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ABSTRACT 
 

The effects of excess Na and K on K and Mg atom line emission during air-

acetylene flame atomic spectrometry (FAES), and of excess Li and K on Ca, Mg 

and Sr atom and ion lines in the inductively coupled plasma (ICP), were studied 

using emission signal ratios, E’/E as probes, where E’ and E are the emission 

readings in the presence and absence of the interferent respectively. The E’/E 

plots as a function of analyte concentration in the test solution for the ICP 

experiments were similar to those obtained for the flame experiments in the 

analytical range of 0-10 mg/L. Two possible rate models: a simplified rate model 

based on analyte excitation via charge transfer between analyte ions and 

activated interferent atoms, and a collisional rate model based on ambipolar 

diffusion have  been proposed to account for the emission signal enhancement 

observed at low analyte concentrations (<1 mg/L) for both ICP-OES and FAES.  

Data are presented comparing the experimental E’ calibration curves and 

theoretical E’ calibration curves computed using the simplified rate models. The 

collisional charge transfer model showed good agreement for analyte 

concentration range spanned.  Empirical values of collisional de-excitation rate 

constants (kCD) values were obtained using the ambipolar diffusion model and 

these values were found to vary inversely with analyte ion concentration. The 

results also showed that kCD values were independent of interferent 

concentration, for the situation of high interferent/low analyte concentration.  

 
 


