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Abstract

Treatment with antiretroviral drugs has been reported to delay progression of HIV
infection to AIDS, and may even lower the infectiousness of the infectives. This
study investigates the effects of treatment of HIV-1 with Reverse Transcriptase
Inhibitors (RTT’s) and Protease Inhibitors (PI’s) at cellular level. A threshold
parameter, N..;, which determines the outcome of the infection is established.
If Ny < N, the infection dies out, while if N..;; < Nr, the infection persists
where Nr is the number of virions produced by each infected C D4+ —T cell. The
steady states are determined for the models under study. Numerical simulations

are presented to illustrate the stability of the endemic steady states.
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Chapter 1

INTRODUCTION AND
STATEMENT OF THE
PROBLEM

1.1 General overview

We want to show, in this thesis, that mathematical models can be used to describe
how therapy can help in lowering the load of the Human Immunodeficiency virus
type 1 (HIV-1). This research will concentrate on the immunology of HIV/AIDS
(Acquired Immunodeficiency Syndrome). Models describing the scenario are set
in terms of systems of nonlinear ordinary differential equations and are analyzed
for existence and stability of steady states solutions. The evolution of the disease
is also analyzed numerically in order to give the projections and direction of

treatment.
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1.2 Research overview

AIDS is a disease caused by HIV. It is spread primarily through three routes
namely: sexual intercourse, vertically (from mother to child) and intravenously
[8]. TIts effects are more confined to the human defence system, that is, the
immunity of the human body. At the moment, AIDS as a disease cannot be
cured. Hence, it remains to use control strategies such as, the use of Reverse
Transcriptase inhibitors (RTI’s), and Protease Inhibitors (PI’s) to slow down the
development of the disease within an individual and hopefully lower the infectivity

of an individual [12].

A model is developed to describe the effects of RTT’s in trying to reduce the
impact of HIV-1 in an infected individual. Another model which incorporate the
combined effects of RTI’s and PI’s is developed. We can measure the effects of
these drugs on the number of virions produced by productively infected C'D4" —
T cells, through the parameter Np, which gives the number of virions being
produced from each dying infected C' D4" —T cell. In analyzing the mathematical
models, a threshold parameter, N,..;, is calculated across which there can be
exchange of stability of the steady states. Specifically, N..;;, determines whether
the disease will establish itself, that is, for Ny > N..; or whether it will fail to
establish itself for Ny < N,.it.

The main aims of my thesis are :

1. To investigate the effects of RTT’s on the transcription process of HIV-1.

2. To investigate the effects of the combined use of RTI’s and PI's on HIV-1

infection.

3. To make recommendations towards policy formulations.
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To achieve these aims, we make use of three different models and show analytic
and numerical results for two of the models where treatment is administered. The

computer package used is MATLAB.

1.3 Thesis Outline

This work is divided into four chapters. The first chapter is the introduction to
immunology and statement of the problem, Chapter 2 looks at the review of a
modified basic model without treatment by Culshaw and Ruan in [5], Chapter
3 is also a review of model by Perelson and Callaway [1] with treatment using
RTT’s, Chapter 4 is the main problem of this thesis which has a model with
combined therapy using RTT’s and PI’s. The last section of this work has got the
discussions and conclusions on all the models delt with followed by the references

used thereof.

1.4 Motivation

The HIV/AIDS pandemic has reached epidemic proportions in most developing
countries. Forty-two (42) million individuals are living with HIV/AIDS of which
29 million are Africans [11]. The rate of infection in most developing countries
is very high and going up that rigorous intervention programmes are required
to slow down the rate of infection. Intervention can be in two forms, namely
vaccination and treatment with antiretroviral drugs. Vaccination, in the long run,
would help eradicate the epidemic but there is no vaccine (a weaker version of the
pathogen which elicit a primary immune response) for HIV/AIDS. However, there
are candidate vaccines which are currently on trial to determine their efficacy. As

a result treatment remains the most effective control strategy at the moment.
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1.5 HIV and the Immune System

Lymphocytes are a type of white blood cells which are a key component of the
immune system. They enable the body to produce antibodies against different
types of foreign agencies (antigens) that may invade the body. It is the intro-
duction of a foreign body into the body that stimulates an immune response to
remove the object as quickly as possible. The immune system remembers and
a second exposure to a foreign substance produces a more rapid and greater re-

sponse [3].

The are two types of immunity, namely: Humoral immunity and Cellular im-
munity. Macrophages are the cells that look for foreign agencies in the body.
They scavenge, engulf and examine the antigen directly. They then present their
findings to the C'D4 positive T lymphocytes (CD4T — T cells). A type of lym-
phocytes called B is activated to produce antibodies into the general circulation
to directly kill the antigen. On the other hand cellular immune response consti-
tutes the major defence against infection due to viruses, fungi and a few bacteria.
Lymphocytes precursors come from borne marrow and those that populate the
Thymus become transformed by the environment in this organ into lymphocytes

responsible for cellular immunity (7" lymphocytes).

CDA4" —T cells (Helper T cells) have a glycoprotein C'D4 on their surface hence
their name. They form the command center for the immune system. If an im-
mune response is necessary, they enhance a primary immune response where
they reproduce to elicit both humoral and cellular immunity. They activate the
CD8" —T cells ( effector cells or killer T" cells or cytotoxic cells). These have got

a glycoprotein C'D8 and hence their name. Once given a target, they seek out
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and destroy cells infected with antigens and other foreign cells. If an immune re-
sponse is successful, certain cells of each type retain the knowledge of the attack.
These cells referred to as memory cells from B and T cells are readily converted
to killer cells by a later encounter with the same or closely related antigen [2].
HIV, like any other viruses has no ability to reproduce independently and so it
relies on a host to aid reproduction. HIV wreaks the most havoc on CD4T — T
cells by causing their destruction and decline, and decrease the body’s ability
to fight against infection. When it infects the body, it targets C D4t — T cells
receptors. A glycoprotein (gp120) on the surface of the HIV virion has a high
affinity for the C'D4 protein on the surface of the C'D4" — T cells. The receptors
from the virions lock to those of the cell. The virus receptors then pull back and
force a contact with the cell membrane of the host cell. Binding takes place and

the virus penetrates the cell membrane [2].

Most viruses carry copies of their DNA and insert this into the host cell’s DNA.
HIV is a special type of retrovirus meaning that it stores its genetic information
as RNA rather than DNA. Single stranded RNA (ssRNA) is transcribed into sin-
gle stranded DNA (ssDNA) by the enzyme called reverse transcriptase. A second
strand of DNA is synthesized to form double stranded DNA. New virus particles
bud off from the surface of the host cell. This is the major difference between
HIV and other viruses. HIV has four stages of progression. The first stage is the
initial inoculation where the virus is introduced into the body, the second stage
is the initial transient which is a relatively short period of time when both T-cell
population and virus population are in great flux, the third stage is the clinical
latency which is the period of time when there are extremely large numbers of
virus and 71" cells undergoing incredible dynamics the result of which is an ap-

pearance of latency (disease steady state), and the fourth stage, the AIDS stage
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when T cells will drop to very low numbers and the virus growing without bound

resulting in death [2].

There are two main forms of HIV, HIV-1, and HIV-2. HIV-1 was discovered
by Luc Montagnier and his associates at the Institute of Pasteur in Paris 1983.
HIV-2 was first identified among patients in Cameroon in 1985. It is less virulent
and does not result in full blown AIDS though it is fatal. It is HIV — 1 which
is of particular importance in this thesis and we refer to it as simply HIV for the

sake of simplicity.

1.6 Statement of the problem

So many models have been developed to model the immunology of HIV. These

models have been used to explain different phenomena.

In [2], Kirschner looked at a basic three stage HIV model which he modified to
include treatment, time delay and to be age dependant. He established, using
computer simulations, that CD4" —T cell count is higher overally when treatment
is initiated at a later stage and chemotherapy administration does not affect the

overall outcome of treatment.

In [5], Culshaw and Ruan considered a threee stage model on HIV immunology
and also carried out computer simulations after introducing time delay. Their
results showed that the introduction of time delay on drug efficacy only produced
transient oscillations and does not disturb the stability of the endemic steady

state.

In [1], Perelson and Callaway considered various models on HIV/AIDS including

the one where there was administration of RTT’s monotherapy. They established
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that there is a linear relationship between the strength of the drug and the viral
load which is more appropriate for HIV modelling during RTT’s monotherapy. It
is this model that we modify to study the combined effects of RTT’s and PI's on

the infectiousness of HIV.
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Chapter 2

A MODEL WITHOUT
TREATMENT

2.1 Introduction

In this chapter a model for HIV is considered when there is no treatment. We
begin by presenting a three-stage model in [5]. Culshaw and Ruan looked at a
model with time delay. In this model we modify their model to ignore the time
delay part. We therefore concentrate on the rates of change of the populations
of C D4+ — T cells susceptible to infection (T), Infected C'D4™ — T cells (I) and

the free virus population (V') as follows:

2.2 Model formulation

2.2.1 Susceptible CD4" — T cells (T')

All uninfected CD4" — T cells which proliferate at a rate A\ per unit time are

assumed to be susceptible. The susceptible population is diminished by natural
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death (at a rate d) and by infection following contact with the virus (with prob-
ability k). The nonlinear ordinary differential equation describing the dynamics

of the susceptible C D41 — T cells is given by
T = \N—dT —kVT,

where the force of infection kV'T' is the rate of infection for a susceptible T cell
with a viral particle within the body of an individual. This also measures the

incidence of infection.

2.2.2 Infected CD4" — T cells (1)

This population increase through progression to infected cells of susceptible C' D4 —
T cells. They are cleared by a blanket death (those that burst into virions and

those that die naturally) at a rate 6. This gives

I = kVT —6lI.

2.2.3 Virus cells (V)

These proliferate through progression to virus cells of virions from bursting in-
fected cells (by a rate Nrd). They diminish at a constant death rate c¢. This

gives
V = Np6l —cV,

where N7 is the number of virions produced by each infected dying CD4T — T

cell.

In summary, we have the model given by the nonlinear system of ordinary differ-

ential equations. The model describing the scenario is

24



T = \N—dT —kVT,
I = kVT —4I,

V = Np6I —cV.

2.3 Finding the equilibrium points

(2.1)

The equilibrium solutions can be obtained from equating the right hand side of

(2.1) to zero, that is,
A=dT™* = kV*T* = 0,

EV*T* — 61 = 0,

Npol* —cV* = 0.

(2.2)
(2.3)

(2.4)

The disease free steady state is obtained when V* = I* = 0. This gives E, =

(3,0,0). The disease free steady state exists for all values of Ny > 0. The

endemic steady state is obtained as follows: From (2.3)
o
]{: )

then multiplying (2.4) by T*, we obtain

NpSI*T* — V*T* = 0,

NﬂSI*T*—%[* = 0,
o
(NTéT*—%)[* ~ 0.
This gives
c
Tt =
kN7’

(2.5)

(2.6)



substituting (2.6) into (2.2), we obtain

cd c
—_— V" =0
kNt  Np ’
AN d
vV = - —
c k’
A cd
= ~(Nr—23),
A
- E(NT_Ncrit)~
where
cd
N.. e
crit k})\’
A L(N — Nit)
- 5NT T crit) -

The endemic steady state is given by
_ c A A
E = ——N_Ncri7_N_Ncri .
(kNT,éNT< - Now). (0 a)
We therefore, have the following theorem

Theorem 1 The endemic steady state exists if and only if Nepw < Nrp.

2.4 Stability analysis for the disease-free steady
state

Let

A
_7y2:[;y3:V7

ylzT_d

yl :T7y2:j7y3zva

then substituting these into the system (2.1) we obtain

) kX
Y1 = —dy; — Fy?’ — kysyi,
) kA
Yo = —0ys + Fyzs + kysyi,

ys = Npdys — cys.
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We extract the linearized system to get

(1 -d 0 -5 (7
Y2 = 0 -0 %)\ Y2 )
Y3 0 Npé —c Y3

which is of the form Y = AY, where Y = (41,95, 93)7 and y = (y1, 2, y3)"-
We find the eigenvalues, (3, of the Jacobian, A, of the linearized system by con-

sidering det(A — 1) = 0 as follows

—d-3 0 —h
0 —5—-p B =0
0 Nro —c—p
ENTOA
~(d+ DO +B)(c+ ) - ——] =
We observe that the eigenvalues are § = —d and the solutions of the quadratic

expression (3% + (6 + ¢) + 60(1 - N]Zfit) = 0. Then the eigenvalues are

B =—d

0+c §+c\? Nr
5273—— B :t\/( B ) —5C<1— Ncrit)

If Ny < N, then all the eigenvalues are negative and we thus have the following

theorem

Theorem 2 The disease free steady state is stable for No < N+ and is unstable

for Ny > Nepit.

2.5 Stability analysis for the endemic steady state

To establish the stability of the endemic steady state we linearize the system

(2.1) about E.
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Let

c A N A
yl:T_—kNT’%:[_g(l_N—T-t)’y‘rs:V_E(NT_Ncm)’

=T =143="V.

On substituting this into the system (2.1) we obtain the following nonlinear

system
. kX c
Y1 = —(d+ —(Nr — Neit))y1 — Y3 — ky1ys,
C NT
. kA c
Yo = —(Nr — Nerit)yr — 6y2 + —ys + ky1ys,
c Nr
Ys = Nrdys — cys.
The associated linear system is given by
(I —(d+ "2 (Nr — Nepwr)) 0 — 7 (7
Yo | T k—c)‘(NT — Nerit) -0 Y2
Y3 0 Nré —c Y3

We Find the eigenvalues, 3, of the linearized system by considering the determi-

nant.
—e1— [ 0 —N—CT
) —-0—-0 x5 =0,
0 Npo —c—p

where e; = d + k—;‘(NT — Nepig), €2 = k_;\(NT — Nerit).

(5 s (5
—(e1+ 0) ©+5) Nr + Ni “ (0+5) =0,
N76 —(c+pB) 10 N76

—(e1 + B)[(6 + B)(c+ B) — dc] + dcea = 0,
B4 (er+ (6 +c))F +e(6+c)f—dcey = 0,
B+ AB+B3—C = 0,
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where A=e;+9d+c¢,B=e1(d+c¢),C = dces,

kX
A = d+(5+C+7[NT_Ncrit]a
kX
B = 7<5+C>[NT_Ncrit]7

C = kSA[Ny — Nl

Applying the Routh-Hurwitz conditions we observe that A, B, C' are positive if

and only if Np > N..;; and

AB—-C = (6+c)(e1+d+c)er — deo,
= (04 c)e] + (64 ¢)’er — dey,
= (0+c)e? + (6% +c?ep + 6c(2e; — e3),
= (6+c)ei + (67 + ey + dc(2d + €3),

> 0.

It follows that all the eigenvalues of the system have negative real parts. We can

summarize the results as follows:

Theorem 3 The endemic steady state E is asymptotically stable if

NT > Ncm’t
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Chapter 3

THE MODEL WITH RTTI’s
TREATMENT

3.1 Introduction

Reverse Transcriptase Inhibitors (RTT’s) prevent HIV-1 from infecting C D4+ —T
cells by hindering the reverse transcription of HIV-1 RNA into DNA. The most
effective way of modelling RTT’s is to consider the effect of the drug at cellular
level. Uninfected C D41 — T cells are grouped into those which do and do not
respond to the drug. The effects of the drug is measured by the rate at which
target cells are transferred to a pool of infection resistant cells and by the amount

the viral infectivity is reduced in the pool of infection resistant cells [1].
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3.2 Model formulation

We present a four-stage model in [1]. The model shows the rate of change of
the populations of C'D4% — T cells susceptible to infection (T"), CD4" — T cells
containing active drugs with susceptibility to infection (7}y), Infected CD4T — T

(I) cells and the free virus population (V') as follows:

3.2.1 Susceptible CD4" — T cells (T)

All uninfected CD4" — T cells which proliferate at a rate A\ per unit time are
assumed to be susceptible. The susceptible population is diminished by natural
death (at a rate d) and by infection following contact with the virus (with proba-
bility k). Upon treatment they are moved to a class of Ty cells (at a rate r). The
nonlinear ordinary differential equation describing the dynamics of the T cells is

given by:

T = N—dT —kVT — 1T,

where the force of infection kV'T" is the rate of infection for a susceptible 1" cells
with a viral particle within the body of an individual. This also measures the

incidence of infection.

3.2.2 (CD4" — T cells containing active drug with suscep-
tibility to infection (7y)

This population increases through resistance by T' cells to infection (at a rate r)
when treatment has been applied. It diminishes by natural death (at a rate d)
and by infection through contact with the virus (with probability k(1 — egrr)).

This gives:
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Td = rT— de - (1 - ERT)]%‘VTd,

where err denotes the drug efficacy and 1 — ezr denotes the proportion of T,
cells susceptible to infection. The force of infection k(1 — egr)V'Ty is the rate of
infection for a susceptible T, cell with a virus. We note that when the drug is
perfect, that is egr = 1, no Ty cells are infected and when the drug is ineffective,

that is egr = 0, all T} cells are infected because they have no protection.

3.2.3 Infected CD4" — T cells (1)

This population increase through progression to infected cells of susceptible C' D4 —
T cells and susceptible C'D4" — T cells with active drug. They are cleared (by

bursting and natural death) at a rate 0. This gives:

If the drug is perfect, then the gain to this population is through the infection of

unprotected 7' cells only.

3.2.4 Virus cells (V)

These proliferate through progression to virus cells of virions from bursting in-
fected cells (by a rate Npd). They diminish at a constant death rate c¢. This

gives:

V = Npél—cV,
where Np is the number of virions produced by each productively infected cell.
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In summary, we have the model given by the nonlinear system of differential

equations. The model describing the scenario is

T = XN—dT —kVT —rT,
Td = rl— de - (1 — ERT)]%'VTd,
I = EV(T+ (1 —erp)Ty) — oI, (3.1)

V = Ngpol —cV.

3.3 Finding the disease free steady state

The disease free steady state is obtained when V* = [* = 0 and is given by

( A rA
d+r’d(d+r)

EO = (Todeoulm ‘/O) 707())'

3.4 Determining the Basic reproduction num-
ber

The most fundamental quantity of any model of pathogen dynamics is the Basic
reproduction number, R,, which quantifies replicative capacity of HIV [14]. We
proceed using the method in [13]. The distinction between the infected and
uninfected compartments plays a vital role in the definition and calculation of
R, of the model. For this reason, the definition and calculation of R, of the
model is not inferred from the structure of the model alone but also from the
distinction between infective compartments and uninfected compartments in the
cell compartments. We sort the compartments of infected and uninfected cells.

The first m compartments should correspond to infected cells and the rest to
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uninfected cells. We then define F; as the rate of appearance of new infections in
compartment i, V~; as the rate of transfer of cells out of compartment 7, V*; as
the rate of transfer of cells into compartment . We also define matrices F=F;,

V=Y"; — V*, and the model is then defined as @« = F — V

F 0 ) Voo
0 0 P Q

where the matrices F' and P are nonnegative, matrix () has eigenvalues with
positive real part, and V' is a nonsingular M-matrix. We then define the next

generation matrix as F'V~!. The dorminant eigenvalue of FV ! gives R, [13].

3.5 The sorted system

I = EV(T+ (1 —erp)Ty) — oI,
V = Ng6I —cV,
T = AN—dT —kVT — T,

Td = rT— de - (1 - ERT)]i'VTd.

kV(T + (1 - ERT)Td) ol 0
0 cV Nrol
F = 7V7i: 7V+i:
0 (d+ kV +r)T A
0 (d—i—k(l _ERT))Td rT’
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0 k’(T + (1 - ERT)Td) kV kf(l - ERT)V

oI
cV — Nrdl 0
(d+kV +r)T — X 0
(d+k(1—ERT))Td—TT 0
0 kX(d+r(l—egrr))
d(d+r)
0 0
D(F(E,)) =
0 0
0 0
) 0 0
—NT5 C 0
D(V) =
0 kT d+kEV +7r
0 k?(l - ERT)Td T
o 0 0 0
—Nrd c 0 0
D(V(E,)) = =
kA
kT‘)\(l*& T)
0 “i@mn o 4
P 0 % _ d+r 0
krA(1—egrT) ’
0 d(TTI)?T T d

0 0

d+ k(1 — epr)V

0
0

0

0
0
0

krA(1—egrr)

d(d+r)
0

Q=

0

0

0

b 0
—NT(S c




0 krA(1—€grr) 1 EX(d+r(1—erT))NT  kM(d+r(1—€rT))
val _ d(d+r) é _ cd(d+r) cd(d+r)

0 0 A1 0 0
let

]{Z)\(d + 7’(1 — ERT))NT

by —
0 cd(d+r)

We proceed to find the eigenvalues, 3, of FV 1.

bo - 5 NTbo
0 -

6=0 or =Dh,

k?)\(d + 7"(1 — ERT))NT

R, =
cd(d+ )

All that is required of an infection to go into decline is that each case should
generate, on average less than one case over the course of its infectious period.
The critical treatment proportion that will achieve eradication, N, is that for
which the Basic reproduction number, R,, under treatment to just equal to 1.

cd(d+r)

Ncri =
T EMd+ (1 —€egr))

3.6 Finding the endemic steady state

To find the endemic steady state (that is solutions as ¢t — oo) we equate the right

hand side of the system 3.1 to zero as follows
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\—dT* — kV*T* —rT* = 0, (3.2)

rT* —dT; — (1 — epp)kV*TE = 0, (3.3)
KV (T* + (1 — eqr)T3) — 61 = 0, (3.4)
NpsI* —cV* = 0. (3.5)

The infected steady state in terms of N..; is given by

E=(TT,1,V),

where
d+ ch(1 — enr)—da, + /(%) — 21— 2]
T o_ ¢ c €RT 2o 2 k2(1—errT) Nerit
kNr(d+7(1 = €rr)) + k>Nr(1 — €rr)[— 300 + \/(az_o)Z ~ B L~ k)
T re
d - ij d 1 _ k:QN 1 . _l a0\2 __ d(d"rT‘) 1 _ NT
r(d+7r( €rr)) + 7( €rr)] 5o 1 ( B) ) kQ(leRT)[ Nmt]]
- c .1 o d(d+r) Nr
I = [——(1,0 (_)2 72 []' - ] ]]7
NT5 2 2 k (1 - 6RT) Ncmt

— 1 o d(d+r) Nr
= - —2y2 _ 1 _
\% 2ao+\/(2) k?z(].—ERT)[ Ncrit]’

where

d+ (d+7)(1 —epr)[l — (d+r(1jl£\j%j;“))Ncrit]

]{?(1 — ERT)

A, =

V exists if and only if 1 — NN—Tt < 0, that is, N, < Np. The infected steady
state does not exist below N,.;;. It follows that the infected steady-state exists if

Ncrit < NT-
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3.7 Stability analysis of the disease free steady

state

The partitioning of the Jacobian of the model into infected and uninfected com-
partments enables us to determine the eigenvalues of the compartments. The
eigenvalues of —() are negative by the definition of the matrix ), hence the sta-
bility of the disease free steady state can be determined from the eigenvalues, (3,

of the matrix A = F — V [13].

_5 k}\(d+T(176RT))

A 81| = d(d+r) 0
NT5 —C—ﬁ
Ok
2 o — =
ﬁ —|—(5+C)5+(SC d(d+7’)<d+r(1 GRT))NT 0
N
B4 (@+c)f+oc(l— =) = 0
Ncm't
1 d4cy, _ Nr
Bra = —2(5+C)i\/( 7 )2 —de(l Ncm't)

The disease free state is stable if 1 > Aj,fﬁt, that is, Ny < Nt

We can summarize the results as follows:
Theorem 4 1. The disease free steady state exists for all values of Ny

2. The disease free steady state is stable for Ny < Ng.u and is unstable for

NT > Ncrit
3. The endemic steady state exist and is stable for Ny > Ny
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Remark 1 The proof for the stability of the infected steady state is so tedious

that the details are omitted here. We can illustrate these details numerically as

shown in the next section.

3.8 Tables

The variables and parameters used in the model are defined in the table below.

The values for rates and constants are adopted from [5], [2] and [10]

Table 3.1: Variables and parameters for viral spread

Dependant Variables
T

Ta

I

v

SR B S T

€RT
€pJ

Parameters and constants

Uninfected C D4 — T cell population
CD4" — T cell population with active drug
Infected C D41 — T cell population
Infectious HIV population

Source of new CD4" — T cells

Death rate of uninfected C D4 — T cell population
Rate at which CD4% — T cell acquire active drug
Rate of infection of CD4" — T cells

Blanket death rate of Infected C D4 — T cells
Number of virions produced by infected cells

Death rate of free virus

Drug efficacy for RTI's

Drug efficacy for PI's
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3.9 Numerical results for stability analysis of
the endemic steady state

Figure 3.1, shows the dynamics of the endemic steady state. All the graphs for
the different classes are characterized by initial transients followed by the levelling
off of the curves with time. This shows with the administration of RTT’s as an
intervention strategy, the infection will persist whenever N..;; < Nr. Thus the

graphs shows that the endemic steady state is asymptotically stable in this region.

1500 30
1000 20
[ |_-D
500 10
0 0
0 100 200 300 400 500 0 100 200 300 400 500
time t x 10% time t
600 3
400 2
- >
200 1
0 0
0 100 200 300 400 500 0 100 200 300 400 500
time t time t
1500
1000
=l
=
T
s
500

0 100 200 300 400 500
time t

Figure 3.1: The model with RTI’s treatment N = 500, egr = 0.8. The other
parameters are given in Table 3.1
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Chapter 4

THE MODEL WITH BOTH
RTI’S AND PI’'S THERAPY

4.1 Introduction

Protease inhibitors (PI’s) pose their effects on infected C D41 —T cells by inhibit-
ing their lytic death and rendering those that are produced non-infectious. The
previous Four-stage model considered the monotherapy with RTT’s. We modify
this model by introducing another type of drug, PI's. In the end we want to
establish how far the two drugs can be effective in reducing the infectiousness of
HIV. We also take into consideration that when a virus binds to an uninfected
CD4" — T cell, the result is an infected C'D4" — T cell. Thus we lose an unin-
fected CD4" — T cell and a virus. This will further change the dynamics of the

free virus population as follows
V = Np(l—epp)dl —cV —kVT,

where epy is the drug efficacy of PI's and the new loss term becomes (¢ + kT)V.

We note that when the drug, PI’s, is perfect, that is ep; = 1, then the virus
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population will never multiply and those that are available will be left to die.

When the drug is ineffective then we experience the same situation as in the

previous model. In summary, the inclusion of RTI’s and PI's together improves

the model for better results and the dynamics of the system is given below as:

T = AN—dT —kVT —rT,
Ty = rT—dTy— (1 —epp)kVTy,
I = EV(T + (1 —epp)Ty) — 61,

V = Np(1—ep;)dI —cV —kVT.

4.2 Equilibrium points

To find the equilibrium points we equate the right hand side of the model to zero

as follows:

A=dT* = kEV*T* —rT* = 0,
rT™ — de - (1 - ERT)]{?V*T; = O,

NT(l — €P1)5I* —cV*—=EkEVT* = 0.

From (4.4) we obtain

c+ kT,
o= ——t_y
NT(1—6p1)5

and from (4.3) we have

rr =
)
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Equating (4.5) and (4.6) gives

V* ]{I(T*—l-(l—ERT)T;) _ C+kTO — 0
1) NT(l — Gp])(s N ’
k(T*+ (1 — T5)V* kT*
V=0 op KT+ (A —ern)TH)V"  c+ Vo= 0.
5 NT(]_ — Ep1)5
The disease free steady state is obtained when V* = I* = 0 and is given as
E, = (d—i—r’ d(d+r) 0,0)

The endemic equilibrium point is given by E = (T, Ty, I,V) where

T, =

Oé1—|—062 —70 (70) —Oé7j|

cd —c(1 — erp)k% + (70)
T =

o1 + Qo —%O‘i‘ (70) - :|

2 2
(oo ool
I = ,
OJ5+OJG<—7° 6—0 )

e e 2
7o AN

2y(3) o



where V exists if and only if 1 < %, that is, Nei < (1 — €gp) Ny

and

aq

Qo

a3

Qg

(671

Qg

ar

crit

k(Nr(1—epr) — 1),

kNp(1 = epr)(k(Np(1 — epr) — 1)),

ckNr(1 — agrr)(1 —€pr),

cNr(1—epr)(d+ (1 — €rr)),

0dNp(Nr(1 = epr) = 1))(1 = epr) + ON(Np(1 — epr) — 1)*(1 = epr)*(1 — enr),

ON7(Nr(1 —€epr) —1))(1 — epr)((1 — €rr)),

(1— GPI)NT}

d 1—
e1 +erc(d+r) [ N

4.3 Stability analysis of the disease free steady

state

To establish the stability of the disease free steady state we linearize the system

about the point FE,.

Let y1=T—ﬁay2=Td—d(2—j\m7y3:[>y4:Va

yl:T?UZZTd7y3:jay4:V'

substituting this into the original system we get

Y1
Yo
Ys

Ya

k
= —(d — _k
(d+7)y T Ry,
1 —epp)kr
= 1y —dys — %ZM - 7“(1 - 6RT)ZJ4ZJ27

kX (1 — ERT)]{?T‘/\
k k(1 —
drr Ad+7r) Ya + kyayr + k( €RT)YaY2,

c(d+r)+ kA
d+r

= —0ys+ <
= NT(l — 6]:![)5?/3 - < )y4 - ky4y1-
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The associated linearized system is given by

n —(d+7r) 0 0 - n
v | r —d 0 —% Ys
s | |0 0 s Bean |,
Ya 0 0 NT(1 - 6P1)5 —W Ya

1—
Let o =d+rc =5 ¢y ="ralo€RD) 0o 4, oy = SATTIERA
Co d d+r

The linearized system gives the following eigenvalues:

B = —¢Co, P2 = —d

2
5374 — _(5;04) —+ \/(#) — 563<Ncm't — NT<1 — €P[))

Clearly the disease-free state is stable if (1 — ep;) Ny < Ny, where

cd(d+r)

Ncm' - .
T ENd+ (1 —epr))

When ep; — 0, then the drug will not be very effective Nr will be slightly below
Nerit. This means the virus has higher chances to cause an infection. When
epr — 00, then the drug’s effectiveness will be improving and N7 will be reduced
towards zero. This is a situation where we may eradicate infection or render the

virus less infectious. We then summarize all these results in the following theorem

Theorem 5 1. The uninfected steady state exists for all values of Nr.

47



2. The uninfected steady state is stable for (1 —ep;) Ny < Nepiy and is unstable

fOT (1 - 6PI)A]VT > Ncrit-

3. The infected steady state exist and is stable for (1 — ep;) Ny > Nepiy.
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Remark 2 The proof for the stability of the infected steady state is cumbersome
and the details are omitted here. We can illustrate these details numerically as

shown in the following section.

4.4 Numerical results for stability analysis of
the endemic steady state

Figure 4.1, shows the dynamics of the endemic steady state. All the trajectories
for the different classes are characterised by initial transients followed by the
levelling off of the curves with time. This shows that with the administration of
both RTT’s and PI’s as an intervention strategy, the infection will persist whenever
Nerie < Np(1 — epr). Thus the graphs shows that the endemic steady state is

asymptotically stable in this region.

1500 100
1000
- > 50
500
0 0
0 100 200 300 400 500 0 100 200 300 400 500
time t time t
300 4000
3000
200
- > 2000
100
1000
0 0
0 100 200 300 400 500 0 100 200 300 400 500
time t time t
1500
1000
=l
[
T
[
500

0

0 100 200 300 400 500
time t

Figure 4.1: The model with both RTT’s and PI’s treatment, N = 500,
err = 0.8,ep;y = 0.7. The other parameters are given in Table 3.1
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Chapter 5

DISCUSSIONS AND
CONCLUSION

We first reviewed the model without treatment by Culshaw and Ruan [5]. We ob-
tained a threshold parameter, N..;. The disease free steady state was established
and existed for all Ny while the endemic steady state existed for Ny > N,.;;. The
local stability for the steady states was established based on N..;. This deter-
mines whether the disease will persist or not. Thus if Ny < N, it is possible for
the infection to die out in the sense that uninfected C D4 — T cells stay healthy
all times. If N > N, then the infection becomes endemic in the sense that

the immune system is weakened by the high free virus load.

We also reviewed a model with RTT’s monotherapy where N,.;; was improved by
the introduction of the drug term. Numerical simulations on the stability analy-
sis of the endemic steady state for the model with RTT’s treatment showed that

it is stable. The results showed that the administering of RTI’s monotherapy
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reduces the number of virions and slightly increases the total number of unin-
fected CD4" — T cell. This means that the infection will always persist if no
further intervention measures are taken. We established that when the drug is
not effective, that is egr — 0, then we experience the same situation as in the
model without treatment. If egpr — oo, that is when every C D41 — T cell gets
protection from RTT’s then the value of N,..; is reduced towards zero and this

leads to a possible eradication of the infection.

When we investigated the model with a combination of RTT’s and PI’s in the third
model we established that the additional drug has remarkable effect on reducing
the number of free virions. For infection not to progress, (1 —ep;) Ny < Ny and
for the infection to progress, (1 —€epy) Ny > Ny From the computer simulations
for the stability analysis of the endemic steady state, we established that it is
also stable at a certain proportion which showed a remarkable improvement from
the one on monotherapy. The trajectories are characterised by initial transients
which are a result of the immune response which is present early in the infection.
Thus it has the effect of lengthening the period over which an infective should
survive. However, there is a possibility of the virus gaining resistance and blow-
ing up again. Considering the conditions for the progression and reduction of
infection, the drug is useless, that is ep; = 0, then we have the same effects as in
the model with RTT’s treatment where every cell is only protected by one drug.
This will not be good enough since multiple virions may infect one cell and only
one of them might be hindered to get through and others allowed to get through
or around the drug barrier [8]. Only when the additional drug is perfect, that is
epr = 1, that we are able to further reduce the number of free virions produced

by an infected cell towards zero. In this case it will be possible to get rid of the
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infection at a faster rate than when we administer monotherapy. Thus we note
that a combination of two types of drugs is more effective in reducing infection

than one drug.

The results from the models are also in agreement with the previous findings by
other modellers. In [7] They noted that the use of combination therapies raises
many public health issues where they offer the promise of an important advance
in the global fight against HIV/AIDS. However, it is possible that we may have
an ill-planned combined treatment programme that may cause the progression of
an infection as cited by Y. Hsieh and J.X. Velasco-Hernandez in [9]. The most
important thing is the implementation of a comprehensive drug combinations
that will arrest a large number of future infections and reverse the course of the

AIDS pandemic [6]
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