INTERCROPPING AND LEAF HARVEST MANAGEMENT FOR IMPROVED LEAF YIELDS IN TWO TRADITIONAL VEGETABLES: PUMPKIN (Cucurbita maxima L.) AND MUSTARD RAPE (Brassica juncea Czern.) IN ZIMBABWE.

BY

ENOCK KUZIWA MAEREKA

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF THE DEGREE OF MASTER OF PHILOSOPHY

DEPARTMENT OF CROP SCIENCE FACULTY OF AGRICULTURE UNIVERSITY OF ZIMBABWE

MARCH, 2007

ABSTRACT

Studies were carried out to establish ideal component combinations and relative populations, relative planting dates, leaf harvest practices and the effects of nitrogen in intercrops involving food crops (maize and groundnut) and traditional vegetables (pumpkin and mustard rape). The studies were conducted on-farm in Chinyika Resettlement Area and on-station in Harare at the University Farm (UZF) in the 2002/2003 and 2003/2004 rainy seasons.

In maize intercrops, pumpkin and mustard rape were each planted at 11.7, 23.4 and 35.3 % of the maize population. In groundnut intercropping, pumpkin was planted at 0.46, 0.92 and 1.84 %, whilst mustard rape was planted at 4.15, 8.29 and 12.44 % of the groundnut population. The vegetables were planted simultaneously and within the same row as maize or within the groundnut interrow space. A second planting of mustard rape was implemented at 10 weeks after emergence (WAE) of maize or groundnut at one site in Harare.

Generally, maize grain yield was not affected by intercrop populations at all sites in both the 2002/3 and 2003/4 seasons. In addition, it was not affected by 5 to15-day leaf harvest intervals and 1 to 6-leaf harvest intensities of the vegetable component. However, groundnut seed yield was significantly (p \leq 0.05) reduced by 17-45 % due to intercropping with pumpkin except in the 2003/4 season at UZF. Similarly, growth of the two traditional vegetables was significantly (p < 0.05) reduced under both food crops as reflected by reduced leaf size, number of leaves per plant and growth duration in both the 2002/3 and 2003/4 seasons. However, increasing pumpkin intercrop populations reduced weed density and weed biomass in both maize and groundnut, whilst mustard rape intercropping had no weed suppression effects.

Both leaf harvest intervals of five, 10 and 15 days and intensities of two, four and six leaves per growing tip had no effects on pumpkin dry leaf yields in both the 2002/3 and 2003/4 seasons, though harvesting four leaves per growing tip at 5-day intervals increased dry leaf yields by 153 % of the control (12-day leaf harvest interval). Five-day leaf harvest intervals and three-leaf intensities in mustard rape reduced leaf size, duration and plant height, but had higher dry leaf yields compared to the control. Mustard rape growth parameters and leaf yields were less responsive to 1, 2 and 3-leaf harvest intensities and 5, 10 and 15-day intervals in maize-11.7 % mustard rape intercropping than in pure mustard rape stands.

Mustard rape dry leaf yields were also increased by increasing nitrogen side dress level from 0 to 103.5 kg N ha⁻¹. Likewise, leaf nitrate and nitrogen increased significantly (p < 0.001) with increases in nitrogen side dress. Leaf nitrate content was higher in mustard rape leaves harvested in the morning (0.54 %) compared to those harvested at sunset (0.46 %) at 5 WAE. There was increase in level of bitterness detected in mustard rape taste and improvement of appearance after cooking with increases in nitrogen side dress level from 0 to 34.5 kg N ha⁻¹.

All intercrops for both pumpkin and mustard rape had intercropping advantages over sole cropping as revealed by land equivalent ratio (LER) values greater than unity. Higher LER values were recorded on-farm, where there were fruit yields.

Conclusions of the study are that mustard rape should ideally be intercropped with groundnut and pumpkin with maize, to minimize suppression of component crops. Secondly, leaf yields of mustard rape can be increased through simultaneous planting compared to staggered planting at 10 WAE of the main crops and higher intercrop populations (35.3 % in maize). More severe harvesting in both vegetables also increases leaf yields in pure stands. Thirdly, apart from high leaf yields, high pumpkin intercrop populations of up to 35.3 % of maize also have an advantage of effective suppression of weeds without any maize yield penalty to the farmer. Fourthly, mustard rape leaf yields can also be increased through increasing nitrogen side dress levels, with slightly perceptible effects on taste if the range is between 0 and 103.5 kg N ha⁻¹.

ACKNOWLEDGEMENTS

This research was sponsored by the Rockefeller Forum Foundation Programme Grant Number 2002 FS 119.

Profound gratitude is expressed to supervisors; Drs Rufaro M. Madakadze, Chris Nyakanda and Arnold B. Mashingaidze for their superb job during the course of the study and directing the preparation of this thesis. Credit is also given to Mr David Icishahayo for sacrificially making time available to provide his statistical expertise and to Dr Susan Kageler for reviewing one of the papers presented herein. The Department of Crop Science technical staff is thanked for the long but enjoyable trips to Chinyika.

Acknowledgement also goes to members of the University of Zimbabwe community who volunteered as taste panelists. Chemical assays were done at AREX and the Government Analyst Laboratory.

Special mention also goes to my family for their resolute support during the study and to Veronica for being a patient special friend.

DEDICATION

..... Matthew Howard Maereka "Alfred"

YOU ARE SADLY MISSED....

TABLE OF CONTENTS

TITLE PA	AGE i
ABSTRA	CTii
ACKNOV	VLEDGEMENTSiv
DEDICAT	Γ ΙΟΝ v
TABLE O	OF CONTENTSvi
LIST OF	ΓABLES x
	FIGURESxiii
	APPENDICESxv
GLOSSAI	RY xix
CHAPTE	R 1 1
1.0 INTRO	DUCTION
1.1 C	Objectives5
1.2 H	Typotheses
СНАРТЕ	R 26
2.0 LITERA	ATURE REVIEW 6
2.1	Importance of Leafy Traditional Vegetables
2.2	Production Systems Involving Pumpkin and Mustard Rape, and
	Factors Limiting Research8
2.3	Performance of Pumpkin and Mustard Rape Under
	Intercropping Systems 9
2.4	Established Agronomic Practices for Pumpkin and Mustard Rape11
2.5	Responses of Pumpkin and Mustard Rape to Leaf Harvesting
	and Soil Fertility Management Practices
2.6	Priority Areas for Research in Pumpkin and Mustard Rape
	Cropping Systems

CHAPTE	R 3	19
3.0 GENER	AL MATERIALS AND METHODS	19
3.1	Location of Study Sites	19
	3.1.1 Location of Chinyika Resettlement Area (CRA)	19
	3.1.2 Location of the University Farm (UZF) (Thornpark E	state). 19
3.2	Physical Characteristics of Chinyika Resettlement Area	20
	3.2.1 Soils	20
	3.2.2 Rainfall and Altitude	20
3.3	Physical Characteristics of the University Farm (UZF)	21
	3.3.1 Topography and Soils	21
	3.3.2 Altitude, Temperature and Rainfall	21
3.4	Crop Cultivars and Sole Crop Spacing Used in the Studies	22
	3.4.1 Maize	22
	3.4.2 Groundnut	23
	3.4.3 Pumpkin	23
	3.4.4 Mustard Rape	23
3.5	Field Operations and Management of Experiments	24
3.6	Data Collection and Analysis	24
СНАРТЕ	R 4	26
	EFFECTS OF PUMPKIN AND MUSTARD RAPE	20
4.U I	POPULATIONS ON PRODCUTIVITY AND WEED	
	SUPPRESSION IN MAIZE-PUMPKIN AND	
	MAIZE-MUSTARD RAPE INTERCROPS	26
4.1	Introduction	
4.1	Materials and Methods.	
4.2	Results	
4.3		
	4.3.1 At the University Farm (UZF)	
	4.3.3 Weed Dynamics.	
	4.3.4 Intercrop Productivity	
	T.J.T INCIOIOP I IOUUCHVILY	

4.4	Discussion	45
4.5	Conclusions	49
4.6	Recommendations	50
СНАРТЕ	ER 5	51
5.0 EFFEC	CTS OF PUMPKIN AND MUSTARD RAPE POPULATION	S
ON	PRODUCTIVITY AND WEED SUPPRESSION IN	
GR	OUNDNUT-PUMPKIN AND GROUNDNUT-MUSTARD R	APE
INT	TERCROPS	51
5.1	Introduction	51
5.2	Materials and Methods	53
5.3	Results	55
	5.3.1 At the University Farm	55
	5.3.2 On-farm (CRA)	58
	5.3.3 Weed Dynamics	63
	5.3.4 Intercrop Productivity	70
5.4	Discussion	72
5.5	Conclusions	77
5.6	Recommendations	77
СНАРТЕ	ER 6	 79
6.0 EFFEC	CTS OF VARIOUS LEAF HARVEST INTERVALS AND	
INT	TENSITIES ON PUMPKIN GROWTH AND LEAF YIELDS	79
6.1	Introduction	79
6.2	Materials and Methods	81
6.3	Results	83
6.4	Discussion.	89
6.5	Conclusions	93
6.6	Recommendations	94

CHAPTE	R 7	95
7.0 EFFEC	TS OF LEAF HARVEST INTERVALS AND INTENSI	TIES ON
GRO	OWTH AND LEAF YIELDS OF MUSTARD RAPE	95
7.1	Introduction	95
7.2	Materials and Methods	97
7.3	Results	99
7.4	Discussion	108
7.5	Conclusions	112
7.6	Recommendations	113
СНАРТЕ	R 8	114
8.0EFFECT	TS OF NITROGEN FERTILIZATION AND TIME OF	
HAI	RVESTING ON LEAF NITRATE CONTENT AND	
TAS	TE IN MUSTARD RAPE	114
8.1	Introduction	114
8.2	Materials and Methods	116
8.3	Results	119
8.4	Discussion	127
8.5	Conclusions	131
8.6	Recommendations	131
СНАРТЕ	R 9	133
9.0 GENER	RAL DISCUSSION, CONCLUSIONS AND	
REC	COMMENDATIONS	133
9.1	General Discussion	133
9.2	Conclusions and Recommendations	140
REFERE	NCES	142
APPEND	ICES	

LIST OF TABLES

Table 4.1: Effects of cropping system on maize grain yield and mustard rape
leaf size in the second planting at UZF in 2002/3 and 2003/431
Table 4.2: Effects of cropping system on various characteristics of mustard
rape in the second planting at UZF in the 2002/3 and 2003/4 seasons32
Table 4.3 Effects of cropping system on pumpkin characteristics at the University
Farm in the 2002/3 and 2003/4 seasons
Table 4.4 Effects of cropping system on maize grain yield and, duration and
branching of pumpkin over the on-farm environments
Table 4.5: Effects of intercrop population on pumpkin leaf and fruit yields
on-farm36
Table 4.6: Effects of cropping system on weed density and weed biomass at
Chinyudze and Gowakowa in 2003/4
Table 4.7: Effects of cropping system on weed density and weed biomass at
Bingaguru in 2003/4 and Chinyudze in 2002/3
Table 4.8: Effects of cropping system on weed density and weed biomass in
maize-based cropping systems at UZF in 2002/3
Table 4.9: Effects of cropping system on weed density and weed biomass in
maize-based cropping systems at UZF in 2003/4
Table 4.10: Effects of vegetable intercrop population on the productivity of
maize-based intercrops at UZF in the 2002/3 and 2003/4 seasons
Table 4.11: Effects of pumpkin intercrop population on the productivity of
maize-based intercrops at on-farm
Table 5.1: Effects of cropping system on 1000 seed weight and number of pods
per plant in groundnut at UZF in the 2002/3 and 2003/4 seasons
Table 5.2: Effects of season and cropping system on pumpkin duration, leaf size
and dry leaf yield at UZF over the 2002/3 and 2003/4 seasons
Table 5.3: Effects of season and cropping system on length of vegetative period
and dry leaf yield in the second planting of mustard rape at UZF over the
2002/3 and 2003/4 seasons

Table 5.4: Effects of cropping system on 1000 seed weight and number of pods	
per plant in groundnut over the on-farm sites in the 2002/3 season	59
Table 5.5: Effects of cropping system on groundnut seed yield on-farm in the	
2002/3 and 2003/4 seasons	61
Table 5.6: Effects of intercrop population on pumpkin leaf size and, leaf and	
fruit yields in the 2002/3 and 2003/4 seasons on-farm	62
Table 5.7: Effects of cropping system on weed density and weed biomass in	
groundnut-based cropping systems at UZF in 2002/3	64
Table 5.8: Effects of cropping system on weed density and weed biomass in	
groundnut-based cropping systems at UZF in 2003/4	65
Table 5.9: Effects of cropping system on weed density and weed biomass at	
Chinyudze and Bingaguru in 2002/3	66
Table 5.10: Effects of cropping system on weed density and weed biomass at	
Gowakowa 2002/3 and Bingaguru in 2003/4	68
Table 5.11: Effects of cropping system on weed density and weed biomass at	
Chinyudze and Gowakowa in 2003/4.	69
Table 5.12: Effects of intercrop population on the productivity of	
groundnut-mustard rape intercrops at the University Farm in the 2002/3	
and 2003/4 seasons.	70
Table 5.13: Effects of intercrop population on the productivity of pumpkin	
intercrops at the University Farm in the 2002/3 and 2003/4 seasons, and	
on-farm in the 2002/3 and 2003/4 seasons.	72
Table 6.1: Effects of leaf harvests and seasons on cob length and grain yield	
in maize, and pumpkin leaf size over the 2002/3 and 2003/4 seasons	84
Table 6.2: Effects of harvest interval on pumpkin vine length and growth duration	
in the 2002/3 season.	85
Table 6.3: Effects of harvest intensity on branching and vine length of pumpkin	
in the 2002/3 season.	85
Table 6.4: Effects of cropping system and leaf harvests on leaf yield and	
branching in pumpkin in the 2002/3 and 2003/4 seasons	86
Table 6.5: Effects of leaf harvest interval and intensity on the productivity	

of maize-pumpkin intercrops in the 2002/3 and 2003/4 seasons	.88
Table 7.1: The response of maize grain yield and 1000 grain weight to leaf	
harvests in the mustard rape component in Experiments 1 and 2	.101
Table 7.2: Effects of leaf harvest intensity on length of vegetative phase and	
dry leaf yield of mustard rape in Experiment 1 (second planting) and	
Experiment 2 (both planting times) over the 2002/3 and 2003/4 seasons	100
Table 7.3: Effects of leaf harvests in the second planting of mustard rape on the	
productivity of maize-mustard rape intercrops in Experiment 1in the	
2002/3 and 2003/4 seasons	107
Table 7.4: Effects of planting time and leaf harvests on the productivity of	
maize-mustard rape intercrops in Experiments 1 and 2 in 2003/4	.108
Table 8.1: Effects of leaf harvesting time on mustard rape leaf size and	
dry leaf yield in Seasons 1 and 2	119
Table 8.2: Effects of harvesting time and nitrogen side dress rate on mustard rape	
leaf nutrient content in Seasons 1 and 2	.121
Table 8.3: Effects of leaf harvesting time on taste attributes of mustard rape	
in Seasons 1 and 2	124
Table 8.4: Taste panelists' perception of the effects of nitrogen side dress rate on	
mustard rape taste attributes in Seasons 1 and 2	. 126

LIST OF FIGURES

Figure	3.1: Rainfall amounts received at Chinyudze in the 2002/3 and 2003/4	
	seasons and Gowakowa in 2003/4	21
Figure	3.2: Rainfall amounts received at the University Farm (UZF) during	
	the study period: 2002/3 and 2003/4	22
Figure	4.1: Effects of cropping system and planting date on mustard rape	
	characteristics at UZF in 2003/4.	33
Figure	4.2: Effects of cropping system and season on pumpkin characteristics	
	at UZF	35
Figure	4.3: Effects of on-farm environment and cropping system on pumpkin	
	characteristics	38
Figure	5.1: Effects of season and cropping system on groundnut seed yield	
	and pumpkin vine length at the University Farm	56
Figure	5.2: Effects of planting time and cropping system on mustard rape	
	leaf size and dry leaf yield at UZF in 2003/4	59
Figure	5.3: Effects of the interaction between site and cropping system on	
	1000 seed weight and number of pods per plant in groundnut on-farm	
	in the 2003/4 season	60
Figure	6.1: Effects of cropping system and leaf harvest intensity on	
	pumpkin growth duration and vine length in 2002/3	87
Figure	6.2: Effects of the interaction between cropping system and leaf harvest	
	interval on various pumpkin characteristics	89
Figure	7.1: Effects of the interaction between cropping system and leaf	
	harvest interval on various attributes of mustard rape in the second	
	planting in Experiment 1	102
Figure	7.2: Effects of the interaction between cropping system and harvest	
	intensity in the second planting of mustard in Experiment 1 on leaf size	
	in 2002/3 and dry leaf yield in 2003/4	103
Figure	7.3: Effects of the interaction between time of planting and harvest	
	intensity on mustard rape leaf size in 2003/4: in Experiment 1 and	

	in Experiment 2)4
Figure	7.4: Effects of the interaction between time of planting and leaf harvest	
	interval on mustard characteristics in Experiment 2 in 2003/4 10	15
Figure	7.5: Effects of the interaction between cropping system and time of	
	planting on mustard rape leaf yield and leaf size in Experiment 2	
	in 2003/4	16
Figure	8.1: Effects of nitrogen side dress rate on mustard rape leaf size and	
	dry leaf yield in Seasons 1 and 2	20
Figure	8.2: Effects of seasons, nitrogen side dress rate and leaf harvesting time on	
	mustard rape plant characteristics	23
Figure	8.3: Effects of season and nitrogen side dress rate on SPAD values during	
	mustard rape growth	24

LIST OF APPENDICES

Appendix 1: Characteristics of the Natural Regions of Zimbabwe	155
Appendix 2: Characteristics of soils in the study areas	155
Appendix 3: Taste Panels Questionnaire	156
Appendix 4: Analysis of Variance (ANOVA) for the effects of pumpkin	
and mustard rape intercropping and sole cropping in maize-based	
cropping systems.	157
Appendix 4.1: ANOVA for the effects of cropping system on maize characterist	ics in
2002/3 and 2003/4 at UZF	157
Appendix 4.2: ANOVA for the effects of cropping system on mustard rape	
characteristics in maize-based cropping systems at UZF in 2002/3 and	
2003/4	157
Appendix 4.3: ANOVA for the effects cropping system on pumpkin characterist	tics
in maize-based cropping systems at UZF in 2002/3 and 2003/4	160
Appendix 4.4: ANOVA for the effects cropping system on maize	
characteristics on-farm	162
Appendix 4.5: ANOVA for the effects of cropping system on pumpkin character	ristics
in maize-based cropping systems on-farm	162
Appendix 4.6: ANOVA for the effects of cropping system on weed density and	
weed biomass in maize-based cropping systems at UZF and on-farm	165
Appendix 5: ANOVA for the effects of pumpkin and mustard rape intercropping	3
and sole cropping in groundnut-based cropping systems	174
Appendix 5.1: ANOVA for the effects of cropping system on groundnut	
characteristics in 2002/3 and 2003/4 at UZF.	. 174
Appendix 5.2: ANOVA for the effects of cropping system on pumpkin	
characteristics in groundnut-based cropping systems in 2002/3 and 2003/	/4
at UZF	175
Appendix 5.3: ANOVA for the effects of cropping system on mustard rape	
characteristics in groundnut-based cropping systems in 2002/3 and 2003/	/ 4
at UZF	176

Appendix 5.4: ANOVA for the effects of cropping system on groundnut
characteristics on-farm
Appendix 5.5: ANOVA for the effects of cropping system on pumpkin
characteristics in groundnut-based cropping systems on-farm
Appendix 5.6: ANOVA for the effects of cropping system on weed density and
weed biomass in groundnut-based cropping systems at UZF and on-farm 184
Appendix 6: ANOVA for the effects of leaf harvest interval and leaf harvest
intensity in pumpkin on maize and pumpkin characteristics at UZF in
2002/3 and 2003/4
Appendix 6.1: ANOVA for the effects of leaf harvest interval and leaf harvest
intensity in pumpkin on component maize characteristics
Appendix 6.2: ANOVA for the effects of leaf harvest interval and leaf harvest
intensity on pumpkin characteristics in the 2002/3 and 2003/4 seasons
at UZF197
Appendix 7: ANOVA for the effects of leaf harvest interval and leaf harvest
intensity in pumpkin on maize and mustard rape characteristics at UZF in
2002/3 and 2003/4
Appendix 7.1: ANOVA for the effects of leaf harvest interval and leaf harvest
intensity in mustard rape on component maize characteristics
Appendix 7.2: ANOVA for the effects of leaf harvest interval and leaf harvest
intensity on mustard rape characteristics in the 2002/3 and 2003/4 seasons
at UZF
Appendix 8: ANOVA for the effects of nitrogen side dress rate and time of
harvesting on mustard rape characteristics at the University campus in
Season 1 and Season 2 in 2004.
Appendix 8.1: ANOVA for the effects of nitrogen side dress rate on average
harvested leaf size in mustard rape in Season 1
Appendix 8.2: ANOVA for the effects of nitrogen side dress rate on mustard rape
dry leaf yield in Season 1
Appendix 8.3: ANOVA for the effects of nitrogen side dress rate on average
harvested leaf size in mustard rape in Season 2

Appendix 8.4: ANOVA for the effects of nitrogen side dress rate on mustard rape	
dry leaf yield in Season 2.	207
Appendix 8.5: ANOVA for the effects of nitrogen side dress rate on percentage	
leaf nitrogen content at five WAE of mustard rape in Season 1	208
Appendix 8.6: ANOVA for the effects of nitrogen side dress rate on percentage	
leaf vitamin C content at seven WAE of mustard rape in Season 1	208
Appendix 8.7: ANOVA for the effects of nitrogen side dress rate on percentage	
leaf vitamin C content at five WAE of mustard rape in Season 2	208
Appendix 8.8: ANOVA for the effects of nitrogen side dress rate on percentage	
leaf nitrogen content at five WAE of mustard rape in Season 2	208
Appendix 8.9: ANOVA for the effects of nitrogen side dress rate on percentage	
leaf nitrate content at five WAE of mustard rape in Season 2	209
Appendix 8.10: ANOVA for the effects of nitrogen side dress rate on percentage	
leaf nitrogen content at seven WAE of mustard rape over	
seasons 1 and 2	209
Appendix 8.11: Friedman test for non-parametric mustard rape vitamin C content	
data at five WAE of mustard rape in Season 1 by nitrogen level blocked	
by block	209
Appendix 8.12: Friedman test for non-parametric mustard rape plant height	
in Season 1 by nitrogen level blocked by block	210
Appendix 8.13: Friedman test for non-parametric mustard rape plant height	
in Season 2 by nitrogen level blocked by block	210
Appendix 8.14: ANOVA for the effects of nitrogen side dress rate on	
SPAD values at three WAE of mustard rape over seasons 1 and 2	210
Appendix 8.15: ANOVA for the effects of nitrogen side dress rate on	
SPAD values at four WAE of mustard rape over seasons 1 and 2	211
Appendix 8.16: ANOVA for the effects of nitrogen side dress rate on	
SPAD values at five WAE of mustard rape over seasons 1 and 2	211
Appendix 8.17: ANOVA for the effects of nitrogen side dress rate on	
SPAD values at six WAE of mustard rape over seasons 1 and 2	211

Appendix 8.18: ANOVA for the effects of nitrogen side dress rate on	
SPAD values at seven WAE of mustard rape over seasons 1 and 2	212
Appendix 8.19: ANOVA for the effects of nitrogen side dress rate on	
SPAD values at nine WAE of mustard rape over seasons 1 and 2	212

GLOSSARY

% percent

ANOVA Analysis of Variance

AREX Agricultural Research and Extension Department

Ca calcium

CaCl₂ calcium chloride

cm centimetre

CRA Chinyika Resettlement Area
EDTA ethylene diamine tetraacetic acid
FAO Food and Agriculture Organisation

Fe iron
g gram
ha hectare

ICRISAT International Crops Research Institute for the Semi-Arid

Tropics

K₂O potash kilogram kg milligram mg millilitre ml millimetre mm N nitrogen Na sodium NO_3 nitrate

NR Natural Region

P₂O₅ phosphate

ppm parts per million

spp species

SPSS Statistical Package for the Social Sciences

t tonnes

UMP Uzumba Maramba Pfungwe

USDA United States Department of Agriculture

UZF University Farm

WAE weeks after emergence
WHO World Health Organization