrix as FV −1. The dorminant eigenvalue of FV −1 gives Ro [13].

3.5 The sorted system

İ = kV (T + (1 − εRT )Td) − δI,

V̇ = NT δI − cV,

Ṫ = λ − dT − kV T − rT,

Ṫd = rT − dTd − (1 − εRT )kV Td.

F =



















kV (T + (1 − εRT )Td)

0

0

0



















, V−

i=



















δI

cV

(d + kV + r)T

(d + k(1 − εRT ))Td



















,V+
i=



















0

NT δI

λ

rT


















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V =



















δI

cV − NT δI

(d + kV + r)T − λ

(d + k(1 − εRT ))Td − rT



















,D(F) =



















0 k(T + (1 − εRT )Td) kV k(1 − εRT )V

0 0 0 0

0 0 0 0

0 0 0 0



















D(F(Eo)) =



















0 kλ(d+r(1−εRT ))
d(d+r)

0 0

0 0 0 0

0 0 0 0

0 0 0 0



















D(V) =



















δ 0 0 0

−NT δ c 0 0

0 kT d + kV + r 0

0 k(1 − εRT )Td −r d + k(1 − εRT )V



















D(V(Eo)) =



















δ 0 0 0

−NT δ c 0 0

0 kλ
d+r

d + r 0

0 krλ(1−εRT )
d(d+r)

−r d



















, F =







0 krλ(1−εRT )
d(d+r)

0 0






, V =







δ 0

−NT δ c







P =







0 kλ
d+r

0 krλ(1−εRT )
d(d+r)






, Q =







d + r 0

−r d






, V −1 =







1
δ

0

NT

c
1
c






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FV −1 =







0 krλ(1−εRT )
d(d+r)

0 0













1
δ

0

NT

c
1
c






=







kλ(d+r(1−εRT ))NT

cd(d+r)
kλ(d+r(1−εRT ))

cd(d+r)

0 0







let

b0 =
kλ(d + r(1 − εRT ))NT

cd(d + r)

We proceed to find the eigenvalues, β, of FV −1.

∣

∣

∣

∣

∣

∣

∣

bo − β NT bo

0 −β

∣

∣

∣

∣

∣

∣

∣

= 0

β = 0 or β = bo

Ro =
kλ(d + r(1 − εRT ))NT

cd(d + r)

All that is required of an infection to go into decline is that each case should

generate, on average less than one case over the course of its infectious period.

The critical treatment proportion that will achieve eradication, Ncrit, is that for

which the Basic reproduction number, Ro, under treatment to just equal to 1.

Ncrit =
cd(d + r)

kλ(d + r(1 − εRT ))

3.6 Finding the endemic steady state

To find the endemic steady state (that is solutions as t → ∞) we equate the right

hand side of the system 3.1 to zero as follows
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λ − dT ∗ − kV ∗T ∗ − rT ∗ = 0, (3.2)

rT ∗ − dT ∗

d − (1 − εRT )kV ∗T ∗

d = 0, (3.3)

kV ∗(T ∗ + (1 − εRT )T ∗

d ) − δI∗ = 0, (3.4)

NT δI∗ − cV ∗ = 0. (3.5)

The infected steady state in terms of Ncrit is given by

E = (T , Td, I, V ),

where

T =
cd + ck(1 − εRT )[−1

2
ao +

√

(ao

2
)2 − d(d+r)

k2(1−εRT )
[1 − NT

Ncrit

]]

kNT (d + r(1 − εRT )) + k2NT (1 − εRT )[−1
2
ao +

√

(ao

2
)2 − d(d+r)

k2(1−εRT )
[1 − NT

Ncrit

]]
,

Td =
rc

kNT (d + r(1 − εRT )) + k2NT (1 − εRT )[−1
2
ao +

√

(ao

2
)2 − d(d+r)

k2(1−εRT )
[1 − NT

Ncrit

]]
,

I =
C

NT δ
[−

1

2
ao +

√

(
ao

2
)2 −

d(d + r)

k2(1 − εRT )
[1 −

NT

Ncrit

]],

V =
1

2
ao +

√

(
ao

2
)2 −

d(d + r)

k2(1 − εRT )
[1 −

NT

Ncrit

],

where

ao =
d + (d + r)(1 − εRT )[1 − dNT

(d+r(1−εRT ))Ncrit

]

k(1 − εRT )
.

V exists if and only if 1 − NT

Ncrit

< 0, that is, Ncrit < NT . The infected steady

state does not exist below Ncrit. It follows that the infected steady-state exists if

Ncrit < NT .
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3.7 Stability analysis of the disease free steady

state

The partitioning of the Jacobian of the model into infected and uninfected com-

partments enables us to determine the eigenvalues of the compartments. The

eigenvalues of −Q are negative by the definition of the matrix Q, hence the sta-

bility of the disease free steady state can be determined from the eigenvalues, β,

of the matrix A = F − V [13].

A =







−δ
kλ(d+r(1−εRT ))

d(d+r)

NT δ −c






,

|A − βI| =

∣

∣

∣

∣

∣

∣

∣

−δ − β
kλ(d+r(1−εRT ))

d(d+r)

NT δ −c − β

∣

∣

∣

∣

∣

∣

∣

= 0

β2 + (δ + c)β + δc −
δkλ

d(d + r)
(d + r(1 − εRT ))NT = 0

β2 + (δ + c)β + δc(1 −
NT

Ncrit

) = 0

β1,2 = −
1

2
(δ + c) ±

√

(
δ + c

2
)2 − δc(1 −

NT

Ncrit

)

The disease free state is stable if 1 > NT

Ncrit

, that is, NT < Ncrit

We can summarize the results as follows:

Theorem 4 1. The disease free steady state exists for all values of NT

2. The disease free steady state is stable for NT < Ncrit and is unstable for

NT > Ncrit

3. The endemic steady state exist and is stable for NT > Ncrit
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Remark 1 The proof for the stability of the infected steady state is so tedious

that the details are omitted here. We can illustrate these details numerically as

shown in the next section.

3.8 Tables

The variables and parameters used in the model are defined in the table below.

The values for rates and constants are adopted from [5], [2] and [10]

Table 3.1: Variables and parameters for viral spread
Dependant V ariables

T Uninfected CD4+ − T cell population 2000mm−3

Td CD4+ − T cell population with active drug 0
I Infected CD4+ − T cell population 0
V Infectious HIV population 1.0 × 10−3mm

Parameters and constants

λ Source of new CD4+ − T cells 10(dy)−1(mm−3)
d Death rate of uninfected CD4+ − T cell population 0.02dy−1

r Rate at which CD4+ − T cell acquire active drug 0.003
k Rate of infection of CD4+ − T cells 2.4 × 10−5mm3dy−1

δ Blanket death rate of Infected CD4+ − T cells 0.24dy−1

NT Number of virions produced by infected cells 500
c Death rate of free virus 2.4dy−1

εRT Drug efficacy for RTI ′s 0 ≤ εRT ≤ 1
εPI Drug efficacy for PI ′s 0 ≤ εPI ≤ 1
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3.9 Numerical results for stability analysis of

the endemic steady state

Figure 3.1, shows the dynamics of the endemic steady state. All the graphs for

the different classes are characterized by initial transients followed by the levelling

off of the curves with time. This shows with the administration of RTI’s as an

intervention strategy, the infection will persist whenever Ncrit < NT . Thus the

graphs shows that the endemic steady state is asymptotically stable in this region.
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Figure 3.1: The model with RTI’s treatment N = 500, εRT = 0.8. The other
parameters are given in Table 3.1
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Chapter 4

THE MODEL WITH BOTH

RTI’S AND PI’S THERAPY

4.1 Introduction

Protease inhibitors (PI’s) pose their effects on infected CD4+−T cells by inhibit-

ing their lytic death and rendering those that are produced non-infectious. The

previous Four-stage model considered the monotherapy with RTI’s. We modify

this model by introducing another type of drug, PI’s. In the end we want to

establish how far the two drugs can be effective in reducing the infectiousness of

HIV. We also take into consideration that when a virus binds to an uninfected

CD4+ − T cell, the result is an infected CD4+ − T cell. Thus we lose an unin-

fected CD4+ − T cell and a virus. This will further change the dynamics of the

free virus population as follows

V̇ = NT (1 − εPI)δI − cV − kV T,

where εPI is the drug efficacy of PI’s and the new loss term becomes (c + kT )V .

We note that when the drug, PI’s, is perfect, that is εPI = 1, then the virus
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population will never multiply and those that are available will be left to die.

When the drug is ineffective then we experience the same situation as in the

previous model. In summary, the inclusion of RTI’s and PI’s together improves

the model for better results and the dynamics of the system is given below as:

Ṫ = λ − dT − kV T − rT,

Ṫd = rT − dTd − (1 − εRT )kV Td,

İ = kV (T + (1 − εRT )Td) − δI,

V̇ = NT (1 − εPI)δI − cV − kV T.

4.2 Equilibrium points

To find the equilibrium points we equate the right hand side of the model to zero

as follows:

λ − dT ∗ − kV ∗T ∗ − rT ∗ = 0, (4.1)

rT ∗ − dT ∗

d − (1 − εRT )kV ∗T ∗

d = 0, (4.2)

kV ∗(T ∗ + (1 − εRT )T ∗

d ) − δI∗ = 0, (4.3)

NT (1 − εPI)δI
∗ − cV ∗ − kV ∗T ∗ = 0. (4.4)

From (4.4) we obtain

I∗ =
c + kTo

NT (1 − εPI)δ
V ∗, (4.5)

and from (4.3) we have

I∗ =
k(T ∗ + (1 − εRT )T ∗

d )V ∗

δ
. (4.6)
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Equating (4.5) and (4.6) gives

V ∗

[

k(T ∗ + (1 − εRT )T ∗

d )

δ
−

c + kTo

NT (1 − εPI)δ

]

= 0,

V ∗ = 0 or
k(T∗ + (1 − εRT)T∗

d)V
∗

δ
−

c + kT∗

NT(1 − εPI)δ
V∗ = 0.

The disease free steady state is obtained when V ∗ = I∗ = 0 and is given as

Eo = ( λ
d+r

, rλ
d(d+r)

, 0, 0)

The endemic equilibrium point is given by E = (T , Td, I, V ) where

Td =
rc

α1 + α2

[

− eo

2
+

√

(

e0

2

)2

− α7

]

,

T =

cd − c(1 − εRT )k eo

2
+

√

(

e0

2

)2

− α7

α1 + α2

[

− eo

2
+

√

(

e0

2

)2

− α7

]

,

I =

α3

(

− eo

2
+

√

(

e0

2

)2

− α7

))2

+ α4

(

− eo

2
+

√

(

e0

2

)2

− α7

)

α5 + α6

(

− eo

2
+

√

(

e0

2

)2

− α7

)

,

V = −
e0

2
+

√

(

e0

2

)2

− α7.
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where V exists if and only if 1 <
(1−εPI)NT

Ncrit

, that is, Ncrit < (1 − εRT )NT

and

α1 = k(NT (1 − εRT ) − 1),

α2 = kNT (1 − εRT )(k(NT (1 − εPI) − 1)),

α3 = ckNT (1 − αRT )(1 − εPI),

α4 = cNT (1 − εPI)(d + (1 − εRT )),

α5 = δdNT (NT (1 − εPI) − 1))(1 − εPI) + δNT (NT (1 − εPI) − 1)2(1 − εPI)
2(1 − εRT ),

α6 = δNT (NT (1 − εPI) − 1))(1 − εPI)((1 − εRT )),

α7 = e1 + e1c(d + r)

[

1 −
(1 − εPI)NT

Ncrit

]

.

4.3 Stability analysis of the disease free steady

state

To establish the stability of the disease free steady state we linearize the system

about the point Eo.

Let y1 = T − λ
d+r

, y2 = Td −
rλ

d(d+r)
, y3 = I, y4 = V,

ẏ1 = Ṫ , ẏ2 = Ṫd, ẏ3 = İ , ẏ4 = V̇ .

substituting this into the original system we get

ẏ1 = −(d + r)y1 −
kλ

d + r
y4 − ky4y1,

ẏ2 = ry1 − dy2 −
(1 − εRT )krλ

d(d + r)
y4 − r(1 − εRT )y4y2,

ẏ3 = −δy3 +

(

kλ

d + r
+

(1 − εRT )krλ

d(d + r)

)

y4 + ky4y1 + k(1 − εRT )y4y2,

ẏ4 = NT (1 − εPI)δy3 −

(

c(d + r) + kλ

d + r

)

y4 − ky4y1.
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The associated linearized system is given by



















ẏ1

ẏ2

ẏ3

ẏ4



















=



















−(d + r) 0 0 − kλ
d+r

r −d 0 − (1−εRT )krλ

d(d+r)

0 0 −δ
kλ(d+r(1−εRT )

d(d+r)

0 0 NT (1 − εPI)δ − c(d+r)+kλ

d+r





































y1

y2

y3

y4



















,

Let co = d + r, c1 = kλ
co

, c2 = rc1(1−εRT )
d

, c3 = c1 + c2, c4 = c(d+r)+kλ

d+r
,

The linearized system gives the following eigenvalues:

β1 = −co, β2 = −d

,

β3,4 = −
(δ + c4)

2
±

√

(

δ + c4

2

)2

− δc3(Ncrit − NT (1 − εPI))

Clearly the disease-free state is stable if (1 − εPI)NT < Ncrit, where

Ncrit =
cd(d + r)

kλ(d + r(1 − εRT ))
.

When εPI → 0, then the drug will not be very effective NT will be slightly below

Ncrit. This means the virus has higher chances to cause an infection. When

εPI → ∞, then the drug’s effectiveness will be improving and NT will be reduced

towards zero. This is a situation where we may eradicate infection or render the

virus less infectious. We then summarize all these results in the following theorem

Theorem 5 1. The uninfected steady state exists for all values of NT .
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2. The uninfected steady state is stable for (1− εPI)NT < Ncrit and is unstable

for (1 − εPI)NT > Ncrit.

3. The infected steady state exist and is stable for (1 − εPI)NT > Ncrit.
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Remark 2 The proof for the stability of the infected steady state is cumbersome

and the details are omitted here. We can illustrate these details numerically as

shown in the following section.

4.4 Numerical results for stability analysis of

the endemic steady state

Figure 4.1, shows the dynamics of the endemic steady state. All the trajectories

for the different classes are characterised by initial transients followed by the

levelling off of the curves with time. This shows that with the administration of

both RTI’s and PI’s as an intervention strategy, the infection will persist whenever

Ncrit < NT (1 − εPI). Thus the graphs shows that the endemic steady state is

asymptotically stable in this region.
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Figure 4.1: The model with both RTI’s and PI’s treatment, N = 500,
εRT = 0.8, εPI = 0.7. The other parameters are given in Table 3.1
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Chapter 5

DISCUSSIONS AND

CONCLUSION

We first reviewed the model without treatment by Culshaw and Ruan [5]. We ob-

tained a threshold parameter, Ncrit. The disease free steady state was established

and existed for all NT while the endemic steady state existed for NT > Ncrit. The

local stability for the steady states was established based on Ncrit. This deter-

mines whether the disease will persist or not. Thus if NT < Ncrit, it is possible for

the infection to die out in the sense that uninfected CD4+ − T cells stay healthy

all times. If NT > Ncrit, then the infection becomes endemic in the sense that

the immune system is weakened by the high free virus load.

We also reviewed a model with RTI’s monotherapy where Ncrit was improved by

the introduction of the drug term. Numerical simulations on the stability analy-

sis of the endemic steady state for the model with RTI’s treatment showed that

it is stable. The results showed that the administering of RTI’s monotherapy
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reduces the number of virions and slightly increases the total number of unin-

fected CD4+ − T cell. This means that the infection will always persist if no

further intervention measures are taken. We established that when the drug is

not effective, that is εRT → 0, then we experience the same situation as in the

model without treatment. If εRT → ∞, that is when every CD4+ − T cell gets

protection from RTI’s then the value of Ncrit is reduced towards zero and this

leads to a possible eradication of the infection.

When we investigated the model with a combination of RTI’s and PI’s in the third

model we established that the additional drug has remarkable effect on reducing

the number of free virions. For infection not to progress, (1− εPI)NT < Ncrit and

for the infection to progress, (1−εPI)NT > Ncrit. From the computer simulations

for the stability analysis of the endemic steady state, we established that it is

also stable at a certain proportion which showed a remarkable improvement from

the one on monotherapy. The trajectories are characterised by initial transients

which are a result of the immune response which is present early in the infection.

Thus it has the effect of lengthening the period over which an infective should

survive. However, there is a possibility of the virus gaining resistance and blow-

ing up again. Considering the conditions for the progression and reduction of

infection, the drug is useless, that is εPI = 0, then we have the same effects as in

the model with RTI’s treatment where every cell is only protected by one drug.

This will not be good enough since multiple virions may infect one cell and only

one of them might be hindered to get through and others allowed to get through

or around the drug barrier [8]. Only when the additional drug is perfect, that is

εPI = 1, that we are able to further reduce the number of free virions produced

by an infected cell towards zero. In this case it will be possible to get rid of the
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infection at a faster rate than when we administer monotherapy. Thus we note

that a combination of two types of drugs is more effective in reducing infection

than one drug.

The results from the models are also in agreement with the previous findings by

other modellers. In [7] They noted that the use of combination therapies raises

many public health issues where they offer the promise of an important advance

in the global fight against HIV/AIDS. However, it is possible that we may have

an ill-planned combined treatment programme that may cause the progression of

an infection as cited by Y. Hsieh and J.X. Velasco-Hernandez in [9]. The most

important thing is the implementation of a comprehensive drug combinations

that will arrest a large number of future infections and reverse the course of the

AIDS pandemic [6]
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