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Abstract 

An assessment on the potential of the Gembloux Greenhouse Climate Model (GDGCM) as a 

tool for irrigation scheduling was done on a rose (Rosa Hybrida) crop grown in an Azrom 

type greenhouse, located in Harare, Zimbabwe. The transpiration sub-model of the GDGCM, 

consisting of a canopy resistance model within it was mainly considered in this study. The 

canopy resistance model and the transpiration sub model were calibrated and validated. Field 

measurements were done for climatic and physiological parameters required for the canopy 

resistance model and transpiration sub model input parameters. Climatic data was 

continuously measured inside and outside the greenhouse throughout the research. Historical 

data for Whole Plant Transpiration (WPT) measured by stem heat balance sap flow gauges 

obtained from Floraline (Pvt) Ltd for the period December 2007 and January 2008 was used 

for calibration and validation of the transpiration sub model. The canopy resistance model 

was fitted to experimental data of canopy resistances and coefficients a, b and c of 788.38 ± 

82.51, 85.78 ±16.14 and -0.146 ± 0.080 respectively were determined. The validation results 

showed a strong fit between the measured and simulated values (R
2
=0.91). Several input 

parameters were determined, including the canopy resistances from the canopy resistance 

model, to calibrate the transpiration sub model. The transpiration sub-model was fitted to 

experimental WPT data and the results showed a good fit between the simulated and 

measured values (R
2
=0.64). Simulations of crop transpiration were carried out for a whole 

year: winter (May to August 2007) and summer (September 2007 to April 2008). The 

GDGCM uses outside weather data to simulate the internal greenhouse microclimate, as well 

as crop transpiration rates. The crop water requirements (CWR) were calculated as the 

amount of water requirement to replenish the water lost by transpiration. The results showed 

that the rose crop transpired more in summer than in winter, as expected; and there was also 

transpiration at night but it was very small. Daily and seasonal CWR were determined. Daily 

CWR fluctuated everyday depending on the weather conditions, and seasonal CWR showed 

that the CWR was less in winter than in summer. June and July had the lowest CWR in 

winter; while December and January had the least CWR in summer. September and October 

had the highest CWR for that year. The CWR of the rose crop for the whole year was 

compared with the actual amount of water that was supplied by the existing irrigation system. 

The existing irrigation system was automated, applying water for 4 minutes whenever the 

cumulative solar radiation outside the greenhouse reached 1600 kJ/m
2
. The results showed 

that the CWR was lower than the actual water applied by the irrigation system throughout the 

year. The total CWR for the year was 1.45 Ml/year and the actual water applied was 2.74 Ml 

hence the existing irrigation system was over-irrigating by almost half the CWR by the crop.  
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CHAPTER 1 

INTRODUCTION 

 

1.0 Preamble 

The amount of fresh water available for agricultural purposes is decreasing in Africa and, since 

shortages of fresh water are to be expected to intensify due to climate change and the 

corresponding recurrent droughts and rainfall variability, there is need to improve water use 

efficiency, either by improving genetic performances and horticultural practices, or by improving 

irrigation scheduling (Naor, 2004).  Water use efficiency includes any measure that reduces the 

amount used per unit of any given activity, consistent with the maintenance or enhancement of 

water supply. Water management is very important in irrigated areas since it determines the 

amount of water used, energy and labor returns. 

 

 Horticultural crops are typically grown under drip irrigation systems in greenhouses, where 

optimal conditions can be achieved for maximum production and to optimize timing of harvest in 

order to satisfy specific market needs. The greenhouse industry in Zimbabwe is entirely 

dependent on irrigation water to produce a viable crop. Many irrigation scheduling methods have 

been developed to assist farmers and irrigators to apply water more efficiently: these may be 

based on soil water measurement, meteorological data or monitoring plant water use or its 

response to water stress (Jones, 2004). 
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The current irrigation control systems in Zimbabwe use timing circuits or weather data such as 

solar radiation to switch the irrigation. The major problems associated with these control systems 

are that, when the plant demand increases or declines temporarily under changing environmental 

conditions and physiological processes, the current control systems do not respond rapidly 

enough; hence under- or over-irrigation occurs. 

 

An approach to irrigation scheduling with considerable promise is to measure the actual water 

use of the crop (Van Leeuwen et al., 2001; Jones, 2004; Klein, 2004). This can be achieved 

through online monitoring of crop transpiration with the use of sap flow gauges to monitor whole 

plant transpiration rates, which can then be scaled up to the crop transpiration rates (Elings and 

Voogt, 2008; Ham et al., 1990; Jones, 2004 ). The quantity of water to be supplied is obtained by 

integrating the measured sap flow pattern over a specified time. This allows for plant-dependent 

irrigation control by predicting the optimal timing for irrigation and the exact amount of water 

required by the plant. Direct crop monitoring can provide many crop management options to 

greenhouse managers, such as a more efficient use of resources and retrospective analysis of 

crops‟ responses to climate control strategies and gives them the ability to detect crop stress in an 

automated way (Baas, 2003; Ehret et al., 2001). 

 

1.1 Problem statement 

The use of the actual crop water consumption, while being the ideal method for irrigation 

scheduling, is still hampered by the relatively high cost of the monitoring equipment and the low 

knowledge of the dynamic nature of plant water status. There are also other shortcomings 
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associated with sap flow measurements. Probably the greatest concern is the fact that they are 

rather plant intrusive. The sensor itself is attached to the stem, and may restrict growth, and/or 

diurnal stem diameter changes, cause wounds in the plant and create an entry point for infection. 

There are also the questions of whether long term use of the sensor might affect the health and 

performance of the plant being monitored, and the unknown effect of heating of the sap on the 

condition of the plant (Jones, 2004). 

 

In addition, the instrument must also be periodically adjusted as the plant grows. This results in a 

period of up to several hours during which no data may be collected as the system stabilizes after 

an adjustment. These problems hinder the use of sap flow measurements in irrigation control. An 

alternative method is the use of modeling to simulate the transpiration rates, and hence the water 

requirements of the crop. In this study transpiration rates of a rose crop in a greenhouse will be 

simulated using a greenhouse climate model: the Gembloux Dynamic Greenhouse Climate 

Model (GDGCM), and used for irrigation control in roses. The GDGCM uses basic weather data 

outside the greenhouse (e.g. air temperature, relative humidity, solar radiation and wind speed) 

and the greenhouse construction data to predict the greenhouse climatic parameters and crop 

physiological parameters, including transpiration rates. Use of this model in rose irrigation 

control systems will improve water management since it determines the amount of water used 

without involving the high costs of direct crop transpiration monitoring equipment. 
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1.2 Aim and Objectives 

The main aim of this study was to apply the GDGCM for irrigation scheduling in a greenhouse 

rose crop in Zimbabwe. 

 

Specific objectives were: 

1. To calibrate and validate the GDGCM transpiration sub model for roses in a greenhouse. 

2. To apply the GDGCM to obtain daily and seasonal crop water requirements for roses in a    

greenhouse. 

3. To assess the potential of the GDGCM as a tool for irrigation scheduling by comparing the 

crop water requirement against the actual water supplied by an existing irrigation system. 

 

1.3 Expected benefits 

The project is expected to benefit horticultural farmers to have efficient water management when 

growing greenhouse crops, where the crops will not be over or under- irrigated. Economic 

benefits are expected through a low cost irrigation control system with efficient energy 

consumption. 

 

1.4 Project Layout 

The thesis was made up of five chapters. Chapter 1 introduces the topic and then outlines the 

problem statement and the objectives of the study. Chapter 2 gives the background theory on the 
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topic and the literature review relevant to the research methods adopted. Chapter 3 outlines the 

materials and the methods used in the study. It comprises of a detailed description of the 

materials and methods used in data collection and analysis to draw conclusions on the objectives 

of the study. It also gives an overview of the Gembloux Dynamic Greenhouse Climate Model 

(GDGCM). Chapter 4 lays out the results obtained and the discussions of the findings. The 

conclusions and recommendations made are presented in chapter 5.
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CHAPTER 2 

LITERATURE REVIEW 

 

2.0 Introduction 

The greenhouse industry has expanded in many parts of the world (Enoch and Enoch, 1999) such 

that greenhouse production systems are presently among the most sophisticated crop production 

systems (Challa et al., 1994). The intensive involvement of the grower in the daily production 

process and the refined control possibilities give rise to a major knowledge requirement in terms 

of the number of processes and the time-scale of the controls (Challa, 1997). Part of the 

information requirement of growers could be satisfied by crop growth models. These could 

provide detailed evaluations of alternatives, support decisions, and improve the performance of 

control systems by providing on-line estimations of relevant processes (Challa, 2002).  

 

The dominant process in water relation of the whole plant is the absorption of large quantities of 

water from the soil, its translocation through the plant and eventual loss to the surrounding 

atmosphere as water vapour. Crop water requirement is the amount of water required to 

compensate for the water lost from a cropped field. When the crop water requirement is known 

the right quantity of water has to be supplied at the right time through an appropriate application 

method to satisfy the crop water requirement (Sharma, 2006).    
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2.1 Greenhouse Climate 

Greenhouses are a means of overcoming climatic diversity using a free energy source, the sun 

(Hanan, 1998). The microclimate is the complex of environmental variables, including 

temperature, radiation, humidity and wind, to which the vegetation is, exposed (Jones, 1993). 

The greenhouse microclimate is affected by several factors, these include: solar heat gain; 

evapotranspiration; thermal radiation exchange between the greenhouse and its surroundings; 

conduction through the greenhouse floor and structural cover; ventilation and condensation 

(Gumbe et al., 2009).  

 

All surfaces inside the greenhouse exchange radiation with their environment. Green plants 

exchange energy with the environment through heat and mass transfer processes; transpiration, 

radiation and convection with the air. The leaves are the heat exchanger and are responsible for 

all the heat and mass transfer processes. Convection (sensible) heat transfer between plants and 

the air takes place in the boundary layer at both sides of the leaves. Transpiration takes place 

exclusively through the stomata. The leaves are also responsible for solar radiation absorption 

and thermal radiation emission (Papadakis et al., 1994).  

 

The greenhouse cover exchanges energy at the inner surface to the greenhouse air and to outside 

air at the other side. The interaction of the greenhouse cover with the solar radiation determines 

how much radiation is transmitted and available at crop level (Bakker et al., 1995). The 

transmittance of the cover varies with the wavelength and incident angle of the radiation 

reaching it (Hanan, 1998). Heat exchange between the inside and the outside greenhouse is a 
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complex mechanism involving all processes of the heat exchange: radiation; convection; 

conduction and latent heat (Baptista et al., 2001). A schematic illustration of energy flows in a 

greenhouse is shown in fig 2.1. 

 

 

Fig 2.1: Energy flows in a greenhouse. (Adapted from Gumbe et al., 2009).  

 

2.2 The greenhouse water cycle 

Evapotranspiration (ET) is the main process that determines the fate of water in the greenhouse 

and hence the water requirements of crops, which also depend on the nature and stage of growth 

of the crop and environmental conditions. ET is driven by a constant inflow of energy. The state 

and content of water in the soil and its vegetation cover is affected by the way the energy fluxes 

reaching the soil is partitioned and utilized, therefore the water balance is intimately and 

reciprocally related to the water cycle (Boulard and  Baille, 1993). The soil component (or 
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artificial substrate) and the actual transpiration of a crop are the two components of the 

greenhouse water cycle that are important to measure and control. 

 

 2.3 Transpiration of a greenhouse crop 

The transpiration of a greenhouse crop results from prevailing microclimate conditions. It 

consists of the vaporization of liquid water contained in plant tissues and the water vapor 

removal to the atmosphere through the stomata (Allen et al., 1998). Stomata are small openings 

on the plant leaf through which gases and water vapour pass (Fig 2.2). The vaporization occurs 

within the leaf intercellular spaces and the stomatal aperture control the vapour exchange with 

the atmosphere. Leaf transpiration can be thought of as a necessary "cost" associated with the 

opening of the stomata to allow the diffusion of carbon dioxide gas from the air for 

photosynthesis.  

 

 

Fig 2.2: Schematic representation of the stoma (adapted from Allen et al., 1998) 
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 The influence of the ambient on the transpiration rate of a greenhouse crop takes place primarily 

through three variables: radiation, air temperature and humidity (Bakker et al., 1995). The global 

radiation at crop level contributes to the energy balance of the crop and so affects the crop 

temperature and transpiration. Transpiration is an active plant response to climatic factors (Yang 

et al., 1990). It is an energy consuming process which moderates leaf and air temperature 

changes when subjected to solar radiation or other energy sources (Yang et al., 1990). Plant 

transpiration is a very important physiological process, which not only serves as the driving force 

for water uptake and water transport, but also affects the uptake and distribution of nutrients. 

Only 1% of the available liquid water taken by plants is actually involved in metabolic processes, 

most of the water taken in through plant roots is vaporized into the air (Rosenberg et al., 1983).  

 

Studies have shown that transpiration rate is directly proportional to plant production and it 

represents a major mechanism for cooling plant leaves and the environment, through the 

evaporation process. Maintaining high levels of canopy transpiration rate in greenhouses is one 

of the most efficient and least costly ways for cooling the greenhouse environment during warm 

days with high radiation load (Kastoulas et al., 2002). The water lost from a crop canopy is the 

sum of the water transpired by all individual leaves but there can be differences in the 

microclimate around individual leaves. Differences arise because there are vertical profiles of 

radiation, temperature, humidity and wind speed within the canopy. Horizontal variations also 

exist within the canopy. However, transpiration has a linear response to the mean flux density of 

available radiation (Rn) and the adiabatic evaporation, and a weak one to temperature and wind 

speed (Bakker et al., 1995). 
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Crop transpiration is the most important energy dissipation mechanism determining the thermal 

environment of protected crops. The crop builds its own climate through transpiration 

mechanism, which in turn influences the transpiration. Greenhouse crop transpiration is 

governed by water vapour conductance between the leaves and the bulk of inside air; regulated 

by physical and physiological processes. (Boulard, 2008).  

 

2.3.1 Factors affecting transpiration 

Transpiration depends on the energy supply, wind and vapour pressure gradient; therefore the air 

temperature, radiation, air humidity and wind are important factors to be considered when 

assessing the transpiration. The transpiration rate is also determined by the soil water content, 

water logging and soil salinity. The crop characteristics (e.g. type, development stage and 

management practices) environmental aspects and cultivation practices are other factors that 

influence the transpiration rate (Allen et al., 1998). The rate of transpiration is directly related to 

the degree of stomatal opening, and to the evaporative demand of the atmosphere surrounding 

the leaf. Transpiration has connections with leaf temperature, if interfered by harsh environments 

it will make the leaf temperature unstable and abnormal. Plants transpire more rapidly at higher 

temperatures because water evaporates more rapidly as the temperature rises.  

 

Under high relative humidity and calm condition, the rise of leaf temperature with light increases 

the VPD in the boundary layer of the leaf, followed by an increase in transpiration rate. As 

transpiration occurs there is a tendency for a moist layer of air to form next to the leaf surface, 

particularly in still air. This will decrease the diffusion gradient between the leaf and the 
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atmosphere and transpiration will consequently decrease. Wind lowers the leaf temperature and 

decreases vapour pressure deficit (VPD) in the boundary layer of the leaf, causing a decrease in 

the transpiration rate (Takashini et al., 1997). Air movement carries away a layer of humid air, 

replacing it with drier air, resulting in an increase in transpiration. The more rapid the air 

movement the faster the moist air will be carried away and the faster the rate of transpiration.  

 

2.4 Importance of irrigation control in greenhouse crops 

The irrigation of greenhouse crops is one of the most critical of all production practices because 

greenhouse plants entirely depend on irrigation for their water. Proper irrigation management is 

essential for improving the productivity and quality of crops grown in the greenhouse in which 

rainfall is obstructed by the cover (Lee and Shin, 1998). Greenhouse crops use large amounts of 

water continuously, but the rate of use depends on plant species, size, temperature, and other 

atmospheric conditions. Exact time and amount of irrigation are two deterministic factors for the 

efficient irrigation management. The timing of irrigation supply influences crop productivity and 

quality (Shelford et al., 2004) therefore, applications of the right amount of good quality water to 

greenhouse crops, at the optimum time, is an important factor in production of quality plants. 

The increasing worldwide shortages of water and costs of irrigation
 
are leading to an emphasis 

on developing methods of irrigation
 

that minimize water use (maximize the water use 

efficiency). 
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2.5 Irrigation systems for greenhouses 

The main components of any irrigation system are the water source, pump, and proper sizes of 

main and lateral lines. These components are frequently undersized for the area to be watered, 

and serious inefficiencies occur. Proper engineering of a watering system is necessary; hence it is 

important to carefully determine the area to be irrigated with consideration towards increased 

capacity (Anonymous, 2010). There are several systems used to apply water to greenhouse crops. 

The selections depend upon technology, labour and material costs as well as the cultural 

procedures used in the greenhouses. These methods include hand watering, flood (furrow), 

sprinkler, capillary (sub-irrigation) and trickle (drip) irrigation. The methods are described as 

follows: 

 

2.5.1 Drip irrigation 

Drip irrigation, also known as trickle irrigation, is widely used for cut-flower and vegetable 

production in greenhouses and in the field (Hanan, 1998). Water is delivered drop by drop 

through an emitter to or near the root zone of plants. The principle of drip irrigation is to supply 

water at very low rates, in the region of maximum root activity. Water is pumped directly to the 

base of a plant by plastic tubing and bled through an emitter at a slow rate that meets the plant's 

needs. Drip and sub-irrigation systems do not wet the foliage, thereby significantly reducing 

disease problems, leading to a considerable savings in water consumption (Harbaugh and 

Stanley, 1985). If managed properly, this method can be the most water-efficient method of 

irrigation, resulting in minimised evaporation and runoff; however it is also very expensive and 

requires diligent maintenance of the hardware to keep the system working as it has a main 

problem of emitter clogging. 
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2.5.2 Sprinkler irrigation 

Sprinkler irrigation is seldom used for cut-flower production. It is most commonly used for small 

units on a dense spacing. Water is supplied overhead by spray nozzles (commonly used for 

bedding plants). Efficiency of overhead sprinklers is influenced by type of spray head, spacing, 

and wind velocity (Hanan 1998). 

 

2.5.3 Capillary (Sub-irrigation) 

Capillary mat systems are commonly used for irrigation of potted plant production on a large 

scale. However, in areas where soluble salts are a problem, mats do not provide for leaching, 

thereby increasing the risk of salt injury. In greenhouses, sub-irrigation may also be adapted to 

any form of bed used, whether raised or solid. In either case the bed should be practically water-

tight.  

 

2.5.4 Flood (furrow irrigation) 

Water is applied to a medium‟s surface and is allowed to flow over the surface until reaching the 

furthest distance from the source. Flooding in greenhouses is usually done where the cultural 

conditions are primitive, labour is cheap and the structures are unheated.  

 

2.5.5 Hand watering 

 Hand watering is employed with the planting of a new crop or where it is necessary to establish 

capillarity in mat watering systems. However, hose watering as a standard procedure is seldom 
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satisfactory because its success depends upon the skill and care of the laborer.  It is generally the 

cheapest method in terms of equipment but it is labour costly. Hose ends are also very good 

means to inoculate sterile substrates with pathogens especially since most growers leave hoses 

lying on the ground. 

 

2.6 Irrigation scheduling techniques for greenhouse crops 

Irrigation scheduling is the use of water management strategies to prevent over application of 

water while minimizing yield loss due to water shortage or drought stress (Evans et al., 1996). It 

is the process used by the grower to determine the frequency and duration of irrigation (Pardossi 

and Incrocci, 2008). It determines crop water use efficiency (WUE) and environmental impact. 

In irrigated agriculture water use efficiency (WUE) is defined as shown in equation (2.1). 

yield produce  tousedWater 

areaunit per  Yield
(WUE) efficiency useWater     [2.1] 

 

 A relatively simple way to make irrigation more efficient is to only irrigate plants when they 

actually need water, and with the amount of water they need. To avoid over or under irrigation, it 

is important to know how much water is available to the plant, and how efficiently the crop can 

use it (Qassim and Tatura, 2006).  Irrigation scheduling requires knowledge of the soil, the soil- 

water status, the crops, the status of crop stress and the potential yield reduction if the crop 

remains in a stressed condition (Evans et al., 1996).  
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There are many methods available to measure these factors. They include direct measurements 

such as plant observation, feel and appearance of the soil, and using soil moisture monitoring 

devices; or indirect measures which estimate available water from weather data (Qassim and 

Tatura, 2006). Irrigation should begin when the crop comes under water stress severe enough to 

reduce crop yield or quality. The level of stress that will cause a reduction in crop yield or 

quality depends on the kind of crop and its stage of development; the level varies during the 

growing season as the crop matures. Thus, determining when to irrigate is a scheduling decision 

that should take into account the crop‟s sensitivity to stress. Recently, scheduling techniques 

have been developed that are based on the moisture status or stress condition of the crop. For 

example, to predict crop stress by infrared thermometry, the temperature of the crop's leaves is 

related to transpiration rate (Evans et al., 1996).  

 

The choice of irrigation scheduling method depends to a large
 
degree on the objectives of the 

irrigator and the irrigation
 

system available (Jones, 2004). Practical irrigation scheduling 

algorithms for greenhouse crops have been developed during the last twenty years. Many of 

them are based on estimates or measurements of the crop transpiration (Baille, 1996).  

 

2.7 Approaches to irrigation scheduling in greenhouse crops 

The approaches to irrigation scheduling in greenhouse crops can be done basing on the plant, soil 

moisture and the weather. These approaches are as follows: 
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2.7.1 Weather based  

Irrigation scheduling methods based on weather or meteorological data require various 

climatological and physiological parameters. Some of the parameters are measured directly in 

weather stations and other parameters are derived from a direct or empirical relationship from 

measured data. 

 

2.7.1.1 Penman-Monteith equation 

During daytime, the greenhouse water balance depends mainly on the crop transpiration and the 

loss from ventilation. The transpiration rate depends on the amount of radiative energy absorbed 

by the canopy and the vapour pressure deficit. Transpiration is generally expressed by means of 

the Penman-Monteith equation (equation 2.2) extended to the whole canopy considered as a ´big 

leaf` 

         [2.2] 

Where:  

TR= transpiration rate (kg m
-2 

s
-1

); 

Rn = radiation absorbed by the canopy (W m
-2

); 

λ = latent heat of vaporization (J kg
-1

); 

ρCp = volumetric heat capacity of air (J m
-3

 °C
-1

); 

VPD = saturation vapour pressure deficit (kPa) at temperature, T;  

Δ = slope of the water vapour saturation curve at T; and 
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γ
*
 = γ(1+ga/gs), γ being the psychrometric constant, ga and gs (m s

-1
) respectively are the 

aerodynamic and stomatal resistance of the canopy to water vapour transfer. 

 

The rapid changes in electronic technology, combined with the world wide research into the 

Penman equation, (equation 2.2) has enabled the accurate calculation of reference 

evapotranspiration (ET0) for real time weather data. The availability of climate sensors in 

modern greenhouses has allowed the use of the Penman Monteith equation (equation 2.2), with 

the introduction of crop physiological parameters such as the stomatal conductance. The method 

is the best adapted to estimate crop water requirements. However, it requires sensors for the 

measurement of global radiation and vapour pressure, as well as crop parameters such as the 

aerodynamic and stomatal conductance. The main shortcoming of the method is that it requires 

leaf area index estimation (Baille, 1996).   

 

2.7.1.2 Solar radiation methods 

The main role of solar radiation in determining evapotranspiration showing a strong correlation 

between daily evapotranspiration and solar irradiance in a greenhouse has been evidenced in 

numerous works (Morris et al., 1957; Lake et al., 1966; Stanhill and Alberts, 1974). This gave 

rise to the solar radiation method or solarimeter method. If the outside global radiation, RG0 and 

the greenhouse transmission, t were known the method was based on a simple relationship giving 

the reference evapotranspiration under greenhouse.  

ET0= K t RG0/2.5        [2.3] 
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Where:  

K is an empirical coefficient, whose value is 0.6 to 0.7; and 

ET0 in mm/day and RG0 in MJ/m
2
/day 

When irrigation is operated at daily or weekly intervals, this method generally gives good results. 

However, the high frequency of water applications implies short estimates of ET for soilless 

crops; which, in this case, transpiration can be significantly influenced by the saturation deficit 

inside the greenhouse. When the weather consists of hot and dry periods, inadequate irrigation 

scheduling can result (Baille, 1996). 

 

2.7.2 Soil moisture based 

Irrigation scheduling is conventionally
 
based either on soil water measurement, where

 
the soil 

moisture status is measured directly to determine the need
 
for irrigation, or on soil water balance 

calculations,
 
where the soil moisture status is estimated by calculation using

 
a water balance 

approach in which the change in soil moisture
 
( ) over a period is given by the difference 

between the inputs
 
and the losses (Jones, 2004). Studies have shown that irrigation scheduling 

using water balance methods can save 15 to 35% of the water normally used without reducing 

yield. Soil moisture monitoring is used as a basis for irrigation scheduling as it can provide 

accurate information about the extraction of available water by the crop.  Soil moisture can be 

measured as a suction or volume of water. Soil moisture suction can be used as a measure of 

plant stress and for that reason it is a handy tool for growers to use in scheduling their irrigations 

(Qassim and Tatura, 2006). 
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An irrigation control system based on soil moisture tension was adapted for use on plants 

growing in ground beds for cut flower production. The irrigation control system consisted of 

tensiometers, modified with high flow ceramic tips and pressure transducers, an analogue-digital 

signal converter, a computer, and custom written software. The system continuously monitored 

the moisture condition of the soil, initiated irrigation when the soil dried to a specific level, and 

turned off the water when an adequate amount was applied. When the system was installed in a 

commercial greenhouse of Rosa hybrida L. „Kardinal‟ plants, water use in the test area was 26% 

less than the amount applied by the grower. Productivity (stems harvested m
-2

) was 66% greater 

in the test area. Flowers harvested from the test plants were not lower in quality than those from 

the grower irrigated controls. The use of this irrigation control system can reduce both water and 

fertilizer usage when a liquid feed program is utilized. Increases in productivity and quality can 

result in significant increases in profitability for commercial producers (Oki et al., 2001). 

 

2.7.3 Plant based 

Some plant physiological processes can be used as an effective irrigation indicator. These 

processes are known to respond sensitively to water deficits in a plant. For plant growing under 

non-limiting water supply, the use of any plant-based or similar indicator for irrigation 

scheduling requires the definition of threshold values, beyond which irrigation is necessary.  A 

direct measure of plant water status should be the most rigorous and therefore the most useful 

indicator of irrigation requirement (Payne and Bruck, 1996). Specific plant based methods 

include dendrometry, sap flow, leaf turgor pressure, stomata conductance, infrared thermometry 
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and thermography. The choice of which plant-based measure to use depends on their relative 

sensitivity to water deficits (Jones, 2004) 

 

2.7.3.1 Sap flow 

The transpiration of whole plants is closely approximated by the sap flow rate in the main stem 

or trunk. This can be measured using heat pulse and energy balance thermal sensors. The 

changes in transpiration rate indicated by sap flow are largely determined by changes in stomatal 

aperture but changes in sap flow can occur without changes in stomatal opening since 

transpiration is also influenced by other environmental conditions such as humidity. The 

development of reliable heat pulse and energy balance thermal sensors for sap flow measurement 

has opened up an alternative approach to irrigation scheduling based on measurements of sap 

flow rates (Jones, 2004). Methods of measuring sap flow include the following methods: the 

stem heat balance (SHB); thermal dissipation technique; heat pulse and the trunk sector method. 

In intact plants sap flow measurements can be done using a heat balance method. This method 

was devised using the specific heat capacity of water for keeping a temperature gradient 

constant, allowing long term and continuous observations of sap flow in the field. 

 

Thermal dissipation technique 

The temperature of a line heat source implanted in the sapwood of a tree can be measured by an 

improved heat dissipation sensor called a Thermal Dissipation Probe (TDP). The temperature is 

referenced to the sapwood temperature at a location well below the heated needle. The xylem is 



Literature review 
 

22 
 

heated with energy supply at one point by a small cylindrical probe containing a resistance wire 

heater and a thermocouple which is inserted 2 cm into the stem. Approximately 10 cm 

downstream, a second probe with a thermocouple but no heater measures the temperature (Fig 

2.3). The temperature difference between the two probes is strictly influenced by the sap flow 

density around the heating probe. 

 

Fig 2.3: The improved Thermal Dissipation Probe (TDP).  

 

Heat pulse Method 

The rates of sap flow are measured by determining the velocity of a short pulse of heat carried by 

the moving sap stream. Short pulses of heat are periodically released from the heater probe and 

the sensor probes are monitored continuously to measure the velocity of each pulse as it moves 

with the sap stream. Sap flow velocity, V, can be determined by inserting a heating device at a 
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measured distance, X on the stem and then measuring the interval, t, between the heat pulse 

applied by the heating device and the detection of a temperature increase at the temperature 

sensor 

             
t

X
V               [2.4]  

If the water content of the conducting xylem vessels is known, the mean rate of water transport 

through the measured section of the stem can then be calculated. The heat pulse method is 

suitable only for use on woody stems. The velocity of sap ascending a stem is determined by 

compensation of the measured velocity of a heat pulse for the dissipation of heat by conduction 

through the matrix of wood fibres, water and gas within the stem, thus the heat-pulse technique is 

based on the compensation principle. 

                              

The stem heat balance (SHB) Method 

A SHB sap flow gauge (fig 2.4a) is composed of a heater extended on the stem. The stem is 

surrounded by a thermopile composed of a thermo-junction on each side of the sheath. The 

measurement of the temperature differences in the limits of the sampled section of the stem is 

allowed by thermo-junction pairs. These are installed on two strips, one just above and the other 

just below the heater. The SHB method requires a steady state and a constant energy input from 

the heater strip inside the gauge body. Hence the stem section must be insulated from changes in 

the environment. The gauge time constant is limited from five minutes to an hour, depending on 

the flow rate and the stem size (Van Bavel, 1994). Sap flow rates are expected to be sensitive to 
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water deficits and especially to stomatal closure, Ehret et al. (2001) have tested the use of sap 

flow measurement for irrigation scheduling and control in greenhouse crops.  

 

  

Fig 2.4: Schematic representation of the heat balance sap flow gauge (a) Vertical section through the stem 

heat balance sap flow gauge. (b) Energy balance components of the heat balance sap flow sensor 

connected to a plant stem.  (Adapted from van Bavel ,1994). 

 

 A stem section and the possible components of heat flux, is shown in fig 2.4b. The power input, 

applied to the insulated section of the stem is divided in the following heat flows (assuming that 

there is no heat storage): 
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                                  Pin = qr + qv + qf         [2.5]        

Where: 

Pin is the power input to the stem (W); 

qr is the radial heat conducted through the gauge to the ambient (W); 

qv is the vertical or axial heat conduction through the stem. It is made up of 2 components; 

upward and downward heat conduction (W); and 

qf  is the heat carried by sap stream (W). 

 

After solving equation [2.5] for qf, the mass flow rate, F per unit time is given by the following 

equation: 

dTC

qqP
F

p

rvin

.
        [2.6] 

Where: 

Cp is the heat capacity. Plant sap is 99% water hence heat capacity of water (4.18 x 10
3 
J/kg/K) is 

used as that of the plant sap.  

dT is the temperature rise of the sap.  All other terms are as defined before. 

 

2.7.3.2 Dendrometry or micromorphometry 

Stem and fruit diameters fluctuate diurnally in response to changes in water content. The diurnal 

dynamics of the changes in diameter, especially fruits, has been used to derive more sensitive 

indicators for irrigation need. The magnitude of daily shrinkage has been used to indicate water 

status and at the same time comparisons of diameters on succeeding days gives give a measure of 

growth rate (Jones, 2004). Promising results for low-frequency irrigation scheduling by use of 
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maximum daily shrinkage (MDS) have been achieved. Fereres and Goldhammer. (2003) showed 

that MDS was a more promising approach for automated irrigation scheduling than was the use 

of stem water potential for almond trees.  

 

2.7.3. Porometry 

Stomatal conductances (or resistances) can be measured accurately using a diffusion porometer 

although the measurements are labour intensive and unsuitable for automation. A diffusion 

porometer determines stomatal resistance by measuring the rate by which water vapour 

molecules (or CO2 molecules) diffuse through the stomatal pores. Changes in stomatal 

conductance are sensitive to developing water deficits in many plants and therefore potentially 

provide a good indicator for irrigation need in many species.  

 

2.8 Greenhouse crop models 

The first crop growth models were built for field crops and the development of the greenhouse 

crop models followed several years later. There is little difference between field and greenhouse 

crop models. The main adaptations that were necessary include: modified radiation conditions 

due to greenhouse cover (Critten, 1993), the use of supplementary lighting and screens, extreme 

climate conditions in winter and summer, a more elaborate description of temperature effects on 

crop performance, Carbon Dioxide (CO2) concentration effects, and the very important role of 

maintenance respiration in winter  cultivation (Challa and Heuvelink, 1996). Marcelis et al. 

(1998) reviewed modeling of biomass production and yield of horticultural crops in greenhouse 
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vegetable production. There are two types of models: descriptive and explanatory. Descriptive 

models are created with a few parameters and inadequately explain the biological mechanism 

involved. Explanatory models are based on photosynthesis and are highly effective in studying 

the crop growth in relation to the environment. Crop modeling is not limited to yield prediction 

and has been used as part of greenhouse environmental control strategy (Hashimoto, 1993; 

Carrier et al., 1994). 

 

 In greenhouse production, the main application of crop models is the control of the environment, 

at the operational and tactical levels (Baker et al., 1995). Greenhouses are semi-closed systems, 

where crop and climate interact. The optimisation of CO2 concentration, temperature and 

humidity are based on coupled models of mass and energy balance, and of net photosynthesis 

and transpiration rates. Models that predict stomata1 conductance against solar radiation, vapour 

pressure deficit, temperature and CO2 concentration have been developed and validated for 

greenhouse crops (Avissar et al., 1985, Boulard et al., 1991). They permit to calculate the maximum 

crop transpiration rate, as well as the actual transpiration 

 

2.9 Transpiration models 

The supply of water is based on simplified forms of transpiration models. Simple transpiration 

models based on experimentally determined values of the ratio between crop transpiration and 

solar radiation have been developed for irrigation of greenhouse crops (de Graaf and van den 

Ende, 1981).  The ratio between daily values of ETo and solar radiation changed throughout the 

year, depending on the air temperature, in a Mediterranean greenhouse. Stanghellini (1987) 

developed a model for the relation between the microclimate in a greenhouse and the 



Literature review 
 

28 
 

transpiration rate of a greenhouse crop. With this model, the desired transpiration rate could 

successfully be achieved by controlling the humidity and temperature of a greenhouse under a 

given incoming global radiation. Mechanistic transpiration models, based on the Penman 

Monteith method (Monteith 1973), have also been developed for estimating greenhouse crop 

water requirements (Boulard and Wang 2000). However, their use is still quite limited as there is 

very limited information on the aerodynamic and canopy resistances of cropped surfaces that are 

required by these models (Fernandez et al, 2010). In greenhouse crops, priority has clearly been 

given to the modelling of growth, development (Marcelis et al., 1998), and transpiration (Jones 

and Tardieu, 1998).  

 

2.10 Model Description (GDGCM) 

The Gembloux Dynamic Greenhouse Climate Model (GDGCM) is a multiple component semi-

one dimensional dynamic greenhouse climate model that describes the energy and mass 

exchanges between several layers. It was originally developed by the “Centre d'Etude pour la 

Régulation Climatique des Serres” of the “Faculté des Sciences Agronomiques de Gembloux” in 

Belgium. Deltour et al. (1985) validated it for a tomato crop in large multi-span and naturally 

ventilated European glasshouses in Western Europe and then under Mediterranean climatic 

conditions by Wang and Boulard (2000). The GDGCM was adapted to predict the microclimate 

in naturally ventilated plastic greenhouses for rose (Rosa hybrid) crops in Zimbabwe 

(Mashonjowa et al., 2007a, 2007b, 2009, 2010a). Detailed descriptions of the equations used in 

the GDGCM can be found in Pieters and Deltour (1997). In this section, only a short description 

of the model is given, necessary for understanding of the physical processes and quantities as 

applied in the model, and with emphasis on the description of the transpiration phenomena. 
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The GDGCM is made up of eight internal layers upon which it calculates eight heat balances for 

the greenhouse layers. The layers include the following: cover, air, vegetation, soil surface and 

four soil layers. It also includes a mass balance for the simulation of the relative humidity of the 

greenhouse air (Pieters, 1995; Pieters and Deltour, 1997). The greenhouse microclimate is the 

result of heat and mass exchanges between these layers. The interactions between the layers 

include heat transfers by conduction, convection, solar and thermal radiation, as well as mass 

transfers by latent heat. The greenhouse air exchanges heat by convection with the cover, the 

vegetation, the soil and the heating system (if any) and through exchange with the outside air by 

advection and ventilation. For the crop the terms of interest are the absorption of solar radiation, 

radiative exchange with the cover, soil and heating system, convective exchange with the 

greenhouse air and latent heat linked to evapotranspiration. For the soil, the gains and losses of 

energy are through the absorption of solar radiation, radiative exchange with the cover, the crop 

and the heating system, convective exchange with the greenhouse air and conductive exchange 

with the underlying soil layers. The exchanges of energy and mass between the various 

greenhouse layers are shown in Fig. 2.5 
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Fig 2.5: The schematic diagram showing the heat and mass exchanges between the greenhouse layers (after 

Pieters and Deltour, 1997) 

 

The following eight equations describe the heat balance for the cover, inside air, vegetation, soil 

surface and the four soil layers, respectively and one mass balance equation for the simulation of 

the humidity of the greenhouse air.  
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Where all fluxes (in W m
-2

) are expressed per unit horizontally projected greenhouse surface area 

and with: 

A: surface area (m
2
) 

c: specific heat capacity (J kg
-1

 K
-1

) 

cc : specific heat capacity per unit area of the cover (J m
-2

 K
-1

) 

xi: water vapour concentration of the greenhouse air (kg m
-3

) 

hfg: latent heat of condensation of water (J kg
-1

) 

l: thickness of layer (m) 

mv: vegetation mass per unit greenhouse surface area (kg m
-2

) 

QZ(x,y): density of the net heat flux transferred from layer x to layer y in the way described 

by subscript Z (W m
-2

) 

QD(x): conductive heat flux density through layer x (W m
-2

) 
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QS(x): density of the solar flux absorbed by layer x (W m
-2

) 

t:  time 

T: temperature (K or °C) 

V:  greenhouse volume (m
3
) 

:  density (kg m
-3

) 

and where the subscripts stand for: 

V:  convective 

D: conductive 

R: far infrared radiation 

L: (phase change) latent heat  

c: cover 

e:  external air 

i:  internal (greenhouse) air 

s: soil surface 

v:  vegetation 

gr: greenhouse 

sky: sky (treated as a full radiator or blackbody) 

HS: heating system 

s1, s2, s3, s4, ss: four soil layers and subsoil 

s12, s23, s34, s4s: the four soil layer interfaces 
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The energy and mass balance equations are solved for given input parameters and boundary 

conditions using an iterative procedure to obtain the temperatures of the different layers and 

humidity of the inside air.  

 

2.10.1 Description of the transpiration sub model 

The main component of the greenhouse air water vapour balance is the crop transpiration rate; 

therefore its estimation is critical for climate control. The transpiration sub-model of the 

GDGCM was modified by considering the climatic dependence of the rose canopy surface 

resistance (rs) and leaf stomatal resistance (rl) to water vapour transfer. The transpiration flux 

density, QL(vi), is given by: 

 ivsTrfgviL xTxhhQ  [2.16] 

where hfg is the latent heat of condensation of water (J kg
-1

), xs(Tv) is the saturation water vapour 

concentration at the temperature of the vegetation, Tv (kg m
-3

), xi is the water vapour 

concentration of the surrounding air (kg m
-3

), and hTr’ is the mass transfer coefficient (m s
-1

), 

defined for hypostomatal leaves as (Pieters and Deltour, 1997): 

s
P

fg
fgP
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r
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h
hh

h
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h

2

1
1

 [2.17] 

where LAIg is the leaf area index expressed per unit greenhouse cultivated floor area, obtained as 

the product of the crop leaf area index, and the cultivated fraction of the greenhouse floor area, rs 
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is the canopy resistance to water vapour transfer and hP1 and hP2 are the phase change heat 

transfer coefficients for the upper and lower faces of the leaves, respectively, defined as: 

 
d

D
Shhh fgP  [2.18] 

Where: 

 Sh is the Sherwood number (a non-dimensional parameter whose value depends on the flow 

conditions and the properties of the air) 

 D is the molecular diffusion coefficient of water vapour in air (m
2
 s

-1
) 

d is the characteristic dimension (m). 

 

The results of several researchers (Baille et al., 1994a; Baille et al., 1994b; Baille et al., 1994c; 

Papadakis et al., 1994; Kittas et al., 1999) suggest that the climatic dependence of the crop 

stomatal resistance on water vapour transfer can be described by a “reduced” Jarvis type model.  

The leaf stomatal resistance, rl (s m
-1

) can thus be predicted as a function of the solar irradiance 

incident on the crop, QSint (W m
-2

), the leaf-air vapour pressure deficit, VPD (kPa), the air 

temperature, Ta (°C), and CO2 concentration: 

)CO(f)T(f)VPD(f)QS(f.rr aintminll 24321  [2.19] 

 

Where f1, f2, f3 and f4 represent dimensionless functions, quantifying the relative increase of 

stomatal resistance whenever one of the parameters is limiting the exchange rate (Jarvis, 1985). 
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At ambient CO2, and for well-watered crops, the influence of temperature on rl may be assumed 

to be negligible (Pasian and Lieth, 1989), so that rl can be considered as depending mainly on 

global radiation above the crop and vapour pressure deficit (Baille et al., 1994a; Baille et al., 

1994b; Baille et al., 1994c; Papadakis et al., 1994; Kittas et al., 1999). If we consider that the 

surface or canopy resistance includes most of the characteristics of the leaf stomatal behaviour, 

we can normalize equation [2.19] by dividing it by the leaf area index, LAIg, to obtain the canopy 

resistance, rs: 

)VPD(f)QS(fr
LAI

r
r intmin,s

g

l
s 21  [2.20] 

Where: 
g

l

s
LAI

r
r min

min
 is the minimum possible value for rs in conditions of optimal water 

supply and environment. For greenhouse roses, the relationship suggested by Baille et al (1994c) 

was adopted:  

 
m

int

int

g

minl
s VPDVPDcexp

QSb

QSa

LAI

r
r 1   [2.21] 

Where: 

 VPDm is the vapour pressure deficit of the air at which the resistance is minimal. It was taken to 

be 2.5 kPa. (Baille et al., 1994c; Kittas et al., 1999).  The parameters a, b and c have to be 

derived statistically from experimental data fittings.  
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CHAPTER 3 

 

MATERIALS AND METHODS 

 

3.0 Introduction 

 

The research project is made up of two main parts: measurements and then modelling. Field 

measurements were taken at Floraline (Pvt) Ltd, and the modelling part was done at the 

University of Zimbabwe in the Agricultural Meteorology laboratory. A description of the 

materials and methods used in the field measurements are outlined first and then a description of 

the model, its calibration, validation and application follow.  

  

3.1 Site and greenhouse description 

 

The measurement phase of the research project was carried out at Floraline (Pvt) Ltd located 

within Harare, Zimbabwe (17.8°S, 31.1°E, and altitude 1500 m above mean sea level); between 

September 2009 and March 2010.  The climate of the site is characterised by a dry season from 

May to October and a rainy season from November–April. The winter season overlaps with the 

dry season. The summer season overlaps with the rainy season; during this season rain usually 

comes in the form of afternoon and evening thunderstorms, leaving much of the day clear. 

Normally October is the hottest month with mean temperatures of 23 °C while June is the coldest 

month with mean temperatures of 14 °C. 

 



Materials and methods 
 

37 
 

All the experiments were carried out in a 3-span commercial greenhouse, Azrom type (Fig 3.1). 

Each span was 9.6 m wide and 44 m long with gutter and ridge heights of 4.1 m and 6.5 m 

respectively (Fig 3.2). The cladding material used for the greenhouse was a 200 µm polyethylene 

film with terrestrial infrared and ultra violet (UV) absorbing additives (Ganeigar Co., Israel). The 

greenhouse had ridges that were oriented north-south and had polyethylene sidewall curtains that 

could be rolled up above the floor from 2.00 m-3.45 m and 2.00 m-3.35 m on the south and north 

respectively; the openings were covered by plastic (insect-proof) nets. 

 

  

Fig 3.1: The commercial greenhouse at Floraline (Pvt) Ltd where field measurements were taken. 
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Fig 3.2: The design for the commercial greenhouse at Floraline (Pvt) Ltd where field measurements were 

taken 

 

3.2 Crop Description 

 

The crop under investigation for this project included several commercial cultivars of roses 

(Rosa hybrida), which were grafted onto Natal briar (Rosa hybrida L. „Natal Briar‟) rootstocks 

(Fig 3.3). The cultivars used for measurements included King Arthur, Betsy, N-Tertain, 

Symponica in Rosso, Upendo, SPE06-2430-10 and SPE05-3904-01. They were cultivated in a 

soilless media of vermiculite in slightly raised containers with length, width and height of 20 m x 

0.45 m x 0.20 m respectively. The crop was fertigated through an automated drip system. The 

total crop cover represented about 40% of the total greenhouse floor area. In each greenhouse 
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span the containers were laid in twelve 20 m rows parallel to the gutters. The crop had an 

average height of 1.20 m, and was watered with an average of 33.30 mm applied per day. The 

irrigation system was automated and it was triggered to switch on for 4 minutes whenever the 

outside cumulative solar radiation reached 1600 kJ/m
2
. The frequency of watering was divided 

into about 10 to 14 applications during the day depending on the prevailing climatic conditions 

measured outside the greenhouse.  

 

 

Fig 3.3: Several commercial cultivars of roses (Rosa hybrida) in a greenhouse where measurements were 

taken at Floraline (Pvt) Ltd before harvesting.  
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3.3 Instruments for field measurements 

This section describes the instruments that were used for measurements at Floraline. 

 

3.3.1 Air temperature and relative humidity sensors 

Air temperature and relative humidity measurements, both inside and outside the greenhouse 

were taken using two types of air temperature and relative humidity probes. These are outlined as 

follows: 

 

3.3.1.1 HMP45C temperature and relative humidity probe 

The HMP45C temperature and relative humidity probe is designed to measure relative humidity 

and temperature. It contains a Vaisala HUMICAP
® 

180 capacitive relative humidity sensor and 

Platinum Resistance Temperature detector (PRT). The Vaisala HUMICAP
® 

180 has a relative 

humidity measurement ranging from 0 to 100 %. At manufacture and at 20 ºC its accuracy is ± 2 

% relative humidity in the range (0 to 90 % relative humidity) and ± 3 % (Relative humidity in 

the range 90 to 100 %). The temperature sensor has a measurement range of -39.2 ºC to +60 ºC 

and its accuracy at manufacture is greatest (± 0.2 ºC) at 20 ºC and worst (± 0.4 ºC) at -40 ºC. The 

general operating temperature range for the HMP45C temperature and relative humidity probe is 

-40 ºC to +60 ºC.  
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3.3.1.2 RHT2nl temperature and relative humidity probe 

The RHT2nl temperature and relative humidity sensors are designed for weather station 

measurements of relative humidity and air temperature. It contains a relative humidity and air 

temperature transducer housed in a solar radiation shield. The sensors were equipped with a 

capacitive relative humidity chip and a platinum resistances thermistor. The RHT2nl gives high 

temperature precision of ± 0.1 ºC with non-linear thermistor output. The sensor operates at a 

temperature range of -20 ºC to +80 ºC and relative humidity of 0 to 100 %. It has an accuracy of 

± 0.1 ºC over temperatures of 0 ºC to 70 ºC. 

 

3.3.2 Radiation sensors 

Several types of radiation sensors were used in the field measurements. Measurements were 

taken inside the greenhouse and outside the greenhouse. The choice of sensor type to use was 

mainly dependant on the type of radiation measured and on wether the measurements were taken 

inside or outside the greenhouse, among other factors. The sensors that were used for taking 

solar radiation measurements are as follows: 

 

3.3.2.1 TSL Tube solarimeter 

A tube solarimeter is designed to measure the average irradiance where the distribution of radiant 

energy is not uniform, for example in greenhouses and amongst foliage. They are constructed in 

a tubular way, this provides the necessary spatial averaging and minimises disturbance to the 

foliage of plants. The sensor element of the tube solarimeter is a black and white painted copper-

constantan thermopile and the tube is made of pyrex borosilicate glass. The operating 
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temperature range is -30 ºC to 60 ºC and its spectral range is 0.4 to 2.2 µm. Its approximate 

response time for 63 % and 99 % change is 40 seconds and 3 minutes respectively. A tube 

solarimeter has a directional variation in sensitivity, due to their asymmetric shape. For sun 

angles greater than 30º this variation in sensitivity is less than ±3 %. Errors due to directional 

sensitivity are minimised by orienting the tubes North-South and by making comparative 

measurements with parallel tubes. 

 

3.3.2.2 Q-7.1 Net radiometer 

The Q-7.1 net radiometer is a high output thermopile sensor. It was designed to measure the 

algebraic sum of incoming and outgoing all-wave radiation (the shortwave and long wave 

components respectively). Outgoing radiation consists of reflected solar radiation and the 

terrestrial long-wave component while the incoming radiation consists of direct and diffuse solar 

radiation plus long-wave irradiance from the sky. It contains a high output 60-junction 

thermopile with low electrical resistance (4 ohms nominal) and linear calibration. It has a 

spectral response of 0.25 to 60 µm. The thermopile is mounted in a glass reinforced plastic frame 

with a built-in level. The sensor surfaces (top and bottom) are painted black to reduce internal 

reflections within the instrument and are protected from convective cooling by hemispherical 

heavy duty polyethylene windshields which are 0.25 mm thick. Polyethylene is used for the 

windshield material because it is transparent to both long and shortwave energy. 

 

The operating temperature range for the Q-7.1 net radiometer is 0 to 500 °C and its spectral 

response ranges from 8 to14 µm. it has a  field of view diameter from 1mm and a response time 
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from 50 ms to 10 s.  The effect of wind on the Q-7.1 net radiometer during positive net flux 

conditions is reduction in the calculated net radiation as wind speeds increase. This reduction 

increases asymptotically from 0 % at wind speed of 0 m/s to approximately 5.9 % at wind speed 

of 7 m/s. during negative net flux conditions, wind speed below approximately 1.7 m/s can 

increase the calculated net radiation from 0 % at 0 and 1.7 m/s to approximately 0.5 % between 

0.5 and 0.9 m/s. wind speeds above 1.7 m/s reduce the calculated net radiation from 0 % at 1.7 

m/s to approximately 1 % at 7 m/s. 

 

3.3.2.3 CM3 Pyranometer 

The pyranometer measures irradiance on a plane surface which results from the direct solar 

radiation and from the diffuse radiation incident from the hemisphere above. It consists of a 

thermopile sensor which is coated with a black absorbent coating. The paint absorbs the radiation 

and converts it to heat; the resultant energy flow is converted to a current by the thermopile. It 

can be used for measuring diffuse radiation but the direct solar component should be shielded 

semi-automatically from the pyranometer by a shadow ring. The response time for the sensor for 

95% response is 18 seconds. It works at a temperature range of -40°C to +80°C and has a 

spectral range of 305-2800nm. 

 

3.3.2.4 PAR LITE Sensor 

The PAR LITE is a sensor used for agrometeorological and horticulture applications for the 

measurement of Photosynthetically Active Radiation (PAR). It consists of a Silicon photodiode, 

filters, a diffuser, housing and a cable. The diffuser ensures a field of view of 180 º. The sensor 
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operates at a temperature and humidity range of -30 ºC to +70 ºC and 0-100 % respectively. The 

response time of the sensor is less than 0.1 second and its spectral range is 400-700 nm. The 

temperature dependence of sensitivity of the PAR LITE is within ±0.2 % per ºC. 

 

3.3.3 Leaf temperature sensors 

Fine thermocouples of type K: chromel-alumel, with a diameter of 200 µm were used for 

measuring leaf temperatures inside the greenhouse. They were connected to a Campbell 

scientific Data logger and their sensitivity curves were pre-recorded in the logger for the 

thermocouple outputs to be displayed in ºC. Thermocouple thermometers are precise to about 0.2 

ºC. A radiation thermometer (Model MS 35, Heitronics Infrarot., Wiesbaden, Germany) was also 

used to check on the reliability of the fine thermocouples.  

  

3.3.4 Air movement sensors 

A cup anemometer (Model A100L2, Delta T Devices, Cambridge, UK) with a measurement 

range of 0 to 300ms
-1

 was used to measure wind speed and a wind vane (model WD1, Delta T 

Devices, Cambridge, UK) was used to measure the wind direction outside the greenhouse at 

Floraline. The wind vane had an accuracy of ± 2 ° obtainable in steady winds over 5 m/s and a 

resolution of 0.2 °. The wind vane and the anemometer were connected to a Delta T data logger.   
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 3.4 Instrument Calibration 

Calibration is the process of configuring an instrument to provide a result for a sample within an 

acceptable range. Instrument calibration is one of the primary processes used to maintain 

instrument accuracy. It is necessary to calibrate an instrument before taking measurements; this 

ensures that there will not be any bias on data collected from new sensors out of calibration or 

from failure of older sensors. Calibration of sensors is usually done against an in-house standard; 

this can keep deviations from the standard within the accuracy limits advertised by the sensor 

manufacturers. Calibration of sensors was done in from mid- August to September 2009. 

 

3.4.1 Temperature and relative humidity probes 

Two types of temperature and relative humidity  probes (Model HMP45C, Vaisala Inc., Boston, 

USA and Model RHT2nl, Delta T Devices, Cambridge, UK) were calibrated against the standard 

WALZ  in-house sensor (Model TS-2 Dew point system, Mess-unit and GegelTechnik). A dew 

point mirror measuring system was used for this process. It is regarded as one of the most 

reliable methods for measuring absolute humidity of a gas. The temperature and relative 

humidity probes were tied together with a platinum resistance thermometer and the WALZ 

instrument probes and were immersed into the flow chamber of the system. The temperature of 

the flow chamber was controlled by setting the GRANT LTD 9G at a constant temperature and 

the relative humidity in the chamber was controlled using a portable dew point generator (Model 

L1-610). The ambient temperature was presumed to be similar to the water bath temperatures if 

there were no energy losses. Fixed temperatures were set on the dew point generator but it 

always had to be less than that of the water bath by 5° C.  
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All the measurements were recorded automatically by data loggers (Model DL2e, Delta T 

Devices, Cambridge, UK and Campbell Scientific Ltd., Shepshed, UK) every 5 seconds and 

these values were averaged every minute. The WALZ was connected to a data logger (Model 

CR23X, Campbell Scientific Ltd., Shepshed, UK). The outputs for HMP45C temperature and 

humidity probes should be connected to a Campbell Scientific Data logger and the outputs for 

the RHT2nl temperature and humidity probes should be connected to a DL2e Delta T Data 

logger, two separate experiments had to be done for the calibration of the HMP45C and the 

RHT2nl sensors because there were not enough data loggers to do the experiment at once. The 

two experiments were carried out on a period from 7 September to 18 September 2009 (DOY 

250 to DOY 261). Regressions of the outputs of the tested sensors against the standard sensor 

were plotted and were used to obtain the calibration factors of the sensors.  

 

3.4.2 Radiation sensors 

Calibration of radiation sensors was done at the University of Zimbabwe on the roof top of the 

Department of Physics (New wing). A pyranometer (Type CM11, serial number 997082, Kipp 

and Zonen, Delft, Netherlands) was used as the in-house standard. The radiation sensors that 

were calibrated were tube solarimeters, and CM3 pyranometers. They were tested against the 

CM11 pyranometer. The tube solarimeters were oriented in the North-South direction.  PAR 

sensors (Model, PAR LITE, Kipp and Zonen, Delft, Netherlands) had no in-house standard; they 

were compared against each other: one to be used inside the greenhouse and the other one 

outside the greenhouse. The apparatus was set up away from obstructions, leveled and checked 

for dryness before they were left to run. The sensors were connected to a data logger (Model 

CR23X, Campbell Scientific Ltd., Shepshed, UK) and the sensors were left to run from 20-24 
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August 2009 (DOY 232 to 236). The test sensor output (mV) was plotted against the standard 

output (Wm
-2

) and the gradient of that graph was taken to be the calibration constant of each 

sensor. 

 

3.5 Measurements of climatic parameters 

The climatic parameters that were measured inside and outside the greenhouse are described in 

this section. Two meteorological stations were set up for the measurement of climatic data, one 

outside and one inside the greenhouse.  

 

3.5.1 Climatic parameters measured inside the greenhouse 

An Automatic Weather Station (AWS) mounted at 1.5m height was set up inside the greenhouse 

(Fig 3.4). As the experiment was running the climatic parameters that were measured 

continuously in the greenhouse were as follows: 

 Global solar radiation above the canopy 

 Photosynthetically Active radiation (PAR) above the canopy 

 Net all-wave radiation above the canopy 

 Air temperature 

 Relative humidity 
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Fig 3.4: The inside automatic weather station at Floraline (Pvt) Ltd 

 

The incoming solar radiation above the canopy was measured using a tube solarimeter (Model 

TSL, Serial number 058231, Delta T Devices, Cambridge, UK). Net all-wave radiation was 

measured with a net radiometer (Model Q-7.1, serial number Q03194, Radiation and Energy 

Balance Systems, Inc). PAR was measured by a PAR sensor (Model PAR LITE, serial number 

639-050494, Kipp and Zonen, Delft, Netherlands). Air temperature and relative humidity were 

measured at 1.5m above the soil height with temperature and relative humidity probes (Model 

RHT2nl, serial number 900, Delta T Devices, Cambridge, UK). In order to keep track of 

possible vertical gradients within the greenhouse air, the air temperature and relative humidity 

were also measured at three other heights of 0.4 m, 0.8 m and 2 m above ground level at the 

same position as the automatic weather station using three temperature and relative humidity 
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probes (Model CS500, serial number V3410166 Vaisala Inc., Boston, USA; Model HMP45C, 

serial number A0130010 Vaisala Inc., Boston, USA and model HMP45C, serial number 

A0130014, Vaisala Inc., Boston, USA). 

 

Mixing of the greenhouse air was also tested on selected days by measuring the air temperature 

and relative humidity (at the same height) at four other positions in the greenhouse (fig 3.5). The 

greenhouse air temperature and relative humidity were taken as the average of the sensor 

readings at the five positions. 

 

 

 Fig 3.5: The placement of air temperature and relative humidity sensors within the greenhouse for the 

investigation of greenhouse air mixing 
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Climatic data were measured every 5 seconds and these values were averaged every 30 minutes 

and stored in 2 data loggers (Model DL2e, Delta T Devices, Cambridge, UK and Model CR23X, 

Campbell Scientific Ltd., Shepshed, UK). Several sensors were connected to the DL2e data 

logger, these were: the tube solarimeter (Model TSL, Serial number 058231, Delta T Devices, 

Cambridge, UK), the net radiometer (Model Q-7.1, serial number Q03194, Radiation and Energy 

Balance Systems, Inc), the PAR sensor (Model, PAR LITE label number 639, Kipp and Zonen, 

Delft, Netherlands) and a temperature and relative humidity probe (Model RHT2nl, serial 

number 900 Delta T Devices, Cambridge, UK).  

 

3.5.2 Climatic parameters measured outside the greenhouse 

Another AWS of similar characteristics were placed near the greenhouse on bare land under 

open field conditions, well clear of buildings and other obstacles (Fig 3.6). The parameters that 

were measured continuously outside the greenhouse were as follows: 

 Wind velocity 

 Air temperature and humidity 

 Global solar radiation 

 Diffuse radiation 

 PAR 
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Fig 3.6: The outside Automatic Weather Station (AWS) at Floraline (Pvt) Ltd, mounted with all sensors and 

the shade ring for measurement of diffuse radiation. 

 

The external ambient air temperature and humidity were continuously measured at 1.5 m above 

the ground. Radiation, and wind speed and direction were also measured continuously at 2 m 

above the ground. Wind speed was measured using a cup anemometer (model A100L2, Delta T 

Devices, Cambridge, UK) and wind direction with a windvane (model WD1, serial number 

7879, Delta T Devices, Cambridge, UK). Air temperature and relative humidity were measured 

by a temperature and relative humidity probe with a capacitive relative humidity chip and a 

platinum resistance thermistor (Model RHT2nl, serial number 453, Delta T Devices, Cambridge, 

UK). The incoming solar radiation was measured using a pyranometer (Model CM3, serial 

number 637-058231, Kipp and Zonen, Delft, Netherlands). Diffuse radiation was measured 

using a pyranometer (Model CM3, serial number 638-058232, Kipp and Zonen, Delft, 



Materials and methods 
 

52 
 

Netherlands) mounted onto a shade ring. PAR was measured with a PAR sensor (Model PAR 

LITE, serial number 380-010281, Kipp and Zonen, Delft, Netherlands). All the measurements 

were recorded automatically by a data logger (Model DL2e, Delta T Devices, Cambridge, UK) 

every 5 seconds and these values were averaged every 30 minutes. 

 

3.6 Measurements of physiological parameters 

 

3.6.1 Stomatal Resistance measurements 

Stomatal resistances were measured on selected days with a clear sky. Measurements were taken 

on seven rose cultivars: King Arthur, Betsy, N-Tertain, Symponica in Rosso, Upendo, SPE06-

2430-10 and SPE05-3904-0.  The leaves were selected from above and within the canopy, where 

there were two fully expanded, mature and healthy leaves. Stomatal resistances were measured 

with a dynamic diffusion porometer (Model AP4, Delta T Devices, Cambridge, UK) in 

continuous cycles (Fig 3.7).  

 

The diffusion porometer was calibrated frequently in order to account for temperature effects 

that arise when the cup to leaf temperature differences approached ±2ºC and when the set 

relative humidity differences approached ±5%. Each leaf was measured at least every 30minutes. 

Stomatal resistance data was to be used for calibration and validation of the stomatal resistance 

model. 
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Fig 3.7: Measurement of leaf stomatal resistance with an AP4 diffusion porometer 

 

3.6.1.1 Up scaling to canopy resistance 

 The stomatal resistances that were measured from the selected leaves were up-scaled to canopy 

resistance. To get the canopy resistance (rs) , the average of all the readings taken was divided by 

the Leaf Area Index (LAIg). LAI is the ratio of the total upper leaf surface of vegetation divided 

by the surface area of the land on which vegetation grows. 

 

3.6.2 Determination of LAIg 

A sunscan canopy anaylsis system (Model SS1-TM, Delta T Devices, Cambridge, UK) was used 

to estimate LAIg (Fig 3.8).  
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  Beam Fraction Sensor (BFS)     Sun scan probe 

Fig 3.8: Estimation of the Leaf Area Index (LAI) using a sunscan canopy analysis system 

 

Measurements were taken on a clear day at mid-day and replicated 10 times on different rows.  A 

sunscan canopy anaylsis system is a portable instrument for measuring the light levels of PAR in 

plant canopies. It measures the interception of solar radiation by the canopy, enabling estimates 

of canopy LAIg. LAIg is calculated using Beer‟s Law from measurements of the incident light 

(I0) and transmitted light (I) which gives the following relationship with LAIg: 

                                                    kLAIeII 0       [3.1] 
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Where: k = an extinction coefficient depending on the leaf angle distribution and the direction of 

the beam. (k =1 for entirely horizontal leaves). This method is non-destructive, and 

measurements were done once a week during the measurement period.  

 

The sunscan canopy analysis system comprises of a sunscan probe, a beam fraction sensor (BFS) 

and a data collection terminal (the Psion Workabout). The sunscan probe measures the light 

transmitted through the canopy beam fraction sensor and the BFS measures the light incident on 

the canopy. The measurements are observed and stored on the data collection terminal.  

 

3.6.3 Leaf temperature measurements 

Leaf temperature measurements inside the greenhouse were done using fine thermocouples. The 

thermocouples were attached to the lower side of the leaf by plastic clips (Fig 3.9) and 

measurements were done randomly on the cultivars studied. The leaf temperature was measured 

at different locations within the canopy.  

 

Four thermocouples were attached to the leaves of the flower stem and two thermocouples were 

attached to the leaves of the bent shoots on the lower part of the canopy. The canopy temperature 

(Tv) was then calculated as the average of the six leaf temperatures. The thermocouples were 

connected to a datalogger (Model CR23X, Campbell Scientific Ltd., Shepshed, UK) and 

measurements were automatically recorded every 5 seconds and averaged every 30 minutes. The 

canopy temperature data were used in the calibration and validation of the vegetation model. 
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Fig 3.9: A rose leaf with a thermocouple attached on its underside by a plastic paper clip 

 

To check on the reliability of the leaf temperature readings from the thermocouples; a radiation 

thermometer (Model MS 35, Heitronics Infrarot., Wiesbaden, Germany) was also used in the 

greenhouse to measure leaf temperatures as shown in Fig 3.10.  
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Fig 3.10: Leaf temperature measurement taken by a radiation thermometer 

 

3.6.4 Crop transpiration rate determination. 

This section describes how crop transpiration rates that were available as historical data were 

collected. Historical data was obtained from Floraline (Pvt) Ltd from several varieties of a rose 

crop for the period December 2007 and January 2008. SHB sap flow gauges (model SG10WS, 

Dynamax, Inc., Houston, USA) were used to measure crop transpiration rates. They were 

installed on the main stems of two rose plants to monitor whole-plant transpiration (WPT) 

continuously following Rose and Rose, 1998; Baker and van Bavel, 1987; Baker and Nieber, 

1989. The sap flow gauges were checked weekly for sap accumulation and gauge contact with 

the stem. The heaters were loosened when necessary to allow for rapid plant growth. If the stems 

became too big for the gauges or if the plants showed signs of stress; the gauges were changed to 
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other stems.  After the sap flow was measured, water use by sampled plants was extrapolated to 

the entire stand or greenhouse. The mass or volume flow rates for individual plants were 

converted to estimates of transpiration per unit area of ground. 

 

The total leaf area, LA , of the plant where the gauge was installed was determined destructively 

by means a WinDIAS colour image analysis system (Delta T Devices, Cambridge, UK) 

connected to a personal computer and thermocouples were inserted into the stem of the rose 

plants to measure the stem temperature.  Scaling up to crop transpiration was done by assuming 

that the stem sap flow was uniform throughout the crop. This upscaling assumes that the stem 

sap flow was uniform throughout the crop (Ham et al, 1990).  The crop transpiration rate can be 

written as:   

 LAI
A

tF
APtT

L

s
gVr

)(

36001000

1
)(   [3.2] 

Where: 

 Tr(t) is the greenhouse crop transpiration rate (kg s
-1

) 

 PV is the fraction of the total greenhouse floor area covered by the crop, 

 Ag is the total greenhouse floor area (m
2
) 

Fs(t) is the stem sap flow (g h
-1

) 

AL is the total leaf area of the plant on which the gauge is installed (m
2
) 

LAIg  is the crop leaf area index (expressed per unit cultivated greenhouse floor area). 
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Errors in whole plant transpiration rates in the mornings and late afternoon due to temperature 

gradients between the soil and air were corrected for using the method proposed by Steppe et al 

(2005). 

 

3.7 Calibration and validation of the transpiration sub model of the GDGCM 

The transpiration sub-model of the GDGCM described in §2.10.1 was calibrated and validated 

using climatic and physiological data that had been collected from the field and historical data on 

transpiration rates obtained from sap flow measurements. The historical data was obtained from 

Floraline (Pvt) Ltd from several varieties of a rose crop for the period December 2007 and 

January 2008. The model had two parts that were calibrated and validated separately. The 

canopy resistance model (Equation 2.21) of the transpiration sub-model was calibrated and 

validated first and then the transpiration model (Equation 2.16) was then calibrated and validated 

using rose canopy surface resistance (rs) output values from the canopy resistance model, 

(Equation 2.21). The climatic and physiological data used for calibration and validation of the 

canopy resistance model, (Equation 2.21) were collected on selected days in January 2010 to 

March 2010.  Due to shortages of sap flow gauges, it was not possible to physically measure 

transpiration rates during the period this research study was undertaken. Instead the calibration 

and validation of the transpiration sub-model of the GDGCM (Equation 2.16) were carried out 

using historical data of transpiration rates obtained from measurements using sap flow gauges, 

climatic and other physiological parameters. The historical data was obtained from Floraline 

(Pvt) Ltd from several varieties of a rose crop for the period December 2007 and January 2008. 
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3.7.1 Canopy resistance model calibration 

The canopy resistance model [Equation 2.21] was calibrated to obtain the coefficients a, b and c. 

Calibration was done using data collected on 27 and 28January 2010 and 11 and 12 February 

2010 (DOY 27,28, 42 and 43 respectively). The input parameters rs, LAIg and leaf or vegetation 

temperature (Tv), were obtained from field measurements as discussed in §3.6.1, §3.6.2 and 

§3.6.3 respectively. The solar irradiance incident on the crop, QSint was obtained from the 

climatic data that was automatically recorded on the inside weather station by data loggers. The 

vapor pressure deficit of the air at which resistance is minimal, VPDm was taken to be 2.5kPa 

(Baille et al., 1994c; Kittas et al., 1999) and rl,min was taken as 100 s m
-1

 (Baille et al., 1994a; 

Baille et al., 1994c; Kittas et al., 1999). VPD was obtained mathematically as described in 

§3.7.1.1. After inputting all parameters of the canopy resistance model (equation 2.21) a 

regression wizard tool in a statistical package; Sigma plot 2001(Systat Software Inc., San Jose 

CA, USA) was used to evaluate the coefficients a, b and c from experimental data fitting. 

  

3.7.1.1 Determination of Vapor pressure deficit  

The vapor pressure deficit, VPD (kPa) was obtained mathematically from the climatic data 

recorded inside the greenhouse. It is the difference between the vapour pressure and the 

saturation vapour pressure. The following equations were used to obtain VPD. 

   [3.3] 

                                                                                                                       [3.4] 



Materials and methods 
 

61 
 

Where:  and  are the saturation vapour pressure at the air and vegetation 

temperature respectively (kPa),  and  are the vegetation and air temperature (°C) 

respectively,  is the vapour pressure (kPa) and RH is the relative humidity, (%). The 

difference of [3.3] and [3.4] gave VPD as shown: 

                                                                                                            [3.5] 

(Monteith and Unsworth, 1990) 

 

 3.7.2 Canopy resistance model validation 

Validation of the canopy resistance model, (Equation 2.21) was done using climatic and 

physiological data taken on 16 March 2010 (DOY 107). rs values were simulated using another 

set of input parameters (LAIg, QSint and VPD), and the coefficients a, b and c that were obtained 

from the calibration process and the same values of VPDm and rl,min of 2.5kPa and 100 s m
-1

 

respectively. To validate the model, the simulated rs were compared to rs measured by means of a 

dynamic diffusion porometer (model AP4, Delta T Devices, Cambridge, UK). To assess how 

well the canopy resistance model predicted rs, a regression of simulated and observed rs values 

was done and statistical parameters were used to analyse the validation. The statistical 

parameters used were the coefficient of determination (R
2
) and the standard error estimate (SE) 

of the model, . These are defined by Equations 3.6 and 3.7. 

i
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N

yy
i

isim
2

            [3.7] 

Where: 

 yi is the measured output 

 y  is the average,  

ysim is the model output  

 N is the number of data points.  

 

3.8 Transpiration sub-model calibration 

The transpiration sub-model (Equation 2.16) was calibrated by determining several parameters 

that were used to simulate the transpiration for the rose crop. The simulated transpiration was 

compared with historical data of whole plant transpiration rates that were obtained from 

Floraline (Pvt) Ltd from several varieties of a rose crop for the period December 2007 and 

January 2008. 

 

3.8.1 Determination of phase change heat transfer coefficient (hP) 

The phase change heat transfer coefficients for the upper and lower faces of the leaves, hP1 and 

hP2 were assumed to be the same for the upper and lower faces of the leaves. To determine hP, 

Equation [2.18]; the latent heat of condensation of water, hfg (J kg
-1

), Sherwood number, Sh, the 

molecular diffusion coefficient of water vapour in air, D (m
2
 s

-1
) and the characteristic 
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dimension, d (m) had to  be determined first. To determine d was the characteristic length of the 

leaves of the roses were measured. Ten rose bushes were selected and on these bushes ten fully 

developed leaves with 3 leaflets each had their lengths measured. The mean length of the leaves 

was calculated, and the deviation per leaf noted. D was taken to be 24.9 x 10
-6

 m
2
 s

-1
 at 25°C 

(General data booklet, 1999). It was
 
assumed to be constant through out the temperature range. 

hfg  (J kg
-1 

). Sh, was determined mathematically using the following equations: 

,         [3.8] 

Where:  

Ta is the air temperature, (°C). 

 

The equation for determining Sh involved the calculation of the Grashof number (Gr), the 

existing convection and the flow type. Gr is the ratio of the buoyancy force times the inertial 

forces to the square of the viscous forces. For air under normal conditions: 

             [3.9] 

(Bakker et al, 1995) 

Where: β is the thermal expansion coefficient of air (K
-1

), g is the acceleration due to gravity 

(ms
-2

), d is the characteristic dimension of the leaf (m), (Tv – Ta) is the temperature difference 

between the vegetation , Tv and the surrounding air, Ta (K) and v is the coefficient of kinematic 

viscosity air, (ms
-2

). v was considered to be a constant with a value of, 15.5 x 10
-6

 ms
-2

 at 25°C. It 

was assumed that there were no significant differences in v obtained in the temperature range 
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existing in the greenhouse. g is a constant = 9.81 ms
-2

. Tv and Ta were obtained from the climatic 

and physiological data that were measured. Air was assumed to be an ideal gas and β is the 

inverse of Ta (K). The convection and flow type existing in the greenhouse was determined 

according to fig 3.11. 

 

 

Fig 3.11: A flow chart determining the convection and flow type in heat and mass transfer in the boundary 

layer (adapted from Monteith and Unsworth, 1990) 

 

 

Reynolds number (Re) is a dimensionless group given by:  

                                                                                                                                    [3.10] 

(Monteith and Unsworth, 1990) 
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Where u is the velocity of air (ms
-1

) and the parameters d and v are as described as before. It was 

determined that there was free convection and laminar flow and Sh was given by: 

             [3.11] 

(Bakker et al.,1995) 

 

3.8.2 Determination of the mass transfer coefficient (hTr’)   

The mass transfer coefficient (hTr’) was given by equation [2.17]. rs that was input was simulated 

from the canopy resistance model equation [2.21]. LAIg was determined as outlined in §3.6.2 and 

determination of hfg and hp1 and hp2 was as outlined in §3.9.1 

 

3.8.3 Determination of the transpiration flux density (QL(vi)) 

QL(vi) was given by equation [2.16 ]. hfg and hTr’were determined as outlined in §3.8.1 and §3.8.2 

respectively. The saturation water vapour concentration at the temperature of the vegetation 

xs(Tv) (kg m
-3

), was determined following equation [3.12]  as shown: 

                [3.12] 

 

For the water vapour concentration of the surrounding air xi (kg m
-3

), the saturation water vapour 

concentration at air temperature, xs(Ta) was calculated first. This is given by the following 

equations: 
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                                                                                            [3.13] 

 

                                                                                                                  [3.14] 

 

                                                                                                                       [3.15] 

Equations 3.12, 3.13, 3.14 and 3.15 were adapted from Monteith and Unsworth, 1990 

 

3.9.4 Transpiration sub-model validation 

To validate the transpiration sub-model, equation [2.16] the simulated transpiration rates were 

compared to the transpiration rates measured by stem heat balance sap flow gauges (model 

SG10WS, Dynamax, Inc, Houston, USA). Part of the historical data (January 2008) obtained 

from Floraline (Pvt) Ltd from several varieties of a rose crop for the period December 2007 and 

January 2008 data, was used to assess how well the transpiration model predicted QL (vi). A 

regression of simulated and observed QL(vi) was done and statistical parameters were used to 

analyse the validation. The statistical parameters used were R
2
, and SE. 
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3.9.5 Model implementation  

The transpiration sub-model (equation 2.16) was considered in this study. In the GDGCM there 

are 73 subroutines, the transpiration sub model (equation 2.16) is in the subroutine type 64. The 

simulation of QL (vi) was done by FORTRAN in the subroutine type 64. The GDGCM is within 

the transient simulation systems (TRNSYS) (fig 3.12) which works out the system of differential 

equations.  

 

TRNSYS is a computer package developed by the "Solar Energy Laboratory" at the "University 

of Wisconsin-Madison" for the treatment of solar energy problems; it is described in Klein et al. 

(1988). With the current version of TRNSYS (version 16) a text file describing the system being 

simulated is created and then a FOTRAN program is launched to run it. Simulations were carried 

out for a whole year divided into the winter season (May 2007 to August 2007) and the summer 

season (September 2007 to April 2008). Table 3.1 shows the values of the parameters that were 

used in the model.   
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 Fig 3.12: The GDGCM within the TRNSYS 16 

 

 



Materials and methods 
 

69 
 

Table 3.1: Values for the Gembloux Dynamic Greenhouse Climate Model parameters 

(after Pieters, 1996; Pieters and Deltour, 1997; Pollet and Pieters, 2000) 

 
Soil Characteristics  First Layer  Second Layer Third Layer Fourth layer  

Thermal conductivity [Wm
-1

K
-1

]   0.70  1.95  1.9 1.9 

Layer thickness [m]     0.05  0.15  0.3 0.7 

Density of soil layer [kgm
-3

]   1300  1450  1600 1650 

Heat capacity of soil layer [kJkg
-1

K
-1

] 1.35  1.25  1.25 1.20 

Subsoil temperature [°C]     : 18.5 

Thickness of the subsoil layer     : 8.8 

Floor 

Floor reflectance for solar radiation [-]   : 0.85 

Floor emittance for far infrared radiation [-]   : 0.95 

Characteristic length of greenhouse floor [m]  : 1001 

Cover Characteristics 

Material: 200 m Diffused Polyethylene (DPE) 

Outer cover emittance for far infrared radiation [-]  : 0.79 

Inner cover emittance for far infrared radiation [-]  : 0.79 

Transmittance for far infrared radiation [-]   : 0.18 

Cover absorptance for diffuse radiation [-]   : 0.04 

Dry cover transmittance for diffuse solar radiation [-] : 0.69 

Wet cover transmittance for diffuse solar radiation [-] : 0.55 

Frame transmittance for solar radiation [-]   : 0.95 

Dry cover heat capacity per unit area [kJm
-2

K
-1

]  : 0.725 

Maximum condensation water film thickness [mm]  : 0.12 

Transmittance and reflectances (beam radiation) at 0, 15, 30,45,60,75 and 90° [-] 

Dry cover transmittance:  0.75 0.74 0.72 0.69 0.63 0.46 0.00 

Wet cover transmittance:  0.61 0.61 0.59 0.59 0.57 0.46 0.00 

Dry cover reflectance:   0.21 0.22 0.25 0.27 0.33 0.50 1.00 

Wet cover reflectance:  0.35 0.35 0.37 0.37 0.39 0.50 1.00 

Vegetation Characteristics 

Reflectance for solar radiation [-]    :  0.16 

Canopy attenuation coefficient [-]    : 0.61 

Characteristic length of the leaves[m]   : 0.06 

Emittance for far infrared radiation [-]   : 0.95 

Specific Heat Capacity [kJkg
-1

K
_1

]    : 4.18 

Air characteristics 

Humid air density [kgm
-3

]     : 1.25 

Volumetric Heat Capacity [kJkg
-1

K
-1

]   : I.256 

Latent heat of condensation of water [kJkg
-1

K
-1

]  : 2437 

Inside air velocity [ms
-1

]     : 0.30 

Lewis number [-]      : 0.89 
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 3.9 Characterisation of the existing irrigation system at Floraline (Pvt) Ltd 

Irrigation at Floraline was done through an automated drip irrigation system. The system had 131 

emitters per drip line on a row and the emitters had a spacing of 15 cm. Each flower bed (row) 

had 2 drip lines parallel to each other; hence the whole greenhouse of 36 rows had 9432 emitters. 

The manufacturer‟s emitter rate upon installation was 1,33 litres/hour. Irrigation was triggered 

automatically whenever the accumulative solar radiation outside the greenhouse reached 1600 

kJ/m
2 

and the installed irrigation system applied water for a fixed period of 4 minutes each time 

it was done. 

 

3.9.1 Emitter rate determination 

An experiment was done to determine the emitter rate of the drip lines that were used at 

Floraline; this was done to verify the emitter rate that was given by the manufacturer of the drip 

lines upon installation of the system. The emitter rate given could have changed over time due to 

various factors, which include clogging from salts and mud. In the experiment ten emitters from 

the whole greenhouse were chosen randomly and ten labelled catch cans were set below these 

emitters ensuring that when irrigation was switched on, the water from the emitters would go 

into the catch cans directly, (fig 3.13). Irrigation was switched for four minutes while water was 

collecting into the catch cans and they were removed from the field. The volume of water that 

was collected from each catch can was measured using a measuring cylinder and recorded. The 

mean volume of the collected water was calculated and the emitter rate was given by dividing the 

mean by the time. 
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Fig 3.13: A catch can set below an emitter of a drip line in a bed of roses. 

 

3.11 The amount of water required for irrigation 

The actual water applied by the existing irrigation system and the CWR simulated by the 

GDGCM were determined and compared to assess the potential of the GDGCM as a tool for 

irrigation scheduling for greenhouse crops.  

 

3.11.1 Determination of the water applied by the existing irrigation system 

Outside solar radiation data, for May 2007 to April 2008 was used for the calculations of the 

crop water that was required during the whole year. The data on solar radiation outside the 

Catch can 
Drip lines 
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greenhouse was used to determine the number of irrigation cycles per day. The total solar 

radiation (kJ/m
2
) received per day was divided by 1600 kJ/m

2 
to get the irrigation cycles per day. 

The duration was 4 minutes/cycle and the emitter rate was 0.0167 litres/minute (1 litre/hour). 

The water used by the system per day was determined as follows: 

   [3.16] 

 

3.11.2 Determination of CWR using the GDGCM 

The water lost by the plant through transpiration is the water that the crop requires to be 

replenished hence the amount of water needed for irrigation was calculated from the 

transpiration rates obtained from the model. The daily transpiration was obtained as a summation 

of the transpiration rates of the whole day and the seasonal transpiration rates were obtained as 

the summation of the daily transpiration rates per month. The transpiration rates (W/m
2
) were 

converted to litres per day taking into consideration that;  

 1MJ /m
2
/day = 0.408mm/day  

 0.1mm/day= 1m
3
/ha/day 

 1m
3
= 1000 litres 

(Allen et al,1998) 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 

4.1 Introduction 

This chapter outlines the results of this research project. The presentation of the results was 

divided into 3 sections. Instrument calibration results were presented first followed by field 

measurement results and the model results come at the end. The results that were obtained for the 

calibration of instruments which was done before field measurements were carried out in this 

study are presented in this section. 

 

4.1.1 Temperature and relative humidity probes  

Table 4.1. shows the corrected and sensor output relative humidity equations (RHcr and RHsr 

output respectively) and the corrected and sensor output temperature equations (Tcr and Tsr 

respectively) of temperature and humidity sensors that were calibrated and used in this study.  
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Table 4.1: Calibration factors, for temperature and relative humidity probes.  

Sensor Reference number Correction equation 

HMP45C (RH output) 225 RHcr= (RHsr+ 3.61)/ 0.895 

HMP45C (Temperature output) 225 Tcr= (Tsr+ 0.38)/ 0.96 

HMP45C (RH output) 600 RHcr= (RHsr+ 6.63)/ 0.84 

HMP45C (Temperature output) 600 Tcr= (Tsr+ 2.78)/0.85 

RHT2nl (RH output) 900 RHcr= (RHsr – 0.74)/1.3 

RHT2nl (Temperature output) 900 Tcr= (Tsr – 2.5)/1.07 

RHT2nl (RH output) 636 RHcr= (RHsr+ 0.17)/ 1.16 

RHT2nl (Temperature output) 636 Tcr= (Tsr – 2.55)/ 1.09 

 

 

4.1.2 Radiation sensors 

The gradient obtained when the test sensor output was plotted against the CM11 was taken to be 

the calibration constant. Table 4.2 shows the calibration equations of the all the radiation sensors 

that were used for this research project. 
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Table 4.2: Calibration factors for radiation sensors. Rc and Rs are the corrected and sensor 

output radiation values respectively. 

Sensor Serial number Correction equation 

Tube solarimeter 058231 Rc = (Rs – 3.072)/ 0.72 

PAR sensor 639_050494 Rc = (Rs + 0.982)/0.96 

PAR sensor 380_010281 Rc =  (Rs + 1.236)/1.19 

CM3 pyranometer 638_058232 Rc = Rs /0.68 

CM3 pyranometer 637_058231 Rc =(Rs + 5.8)/0.72 

  

4.2 Field measurements 

This section presents the results for the measurements taken at Floraline (Pvt) Ltd. These were 

used as input parameters for model calibration and validation and also for calculations for the 

actual water applied at Floraline. 
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4.2.1 Greenhouse microclimate  

 

 

Fig 4.1: The diurnal vertical variation of (a) air temperature and (b) relative humidity in the greenhouse on 

28 October 2009. The temperature and relative humidity were measured at heights of 0.4 m, 0.8m, 

1.5m (crop height) and 2 m at the position of the internal AWS (see Fig. 3.5).  
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Although fig 4.1 indicates that there are significant differences between the air temperatures and 

relative humidity within and above the canopy, the absence of significant vertical variations in 

the air temperature and relative humidity above the canopy suggests that the greenhouse air was 

well mixed.  

 

 

Fig 4.2: Greenhouse air temperature and relative humidity at 5 measuring positions, during a single 

measuring day (28 Oct 2009). 

 

20

40

60

80

100

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00

A
ir

 re
la

tiv
e 

h
u

m
id

ity
 (%

)

Z1 Z4 Z5 Z6 Z8

(b)

10

15

20

25

30

35

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00

A
ir

 te
m

p
er

at
u

re
 (°

C
)

Z1 Z4 Z5 Z6 Z8

(a)



Results and Discussions 
 

78 
 

Fig 4.2 shows the diurnal variations on 28 October 2009 of the air temperature and air humidity 

measured at the five designated locations in the greenhouse (see fig 3.5) and Table 4.3 gives the 

4-day average values of the air temperature and relative humidity.  

 

Table 4.3: Summary of greenhouse air temperature and relative humidity homogeneity test 

results, measured at five sensor locations, during a 4-day period (27 – 31 Oct 2009).  

Sensor Z1 Z4 Z5 Z6 Z8 

Daytime      

Average temperature (°C) 23.7 22.8 24.1 23.7 23.8 

Temperature deviation (°C) from  

mean value 

0.0 -0.8 0.5 0.1 0.2 

Average relative humidity (%) 59.6 57.3 54.9 58.9 58.7 

Relative humidity deviation (%)  

from mean value 

1.7 -0.6 -3.0 1.0 0.9 

Night-time      

Average temperature (°C) 16.0 16.0 16.4 16.0 15.9 

Temperature deviation (°C) from  

mean value 

0.0 0.0 0.3 0.0 -0.2 

Average relative humidity (%) 78.6 78.0 75.6 80.2 80.0 

Relative humidity deviation (%)  

from mean value 

0.1 -0.5 -2.8 1.7 1.4 
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The results seem to suggest that there are no appreciable gradients in the temperatures and 

relative humidity in the greenhouse. Sensor Z4 located to the south-west of the greenhouse 

consistently indicated lower day-time temperatures than the other four sensors. There were no 

significant differences between the night-time temperatures and the day-time relative humidities 

measured at the five positions. The night-time humidity measured by sensor Z5 located near the 

centre of the greenhouse and at the point, at which all climatic measurements were made earlier, 

was consistently lower than at the other four positions. However, the results seem to confirm the 

assumption made earlier that because there are no gradients in the greenhouse, the temperature 

and relative humidity measured at any point in the greenhouse is representative of the whole 

greenhouse.  

 

The regimes of solar radiation and VPD that were measured on 16 March 2010 (Day Of Year 

(DOY) 76) are shown in fig 4.3. Solar radiation increased gradually from 0700 Hrs up to 1000 

Hrs where it was highest, the increase in solar radiation resulted in an increase in VPD also 

reaching a maximum at 1000 Hrs when solar radiation was highest. Solar radiation was nearly 

constant till 1100 Hrs where it decreased gradually until 1700 Hrs. Solar radiation reached its 

maximum at 1000 Hrs and not around 1200 Hrs as expected because on this day, it was a clear 

day up to 1000 Hrs then clouds began to gather reducing the solar radiation. When the intensity 

of solar radiation decreased it resulted in a decrease in air temperature and an increase in RH 

thus a high VPD. VPD was highest at 1330 Hrs. As more clouds gathered, the sky becoming 

overcast, solar radiation intensity decreased, VPD decreased reaching a minimum point at 1430 

Hrs and it then rained. 
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 Fig 4.3: Variations of solar radiation received at the top of the canopy QSint and Vapour Pressure Deficit, 

VPD inside the greenhouse taken on DOY 76 (16 March 2010). 

 

4.2.2 Canopy measurements  

Rose surface canopy resistances (rs) were measured on 16 March 2010 (DOY 76) and on 5 

March 2010 (DOY 65), a cloudy and a clear day respectively.  (Fig 4.4) showed that canopy 

resistance was high in the morning at 0700 Hrs reaching to about 700s/m for both days. On the 
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During those oscillations the highest point reached was 400 s/m at 1430 Hrs. Canopy resistance 

then increased gradually from about 1530 Hrs.  

 

 

Fig 4.4: Canopy resistance of several cultivars of the greenhouse rose crop on a clear day (5 March 2010) and 

on a cloudy day (16 March 2010). 
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stomatal resistance. DOY 76 was not a clear day throughout, solar radiation normally reaches its 

peak at midday while canopy resistance reaches its lowest at that point. On this day clouds 

appeared and reduced the intensity of solar radiation, this resulted in an increase in stomatal 

resistance. There was a thunder storm at around 1430Hrs which resulted in very high canopy 

resistances, compared to the clear day. When it rained RH was high and VPD was low. When 

such conditions prevail the stomata are closed increasing canopy resistance. Fitted logarithmic 

regressions were done to determine the relationship between canopy resistance and solar 

radiation; and canopy resistance and VPD; these are shown in figs 4.5 and 4.6 respectively.  

 

 

Fig 4.5: Variation of canopy resistance with solar radiation. 
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Fig 4.6: Variation of canopy resistance with vapour pressure deficit (VPD).  
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4.2.3 Leaf Area Index (LAI) measurement 

Table 4.4 shows the LAI obtained for the greenhouse crop used for the calibration of the canopy 

resistance model (equation 2.21, §2.10.1). The SunScan canopy analysis system estimated LAI 

from the mean LAI obtained from the 10 samples where measurements were taken on the same 

plot. 

  

Table 4.4: LAI of the greenhouse rose crop determined during field measurements at 

Floraline (Pvt) Ltd on 11 January 2010.  

Time Plot   Sample # Transmitted Spread Incident 

Beam 

Fraction 

Zenith 

Angle LAI 

14:37:43 1 1 527.4 1.11 2497.6 1 49.3 2.2 

14:38:08 1 2 752.8 0.21 2497.6 1 49.4 1.7 

14:38:39 1 3 620 0.33 2497.6 1 49.5 1.9 

14:39:36 1 4 199.2 1.59 2497.6 1 49.7 3.5 

14:43:56 1 5 1242.6 0.53 2497.6 1 50.6 1.0 

14:44:11 1 6 334.7 0.86 2497.6 1 50.6 2.7 

14:44:36 1 7 1341.1 0.55 2497.6 1 50.7 0.8 

14:44:46 1 8 298.9 0.54 2497.6 1 50.7 2.9 

14:44:57 1 9 572.6 0.82 2497.6 1 50.8 2.0 

14:45:54 1 10 732.2 1.11 2497.6 1 51.0 1.7 

         Average of: 10   readings 

      
  Incident light: 2497.6   Transmitted fraction: 0.19   LAI: 2.0 
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4.2.4 Leaf and air temperature measurements 

Fig 4.7 shows diurnal leaf and air temperatures measured on 13 December 2009 (DOY347). Leaf 

and air temperatures were ranging at about 16 °C from midnight up to 0700 Hrs where they 

increased uniformly but air temperature was higher than leaf temperature from 700 Hrs up to 

1100 Hrs, because the leaves gain and lose solar radiation energy at a slower rate than the air.  

 

 

Fig 4.7: Diurnal leaf and air temperature measured on a rose crop on 13 December 2009 (DOY347). 
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radiation at 1230 Hrs resulting in the change in leaf and air temperatures. Leaf temperature 

became higher than the air temperature from 1100 Hrs to 1700 Hrs, reaching a maximum of 40 

°C at 1330 Hrs. The leaf temperature then decreased gradually, the decrease could have been 

attributed to sensible heat loss or from evaporative cooling. Sensible heat loss is a process 

whereby air circulation around the leaf removes heat from the leaf surfaces if  temperature of the 

leaf is higher than that of the air. Evaporative (latent heat) cooling occurs as the leaf transpires; it 

withdraws latent heat from the leaf and cools it. 

 

4.2.5 Determination of characteristic dimension of the leaves 

The characteristic dimension (d) was determined for calibration of the transpiration sub model. 

Table 4.5 shows the results obtained in determining the characteristic dimension.  

 

Table 4.5: Leaf lengths measured on several varieties of the rose crop, to determine the 

characteristic dimension (d).  

    Leaf # Length 1 (cm)  Length 2 (cm) Length 3 (cm) Mean length/ leaf (cm) 

1 5.0 5.4 7.2 5.9 

2 4.0 4.7 6.8 5.2 

3 6.5 7.2 8.4 7.4 

4 6.1 6.4 8.5 7.0 

5 3.8 4.2 5.3 4.4 

6 4.8 5.1 6.8 5.6 

7 4.8 5.3 6.5 5.5 

8 3.6 3.9 5.4 4.3 

9 3.9 4.1 5.2 4.4 

10 3.2 3.7 4.8 3.9 

Total 45.7 50 64.9 53.5 

Mean 4.57 5 6.49 5.35 
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The results show that the characteristic dimension had a mean of 5.35 cm with a lower and upper 

limit of 4.57 cm and 6.49 cm respectively. 5.35 cm was used as the characteristic dimension 

during this research study. 

 

4.2.6 Emitter rate determination 

The results of the emitter rate used for determination of the actual water applied by the irrigation 

system at Floraline (§3.9.1), are given in Table 4.6.  

 

Table 4.6: The volume of water released by each emitter on the onset of irrigation for the 

greenhouse rose crop, to determine the emitter rate of the drip lines at Floraline. 

Emitter # 1 2 3 4 5 6 7 8 9 10 Total Average 

Volume/4 mins (ml) 65 90 59 60 75 52 63 78 69 57 668 66.8 

 

 

 

 

The results of the average amount of water released by the emitters showed that the drip lines 

had an emitter rate of 1litre per hour which was lower than the 1.33 litres per hour emitter rate 

given by the manufacturer upon installation of the drip irrigation system. The decrease of the 
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emitter rate may be explained by clogging of the drip lines from salts that accumulate over time. 

The salts result from fertilizers that are dissolved into the water for fertigation of the rose crop. 

Clogging of the drip lines can also result from algae developing both on the soilless media 

(vermiculite) and on the drip line. 

  

4.3 Model Results 

Results and discussions of the stomatal resistance model (equation 2.21) and transpiration sub-

model (equation 2.16) calibration, validation and the implementation of the GDGCM are 

presented in this section. 

 

Calibration results using the canopy resistance model (equation 2.21) and the transpiration sub- 

model (equation 2.16) are outlined to show the effects of changes made on the parameters that 

were calibrated. The effects of changes are observed on the outputs of the models. A statistical 

evaluation of the model performance on different data sets is given by the validation results. The 

model application results show the daily and seasonal CWR modelled for winter and summer 

seasons of 2007 and 2008 respectively. The comparison results of the modelled CWR against the 

water applied by the existing irrigation system at Floraline are also shown.  
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4.3.1 Canopy resistance model calibration 

Table 4.7 shows the calculated values of the parameters a, b and c for the canopy resistance 

model (Equation 2.21) obtained statistically from experimental data fitting, using a statistical 

package; Sigma plot 2001(Systat Software Inc., San Jose CA, USA).   

 

Table 4.7: Model-specific parameters obtained from the calibration of the canopy 

resistance model of the GDGCM transpiration sub-model. 

Coefficient a b c R
2 

Value 788.38 ± 82.51 85.78 ±16.14 -0.146 ± 0.080 0.90 

 

The parameters are generally higher than those found by Mashonjowa et al. (2007a). Differences 

may be attributed to the different varieties of the rose crop used, differences in the prevailing 

weather conditions and the different management practices on the rose crop. A part of the 

greenhouse plastic film was torn and the irrigation was not being done efficiently due to clogging 

of drip lines on some sections in the greenhouse, this could have been the main reason resulting 

in the difference in the values of coefficients obtained. The fitted linear regression of the 

simulated and observed canopy resistance is presented in figure 4.8 and Table 4.8 gives the 

regression analysis results.  
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Fig 4.8: Regression between the experimentally observed and the simulated canopy resistances for the canopy 

resistance model calibration period. 

 

4.3.2: Canopy resistance model validation 

Fig 4.9 shows the fitted linear regression of the simulated and observed canopy resistance.  A 

different set of observed canopy resistance data was used. The results show the correlation 

between the observed and simulated canopy resistances. The coefficient of determination, R
2
; 

and the standard error (SE) between simulated and observed canopy resistances (rs(sim) and rs(obs) 

respectively) based on the curve fitting equation: y = mx+c are shown in Table 4.8.  
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Fig 4.9: Regression between the experimentally observed and the simulated canopy resistances for the canopy 

resistance model validation period. 

 

Table 4.8: Results for regression analysis between the observed and simulated canopy 

resistances, including the slope and the 95% Confidence Intervals of the equation; 

rs(obs)= mrs (sim)+ c 

 Number of observations, 

N 

 

R
2
 

Slope 

  m 

Intercept 

    c 

 

SE 

95% confidence 

interval of slope 

Calibration 33 0.901 2.257   -29.554 0.06 [2.35; 2.63] 

Validation 21 0.907 1.507   -90.676 0.05 [1.16; 1.37] 
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 4.3.3 Transpiration sub-model calibration  

Several parameters of the transpiration sub-model (equation 2.16) were determined as outlined in 

§3.8.1 and §3.8.2. They were used to simulate transpiration rate.  Fig 4.10 shows the data of the 

simulated and observed transpiration rates fitted to linear regression. Table 4.9 gives the results 

for the regression analysis. However, there were several outliers. Outliers could have resulted 

from assumptions made in the determination of model input parameters such as mass transfer 

coefficient (h’Tr) and heat transfer coefficient (hP). 

 

 

Fig 4.10: Regression between the experimentally observed and the simulated transpiration rates for the 

transpiration sub-model calibration period. 
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4.3.4 Transpiration sub-model validation 

The transpiration flux density for January 2008 was simulated using the transpiration sub-model 

(equation 2.16) of the GDGCM. Observed transpiration rates were measured using stem heat 

balance sap flow gauges. The measured transpiration rates were up-scaled to whole plant 

transpiration (WPT). Fig 4.11 shows the relationship between the simulated and observed 

transpiration flux densities (QLvi(sim) and QLvi (obs) respectively), while Table 4.9 gives the 

regression analysis results.  

 

Fig 4.11: Regression between the experimentally observed and the simulated transpiration rates for the 

transpiration sub model validation period. 
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Table 4.9: Results for regression analysis between the observed and simulated 

transpiration flux densities, including the slope and the 95% Confidence Intervals of the 

equation: QLvi (obs)= mQLvi(sim)+ c 

 Number of observations, 

N 

 

R
2
 

Slope 

  m 

Intercept 

    c 

 

SE 

95% confidence 

interval of slope 

Calibration 1142 0.80 1.503   0.179 0.0168   [1.47;1.53] 

Validation 1118 0.64 1.008   6.964 0.018   [1.17;1.24] 

 

The results show the fit between the experimentally observed and simulated transpiration rates, 

but there is generally an over-estimation of the observed transpiration rates. Most of the 

significant differences between the observed and simulated transpiration rates were observed 

during the early hours of the day. The main source of error of the transpiration measurements 

may be in the up-scaling of the measured transpiration rates from single to whole canopy 

transpiration. Errors may also result from the heat balance sap flow gauge error but it is expected 

to be not more than 10% (Dynamx, 2005).  However; Baker and van Bavel (1987), Baker and 

Nieber (1989) and Grime et al. (1995) have reported that observed over-estimation and under-

estimation of whole plant transpiration in the mornings and late afternoons. In the mornings 

when soil temperatures exceeds air temperature there is a negative temperature gradient in the 

sensor as warm sap enters a cooler stem, causing a temporary over-estimation of WPT if the 

sensor is near the soil. In the late afternoon, when the ambient air is at a higher temperature than 
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the soil, the sensor registers a higher positive temperature gradient in the sensor, resulting in 

under-estimation of WPT (Mashonjowa et al, 2010b).  

 

4.3.5. Simulations of canopy resistance using the canopy resistance model and the GDGCM 

A regression between the canopy resistances simulated using the canopy resistance model 

(equation 2.21) and that simulated using the GDGCM is shown in fig 4.12. The results show that 

there is a good correlation between the two simulated canopy resistances.  

 

 

Fig 4.12: Regression line for canopy resistances simulated using the canopy resistance model and canopy 

resistance simulated using the GDGCM.  
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4.3.6 Crop transpiration  

Crop transpiration for winter and summer seasons (May to August and September to April, 

respectively) were simulated at 30 minute intervals using the GDGCM. Fig 4.13 shows 

simulated diurnal transpiration rates for winter (4 June to 8 June 2007) and summer (14 to 18 

October 2008).  

  

 

Fig 4.13: Simulated diurnal transpiration rates of a greenhouse crop during winter (4 June to 8 June 2007) 

and summer (14 October to 18 October) seasons, using the GDGCM.   
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energy to the canopy and is, among other factors, the cause of plant transpiration. Transpiration 

rises from 0600 Hrs reaching its maximum around 1200 Hrs. After 1200 Hrs, transpiration 

decreases up to around 1800 Hrs where it becomes very low. This pattern shows that the crop 

loses water in the same way during winter and summer but in different quantities. Fig 4.13 shows 

that in summer the rose crop transpires to a maximum of 160Wm
-2

 while the maximum 

transpiration for winter is close to 90 W/m
2
. The differences in winter and summer crop 

transpiration are attributed to several climatic factors which include solar radiation, relative 

humidity, VPD, wind and vegetation temperature. During winter there are low air temperatures, 

less solar radiation is received resulting in low leaf temperatures. Transpiration rate is decreased 

because there will be a vapour pressure gradient between the leaf and air temperature. When 

there are low temperatures and low solar radiation, the canopy resistance increases reducing 

transpiration rate. In summer there will be high solar radiation intensity resulting in high air and 

leaf temperatures creating a high vapour pressure gradient between the leaf and air temperature, 

and low canopy resistance hence increased transpiration rates. 

 

The night-time transpirations for both seasons are low ut the winter transpiration is lower than 

the summer transpiration. The night-time transpiration is minimal because at night there will be 

no solar radiation which is the main factor affecting crop transpiration; this shows that solar 

radiation is not the only factor determining crop transpiration since transpiration takes place at 

low rates. At night there will be low air and vegetation temperatures, high relative humidities, 

low VPD and high canopy resistances which result in very low transpiration rates. Fig 4.14 

shows the diurnal variations of solar radiation, canopy resistance, transpiration and the 

vegetation temperature. These were simulated using the GDGCM for 7 May 2007. 
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Fig 4.14: Diurnal variations of solar radiation outside the greenhouse, QSout; transpiration flux density, QLvi; 

vegetation temperature, Tv and canopy resistance, rs for 7 May 2007, simulated using the GDGCM.                                                                                                                                                                
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4.3.7 Daily CWR 

Daily CWR were determined as outlined in §3.10.2. The daily amount of water required by the 

crop, (summer and winter) were simulated for the whole year (May 2007 to April 2008) by the 

GDGCM. The CWR were calculated by integrating the GDGCM modelled transpiration rates 

over time. The daily CWR obtained in winter (fig 4.15) showed that most of the days in May had 

an average CWR of 3 kL/day to 4 kL/day. Days in June and July had a lower CWR compared to 

days in May; ranging between 1.5 kL/day to 3 kL/day with a few days requiring close to 3.5 kL 

of water per day.  

 

Daily CWR for August were generally higher compared to the days of May, June and July. Eight 

days in June and July had the lowest CWR of just above 1.5 kL/day and 29 August had the 

highest CWR of close to 5 kL/day. Days in June and July had the lowest CWR because during 

that period the lowest air temperatures were received as expected. The solar radiation received 

was low as well as a low VPD resulting in low CWR. The CWR increased as winter went 

towards the end because air temperatures and solar radiation increased as the days approached 

the summer season.   
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Fig 4.15: Daily Crop water requirements during winter season, for the rose crop at Floraline predicted by the 

GDGCM. 
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February to April because the days received an average amount of solar radiation, resulting in air 

and leaf temperatures that were almost constant. VPD was also constant resulting in average 

CWR of 4.2 kL/day.  

 

 

Fig 4.16: Daily Crop water requirements for the rose crop during summer season at Floraline based on the 

GDGCM.  

 

The daily CWR shown in fig 4.15 and 4.16 were always fluctuating because each day had a 

different CWR. The CWR for each day differ because it depends on the climatic conditions of 

each day inside and outside the greenhouse. Some days are clear throughout while others are not 

such that higher CWR were for clear days while cloudy or overcast days had lower CWR.  

0

1

2

3

4

5

6

7

8

9

10

Sept Oct Nov Dec Jan Feb Mar Apr

D
a
il

y
 C

ro
p

 w
a
te

r 
re

q
u

ir
em

en
t,

 C
W

R
 (

k
l/

d
a
y
)

Time (Months)



Results and Discussions 
 

102 
 

4.3.8 Seasonal CWR 

 

 

Fig 4.17: Summer and winter season CWR for the rose crop grown at Floraline. 
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Fig 4.18: Seasonal crop water requirements for the greenhouse rose crop predicted by the GDGCM for both 

winter and summer seasons (May 2007 – April 2008) 
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  In Zimbabwe rainfall is normally expected during the summer season. Rainfall outside the 

greenhouse was received starting from October to up to March and the highest amount of rainfall 

was received in December, as shown in fig 4.19b. December and January had more days of 

rainfall; when it rains outside the greenhouse, it results in high RH (90%), low VPD and low 

solar radiation inside the greenhouse (figs 4.19a and 4.19b) thus canopy resistance becomes high 

reducing the crop transpiration rate and hence decreasing the CWR. The low solar radiation 

might have been because of heavy rainfall clouds blocking solar radiation. October and February 

received high solar radiation, February had solar radiation higher than October but October had 

higher CWR than February. This was because February received higher rainfall and had higher 

RH and lower VPD inside the greenhouse resulting in lower CWR than in October.  
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Fig 4.19: Variations of (a) Relative Humidity, RH and Vapour pressure Deficit, VPD over time 

inside the greenhouse and (b) the total monthly solar radiation and air temperature 

received inside and the total monthly rainfall received outside the greenhouse during 

winter and summer seasons; simulated by the GDGCM.  
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4.3.9 Comparison of CWR against the actual water supplied by an existing irrigation 

system. 

According to the settings of the climate control computer, irrigation was performed whenever the 

accumulative solar radiation outside the greenhouse reached 1600 kJ m
-2

. Each emitter supplied 

water at an average rate of 1 litre per hour and the system applied water for a fixed period of 4 

minutes each time. The total number of emitters was 9432 in the sampled greenhouse. The data 

of solar radiation outside the greenhouse for the period May 2007 – April 2009 was used to 

determine the number of irrigation cycles per day. The total solar radiation (in kJ m
-2

) received 

per day was divided by 1600 kJ m
-2 

to get the irrigation cycles per day. In this way, it was found 

that the crop was irrigated with an average of 6.85kL (6.85 m
3
 or 6.85 x10

9 
 mm) of water per 

day in winter, divided into an average of 10 applications, and 7.8 kL (7.8 m
3 

 or 7.8 x 10
9
 mm) of 

water per day in summer, divided into an average of 12 applications. 

 

The CWR for the roses and the actual water applied by the irrigation system followed the same 

trend (fig 4.20) throughout the summer and winter seasons, except for August to September 

where the water supplied decreased while the CWR increased.  
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Fig 4.20: The monthly CWR for the rose crop and the actual water applied by the existing irrigation system 

at Floraline for winter and summer seasons. 

 

The least water was applied by the system for the period June to July in winter and December to 

January in summer whereas the least CWR simulated by the model was for the period between 

June and July in winter. This was so because the existing irrigation system was based on 

cumulative solar radiation outside the greenhouse only and the lowest solar radiation was 

received in December. Normally it is not expected for December to receive the lowest amount of 

solar radiation, this could have been because December received the highest amount of rainfall 

than the other months, and this could imply that there were many cloudy or overcast days 

resulting in that month receiving the lowest amount of solar radiation.  On the other hand the 

model used all the climatic and physiological parameters that could affect crop water 
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requirement (solar radiation, air temperature and RH and canopy temperature) to simulate the 

CWR.  

 

 

Fig 4.21: Total CWR for the rose crop and the actual water supplied by the existing irrigation system at 

Floraline (Pvt) Ltd for the whole year (May 2007 to April 2008). 

 

Fig 4.21 shows the total CWR for the rose crop and the total amount of water that was applied by 

the existing irrigation system for winter (May 2007 to August 2008) and summer (September 

2007 to April 2008). 
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The CWR was less than the actual water applied throughout the whole year (fig 4.20). The 

margin of the difference between the CWR and the actual water applied was high and almost 

similar throughout the year except in September and October. During that period there was 

highest solar radiation, VPD, air temperature and the lowest RH, conditions which result in very 

high CWR. The water applied by the system in September and October was not very high for 

that period resulting in the smaller margin between the CWR as compared to the other months, 

because the system takes into account solar radiation only. The system then can be considered to 

be inefficient as compared to the model because February had the highest water applied since it 

received the highest amount of solar radiation but the model showed that even though there were 

high air temperatures in October and February; the latter did not require that much water applied 

as there was higher RH, more rainfall received and a lower VPD than the former month.  

 

The irrigation system at Floraline considers transpiration to be zero at night as there will be no 

solar radiation so irrigation is only done during the day. The total amount of water applied by the 

existing irrigation system at Floraline was almost twice the CWR that was simulated by the 

GDGCM for the winter and summer season. The results imply that the existing irrigation system 

was over-irrigating the crop throughout the whole year.  However there could have been errors in 

the model that resulted to under-estimation of the transpiration rates. Error could arise from the 

assumption that the model assumes that there is no evapotranspiration from the soil or soilless 

media in the greenhouse when there actually is a substantial amount of evaporation. Error from 

the model prediction of transpiration rates may also occur during the night, when RH is very 

high from instrumental error which should be ±5%.   
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

The Gembloux Dynamic Greenhouse Climate model (GDGCM) transpiration sub-model was 

calibrated and validated and used to simulate daily and seasonal crop water requirements for a 

rose crop grown in an Azrom type greenhouse in Zimbabwe. The selected canopy resistance 

model for greenhouse roses was calibrated to obtain the model parameters using data collected 

on 27 January 2010, 28 January 2010, 11 February 2010 and 12 February 2010 and validated 

using data collected on 16 March 2010. The transpiration sub-model was calibrated and validated 

using historical whole plant transpiration (WPT) data measured using sap flow gauges for the 

period December 2007 to January 2008.  

 

Simulated canopy resistance and transpiration rates were compared with the measured values. 

The canopy resistance model and transpiration sub model had correlation coefficients with 

measured values of 90% and 64%, respectively when they were validated. Possible errors in 

canopy resistance measurements may have been due to the dynamic diffusion porometer error 

while errors in transpiration rates may have occurred in the up scaling of the measured 

transpiration rates from a single plant to whole canopy transpiration.  
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Daily and seasonal CWR for the rose crop were determined and it was shown that CWR 

fluctuated with each day as there were different climatic conditions. The rose crop had higher 

CWR during the summer season compared to the winter season. June and July had the lowest 

CWR during the year due to low VPD, air temperature and solar radiation received inside the 

greenhouse, while September and October had the highest CWR there were the highest solar 

radiation, VPD, air temperature and the lowest RH. 

 

The crop water requirements for the whole year were compared with the actual water applied by 

the existing irrigation system at Floraline. The total CWR predicted by the GDGCM (1.45 

Ml/year) were lower than the water applied throughout the whole year by the system (2.74Ml). 

The irrigation system at Floraline switched on whenever the cumulative solar radiation outside 

the greenhouse reached 1600 kJ/m
2
, and it applied water for a fixed period of 4 minutes each 

time. However solar radiation was not the only climatic parameter that was taken into account. 

The model used all outside weather parameters influencing the microclimate in the greenhouse 

and results showed that the crop had lower CWR than the water that was applied. The model 

even found night-time transpiration even though it is very low; the CWR was still lower than the 

water applied by the irrigation system. The results show that the existing irrigation system was 

over-irrigating the whole year; besides water being wasted, this may cause many negative effects 

to the crop which may be indirectly reducing the crop yield, vase life and quality. 
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5.2 Recommendations 

It is recommended to try and adopt the GDGCM into the greenhouse climate control system, and 

use it as a tool for irrigation scheduling in greenhouse crops. The model should allow estimation 

of the CWR and improve on water saving. However further investigations should be done to 

evaluate the practical effect of reduced water application using the GDGCM as the tool for 

irrigation on yield, length of stems, flower quality and vase life. 

 

To increase reliability and accuracy, the research study should be re-done in other regions in 

Zimbabwe such that the whole country is represented. The reliability of the GDGCM in decision 

making for the whole agricultural regions of the country should be investigated. It is also 

recommended that future research be done to try and estimate CWR for other greenhouse crops 

using the GDGCM for outside weather data; solar radiation, air temperature, RH, rainfall and 

wind speed. 
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