APPROACHES FOR EPIDEMIOLOGICAL INSIGHTS INTO THE IODINE NUTRITION OF RUMINANT LIVESTOCK UNDER NATURAL CONDITIONS IN

ZIMBABWE

By

UNESU HILDA FORTUNE USHEWOKUNZE-OBATOLU

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Clinical Veterinary Studies Faculty of Veterinary Science University of Zimbabwe

December, 2004

DEDICATION

I dedicate this thesis to all those who value the satisfaction that comes with perseverence. In particular my late father, S.M.M. Ushewokunze whose motto to family was "if others can, why can't I?" and my late mother who was resolute that a lot of solutions are a result of common sense.

I also dedicate this thesis to my husband Oluseye and my only daughter Fadeke, who stood by me in demanding times when I had to stay up late and often, away from home both physically and in mind, in order to make my dream of self-actualisation a reality.

ABSTRACT

This thesis is based on work founded on an hypothesis that Zimbabwe is endemic for hypothyroidism as previously indicated in human studies, therefore a case for hypothyroidism for livestock was presumed.

The studies conducted for this thesis sought to establish population diagnostic systems for thyroid status, hence iodine status, that could be used in cattle and goats while establishing some reference values and epidemiological factors that could be used in herd health decision-making.

The approaches used for the epidemiological studies included a population crosssectional study using cattle and goat sera, testing of pasture materials for iodide levels, a station supplementation experimental study and a farmer participatory field trial testing an iodised feed supplement. The diagnostic methods tested included radiommunoassay (RIA) for thyroid hormones, the iodide ion selective electrode (ISE) method for feed materials and the enzyme linked immunosorbent assay (ELISA) for serum thyroid stimulating hormone (TSH).

The RIA was able to detect serum free triiodothyronine and free tetraiodothyronine in cattle and goats. The results are presented confirming the effect of factors such as animal age, body weight, sex, lactation status and natural agro-ecological region in cattle and goats. The range for cattle was 0.089 to 1.900ng/dl with a median of 0.46ng/dl; while for goats the range and median were 0.430 to 1.49 ng/dl and

0.933ng/dl, respectively. An attempt to validate the RIA findings in cattle against levels of thyrotropin did not succeed because the ELISA method attempted suffered from cross-reaction with leutenising hormone (LH) and follicle stimulating hormone (FSH).

Despite that observations of goitre in goat kids were made in an area previously recorded as highly endemic for human hypothyroidism, a field trial involving iodine supplementation to dairy cattle in the same area could not substantiate hypothyroidism in lactating animals. On the contrary, the iodine containing supplement appeared to depress milk yield. Similarly, a controlled station experiment with weaner calves could not indicate a performance advantage resulting from iodine supplementation.

The studies have therefore established the RIA and the ISE as methods which can be used to study the iodine status of cattle and goats and some data to assist further investigations into supplementation regimes aimed at improving productivity in cattle and other livestock.

ACKNOWLEDGEMENTS

The invaluable assistance in the tedious literature search by the librarian Mr C Madziwa is gratefully acknowledged, so is the support to him by the late Mrs Grace Makoni.

For laboratory analysis, I am most thankful to Mrs Anne Bernie and Mrs Esi Chinyanga for their most valuable technical support on the RIA assays. I gratefully acknowledge the leadership of Dr Suman Mahan on the ELISA assays which were empirically generated with his guidance and the excellent support of Ms Shalt Semu. I thank Mrs Lydia Mabikacheche for her untiring work in the evaluation of the ELISA test and Mrs Ethel Nyagani for valuable advice on the chemical calculations for the supplementation study at Mazowe. Dr I. Mpofu and Mr Govere both of University of Zimbabwe (UZ) Animal Science were instrumental in UZ accepting to host and guide the ion selective electrode (ISE) work on feeds at the University of Zimbabwe. For that, I am most grateful.

The arduous task of statistical analysis would not have been entirely accomplishable without the unwavering back-stopping support of the biometrician, Mrs Theresa Munyombwe-Choga. My invaluable personal assistants for many years, Mrs Erica Zvaita and the late Mr O Chinyandura, worked tirelessly on the innumerable preliminary drafts of proposals, publications, reports and finally this thesis. I thank them for being so loyal in support of my research and thesis.

I thank Dr W.N. Madzima and his team of field Veterinary staff for opening the way to let me work with them and farmers at all the points that were used in this study. In particular, I am thankful for the loyal and honest support of Mr Farai Tinarwo, for being my energetic right hand in working with the farmers of the Chikwaka small-holder dairy scheme and rallying them to understand the basis of the work I was doing with them. Similarly, I am indebted to Mr Hilton Majonga and Dr O Kakono for looking after experimental animals at the Mazowe Veterinary Field Station and ensuring the safekeeping and transfer of samples to the laboratory in Harare regularly during the course of that study.

My utmost thanks go to my supervisors at various stages. I am most grateful to Dr A Majok for his support and suggestions at the initial stages of the project conception and design. Others whose backstopping was crucial were Prof A Brand, Prof Van Leengoed, Dr Hilda T. Marima-Matarira; and for giving me the last push when hope almost failed me, Professors A Bobade and M Obwolo. External oversight support by Professor Karl Zessin and Dr Moses Kyule of the Free University of Berlin, Germany is acknowledged with thanks.

This work would not have been possible without the funding from the European Union arrangement for local research through the University of Zimbabwe. I remain grateful to the Faculty of Veterinary Science for recognizing the importance of supporting developmentoriented veterinary research by public sector researchers.

Finally, I wish to thank the Ministry of Lands, Agriculture and Rural Resettlement, for recognizing the importance of permitting capacity enhancement in senior research management by allowing these studies to be carried out under their auspices

CONTENTS

<u>CHAPTER</u>	PAGE
DECLARATION	ii
DEDICATION	iii
ABSTRACT	iv-v
ACKNOWLEDGEMENTS	vi-vii
INTRODUCTION	1-5
GENERAL LITERATURE REVIEW	6-34
IODINE STATUS OF CATTLE AND GOATS IN	35-61
ZIMBABWEAN COMMUNAL LANDS AS MEASURED BY	
FREE TETRAIODOTHYRONINE IN SERUM	
DETERMINATION OF IODIDE ION LEVELS IN	62-73
PASTURES USING THE IODIDE- ION SELECTIVE	
ELECTRODE (ISE) METHOD	
EXPERIMENTAL STUDY ON THE EFFECT OF	74-91
IODINE SUPPLEMENTATION ON THE	
PERFORMANCE OF YOUNG CATTLE AT THE	
MAZOWE FIELD STATION	
EFFECT OF IODINE SUPPLEMENTATION ON THE	92-103
MILK YIELD OF COWS IN A COMMUNAL DAIRY	
SCHEME	
AN ATTEMPT TO DEVELOP AN ELISA TECHNIQUE	104 - 123
FOR THE DETERMINATION OF THYROID	
STIMULATING HORMONE IN CATTLE	
GENERAL DISCUSSION AND CONCLUSION	124–132

<u>CHAPTER</u>	PAGE
MATERIALS AND PROCEDURES FOR THE ELISA	133-164
PROCEDURES	
IODATE DOSAGE CALCULATION	165-166
NATURAL REGIONS MAP OF ZIMBABWE	167

2. LIST OF FIGURES

Fig 2.1:	Biochemical structure of T_3 and T_4 .	12
Fig 3.1:	Scatter plot and a line of best fit of cattle serum FT_4 against age in	45
	years in a cross-sectional survey of iodine in Zimbabwe, 1997.	
Fig 3.2:	Scatter plot and line of best fit of goat serum FT ₄ against age in years	46
	obtained in a cross-sectional survey of iodine in Zimbabwe, 1997.	
Fig 3.3:	Scatter plot and a line of best fit of serum FT_4 against the number of	47
	calvings in cows obtained in a cross-sectional survey of iodine in	
	Zimbabwe, 1997.	
Fig 3.4:	Scatter plot and a line of best fit of serum FT_4 against the number of	48
	kiddings in goats obtained in a cross-sectional survey of iodine in	
	Zimbabwe, 1997.	
Fig 3.5:	Scatter plot and a line of best fit of goats serum FT_4 levels against the	49
	crown-to-rump length (CTRL) obtained in a cross-sectional survey of	
	iodine in Zimbabwe, 1997.	
Fig 3.6:	Scatterplot of cattle serum FT_4 levels against body weight obtained in	53
	a cross-sectional iodine survey in Zimbabwe, 1997.	
Fig 3.7:	Scatterplot of goat serum FT_4 levels against body weight obtained in	53
	a cross-sectional iodine survey in Zimbabwe, 1997.	
Fig 5.1.	Trends of weekly Serum FT ₄ means during the Mazowe Station	80
	Iodide supplementation study, 1998.	
Fig 5.2:	Co-relationship between serum FT ₃ and FT ₄ levels in the	81
	experimental group during the Mazowe Station iodide	
	supplementation study, 1998.	

LIST OF FIGURES

Fig 5.3:	Co-relationship between serum FT_3 and FT_4 levels in the control	82
	group during the Mazowe Station iodide supplementation study,	
	1998.	
Fig 5.4 a:	Patterns of weights and FT_4 in control calves group during the	83
	Mazowe Station Iodide supplementation study, 1998.	
Fig. 5.4b:	Patterns of weights and FT_4 in experimental calves group during	83
	the Mazowe Station Iodide supplementation study, 1998.	
Fig 5.5:	Scatter plot of FT_4 levels against age in the experimental group	84
	during the Mazowe station iodide supplementation study, 1998.	
Fig 5.6:	Scatter plot of FT_4 levels against age in the control group during the	85
	Mazowe station iodide supplementation study, 1998.	
Fig. 6.1:	Average monthly milk yields of field trial cows in the Chikwaka	99
	communal area. Iodine supplementation field trial, 2000-2001.	

LIST OF TABLES

Table 3.1:	Distribution of cattle serum FT ₄ means and medians by district,	42
	province, altitude and diptank obtained in a cross-sectional iodine	
	Survey in Zimbabwe, 1997.	
Table 3.2:	Distribution of goat serum FT ₄ means and medians by district,	43
	altitude and diptank obtained in a cross-sectional iodine Survey in	
	Zimbabwe, 1997.	
Table 3.3:	Distribution by district of means and medians of Serum FT ₄ for	44
	cattle and goats obtained in cross-sectional iodine Survey in	
	Zimbabwe, 1997.	
Table 3.4:	Distribution by age of serum FT_4 means and medians obtained from	46
	a cross-sectional survey of goats in Zimbabwe, 1997.	
Table 3.5:	Summary of cattle serum FT_4 statistics by lactation status in the	50
	Mazowe station herd in a cross-sectional survey of iodine in	
	Zimbabwe, 1997.	
Table 3.6:	Levels of serum FT ₄ by sex in the entire study cattle population	50
	obtained in a cross-sectional survey of iodine in Zimbabwe, 1997.	
Table 3.7:	Serum level of FT ₄ by sex in the entire study goat population	51
	obtained in a cross-sectional survey of iodine in Zimbabwe, 1997.	
Table 3.8:	Summary results of pairwise comparisons of natural region-	52
	specific median serum FT ₄ levels in the entire study goat	
	population obtained in a cross-sectional survey of iodine in	
	Zimbabwe, 1997.	

LIST OF TABLES

Table 3.9:	Summary results of pairwise comparisons of natural region-	52
	specific median serum FT_4 levels in the entire study cattle	
	population obtained in a cross-sectional iodine survey in	
	Zimbabwe, 1997.	
Table 4.1:	Distribution of forage iodide levels by type of forage grazed by	66
	cattle in various communal grazing areas in Zimbabwe, 1997.	
Table 4.2:	Iodide levels in extracts of forages of cattle in μ g/kg by natural	67
	agro-ecological region in Zimbabwe, 1997.	
Table 4.3:	Distribution of iodide levels in forage types by natural regions in	68
	communal grazing areas in Zimbabwe, 1997.	
Table 5.1:	Mazowe Station Iodide supplementation experiment: Serum FT ₄	79
	means and medians (ng/dl) in treatment and control groups, 1998.	
Table 6.1:	Average monthly milk yield per cow by treatment. Chikwaka	96
	dairy iodine supplementation field trial, 2000-2001.	
Table 6.2:	Average monthly milk yield per cow by season and treatment.	98
	Chikwaka dairy iodine supplementation field trial, 2000-2001.	
Table 7.1:	Evaluation of an ELISA for bovine TSH by the indirect reaction	112
	format, 2000.	
Table 7.2:	Evaluation of the indirect TSH ELISA test controlling for the	113
	effects of FSH and LH by adsorption, 2000	
Table 7.3:	Indirect ELISA for evaluating pre- and post- immunization sera	114
	against TSH, FSH and LH antigens, 2000.	
Table 7.4:	Indirect ELISA for examining the cross-reactions of Pre- and	115
	Post- immunization sera following pre-adsorption with FSH, LH	
	and TSH on coated plates, 2000.	

LIST OF TABLES

Table 7.5:	Sandwich ELISA for TSH antibody levels in goat sera, checking	116
	the effect of cross-reaction to FSH and LH, 2000.	
Table 7.6:	OD readings of a checkerboard Titration of bovine TSH and pre-	117
	inoculation goat sera: Determination of dilution levels of test sera	
	and TSH levels using sandwich ELISA, 2000.	
Table 7.7:	OD readings of a checkerboard titration of bovine TSH and foetal	118
	calf serum to check for non-specific reactions using fetal calf	
	serum, 2000.	
Table 7.8:	OD readings of a checkerboard titration of antibovine TSH	119
	against normal bovine serum (NBS).	

4. LIST OF ACRONYMS AND ABBREVIATIONS

ACRONYM EXPANDED FORM ABTS 2,2'-azinobis-bis(3-ethylbenz-thiazoline-6-sulfonic acid) diammonium salt BEI **Butanol extractable iodine** ANCOVA Analysis of covariance ARC **Agricultural Research Council CTRL Crown-to-rump length** CV **Coefficient of variation** dc direct current DIT Diiodotyrosine DPC **Diagnostic Products Corporation Deci-litre** dl EDDI Ethylene diamine-dihydroiodide **ELISA** Enzyme linked immunosorbent assay FA Freund's antigen FCA Freund's complete antigen Fig. Figure FSH Follicle stimulating hormone Free triiodothyronine FT₃ FT_4 Free thyroxine (tetraiodothyronine) GC Gas chromatography HRP Horse radish peroxidase IgG Immnoglobulin gamma ISE Ion selective electrode

Kilogram

kg

ACRONYM EXPANDED FORM

KPL	Kirkgaard Perry Laboratory
КОН	Potassium hydroxide
LC	Liquid chromatography
LH	Leutenising hormone
MS	Microsoft
mg	milligram
ml	millilitre
mv	millivolt
μg	microgram
μΙ	microlitre
ng	nanogram
NHPP	National hormone and pituitary programme
NRC	National Research Council
OD	Optical density
р	probability of getting as extreme a value given the null hypothesis
	is true
PBI	Protein-bound iodine
ррт	Parts per million
ррb	Parts per billion
PBS	Phosphate buffered saline
r	correlation coefficient
RIA	Radio-immuno assay

ACRONYM EXPANDED FORM

T ₃	Triiodothyronine
T_4	Thyroxine (tetraiodothyronine)
TBG	Thyroid binding globulin
TRH	Thyroid releasing hormone
TSH	Thyroid stimulating hormone or Thyrotropin
X	Horizontal axis
У	Vertical axis