Using Genetic Engineering Algorithm
to Prevent Subversion of an Intrusion

Detection System.

A Thesis Submitted to The Faculty of Science,
Department of Computer Science
University of Zimbabwe

In Partial Fulfilment of the
Requirements for the Degree of

Master of Science (Computer Science)

By

Hector Kapelewela

February 2006

© 2006,University of Zimbabwe

Using Genetic Engineering Algorithm
to Prevent Subversion of an Intrusion

Detection System.

A Thesis Submitted to
The Faculty of Science, Department of Computer Science
University of Zimbabwe

In Partial Fulfilment
of the Requirements for the Degree of

Master of Science (Computer Science)
By
Hector Kapelewela (R950635M)

February 2006

© 2006,University of Zimbabwe

Dedications

To my Father who passed away before this work was delivered may his soul

rest in peace, to my family Wadzanai my wife and Charles my son.

Acknowledgements

| acknowledge the help of so many people during the time of this project
undertaking. My greatest thanks go to my supervisor Mr N. Ngoma, my
former supervisor Mrs F. Mandizvidza, and the initial supervisor who initiated
this topic and indeed made me understand what genetics are and what they can

do to computer security.

Mr Ngoma who despite having a timetable completely full, worked so hard to
understand this topic and the student at the same time. Thank you for helping
me al round the clock through valuable discussions and telephone calls,

without which this work could not have been possible.

Thanks to the Head of Department of Computer Science, and the course
coordinators, for providing hotel presentation environments with masterpieces
of equipment, which made me, appreciate the value of my project undertaking

to the academic society and computer science community at large.

Abstract

Intruders mercilessly attack commercial, academic, defence; healthy centres
distributed (networked) systems frequently, and often successfully. The challenges of
intruders have become very critical. The most perceived effective defence today is the
use of intrusion detection systems. (IDS), though it is widely considered to be
impossible to build an effective distributed systems that completely eliminate
unauthorized intrusions. It may be effective to thicken the wall of defence by building
effective procedures in form of efficient algorithms inside IDSs. The target system
should account for misuse detection and anomaly detection by reporting on the
presence of an intruder, protecting the system from harm by the intruder, make
intrusions into the system difficult, help locate the intruder for a possible prosecution
with the law. Our solution analyse each string that is introduced into the computers to
those residing in the system already by carrying out a pattern matching with detectors
that match only strange patterns and recognise all friendly patterns that are legitimate

to the system.

Blank Page

Vi

Table of Contents

CHAPTER | INTRODUCTION

1.0.0 Preamble
1.0.1 Background
1.1 Categories of Intrusion Detection system
1.2 Intrusion Type
1.3 Violation of security mechanisms
1.4 Some Historical Background
1.5Why not Use a Firewall
1.6 The Immune System
1.7 Why Imitate Immune System
1.8 How does the Immune System Recognizes Antigens
1.9 The Memory Concept
1.10 Justification
1.11 Scope of Study
1.12 Mechanism and functionality of GEA
1.13 Imitations of Existing Intrusion Detection Systems -IDS
1.14 Definitions of Terms and concepts
1.14.1 Single System IDS
1.14.2 Disparate IDS
1.14.3 Distributed IDS
1.14.4 Network based IDS

1.14.5 Host Based IDS

12

13

14

15

15

16

16

16

17

17

17

Vii

1.14.6 Firewall Based IDS
1.14.7 Classifier Expert System

1.14.8 Network Security Manager

CHAPTER Il LITERATURE REVIEW

2.0 Introduction to Literature Review
2.1 Details of Existing IDS
2.2 The Likeness of Artificial and HIS (Human Immune System)

2.3. How different is our presentation

CHAPTER Il METHODOLOGY

3.1 Components of a Genetic Algorithm
3.2 Philosophy of Approach
3.3 Matching
3.4 Consider Illustration
3.5 Partial Matching
3.5.1 Weillustrate partial matching r=3
3.6 Estimating Probability of Detection
3.7 Algorithm Performance
3.8 Detection Size
3.9 Sub-Equations

3.9.1 Boltzinann Selection

18

18

18

19

19

25

33

35

36

36

38

38

39

41

41

42

43

viii

3.10 Holes

3.11 Linear Time Algorithm

CHAPTER IV FINDINGS AND CONCLUSIONS

4.0 Information Loss

4.1 Relationship between Detector Sets and Failure Probability

4.2 Experimenting with Y, and P} as constant

4.3 Experimenting with Theoretical Ng, and Experimental Ngrg
4.3.1 Observed Results

4.4 Discussions

4.5 Conclusions and Recommendations

Annexes

Bibliography

List of Tables

Table 1 Experimental Ns Constant P} and varying T values 47
Table 2 Experimental values 49
Table3 Experimenting with Y, and P} as constants 53

43

45

46

47

53

54

55

56

58

59

68

List of Figures

Fig2
Fig 3
Fig4
Fig5

Fig6

Hypothetical Matching
Censoring

Monitoring by Matching
Existence of holes

Relationship between initial

detectors sets and failure probability

Fig7 Experimenting with afixed NR.

Fig 8 Results depicting proportions

of generated detectors and actual size of detectors used.

26

34

34

48

49

54

56

Glossary of Symbols

IDS - Intrusion Detection Systems
GA or GEA — genetic Algorithm
OSIDS - operating System Intrusion Detection Systems
HIDS — host Intrusion Detection Systems
LAN —local Area Network
NFS — network File System
DoS — denial of Service attack
Signature — a set of condition when met indicate some kind of intrusion event.
Y m-matching probability of between arandomly chosen string and a detector.
Ns - the number of self-strings
m - is the alphabet composition, binary =2
T - Stringslength
G or r - non-contiguous matching bits, standing for the threshold
C -Intersection sign
E -Union sign
P} - possible failure probability-
» Symbol standing for identical to
W Big O notation symbol
OS Operating Systems
{} Sets

(p/t) matching possibilities of string power strings p over string

Xi

Chapter | Introduction

1.0.0 Preamble

The security personnel or a System Administrator has to deal with many
security problems brought about by the computer system all the times.
Computer systems bring together a series of vulnerabilities. There are human
vulnerabilities throughout; this means humans cause them and individual acts
can accidentally or deliberately jeopardize the system's information protection
capabilities. Hardware vulnerabilities are shared among the computers, the
communication facilities, and the remote units and consoles. There are
software vulnerabilities at all levels of the machine operating system and
supporting software; and there are vulnerabilities in the organization of the
protection system (e.g., in access control, in user identification and
authentication, etc.). How serious any one of these might be depends on the
sensitivity (classification) of the information being handled, the class of users,
the computational capabilities available to the user, the operating environment,
the skill with which the system has been designed, and the capabilities of

potential attackers of the system.

1.0.1 Background

Neither firewalls nor access control lists once thought as good solutions in
preventing network intrusion, can provide the capability to respond to or

provide real-time detection of an intrusion attempt, most of which has been

described above. IDS provide continual real -time or near-real-time monitoring
of ahost or a network. In this research work we concentrate much on creating
mechanisms using a GA to police the existing system. Borrowing the words of

Steven Hofmeyr:

‘The crossover between Biology and computer science can be fruitful for both
disciplines: computers can be used to model biological systemsto improve our
understanding of those systems, and we can use understanding of mechanisms
underlying biological systems to improve the way we design computer
systems here we focus on the latter case: using biological metaphors to build

better computer systems. “ Through Genetic Algorithm design “

1.1 Categoriesof Intrusion Detection system

Intrusion Detection System (IDS) is a piece of software or hardware that is
designed to recognize all pieces of code of software that are introduced into
the computer system either though the network or direct injection via a stiff or

any movable hardware.

Two primary categories of IDS are network-based and host-based. Network-
based IDS monitor network traffic on the local LAN, analyzing traffic that
"fits' a known signature for a given exploit, and then notifies the proper
contacts of its findings. Host-based IDS tools provide detection of an intrusion
on a system within the network. Since it is widely considered to be impossible

to build IDS that completely eliminate unauthorized users, host-based IDS

should be able to determine whether the attacker who attempted to enter the

system had succeeded in compromising the system.

The building blocks of Network-based IDS comprises of real-time and near
real time. Real-time network-based IDS report suspicious traffic as soon as it
is detected on the wire. Near-real-time IDS work by gathering network traffic
and then at a predetermined time interval (such as once an hour) provide an
analysis of the previous interval’s data. One of the benefits of real-time IDSis
the capability to respond to an attack as it is happening. Near-real-time IDS

also provide sufficient notification of an attack in progress.

Host-based IDS monitor system files (log files) as well as check the integrity
of system binaries to determine whether an intrusion has occurred. These types
of IDS utilize an agent that resides on the host being monitored. An example
of this attack would involve NFS and rlogin attacks. Initially the attacker
determines NFS file-handle for a remote host (rhosts) file /etc/host.equiv.
Using NFS file handle the attacker then rewrites the file to give himself login
privileges to the attacked host, using rlogin from the formally intruding host.
The attacker would be able to login to an account on the attacked host, since
attacked host mistakenly now trust the attacker. At this point the system can be

adversely be compromised. [GUGH].

1.2 Intrusion Types

Policies are a cornerstone of all security of the computer system. Any
activities that are done outside the scope of the computer policy definition may

become unacceptable hence intrusive. However, policies are difficulty to
3

formulate. Tight policies will almost bring to halt meaningful computer
activities. Consider a computer server belonging to the head office of a bank
being disconnected from the network in an environment where shared
transactions need to take place on a continuous basis, obviously services will

be down and clients will be disappointed.

Security policies need to be tightened to a certain extent; this means the
problem of computer attacks cannot be eliminated with policies alone. In some
extents what contributes to system compromise is the lack of a sound policy

on security.

The challenges in defining security policies is that they have to be written in
natural languages, which becomes difficult determining if some usage violates
the policies. A more formal way of describing these would remove the

difficulties brought in by the natural language.

A suggestive sequence of implementation policy could model as follows:

Correct policy

v

Correct Implementation
Correct Figuration

Thislead to SECURE SY STEM, hence less attacks

The opposite being

Flawed policies

!

Flawed implementation

Flawed configurations
INSECURE SYSTEM
The second problem is caused by the vendor system, after sometimes the

system goes through many changes. The changes are often not documented,

from which security holes emerge.

A model of compromise can be drawn as

Insecure Insecure [S
System System
Timet Timet+1

—> Continued changing system

To understand whom the enemy is we need to understand a little bit about
when and how a genuine user or individual becomes a misuse. (Intruders),
through understanding some of the underlying meanings of the following:

Authorized: Is a person who should be able to use the system with full
permission from the administrator. The individual may be aware or unaware of

the violation of the security policies.

Unauthorized: Is a person who according to the security policy must not use

the system.

1.3 Violation of Security Mechanisms

Not violating: the security policy is violated merely by misuse of privileges.
Bypassing: Security flaws are used to bypass the security mechanisms
Tempering: The security mechanisms are affected in a way that obstructs
detection of intrusion i.e. erasure of log files.

Affect of Computer System

Confidentiality: information is leaked to unauthorized person

Integrity: Data, programs or resources are altered.

Availability: Access to programs or resources is limited or denied for

authorized users

Systems evaluated following these guidelines, make it easier to understand

what the intruders did and how to identify them.

1.4 SomeHistorical Background

From Mainframe to PCs, and PCs to Laptops the computer development has
grown too fast. The need for shared knowledge and expertise, through wireless
communication, the Internet and other network connections has become a
reality and much sought technology in organizations, churches and homes and
academic institutions.

Networked computers have transformed the world into a global village where

dynamism in computer systems is fast becoming a common trend to our

6

academic and industrial operation. The Internet is the most perceived and
cheaper tool that help us achieve text, visual, “voice’ quality reception or and
transmission of voluminous information within time bands unimaginable ten
years ago.

The technology however brought with it threats of attacks from hackers.
People are preempting the sensitive information in transit. They make illegal
copies out of it; malicious worms and other contaminations are introduced to

the information.

1.5 Why not Usea Firewall

In networked computer firewalling is the protection to the system, it controls
packets that come in and out of the gateway. However it is inevitable that
some of the packets firewalls allow in are malicious in nature, hence the need
for a second layer of defense to complement fire walling [JUN], which we call
IDS.

The ultimate goal of intrusion detection is to detect and classify instances of
misuse of a system, while ignoring all instances of legitimate use. Intrusion
Detection System work by analyzing one or more inputs event streams and by
looking for manifestation of attack. An example of the event stream is packets
sent on a network link, the audited record generated by the kernel-level

auditing facility or the log produced by the user-level applications.

1.6 Thelmmune System

The immune system is a mysterious natural system. Though little is known
about its main functionalities, there is a consensus among scientists that it
protects the body from harmful organisms, which from time to time enter the
human bodies through the nose, skin, mouth, and several other points. At the
center of contention is the question on ‘how does the immune system defense
mechanism recognize novel attacks, the new harmful organism that enter the
human body’. Assuming that the immune system recognizes new attacks by a
way of learning, observing and comparing the behavior of the new intrusion
through some inbuilt benchmarks, the challenge is that can computer scientist
use the same analogy to build algorithmic tools that can recognize novel
intrusions, worms, and virus, which attack computer systems, before extensive

damage is done?

Biologically inspired computational intelligence approaches [AyaraTimis]
have provided robust, error tolerant, scalable and flexible solutions to
otherwise what would be intractable problems in the areas of medicine, neural

networks, and swarm systems. [Bentley 2001].

1.7 Why Imitate Immune System

Imitating natural systems is a promising source of practically and feasible set
of solutions to dynamic intrusion challenges, facing the computer experts
today. When, the internal dynamics of a system is understood, in terms of

functionalities, scope, and observable dynamics of the system through

experimentation. The knowledge can then be correctly used to build a similar
natural system, and fine-tuned if significant deviations are observed. It is in

this spirit that we give the detailed functionality of the immune system.

The immune system responds to foreign invaders known as pathogens, innate
immune system provides its first defense, just like the pony piece on the
chessboard. When the line of defense is broken, the adaptive (acquired
immune system) take over, just like our chessboard analogy, we can liken the
adaptive system to the bishops, queen, or rock pieces coming in the battle line,

to rescue the kingdom.

1.8 How doesthe mmune System Recognizes Antigens?

The adaptive system is composed of B and T cells. These are capable of
responding to certain antigenic patterns presented on the surface of the
pathogens [AyaraTimis]. The receptor molecules on the surface of the immune
cells are capable of recognizing limitless numbers of antigenic patterns. B
cells recognize patterns in the blood and T-cells recognize antigens on other

cellsthat come closer to it. [DeCastrQ].

Antigenic recognition is the prerequisite for the immune system to be
stimulated, to mount an immune system response. Computer security or
intrusion problems are concerned with distinguishing self (legitimate user,
authorized actions, original source code, ‘uncorrupted data from non self

(intruders’, computer viruses, and spoofing, Trojan horses, [PATRICD, 1997].

The HIS (Human Immune system) has been solving similar problems for
hundreds of million of years, using the algorithms that follows. The
complexity mechanisms the HIS use to defend itself remain the area of
research. However, the defence mechanism can be divided into specific or
non-specific. The specific provides specialist protection against a known type
of intrusion, just like the body reacting to measles. Non-specific provides a
more general protection or fight against such conditions like skin and

inflammation of the skin cells.

The comparative analogy is that a computer protection can be divided into
specific (virus checking with signature, and security analysis tools),
[PATRICK D] and non-specific (good code, hygiene, firewalls, encryption).
These do not detect intrusions in progress; they stop no self from entering on
the system, this means they sensor all unrecognized pieces of code from

entering the system.

Lymphocytes or T-cells are part of a large population of specialized cells in
the immune system. They are generated from the thymus and are covered with
receptors, which bind antigens (foreign proteins). Each T-cell has specific kind
of receptor it binds to a small group of structurally related antigens. The
receptors are randomly generated and T-cells mature in the thymus where they
under go a censoring process called negative selection. All those cells that do

not bind self-protein are released into the body to become part of its defence.

T-cells that |eave the thymus to circulate through the body are tolerant to self

10

(they do not attack the body). The concept presents an alternative paradigm to
perform pattern recognition by storing the information about the complement

set (non self) of the pattern to be recognized.

The algorithm hereby provided is adapted from L. Castro and J Timmis that
focus on anomaly detection, time series prediction, image inspection and
hardware fault tolerant.

The parameters self-set (P) Based upon the negative solution algorithm
generate a set of detectors (M) that will be responsible to identify all elements
that do not belong to the self-set. Which runs as follows generate random
candidates (C) using the same representation adopted?

Compare (match) the elements in C with the elements in P. If a match occurs
that isif an element of P is recognized by an element t of C, then discard this
element of C in detector set M. After generating the set of detectors (M), the
next stage of the algorithm consists in monitoring the system for the presence
of no self-pattern. In this case, assume a set P* of pattern protected. This
might be composed of the set P plus other new pattern, or it can be completely

novel set. The algorithm will be revisited in chapter 3.

Pathogens can replicate into thousands in a short time, hence the need for an
efficient system that can bind and eliminate these pathogens. Learning,
adaptation and remembering structure of attacking proteins for future
reference are some of the techniques used by the human Immune System

(HIS) defense system.

11

B-cells mature in the borne marrow, When activated its thresh hold affinity is
exceeded, and it produces copies of itself (clones as result of cell division).
The copying is subject to mutation rates that are nine orders of magnitude
higher than ordinary cell mutation rates; known as somatic hyper mutation,
which can produce an offspring, B-cells with receptors different from both
parents. The new B-cell will be capable of binding different types of
pathogens. If the affinity to bind pathogens exceeds their threshold they will in

turn clone. [Patrick D]

The competition now become apparent on the cells that reproduce the most to
create a cell with a perfect match to the pathogen about to be destroyed, a
concept known as Darwinian process of variation and selection also called

affinity maturation.

Complementary to the role of negative selection, cloned selection is the theory
used to explain how an immune response is mounted when a non self
antigenic pattern is recognized by a B-cell. When a B-cell receptor identifies a
non-self antigen with a certain affinity, it is marked for proliferation and
produces antibodies in high volumes. Antibodies bind to antigens leading to

eventual elimination by other immune cells.

1.9 TheMemory Concept

The Immune system has an adaptive response that enables it to learn protein
structures that characterize pathogens it encounters, and remembers those

structures so that future reactive response is swift. Primary response is a
12

response mounted by the cells when they face a completely new attack or
intrusion. This may take several weeks to be eliminated completely. The
secondary response is a response mounted against a known attack. The system
remembers a similar attack and uses similar techniques that were successful on
a former attack to defend the body. The secondary response may be used
against a slightly modified attack to the exact antigens that formally attacked

the body.

1.10 Justification

According to the 2002, CSI/FBI computer Crime security Survey, the total

revenue loss in industry due to intrusions was calculated at US$455 848 000.

The idea of using a GEA emanates from the belief that, different organisms,
previously known by the body’s immune system and unknown by the immune
system attack the human body, but the body put an effective self-defense using
the genetic defense system, allowing most people to survive up to 70 years or

more under the immune system’s protection.

We are motivated therefore to build computer systems algorithms with similar
logic as those of the immune system. Since the immune system is complex and
quite robust in nature, we choose and use selected features that may be

compatible to be used in intrusions detect system.

GEA is biological inspired, self-regulatory, domain independent and has

ability to automatically create a computer program from a high level statement
13

of a problem requirement. This characteristic is suitable for a system’s defense
in that it allows a system to recognize an attack, deploy counter measures and

avoid atotal collapse from the compromise.

1.11 Scope of Study

The research is being done under the guise of the discipline of theoretical
computer science, with the mathematical basis of computing, as techniques for
solving the research question or problem. We hope to analyse the existing
genetic algorithm and demonstrate it to be correct or optimal in detecting

intrusions.

The research shall rigorously cover Misuse detection system; hence, aspects of
other type of detection will be reviewed in passing. We attempt to give
statistical analysis, and concentrate on practical concerns such as execution
time, storage space, communication, and the constraints imposed by hardware

architectures, in direct relationship with the GEA.

The thesis investigates using a genetic engineering algorithm in a host-based
platform. Though we use a particular operating System (OS) based platform,
our ultimate goal is that the algorithmically solution should be run in all

platforms without much modifications.

The second goal of the research is to use the well founded GEA in an attempt,
to detect a substantial percentage of intrusions into the supervised GEA

system, while keeping false positive and false negative at lower rate.
14

We borrow fuzzy logic where the concepts of GEA are complex, and difficult
to Implement. Otherwise, we stick to the concepts of genetic engineering

algorithm.

1.12 mechanism and functionality of GEA

GEA or interchangeably called GA were pioneered by (Holland 1975), they
continuously breeds a population of computer programs over a series of
generations. [KOZA99]. The technique is different from other approaches like
Al, machine learning, neural networks, adaptive systems, reinforcement
learning or automated logic in seven ways. It is based on the concept of nature
of survival of the fittest.

The human body protects itself from antigens, through a mechanism of
matching non-self (intruders, virus), and self co-habitants. The detectors are
either nonspecific or specialized. The non-specific look for total strange
invaders “novel” attacks the like of a computer attack, unrecorded before. The

specific looks for well-known attacks, recurrence of the past.

1.13 Limitations of Existing Intrusion Detection Systems

(IDS)

Most current Intrusion Detection System solutions generally implement an
algorithm aimed at either Host Based or Network Based targets. When any
anomalous behavior coming through is regarded as intrusion, despite the

action being a legitimate one. This detection mechanism, accounts for a lot of

15

false positives, false negatives. The administrators tend to ignore systems
alarm from such software and in the process more missed attacks, occur

[JUN].

Little is known about the functionalities of the immune system; hence our
algorithm may lack the most important component to run as efficiently as the
immune system. The fact that only aspects that are interesting and show
similarities are included in GEA detection algorithm, this introduces some
incompleteness into the IDS. Very little is well understood about the
functionalities and make up of immune systems hence less important aspects
of detection mechanisms are likely to be incorporated into the algorithm, thus

limiting the capabilities of detection.

1.14 Definitions of Termsand concepts

Throughout this Thesis, several terms will be used to describe features and
components of IDS implementations. We explain the meaning of each as

follows:

1.14.1 Single-System IDS — is an IDS architecture in which only one IDS
system is implemented to monitor network activity. The system may be
composed of multiple sensors and / or monitoring stations, but it is comprised
of only asingle type, brand, and model. Thisis currently avery common IDS
model.

1.14.2 Disparate IDS - is aterm to describe a security architecture in which

multiple, different IDS systems are monitoring traffic. These systems each
16

have proprietary reporting and logging methods for handling suspicious
activity, and the individual logs and reports must be managed and reviewed

individually.

1.14.3 Distributed IDS — is a term to describe a security architecture of
different IDS system types that all report to a single, centralized system. The
reports are correlated, aggregated, and presented in a consolidated alert log

format.

1.14.4 Network-based IDS — is a device that resides on a network segment
and monitors traffic that traverses that network segment. The network-based
IDS inspect each packet for anomalous (not matching standard patterns) or
malicious (as defined by a signature set) traffic and report any traffic that it

deems suspicious.

1.14.5 Host-based IDS — is similar in functionality to a network-based IDS,
except that rather than watching traffic on the network, it monitors activity on
a single host computer on which it is installed. Some host-based IDS systems
actually monitor network traffic for the host and report suspicious traffic,
while others monitor logs on the host on which they are installed and report

anomalous log entries.

1.14.6 Firewall — is a packet filter. A firewall’s main purpose is to deny
network access to unauthorized traffic, and allow network access to authorized

traffic. A firewall will usually contain a rule set against which it compares all

17

incoming traffic. From this rule set, each packet is determined as authorized or
unauthorized, and the packet is either forwarded into the network, dropped,
denied, reset, rate limited, or redirected. Properly configured, a firewall can

enforce network policies, dramatically improving network security.

1.14.7 Classifier Expert System — is a device that takes input from several
different devices (both network and host based, and potentially others),
performs some processing on these inputs (i.e. correlation, aggregation,
categorization, prioritisation, etc.), and then takes some action based on those
inputs (i.e. logging to a database, notification, pre-programmed automated

responses, etc.).

1.14.8 Network Security Manager — is a generic title for the individual
within an organization who is responsible for that organization’s network
security. Generally, this is the person that configures the network security

devices described in thislist, and monitors their output.

18

Chapter Il Literature Review

2.0 Introduction to Literature Review

Intrusion Detection systems protect important systems. Different versions of IDS
monitor traffic and system activities. Many IDS were made for a particular OS and
environment. The data collected provide the network and system security manager
with invaluable insight into what traffic (both malicious and benign) is happening in
the system and traversing the network. Valuable network and system activity
intelligence that can lead to real-time (or near real-time) detection of significant
network events, insight into network vulnerabilities and attacker techniques and
procedures, can lead to evidence related to intrusion incidents and many other
valuable network, enough to convince finance to upgrade a system or support the

security manager to curb intrusions

2.1 Detailsof Existing IDS

Many commercial systems such Cisco, OS IDS Intrusion operating system, Opp-DIS
application intrusion systems, are available in the market. However, the commercial
algorithms are a patent product, which the host company does not intend to publish

the init-grit of the algorithms used.

Some popular network IDS include commercial products, such as the Cisco Secure
Intrusion Detection System (CSIDS, formerly NetRanger), 1SS's RealSecure, and
NFR’s Network Flight Recorder. Popular host-based IDS tools include Tripwire,

Symantec’s Intruder Alert, and Intercepted by Entercept Security Technologies.
19

Several freeware network and host-based intrusion detection systems are available on
the Internet, and they provide a comparable level of protection as their commercial
brethren. To appreciate the functions of IDS, the freeware systems they are to be

exploited and the results be presented as a perfect simulate of real world scenarios.

Snort systems are defined as "light weights Intrusion Detection System". By
definition, lightweight IDS should have a small system footprint, provide for cross-
platform support, and easy installation. Snort fits all three requirements. It utilizes the
libpcap library (originally developed at Lawrence Berkeley Laboratory) for sniffing

traffic and then analysing the packet payloads.

Snort is configured by command-line options as well as Berkeley Packet Filter
commands. The heart of the Snort detection engine is a set of rules written in asimple
language that allows for per packet tests and actions. Snort’s detection rules can also

be modified and extended by the end user.

There are three primary subsystems to Snort:
(i). Packet decoder,
(ii). Detection engine,

(iii). Logging and alerting system.

For the system to perform to optimum it needs adequate rule base, and as the rules
accumulate resizing forward become apparent. A well-populated Rule-Base will

easily pick up variety of violation. On the other hand, again a larger rule-base system

20

consumes lot more disk space and impact negatively on the speed of the system

during rule search.

Search is a resource intensive process, and can slow down response time of the
system. The use of subsystems make snort, a robust, large and monolithic system
since It performs al of the monitoring, data gathering, data manipulation, and
decision making for the whole system, [MARCK]. It can monitor system logs, user
activities, and system state, seating on the system kernel. Snort then deduce metric

systems, overall security and alert of intrusions.

Snort adds an overhead to the entire system, the large amount of data, it collects

consume both disk space and CPU time.

The Linux Intrusion Detection System (LIDS) is a kernel patch for the Linux kernel
aswell as an admin tool for enhancing security. LIDS implements a reference monitor
and mandatory access control in the Linux kernel. When LIDS isin effect, file access,
system and network administration operations, raw device file access, and memory
and /O access can be made impossible, even for root. LID not only provides

protection but detection as well.

Like PortSentry, LIDS can detect port scans against the host and notify the systems
administrator. LIDS can also detect other access rule violations as well, and respond
to any access rule violation. This response can either be through logging to Sysl og

or even terminating a user session. LIDS' flexibility makes it ideal as a host intrusion

21

detection and response tool. Unfortunately, an administrator usually views LIDS

results when a user machine has been compromised already.

EMERALD (Porras and Neuman, 1997) is a complex system, and was developed by
Stanford Research Institute, the design put emphasis on distributed tasks, and the
acute need for a scalable solution and it is highly modular. Emerald employs the
concept of hierarchical organization to achieve scalability. There are three tiers of
components, operating on progressively lager portions of network and on higher level

of abstraction.

Each service monitor, the lowest —tier component, which has a job to overseeing the
operation of one service (e.g. FTP server), each of the monitor employ both rules rule-
based, misuse detection and anomaly detection algorithms. The other monitors

include Enterprise-level and Domain security.

Emerald is a disparate IDS system, which provides in-depth views into what types of
traffic are traversing the network. Chances of detection are increased with disparate
IDS implementations due to the fact that they apply different detection logic to their

traffic analysis procedures.

However, disparate IDS implementations contain several different types of IDS
systems, none of which will interoperate with othersto provide a consolidated view of
network activity. Each individual IDS system within the Disparate IDS architecture
will create its own summary of network traffic and each summary must be reviewed

separately and correlated with all other reports to provide the “total picture” of
22

network activity. This provides a potentially overwhelming amount of data to the

network security administrator.

GEAs are mostly based on off-line learning algorithms. A data set is collected and
manually labelled by an expert. Subsequently, a general purpose is evoked to induce
the rules. The popular of them all is RIPPER (Cohen, 1995). RIPPER finds rules of
the implicative form by generating a large number of candidate rules and evaluating
directly on the data, the improvement they yield, which may be viewed as instances of

genetic algorithm.

All classifications of IDS have varying degree of flaws in them, for example: Some
solutions like Single-System IDS (both signature and anomaly-based)
implementations only look for what they are programmed to look for. Many have a
fixed “signature” set, or hard-coded logic as to what to look for. In the case of
anomaly-based systems, logic flaws or oversights can potentially allow an attacker to

slip by unnoticed.

NIDS algorithms only analyse the traffic traversing the network segment to which
they are directly connected. If there is an alternate route into the network, open
socket, a way to avoid detection by the NIDS, then an attacker can potentially enter
and manipulate a network without being detected by the IDS.

HIDS algorithms only analyse events that are occurring on the individual host that
they are monitoring, quite valuable on high-value assets such as servers because they
are likely to be targeted by attackers. However, HIDS are potentially negative on

system performance.
23

2.2 ThelLlikenessof Artificial and HIS (Human Immune System)

In this chapter, we elaborate more in detailed overview the major mechanisms and
properties of HIS. A complete detail of the functionalities of HIS is beyond the scope
of this research and can be found in specialized texts. The ability to protect our bodies
lies with the immune system, as it plays a role of eliminating dysfunctional
endogenous cells, commonly called infectious self, and exogenous micro organisms
(infectious non self) such as bacteria and virus which enters the body through many
routes that include respiratory, digestive system and more commonly through
damaged dermal tissues. In comparison to the Artificial Immune System (AIS) that
we build in chapter 3 HIS plays an inspirational role for providing us with the
fundamentals from which we imitate the immune system and build our own protective
algorithm. Biological inspired computing is complex and we need a detailed

understanding of the mechanisms of functionalities to build arealistic algorithm.

HIS is constituted of different podiums of layers, each layer stands in defence against
infectious material or pathogens. The physical layer that comprises of skin, nasal
hairs, and reflex actions such as coughing and sneezing blocks the ingestion of
pathogens. The physiological layer comprises fluids secreted by the body, which is
saliva, sweat and tears these are used as transport of pathogens out of the body, and as
additional function, they dissolve the pathogens. The cellular layer is a set of cells,
e.g. T-cells, B-cells and many more. The cell classification further subdivides into
innate, specific, acquired or adaptive immune system. Innate is the defence system
invoked by the body minutes or hours after an attack or infection, using non-specific

responses. Adaptive immunity drags for longer times, usually days before becoming

24

effective. These require a specific response that is adapted to remove a specific

pathogenic infection, and body allocates its defence in a controlled and dynamic way.

The following classification is identified as describing innate and acquired immune
system. Leukocyte family commonly called the white blood cells is the root node of
innate comprising of granulocytes, monocytes, and lymphocytes all of these originates
from stem cells in the bone marrow. Granulocytes make up 50% -60% of all
leukocyte family. Carry granules containing various chemicals and are fragmented
into 3 groups namely neutrophils, eosinophils and basophils. Leukocytes,monocytes
mature into macrophages, which play key roles in both innate and adaptive immune
system responses. Macrophages locate and destroy pathogens. The two cells are

collectively referred to as phagocytes.

2.3 How different isour Presentation

Most IDS are limited in scope on their capabilities to operations. For example an IDS
specializing to protecting a network attack, may have a different focus with an IDS

meant for a host based IDS.

The IDS operational environments differ greatly hence, the need to employ a variety
of differing techniques for producing alerts. The signature alerts used in networked-
based system should be different from host-based signature. Where these are similar,
the underlying difference is just a smaller intersection. Most systems that do both
types of detection suffer from anomalies of slowness, system overloads, and high

failure rate in detecting intruders in real time. Another reason for these larger systems
25

failure is because they need to search larger reservoirs of signature on already over
burdened system with other tasks as those of analysing the data and producing ideal

findings.

In this dissertation, we present an effective tool that attempts to remove the signature
reservoir requirements. The tool will produce detector strings probabilistically.
Through negative selection all useful system data, programs, and software, binary
strings will be called protected data (S) and be kept separately .A random set of
strings will be produced(R), of which a one to many matching will be done a between
the two sets. If astring in R isfound to be matching astring in S. Then the string in R
is discarded. Any string in R not matching a string in S will become a potential
detector and will be stored in set M. All stringsin M will be left to roam the system if
they happen to match another string then that will be noted and reported as intruder
and the string shall be destroyed.

To illustrate the hypothetical system we give the following illustration adapted from

Forest et al.

1011
0111
0011
0000

R i MATCHING??

1000 NO 1100 ACCEPT

1100 »| 0000

1101 VES
h REJECT

1000 26
1100

Fig 2 illustrates a Hypothetical Match, example, generating random strings

Hypothetically we can assume the entire system to be composed of one string of a
certain length, D={d ;d , . d) to achieve agoal of running a scan again and again we
deliberately subdivide that string into smaller strings. Our method however uses a
contiguous matching technique. Instead of trying to match the entire length of the
string, only a small portion of the binary string need be matched against the smallest
strings. The merit of the system is to consider a string as matching if the contiguous
string as defined by r matches, and then the entire string matches. In the above

example contiguous match of G=2 was used.

The researchers have debated about the methods, on how to prevent an exponential
growth of set S. Many limiting factors have been suggested mathematical formulae,
and novelty mechanisms such as those ideas of likening the calculations of volume of
a funnel and a windowing strategy. We do not cover the detailing aspects of these, as
for the purpose of this dissertation; we will adopt original controlling formula by

Stephanie Forrest [PATRICD 1997].

Pioneering ideas are based on rewarding a good performer. Strings or set of strings
that performed well in detecting malicious code worms and virus, would be promoted
through lengthening their life spun and leave the life spun of less performers constant,
in some cases mutating all those with an average performance record. We suggest
crossing over the record performers with the average and retaining both for further
detection. Our deviation from the original idea, because we recognise the concept of

polymorphism and metamorphism where the malicious code are built incrementally

27

with each successive coming iteration and successive or earlier code, introducing, a
small change to the new virus.

A polymorphism intrusion tool will encrypt a malicious code and decrypt it during
execution. To disguise its victims from identifying a virus, severa transformations
such as null insertions, comments, code transpositions, and use of GOTO statements
are heavily used in decryption routines.

Metamorphic viruses attempt to invade heuristic detection techniques by using
complex disguising methods. When they replicate the malicious system changes their
code in a variety of ways. Such as code transpositions, substitution of equivalent
instruction sequences, change of conditional jumps, and register reassignment. They
can insert a malicious code right inside a host program. Since the beginning of the
code is now hidden, the identification of such a worm, virus or malicious system

becomes difficult by an ordinary 1DS tool, which looks for signature of the intruder.

It is from such a behavioural analysis that we feel the negative selection ideology
becomes hand. A hidden malicious code can be identified if the detector sample is
larger enough. The mechanism of detecting using a GEA tool requires no prior
knowledge of nature of intrusions in complete contrast with signature based virus
scan. The detection is probabilistic that means we can generate as many times as
needed detectors. The fact that we have formulae that control our generations we have
a room for variability in how much detectors we can have depending on attack
expectations. Detection is local which means focus can be directed to a small section
of data to be checked and when an anomaly is identified, a proportionate solution can
be mobilized. This aspects means the tool can find a virus in its earlier phases before

propagation. The sets at each site may be unique, which means if one site were

28

compromised, other would still be protected. There is no communication between

detectors or detector setsis needed until a change is detected.

29

Chapter 111 Methodology

In this chapter we describe in details the material and methods used. The immune
system begins with a classifier system. Here the agorithm needs to classify the
detectors that will be used in protecting the system from the attackers. The
classification is very essential because we are dealing with very large generation of
agents.

When the number of the elementsis large, characteristics of the cascade depend more
on its structure than on the quality of an individual separating element (classifier). The
search of the optimal structure becomes a difficult task because of a large number of
possible variants of interconnection between the elements. The genetic method of
synthesis allows us to determine a nearly optimal structure of a classifier cascade.
Particularly, a set of non-trivial structures need synthesized, and excluded without

compromising the detection ability of detectors.

Most of algorithms that optimize a search space are NP-Complete as shown by Garey
and Johnson (1979). However the GEA heuristics try to keep the search space within
the polynomial time. GEA works similarly to an abstract automation running
sequentially through a set of states (generations) until termination criteria t holds. The
term generations in this thesis refer to time steps between successive states as well as

to the population pt at time't.

The important part in using a GEA effectively is in choosing an appropriate
representation. The used representation must be appropriate and minimal and

completely expressive. The defined representation must be able to represent a solution
30

in the set of solutions sought to a given problem at one time. (Robustness). The
designed representation should avoid infeasible solutions being included in the

solution set.

Genetic makeup contains characteristics that go beyond our scope of study. We hence
include information that is minimal to represent our solution set to our problem of
detecting of intruders. The inclusion of several genetic factors has the usual draw back

of increasing the search space and reducing the algorithms performance.

The complexity of using numeric representation such as array of real numbers far
outperforms most other known representations. The difficulties is how to choose a
cross over operator that generate reordered list without duplicating an element in the
list, Another challenge is mixing of contiguous and discrete elements in which case it
may be desirable that a new structure to hold the mixed information be created. For
example a solution with both integer and floating parts might require the use of a
cross over that cross integer part and floating parts, but taking care that floating parts

and integer parts never mixes.

We use the pure binary representation for our solution for simplicity, and as a
standard computer data representation. The universe of binary strings is rich enough
to allow us to study how a relatively small number of recognizers (detectors) can

evolve to recognize a much larger number of different patterns (intruders).

For our experiments, we use test data taken from repositories and dumps collected

from specialized sites that collect data when the actual attacks were in progress, in

31

different locations. The data colleted forms the input to our algorithm’s test data, from
which comparisons and statistical efficiencies will be given. Comparisons done using
historical figures and similar findings above will form our observable conclusions and

findings.

We calculate standard deviations, and mean to ascertain how much we deviate from
others findings that used the data for their experiments using different methods of
classifications. Additional statistical tools may be used to measure the effectiveness of
system performance to match detectors (Regression analysis). Algorithms
performance analysis in terms of running time and space complexity will be verified

using standard techniques of the discipline of design and analysis of algorithms.

Regression analysis will be used to identify how correlated documented intrusions
and perceived intrusions compare this means that intrusions in the past studies and

intrusions as identified by our genetic algorithm.

Our emphasis is exploring the theoretical basis of our method and addressing the
important question of practicality including, the feasibility of generating and matching
detectors, and discussing the implications for the real world problems The proposed
solution is a prototype intrusion detection Algorithm (IDA) that use a genetic
algorithm, to investigate how a group of free running processes which are acting
independent but cooperative of each other, just like the human cells, can flag and

identify each behaviour they consider to be anomalous.[MARKC]

32

In building the system, the following assumptions have been taken into cognisance:
Used Algorithms are observable, via system auditing mechanisms, Normal and
intrusion activities have distinct indicators. Intrusion detection hence involves
capturing audit data and derives the evidence from the data to predict whether the
system is under attack. The use of mathematical parameters as basis of the algorithm

is our main instrument of operation.

3.1 Components of the Genetic Algorithm

1. A representation for areal potential problem

2. A way to create an initial population of potential solution (this is done
randomly).

3. An evauation function that plays the role of environment, rating solutions in
terms of their “fitness’.

4. A genetic operator that alter composition of the children (selection, mutation,
Crossover)

5. Valuesfor various parameters that the genetic algorithm uses (population size,

probability of applying genetic operators).

The first aspect to this process is the encoding (representation) of solutions as

chromosomal strings that GA can evolve.

33

Fig 1 on the above diagram we present the preliminaries of a GEA algorithm, the
diagram illustrate the censoring part adapted from forest et al, which also stands for a

classifier.

Fig 2 illustrates the second part of the algorithms that does the monitoring part it
Follows from thefig 1.

34

3.2 Thephilosophy of Approach

The following fundamentals will steer our approach

We deploy a unique detection algorithm copy for a given site. Where detection
is required, a complete regeneration of detectors has to be produced.

The detectors will be generated probabilistically and this will remove
component of multiple storage for each phase of detection.

Novel attacks are covered in our detectors, since the system produces detectors
that will potentially match even a new pattern. The probabilistic method
contrast significantly with signature based techniques, which use a known

signature as a basis of matching attacks.

The algorithm in fig 2 generates a set of potential detectors. Each detector is a binary
string that does not match any protected data. The protected data comprises software
code, system files, and all the useful staff that we have stored in a machine. This
phase is commonly known as the censoring phase.

The mechanism of protecting data is achieved by comparing them with the detectors.
If a detector reacts with the protected data then we discard that detector as not useful.
When a detector fails to match self (protected data), we accept that string as a
potential detector, and pass it to fig2. Censoring is also known as Negative Selection

Technique of intrusion detection science.

35

3.3 Matching

We give an overview of how our techniqgue works, before moving into
implementation details. We assume that a set of string, (care should be taken in
interpreting the word set in the context that is used here, the word set is simply a
group of strings without any mathematical rigor as is in mathematical set) in our set

we have duplicates.

The self-string is an unordered collection of strings or concatenated sub-strings. To
generate valid detectors we split self-strings (logically) into equal size segments. We
firstly split the string to facilitate a mathematical analysis of the system, which will

allow us to determine the probability of detection.

3.4 Consider Aslllustration

Given a 32-bit string, break it into 8 sub strings, each of length four:
0010
1000
1001
0000
0100
0010
1001

0011

S ={ collection of all self set (sub strings) to be protected}
ii. R, ={ Random strings}

36

iii. Match {R ;| S} =Boolean Valid or Invalid Any string in R matching string
in Siseliminated.
iv. R ={composed of strings that were invalidated iii mechanism also known

as Repertoire}

Suppose R, ={0111,1000,0101,1001} \ R ={0111,0101}

The strings 1000, 1001 are automatically eliminated they are members of S.

With the R set populated with the collection of strings. A control mechanism has to be
put in place that will test self occasionally by re-matching S against R to detect a
hazardous mutation of intrusion in R and S respectively.

We decided to pair the matching al phabets deterministically, each string being chosen
for matching in afixed order, and the detectors being checked in the order they were
produced. The reason we do thisisto control the process of population generation to
avoid an exponential growth. Randomization is another used technique though for the

purpose of thisthesis we stick to the fixed order given above.

A match of X', _, and X2, , strings, to be exact need be of equal length, and have
equal alphabet at each location in the string. The difficulty with exact matching is
that it is a rare scenario, especialy when matching strings of relatively longer

length.

37

3.5 Partial Matching

The commonly used matching is the contiguous r matching technique. The method
scans for r contiguous matches between symbols in corresponding positions. For any
two strings t and p, we say that match (t | p) is valid if p and t agree (match) at least r
contiguous locations. The advantage of the rule is that this matching rule can be
applied to strings defined over any alphabet of symbols. For our thesis, the string is
defined over the alphabet {0,1}, representing any bit pattern that can be stored in a

compuiter.

3.5.1 Weillustratea censoring or a partial matching of r=3
t ={ 247346289}
p={ 571346989}
The two strings, t, p defined over the 9-letter alphabet {2,3,4,5,6,7,8,9} match four
contiguous locations underlined. Thus match (plt) is invalid for r=3 or match (p[t) is
true for r=4 or less.
In general two random string matches at least G contiguous location if the Probability
Y » m[(I-r)(m-1)/m+1].
Where
m = the number of alphabet symbol s

| or T= the number of symbolsin a string) and

G = The number of contiguous matches required for a match.

38

Thetest will come in form of varying the variables (G, T, m, Y, to test the ranges that
will allow a room of conducting varying analysis across the performance of our

algorithm.

According to Forrest the approximation is good when if the variable m™ <1. Where
the approximation fails, we use exact formulae.

All discrimination between self and non-self in the Immune System is based upon
chemical bonds that form between protein chains. To preserve generality, we model
protein chains as binary strings of fixed length I. The Immune System must
distinguish self from non-self based on proteins. The set of strings of length | form the
universe, U, which is partitioned into two digoints subsets which we call Self, S and
non-self, N. Formally U=SUN, SCN =0. Given arbitrarily strings from U, classify it
as either normal (corresponding to self) or anomalous (corresponding to non self).

If r=I the matching is completely specific that means the detector will only maich a
single string (Itself). If r=0 the matching is completely general the detector will match

every single string of length I.

3.6 Estimating Probability of Detection

Good range of detectors can be obtained if our estimated probabilities numbers are
accurate. The following description outlines how the predictions are arrived at.

Consider that the strings to be protected Sy, are application programs, some data, or
any other elements of the computer system that is stored in memory. Using the above

detailed algorithm we need to:

39

Vi.

Estimate the number and size of detector strings, which will be required to
ensure that an arbitrary change to the protected string is detected with
some fixed probability. The following definitions are given

Nro = The number of initial detector strings before negative selection

N r = Number of Detector string after censoring (size of potential detector)
Ns= Number of self strings

Y m = the probability of a match between two random strings.

1= The probability of a random string not matching any of the N self
strings

=(1- Ym) Ns

vii P} =probability that N r detectorsfail to detect an intrusion.

If Y issmall and Ngislarge then
1

-Y N
I))e m s

and

Nr =Ngro~ : (1)

Py =(1-Ym & 2

If Y, issmall and Nrislarger, then P} » € Y, Ng

N R = NRO - :=-In P:/Ym (3)

40

Solving 1 and 2 for Ngg, we get the following:

The given formula allows us to predict the number of initia strings (N,) that will be

required to detect a random change.

As f (x) of Y., (1-Pf), The number of self-strings (Ns) being protected and the

matching rule (Y,,). Then Ngo isminimized by choosing a matching rule such that

v~ L
NS
3.7 Algorithms Performance

We delay for now giving details of the performance of our algorithms in terms of cost
on computational resources, runtime, performance on comparisons,; space and time
complexities are all deferred for now. However a careful observation should
discriminate liable areas of analysis. Namely, when generating random strings of

fixed length and when doing comparisons at a censoring stage and real detection.

3.8 Detector Size

To determine the number of size to achieve a specific failure rate P} is an important

part of measuring what affects time delay, and storage space when generating

41

detectors. Theoretical Lower bounds measurements can be obtained using specific
equations.

According to [Peres 79], a first lower bound for Ng from the average matching
probability Y, The best case would be to distribute potential detectors so that no two
detectors can match the same no-self string. All detector set should cover an
approximate space of Ng Thisimplies

Nr >= (1'P:) I'Ym

3.9 Sub Algorithms

As illustrated above on figl and 2 respectively. Our algorithm is a combination of
several algorithms. It would be impractical cumbersome and complex to give a one

rundown of a huge algorithm to accomplish the task.

Genetic algorithms are a robust set of solutions that change form with the problem
solution being sought. For example Selection is a method of fitness evaluation of

genes. , And comes in many forms.

Prepositional selection also called the roulette wheel selection is derived from the fact
that fitness can be ascertained from dimensions of sectors representing individuals in
a population. The fitness is thus calculated over x representing an individual score

over the sum of the entire population. Practically the formula becomes

P() =2

-———, WhereP(x) isthe fitness probability.
a ya(y)

42

3.9.1 Boltzmann selection
Under this selection method, exponentiation rescaling of proportional selection is

used. Proportional selection on e *® /z,6% - The strength of method is controlled by

[3 parameter.

Some additional method under the same group are Ranking selection, Tournament
selection, Truncation selection. However a combination of two or one more selection

method can be applicable at any one time.

3.10 Holes

For the G contiguous bits matching rule bit technique, there exist other non-self

strings known as holes. For these holes it is not possible to generate valid detectors.

Consider two binary strings t; and t, that matches over G-contiguous bits, they may
create additional two bits y; and y, that are not detected because candidate detectors
match either t; or t, as an example of strings with G=4

t; €00101000

t, €11101011

y; €00101011

y, €11101000

Another example of a“Set” inducing hole is a set up given that the number of Non-

self strings is smaller than the number of strings matched by the detectors.

43

Protected
Strings Set <

Holes

Protected Strings set is larger than the potential detectors Non-self set, as illustrated

above. Fig 3.1

Holes reduce the effectiveness of the intrusion systems objectives, by opening up
possibility of intrusions. The non-self potential detectors offer inadequate cover. The
problem of holes can be reduced through using matching rules where G-contiguous bit
rules are different. For instance G=1 (detectors matches entire string space), G=T
detector matches a string (itself). Potential holes are then eliminated by using closer
and potentially more specific match as opposed to scanning a smaller Gcontiguous

positions, string, and string length T over the possibility of a match

3.11 Linear Timealgorithm
It can be verified that most candidate detectors are rejected. That has no overhead
when done by the human body during censoring. However it becomes rather
ineffective when a computer is involved.
As previously stated, two T-bit strings match each other if they are identical in at least
r contiguous G positions that runsin linear time with respect to size of input.
The data structure used for this algorithm consists of (7-G)"2" Array representation
covering all possible ways two strings may combine over G contiguous bits.
Hence the running time can be thought of as
1. W((T-G)* Nginitializing for those entries in Nr that match a self string.
2. Plus W((T-G)* 2" time to recursively fill in the rest of the array.
The time complexity of this algorithm was derived based on two factors
i. Time to generate a number of candidates (Ng)
ii. Time to compare each with one of them with self (N

The space complexity depends on the self-population, whose individuals are of length

1

45

Chapter 1V Findings and Conclusions

4.0 Information loss

Since binary strings, representing data in the computer have to be split into G-
contiguous bits according to the agreed threshold. We find that as bits are split across,
no consideration is assumed of the existence of unique bit strings s;, which fosters a

loss of information through this division.

As an example, assume Ng and these sets of k unique stringsin S (s, S, ...S)- they

are (Ns- 1)!

(!, (k+1)!, ... (k+n)!

Being possible combinations of ways of assigning the value N;__ s which if recombined
form S perfectly.
But since we are using the alphabet { 0,1} then the above can be written to

Log 4 (Ng - D)!

(k!, (k+1)!, ... (k+n)!
In general, we tend to ignore the change k in Ng since as it can be inferred on the
second equation; the value of information loss is apparently small.
Larger strings of T, tend to reduce the number of duplicate strings, an subsequently

reducing the amount of information cost due to string splitting.

46

4.1 Relationship between Protected Setsand Failure Probability
We experimented with varied lengths and an arbitrary incremented value of failure
probability asillustrated a lower bound for Ng as a function of increased length of the

binary strings as follows:

Length T | Ns "Ne (P!=0,2)" ["Ne (Pl= 0,02)"
12 100000 | 160934 391202
14 95401 | 153542 33928
16 51607 | 83058 201888
22 50000 | 80442 195601
26 43103 | 69372 168620
28 41000 | 65987 160393
30 30902 | 49735 120889
32 27940 | 44968 109302
38 23811 | 38322 93149
42 18971 | 30533 74215

Table 1 above is an experimental relationship between string lengths and protected
sets of strings against the failure probabilities p}
UsingaformulaYy =1

Ns

We calculated Ng, for value 0.02 and 0.02 an increase of ten percent to failure
probability p}; the detector numbers grew a 100% only. We make assertion that if the
figures grew exponentially then we could conclude on the infeasibility of the solution
set, being used on a modest environment like a PC, Laptop etc. The fact that the
detector numbers only doubled it implies smaller detectors as well as larger detectors
still can be used to detect anomal ous behaviours much the same way. The detection

ability of detectorsisindependent of the size of detectors numbers.

47

Number of Required Detectors over Lentgh

450000

400000

350000

300000

250000

200000

Number of Detector

150000

100000

50000

12 14 16 22 26 28 30 32 38 42
String Length

Fig 5 illustrates a graphical representation of the Relationships between various

binary string lengths and failure probabilities.

Above the graphed scenario, illustrate the relationship between string lengths T and
nr2 (nr2= NRgo). Nro represents potential detectors before censoring phase, and nr. (nr
= NR) representing detectors after censoring. When strings lengths reduce in size by a
larger dimension then we have numerous holes. Holes as defined earlier are pieces of
strings that have both characteristics of self and non-self.

The observation is that as the string gets bigger in the direction of G, we generally
require considerably fewer detectors to representing self to match non-self. In other

words we can control our detection capacity and still enjoy areliable protection.
48

Detector Set size(Nro)

Ns (Self Set) Vs. Detector Set(Nr) Ym=1/Ns Chart 2A

4000000

3500000

3000000

2500000

2000000

1500000

—NS
NrO

1000000

500000

L0 1Ly S A L L
O N 9 Q0 S <'3 Q L v > 0 o> ‘o ©
NS ’b(b\' N /\ Q, <,§b q”-’\' A Q"b ,bQ,\‘ & 'y& o\ q, q/@) q:\@ »
RS fv“’,ﬁ;b fﬁ%fgb fb‘bq,Q Q’%\/ <o(o 61’ /\° N

Number of Self Strings(Ns)

Fig 10 shows a population of detectors graphed against a set of protected string using

afixed probability of matching using the equation 1/Ng Nson X-axis and a set of

detector strings on Y -axis which were generate using equation Ngg

__=LnPf _

1

Y,

m

(1-Y)"

Despite Ngrg values being shown fractional, the assumption is

that we are working with rounded numbers, the solutions were included for

completeness sake.

The Following values were used

Ns Ym No

1151.5 0. 000868432 | 5039. 893261
3333 0. 00030003 | 14583. 74919
5636 0. 000177431 | 24659. 15707
7817.5 0. 000127918 | 34203. 01405
10120.5 9. 88093E- 05 | 44278. 42212
12302 8. 12876E- 05 | 53822. 27915

49

14605 6. 84697E- 05 | 63897. 68726
16786. 5.95717E-05 | 73441. 54431
18971 5.2712E-05 | 82998. 52609
21271 4.70124E- 05 | 93060. 80949
23811 4.19974E-05 | 104173. 0703
25755. 3. 88267E-05 | 112680. 0747
27940 3.5791E-05 | 122237. 0565
30240 3. 30688E- 05 | 132299. 3399
30902 3. 23604E- 05 | 135195. 5275
34724. 2. 87981E- 05 | 151918. 6051
39209 2. 55043E-05 | 171537. 8702
41000 2. 43902E- 05 | 179373. 3266
43103 2. 32002E- 05 | 188573. 7536
43693. 2.28867E-05 | 191157. 1354
48178 2. 07564E-05 | 210776. 4006
50000 0. 00002 218747. 4791
51607 1. 93772E- 05 | 225777. 9527
52662. 1. 89888E- 05 | 230395. 6658
57147 1. 74987E- 05 | 250014. 931

61631. 1. 62255E- 05 | 269634. 1962
66116 1. 51249E- 05 | 289253. 4614
70600. 1. 41642E- 05 | 308872. 7266
75085 1. 33182E- 05 | 328491. 9918
79569. 1. 25676E- 05 | 348111. 257

84054 1. 18971E- 05 | 367730. 5222
88538. 1. 12945E- 05 | 387349. 7874
93023 1. 075E-05 406969. 0526
95401 1. 04821E-05 | 417372. 5787
97507. 1. 02556E- 05 | 426588. 3178
100000 0. 00001 437492. 7706
101992 9. 80469E- 06 | 446207. 583

106476. 9. 39174E- 06 | 465826. 8482
110961 9. 01218E- 06 | 485446. 1134
115445. 8. 6621E-06 | 505065. 3786
119930 8. 3382E-06 | 524684. 6438
124414. 8. 03765E- 06 | 544303. 909

128899 7. 75801E- 06 | 563923. 1742
133383. 7.49718E- 06 | 583542. 4394
137868 7. 25331E- 06 | 603161. 7046
142352. 7. 02482E- 06 | 622780. 9698
146837 6. 81027E- 06 | 642400. 235

151321. 6. 60845E- 06 | 662019. 5002
155806 6. 41824E- 06 | 681638. 7654
160290. 6. 23867E- 06 | 701258. 0306
164775 6. 06888E- 06 | 720877. 2958
169259. 5. 90809E- 06 | 740496. 561

173744 5. 75559E- 06 | 760115. 8262
178228. 5. 61077E-06 | 779735. 0914
182713 5. 47306E- 06 | 799354. 3566
187197. 5. 34195E- 06 | 818973. 6218
191682 5. 21697E- 06 | 838592. 887

196166. 5.09771E-06 | 858212. 1522
200651 4.98378E-06 | 877831. 4174
205135. 4. 87483E- 06 | 897450. 6826
209620 4. 77054E-06 | 917069. 9479
214104. 4.67062E- 06 | 936689. 213

218589 4.5748E-06 | 956308. 4782

50

223073. 4. 48283E-06 | 975927. 7435
227558 4. 39448E- 06 | 995547. 0087
232042. 4. 30956E-06 | 1015166. 274
236527 4.22785E-06 | 1034785. 539
241011. 4.14918E- 06 | 1054404. 804
245496 4. 07339E-06 | 1074024. 069
249980. 4. 00031E-06 | 1093643. 335
254465 3. 92981E-06 | 1113262. 6
258949. 3. 86176E-06 | 1132881. 865
263434 3. 79602E- 06 | 1152501. 13
267918. 3. 73248E-06 | 1172120. 395
272403 3.67103E-06 | 1191739. 661
276887. 3. 61158E-06 | 1211358. 926
281372 3. 55401E- 06 | 1230978. 191
285856. 3. 49826E- 06 | 1250597. 456
290341 3. 44423E- 06 | 1270216. 721
294825. 3. 39184E- 06 | 1289835. 987
299310 3. 34102E- 06 | 1309455. 252
303794. 3.2917E-06 | 1329074. 517
308279 3. 24381E- 06 | 1348693. 782
312763. 3.1973E-06 | 1368313. 047
317248 3.15211E- 06 | 1387932. 313
321732. 3.10817E-06 | 1407551. 578
326217 3. 06544E- 06 | 1427170. 843
330701. 3. 02388E- 06 | 1446790. 108
335186 2. 98342E- 06 | 1466409. 373
339670. 2. 94403E- 06 | 1486028. 639
344155 2. 90567E- 06 | 1505647. 904
348639. 2. 86829E- 06 | 1525267. 169
353124 2. 83187E- 06 | 1544886. 434
357608. 2. 79635E- 06 | 1564505. 699
362093 2. 76172E- 06 | 1584124. 965
366577. 2. 72794E- 06 | 1603744. 23
371062 2. 69497E- 06 | 1623363. 495
375546. 2. 66279E- 06 | 1642982. 76
380031 2. 63136E- 06 | 1662602. 025
384515. 2. 60068E- 06 | 1682221. 291
389000 2.57069E- 06 | 1701840. 556
393484. 2.5414E-06 | 1721459. 821
397969 2.51276E-06 | 1741079. 086
402453. 2.48476E- 06 | 1760698. 351
406938 2.45738E-06 | 1780317. 617
411422, 2. 43059E- 06 | 1799936. 882
415907 2.40438E-06 | 1819556. 147
420391. 2. 37874E-06 | 1839175. 412
424876 2. 35363E-06 | 1858794. 677
429360. 2. 32905E- 06 | 1878413. 943
433845 2. 30497E- 06 | 1898033. 208
438329. 2. 28139E-06 | 1917652. 473
442814 2. 25828E- 06 | 1937271. 738
447298. 2. 23564E- 06 | 1956891. 004
451783 2.21345E-06 | 1976510. 269
456267. 2.1917E-06 | 1996129. 534
460752 2.17036E- 06 | 2015748. 799
465236. 2. 14944E- 06 | 2035368. 064
469721 2. 12892E- 06 | 2054987. 33
474205. 2. 10879E- 06 | 2074606. 595

51

478690 2. 08903E- 06 | 2094225. 86

483174. 2. 06965E-06 | 2113845. 125
487659 2. 05061E- 06 | 2133464. 39

492143. 2. 03193E- 06 | 2153083. 656
496628 2. 01358E-06 | 2172702. 921
501112. 1. 99556E- 06 | 2192322. 186
505597 1. 97786E-06 | 2211941. 451
510081. 1. 96047E- 06 | 2231560. 716
514566 1. 94339E- 06 | 2251179. 982
519050. 1. 92659E- 06 | 2270799. 247
523535 1. 91009E- 06 | 2290418. 512
528019. 1. 89387E-06 | 2310037. 777
532504 1. 87792E- 06 | 2329657. 042
536988. 1. 86224E- 06 | 2349276. 308
541473 1. 84681E- 06 | 2368895. 573
545957. 1. 83164E- 06 | 2388514. 838
550442 1. 81672E- 06 | 2408134. 103
554926. 1. 80204E- 06 | 2427753. 368
559411 1. 78759E- 06 | 2447372. 634
563895. 1. 77338E- 06 | 2466991. 899
568380 1. 75939E- 06 | 2486611. 164
572864. 1. 74561E- 06 | 2506230. 429
577349 1. 73205E- 06 | 2525849. 694
581833. 1. 7187E-06 | 2545468. 96

586318 1. 70556E- 06 | 2565088. 225
590802. 1. 69261E- 06 | 2584707. 49

595287 1. 67986E- 06 | 2604326. 755
599771. 1. 6673E-06 | 2623946. 02

604256 1. 65493E- 06 | 2643565. 285
608740. 1. 64274E- 06 | 2663184. 551
613225 1. 63072E- 06 | 2682803. 816
617709. 1. 61888E- 06 | 2702423. 081
622194 1. 60722E- 06 | 2722042. 346
626678. 1. 59571E-06 | 2741661. 612
631163 1. 58438E-06 | 2761280. 877
635647. 1.5732E-06 | 2780900. 142
640132 1. 56218E- 06 | 2800519. 407
644616. 1. 55131E- 06 | 2820138. 672
649101 1. 54059E- 06 | 2839757. 937
653585. 1. 53002E- 06 | 2859377. 203
658070 1. 5196E-06 | 2878996. 468
662554. 1. 50931E- 06 | 2898615. 733
667039 1. 49916E-06 | 2918234. 998
671523. 1. 48915E- 06 | 2937854. 264
676008 1. 47927E- 06 | 2957473. 529
680492. 1. 46952E- 06 | 2977092. 794
684977 1.4599E-06 | 2996712. 059
689461. 1. 45041E-06 | 3016331. 324
693946 1. 44103E- 06 | 3035950. 589
698430. 1. 43178E- 06 | 3055569. 855
702915 1. 42265E- 06 | 3075189. 12

707399. 1. 41363E- 06 | 3094808. 385
711884 1. 40472E- 06 | 3114427. 65

716368. 1. 39593E- 06 | 3134046. 916
720853 1. 38725E-06 | 3153666. 181
725337. 1. 37867E- 06 | 3173285. 446
729822 1. 3702E-06 | 3192904. 711

52

734306.

. 36183E- 06 | 3212523. 976

1

738791 1. 35356E- 06 | 3232143. 242
743275. 1. 3454E-06 | 3251762. 507
747760 1. 33733E-06 | 3271381. 772
752244, 1. 32936E- 06 | 3291001. 037
756729 1.32148E-06 | 3310620. 302
761213. 1. 31369E- 06 | 3330239. 568
765698 1. 306E- 06 3349858. 833
770182. 1. 29839E- 06 | 3369478. 098
774667 1. 29088E- 06 | 3389097. 363
779151. 1. 28345E- 06 | 3408716. 628
783636 1. 2761E-06 | 3428335. 893
788120. 1. 26884E- 06 | 3447955. 159
792605 1. 26166E- 06 | 3467574. 424
797089. 1. 25456E- 06 | 3487193. 689
801574 1. 24755E- 06 | 3506812. 954
806058. 1. 2406E-06 | 3526432. 219
810543 1. 23374E- 06 | 3546051. 485
815027. 1. 22695E- 06 | 3565670. 75

819512 1. 22024E- 06 | 3585290. 015
823996. 1. 2136E-06 | 3604909. 28

The N set was generated probabilistically from different sets and sorted as per above

illustration on Table 3.

4.2 Experimenting with Y, and P} as constants.

Assume Ny isindependent of Ns and if Y ,and p} are fixed values then
the detector set should not grow dependently with Self-set. Thisimplies
that fewer numbers of detectors are likely to protect alarger number of
self-sets.

Exponential growth of N,gand Ngcan only occur if Ng, p;, and Y, are
fixed to some specific values. The difficulties being that the value become
unusable in an environment of PC computers. The benefits of such alarge
detector isthat it is apparently difficult for an intruder to modify self-

elements and a detector without being noticed.

53

4.3

The price of exponential growth isacompletely secure systemin alarge

computer environment and minimal or no protection at all on asmaller

machine due to resources constraints. When space is used up then speed is

affected negatively.

Experimenting with Theoretical Nro and Experimental Ngg

We experimented with afixed Nr for more than 500 trials The N for this

experiment was fixed to 45 and the theoretical P} was calculated using the

equation P!=(1-Y) “r.

Ns Ym P! N: | Experimental | Theory N, Experi ments
N o P:

8 0.125 0. 002456758 | 45 | 139. 9012049 | 130.9628416 | 0. 367879441 nE2

16 | 0.0625 0. 054790774 | 45 | 130. 5001719 | 126. 3781785 | 0. 367879441 | =32

22 | 0.045454545 | 0. 123267227 | 45 | 128. 159127 125. 2238372 | 0. 367879441 G =8

30 | 0.033333333 | 0.217497086 | 45 | 126. 5467656 | 124. 425736 | 0. 367879441 NR
=45

38 | 0.026315789 | 0.301172792 | 45 | 125. 6324235 | 123. 972018 | 0. 367879441 p!
=0.5

46 | 0.02173913 | 0.371929558 | 45 | 125. 0434809 | 123. 6793339 | 0. 367879441

54 | 0.018518519 | 0.431216073 | 45 | 124. 6324718 | 123. 4748723 | 0. 367879441

64 | 0.015625 0. 492295534 | 45 | 124. 2655963 | 123. 2922232 | 0. 367879441

74 |0.013513514 | 0.54212735 |45]123.9992919 | 123.1595589 | 0. 367879441

82 | 0.012195122 | 0. 575708302 | 45 | 123. 8336157 | 123. 0769885 | 0. 367879441

90 |0.011111111 |0.60483564 |45 | 123.6977379 | 123.0092485 | 0. 367879441 P!
:(1-
Y
power
of Nr

98 | 0.010204082 | 0. 630310636 | 45 | 123. 5842825 | 122. 9526727 | 0. 367879441 Ym
=1/ Ns

106 | 0. 009433962 | 0. 652761484 | 45 | 123. 4881225 | 122.9047111 | 0. 367879441

114 | 0.00877193 | 0.67268485 | 45 | 123. 405583 122. 8635357 | 0. 367879441

122 | 0. 008196721 | 0. 690477107 | 45 | 123. 3339617 | 122.8278012 | 0. 367879441

130 | 0. 007692308 | 0. 706457613 | 45 | 123. 2712264 | 122. 7964961 | 0. 367879441

138 | 0. 007246377 | 0. 720886071 | 45 | 123. 2158201 | 122. 7688449 | 0. 367879441

146 | 0. 006849315 | 0. 733975545 | 45 | 123. 1665294 | 122. 7442431 | 0. 367879441

Fig 7 isillustrating the protection capabilities of detectors protecting N of 146 and

when Nr is kept constant.

54

The full detail of the equation being as down listed (i) to (vi)

(i)
(if)
(iii)
(iv)
W)

(vi)

PI=(1-Ym) "&

Y m=1/Ns

Ng=45

The alphabet composition being m=2 for binary {0,1}, T=32, and G=8
Ns= Random generated strings all round

The Random strings were generated until valid binary Ng strings

detectors were confirmed.

4.3.1 Observed Results

There was a closer agreement between theories and practical in that for the 138 self-

strings they could be protected by a mere 45 strings with afailure rate of 73%. 73%is

quite a substantial failure that brings out the infeasibility potential of negative

selection when applied to a smaller number of self-string. Though befits are realized

when the repertoires are allowed to grow exponentially to protect even smaller self.

Ratios of experimental and theoretical as described in this experiment show minor

differences; otherwise they all produce a modest number of actual detectors Ng

55

EXPERIMENTAL AND THEORY PROTENTIAL DETECTORS

145

140

135 \\
130

DETECTORS

125 \

120

115

110
Ns 8 16 22 30 38 46 54 64 74 82 90 98 106 114

PROTECTED STRINGS

O Eperimental Nro @ Theory Nro

Fig 8 shows the relationship of potential detectors against actual detectors before and

after censoring

4.4 Discussions

The algorithm used and presented in this thesis take its inspiration from the generation
of T cellsin the immune system. The T-cells are capable of identifying over 98% of
foreign elements entering or circulating the body. The capabilities that allow the cells
to recognised the cellsis a chemical mask called receptors. These receptors are made

of pseudo-random genetic process.

T-cells whose receptors recognise self-molecules are not allowed to leave the thymus

where they are destroyed, and only the fittest cells that pass the fitness requirements

are allowed to form the basis of our immune protection defence system.

56

Our algorithm works similarly to the system described above, generating detectors
randomly, and eliminating (censoring) the one that detect self. We use binary strings
as the model of our antigens, since the computer, system'’s basis of string recognition

is made out of the binary strings.

The binary models have been used in studying several different aspects of immune
systems. The emphasis however is that the binary strings oversimplify the

complexities of chemistry of antibodies recognition system.

We in this thesis have experimented with mostly theoretical aspirants of the concepts
of matching and recognizing of intruder in our systems. Various testing of upper and
lower bounds were made and several interesting observations were made. To keep the
number of holeslow Ng <= 2". Number of holes can be controlled by formula N,
<=P!*2" where N, is the number of holes, Value of G may have to be chosen again
many times before an acceptable probability is obtained. There is no rule of athump

for choosing G and T.

Sampling, especially done at random, brings non-determinism in the process, which
can yield different solutions on different runs, even if the model remains the same. As
compared to the, linear, non-linear and integer models included deterministic

methods, as they yield similar answers if the initial input value in the run is the same.

Somewhat guessed values have to be put in place for a genetic algorithm to terminate,
otherwise the algorithm never knows for certain when to stop, Besides the length of

time, or the number of iterations or specific solutions sets, that one wishes to explore.

57

The inclusion of so many solutions, all representing either an elegant solution or a

weak solution make it avery difficult task for an optimum solution to be arrived at.

45 Conclusion and Recommendations

The researches by various authors have shown how possible it was to use the negative

selection solution algorithm to solve the security concerns of the discipline of

Computer science. Most of the work by these authors concentrated mainly at
producing the right size and right detector set. We have described a general method
for distinguishing self from non-self in the context of computational systems, and this
research have illustrated infeasibility and feasibilities of the system in generating and
matching antibodies (virus). The major computational difficulty is manifested in the
generation of the first potential detectors; almost an exponential explosion is created
to protect self-set. We have shown that the ratio of detectors isindependent of the
protected set. Thisillustrates that a genetic algorithm is useful in smaller and larger

environments, where some monitoring of computersis required.

Asthe length of string matching grow the algorithm performance works at optimum
level. The major future work should concentrate on how to eliminate holes that appear
resilience despite the mathematical rigor being used to derive the censoring equations.
Another area of future investigation isto derive a complementary set of methods of
detection within the biological context, by trying to understand most of the

complexities that contribute to process of immune defense in the human body.

58

Annexes

A.1 Introduction

The test on data collected from hornet site www.honeynet.org, was used, to

simulate a live virus environment. The shell script Randomly generated data,
generated by the Unix alpha server digital Unix environment was used as well.

Datain random form from random.org was used as well as test data.

A shell script named Covert_to_as an ASCII to its equivalent binary or hex.
We assumed the first character was our G-contiguous bit and it constituted the
binary required. We picked any part like a port scan and converted the first
letter of every one of its IP address in the file to a binary string and matched
string from the file sample of known viruses, as many strings in as many file

as required

A.2 Hornet Sample Data

Apr 16 02:45:37 lisa snort[7483]: |1DS13/portmap-request-mountd:
200.190.13.181:1372 -> 172.16.1.107:111

Apr 16 07:17:06 lisa snort[7483]: 1DS128/web-cgi-phf: 200.190.8.220:55220 -
> 172.16.1.107:80

Apr 16 14:54:20 lisa snort[7483]: IDS171/Ping zeros: 24.201.15.148 ->
172.16.1.101

Apr 16 14:54:20 lisa snort[7483]: IDS171/Ping zeros. 24.201.15.148 ->
172.16.1.105

Apr 16 14:54:20 lisa snort[7483]: IDS171/Ping zeros: 24.201.15.148 ->
172.16.1.107

Apr 17 06:02:32 lisa snort[8255]: IDS198/SYN FIN Scan: 195.116.152.104:0
->172.16.1.101:111

Apr 17 06:02:32 lisa snort[8255]: IDS198/SYN FIN Scan: 195.116.152.104:0
->172.16.1.107:111

Apr 17 09:45:28 lisa snort[8255]: IDS198/SYN FIN Scan: 195.116.152.104:0
->172.16.1.105:111

Apr 19 08:00:19 lisa snort[3515]: IDS/DNS-version-query:
212.25.75.196:1723 -> 172.16.1.101:53

59

Apr 20 01:26:00 lisa snort[3515]: IDS212/dns-zone-transfer:
24.234.45.60:4075 -> 172.16.1.107:53

Apr 20 03:49:38 lisa snort[3515]: IDS/IDNS-version-query: 216.123.23.5:4349
->172.16.1.101:53

Apr 20 03:49:39 lisa snort[3515]: IDS/IDNS-version-query: 216.123.23.5:4350
->172.16.1.107:53

Apr 20 21:48:55 lisa snort[12353]: IDS246/large-icmp: 129.142.224.3 ->
172.16.1.107

Apr 20 21:48:55 lisa snort[12353]: 1DS246/large-icmp: 129.142.224.3 ->
172.16.1.107

Apr 20 22:48:13 lisa snort[12632]: 1DS159/Ping Microsoft Windows:
216.228.4.204 -> 172.16.1.101

Apr 20 22:48:13 lisa snort[12632]: 1DS159/Ping Microsoft Windows:
216.228.4.204 -> 172.16.1.101

Apr 20 23:00:33 lisa snort[12657]: IDS171/Ping zeros. 216.228.4.133 ->
172.16.1.101

Apr 21 11:01:27 lisa snort[12777]: IDS/IDNS-version-query:
207.236.55.76:4039 -> 172.16.1.101:53

Apr 21 11:01:28 lisa snort[12777]: IDS/'DNS-version-query:
207.236.55.76:4044 -> 172.16.1.107:53

Apr 22 08:36:29 lisa snort[743]: IDS/DNS-version-query:
212.244.222.100:1368 -> 172.16.1.101:53

Apr 22 08:36:29 lisa snort[743]: IDS/DNS-version-query: 212.244.222.100

A.3 Shell Scripts

A.3.1 Covert_to as Shell Script

Author: Hector Kapelewela
Purpose: Testing live virus

#/bin/ksh
START=33 # FISRT OF PRINTABLE ASCII CHARACTERS IN
DECIMAL.
END=125.#LAST OF PRINTABLE ASCII CHARACTERS IN
DECIMAL

echo" DECIMAL HEX CHARACTER" #HEADER.
echo

=33

#LIMIT=10

while[" $i" -It "$END"]
do
echo-n"$ " # -n suppresses new line.
A Space, to separate printed out numbers.

60

i="expr $i +1° #var0=$(($var0+1)) may be used.

echo $i | awk '{printf(" %3d % 2x %c\n", $1, $1, $1)}'
done

exit 0

A.4 Description and functionalities

The basic Unix algorithms were written at each stage to suite the task .We take
to it that the reader is familiar with the syntax used by Unix shell, simple awk
rule and sed to appreciate fully the functions and the testing done to derive a

practical qualification to our system.

A script random.ksh was used to generating the random detector initially Ngro
and then Ng This script has a varying variable that is used to tune fine the size
of the repertoires as they are produced by the scripts. The fact that our random
number are smaller than 0, (0<x<0, where x is the random value obtained.)
further manipulation is applied to convert it to whole numbers e.g. multiplying

it by 10,100,1000 etc.

We present the algorithm random.ksh outline

#! /bin/ksh
$RANDOM returns a different random integer at each invocation.
#Nominal range: 0 - 32767 (signed 16-bit integer).

Generation of probabilistic values

MAXCOUNT=1000
count=1

61

echo
echo " $MAXCOUNT random numbers:"

echo " --=-mmmmmmmmeeee "
while ["$count" -le SMAXCOUNT] # Generate 1000
(M AXCOUNT) random integers.
do
number=$RANDOM
echo $number
let " count += 1" # Increment count.
done
echo " ---===mmmmmmeeeee "
exit 0

The MAXCOUNT was used to control generation of the random strings as
reguire for comparison performance using earlier defined equations.
A sed command is used to strip off the decimal fractional part, as when

required.

We used the script

#!/bin/ksh

string=xxxx

echo "len($string)" | m4 #a
echo " substr ($string,4)" | m4 #A01
echo"eval(33/3)" |m4 #33
exit 0

When we wanted a specific length and we simply wanted to reduce our strings
either to octal words by mainly sub stringing a given string or dividing it by

another number to reduceit.

62

Script used to convert and reconvert through bases known as Base_Conv.ksh
#!/bin/bash
NOARGS=65
bs="basename " $0" " # Program name
VER="echo '$Revision: 1.2 $' |cut -d' ' -f2° #==>VER=1.2
Usage () {

echo " $bs - convert number to onther bases, $VER (stv '95)
usage: $bs[number ...]
If thereisno number read from standard input.
A number may be

binary (base 2) starting with Ob (i.e. 0b1100)

octal (base 8) starting with 0 (i.e. 014)

hexadecimal (base 16) starting with Ox (i.e. 0xc)

decimal otherwise (i.e. 12)" >& 2

exit SNOARGS

} #==>Function to print usage message.

Msg () {
for i #==>in[list] missing.
do echo " $bs: $i" >&2

done

Fatal () { Msg " $@" ; exit 66; }

63

PrintBases () {
Find base number

fori #==>in[list] missing...

do # ==> s0 operates on command line ar g(s).
case" $i" in
Ob*) ibase=2;; # binary

Ox*[[a-f]*[[A-F]*) ibase=16;; # hexadecimal

0*) ibase=8;; # octal
[1-9]%) ibase=10;; # decimal
*)

Msg "illegal number $i - ignored"
continue;;

esac

Remove prefix, convert hex digits to upper case (bc needsthis)
number="echo " $i" | sed -e 's:AO[bBxX]::" | tr ‘'[a-f]' '[A-F]"

#==>Uses":" assed separator, rather than "/".

Convert number to decimal
dec="echo "ibase=$ibase; $number" | bc’ # ==> 'bc' is calculator
utility.

case" $dec" in

[0-9]*) ; #number ok
*) continue;; #error:ignore
esac

64

Print all conversionsin oneline.
==>"here document' feeds command list to 'bc'.
echo "bc <<!

obase=16; " hex="; $dec

obase=10; " dec="; $dec

obase=8; "oct="; $dec

obase=2; "bin="; $dec

“|sed-e's:: @

done

while[$#-gt 0]

#==> |sa"whileloop" really necessary here,
#==>+ since all the cases either break out of the loop
#==>+ or terminate the script.

==> (Thanks, Paulo Marcel Coelho Aragao.)

do
case" $1" in
--) shift; break;;
-h) Usage;; # ==> Help message.
-*) Usage;;
*) break;; #first number

65

esac #==>Moreerror checking for illegal input might be useful.
shift

done

if [$#-0t 0]
then
PrintBases" $@"
else #read from stdin
whileread line
do
PrintBases $line
done
fi

exit 0

We used grep, m4 macro processor, awk, sed command as required, however
any other language or a Unix utility may be used whenever appropriate, and
whenever the reader feels like.

Our scripts or programs were high performing due to a one linear nature, or as
in Unix idiom as command prompt using the high performing Unix

capahilities.

66

A.6 Toolsand Usage

We ran a comprehensive simulation using the Unix, utilities and we have
presented our findings. In most cases quite representative with guidance and
trends, however in very smaller occasions results were surprisingly different.
To work with test from hornet site, we had to convert the strings to G-
contiguous standard matching bits. Hence the data was partially converted to a
binary string

We had to convert random strings from bases to more familiar bases to enable

us make comparisons, and reconvert to binary strings.

The thrust of our project isto simplify the art of protecting computers and develop
agenetic solution to protect those machines, using a combination of very readily

available tools as supporting algorithms.

The awk utility is versatile and we had to use it in some cases as a prompt

command. Many algorithms were used in conjunction with the above.

67

Bibliography

Anderson, JP. “Computer Security: (1980), Threat Monitoring and

Surveillance.” James P. Anderson Co. (February 1980).

Ayara, M. J Timmis, L. de Lemos, de Castro, R and Duncan: (2002), Negative

Selection: How to generate detectors. [Ayara Timisg]

Corchado J. M., Alonzo L., and Fyfe (eds.) C, :(2002), SOCO-2002 In
Artificial Neural Networks in Pattern Recognition, University of Paisley, UK,

pp. 67-84.

Croshie M, Spafford G. :(1996), Defending a Computer System using
Autonomous Agents, Technical report No 95-022, 8th National Information

Systems Security Conference Perdue University, 1996 [MARKC]

Dasgupta D, and Gonzalez F. :(2002), An Immunity Based Techniques to

characterize intrusions in Computer Networks, |EEE
Dasgupta D, and Forrester S :(1996), Novelty Detection in time series data

using ideas from immunology, in proceeding of the international conference

on intelligent systems.

68

Dasgupta D and Forrest S :(1999) An anomaly Detection algorithm inspired
by the immune system in: Artificial Immune systems and their applications,

Springer_Verlang, Inc

De Castro, L. N. and Timmis, J. I. (2002), "Artificial Immune Systems:. A

Novel Paradigm to Pattern Recognition"

DeCastro L. N and JTimmis :(2002) Artificia Immune Systems anew

computational approach, London, UK

Denning D :(1986) An Intrusion Detection Model, (1986),

http://citeseer.ist.psu.edu/croshi e96def ending.html

Genetic Programming Home Page www.geneticprogramming.com [GHM]

Haeseleer P, Forest S, Helman P. (1997): An Immunological Approach to
Change Detection: Algorithms, Analysis and Implications, University of New

Mexico. [PATRICK D]

Helmer, G, Johnny S, Wong K, Honavar, V, Miller Les. (1998) Intelligent
Agents for Intrusion Detection. Proceedings, |IEEE Information Technology

Conference, Syracuse, NY, September 1998, pp. 121-124; [GUGH]:

Hofmeyr S. and Forrest S. :(2000), Architecture for an Artificial Immune

System Evolutionary Computation.

69

Juniper Networks, Inc Intrusion Detection and Prevention, White Paper part

number: (2005) 200065-001. [JUN]

Know Your Enemy: (2001) Statistics Analysing the past predicting the future;

www.honeynet.org, [HONN]

Koza J. R, Forest H. B. et a: (1999) Genetic Programming Il1, Morgan

Kaufmann Publishers, Inc. [JRKOZA]

KozaJ. R. Forest H. B. et a: (1994) Discovery of Rewritable Rules in Linden
Mayer and system state transmission rules in cellular automata; via GP,

Proceeding to Symposium on pattern matching, [RIKOZAZ2]

Luger G, F, (1997): A. Stubblefield: Artificial Intelligence-Structures and

Strategies for Complex Problem Solving 3 Edition, Addison Wesley

Mutz D, Vigna G, Kemmere R: (2004) University of California, Reliable

software group.

Rebecca B, Peter M :(2003), Intrusion Detection Systems; Special publication

on Detection Systems, National Institute of Standards and Technology;

Infidel, Inc, Scotts Valley, CA

70

Ruggett J, Bains W, (1992): Artificial Intelligence a-z; Chapman Publishers,

UK.

Smith R., Forrest S, Perelson A.S: (1993) Searching for Diverse, cooperative
Population with genetic algorithms. Evolutionary computations, 1(2): 127-

149,

Stallings, W (2003): Cryptography and Network Security 3 Edition,

Publisher Prentice Hall Inc.

Stoll C. (1990), Cuckoo’s Egg, Pocket Books, stoll @ocf.berkeley.edu

Tanebaum A. S :(2002) Computer Networks 4™ Edition, Prentice Hall

Ware W. H: (1979) Security Controls for Computer Systems, R-609-1; Report

of Defence Science Board Task Force on Computer Security.

71

