MOLECULAR CHARACTERISATION OF Verticillium dahliae Kleb ISOLATES AND COMPARISON OF THEIR VIRULENCE ON SELECTED COTTON VARIETIES IN ZIMBABWE

By Nyamande Mapope

A thesis submitted in Partial fulfilment of the requirements for the degree of Master of Science in Crop Protection

Department of Crop Science
Faculty of Agriculture
University of Zimbabwe
May 2005

UNIVERSITY OF ZIMBABWE

FACULTY OF AGRICULTURE

The undersigned certify that they have read and recommend to the Department of Crop Science for the acceptance of the thesis titled: Molecular characterisation of Verticillium dahliae Kleb isolates and comparison of their virulence on selected cotton varieties in Zimbabwe.

Submitted by **Nyamande Mapope** in partial fulfilment of the requirements of the degree of **Master of Science in Crop Protection**

Approved
Dr. A.B. Mashingaidze (Chairperson: Department Of Crop Science)
Mrs. Sibiya (Supervisor)
Mr. Manyangarirwa (Supervisor)
Date

ABSTRACT

A study to determine the virulence of five Verticillium dahliae isolates on five varieties of cotton (SZ 9314, G 501, FQ902, BC 853 and 563-97-12) was carried out under both field (at five sites Cotton Research Institute (CRI), Henderson, Rafingora, Chisumbanje and Chinhoyi) and greenhouse conditions. The molecular differences of the five isolates were also compared using the Polymerase Chain Reaction (PCR) at Tobacco Research Board's Molecular Biology Laboratory. In the field experiments to determine virulence, the five varieties named above were planted at each site in a Completely Randomised Block Design with four replications. Monthly infections and fortnight scoring were done from January to the end of May. Infection percentages were calculated at the end of the season. They were arc sine transformed and then subjected to analysis of variance using Gestat 3.2. Fortnightly scores were used to calculate the area under the disease progress curves (AUDPC) using Sigma Plot 8. Significant differences (p<0.05) in infection percentages (arc sine transformed) were obtained at CRI, Chisumbanje and Chinhoyi but not at Rafingora and Henderson. There were no significant varietal differences for AUDPC at four sites (CRI, Chisumbanje, Rafingora and Henderson) except Chinhoyi, which had significant AUDPC differences between the varieties. From the five sites, soil samples were taken to isolate Verticillium dahliae. The isolates were tested for their virulence on five varieties used in the field. The trial was laid in a split plot design with Verticillium dahliae isolates as main plots and varieties as subplots. A single pot with one plant constituted a plot. Inoculum was prepared from the isolates and plants were stem pricked at the base at six weeks after planting. Severity scores were done a week after infection for the next four weeks. All the isolates were virulent, with isolates from CRI and Chinhoyi producing significantly higher AUDPC on all varieties than other isolates form other sites. Significant AUDPC were observed with G501 and BC853 having the lowest AUDPC while SZ9314 and F902 had the highest AUDPCs and variety 563-97-12 had intermediate AUDPC. PCR was run to compare five Verticillium dahliae isolates against the standard fungus from imported from South Africa at the Tobacco Research Board. Two primers were used (primer 19/22 and 42/70). Primer 22/70 managed to produce more bands (eleven bands) than primer 19/22 which produced five bands. Bands were scored and a cluster analysis was done to compare the differences of the banding patterns. Results show that there were differences at molecular level between the isolates. Differences were evident between the Rafingora isolate and the other isolates. Relationship between virulence and molecular differences was no established. However our results are preliminary and further research still need to be carried out on the isolates.

ACKNOWLEDGEMENTS

I would like to thank the Government of Zimbabwe that granted me a two-year study leave and the Belgian government that offered me a two-year scholarship to study at the University of Zimbabwe. The Director of Agricultural Research and Extension (AREX) and the Head of Institute, Cotton Research Institute who allowed me access to facilities, varieties, sites and other resources that made this study a success. I am indebted to my supervisors Mrs. J. Sibiya and Mr. Manyagarirwa for their guidance. I am also grateful to Dr. Garwe of the Tobacco Research Board and her staff who provided the expertise on the Molecular work. Staff at the Cotton Research Institute especially Dr. L.T. Gono, Mr. A. R. Chimoga, Mr. E. Mupanehari, Ms C. Chabvongodze and the Research Hands in the Pathology section of the Institute were very helpful especially Mr. J. Kamidza and Mr. Simoyi.

I would like to express my sincere thanks to Dr. P. Jowah who encouraged me throughout the MSc course and my course mates who were very critical of the work.

I am also greatly indebted to son Branton, my Mother and my wife Juliana for encouragement and support.

CONTENTS

ABSTRACT	ii
ACKNOWLEDGEMENTS	
LIST OF TABLES.	Vii
LIST OF FIGURES	viii
LIST OF APPENDICES.	ix
CHAPTER 1: INTRODUCTION	1
1.1 Objectives	
1.2 Hypothesis.	
CHAPTER 2: LITERATURE REVIEW	
2.1 Classification of <i>Verticillium dahliae</i>	
2.2 Description of strains	
2.3 Verticillium wilt disease	
2.4 Above ground symptoms	
2.5 Root infection.	
2.6 Ecology	
2.7 Epidemiology of Verticillium wilt in Cotton	
2.8 Control	
2.8.1 Resistant Cultivars	
2.8.2 Cultural practices	
2.8.3 Chemical control	
2.9 Polymerase Chain Reaction	13
CHAPTER 3: MATERIALS AND METHODS	
3.1 Field trials	
3.1.1 Sites	
3.1.2 Trial design	
3.1.3 Treatments	
3.1.4 Data Collection	
3.1.5 Data Analysis	
3.2 Green House Trials	
3.2.1 Soil Sampling	
3.2.2 Fungus Extraction	
3.2.4 Trial Design.	
3.2.3 Treatments	23
3.2.5 Inoculation.	23
3.2.6 Data collection.	23
3.2.7 Data Analysis	24
3.3 Strain Differentiation	24
3.3.1 DNA preparation	24
3.3.2 DNA extraction	
3.3.3 Analysis of nucleic acids by gel electrophoresis	25
3.3.4 PCR reaction and gel electrophoresis	25

CHAPTER 4: RESULTS	28
4.1 Field trials	28
4.2 Green House trial	35
4.3 Stain Differentiation.	41
CHAPTER 5: DISCUSSION	44
CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS	48
6.1 Conclusions	47
6.2 Recommendations	
REFERENCE	49
APPENDICES.	54

LIST OF TABLES

Table 1: Infection % arc sine transformed for five varieties on four sites	33
Table 2: AUDPCs for five varieties on each site.	33
Table 3: Infection % arc sine transformed	34
Table 4: Table of means for AUDPC of five varieties across five isolates	35
Table 5: PCR Reaction Mixture.	26

LIST OF FIGURES

Fig 1: Disease progress curve at Chinhoyi	29
Fig 2: Disease progress curve at Henderson	30
Fig 3: Disease progress curve at Chisumbanje	31
Fig 4: Disease progress curve at Cotton Research Institute	32
Fig 5: Disease progress curve on varieties inoculated with Chinhoyi isolate	36
Fig 6: Disease progress curve on varieties inoculated with Chisumbanje isolate	37
Fig 7: Disease progress curve on varieties inoculated with Henderson isolate	38
Fig 8: Disease progress curve on varieties inoculated with CRI isolate	39
Fig 9: Disease progress curve on varieties inoculated with Rafingora isolate	40

LIST OF APPENDICES

Appendix 1: Analysis of variance for arc sine transformed infection % at CRI	54
Appendix 2: Analysis of variance for arc sine transformed infection % at Chisumbanj	e.54
Appendix 3: Analysis of variance for arc sine transformed infection % at Henderson.	54
Appendix 4: Analysis of variance for arc sine transformed infection % at Chinhoyi	54
Appendix 5: Analysis of variance for arc sine transformed infection % at Rafingora	54
Appendix 6: Analysis of variance for arc sine across sites	54
Appendix 7: Analysis of variance for area under the disease curve at CRI	55
Appendix 8: Analysis of variance for area under the disease curve at Chinhoyi	55
Appendix 9: Analysis of variance for area under the disease curve at Chisumbanje	55
Appendix 10: Analysis of variance for area under the disease curve at Henderson	55
Appendix 11: Analysis of variance for area under the disease curve across sites	56
Appendix 12: Analysis of variance for yield at Chinhoyi	.56
Appendix 13: Analysis of variance for yield at Chisumbanje	56
Appendix 14: Analysis of variance for yield at CRI	56
Appendix 15: Analysis of variance for yield at Henderson.	56
Appendix 16: Analysis of variance for yield at Rafingora.	57
Appendix 17: Analysis of variance for yield across sites	57
Appendix 18: Malt Glucose Agar	57
Appendix 19: Raw data for yield.	57
Appendix 20: Raw data for Green house trail.	.59
Appendix 21: Raw data for infection %	61
Appendix 22: Cluster analysis for primer 19/22	63
Appendix 23: Cluster analysis for primer 42/70	64