GENETIC ANALYSIS OF MAIZE STREAK VIRUS (MSV) RESISTANCE IN DWARF MAIZE

By Nyasha Gandiwa

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE (MSc.) IN CROP SCIENCE (PLANT BREEDING)

Department of Crop Science Faculty of Agriculture University of Zimbabwe

October 2007

ABSTRACT

Maize Streak Virus (MSV) is the most widespread biotic constraint to maize (Zea mays L.) production in Africa and may lead to total crop loss in susceptible varieties. Use of resistant cultivars is the most efficient and economic way of controlling MSV especially in rural communities where farmers cannot afford chemical control. Currently available dwarf maize varieties have limited resistance to MSV and no information on the mode of gene action controlling disease (MSV) resistance in dwarf maize is available. This study was therefore, conducted to determine the mode of the inheritance of resistance to MSV in dwarf maize inbred lines. Fifteen experimental hybrids were generated using a six parent half diallel with four susceptible and two tolerant parents. The fifteen hybrids were evaluated in a completely randomized block design with three replicates during the 2006/7 season at the University of Zimbabwe farm in Harare. Plants were artificially inoculated with leafhoppers (Cicadulina mbila Naude.) and scored for MSV disease development at flowering. Significant variation (P<0.05) was found among the crosses for MSV. The variation was attributed to both General Combining Ability (GCA) and Specific Combining Ability (SCA) effects which were both significant (P<0.05). However, a value of the relative importance of GCA to SCA of 0.86 which was close to unity suggested that GCA effects were more important than SCA effects. This was confirmed by the GCA to SCA variance ratio of 2.84 indicating that, though both additive and non-additive gene action were involved in the transmission of resistance to MSV in the experimental hybrids, additive gene action was more important. Resistance was highly heritable with an h² value of 71 % supporting the additivity but also suggesting that though the trait is polygenic, it is only controlled by a few genes as compared to many genes. Therefore, progress could be made by utilizing breeding methods that can fully exploit additive gene effects, such as recurrent selection. Backcrossing could also be used to convert susceptible lines to tolerant ones. Some high yielding MSV tolerant hybrids were identified and recommendations were made for further trials to be conducted with these materials. These experimental hybrids had yields of more than 8 t/ha.

ACKNOWLEDGEMENTS

Firstly, I would like to thank God for giving me the necessary strength and wisdom to successfully complete this study. I am also greatly indebted to ACFD, particularly Dr. S. C. Muchena for providing the germplasm and fertilizers used in this study. My sincere gratitude also goes to CIMMYT Zimbabwe for helping with the artificial inoculation of the maize with leafhoppers. Special mention is reserved for my supervisors, Mr. C. Musvosvi and Dr. C. Mutengwa for their guidance and ideas which made this research a success. Last but not least I would like to thank my classmates and workmates at ACFD for the support, encouragement and sharing of ideas.

CONTENTS

	Page
Abstract	ii
Acknowledgements	iii
List of Tables	vii
List of Figures	viii
List of Appendices	ix
List of Abbreviations	X
CHARTER 4 INTRODUCTION	4
CHAPTER 1: INTRODUCTION	
1.1 Aim	
1.2 Specific Objectives.	5
1.3 Hypothesis.	5
CHAPTER 2: LITERATURE REVIEW	7
2.1 Maize Production	7
2.1.1 Maize Production Constraints	7
2.2 Maize streak virus (MSV)	9
2.2.1 Description of the Virus.	9
2.2.2 Symptoms of MSV	10
2.2.3 Yield Losses due to MSV	10
2.2.4 Transmission of MSV	11
2.2.5 Available MSV Control Methods	12
2.3 Dwarf Maize	13
2.3.1 Brief Morphology of Dwarf Maize	13
2.3.2 How Zimbabwean Dwarf Maize was developed	14
2.3.3 Advantages of Dwarf Maize	15
2.3.3.1 Water and Fertiliser Use Efficiency	15
2.3.3.2 Ability to withstand High Population Densities	16
2.4 Mechanisms of Resistance to Viruses	17
2.5 Sources of Resistance to Maize Streak Virus	18
2.6 Inheritance of Maize Streak Virus Resistance	18

2.7 N	Stating Designs used in Genetic Analyses	20
2.7.1	Biparental mating design.	20
2.7.2	North Carolina design I (NCD I)	21
2.7.3	North Carolina design II (NCD II)	21
2.7.4	Diallel Analysis	22
2.8 E	valuation of Resistance to Diseases	23
2.8.1	Disease Inoculation.	24
2.8.2	How to Score for Disease Symptoms	24
2.8.3	When to Score for Disease Symptoms	25
СНАН	PTER 3: MATERIALS AND METHODS	26
3.1 N	Naterials Used	26
3.2 E	xperimental Design	26
3.3 G	eneral Agronomy	27
3.4 In	nfestation and Scoring for MSV	27
3.5 C	other Agronomic Traits Recorded	28
3.6 S	tatistical and Genetic Analysis	28
СНАІ	PTER 4: RESULTS	31
	SV Scores	
	ombining Ability Analysis	
	GCAs of the Six Parents and SCAs of the Fifteen Crosses	
	eritability Estimate	
	rain yield	
	ther Agronomic Traits	
СНАН	PTER 5: DISCUSSION	39
	ntroduction	
	ISV Scores	
	Combining Ability Analysis	
	Grain Yield	43

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS	45
6.1 Conclusions.	45
6.2 Recommendations	46
REFERENCES	48
APPENDICES	53

LIST OF TABLES

Page
Table 2.1 Disease symptoms scoring system
Table 3.1 Description of the dwarf maize inbred lines used in the experiment26
Table 3.2 Form of analysis of variance (ANOVA) for crosses and replications28
Table 3.3 The partitioning of mean squares for combining ability analysis29
Table 4.1 Mean MSV scores of the fifteen hybrids in a six parent dwarf maize
diallel31
Table 4.2 Reaction of the 15 F ₁ hybrids to maize streak virus33
Table 4.3 Mean squares from analysis of variance (ANOVA) for MSV scores at
flowering based on diallel analysis model 1 method 4
Table 4.4 Mean squares and variance components from combining ability analysis
based on diallel analysis model 1 method 4
Table 4.5 Estimates of general combining ability (GCA) (diagonal) for the six parents
and specific combining ability (SCA) for the fifteen hybrids in a six parent
dwarf maize diallel
Table 4.7 Grain yield (t / ha) for the 15 hybrids

LIST OF FIGURES

	Page
Figure 4.1 Illustration of the three hybrid classes based on their response to	
MSV	32
Figure 4.2 Mean MSV scores of the three hybrid classes based on their response to	
MSV	34
Figure 4.3 Mean grain yields (t/ha) for the three hybrid classes based on their respon	se
to MSV	38

LIST OF APPENDICES

	Page
Appendix 3.1 Formulae used for combining ability analysis based on Singh and	
Chaudray (1985)	53
Appendix 5.1 Results of the other traits measured	54

LIST OF ABBREVIATIONS

ACFD....... African Centre for Fertiliser Development

CIMMYT...... Centro Internacional de Mejoramient de Maiz Y Trigo

MSV...... Maize Streak Virus

REGNUR...... Regional Nursery Program

RFLPs Restriction Fragment Length Polymorphisms

RILs Recombinant Inbred Lines