TABLE OF CONTENTS

CONTEN	Γ	Page
Acknowledge Dedication Abstract	ements	(v) (vi) (vii)
CHAPTER 1	I: INTRODUCTION	
1.0 1.1 1.1.1	Background Plasma Diagnostics Formation of inductively-coupled plasma	1 3 3
1.1.2 1.1.3 1.1.3.1	Plasma zones Fundamental characteristics and plasma characteristics Deby length	5 6 6
1.1.3.2 1.1.3.3 1.1.3.4	Local thermodynamic equilibrium Departures from local thermodynamic equilibrium Temperature and electron number density	7 8 9
1.2 1.2.1 1.2.2	Effect of easily ionized elements on line emission intensity Active methods Passive methods	16 17 18
1.3 1.3.1 1.3.2	Models used in the passive methods The radiation-trapping model The argon-metastable model	19 19 20
1.3.3 1.3.4 1.3.4.1	The ambipolar diffusion model The reaction rate model Classical rate model	21 23 23
1.3.4.1 (a) 1.3.4.1 (b) 1.3.4.1 (c)	Collisional excitation and de-excitation by electrons Radiation decay Collisional ionization and three-body recombination	23 24 24
1.3.4.1 (d) 1.3.4.1 (e) 1.3.4.1 (f)	Radiative recombination Charge transfer Penning ionization and excitation	25 25 25
1.3.4.1 (g) 1.3.4.1 (h) 1.3.5	Shift in ionization equilibrium Volatilization effects Steady-state rate model	26 26 26
1.3.5 (a) 1.3.5 (b)	Collisional excitation rate constant Collisional ionization rate coefficient Three-body recombination rate coefficient	27 27 28
1.3.5 (d) 1.3.5 (e)	Radiative recombination rate coefficient Electron impact excitation and de-excitation rate coefficient	28 29
1.3.5 (f) 1.3.6	Ionization and three-body recombination rate constant Simplified rate model	30 32

CHAPTER 2	EXPERIMENTAL COMPARATIVE STUDY OF THE EFFECT OF EASILY IONIZED ELEMENTS ON ANALYTE LINE EMISS DURING ICP AND AIR-ACETYLENE FLAME EMISSION SPECTROMETRY	_		
2.1 2.2 2.3 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4.0	Composition of the ICP torch and air-acetylene Flame Methodology Experimental Flame Equipment Materials Procedure Average Aspiration Rate Determination Nebulization Efficiency Determination Results and Discussion	48 50 50 50 52 52 63 65 67		
CHAPTER 3:	A SIMPLIFIED RATE MODEL BASED ON CHARGE TRANSF TO ACCOUNT FOR THE NON-INVOLVEMENT OF ELEC FROM THE IONIZATION OF ARGON IN INTERFERENCE EF DURING ICP-OES.	TRONS		
3.1 3.2	Theoretical Results and Discussion	69 75		
CHAPTER 4: A SIMPLIFIED RATE MODEL BASED ON AMBIPOLAR DIFFUSION TO ACCOUNT FOR THE NON-INVOLVEMENT OF ELECTRONS FROM THE IONIZATION OF ARGON IN INTERFERENCE EFFECTS DURING ICP-OES				
4.1	Theoretical	82		
4.2	Contribution of the individual processes to the observed signal enhancement	88		
4.3	Simulating the experimental curve: Use of apparent rate constants	93		
4.3.1	Estimation of k _{hv}	93		
4.3.2	Theoretical calculations	94		
4.3.2.1	Calculation of number densities	94		
4.3.2.2 4.3.2.3	Calculation of degree of ionization Empirical values of k _{CD}	95 98		
CHAPTER 5: CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK				
5.1	Conclusions	104		
5.2	Recommendations for future work	106		

LIST OF FIGURES

Figure	Title	Page
1.	Schematic diagram of an ICP Torch	4
2.	Schematic representation of the model proposed by Zaranyika et al.,	39
3.	Experimental E'/E for Call, MgII and SrII ICP-AES lines	61
4.	Effect of 1000 mg/L Na on K atom and of K on Mg FAAS	62
5.	Possible mechanism of collisional charge transfer between Li and Ca ⁺	69
6.	Schematic diagram of the proposed charge transfer model	70
7.	Effect of 1000 mg/L Li on Mg and Sr ion line emission intensity and calibration curves for the ICP	76
8.	Effect of 1000 mg/L Li on Mg and Sr ion line emission intensity and calibration curves in the ICP	77
9.	Effect of 1000 mg/L K on Mg and Sr ion line emission intensity and calibration curves in the ICP	78
10.	Effect of 1000 mg/L Na on K line emission and 1000 mg/L K on MgI line emission in the air-acetylene flame	79
11.	Schematic representation of the proposed rate model that incorporates ambipolar diffusion	83
12(a-d)	Effect of 1000 mg/L Li/K on Ca, Mg and Sr ion line emission intensity (ICP)	101
12 (e)	Effect of 1000 mg/L K on MgI line emission intensity	101

LIST OF TABLES

Table	Title	Page
1.	Composition of the analytical zone plasma in the ICP	48
2.	Composition of Air-acetylene Flame	49
3.	E'/E values: Effect of excess Li interferent on Call line (λ =393.6 nm)	54
4.	E'/E values: Effect of excess K interferent on SrII line (λ =407.8 nm)	55
5.	E'/E values: Effect of excess Li interferent on SrII line (λ =407.8 nm)	56
6.	E'/E values: Effect of excess K interferent on MgII line (λ =279.6 nm)	57
7.	E'/E values: Effect of excess Li interferent on MgII line (λ =279.6 nm)	58
8.	E'/E values: Effect of excess Na interferent on KI line (λ = nm)	59
9.	E'/E values: Effect of excess K interferent on MgI line (λ =285.2 nm)	60
10.	Experimental determination of aspiration rate, ICP	64
11.	Experimental determination of nebulization efficiency, ICP	66
12.	Rate calculated for processes in eq 72	72
13.	Rate limiting steps for processes in eq 73	72
14.	Values of $\Delta E,k_{\!\scriptscriptstyle \Delta},$ and $k_{\!\scriptscriptstyle hv}$ for CaII, MgII, SrII and K	96
15.	Number densities: ICP experiments.	96
16.	Number densities: Air-acetylene flame	97
17.	Values of M $^{\!$	97
18.	k _{CD} values, ICP and flame experiments	99

ACKNOWLEDGEMENTS

I would like to thank my supervisors Professor Mark. F. Zaranyika and Dr. J. Kugara for all of their expert guidance and contributions to the success of my project.

My further appreciation goes Trojan Nickel Mine (Bindura) for availing their ICP-Spectrometer. I also would like to thank Mr T. Ndapwadza, E. Mukudu and T. Nyamande for their assistance in the experimental section of the work.

DEDICATION

I dedicate this project to my wife, Dorcas and the children; Ashiel, Ariel and Amiel, who missed me during the course of my work. The efforts by the little kids, especially Ariel, who contributed by always plucking off computer cables, switching off power or simply crying for attention during my typing of the project cannot go unmentioned. Uncle Last and Doiline will be mentioned for the lighter moments which eased off the pressure.

ABSTRACT

The effects of excess Na and K on K and Mg atom line emission during airacetylene flame atomic spectrometry (FAES), and of excess Li and K on Ca, Mg and Sr atom and ion lines in the inductively coupled plasma (ICP), were studied using emission signal ratios, E'/E as probes, where E' and E are the emission readings in the presence and absence of the interferent respectively. The E'/E plots as a function of analyte concentration in the test solution for the ICP experiments were similar to those obtained for the flame experiments in the analytical range of 0-10 mg/L. Two possible rate models: a simplified rate model based on analyte excitation via charge transfer between analyte ions and activated interferent atoms, and a collisional rate model based on ambipolar diffusion have been proposed to account for the emission signal enhancement observed at low analyte concentrations (<1 mg/L) for both ICP-OES and FAES. Data are presented comparing the experimental E' calibration curves and theoretical E' calibration curves computed using the simplified rate models. The collisional charge transfer model showed good agreement for analyte concentration range spanned. Empirical values of collisional de-excitation rate constants (k_{CD}) values were obtained using the ambipolar diffusion model and these values were found to vary inversely with analyte ion concentration. The results also showed that k_{CD} values were independent of interferent concentration, for the situation of high interferent/low analyte concentration.