TYPE 2 DIABETES MELLITUS IN BLACK ZIMBABWEANS -METABOLIC FACTORS AND MOLECULAR GENETICS

By

DAVID MAKUYANA

A THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (D.Phil)

> DEPARTMENT OF CHEMICAL PATHOLOGY COLLEGE OF HEALTH SCIENCES UNIVERSITY OF ZIMBABWE FEBRUARY 2004

This work is dedicated to my family, Bongi, Ntando and Thoko, to my mum Joyce, and to my fibrant grandma, Mildred Ficeya. I hope that day is nigh, when genetic aberrations and environmental insults that trigger the metabolic programming of the derangements in multifactorial disorders, such as diabetes mellitus, will be routinely diagnosed and managed.

CONTENTS

	1 ag
List of Tables	i
List of Figures	iii
Abbreviations	v
Abstract	viii
Acknowledgements	x

CHAPTER 1: INTRODUCTION

1.1 Background of diabetes mellitus in Zimbabwe and in	
developing countries	1
1.2. Diabetes mellitus	3
1.3. Type 2 diabetes mellitus and the metabolic syndrome	7
1.3.1. Insulin resistance and hyperinsulinaemia	10
1.3.2. Dyslipidaemia	14
1.3.3. Obesity	23
1.3.4. Microalbuminuria	27
1.3.5. Hypertension	29
1.4. Metabolic genes in type 2 diabetes mellitus	32
1.4.1. Genetic polymorphism	33
1.4.2. Apolipoprotein E gene polymorphism	35
1.4.3. Angiotensin converting enzyme gene polymorphism	43

1.4.4. Tumour necrosis factor alpha gene polymorphism	45
1.5. Polymerase chain reaction technique	48
1.6 Polymerase chain reaction and detection of DNA	
polymorphisms	52
1.7. Justification, hypothesis and objectives of the study	53

CHAPTER 2: MATERIALS AND METHODS

2.1. Ethical issues	57
2.2. Subjects	57
2.3. Blood Pressure measurements	58
2.4. Blood and urine specimen collection	59
2.5. Data collection	59
2.6. Anthropometric measurements	59
2.7. Specimen preparation and storage for biochemical assays	
and DNA studies	60
2.8. Genomic DNA extraction and quantitation	61
2.9. Molecular biology grade reagents for DNA extraction	on 64
2.10. Solutions for DNA extraction	64
2.1. Biochemical Methods	65
2.11.1. Plasma Glucose	65
2.11.2. Serum creatinine	65

2.11.3. Serum urea	65
2.11.4. Serum urate	66
2.11.5. Serum lipids	66
2.11.6. Plasma insulin	67
2.11.7. Urinary albumin	67
2.11.8. Insulin resistance	68
2.12. Classification criteria of participants from anthropome	etric,
blood pressure and biochemical results	68
2.13. Genetic methods	69
2.13.1. Apolipoprotein E gene amplification and RFLP analysis	69
2.13.2. Angiotensin converting enzyme gene amplification and RFL	P
Analysis	72
2.13.3. Tumour necrosis factor alpha gene amplification and RFLP	
Analysis	74
2.14. Criteria for electrophoretic identification and interpret	ation
of the various PCR amplification products	76
2.14.1. Apolipoprotein E gene	77
2.14.2 Angiotensin converting enzyme gene	78
2.14.3. Tumour necrosis factor alpha gene	79
2.15. Quality assurance measures	80
2.16. Statistical analysis	81

3.1. Demographic and metabolic analyses	82
3.2. Discussion	91
3.2.1. Metabolic syndrome factors	91
3.2.2. Hypertension	91
3.2.3. Hyperuricaemia and microalbuminuria	93
3.2.4. Obesity	96
3.2.5. Dyslipidaemia	97
3.2.6. Insulin resistance and hyperinsulinaemia	99

CHAPTER 3: RESULTS AND DISCUSSION - Metabolic components

CHAPTER 4: RESULTS AND DISCUSSION - Apolipoprotein E gene polymorphism

4.1. Genotype and allelic frequencies	101
4.2. Biochemical assays, anthropometric and blood pressur	e
features according to apoE genotypes	104
4.3. Discussion	109
4.3.1. General introduction	109
4.3.2. Apolipoprotein E gene polymorphism	109

CHAPTER 5: RESULTS AND DISCUSSION - Angiotensin converting enzyme gene polymorphism

5.1. Genotype and allelic frequencies 117

5.2. Biochemical assays, anthropometric and blood pressure features according to ACE genotypes
5.3. Discussion
122

CHAPTER 6: RESULTS AND DISCUSSION - Tumour necrosis factor alpha gene polymorphism

6.1. Genotype and allelic frequencies	131
6.2. Biochemical assays, anthropometric and blood pressure	2
features according to TNF-alpha genotypes	134
6.3. Discussion	136
CHAPTER 7: CONCLUSION	142

150

REFERENCES