
Using Genetic Engineering Algorithm

to Prevent Subversion of an Intrusion

Detection System.

A Thesis Submitted to The Faculty of Science,

 Department of Computer Science

University of Zimbabwe

In Partial Fulfilment of the

Requirements for the Degree of

Master of Science (Computer Science)

By

Hector Kapelewela

February 2006

© 2006,University of Zimbabwe

ii

Using Genetic Engineering Algorithm

to Prevent Subversion of an Intrusion

Detection System.

A Thesis Submitted to

The Faculty of Science, Department of Computer Science

University of Zimbabwe

In Partial Fulfilment

of the Requirements for the Degree of

Master of Science (Computer Science)

By

Hector Kapelewela (R950635M)

February 2006

© 2006,University of Zimbabwe

iii

Dedications

To my Father who passed away before this work was delivered may his soul

rest in peace, to my family Wadzanai my wife and Charles my son.

iv

Acknowledgements

I acknowledge the help of so many people during the time of this project

undertaking. My greatest thanks go to my supervisor Mr N. Ngoma, my

former supervisor Mrs F. Mandizvidza, and the initial supervisor who initiated

this topic and indeed made me understand what genetics are and what they can

do to computer security.

 Mr Ngoma who despite having a timetable completely full, worked so hard to

understand this topic and the student at the same time. Thank you for helping

me all round the clock through valuable discussions and telephone calls,

without which this work could not have been possible.

Thanks to the Head of Department of Computer Science, and the course

coordinators, for providing hotel presentation environments with masterpieces

of equipment, which made me, appreciate the value of my project undertaking

to the academic society and computer science community at large.

v

Abstract

Intruders mercilessly attack commercial, academic, defence; healthy centres

distributed (networked) systems frequently, and often successfully. The challenges of

intruders have become very critical. The most perceived effective defence today is the

use of intrusion detection systems. (IDS), though it is widely considered to be

impossible to build an effective distributed systems that completely eliminate

unauthorized intrusions. It may be effective to thicken the wall of defence by building

effective procedures in form of efficient algorithms inside IDSs. The target system

should account for misuse detection and anomaly detection by reporting on the

presence of an intruder, protecting the system from harm by the intruder, make

intrusions into the system difficult, help locate the intruder for a possible prosecution

with the law. Our solution analyse each string that is introduced into the computers to

those residing in the system already by carrying out a pattern matching with detectors

that match only strange patterns and recognise all friendly patterns that are legitimate

to the system.

vi

Blank Page

vii

Table of Contents

CHAPTER I INTRODUCTION

1.0.0 Preamble 1

1.0.1 Background 1

1.1 Categories of Intrusion Detection system 2

1.2 Intrusion Type 3

1.3 Violation of security mechanisms 6

1.4 Some Historical Background 6

1.5 Why not Use a Firewall 7

1.6 The Immune System 8

1.7 Why Imitate Immune System 8

1.8 How does the Immune System Recognizes Antigens 9

1.9 The Memory Concept 12

1.10 Justification 13

1.11 Scope of Study 14

1.12 Mechanism and functionality of GEA 15

1.13 Imitations of Existing Intrusion Detection Systems -IDS 15

1.14 Definitions of Terms and concepts 16

1.14.1 Single System IDS 16

1.14.2 Disparate IDS 16

1.14.3 Distributed IDS 17

1.14.4 Network based IDS 17

1.14.5 Host Based IDS 17

viii

1.14.6 Firewall Based IDS 18

1.14.7 Classifier Expert System 18

1.14.8 Network Security Manager 18

CHAPTER II LITERATURE REVIEW

2.0 Introduction to Literature Review 19

2.1 Details of Existing IDS 19

2.2 The Likeness of Artificial and HIS (Human Immune System) 24

2.3. How different is our presentation 25

CHAPTER III METHODOLOGY

3.1 Components of a Genetic Algorithm 33

3.2 Philosophy of Approach 35

3.3 Matching 36

3.4 Consider Illustration 36

3.5 Partial Matching 38

3.5.1 We illustrate partial matching r=3 38

3.6 Estimating Probability of Detection 39

3.7 Algorithm Performance 41

3.8 Detection Size 41

3.9 Sub-Equations 42

3.9.1 Boltzinann Selection 43

ix

3.10 Holes 43

3.11 Linear Time Algorithm 45

CHAPTER IV FINDINGS AND CONCLUSIONS

4.0 Information Loss 46

4.1 Relationship between Detector Sets and Failure Probability 47

4.2 Experimenting with Ym and Pƒ as constant 53

4.3 Experimenting with Theoretical NR0 and Experimental NR0 54

4.3.1 Observed Results 55

4.4 Discussions 56

4.5 Conclusions and Recommendations 58

Annexes 59

Bibliography 68

List of Tables

Table 1 Experimental Ns, Constant Pƒ and varying  values 47

Table 2 Experimental values 49

Table 3 Experimenting with Ym and Pƒ as constants 53

x

List of Figures

Fig 2 Hypothetical Matching 26

Fig 3 Censoring 34

Fig 4 Monitoring by Matching 34

Fig 5 Existence of holes 48

Fig 6 Relationship between initial

detectors sets and failure probability 49

Fig7 Experimenting with a fixed NR. 54

Fig 8 Results depicting proportions

of generated detectors and actual size of detectors used. 56

xi

Glossary of Symbols

IDS - Intrusion Detection Systems

GA or GEA – genetic Algorithm

OSIDS – operating System Intrusion Detection Systems

HIDS – host Intrusion Detection Systems

LAN – local Area Network

NFS – network File System

DoS – denial of Service attack

Signature – a set of condition when met indicate some kind of intrusion event.

Ym - matching probability of between a randomly chosen string and a detector.

Ns - the number of self-strings

m - is the alphabet composition, binary =2

 - Strings length

Γ or r - non-contiguous matching bits, standing for the threshold

∩ -Intersection sign

∪ -Union sign

Pƒ - possible failure probability-

≈ Symbol standing for identical to

Ω Big O notation symbol

OS Operating Systems

{} Sets

(p/t) matching possibilities of string power strings p over string

1

Chapter I Introduction

I.0.0 Preamble

The security personnel or a System Administrator has to deal with many

security problems brought about by the computer system all the times.

Computer systems bring together a series of vulnerabilities. There are human

vulnerabilities throughout; this means humans cause them and individual acts

can accidentally or deliberately jeopardize the system's information protection

capabilities. Hardware vulnerabilities are shared among the computers, the

communication facilities, and the remote units and consoles. There are

software vulnerabilities at all levels of the machine operating system and

supporting software; and there are vulnerabilities in the organization of the

protection system (e.g., in access control, in user identification and

authentication, etc.). How serious any one of these might be depends on the

sensitivity (classification) of the information being handled, the class of users,

the computational capabilities available to the user, the operating environment,

the skill with which the system has been designed, and the capabilities of

potential attackers of the system.

1.0.1 Background

Neither firewalls nor access control lists once thought as good solutions in

preventing network intrusion, can provide the capability to respond to or

provide real-time detection of an intrusion attempt, most of which has been

2

described above. IDS provide continual real-time or near-real-time monitoring

of a host or a network. In this research work we concentrate much on creating

mechanisms using a GA to police the existing system. Borrowing the words of

Steven Hofmeyr:

‘The crossover between Biology and computer science can be fruitful for both

disciplines: computers can be used to model biological systems to improve our

understanding of those systems, and we can use understanding of mechanisms

underlying biological systems to improve the way we design computer

systems here we focus on the latter case: using biological metaphors to build

better computer systems. “Through Genetic Algorithm design “

1.1 Categories of Intrusion Detection system

Intrusion Detection System (IDS) is a piece of software or hardware that is

designed to recognize all pieces of code of software that are introduced into

the computer system either though the network or direct injection via a stiff or

any movable hardware.

Two primary categories of IDS are network-based and host-based. Network-

based IDS monitor network traffic on the local LAN, analyzing traffic that

"fits" a known signature for a given exploit, and then notifies the proper

contacts of its findings. Host-based IDS tools provide detection of an intrusion

on a system within the network. Since it is widely considered to be impossible

to build IDS that completely eliminate unauthorized users, host-based IDS

3

should be able to determine whether the attacker who attempted to enter the

system had succeeded in compromising the system.

The building blocks of Network-based IDS comprises of real-time and near

real time. Real-time network-based IDS report suspicious traffic as soon as it

is detected on the wire. Near-real-time IDS work by gathering network traffic

and then at a predetermined time interval (such as once an hour) provide an

analysis of the previous interval’s data. One of the benefits of real-time IDS is

the capability to respond to an attack as it is happening. Near-real-time IDS

also provide sufficient notification of an attack in progress.

Host-based IDS monitor system files (log files) as well as check the integrity

of system binaries to determine whether an intrusion has occurred. These types

of IDS utilize an agent that resides on the host being monitored. An example

of this attack would involve NFS and rlogin attacks. Initially the attacker

determines NFS file-handle for a remote host (rhosts) file /etc/host.equiv.

Using NFS file handle the attacker then rewrites the file to give himself login

privileges to the attacked host, using rlogin from the formally intruding host.

The attacker would be able to login to an account on the attacked host, since

attacked host mistakenly now trust the attacker. At this point the system can be

adversely be compromised. [GUGH].

1.2 Intrusion Types

Policies are a cornerstone of all security of the computer system. Any

activities that are done outside the scope of the computer policy definition may

become unacceptable hence intrusive. However, policies are difficulty to

4

formulate. Tight policies will almost bring to halt meaningful computer

activities. Consider a computer server belonging to the head office of a bank

being disconnected from the network in an environment where shared

transactions need to take place on a continuous basis, obviously services will

be down and clients will be disappointed.

Security policies need to be tightened to a certain extent; this means the

problem of computer attacks cannot be eliminated with policies alone. In some

extents what contributes to system compromise is the lack of a sound policy

on security.

The challenges in defining security policies is that they have to be written in

natural languages, which becomes difficult determining if some usage violates

the policies. A more formal way of describing these would remove the

difficulties brought in by the natural language.

A suggestive sequence of implementation policy could model as follows:

Correct policy

Correct Implementation

Correct Figuration

This lead to SECURE SYSTEM, hence less attacks

The opposite being

5

Flawed policies

Flawed implementation

Flawed configurations

INSECURE SYSTEM

The second problem is caused by the vendor system, after sometimes the

system goes through many changes. The changes are often not documented,

from which security holes emerge.

A model of compromise can be drawn as

 Time t … Time t+1

 Continued changing system

To understand whom the enemy is we need to understand a little bit about

when and how a genuine user or individual becomes a misuse. (Intruders),

through understanding some of the underlying meanings of the following:

Authorized: Is a person who should be able to use the system with full

permission from the administrator. The individual may be aware or unaware of

the violation of the security policies.

Insecure

System

Insecure

System

6

Unauthorized: Is a person who according to the security policy must not use

the system.

1.3 Violation of Security Mechanisms

Not violating: the security policy is violated merely by misuse of privileges.

Bypassing: Security flaws are used to bypass the security mechanisms

Tempering: The security mechanisms are affected in a way that obstructs

detection of intrusion i.e. erasure of log files.

Affect of Computer System

Confidentiality: information is leaked to unauthorized person

Integrity: Data, programs or resources are altered.

Availability: Access to programs or resources is limited or denied for

authorized users

Systems evaluated following these guidelines, make it easier to understand

what the intruders did and how to identify them.

1.4 Some Historical Background

From Mainframe to PCs, and PCs to Laptops the computer development has

grown too fast. The need for shared knowledge and expertise, through wireless

communication, the Internet and other network connections has become a

reality and much sought technology in organizations, churches and homes and

academic institutions.

Networked computers have transformed the world into a global village where

dynamism in computer systems is fast becoming a common trend to our

7

academic and industrial operation. The Internet is the most perceived and

cheaper tool that help us achieve text, visual, “voice” quality reception or and

transmission of voluminous information within time bands unimaginable ten

years ago.

The technology however brought with it threats of attacks from hackers.

People are preempting the sensitive information in transit. They make illegal

copies out of it; malicious worms and other contaminations are introduced to

the information.

1.5 Why not Use a Firewall

In networked computer firewalling is the protection to the system, it controls

packets that come in and out of the gateway. However it is inevitable that

some of the packets firewalls allow in are malicious in nature, hence the need

for a second layer of defense to complement fire walling [JUN], which we call

IDS.

The ultimate goal of intrusion detection is to detect and classify instances of

misuse of a system, while ignoring all instances of legitimate use. Intrusion

Detection System work by analyzing one or more inputs event streams and by

looking for manifestation of attack. An example of the event stream is packets

sent on a network link, the audited record generated by the kernel-level

auditing facility or the log produced by the user-level applications.

8

1.6 The Immune System

The immune system is a mysterious natural system. Though little is known

about its main functionalities, there is a consensus among scientists that it

protects the body from harmful organisms, which from time to time enter the

human bodies through the nose, skin, mouth, and several other points. At the

center of contention is the question on ‘how does the immune system defense

mechanism recognize novel attacks, the new harmful organism that enter the

human body’. Assuming that the immune system recognizes new attacks by a

way of learning, observing and comparing the behavior of the new intrusion

through some inbuilt benchmarks, the challenge is that can computer scientist

use the same analogy to build algorithmic tools that can recognize novel

intrusions, worms, and virus, which attack computer systems, before extensive

damage is done?

Biologically inspired computational intelligence approaches [AyaraTimis]

have provided robust, error tolerant, scalable and flexible solutions to

otherwise what would be intractable problems in the areas of medicine, neural

networks, and swarm systems. [Bentley 2001].

1.7 Why Imitate Immune System

Imitating natural systems is a promising source of practically and feasible set

of solutions to dynamic intrusion challenges, facing the computer experts

today. When, the internal dynamics of a system is understood, in terms of

functionalities, scope, and observable dynamics of the system through

9

experimentation. The knowledge can then be correctly used to build a similar

natural system, and fine-tuned if significant deviations are observed. It is in

this spirit that we give the detailed functionality of the immune system.

The immune system responds to foreign invaders known as pathogens, innate

immune system provides its first defense, just like the pony piece on the

chessboard. When the line of defense is broken, the adaptive (acquired

immune system) take over, just like our chessboard analogy, we can liken the

adaptive system to the bishops, queen, or rock pieces coming in the battle line,

to rescue the kingdom.

1.8 How does the Immune System Recognizes Antigens?

The adaptive system is composed of B and T cells. These are capable of

responding to certain antigenic patterns presented on the surface of the

pathogens [AyaraTimis]. The receptor molecules on the surface of the immune

cells are capable of recognizing limitless numbers of antigenic patterns. B

cells recognize patterns in the blood and T-cells recognize antigens on other

cells that come closer to it. [DeCastro].

Antigenic recognition is the prerequisite for the immune system to be

stimulated, to mount an immune system response. Computer security or

intrusion problems are concerned with distinguishing self (legitimate user,

authorized actions, original source code, ‘uncorrupted data from non self

(intruders’, computer viruses, and spoofing, Trojan horses, [PATRICD, 1997].

10

The HIS (Human Immune system) has been solving similar problems for

hundreds of million of years, using the algorithms that follows. The

complexity mechanisms the HIS use to defend itself remain the area of

research. However, the defence mechanism can be divided into specific or

non-specific. The specific provides specialist protection against a known type

of intrusion, just like the body reacting to measles. Non-specific provides a

more general protection or fight against such conditions like skin and

inflammation of the skin cells.

The comparative analogy is that a computer protection can be divided into

specific (virus checking with signature, and security analysis tools),

[PATRICK D] and non-specific (good code, hygiene, firewalls, encryption).

These do not detect intrusions in progress; they stop no self from entering on

the system, this means they sensor all unrecognized pieces of code from

entering the system.

Lymphocytes or T-cells are part of a large population of specialized cells in

the immune system. They are generated from the thymus and are covered with

receptors, which bind antigens (foreign proteins). Each T-cell has specific kind

of receptor it binds to a small group of structurally related antigens. The

receptors are randomly generated and T-cells mature in the thymus where they

under go a censoring process called negative selection. All those cells that do

not bind self-protein are released into the body to become part of its defence.

T-cells that leave the thymus to circulate through the body are tolerant to self

11

(they do not attack the body). The concept presents an alternative paradigm to

perform pattern recognition by storing the information about the complement

set (non self) of the pattern to be recognized.

The algorithm hereby provided is adapted from L. Castro and J Timmis that

focus on anomaly detection, time series prediction, image inspection and

hardware fault tolerant.

The parameters self-set (P) Based upon the negative solution algorithm

generate a set of detectors (M) that will be responsible to identify all elements

that do not belong to the self-set. Which runs as follows generate random

candidates (C) using the same representation adopted?

Compare (match) the elements in C with the elements in P. If a match occurs

that is if an element of P is recognized by an element t of C, then discard this

element of C in detector set M. After generating the set of detectors (M), the

next stage of the algorithm consists in monitoring the system for the presence

of no self-pattern. In this case, assume a set P* of pattern protected. This

might be composed of the set P plus other new pattern, or it can be completely

novel set. The algorithm will be revisited in chapter 3.

Pathogens can replicate into thousands in a short time, hence the need for an

efficient system that can bind and eliminate these pathogens. Learning,

adaptation and remembering structure of attacking proteins for future

reference are some of the techniques used by the human Immune System

(HIS) defense system.

12

B-cells mature in the borne marrow, When activated its thresh hold affinity is

exceeded, and it produces copies of itself (clones as result of cell division).

The copying is subject to mutation rates that are nine orders of magnitude

higher than ordinary cell mutation rates; known as somatic hyper mutation,

which can produce an offspring, B-cells with receptors different from both

parents. The new B-cell will be capable of binding different types of

pathogens. If the affinity to bind pathogens exceeds their threshold they will in

turn clone. [Patrick D]

The competition now become apparent on the cells that reproduce the most to

create a cell with a perfect match to the pathogen about to be destroyed, a

concept known as Darwinian process of variation and selection also called

affinity maturation.

Complementary to the role of negative selection, cloned selection is the theory

used to explain how an immune response is mounted when a non self

antigenic pattern is recognized by a B-cell. When a B-cell receptor identifies a

non-self antigen with a certain affinity, it is marked for proliferation and

produces antibodies in high volumes. Antibodies bind to antigens leading to

eventual elimination by other immune cells.

1.9 The Memory Concept

The Immune system has an adaptive response that enables it to learn protein

structures that characterize pathogens it encounters, and remembers those

structures so that future reactive response is swift. Primary response is a

13

response mounted by the cells when they face a completely new attack or

intrusion. This may take several weeks to be eliminated completely. The

secondary response is a response mounted against a known attack. The system

remembers a similar attack and uses similar techniques that were successful on

a former attack to defend the body. The secondary response may be used

against a slightly modified attack to the exact antigens that formally attacked

the body.

1.10 Justification

According to the 2002, CSI/FBI computer Crime security Survey, the total

revenue loss in industry due to intrusions was calculated at US$455 848 000.

The idea of using a GEA emanates from the belief that, different organisms,

previously known by the body’s immune system and unknown by the immune

system attack the human body, but the body put an effective self-defense using

the genetic defense system, allowing most people to survive up to 70 years or

more under the immune system’s protection.

 We are motivated therefore to build computer systems algorithms with similar

logic as those of the immune system. Since the immune system is complex and

quite robust in nature, we choose and use selected features that may be

compatible to be used in intrusions detect system.

GEA is biological inspired, self-regulatory, domain independent and has

ability to automatically create a computer program from a high level statement

14

of a problem requirement. This characteristic is suitable for a system’s defense

in that it allows a system to recognize an attack, deploy counter measures and

avoid a total collapse from the compromise.

1.11 Scope of Study

The research is being done under the guise of the discipline of theoretical

computer science, with the mathematical basis of computing, as techniques for

solving the research question or problem. We hope to analyse the existing

genetic algorithm and demonstrate it to be correct or optimal in detecting

intrusions.

The research shall rigorously cover Misuse detection system; hence, aspects of

other type of detection will be reviewed in passing. We attempt to give

statistical analysis, and concentrate on practical concerns such as execution

time, storage space, communication, and the constraints imposed by hardware

architectures, in direct relationship with the GEA.

The thesis investigates using a genetic engineering algorithm in a host-based

platform. Though we use a particular operating System (OS) based platform,

our ultimate goal is that the algorithmically solution should be run in all

platforms without much modifications.

The second goal of the research is to use the well founded GEA in an attempt,

to detect a substantial percentage of intrusions into the supervised GEA

system, while keeping false positive and false negative at lower rate.

15

We borrow fuzzy logic where the concepts of GEA are complex, and difficult

to Implement. Otherwise, we stick to the concepts of genetic engineering

algorithm.

1.12 mechanism and functionality of GEA

GEA or interchangeably called GA were pioneered by (Holland 1975), they

continuously breeds a population of computer programs over a series of

generations. [KOZA99]. The technique is different from other approaches like

AI, machine learning, neural networks, adaptive systems, reinforcement

learning or automated logic in seven ways. It is based on the concept of nature

of survival of the fittest.

The human body protects itself from antigens, through a mechanism of

matching non-self (intruders, virus), and self co-habitants. The detectors are

either nonspecific or specialized. The non-specific look for total strange

invaders “novel” attacks the like of a computer attack, unrecorded before. The

specific looks for well-known attacks, recurrence of the past.

1.13 Limitations of Existing Intrusion Detection Systems

(IDS)

 Most current Intrusion Detection System solutions generally implement an

algorithm aimed at either Host Based or Network Based targets. When any

anomalous behavior coming through is regarded as intrusion, despite the

action being a legitimate one. This detection mechanism, accounts for a lot of

16

false positives, false negatives. The administrators tend to ignore systems

alarm from such software and in the process more missed attacks, occur

[JUN].

Little is known about the functionalities of the immune system; hence our

algorithm may lack the most important component to run as efficiently as the

immune system. The fact that only aspects that are interesting and show

similarities are included in GEA detection algorithm, this introduces some

incompleteness into the IDS. Very little is well understood about the

functionalities and make up of immune systems hence less important aspects

of detection mechanisms are likely to be incorporated into the algorithm, thus

limiting the capabilities of detection.

1.14 Definitions of Terms and concepts

Throughout this Thesis, several terms will be used to describe features and

components of IDS implementations. We explain the meaning of each as

follows:

1.14.1 Single-System IDS – is an IDS architecture in which only one IDS

system is implemented to monitor network activity. The system may be

composed of multiple sensors and / or monitoring stations, but it is comprised

of only a single type, brand, and model. This is currently a very common IDS

model.

1.14.2 Disparate IDS – is a term to describe a security architecture in which

multiple, different IDS systems are monitoring traffic. These systems each

17

have proprietary reporting and logging methods for handling suspicious

activity, and the individual logs and reports must be managed and reviewed

individually.

 1.14.3 Distributed IDS – is a term to describe a security architecture of

different IDS system types that all report to a single, centralized system. The

reports are correlated, aggregated, and presented in a consolidated alert log

format.

1.14.4 Network-based IDS – is a device that resides on a network segment

and monitors traffic that traverses that network segment. The network-based

IDS inspect each packet for anomalous (not matching standard patterns) or

malicious (as defined by a signature set) traffic and report any traffic that it

deems suspicious.

1.14.5 Host-based IDS – is similar in functionality to a network-based IDS,

except that rather than watching traffic on the network, it monitors activity on

a single host computer on which it is installed. Some host-based IDS systems

actually monitor network traffic for the host and report suspicious traffic,

while others monitor logs on the host on which they are installed and report

anomalous log entries.

1.14.6 Firewall – is a packet filter. A firewall’s main purpose is to deny

network access to unauthorized traffic, and allow network access to authorized

traffic. A firewall will usually contain a rule set against which it compares all

18

incoming traffic. From this rule set, each packet is determined as authorized or

unauthorized, and the packet is either forwarded into the network, dropped,

denied, reset, rate limited, or redirected. Properly configured, a firewall can

enforce network policies, dramatically improving network security.

 1.14.7 Classifier Expert System – is a device that takes input from several

different devices (both network and host based, and potentially others),

performs some processing on these inputs (i.e. correlation, aggregation,

categorization, prioritisation, etc.), and then takes some action based on those

inputs (i.e. logging to a database, notification, pre-programmed automated

responses, etc.).

1.14.8 Network Security Manager – is a generic title for the individual

within an organization who is responsible for that organization’s network

security. Generally, this is the person that configures the network security

devices described in this list, and monitors their output.

19

Chapter II Literature Review

2.0 Introduction to Literature Review

 Intrusion Detection systems protect important systems. Different versions of IDS

monitor traffic and system activities. Many IDS were made for a particular OS and

environment. The data collected provide the network and system security manager

with invaluable insight into what traffic (both malicious and benign) is happening in

the system and traversing the network. Valuable network and system activity

intelligence that can lead to real-time (or near real-time) detection of significant

network events, insight into network vulnerabilities and attacker techniques and

procedures, can lead to evidence related to intrusion incidents and many other

valuable network, enough to convince finance to upgrade a system or support the

security manager to curb intrusions

2.1 Details of Existing IDS

 Many commercial systems such Cisco, OS IDS Intrusion operating system, Opp-DIS

application intrusion systems, are available in the market. However, the commercial

algorithms are a patent product, which the host company does not intend to publish

the init-grit of the algorithms used.

Some popular network IDS include commercial products, such as the Cisco Secure

Intrusion Detection System (CSIDS, formerly NetRanger), ISS’s RealSecure, and

NFR’s Network Flight Recorder. Popular host-based IDS tools include Tripwire,

Symantec’s Intruder Alert, and Intercepted by Entercept Security Technologies.

20

 Several freeware network and host-based intrusion detection systems are available on

the Internet, and they provide a comparable level of protection as their commercial

brethren. To appreciate the functions of IDS, the freeware systems they are to be

exploited and the results be presented as a perfect simulate of real world scenarios.

Snort systems are defined as "light weights Intrusion Detection System". By

definition, lightweight IDS should have a small system footprint, provide for cross-

platform support, and easy installation. Snort fits all three requirements. It utilizes the

libpcap library (originally developed at Lawrence Berkeley Laboratory) for sniffing

traffic and then analysing the packet payloads.

Snort is configured by command-line options as well as Berkeley Packet Filter

commands. The heart of the Snort detection engine is a set of rules written in a simple

language that allows for per packet tests and actions. Snort’s detection rules can also

be modified and extended by the end user.

There are three primary subsystems to Snort:

(i). Packet decoder,

(ii). Detection engine,

(iii). Logging and alerting system.

For the system to perform to optimum it needs adequate rule base, and as the rules

accumulate resizing forward become apparent. A well-populated Rule-Base will

easily pick up variety of violation. On the other hand, again a larger rule-base system

21

consumes lot more disk space and impact negatively on the speed of the system

during rule search.

Search is a resource intensive process, and can slow down response time of the

system. The use of subsystems make snort, a robust, large and monolithic system

since It performs all of the monitoring, data gathering, data manipulation, and

decision making for the whole system, [MARCK]. It can monitor system logs, user

activities, and system state, seating on the system kernel. Snort then deduce metric

systems, overall security and alert of intrusions.

 Snort adds an overhead to the entire system, the large amount of data, it collects

consume both disk space and CPU time.

The Linux Intrusion Detection System (LIDS) is a kernel patch for the Linux kernel

as well as an admin tool for enhancing security. LIDS implements a reference monitor

and mandatory access control in the Linux kernel. When LIDS is in effect, file access,

system and network administration operations, raw device file access, and memory

and I/O access can be made impossible, even for root. LID not only provides

protection but detection as well.

Like PortSentry, LIDS can detect port scans against the host and notify the systems

administrator. LIDS can also detect other access rule violations as well, and respond

to any access rule violation. This response can either be through logging to Syslog

or even terminating a user session. LIDS’ flexibility makes it ideal as a host intrusion

22

detection and response tool. Unfortunately, an administrator usually views LIDS

results when a user machine has been compromised already.

EMERALD (Porras and Neuman, 1997) is a complex system, and was developed by

Stanford Research Institute, the design put emphasis on distributed tasks, and the

acute need for a scalable solution and it is highly modular. Emerald employs the

concept of hierarchical organization to achieve scalability. There are three tiers of

components, operating on progressively lager portions of network and on higher level

of abstraction.

Each service monitor, the lowest –tier component, which has a job to overseeing the

operation of one service (e.g. FTP server), each of the monitor employ both rules rule-

based, misuse detection and anomaly detection algorithms. The other monitors

include Enterprise-level and Domain security.

Emerald is a disparate IDS system, which provides in-depth views into what types of

traffic are traversing the network. Chances of detection are increased with disparate

IDS implementations due to the fact that they apply different detection logic to their

traffic analysis procedures.

However, disparate IDS implementations contain several different types of IDS

systems, none of which will interoperate with others to provide a consolidated view of

network activity. Each individual IDS system within the Disparate IDS architecture

will create its own summary of network traffic and each summary must be reviewed

separately and correlated with all other reports to provide the “total picture” of

23

network activity. This provides a potentially overwhelming amount of data to the

network security administrator.

GEAs are mostly based on off-line learning algorithms. A data set is collected and

manually labelled by an expert. Subsequently, a general purpose is evoked to induce

the rules. The popular of them all is RIPPER (Cohen, 1995). RIPPER finds rules of

the implicative form by generating a large number of candidate rules and evaluating

directly on the data, the improvement they yield, which may be viewed as instances of

genetic algorithm.

All classifications of IDS have varying degree of flaws in them, for example: Some

solutions like Single-System IDS (both signature and anomaly-based)

implementations only look for what they are programmed to look for. Many have a

fixed “signature” set, or hard-coded logic as to what to look for. In the case of

anomaly-based systems, logic flaws or oversights can potentially allow an attacker to

slip by unnoticed.

NIDS algorithms only analyse the traffic traversing the network segment to which

they are directly connected. If there is an alternate route into the network, open

socket, a way to avoid detection by the NIDS, then an attacker can potentially enter

and manipulate a network without being detected by the IDS.

HIDS algorithms only analyse events that are occurring on the individual host that

they are monitoring, quite valuable on high-value assets such as servers because they

are likely to be targeted by attackers. However, HIDS are potentially negative on

system performance.

24

2.2 The Likeness of Artificial and HIS (Human Immune System)

In this chapter, we elaborate more in detailed overview the major mechanisms and

properties of HIS. A complete detail of the functionalities of HIS is beyond the scope

of this research and can be found in specialized texts. The ability to protect our bodies

lies with the immune system, as it plays a role of eliminating dysfunctional

endogenous cells, commonly called infectious self, and exogenous micro organisms

(infectious non self) such as bacteria and virus which enters the body through many

routes that include respiratory, digestive system and more commonly through

damaged dermal tissues. In comparison to the Artificial Immune System (AIS) that

we build in chapter 3 HIS plays an inspirational role for providing us with the

fundamentals from which we imitate the immune system and build our own protective

algorithm. Biological inspired computing is complex and we need a detailed

understanding of the mechanisms of functionalities to build a realistic algorithm.

HIS is constituted of different podiums of layers, each layer stands in defence against

infectious material or pathogens. The physical layer that comprises of skin, nasal

hairs, and reflex actions such as coughing and sneezing blocks the ingestion of

pathogens. The physiological layer comprises fluids secreted by the body, which is

saliva, sweat and tears these are used as transport of pathogens out of the body, and as

additional function, they dissolve the pathogens. The cellular layer is a set of cells,

e.g. T-cells, B-cells and many more. The cell classification further subdivides into

innate, specific, acquired or adaptive immune system. Innate is the defence system

invoked by the body minutes or hours after an attack or infection, using non-specific

responses. Adaptive immunity drags for longer times, usually days before becoming

25

effective. These require a specific response that is adapted to remove a specific

pathogenic infection, and body allocates its defence in a controlled and dynamic way.

The following classification is identified as describing innate and acquired immune

system. Leukocyte family commonly called the white blood cells is the root node of

innate comprising of granulocytes, monocytes, and lymphocytes all of these originates

from stem cells in the bone marrow. Granulocytes make up 50% -60% of all

leukocyte family. Carry granules containing various chemicals and are fragmented

into 3 groups namely neutrophils, eosinophils and basophils. Leukocytes,monocytes

mature into macrophages, which play key roles in both innate and adaptive immune

system responses. Macrophages locate and destroy pathogens. The two cells are

collectively referred to as phagocytes.

2.3 How different is our Presentation

Most IDS are limited in scope on their capabilities to operations. For example an IDS

specializing to protecting a network attack, may have a different focus with an IDS

meant for a host based IDS.

The IDS operational environments differ greatly hence, the need to employ a variety

of differing techniques for producing alerts. The signature alerts used in networked-

based system should be different from host-based signature. Where these are similar,

the underlying difference is just a smaller intersection. Most systems that do both

types of detection suffer from anomalies of slowness, system overloads, and high

failure rate in detecting intruders in real time. Another reason for these larger systems

26

failure is because they need to search larger reservoirs of signature on already over

burdened system with other tasks as those of analysing the data and producing ideal

findings.

In this dissertation, we present an effective tool that attempts to remove the signature

reservoir requirements. The tool will produce detector strings probabilistically.

Through negative selection all useful system data, programs, and software, binary

strings will be called protected data (S) and be kept separately .A random set of

strings will be produced(R), of which a one to many matching will be done a between

the two sets. If a string in R is found to be matching a string in S. Then the string in R

is discarded. Any string in R not matching a string in S will become a potential

detector and will be stored in set M. All strings in M will be left to roam the system if

they happen to match another string then that will be noted and reported as intruder

and the string shall be destroyed.

To illustrate the hypothetical system we give the following illustration adapted from

Forest et al.

S

R MATCHING??

NO ACCEPT

YES

REJECT

1011

0111

0011

0000

1100

0000

1000

1100

1101

…

1000

1100

1101

27

Fig 2 illustrates a Hypothetical Match, example, generating random strings

Hypothetically we can assume the entire system to be composed of one string of a

certain length, D={d 1,d 2… d n} to achieve a goal of running a scan again and again we

deliberately subdivide that string into smaller strings. Our method however uses a

contiguous matching technique. Instead of trying to match the entire length of the

string, only a small portion of the binary string need be matched against the smallest

strings. The merit of the system is to consider a string as matching if the contiguous

string as defined by r matches, and then the entire string matches. In the above

example contiguous match of Γ=2 was used.

The researchers have debated about the methods, on how to prevent an exponential

growth of set S. Many limiting factors have been suggested mathematical formulae,

and novelty mechanisms such as those ideas of likening the calculations of volume of

a funnel and a windowing strategy. We do not cover the detailing aspects of these, as

for the purpose of this dissertation; we will adopt original controlling formula by

Stephanie Forrest [PATRICD 1997].

Pioneering ideas are based on rewarding a good performer. Strings or set of strings

that performed well in detecting malicious code worms and virus, would be promoted

through lengthening their life spun and leave the life spun of less performers constant,

in some cases mutating all those with an average performance record. We suggest

crossing over the record performers with the average and retaining both for further

detection. Our deviation from the original idea, because we recognise the concept of

polymorphism and metamorphism where the malicious code are built incrementally

28

with each successive coming iteration and successive or earlier code, introducing, a

small change to the new virus.

A polymorphism intrusion tool will encrypt a malicious code and decrypt it during

execution. To disguise its victims from identifying a virus, several transformations

such as null insertions, comments, code transpositions, and use of GOTO statements

are heavily used in decryption routines.

Metamorphic viruses attempt to invade heuristic detection techniques by using

complex disguising methods. When they replicate the malicious system changes their

code in a variety of ways. Such as code transpositions, substitution of equivalent

instruction sequences, change of conditional jumps, and register reassignment. They

can insert a malicious code right inside a host program. Since the beginning of the

code is now hidden, the identification of such a worm, virus or malicious system

becomes difficult by an ordinary IDS tool, which looks for signature of the intruder.

It is from such a behavioural analysis that we feel the negative selection ideology

becomes hand. A hidden malicious code can be identified if the detector sample is

larger enough. The mechanism of detecting using a GEA tool requires no prior

knowledge of nature of intrusions in complete contrast with signature based virus

scan. The detection is probabilistic that means we can generate as many times as

needed detectors. The fact that we have formulae that control our generations we have

a room for variability in how much detectors we can have depending on attack

expectations. Detection is local which means focus can be directed to a small section

of data to be checked and when an anomaly is identified, a proportionate solution can

be mobilized. This aspects means the tool can find a virus in its earlier phases before

propagation. The sets at each site may be unique, which means if one site were

29

compromised, other would still be protected. There is no communication between

detectors or detector sets is needed until a change is detected.

30

Chapter III Methodology

In this chapter we describe in details the material and methods used. The immune

system begins with a classifier system. Here the algorithm needs to classify the

detectors that will be used in protecting the system from the attackers. The

classification is very essential because we are dealing with very large generation of

agents.

When the number of the elements is large, characteristics of the cascade depend more

on its structure than on the quality of an individual separating element (classifier). The

search of the optimal structure becomes a difficult task because of a large number of

possible variants of interconnection between the elements. The genetic method of

synthesis allows us to determine a nearly optimal structure of a classifier cascade.

Particularly, a set of non-trivial structures need synthesized, and excluded without

compromising the detection ability of detectors.

Most of algorithms that optimize a search space are NP-Complete as shown by Garey

and Johnson (1979). However the GEA heuristics try to keep the search space within

the polynomial time. GEA works similarly to an abstract automation running

sequentially through a set of states (generations) until termination criteria t holds. The

term generations in this thesis refer to time steps between successive states as well as

to the population pt at time t.

The important part in using a GEA effectively is in choosing an appropriate

representation. The used representation must be appropriate and minimal and

completely expressive. The defined representation must be able to represent a solution

31

in the set of solutions sought to a given problem at one time. (Robustness). The

designed representation should avoid infeasible solutions being included in the

solution set.

Genetic makeup contains characteristics that go beyond our scope of study. We hence

include information that is minimal to represent our solution set to our problem of

detecting of intruders. The inclusion of several genetic factors has the usual draw back

of increasing the search space and reducing the algorithms performance.

The complexity of using numeric representation such as array of real numbers far

outperforms most other known representations. The difficulties is how to choose a

cross over operator that generate reordered list without duplicating an element in the

list, Another challenge is mixing of contiguous and discrete elements in which case it

may be desirable that a new structure to hold the mixed information be created. For

example a solution with both integer and floating parts might require the use of a

cross over that cross integer part and floating parts, but taking care that floating parts

and integer parts never mixes.

We use the pure binary representation for our solution for simplicity, and as a

standard computer data representation. The universe of binary strings is rich enough

to allow us to study how a relatively small number of recognizers (detectors) can

evolve to recognize a much larger number of different patterns (intruders).

For our experiments, we use test data taken from repositories and dumps collected

from specialized sites that collect data when the actual attacks were in progress, in

32

different locations. The data colleted forms the input to our algorithm’s test data, from

which comparisons and statistical efficiencies will be given. Comparisons done using

historical figures and similar findings above will form our observable conclusions and

findings.

We calculate standard deviations, and mean to ascertain how much we deviate from

others findings that used the data for their experiments using different methods of

classifications. Additional statistical tools may be used to measure the effectiveness of

system performance to match detectors (Regression analysis). Algorithms

performance analysis in terms of running time and space complexity will be verified

using standard techniques of the discipline of design and analysis of algorithms.

Regression analysis will be used to identify how correlated documented intrusions

and perceived intrusions compare this means that intrusions in the past studies and

intrusions as identified by our genetic algorithm.

Our emphasis is exploring the theoretical basis of our method and addressing the

important question of practicality including, the feasibility of generating and matching

detectors, and discussing the implications for the real world problems The proposed

solution is a prototype intrusion detection Algorithm (IDA) that use a genetic

algorithm, to investigate how a group of free running processes which are acting

independent but cooperative of each other, just like the human cells, can flag and

identify each behaviour they consider to be anomalous.[MARKC]

33

 In building the system, the following assumptions have been taken into cognisance:

Used Algorithms are observable, via system auditing mechanisms; Normal and

intrusion activities have distinct indicators. Intrusion detection hence involves

capturing audit data and derives the evidence from the data to predict whether the

system is under attack. The use of mathematical parameters as basis of the algorithm

is our main instrument of operation.

3.1 Components of the Genetic Algorithm

1. A representation for a real potential problem

2. A way to create an initial population of potential solution (this is done

randomly).

3. An evaluation function that plays the role of environment, rating solutions in

terms of their “fitness”.

4. A genetic operator that alter composition of the children (selection, mutation,

crossover)

5. Values for various parameters that the genetic algorithm uses (population size,

probability of applying genetic operators).

The first aspect to this process is the encoding (representation) of solutions as

chromosomal strings that GA can evolve.

34

No

Yes

Fig 1 on the above diagram we present the preliminaries of a GEA algorithm, the

diagram illustrate the censoring part adapted from forest et al, which also stands for a

classifier.

 Yes

Fig 2 illustrates the second part of the algorithms that does the monitoring part it

Follows from the fig 1.

Generate

Random detectors

(R0)

Self

Detectors (S)

Match

Reject

Detector

Set (R)

Detector Set

(R)

Non-Self

Detected

 MatchProtected

Strings (S)

35

3.2 The philosophy of Approach

The following fundamentals will steer our approach

• We deploy a unique detection algorithm copy for a given site. Where detection

is required, a complete regeneration of detectors has to be produced.

• The detectors will be generated probabilistically and this will remove

component of multiple storage for each phase of detection.

• Novel attacks are covered in our detectors, since the system produces detectors

that will potentially match even a new pattern. The probabilistic method

contrast significantly with signature based techniques, which use a known

signature as a basis of matching attacks.

The algorithm in fig 2 generates a set of potential detectors. Each detector is a binary

string that does not match any protected data. The protected data comprises software

code, system files, and all the useful staff that we have stored in a machine. This

phase is commonly known as the censoring phase.

The mechanism of protecting data is achieved by comparing them with the detectors.

If a detector reacts with the protected data then we discard that detector as not useful.

When a detector fails to match self (protected data), we accept that string as a

potential detector, and pass it to fig2. Censoring is also known as Negative Selection

Technique of intrusion detection science.

36

3.3 Matching

We give an overview of how our technique works, before moving into

implementation details. We assume that a set of string, (care should be taken in

interpreting the word set in the context that is used here, the word set is simply a

group of strings without any mathematical rigor as is in mathematical set) in our set

we have duplicates.

The self-string is an unordered collection of strings or concatenated sub-strings. To

generate valid detectors we split self-strings (logically) into equal size segments. We

firstly split the string to facilitate a mathematical analysis of the system, which will

allow us to determine the probability of detection.

3.4 Consider As Illustration

Given a 32-bit string, break it into 8 sub strings, each of length four:

0010

1000

1001

0000

0100

0010

1001

0011

i. S ={collection of all self set (sub strings) to be protected}

ii. Ro ={Random strings}

37

iii. Match {R i | Si} =Boolean Valid or Invalid Any string in R matching string

in S is eliminated.

iv. R ={composed of strings that were invalidated iii mechanism also known

as Repertoire}

Suppose Ro ={0111,1000,0101,1001} ∴ R ={0111,0101}

The strings 1000, 1001 are automatically eliminated they are members of S.

With the R set populated with the collection of strings. A control mechanism has to be

put in place that will test self occasionally by re-matching S against R to detect a

hazardous mutation of intrusion in R and S respectively.

We decided to pair the matching alphabets deterministically, each string being chosen

for matching in a fixed order, and the detectors being checked in the order they were

produced. The reason we do this is to control the process of population generation to

avoid an exponential growth. Randomization is another used technique though for the

purpose of this thesis we stick to the fixed order given above.

A match of X
1

a…n and X
2

a...n strings, to be exact need be of equal length, and have

equal alphabet at each location in the string. The difficulty with exact matching is

that it is a rare scenario, especially when matching strings of relatively longer

length.

38

3.5 Partial Matching

The commonly used matching is the contiguous r matching technique. The method

scans for r contiguous matches between symbols in corresponding positions. For any

two strings t and p, we say that match (t | p) is valid if p and t agree (match) at least r

contiguous locations. The advantage of the rule is that this matching rule can be

applied to strings defined over any alphabet of symbols. For our thesis, the string is

defined over the alphabet {0,1}, representing any bit pattern that can be stored in a

computer.

3.5.1 We illustrate a censoring or a partial matching of r=3

t ={247346289}

p={571346989}

The two strings, t, p defined over the 9-letter alphabet {2,3,4,5,6,7,8,9} match four

contiguous locations underlined. Thus match (p|t) is invalid for r=3 or match (p|t) is

true for r=4 or less.

In general two random string matches at least Γ contiguous location if the Probability

Ym ≈ m
-r
[(l-r)(m-1)/m+1].

Where

m = the number of alphabet symbol s

l or = the number of symbols in a string) and

Γ = The number of contiguous matches required for a match.

39

The test will come in form of varying the variables (Γ, , m, Ym) to test the ranges that

will allow a room of conducting varying analysis across the performance of our

algorithm.

According to Forrest the approximation is good when if the variable m
-r

<1. Where

the approximation fails, we use exact formulae.

All discrimination between self and non-self in the Immune System is based upon

chemical bonds that form between protein chains. To preserve generality, we model

protein chains as binary strings of fixed length l. The Immune System must

distinguish self from non-self based on proteins. The set of strings of length l form the

universe, U, which is partitioned into two disjoints subsets which we call Self, S and

non-self, N. Formally U=SUN, S∩N =0. Given arbitrarily strings from U, classify it

as either normal (corresponding to self) or anomalous (corresponding to non self).

If r=l the matching is completely specific that means the detector will only match a

single string (Itself). If r=0 the matching is completely general the detector will match

every single string of length l.

3.6 Estimating Probability of Detection

Good range of detectors can be obtained if our estimated probabilities numbers are

accurate. The following description outlines how the predictions are arrived at.

Consider that the strings to be protected S0, are application programs, some data, or

any other elements of the computer system that is stored in memory. Using the above

detailed algorithm we need to:

40

i. Estimate the number and size of detector strings, which will be required to

ensure that an arbitrary change to the protected string is detected with

some fixed probability. The following definitions are given

ii. NR0 = The number of initial detector strings before negative selection

iii. N R = Number of Detector string after censoring (size of potential detector)

iv. Ns= Number of self strings

v. Ym = the probability of a match between two random strings.

vi. ƒ= The probability of a random string not matching any of the Ns self

strings

=(1- Ym) Ns

vii Pƒ =probability that N R detectors fail to detect an intrusion.

If Ym is small and Ns is large then

ƒ ≈ e
- Y

m
 N

s

and

N R = NR 0 × ƒ (1)

Pƒ = (1-Ym)
 N

R (2)

If Ym is small and
N

R is larger, then Pƒ ≈ e
- Y

m
 N

R.

N R = NR 0 × ƒ= -ln Pƒ/ Ym (3)

41

Solving 1 and 2 for NR0, we get the following:

NR 0
s

N

mm
YY

LnPf

)1(

1

−

×

−

The given formula allows us to predict the number of initial strings (
0

R

N) that will be

required to detect a random change.

As ƒ (x) of
m

Y , (1-Pƒ), The number of self-strings (Ns) being protected and the

matching rule (
m

Y). Then NR 0 is minimized by choosing a matching rule such that

m
Y

s
N

1

3.7 Algorithms Performance

We delay for now giving details of the performance of our algorithms in terms of cost

on computational resources, runtime, performance on comparisons; space and time

complexities are all deferred for now. However a careful observation should

discriminate liable areas of analysis. Namely, when generating random strings of

fixed length and when doing comparisons at a censoring stage and real detection.

3.8 Detector Size

To determine the number of size to achieve a specific failure rate Pƒ is an important

part of measuring what affects time delay, and storage space when generating

42

detectors. Theoretical Lower bounds measurements can be obtained using specific

equations.

According to [Peres 79], a first lower bound for NR from the average matching

probability Ym The best case would be to distribute potential detectors so that no two

detectors can match the same no-self string. All detector set should cover an

approximate space of NR. This implies

NR >= (1-Pƒ) / Ym

3.9 Sub Algorithms

As illustrated above on fig1 and 2 respectively. Our algorithm is a combination of

several algorithms. It would be impractical cumbersome and complex to give a one

rundown of a huge algorithm to accomplish the task.

Genetic algorithms are a robust set of solutions that change form with the problem

solution being sought. For example Selection is a method of fitness evaluation of

genes. , And comes in many forms.

Prepositional selection also called the roulette wheel selection is derived from the fact

that fitness can be ascertained from dimensions of sectors representing individuals in

a population. The fitness is thus calculated over x representing an individual score

over the sum of the entire population. Practically the formula becomes

P(x) =

∑)(

)(

yy

x

δ

δ

 , where P(x) is the fitness probability.

43

3.9.1 Boltzmann selection

Under this selection method, exponentiation rescaling of proportional selection is

used. Proportional selection on e
ßƒ(x)

ye
ß(y) .

 The strength of method is controlled by

ß parameter.

Some additional method under the same group are Ranking selection, Tournament

selection, Truncation selection. However a combination of two or one more selection

method can be applicable at any one time.

3.10 Holes

For the Γ contiguous bits matching rule bit technique, there exist other non-self

strings known as holes. For these holes it is not possible to generate valid detectors.

Consider two binary strings t1 and t2 that matches over Γ-contiguous bits, they may

create additional two bits y1, and y2 that are not detected because candidate detectors

match either t1 or t2 as an example of strings with Γ=4

t1 è00101000

t2 è11101011

↓ ↓

y1 è00101011

y2 è11101000

Another example of a “Set” inducing hole is a set up given that the number of Non-

self strings is smaller than the number of strings matched by the detectors.

44

 Holes

Protected Strings set is larger than the potential detectors Non-self set, as illustrated

above. Fig 3.1

Holes reduce the effectiveness of the intrusion systems objectives, by opening up

possibility of intrusions. The non-self potential detectors offer inadequate cover. The

problem of holes can be reduced through using matching rules where Γ-contiguous bit

rules are different. For instance Γ=1 (detectors matches entire string space), Γ=

detector matches a string (itself). Potential holes are then eliminated by using closer

and potentially more specific match as opposed to scanning a smaller Γcontiguous

positions, string, and string length  over the possibility of a match

Non-

Self

Set

Protected

Strings Set

45

3.11 Linear Time algorithm

It can be verified that most candidate detectors are rejected. That has no overhead

when done by the human body during censoring. However it becomes rather

ineffective when a computer is involved.

As previously stated, two -bit strings match each other if they are identical in at least

r contiguous Γ positions that runs in linear time with respect to size of input.

The data structure used for this algorithm consists of (-Γ)×2
r.

Array representation

covering all possible ways two strings may combine over Γ contiguous bits.

Hence the running time can be thought of as

 1. Ω((-Γ)*Ns initializing for those entries in NR that match a self string.

 2. Plus Ω((-Γ)*2
r
time to recursively fill in the rest of the array.

The time complexity of this algorithm was derived based on two factors

i. Time to generate a number of candidates (NR)

ii. Time to compare each with one of them with self (Ns)

The space complexity depends on the self-population, whose individuals are of length



46

Chapter IV Findings and Conclusions

4.0 Information loss

Since binary strings, representing data in the computer have to be split into Γ-

contiguous bits according to the agreed threshold. We find that as bits are split across,

no consideration is assumed of the existence of unique bit strings si , which fosters a

loss of information through this division.

As an example, assume Ns, and these sets of k unique strings in S (s1, s2, …sk). they

are (Ns - 1)!

(k!, (k+1)!, … (k+n)!

Being possible combinations of ways of assigning the value Ni…s which if recombined

form S perfectly.

But since we are using the alphabet {0,1} then the above can be written to

Log 2 (Ns - 1)!

(k!, (k+1)!, … (k+n)!

In general, we tend to ignore the change k in Ns, since as it can be inferred on the

second equation; the value of information loss is apparently small.

Larger strings of , tend to reduce the number of duplicate strings, an subsequently

reducing the amount of information cost due to string splitting.

47

4.1 Relationship between Protected Sets and Failure Probability

We experimented with varied lengths and an arbitrary incremented value of failure

probability as illustrated a lower bound for NR as a function of increased length of the

binary strings as follows:

Length  NS "NR (Pƒ=0,2)" "NR (Pƒ= 0,02)"

12 100000 160934 391202

14 95401 153542 33928

16 51607 83058 201888

22 50000 80442 195601

26 43103 69372 168620

28 41000 65987 160393

30 30902 49735 120889

32 27940 44968 109302

38 23811 38322 93149

42 18971 30533 74215

Table 1 above is an experimental relationship between string lengths and protected

sets of strings against the failure probabilities pƒ

Using a formula Ym = 1

Ns

We calculated NR, for value 0.02 and 0.02 an increase of ten percent to failure

probability pƒ; the detector numbers grew a 100% only. We make assertion that if the

figures grew exponentially then we could conclude on the infeasibility of the solution

set, being used on a modest environment like a PC, Laptop etc. The fact that the

detector numbers only doubled it implies smaller detectors as well as larger detectors

still can be used to detect anomalous behaviours much the same way. The detection

ability of detectors is independent of the size of detectors numbers.

48

Number of Required Detectors over Lentgh

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

12 14 16 22 26 28 30 32 38 42

String Length

N
u

m
b

e
r

o

f

D

e
t
e

c
t
o

r

l

Ns

Nr

nr2

Fig 5 illustrates a graphical representation of the Relationships between various

binary string lengths and failure probabilities.

Above the graphed scenario, illustrate the relationship between string lengths  and

nr2 (nr2= NR0). NR0 represents potential detectors before censoring phase, and nr. (nr

= NR) representing detectors after censoring. When strings lengths reduce in size by a

larger dimension then we have numerous holes. Holes as defined earlier are pieces of

strings that have both characteristics of self and non-self.

The observation is that as the string gets bigger in the direction of Γ, we generally

require considerably fewer detectors to representing self to match non-self. In other

words we can control our detection capacity and still enjoy a reliable protection.

49

Ns (Self Set) Vs. Detector Set(Nr) Ym=1/Ns Chart 2A

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

N

S

2

3

8

1

1

1

6

7

8

6

.
5

5

7

1

4

7

9

7

5

0

7

.
5

1

3

7

8

6

8

1

7

8

2

2

8

.
5

2

1

8

5

8

9

2

5

8

9

4

9

.
5

2

9

9

3

1

0

3

3

9

6

7

0

.
5

3

8

0

0

3

1

4

2

0

3

9

1

.
5

4

6

0

7

5

2

5

0

1

1

1

2

.
5

5

4

1

4

7

3

5

8

1

8

3

3

.
5

6

2

2

1

9

4

6

6

2

5

5

4

.
5

7

0

2

9

1

5

7

4

3

2

7

5

.
5

7

8

3

6

3

6

Number of Self Strings(Ns)

D
e

t
e

c
t
o

r

S

e
t

s

i
z
e

(
N

r
o

)

NS

Nr0

Fig 10 shows a population of detectors graphed against a set of protected string using

a fixed probability of matching using the equation 1/Ns. Ns on X-axis and a set of

detector strings on Y-axis which were generate using equation NR0

s
N

mm
YY

LnPf

)1(

1

−

×

−

Despite NR0 values being shown fractional, the assumption is

that we are working with rounded numbers, the solutions were included for

completeness sake.

The Following values were used

NS Ym Nr0

1151.5 0.000868432 5039.893261

3333 0.00030003 14583.74919

5636 0.000177431 24659.15707

7817.5 0.000127918 34203.01405

10120.5 9.88093E-05 44278.42212

12302 8.12876E-05 53822.27915

50

14605 6.84697E-05 63897.68726

16786.5 5.95717E-05 73441.54431

18971 5.2712E-05 82998.52609

21271 4.70124E-05 93060.80949

23811 4.19974E-05 104173.0703

25755.5 3.88267E-05 112680.0747

27940 3.5791E-05 122237.0565

30240 3.30688E-05 132299.3399

30902 3.23604E-05 135195.5275

34724.5 2.87981E-05 151918.6051

39209 2.55043E-05 171537.8702

41000 2.43902E-05 179373.3266

43103 2.32002E-05 188573.7536

43693.5 2.28867E-05 191157.1354

48178 2.07564E-05 210776.4006

50000 0.00002 218747.4791

51607 1.93772E-05 225777.9527

52662.5 1.89888E-05 230395.6658

57147 1.74987E-05 250014.931

61631.5 1.62255E-05 269634.1962

66116 1.51249E-05 289253.4614

70600.5 1.41642E-05 308872.7266

75085 1.33182E-05 328491.9918

79569.5 1.25676E-05 348111.257

84054 1.18971E-05 367730.5222

88538.5 1.12945E-05 387349.7874

93023 1.075E-05 406969.0526

95401 1.04821E-05 417372.5787

97507.5 1.02556E-05 426588.3178

100000 0.00001 437492.7706

101992 9.80469E-06 446207.583

106476.5 9.39174E-06 465826.8482

110961 9.01218E-06 485446.1134

115445.5 8.6621E-06 505065.3786

119930 8.3382E-06 524684.6438

124414.5 8.03765E-06 544303.909

128899 7.75801E-06 563923.1742

133383.5 7.49718E-06 583542.4394

137868 7.25331E-06 603161.7046

142352.5 7.02482E-06 622780.9698

146837 6.81027E-06 642400.235

151321.5 6.60845E-06 662019.5002

155806 6.41824E-06 681638.7654

160290.5 6.23867E-06 701258.0306

164775 6.06888E-06 720877.2958

169259.5 5.90809E-06 740496.561

173744 5.75559E-06 760115.8262

178228.5 5.61077E-06 779735.0914

182713 5.47306E-06 799354.3566

187197.5 5.34195E-06 818973.6218

191682 5.21697E-06 838592.887

196166.5 5.09771E-06 858212.1522

200651 4.98378E-06 877831.4174

205135.5 4.87483E-06 897450.6826

209620 4.77054E-06 917069.9479

214104.5 4.67062E-06 936689.213

218589 4.5748E-06 956308.4782

51

223073.5 4.48283E-06 975927.7435

227558 4.39448E-06 995547.0087

232042.5 4.30956E-06 1015166.274

236527 4.22785E-06 1034785.539

241011.5 4.14918E-06 1054404.804

245496 4.07339E-06 1074024.069

249980.5 4.00031E-06 1093643.335

254465 3.92981E-06 1113262.6

258949.5 3.86176E-06 1132881.865

263434 3.79602E-06 1152501.13

267918.5 3.73248E-06 1172120.395

272403 3.67103E-06 1191739.661

276887.5 3.61158E-06 1211358.926

281372 3.55401E-06 1230978.191

285856.5 3.49826E-06 1250597.456

290341 3.44423E-06 1270216.721

294825.5 3.39184E-06 1289835.987

299310 3.34102E-06 1309455.252

303794.5 3.2917E-06 1329074.517

308279 3.24381E-06 1348693.782

312763.5 3.1973E-06 1368313.047

317248 3.15211E-06 1387932.313

321732.5 3.10817E-06 1407551.578

326217 3.06544E-06 1427170.843

330701.5 3.02388E-06 1446790.108

335186 2.98342E-06 1466409.373

339670.5 2.94403E-06 1486028.639

344155 2.90567E-06 1505647.904

348639.5 2.86829E-06 1525267.169

353124 2.83187E-06 1544886.434

357608.5 2.79635E-06 1564505.699

362093 2.76172E-06 1584124.965

366577.5 2.72794E-06 1603744.23

371062 2.69497E-06 1623363.495

375546.5 2.66279E-06 1642982.76

380031 2.63136E-06 1662602.025

384515.5 2.60068E-06 1682221.291

389000 2.57069E-06 1701840.556

393484.5 2.5414E-06 1721459.821

397969 2.51276E-06 1741079.086

402453.5 2.48476E-06 1760698.351

406938 2.45738E-06 1780317.617

411422.5 2.43059E-06 1799936.882

415907 2.40438E-06 1819556.147

420391.5 2.37874E-06 1839175.412

424876 2.35363E-06 1858794.677

429360.5 2.32905E-06 1878413.943

433845 2.30497E-06 1898033.208

438329.5 2.28139E-06 1917652.473

442814 2.25828E-06 1937271.738

447298.5 2.23564E-06 1956891.004

451783 2.21345E-06 1976510.269

456267.5 2.1917E-06 1996129.534

460752 2.17036E-06 2015748.799

465236.5 2.14944E-06 2035368.064

469721 2.12892E-06 2054987.33

474205.5 2.10879E-06 2074606.595

52

478690 2.08903E-06 2094225.86

483174.5 2.06965E-06 2113845.125

487659 2.05061E-06 2133464.39

492143.5 2.03193E-06 2153083.656

496628 2.01358E-06 2172702.921

501112.5 1.99556E-06 2192322.186

505597 1.97786E-06 2211941.451

510081.5 1.96047E-06 2231560.716

514566 1.94339E-06 2251179.982

519050.5 1.92659E-06 2270799.247

523535 1.91009E-06 2290418.512

528019.5 1.89387E-06 2310037.777

532504 1.87792E-06 2329657.042

536988.5 1.86224E-06 2349276.308

541473 1.84681E-06 2368895.573

545957.5 1.83164E-06 2388514.838

550442 1.81672E-06 2408134.103

554926.5 1.80204E-06 2427753.368

559411 1.78759E-06 2447372.634

563895.5 1.77338E-06 2466991.899

568380 1.75939E-06 2486611.164

572864.5 1.74561E-06 2506230.429

577349 1.73205E-06 2525849.694

581833.5 1.7187E-06 2545468.96

586318 1.70556E-06 2565088.225

590802.5 1.69261E-06 2584707.49

595287 1.67986E-06 2604326.755

599771.5 1.6673E-06 2623946.02

604256 1.65493E-06 2643565.285

608740.5 1.64274E-06 2663184.551

613225 1.63072E-06 2682803.816

617709.5 1.61888E-06 2702423.081

622194 1.60722E-06 2722042.346

626678.5 1.59571E-06 2741661.612

631163 1.58438E-06 2761280.877

635647.5 1.5732E-06 2780900.142

640132 1.56218E-06 2800519.407

644616.5 1.55131E-06 2820138.672

649101 1.54059E-06 2839757.937

653585.5 1.53002E-06 2859377.203

658070 1.5196E-06 2878996.468

662554.5 1.50931E-06 2898615.733

667039 1.49916E-06 2918234.998

671523.5 1.48915E-06 2937854.264

676008 1.47927E-06 2957473.529

680492.5 1.46952E-06 2977092.794

684977 1.4599E-06 2996712.059

689461.5 1.45041E-06 3016331.324

693946 1.44103E-06 3035950.589

698430.5 1.43178E-06 3055569.855

702915 1.42265E-06 3075189.12

707399.5 1.41363E-06 3094808.385

711884 1.40472E-06 3114427.65

716368.5 1.39593E-06 3134046.916

720853 1.38725E-06 3153666.181

725337.5 1.37867E-06 3173285.446

729822 1.3702E-06 3192904.711

53

734306.5 1.36183E-06 3212523.976

738791 1.35356E-06 3232143.242

743275.5 1.3454E-06 3251762.507

747760 1.33733E-06 3271381.772

752244.5 1.32936E-06 3291001.037

756729 1.32148E-06 3310620.302

761213.5 1.31369E-06 3330239.568

765698 1.306E-06 3349858.833

770182.5 1.29839E-06 3369478.098

774667 1.29088E-06 3389097.363

779151.5 1.28345E-06 3408716.628

783636 1.2761E-06 3428335.893

788120.5 1.26884E-06 3447955.159

792605 1.26166E-06 3467574.424

797089.5 1.25456E-06 3487193.689

801574 1.24755E-06 3506812.954

806058.5 1.2406E-06 3526432.219

810543 1.23374E-06 3546051.485

815027.5 1.22695E-06 3565670.75

819512 1.22024E-06 3585290.015

823996.5 1.2136E-06 3604909.28

The Ns set was generated probabilistically from different sets and sorted as per above

illustration on Table 3.

4.2 Experimenting with Y
m

 and Pƒ as constants.

i. Assume Nr0 is independent of Ns, and if Ym and pƒ are fixed values then

the detector set should not grow dependently with Self-set. This implies

that fewer numbers of detectors are likely to protect a larger number of

self-sets.

ii. Exponential growth of Nr0 and Ns can only occur if NR, pƒ, and Ym are

fixed to some specific values. The difficulties being that the value become

unusable in an environment of PC computers. The benefits of such a large

detector is that it is apparently difficult for an intruder to modify self-

elements and a detector without being noticed.

54

iii. The price of exponential growth is a completely secure system in a large

computer environment and minimal or no protection at all on a smaller

machine due to resources constraints. When space is used up then speed is

affected negatively.

4.3 Experimenting with Theoretical NR0 and Experimental NR0

We experimented with a fixed Nr for more than 500 trials The NR for this

experiment was fixed to 45 and the theoretical Pƒ was calculated using the

equation Pƒ=(1-Ym)
 N

R.

Ns Ym Pƒ NR Experimental

Nro

Theory Nro Experiments

Pƒ

8 0.125 0.002456758 45 139.9012049 130.9628416 0.367879441 m=2

16 0.0625 0.054790774 45 130.5001719 126.3781785 0.367879441 l=32

22 0.045454545 0.123267227 45 128.159127 125.2238372 0.367879441 Γ =8

30 0.033333333 0.217497086 45 126.5467656 124.425736 0.367879441 NR

=45

38 0.026315789 0.301172792 45 125.6324235 123.972018 0.367879441 Pƒ

=0.5

46 0.02173913 0.371929558 45 125.0434809 123.6793339 0.367879441

54 0.018518519 0.431216073 45 124.6324718 123.4748723 0.367879441

64 0.015625 0.492295534 45 124.2655963 123.2922232 0.367879441

74 0.013513514 0.54212735 45 123.9992919 123.1595589 0.367879441

82 0.012195122 0.575708302 45 123.8336157 123.0769885 0.367879441

90 0.011111111 0.60483564 45 123.6977379 123.0092485 0.367879441 Pƒ

=(1-

Ym)

power

of Nr

98 0.010204082 0.630310636 45 123.5842825 122.9526727 0.367879441 Ym

=I/Ns

106 0.009433962 0.652761484 45 123.4881225 122.9047111 0.367879441

114 0.00877193 0.67268485 45 123.405583 122.8635357 0.367879441

122 0.008196721 0.690477107 45 123.3339617 122.8278012 0.367879441

130 0.007692308 0.706457613 45 123.2712264 122.7964961 0.367879441

138 0.007246377 0.720886071 45 123.2158201 122.7688449 0.367879441

146 0.006849315 0.733975545 45 123.1665294 122.7442431 0.367879441

Fig 7 is illustrating the protection capabilities of detectors protecting Ns of 146 and

when NR is kept constant.

55

The full detail of the equation being as down listed (i) to (vi)

(i) Pƒ=(1-Ym)
 N

R

(ii) Ym =1/Ns

(iii) NR=45

(iv) The alphabet composition being m=2 for binary {0,1}, =32, and Γ=8

(v) Ns = Random generated strings all round

(vi) The Random strings were generated until valid binary NR strings

detectors were confirmed.

4.3.1 Observed Results

There was a closer agreement between theories and practical in that for the 138 self-

strings they could be protected by a mere 45 strings with a failure rate of 73%. 73% is

quite a substantial failure that brings out the infeasibility potential of negative

selection when applied to a smaller number of self-string. Though befits are realized

when the repertoires are allowed to grow exponentially to protect even smaller self.

Ratios of experimental and theoretical as described in this experiment show minor

differences; otherwise they all produce a modest number of actual detectors NR

56

EXPERIMENTAL AND THEORY PROTENTIAL DETECTORS

110

115

120

125

130

135

140

145

Ns 8 16 22 30 38 46 54 64 74 82 90 98 106 114 122 130 138

PROTECTED STRINGS

D
E

T
E

C
T

O
R

S

Eperimental Nro Theory Nro

Fig 8 shows the relationship of potential detectors against actual detectors before and

after censoring

4.4 Discussions

The algorithm used and presented in this thesis take its inspiration from the generation

of T cells in the immune system. The T-cells are capable of identifying over 98% of

foreign elements entering or circulating the body. The capabilities that allow the cells

to recognised the cells is a chemical mask called receptors. These receptors are made

of pseudo-random genetic process.

T-cells whose receptors recognise self-molecules are not allowed to leave the thymus

where they are destroyed, and only the fittest cells that pass the fitness requirements

are allowed to form the basis of our immune protection defence system.

57

Our algorithm works similarly to the system described above, generating detectors

randomly, and eliminating (censoring) the one that detect self. We use binary strings

as the model of our antigens, since the computer, system’s basis of string recognition

is made out of the binary strings.

The binary models have been used in studying several different aspects of immune

systems. The emphasis however is that the binary strings oversimplify the

complexities of chemistry of antibodies recognition system.

We in this thesis have experimented with mostly theoretical aspirants of the concepts

of matching and recognizing of intruder in our systems. Various testing of upper and

lower bounds were made and several interesting observations were made. To keep the

number of holes low Ns <= 2
r
. Number of holes can be controlled by formula Nt

<=Pƒ*2


, where Nt is the number of holes, Value of Γ may have to be chosen again

many times before an acceptable probability is obtained. There is no rule of a thump

for choosing Γ and .

Sampling, especially done at random, brings non-determinism in the process, which

can yield different solutions on different runs, even if the model remains the same. As

compared to the, linear, non-linear and integer models included deterministic

methods, as they yield similar answers if the initial input value in the run is the same.

Somewhat guessed values have to be put in place for a genetic algorithm to terminate,

otherwise the algorithm never knows for certain when to stop, Besides the length of

time, or the number of iterations or specific solutions sets, that one wishes to explore.

58

The inclusion of so many solutions, all representing either an elegant solution or a

weak solution make it a very difficult task for an optimum solution to be arrived at.

4.5 Conclusion and Recommendations

The researches by various authors have shown how possible it was to use the negative

selection solution algorithm to solve the security concerns of the discipline of

Computer science. Most of the work by these authors concentrated mainly at

producing the right size and right detector set. We have described a general method

for distinguishing self from non-self in the context of computational systems, and this

research have illustrated infeasibility and feasibilities of the system in generating and

matching antibodies (virus). The major computational difficulty is manifested in the

generation of the first potential detectors; almost an exponential explosion is created

to protect self-set. We have shown that the ratio of detectors is independent of the

protected set. This illustrates that a genetic algorithm is useful in smaller and larger

environments, where some monitoring of computers is required.

As the length of string matching grow the algorithm performance works at optimum

level. The major future work should concentrate on how to eliminate holes that appear

resilience despite the mathematical rigor being used to derive the censoring equations.

Another area of future investigation is to derive a complementary set of methods of

detection within the biological context, by trying to understand most of the

complexities that contribute to process of immune defense in the human body.

59

Annexes

A.1 Introduction

The test on data collected from hornet site www.honeynet.org, was used, to

simulate a live virus environment. The shell script Randomly generated data,

generated by the Unix alpha server digital Unix environment was used as well.

Data in random form from random.org was used as well as test data.

A shell script named Covert_to_as an ASCII to its equivalent binary or hex.

We assumed the first character was our Γ-contiguous bit and it constituted the

binary required. We picked any part like a port scan and converted the first

letter of every one of its IP address in the file to a binary string and matched

string from the file sample of known viruses, as many strings in as many file

as required

A.2 Hornet Sample Data

Apr 16 02:45:37 lisa snort[7483]: IDS13/portmap-request-mountd:

200.190.13.181:1372 -> 172.16.1.107:111

Apr 16 07:17:06 lisa snort[7483]: IDS128/web-cgi-phf: 200.190.8.220:55220 -

> 172.16.1.107:80

Apr 16 14:54:20 lisa snort[7483]: IDS171/Ping zeros: 24.201.15.148 ->

172.16.1.101

Apr 16 14:54:20 lisa snort[7483]: IDS171/Ping zeros: 24.201.15.148 ->

172.16.1.105

Apr 16 14:54:20 lisa snort[7483]: IDS171/Ping zeros: 24.201.15.148 ->

172.16.1.107

Apr 17 06:02:32 lisa snort[8255]: IDS198/SYN FIN Scan: 195.116.152.104:0

-> 172.16.1.101:111

Apr 17 06:02:32 lisa snort[8255]: IDS198/SYN FIN Scan: 195.116.152.104:0

-> 172.16.1.107:111

Apr 17 09:45:28 lisa snort[8255]: IDS198/SYN FIN Scan: 195.116.152.104:0

-> 172.16.1.105:111

Apr 19 08:00:19 lisa snort[3515]: IDS/DNS-version-query:

212.25.75.196:1723 -> 172.16.1.101:53

60

Apr 20 01:26:00 lisa snort[3515]: IDS212/dns-zone-transfer:

24.234.45.60:4075 -> 172.16.1.107:53

Apr 20 03:49:38 lisa snort[3515]: IDS/DNS-version-query: 216.123.23.5:4349

-> 172.16.1.101:53

Apr 20 03:49:39 lisa snort[3515]: IDS/DNS-version-query: 216.123.23.5:4350

-> 172.16.1.107:53

Apr 20 21:48:55 lisa snort[12353]: IDS246/large-icmp: 129.142.224.3 ->

172.16.1.107

Apr 20 21:48:55 lisa snort[12353]: IDS246/large-icmp: 129.142.224.3 ->

172.16.1.107

Apr 20 22:48:13 lisa snort[12632]: IDS159/Ping Microsoft Windows:

216.228.4.204 -> 172.16.1.101

Apr 20 22:48:13 lisa snort[12632]: IDS159/Ping Microsoft Windows:

216.228.4.204 -> 172.16.1.101

Apr 20 23:00:33 lisa snort[12657]: IDS171/Ping zeros: 216.228.4.133 ->

172.16.1.101

Apr 21 11:01:27 lisa snort[12777]: IDS/DNS-version-query:

207.236.55.76:4039 -> 172.16.1.101:53

Apr 21 11:01:28 lisa snort[12777]: IDS/DNS-version-query:

207.236.55.76:4044 -> 172.16.1.107:53

Apr 22 08:36:29 lisa snort[743]: IDS/DNS-version-query:

212.244.222.100:1368 -> 172.16.1.101:53

Apr 22 08:36:29 lisa snort[743]: IDS/DNS-version-query: 212.244.222.100

A.3 Shell Scripts

A.3.1 Covert_to_as Shell Script

Author: Hector Kapelewela

Purpose: Testing live virus

#!/bin/ksh

START=33 # FISRT OF PRINTABLE ASCII CHARACTERS IN

DECIMAL.

END=125..#LAST OF PRINTABLE ASCII CHARACTERS IN

DECIMAL

echo " DECIMAL HEX CHARACTER" # HEADER.

echo

i=33

#LIMIT=10

while ["$i" -lt "$END"]

do

 echo -n "$i " # -n suppresses new line.

 # ^ Space, to separate printed out numbers.

61

 i=`expr $i + 1` # var0=$(($var0+1)) may be used.

echo $i | awk '{printf(" %3d %2x %c\n", $1, $1, $1)}'

done

exit 0

A.4 Description and functionalities

The basic Unix algorithms were written at each stage to suite the task .We take

to it that the reader is familiar with the syntax used by Unix shell, simple awk

rule and sed to appreciate fully the functions and the testing done to derive a

practical qualification to our system.

A script random.ksh was used to generating the random detector initially NR0

and then Ns. This script has a varying variable that is used to tune fine the size

of the repertoires as they are produced by the scripts. The fact that our random

number are smaller than 0, (0<x<0, where x is the random value obtained.)

further manipulation is applied to convert it to whole numbers e.g. multiplying

it by 10,100,1000 etc.

We present the algorithm random.ksh outline

#! /bin/ksh

 # $RANDOM returns a different random integer at each invocation.

 # Nominal range: 0 - 32767 (signed 16-bit integer).

 # Generation of probabilistic values

 MAXCOUNT=1000

 count=1

62

 echo

 echo "$MAXCOUNT random numbers:"

 echo "-----------------"

 while ["$count" -le $MAXCOUNT] # Generate 1000

($MAXCOUNT) random integers.

 do

 number=$RANDOM

 echo $number

 let "count += 1" # Increment count.

 done

 echo "-----------------"

 exit 0

The MAXCOUNT was used to control generation of the random strings as

require for comparison performance using earlier defined equations.

A sed command is used to strip off the decimal fractional part, as when

required.

We used the script

#!/bin/ksh

string=xxxx

echo "len($string)" | m4 # 4

echo "substr($string,4)" | m4 # A01

echo "eval(33 / 3)" | m4 # 33

exit 0

When we wanted a specific length and we simply wanted to reduce our strings

either to octal words by mainly sub stringing a given string or dividing it by

another number to reduce it.

63

Script used to convert and reconvert through bases known as Base_Conv.ksh

#!/bin/bash

NOARGS=65

bs=`basename "$0"` # Program name

VER=`echo '$Revision: 1.2 $' | cut -d' ' -f2` # ==> VER=1.2

Usage () {

 echo "$bs - convert number to onther bases, $VER (stv '95)

usage: $bs [number ...]

If there is no number read from standard input.

A number may be

 binary (base 2) starting with 0b (i.e. 0b1100)

 octal (base 8) starting with 0 (i.e. 014)

 hexadecimal (base 16) starting with 0x (i.e. 0xc)

 decimal otherwise (i.e. 12)" >&2

 exit $NOARGS

} # ==> Function to print usage message.

Msg () {

 for i # ==> in [list] missing.

 do echo "$bs: $i" >&2

 done

}

Fatal () { Msg "$@"; exit 66; }

64

PrintBases () {

 # Find base number

 for i # ==> in [list] missing...

 do # ==> so operates on command line arg(s).

 case "$i" in

 0b*) ibase=2;; # binary

 0x*|[a-f]*|[A-F]*) ibase=16;; # hexadecimal

 0*) ibase=8;; # octal

 [1-9]*) ibase=10;; # decimal

 *)

 Msg "illegal number $i - ignored"

 continue;;

 esac

 # Remove prefix, convert hex digits to uppercase (bc needs this)

 number=`echo "$i" | sed -e 's:^0[bBxX]::' | tr '[a-f]' '[A-F]'`

 # ==> Uses ":" as sed separator, rather than "/".

 # Convert number to decimal

 dec=`echo "ibase=$ibase; $number" | bc` # ==> 'bc' is calculator

utility.

 case "$dec" in

 [0-9]*) ;; # number ok

 *) continue;; # error: ignore

 esac

65

 # Print all conversions in one line.

 # ==> 'here document' feeds command list to 'bc'.

 echo `bc <<!

 obase=16; "hex="; $dec

 obase=10; "dec="; $dec

 obase=8; "oct="; $dec

 obase=2; "bin="; $dec

!

 ` | sed -e 's: : :g'

 done

}

while [$# -gt 0]

==> Is a "while loop" really necessary here,

==>+ since all the cases either break out of the loop

==>+ or terminate the script.

==> (Thanks, Paulo Marcel Coelho Aragao.)

do

 case "$1" in

--) shift; break;;

-h) Usage;; # ==> Help message.

-*) Usage;;

 *) break;; # first number

66

 esac # ==> More error checking for illegal input might be useful.

 shift

done

if [$# -gt 0]

then

 PrintBases "$@"

else # read from stdin

 while read line

 do

 PrintBases $line

 done

fi

exit 0

We used grep, m4 macro processor, awk, sed command as required, however

any other language or a Unix utility may be used whenever appropriate, and

whenever the reader feels like.

Our scripts or programs were high performing due to a one linear nature, or as

in Unix idiom as command prompt using the high performing Unix

capabilities.

67

A.6 Tools and Usage

We ran a comprehensive simulation using the Unix, utilities and we have

presented our findings. In most cases quite representative with guidance and

trends, however in very smaller occasions results were surprisingly different.

To work with test from hornet site, we had to convert the strings to Γ-

contiguous standard matching bits. Hence the data was partially converted to a

binary string

We had to convert random strings from bases to more familiar bases to enable

us make comparisons, and reconvert to binary strings.

The thrust of our project is to simplify the art of protecting computers and develop

a genetic solution to protect those machines, using a combination of very readily

available tools as supporting algorithms.

The awk utility is versatile and we had to use it in some cases as a prompt

command. Many algorithms were used in conjunction with the above.

68

Bibliography

Anderson, J.P. “Computer Security: (1980), Threat Monitoring and

Surveillance.” James P. Anderson Co. (February 1980).

Ayara, M. J Timmis, L. de Lemos, de Castro, R and Duncan: (2002), Negative

Selection: How to generate detectors. [Ayara Timis]

Corchado J. M., Alonzo L., and Fyfe (eds.) C, :(2002), SOCO-2002 In

Artificial Neural Networks in Pattern Recognition, University of Paisley, UK,

pp. 67-84.

Crosbie M, Spafford G. :(1996), Defending a Computer System using

Autonomous Agents, Technical report No 95-022, 8th National Information

Systems Security Conference Perdue University, 1996 [MARKC]

Dasgupta D, and Gonzalez F. :(2002), An Immunity Based Techniques to

characterize intrusions in Computer Networks, IEEE

Dasgupta D, and Forrester S :(1996), Novelty Detection in time series data

using ideas from immunology, in proceeding of the international conference

on intelligent systems.

69

Dasgupta D and Forrest S :(1999) An anomaly Detection algorithm inspired

by the immune system in: Artificial Immune systems and their applications,

Springer_Verlang, Inc

De Castro, L. N. and Timmis, J. I. (2002), "Artificial Immune Systems: A

Novel Paradigm to Pattern Recognition"

DeCastro L. N and J.Timmis :(2002) Artificial Immune Systems anew

computational approach, London, UK

Denning D :(1986) An Intrusion Detection Model, (1986),

http://citeseer.ist.psu.edu/crosbie96defending.html

Genetic Programming Home Page www.geneticprogramming.com [GHM]

Haeseleer P’, Forest S, Helman P. (1997): An Immunological Approach to

Change Detection: Algorithms, Analysis and Implications, University of New

Mexico. [PATRICK D]

Helmer, G, Johnny S, Wong K, Honavar, V, Miller Les: (1998) Intelligent

Agents for Intrusion Detection. Proceedings, IEEE Information Technology

Conference, Syracuse, NY, September 1998, pp. 121-124; [GUGH]:

Hofmeyr S. and Forrest S. :(2000), Architecture for an Artificial Immune

System Evolutionary Computation.

70

Juniper Networks, Inc Intrusion Detection and Prevention, White Paper part

number: (2005) 200065-001. [JUN]

Know Your Enemy: (2001) Statistics Analysing the past predicting the future;

www.honeynet.org, [HONN]

Koza J. R, Forest H. B. et al: (1999) Genetic Programming III, Morgan

Kaufmann Publishers, Inc. [JRKOZA]

Koza J. R. Forest H. B. et al: (1994) Discovery of Rewritable Rules in Linden

Mayer and system state transmission rules in cellular automata; via GP;

Proceeding to Symposium on pattern matching, [RJKOZA2]

Luger G, F, (1997): A. Stubblefield: Artificial Intelligence-Structures and

Strategies for Complex Problem Solving 3 Edition, Addison Wesley

Mutz D, Vigna G, Kemmere R: (2004) University of California, Reliable

software group.

Rebecca B, Peter M :(2003), Intrusion Detection Systems; Special publication

on Detection Systems, National Institute of Standards and Technology;

Infidel, Inc, Scotts Valley, CA

71

Ruggett J, Bains W, (1992): Artificial Intelligence a-z; Chapman Publishers,

UK.

Smith R., Forrest S, Perelson A.S: (1993) Searching for Diverse, cooperative

Population with genetic algorithms. Evolutionary computations, 1(2): 127-

149,

Stallings, W (2003): Cryptography and Network Security 3
rd

 Edition,

Publisher Prentice Hall Inc.

Stoll C. (1990), Cuckoo’s Egg, Pocket Books, stoll@ocf.berkeley.edu

Tanebaum A. S :(2002) Computer Networks 4
th

 Edition, Prentice Hall

Ware W. H: (1979) Security Controls for Computer Systems, R-609-1; Report

of Defence Science Board Task Force on Computer Security.

