
UNIVERSITY OF ZIMBAWE

Network Monitoring System Development: A Unified Multi-Vendor

Network Monitoring System

 BY

 ARTWELL MAGADZIRE

R1713496

Submitted in partial fulfilment of the requirement for the degree of

MASTER OF SCIENCE IN COMMUNICATIONS ENGINEERING

DEGREE

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING IN THE

FACULTY OF SCIENCE AND TECHNOLOGY

JULY 2020

SUPERVISOR: DR T MARISA

ii

DECLARATION

I, Artwell Magadzire hereby declare that this dissertation for the Master of Science in

Communication Engineering is my personal effort. Any other data or content I used as part of

my research has been referenced and acknowledged

Name: Artwell Magadzire

Registration Number: R1713496

Signature:

Date: 16 July 2020

Supervisor: Dr T Marisa

Date:

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude and sincere thanks to my supervisor Dr. T Marisa for his

continuous support and guidance on my research through which I developed critical and

objective thinking and design skills and without whom, this final presentation would not have

been possible.

Many thanks to the Faculty of Science and Technology in general and the Department of

Electrical and Electronic Engineering lectures for the meticulous delivery of lectures and

laboratory exercises

I would like to thank my fellow classmates and workmates Takawira Dzoro and Chance

Kandishaya who helped me gather data, and offered guidance and assistance during this

research paper. I also want to acknowledge the support received from the team at PolyNet

Hungary for their assistance with access to their research and development material. Without

you all, I would not have made it.

May the good Lord richly and abundantly bless you all.

iv

ABSTRACT

Network monitoring is the first step in providing and guaranteeing delivery of mobile

communication services of uncompromising quality. From enabling quick responsiveness to

network failures, to allowing for predictive network capacity requirements projections,

network monitoring systems have quite a wide range of important uses.

Most current network monitoring systems are challenged in not being able to monitor multi-

vendor products. Those that are, come with prohibitive and punitive feature and license

activation fees as well as vendor support fees.

Therefore a web-based multi-vendor network monitoring system was developed using open

source software to undertake real-time monitoring of mobile network elements. Written in

Python programming language, the system is capable of monitoring a number of different

vendor equipment without the need for paying exorbitant support and feature activation license

fees.

This research work is part of a larger project for a unified network monitoring solution that

included SNMP based data collection mechanisms and graphical user interface development

Keywords: Network monitoring, simple network management protocol, Django Framework

v

TABLE OF CONTENTS

DECLARATION ... ii

ACKNOWLEDGEMENTS ... iii

ABSTRACT .. iv

TABLE OF CONTENTS ... v

LIST OF TABLES ... viii

LIST OF FIGURES .. ix

ABBREVIATIONS ... xii

CHAPTER ONE: INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Background ... 1

1.3 Problem Statement .. 2

1.4 Aim .. 3

1.5 Justification .. 3

1.6 Objectives .. 3

1.7 Research Question ... 4

1.8 Significance of Study ... 4

1.9 Limitations of the Research ... 4

CHAPTER TWO: LITERATURE REVIEW .. 6

2.1 Introduction to Network Management ... 6

2.2 Network Management ... 7

2.3 Network Management Systems ... 8

2.3.1 Client-Server Model... 8

2.3.2 Browser-Server Model ... 9

2.4 Network Management System Design .. 10

2.5 Simple Network Management Protocol .. 11

2.5.1 The SNMP Manager ... 12

2.5.2 The SNMP Agents .. 12

2.5.3 Management Information Base (MIB).. 12

2.5.4 MIB Objects .. 13

2.5.6 The SNMP Protocol .. 14

2.5.7 SNMP Message ... 15

vi

2.6 Monitoring Mechanisms ... 15

2.6.1 Selecting the Information Monitored ... 16

2.6.1.1 Throughput capacity ... 16

2.6.1.2 Utilization rate .. 17

2.6.1.4 The Utilization of CPU and Memory ... 17

2.7 The MVC Architecture.. 18

2.7.1 Models... 19

2.7.2 Views .. 19

2.7.3 Controllers... 19

2.8 Django Framework .. 19

CHAPTER THREE: METHODOLOGY .. 22

3.1 Introduction .. 22

3.2 Design Methodology ... 22

3.3 Selecting between a Web browser based application and a desktop application 24

3.4 Development Tools and Technologies .. 25

3.4.1 Server Machine Specifications .. 26

3.4.1.1 Advantages of the Operating System: .. 26

3.4.1.2 Limitations of the hardware: .. 26

3.4.1.3 Software Packages used in the development.. 26

3.4.1.4 Linux Ubuntu 16.04 ... 27

3.4.1.5 Python3... 27

3.4.1.6 Django Framework 3.02 ... 28

3.4.1.7 Celery 4.4.0 .. 29

3.4.1.8 Redis ... 30

3.4.1.9 SQLite3 .. 31

3.4.1.10 PyCharm ... 31

3.4.1.11 Net-SNMP 5.8.1 ... 32

3.4.1.12 Snmp-cmds ... 33

3.4.2 Design sequence for Web based NMS application .. 33

CHAPTER FOUR: RESULTS AND ANALYSIS .. 35

4.1 Introduction .. 35

4.2 Network Monitoring Server Design... 35

4.2.1 The system design architecture ... 35

vii

4.2.2 High Level Design .. 36

4.2.3 Low Level Design ... 36

4.3 System Design Results .. 39

4.3.1 Device Enterprise ID Collection .. 40

4.3.2 Receiving and Parsing SNMP traps ... 45

4.3.3 System constraints during trap handling ... 50

4.3.4 Database Structure and SNMP Traps Storage .. 51

4.3.5 Retrieving SNMP attributes from a database and pass them to SNMP

libraries/tools.. 53

4.3.6 Task Scheduling ... 54

4.3.7 Challenges faced in running scheduled tasks.. 56

4.3.8 Device Heartbeat Polling ... 57

4.3.9 Interface Status Polling .. 61

4.3.10 Interface Performance Collection .. 63

4.3.11 Collecting and Storing Performance Data. .. 65

4.3.11 Processing performance data .. 65

4.3.12 Presenting Performance Data ... 67

4.3.13 Network insight and analytics .. 70

4.3.14 Effects of unstable interfaces .. 71

4.3.15 System properties and performance .. 73

4.3.16 Consolidating the system .. 75

4.4 Results Analysis and Discussion ... 78

4.1 System Design Performance Evaluation .. 78

4.2 System Memory ... 80

4.3 System Dashboard ... 81

4.4 System Device Templates .. 83

4.5 Network Elements Interface Utilization Measurement .. 85

4.6 Interface Alarms Monitoring ... 86

4.7 Comparison of results with other related works .. 88

CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS 90

REFERENCES .. 92

APPENDICES………………………………………………………………………………107

viii

LIST OF TABLES

Table 1: MIB Objects ... 13

Table 2: Comparison of Web based and Desktop based application 25

Table 3: Tool and Software applications for each layer development 25

Table 4: Vendor Enterprise ID’s ... 41

Table 5: Modules created for the process of handling traps ... 46

Table 6: Methods created to save and process traps. .. 46

Table 7: Tap Processing Keys ... 49

Table 8: Fig: List of Devices’ SNMP Attributes ... 53

Table 9: Task Scheduling .. 54

Table 10: Performance information collection ... 57

Table 11: Processing performance data .. 65

Table 12: Performance Display Attributes.. 67

Table 13: Values collected for an interface GigabitEthernet0/0/21 .. 68

Table 14: Interface stability calculations in an interval of 10 minutes 72

ix

LIST OF FIGURES

Figure 1: Major functions associated with Network Management ... 7

Figure 2: The overall framework of the system ... 10

Figure 3: SMI structure showing MIB file organization ... 13

Figure 4: SNMP Protocol Stack.. 14

Figure 5: The SNMP message carried within the protocol layers .. 15

Figure 6: The MVT Framework.. 20

Figure 7: Research Methodology Approach ... 23

Figure 8: Host machine logical processors and cores. .. 26

Figure 9: Django 3.0.2 installation screenshot ... 28

Figure 10: Celery 4.4.0 installation screenshot... 29

Figure 11: Redis installation screenshot ... 30

Figure 12: Sqlite3 installation screenshot ... 31

Figure 13: PyCharm Community Version .. 32

Figure 14: NetSNMP installation screenshot.. 33

Figure 15: snmp_cmds package installation screenshot ... 33

Figure 16: Software Design sequence for the system application .. 34

Figure 17: High Level System Design Architecture ... 36

Figure 18: Low Level System Design architecture .. 37

Figure 19: General Schema of Cacti ... 38

Figure 21: System Code for Enterprise ID Collection .. 41

Figure 22: Design Logic for Device Enterprise ID Collection ... 42

Figure 23: Vendor statistics on dashboard .. 43

Figure 24: A detailed table for vendor details .. 43

Figure 25: Panel for creating a vendor .. 44

Figure 26: Huawei Network Node Overview ... 44

Figure 27: Cisco Network Node overview .. 45

Figure 28: ZTE Network Node Overview .. 45

Figure 29: Trap Processing Flow diagram .. 48

Figure 30: Interface disconnection alarm displayed on the User Interface 50

Figure 31: Interface disconnection alarm cleared ... 50

Figure 32: Synchronous trap processing ... 50

Figure 33: Asynchronous processing of traps ... 51

x

Figure 34: Traps stored in the database .. 51

Figure 35: Database Structure... 52

Figure 37: SNMP v2 details for a device .. 54

Figure 38: Celery Beat Schedule configuration .. 55

Figure 39: Task module functions .. 55

Figure 41: Celery beat schedule block diagram.. 56

Figure 42: Polling Functions Code Snippet .. 58

Figure 43: The process of polling the heartbeat of a device ... 59

Figure 44: Device with failed heartbeat .. 60

Figure 45: Device with a successful heartbeat .. 60

Figure 46: Device Listing ... 60

Figure 47: Interface Polling Status Flow Chart .. 61

Figure 49: Interface database table ... 62

Figure 50: Interface listing on the NMS ... 63

Figure 51: Performance data collection flow chart .. 64

Figure 52: Performance data processing overview ... 66

Figure 53: Code snippet of how the Performance Manager class is built. 66

Figure 54: Building blocks for of presenting performance data to the UI 67

Figure 55: Configuring the performance instance .. 69

Figure 56: Interface Utilization plotted with thresholds ... 70

Figure 57: Performance graph for an interface ... 70

Figure 58: Network Insight dashboard ... 73

Figure 59: Listing of high utilization interfaces ... 73

Figure 60: CPU information ... 74

Figure 61: System memory before starting the application .. 74

Figure 62: System memory when running the application ... 75

Figure 63: System monitoring when running the application ... 75

Figure 63: System functional requirements: ... 76

Figure 64: Integration points ... 77

Figure 65: System KPI Trend Analysis for Interface Performance Request 78

Figure 66: OpManager Server and Node CPU Utilization Capacity 79

Figure 67: Unified Network Monitoring System Memory Utilisation 80

Figure 68: OpManager System Performance .. 81

Figure 69: Unified Network Monitoring System Dashboard View .. 82

xi

Figure 70: Unified Network Monitoring System Expanded Dashboard View 82

Figure 71: OpManager Graphical User Interface Dashboard View 83

Figure 72: Unified Network Monitoring System Vendor List View 84

Figure 73: OpManager Network Monitoring System Device Templates View 84

Figure 74: Unified Network Monitoring System Interface Utilisation on Cisco Switch 85

Figure 75: OpManager ZTE Switch Interface Utilisation .. 86

Figure 76: Device Monitoring Snapshot ... 87

xii

ABBREVIATIONS

NMS Network Management System

MNO Mobile Network Operator

EMS Element Management System

NE Network Element

POTRAZ Postal and Telecommunications Registration Authority of Zimbabwe

GUI Graphical User Interface

CLI Command Line Interface

TMN Telecommunications Management Network

OS Operating System

PDH Pleisonchronous Digital Hierarchy

SDH Synchronous Digital Hierarchy

OSS Operations Support Systems

CORBA Common Object Request Broker Architecture

CMP Certificate Management Protocol

OSI Open Systems Interconnection

IP Internet Protocol

TCP/IP Transmission Control Protocol/Internet Protocol

ICMP Internet Control Message Protocol

SNMP Simple Network Management Protocol

UDP User Datagram Protocol

MIB Management Information Base

OID Object Identifier

ASN Abstract Syntax Notation

xiii

CPU Central Processing Unit

MVC Model-View-Controller

DTL Django Template Language

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

API Application Programming Interface

UI User Interface

OPEX Operational Expenditure

CAPEX Capital Expenditure

CRUD Create Read Update Delete

DTL Django Template Language

B/S Browser Server

C/S Client Server

ASN Abstract Syntax Notation 1

SMI Structure of Management Information

MTTD Mean Time to Detect

MTTR Mean Time to Resolve

KPI Key Performance Indicator

SOC Service Operations Centre

NOC Network Operations Centre

1

CHAPTER ONE: INTRODUCTION

1.1 Introduction

The non-stop growth and ever–increasing need to provide new and improved services has given

rise to complex telecommunications networks that have had a domino effect of placing a

greater emphasis on Network Management solutions. Whether through mergers and

acquisitions, new service introduction, or just organic network evolution, most – if not all –

mobile network operators (MNOs) currently operate heterogeneous networks, made up of a

diverse variety and range of network equipment (NE) manufactured and supplied by different

NE vendors. Implementation of novel customer services often require network element

configuration changes and updates on different vendor equipment, and traditionally, this has

been achieved by configuring directly each NE device or using proprietary Element

Management Systems (EMS) or Network Management Systems (NMS), via a vendor-specific

Command Line Interface (CLI) or Graphical User Interface (GUI).

Network Management Systems (NMS) are applications that enable engineers to have Operation

and Maintenance capability of network devices locally or remotely located using wireless or

wired connectivity. The main tasks of Network Management Systems are:

1. Configuring network elements to provide services

2. Configuring and activating these services to the customers

3. Making sure the services and devices are working and operating according to the

desired configuration and agreed Service Level Agreements

4. Monitoring and collection of alarms and performance information from the network

elements

1.2 Background

In today’s economic climate, mobile network operators need to be more competitive and agile

than ever before just to survive in addition to delivering a healthy return on shareholder

investment at an acceptable level of risk. To meet this need for development, continued growth

and evolution, mobile networks have grown into multi-vendor equipment, multi-network

operating systems, multi-topology, and mixed complex networks. So the daily management of

maintenance work become increasingly more complex, tedious and demanding to the teams

tasked with configurations, operations and maintenance of this diverse equipment.

2

Configuration and optimisation teams are faced with a diverse range of different CLIs and

GUIs that they must use to configure and optimise multi-vendor services, increasing the

likelihood of errors, the time to market (because of the need to ‘context switch’ between the

different vendor environments), and also the cost of training,. An ultimate consequence of this

is an increase in operational expenditure (OPEX) under staff (training) costs for the businesses.

The inherent human need to record data about the ‘interface’ between different vendor

equipment often causes users to start using , tools and other applications such spreadsheets to

configure and reconcile system-wide network parameters. Such spreadsheet driven approach

often leads to human error and decreases productivity.

The currently available Network Management Systems, come with license, support and

management fees and payments tied to their use and activation of any other functionalities and

features, if at all they are available.

1.3 Problem Statement

The majority of network management systems in current use by most mobile network service

operators are vendor specific, meaning that they can only undertake operations and

maintenance activities of the network elements from the same vendor that they are made from.

On the contrary, most, if not all mobile network service providers, have networks that

comprises of network equipment from a diverse range of equipment manufacturers and

suppliers. In addition to this, the application and operation of features and functionalities on

most of the current network management systems is licensed and requires regular payments for

the mobile service providers to enjoy the use of them.

According to Postal and Telecommunications Registration Authority of Zimbabwe

(POTRAZ’s) Abridged Postal and Telecommunications Sector Performance Report First

Quarter 2020, the economic environment impacts the telecommunications sector through

service demand and consumption levels, operating costs, investment and given the current

inflationary pressures in the economy, operating cost containment will be even more crucial

for operators to maintain profitability as the growth of operating costs poses a threat to operator

viability.[19]

 This current situation has thus created a challenge for mobile network service providers on

how to adequately and effectively continue to manage and operate the different and diverse

network equipment from the different vendors within their network, taking into consideration

3

the need to manage costs, the need to provide adequate supporting resources such as staff and

training, whilst maintaining the key performance and quality indicators to within acceptable

standards or regulatory standards. There is thus a need for a network monitoring solution that

is capable of monitoring multi-vendor network elements, without the limitations of foreign

currency denominated vendor support and license fees for full and diverse system features

availability

1.4 Aim

The aim of this dissertation is to design a Network Monitoring System that is not vendor

specific and can manage various transmission mobile network elements. The Network

Monitoring System should be capable of monitoring multi-vendor network elements, notably

ZTE, Huawei and Cisco devices, in addition to carrying out performance measurement and

output service alarms of these devices on to a dashboard.

1.5 Justification

The current network management systems currently in use in most, if not all the mobile

network operators are vendor specific, meaning that they can only monitor network elements

designed and developed by the same vendor as the management system. Features and

functionalities for management of other vendors, even though possible, are only activated on

the payment of forex denominated licence and support fees, which in the current economic

environment that our mobile operators are operating in , are proving very difficult to service

and maintain. There is therefore a need in the local market for a cost effective unified network

management system that can be used to monitor multi-vendor network devices. The system

can assist in saving the mobile operators and the country at large, the high foreign currency,

license and management fees, paid out to equipment vendors for their network management

systems currently in use.

1.6 Objectives

The objectives of the project are to:

1. Design a cost effective network monitoring system for mobile network elements

2. Incorporate within the network monitoring system ,functionalities and features that will

enable remote monitoring of mobile network devices from different vendors

4

3. Design a graphical user interface for the network monitoring system that will provide a

dashboard view of all the devices monitored and managed by the network monitoring

system.

1.7 Research Question

1. What network monitoring system design can be used for monitoring mobile network

elements in a multi-vendor environment?

2. What features and functionalities of a network monitoring system are critical to derive the

most out a network monitoring system?

3. What impact does a user interface for a network monitoring system have on the mobile

operators?

1.8 Significance of Study

Zimbabwe is considered to be having a fast growing mobile telecoms market. The rigorous

demand for delivery of services of uncompromising quality in the highly competitive mobile

telecommunications services industry implies there is just as much need for cost management

initiatives as much as there is revenue growth initiatives to improve and transform the business

investments into profitable revenue streams. Part of the cost management initiatives entail

cutting down or even doing away altogether with vendor support fees and license fees for

system feature and functionalities activations. This has become ever so important in the current

challenging economic climate that the mobile operators and the country as a whole is going

through, where foreign currency acquisition and management is now more important than ever

before. The significance of this study is thus to not only be an effective technical monitoring

system for a technical challenge, but to be a cost cutting initiative to the industry and the

country as whole.

1.9 Limitations of the Research

Due to the time constraints, scope of the study was restricted to focus only on IP transmission

switching units from the three largest suppliers of mobile IP transmission equipment in

Zimbabwe, which could result in an oversight on certain mobile equipment’s from other

equipment suppliers or other mobile equipment’s used in other domains like Core Network.

Hence the IP transmission network equipment used for this research were from Cisco, Huawei

and ZTE.

5

The other limitations were:

1. There was lack of enough funding for a more comprehensive design that could

incorporate more diverse network nodes as issues of capacity on servers, database size

and ability to procure a wide range of vendor equipment would then need to be also

addressed.

2. Due to confidentiality clauses in the equipment manufacturers policies most were

unwilling to provide information about their equipment or their operation without the

availing of Non-Disclosure Agreements.

3. The research and design was limited to only those nodes predominantly used in the

Transmission part of a mobile network topology, typically switches and routers and did

not include Core Network nodes like base station controllers or mobile switching

centres mainly due to time and the above mentioned two reasons .

For the research study to progress these limitations were mitigated by

1. Narrowing the scope of the research to focus primarily on a common set of network

elements to monitor, which was IP transmission switches and routers so as to reduce

the demand for more system’s capacity requirements and the need for a wider range of

vendor equipment to test with.

2. Making use of Open Source software’s, applications and vendor equipment

information like MIB files that are freely available from the Internet

6

CHAPTER TWO: LITERATURE REVIEW

2.1 Introduction to Network Management

A Telecommunications Management Network (TMN) is an infrastructure which provides

interfaces for interconnection between various types of operation systems and/or

telecommunications equipment to manage a diverse range of telecommunications network

devices and services, with management information being exchanged through these interfaces

[1]. This gives rise to the concept of network management or network monitoring which is the

ability to have control of network devises either remotely or locally on site for purposes of

carrying out various functions such as operation and maintenance, configuration management

of performance management amongst desired functions. Network management is important

for network operators in reducing their operating costs and differentiating themselves from

their competitors. Also network management provides opportunities to introduce new services

which will attract new customers and generate additional revenue.

The main goal of the network management is to detect and correct problems as they occur in

the network. This ability to be always aware of the network’s status and performance allows a

basis by which network management and maintenance priorities can be established. The lack

of good network visibility across all the nodes in the network makes it difficult, if not

impossible to differentiate between failures that are service affecting and non-service affecting.

In the same vein it is also difficult to plan for future events – such as network enhancements or

planned engineering work – without information of how the network is performing currently.

7

Network
Management

Planned
Works

Network
Configuration

Management
Reporting

Future
Events

Remote
System
Control

Current
Traffic Data

Fault
Management

Historical
Traffic Data

Figure 1: Major functions associated with Network Management [2]

 As indicated in the diagram above some of the main functions of an NMS includes (but not

limited to) the following:

1. Resource usage and hardware performance monitoring

2. To monitor the network round the clock without human intervention

3. Detecting operating system and application errors

4. To provide a view of the whole network traffic from one location.

5. Identifying computing assets by their name, location, or hardware characteristics.

2.2 Network Management

Traditionally provisions for network monitoring have always been included in network

management systems. This is generally due the hierarchical arrangement that, to be able to

manage a network, network monitoring needs to be possible. Thus network management

requires network monitoring because monitoring is the core of network management that

provides vital information about the network [3][15].The distinction between network

monitoring and network management systems is that management systems typically have more

features that provide more efficiency to users.

8

The Simple Network Management Protocol (SNMP) [4] is an application layer protocol in

network management .Though focussing on monitoring than management Astrolabe [5] is

another management system. However there are systems like Supermon [6] and Ganglia [7]

that focus exclusively on monitoring with the main user interaction being to view and analyse

network information.

2.3 Network Management Systems

In the development of Network Management Systems, there are mainly two system models,

that is, Client-Server model and Browser-Server model [8].Alternatively as stated by V

Geddes 2008 [15],most monitoring systems have a two-level architecture. The bottom level

consist of monitoring daemons that are installed on network nodes, and collect and report

useful information whilst at the second level in the architecture, is a hierarchical tree of

aggregation nodes that pull data up from the agents, and make it available to clients in

aggregated form [15].C ,C, Li. et al [16] opted for making Cacti use SNMP service to gather

data from different network-attached devices such as routers, servers, switches etc in each

and every interval determined by a cron poller

2.3.1 Client-Server Model

The Client-Server model is based on the distribution of application programs on either the

client or the server, with the distribution layer and application logic hosted on the client and

the data resource layer hosted on the server. The client completes certain tasks of calculation,

through certain protocols and interfaces to communicate with the server, requesting the

completion of service or obtaining data

Advantages of Client-Server Model

i. Strong interaction: Development targeted , personalized customer interface design with

intuitive, simple, convenient features, customized to meet customer operational

requirements

ii. More secure access mode: As the Client-Server mode is the point-to –point structural

model, security can be better guaranteed.

iii. Little traffic: Network traffic only between the client and server traffic

iv. Fast Response: The client is directly connected with the server, without intermediate

links

9

Disadvantages of Client-Server Model

i. High Development Costs: Client-server structure of the client software requires higher

hardware, in particular the continuing escalation of software .Higher requirements on

the hardware increases overall system cost.

ii. Difficult Transplanting: Compatibility between different platforms and different

software makes developed tools difficult to transplant

iii. Mixed user interface style, requires special training to use

iv. Complex maintenance and difficult to upgrade.

2.3.2 Browser-Server Model

Based on Browser-Server mode three-tier architecture achieves the distribution of application

layer, data resource layer and represent layer to different units. Represent layer is composed of

the browser and dynamic web page , to receive and process the user’s request and send to the

Web application server. In the Web structure, the transaction layer and data logic layer are on

the intermediate component, which is the key difference to the client-server structure.

Intermediate component layer acts as a server, this is the Web application server. Application

layer corresponds to the Web application server, business logic processing using the service of

data resource layer to get the necessary information or to store, modify the corresponding data.

Data resource layer corresponds to the database server to achieve the management of the

database and data access, add, delete and update.

Advantages of Browser-Server Model

i. Is not required on the operating system and software platform. Just installing the generic

browser on the clients, the client can save hard disk space and memory and also the

installation process is simple. Business expansion is made easy as to upgrade the system

only requires upgrade on the server

ii. Is especially suitable for online information to be published with unlimited number of

front users. Users can expand arbitrarily with no need for additional investment in the

long run, thereby greatly cutting costs

Disadvantages of Browser-Server Model

i. Function weakening. Achieving special function requirements is difficult under the

traditional model

ii. Chances of achieving a personalised design are significantly lower.

10

iii. The speed of Page dynamic refresh response is decreased [8]

2.4 Network Management System Design

Several Network Management Systems have been designed and implemented which include

OpenNMS, Manage Engine, OpManager, Solarwinds, Zabbix, U2000, ZTE EMS, Ericsson’s

OSS , to mention but a few. With all these designs, the overall framework of system is as below

Web server

Web

Application

server
Communication

Module

Web Browser

Communication

Module

Config Fault Perf

Network Management Protocol

Platform

User Interface

Network Management Servers

DATA

BASE Objects managed

Agent

xxx

TCP

SNMP/NETCONF

MESSAGE TRANSFERHTTP

Figure 2: The overall framework of the system [8]

With this framework for network management system, the network management server is the

core of the whole system management, and is composed of network management servers and

network management protocol platform. Network management server modules act to provide

a wide spectrum of comprehensive and effective management services for network and system,

amongst which include services such as network topology, configuration management,

performance management, fault detection and other traditional network management functions,

as well as to also provide development interface for system services.

11

Network management protocol platform provides an interface for the network management

server access to achieve communication with each Agent, to collect managed object

management services information.

There are different ways of implementing Network Management Systems and these include,

the Common Object Request Broker Architecture (CORBA) which is increasingly noticed as

the base technology for the realization of higher layer functions of network management

architecture. CORBA provides the framework for various object-oriented management

applications to be able to function in a distributed environment. A feature of CORBA is that it

guarantees access to the management information, independently of the software or hardware

platforms. CORBA can support location transparency, and the integration of management

information and services. Therefore, it could enhance the portability of applications that are

developed across multiple network management platforms

Another option is to use CMP protocol management standards of OSI and the other is the use

of SNMP management standards on the establishment of TCP/IP protocol. As TCP/IP has

become the industry standard for networks, it has thus become the industry standard protocol

widely used in various network management systems. Used widely in industry for carrying

network management information, SNMP ensures that:

i. Network elements management information can be transmitted between any two nodes.

ii. Searching for, modification of, and location of equipment faults on any network device

within the network is feasible and easily undertaken.

iii. Fault diagnosis, capacity utilisation analysis, network upgrade projections, and various

performance reports can be undertaken from a centralised point.

The features of the SNMP are as follows:

i. To provide a basic function set through the use of polling mechanism. As such SNMP

will fit, small-sized, quick, and low-cost network scenarios.

ii. Makes use of the User Datagram Protocol (UDP) only.

2.5 Simple Network Management Protocol

The Simple Network Management Protocol (SNMP) is an application layer protocol used

extensively in network management [4]. This protocol is a part of TCP/IP. Most of the modern

tools support the SNMP. SNMP consists of the following components:

12

2.5.1 The SNMP Manager

The SNMP Manager is the one tasked with the responsibility to control one or more agents

from a remote place. The Manager is software which is installed on the server. The manager

can query SNMP agents by use of SNMP commands. When problems occur, the agent

automatically informs the manager. The manager can also access the management information

of the agent. The SNMP manager can also communicate to the network devices using

commands to changing values in an agent’s database. The SNMP manager provides the

interface between the human network manager and the management system

2.5.2 The SNMP Agents

The SNMP Agents are software that is installed on the managed devices or the network devices

to be monitored, either remotely or locally, allowing the agent to be able to communicate with

the manager. The agent can record the management information about the network devices and

give the response according to manager request. The main responsibility of the agent is to

maintaining local management information and to give feedback to a manager through SNMP.

All the management information are stored in its MIB. The SNMP agent can thus be said to

provide the interface between the manager and the physical devices being managed or

monitored.

2.5.3 Management Information Base (MIB)

The Management Information Base (MIB) is a collection of information which holds all the

details about all network devices. Making use of this information, it is possible to identify a

fault, isolate the fault and finally resolve the fault. Hence it provides useful information to

monitor and manage the network operations. MIB is a part of SNMP agent software which

keeps the information about objects such as variables. Each variable is allocated a unique

identifier that is called an object identifier (OID) with information that is also accessible to the

agnets. The SNMP manager will be able to access the MIB information for all the agents on

the network.

13

2.5.4 MIB Objects

MIB objects define the following groups of objects in Table 1

Table 1: MIB Objects [2]

System Name, location, description

Interfaces Network interface statistics (traffic)

IP IP statistics

ICMP ICMP statistics

TCP TCP statistics (TCP algorithms)

UDP UDP statistics

Each SNMP managed device keeps a list of variables (objects), e.g. a router might have a

variable called buffer_overflow_count. The exact format and name of these variables is

standardized for a wide range of network devices. It is worth noting that the contents of the

MIBs are defined by using Abstract Syntax Notation 1(ASN.1). Each object can be represented

using this language called Abstract Syntax Notation (ASN.1). The ASN.1 is a platform-

independent language which allows for object (variable) definition [2]. Thus it is a language

that allows a concise definition of the content in terms of numeric or alpha characters

 Figure 3: SMI structure showing MIB file organization [10]

14

MIB files are organized according to a logical structure, called a Structure of Management

Information (SMI). The actual SMI structure is defined internationally by the RFC as a tree,

using branches of the tree for various organizations. The diagram of the SMI structure above

is a partially filled−in example of this tree. Each data element is unique because its path from

the root through the various branches and twigs to the leaf is unique. Vendors may choose to

customize the content of their MIBs under their internationally assigned vendor number [10]

2.5.6 The SNMP Protocol

The SNMP Protocol allows for the reading, writing and transferring of statistic information

about network devices. Each message is transferred on internet using UDP. SNMP supports

the TCP/IP protocol which is used to transfer the agent’s queries and to make some changes

in the objects. The snmp manager checks the state of the agent through periodical polls using

UDP and IP protocol. The diagram below shows the architecture of the SNMP functions and

how the functions are related to the ISO’s Open Systems Interconnect (OSI) model.

Figure 4: SNMP Protocol Stack

The SNMP protocol operates on top of the UDP protocol using port number 161 and 162 of

UDP. For the agent the trap request message is port 161 whilst for the manager the trap

messages port is 162. Because it works by exchanging a limited number of types of message.

15

The manager and agent can be communicating using three types of messages such as get, set

and trap.

2.5.7 SNMP Message

Figure 5: The SNMP message carried within the protocol layers

The diagram above shows how the SNMP message is carried whilst embedded within the

protocol layers. Assuming we take it that the link layer protocol typically has some leader and

header information and some trailer bits, the link layer frame carries the IP packet across the

link layer connection to the next router. The IP datagram header has the routing information

that lets the routers direct this packet to its final destination. Whilst the SNMP message itself

is contained within the UDP datagram, the UDP header however does not carry much

information.

The version field insures that the information exchange is with another agent of the same

version. The community field is important because it is the security function. Thus the SNMP

function can only collect information from members of a unique own community. This

provides security for the network as it ensures that competitors or hackers will not be able to

gain access to equipment attached to the Internet. The Protocol Data Unit (PDU) type specifies

whether there is a GetRequest, GetNextRequest, SetRequest, Response, or a Trap. The error

fields are used to identify SNMP errors, such as tooBig, noAccess, or badValue. The error

pointer points to the location of the offending data field. Each Object Identifier (OID) then is

included, followed by its value. [10]

2.6 Monitoring Mechanisms

Collection of information from the network equipment can be done in two techniques, roll

poling and event report. Roll poling is a process that manages requests and responses between

16

the network manager and agent. Managers can query command and sent its agents within the

scope of authorization and request of all kinds of information value, the agent will be the

information in the MIB as a response. For real-time monitoring, managers must constantly go

to polling agents and obtain data to evaluate the health of the network.

Event report is initiated by the agent, managers in a monitoring role wait to receive the

information. Agent may be regular or pre-set cycle, is also possible when major events or

abnormal events take the initiative to generate reports, which are very effective for real-time

monitoring. For the state or value of relatively small changes in the monitored object can be

more efficient than roll polling.

Roll polling and Event report is a network monitoring system adopted by the two kinds of the

most effective methods, however, for different management systems, both have different

emphases. Telecommunication management system uses more incident reports, and SNMP

management does not depend on event report. The management of OSI system are more likely

to find a balance point between the two ways, making the selection can be based on the

following:

i. Network data traffic generated by each method

ii. Reliability of critical case

iii. The required delay

iv. Supporting the network monitoring application [9]

2.6.1 Selecting the Information Monitored

There are various key performance indicators that can be monitored for a Network

Management System but the most commonly used indicator of most network monitoring

systems is throughput, utilization and packet loss rate.

2.6.1.1 Throughput capacity

Throughput refers to the rate of data sent over the network that is an application-oriented

indicators, usually represented as bits per second (bps), the number of bytes per second (Bps)

or the number of packets per second (pps).

The formula is:

𝐓𝐡𝐫𝐨𝐮𝐠𝐡𝐩𝐮𝐭 =
Bytes
Time

(The number of bytes transmitted / an interval time)

17

2.6.1.2 Utilization rate

The utilization rate is the use of network resources to the frequency of the dynamic parameters,

is more refined than the throughput indicator. It is used to search for potential network

bottlenecks and congestion areas and also can know which resources have not been fully

utilized. Through the analysis of network management information, it is possible to find that a

resource is over used or the utilization rate is not high, adjust the network planning data, effect

load balancing, and influence the effective use of resources

2.6.1.3 The interface utilization

Interface utilization is a key reflection of network utilization. The operational status of the

interface can be tracked by monitoring the utilization rate, utilization rate can be expressed in

percentage relative to the interface bandwidth as the number of bytes specified interface

flowing. Calculations are performed using the collection of interfaces group variables, the

formula is as follows:

 IfUtilizationRate =
ΔifInOctets+ ΔifOutOctets x 8x100

Δt x ifSpeed

Where:

 Δt is time interval,

ΔifInOctets is the number of the input byte collection,

ΔifOutOctets is the number of output byte collection,

ifSpeed is the transmission rate of interface.

Similarly, you can use the interface table, where the number of input bytes and the number of

output bytes are calculated input utilization and output utilization [9].

2.6.1.4 The Utilization of CPU and Memory

The CPU Utilization reflect equipment busy, and play an important role in the discovery of

network congestion and balancing network load. However, The CPU Utilization is not defined

in the public MIB but mostly in vendor-defined private variables. Cisco defines Cisco Process

MIB (ID: 1.3.6.1.4.1.9.9.109) and Cisco Memory Pool MIB (ID: 1.3.6.1.4.1.9.9.48) to

manage the CPU and memory [9].

18

A. Packet Loss Rate

Packet loss sometimes shows adverse signs of abnormal network, so packet loss rate is another

important indicator of network monitoring. Usually less than 15% above this value network is

usually not available. Acquisition interfaces group variable calculate, the formula is as follows:

[4]

DropRate =
IfOutDiscard2 − IfOutDiscard1 + IfInDiscard2 − ifInDiscard1

Indrop + Outdrop

Indrop=ifInUcastPkts2+inInNUcastPkts2- ifInUcastPkts1-ifInNUcastPkts1

Outdrop=ifOutUcastPkts2+inOutNUcastPkts2- ifOutUcastPkts1-ifOutNUcastPkts1

DropRate is the packet drop rate;

IfInDiscard2 and ifInDiscard1 shows two different times the value of the ifInDiscard variable;

IfInDiscard shows the message input direction discard number;

 ifInUcastPkts depicts the number of packets sent to the upper layer protocol subnet unicast

communication;

 ifOutUcastPkts shows the upper layer protocol packet number of requests sent to the address

of the subnet unicast communication;

IfOutNUcastPkts shows the upper layer protocol and message request to non – unicast address

subnet number [9,11].

2.7 The MVC Architecture

The MVC pattern was created to separate business logic from representation. The MVC

architecture facilitates changes to the visual part and the business logic part of an app

independently of each other, without any impact to the other.

 With the current demands of a fast-paced, cut throat and competitive world, the use of web

applications in the building of web-enabled applications has become the norm. Software

frameworks used to establish web application, and website development, web services, and

web resources are called Web application frameworks. A favourite type of web app framework

is the Model-View-Controller (MVC) design separates the code for each application

component into modules [12], [13], [14]. Using the MVC architecture an application is divided

into the following three layers:

19

1. Model

2. View

3. Controller

2.7.1 Models

Models are a representation of how data is organized in the database. That is to say, in MVC

pattern models define the database tables and structure as well as the relationships between

these database tables.

2.7.2 Views

A view is what you see when you visit a site. For example, a blog post, a contact form etc., are

all examples of views. A View is essentially a containment of all the information that is

ultimately sent to the client i.e. a web browser, and generally, views are HTML documents.

2.7.3 Controllers

A Controller basically controls the flow and exchange of information. When a request for a

page is made ,that request is passed to the controller to use programmed logic to decide on the

nature of information that is needed to be pulled from the database and that which should be

passed on to the view. The controller is basically the core of the MVC architecture because it

acts as the interconnection between models and views.

2.8 Django Framework

Django is an open-source python web framework used for rapid development, pragmatic,

maintainable, clean design, and secures websites. A web application framework is a whole set

of all components needed for application development. The Django framework has the main

advantage of allowing developers to focus on new components of the application instead of

spending time on already developed components.

DJANGO ARCHITECTURE

Django follows the MVT framework for architecture.

 M stands for Model

 V stands for View

 T stands for Template

https://www.educba.com/cheat-sheet-python/
https://www.educba.com/django-framework/

20

MVT is generally very similar to that of MVC which is a Model, View, and Controller. The

work done by the controller part is in this case done by Django itself, and this is the main

difference between MVC and MVT architectures. Django does this work of controller by

making use of templates. Precisely, the template file is a mixture of HTML part and Django

Template Language also known as DTL.

The three layers (Model, View, and Template) are responsible for different things and can be

used independently.

Figure 6: The MVT Framework

As the Django documentation states, a model is “the single, definitive source of information

about your data. It contains the essential fields and behaviours of the data you’re storing.”

Generally, each model maps to a single database table. Most applications currently available

hardly operate without a database, and Django officially supports four: PostgreSQL, MySQL,

SQLite, and Oracle.

Models contain information about your data and are represented by attributes (fields). A model

is in essence a simple Python class, and as such it knows nothing about other Django layers.

Communication between layers is possible only via an application programming interface

(API).

21

Models contain all things related to data manipulation such as business logic, custom methods

and properties, among a host of many. In addition, models enable developers to undertake

actions such as create, read, update, and delete objects (data sets) from the original database.

The view’s main tasks that it executes are: accepting HTTP requests, applying business logic

provided by Python classes and methods, and providing HTTP responses to clients’ requests.

In other words, the view fetches data from a model and either gives each template access to

specific data to be displayed or processes data beforehand.

Django has a powerful template engine and its own mark-up language with many tools such as

templates, which are basically files with HTML code that is used to render data, the contents

of which can be static or dynamic. Since there’s no business logic in a template, it’s there only

to present data.

22

CHAPTER THREE: METHODOLOGY

3.1 Introduction

This chapter focuses at research methodology and experimental methodology. A research

methodology is the specific procedures or techniques used to identify, select, process, and

analyse information about a topic. It is also defined as the study of methods by which

knowledge is gained or a framework that outlines the precise steps and activities for each phase

and the output released from that phase before starting the next one.

This chapter goes into the details of how the design solution was developed, the development

approach used and the factors that influenced the methodology and the design. Also detailed in

this chapter are the software and hardware tools used in the development for the solution

methodology. The descriptions give an overview of the software applications used, why they

were chosen and their observed and known limitations. The chapter is organized in several sub-

sections as follows:

1. Section 3.2 presents the detailed design methodology which was used to achieve the

results and also the considerations made in the chosen attributes of the design.

2. Section 3.3 discuss the various tools and technologies that are used for this Network

Monitoring System Development solution.

3.2 Design Methodology

In order to develop the network monitoring system, the strategy employed in this design

process was to break down the design activities into three layers for easier and faster

development.

23

NMS USER INTERFACE

Performance
Management

Dashboard and StatisticsFault Managemnet Round Robin
Database

W
eb

-b
ased

 G
U

I
M

o
n

ito
rin

g Serve
r Task Queueing

NMS SERVER

SNMP Requests SNMP Response

N
e

tw
o

rkin
g an

d

P
ro

to
co

ls

Data Collection by Net-SNMP

Network Devices

SNMP Agent SNMP Agent SNMP Agent

Figure 7: Research Methodology Approach

The system was designed around the principle of separation of concern. The main aim was for

the system to be able to be designed in three distinct paradigms, so as to allow for continuous

development without the whole system being shut down, as listed below

 Layer 1- physical interfacing with network devices, including protocols and

mechanisms of information collection or delivery

 Layer 2- Monitoring Server Framework design concerned mainly with Data

processing and control

 Layer 3- NMS user interface for input and output of the information with particular

emphasis on data storage and presentation.

The strategy employed was to work on the three layers as independent parts and then integrate

them all together once completed. This approach allowed the system to be scalable by being

24

able to modify each area without affecting the other parts of the system. The system could be

modified without redeveloping the entire the system.

This document focussed mainly on layer 2- Monitoring Server Framework design, looking at

the data processing and control paradigm of the system and also the integration points with the

other paradigms. In designing the data and processing part of the network monitoring system

the following main objectives were targeted:

1. Receive and parse SNMP traps using python

2. Retrieve SNMP attributes from a database and pass them to SNMP libraries/tools.

3. Generate SNMP requests and pass them to SNMP libraries/tools

4. Receive SNMP responses from SNMP libraries/tools and store the processed result to

the database

5. Receive http requests and process them before sending the response

6. Carry out scheduled tasks

7. Create logs for troubleshooting system malfunction

8. Provide CRUD logic for devices and performance information.

3.3 Selecting between a Web browser based application and a desktop application

In the development of the solution a decision was made to have a web browser based user

interface compared to native desktop application for clients. The table below shows the

comparisons made before reaching the decision. For this system design, a web based

application was the one used.

This is also the new trend in network management systems as they move away from traditional

native desktop applications to web based Uis for clients. This approach removes the need to

focus on the OS architecture of client devices but instead developers can focus on common

browser specifications which are compatible across all devices.

25

Table 2: Comparison of Web based and Desktop based application

 Web Application Desktop Application

Client device Any device with a web

bowser

Client device should support the

software.

Setup Easy Complex

Addition of

features

Easy Complex, may require to upgrade all

client software each time.

Software

Development

User interface is integrated in

the server application

A separate software is developed for

the server and the client

Connection HTTP, HTTPS HTTP,HTTPS

Operating System

for the Server

Linux Linux

Operating for

clients

Any Specific

3.4 Development Tools and Technologies

Several tools and software applications were acquired for the system design solution

implementation. The table below shows the tools and software used for each of the 3 paradigms

of the system.

Table 3: Tool and Software applications for each layer development

Paradigm Tools

Networking and Protocols

NetSNMP

SNMPCMDS

Wireshark

Data processing and Control

Django Framework

Celery

Python3

Data storage and

Presentation

Sqlite3

Django templating System

HTML, CSS and Bootstrap

Redis

26

3.4.1 Server Machine Specifications

All software packages and applications used in the development of the Network Monitoring

System were installed on the host machine running Linux Operating System which has the

following specifications:

Processor: IntelI CoreI i7-6700HQ CPU @1.90GHz 1.90 GHz

Installed Memory (RAM): 16.00 GB

System type: 64-bit Operating System, x64-based processor

The processor supports 2 physical cores for the execution of programs but it has 4 logical cores

as shown under the CPU tab from the task manager in Figure 8 below.

Figure 8: Host machine logical processors and cores.

3.4.1.1 Advantages of the Operating System:

 It is Open source in nature and has easy installation and configuration requirements

for software packages.

 It is widely supported by developers and it supports all the software packages required

for this paper.

3.4.1.2 Limitations of the hardware:

Available RAM and number of processor cores could not allow for multiple simultaneous

performance management jobs as the server’s memory utilisation and processing power would

decrease noticeably.

3.4.1.3 Software Packages used in the development

The following software packages were installed for use in the development of the Network

Management System

 Linux Ubuntu 16.04

 Python 3

 Django Framework 3.02

 Celery 4.4.5

27

 Redis

 SQLite3

 Net-SNMP 5.8.1

 PyCharm

 Snmp cmds

 Widget Tweaks

3.4.1.4 Linux Ubuntu 16.04

Linux Ubuntu was used on the Server hosting the Network Monitoring System and is a modern,

elegant and comfortable operating system which is both powerful and easy to use. Operating

systems are programs that coordinate computer hardware and software. Software packages are

developed for specific operating systems, therefore it is important to make sure software is

compatible with the choice of operating system.

Advantages:

i. Linux was the preferred Operating System chosen because it was both free of cost and

is open source software.

ii. It was easy to configure it for installing 3rd party software and other open source

applications, therefore more time could be spent on the actual logic design.

iii. In addition, Linux OS was chosen for its stability as compared to other Operating

Systems like Windows because for Network Monitoring System with Availability as

one of the key performance indicators of monitoring system, this was a key desired

factor.

Disadvantages:

Some hardware drivers were not easily available for Linux. Most hardware manufacturing

companies prefer to make drivers for windows or mac because they have more users as

compared to Linux.

3.4.1.5 Python3

Python is a high-level programming language that incorporates dynamic semantics and is

interpreted and object-oriented as well. It encourages program modularity and code reuse

through the use of modules and packages. In addition the Python interpreter and the extensive

standard library are available in source or binary form without charge for all major platforms

28

Deploying Python3 for the server

Python3 comes preinstalled in most distributions of Linux. Ubuntu 16.04 which comes with

Python 3 preinstalled was used in the development of the system.

Why Python3 was used over Python 2

Python 3 was chosen for this project because Django 2.2 only supports Python 3.

Checking the version of python installed on our test machine

The command to confirm the version of python on the machine is shown below

python –version

3.4.1.6 Django Framework 3.02

Django is an open-source python web framework used for rapid development, pragmatic,

maintainable, clean design, and secures websites. Being a web application framework, it is a

toolkit of all components needed for application development. The main goal of the Django

framework is to allow developers to focus on components of the application that are new

instead of spending time on already developed components.

Figure 9: Django 3.0.2 installation screenshot

Advantages:

i. Django is one of the web frameworks which are written in Python programming

language. Hence, it was easier to build the desired web applications with clean,

readable, and maintainable code by taking advantage of syntax rules of Python

ii. Django, like other modern web frameworks, supports model-view-controller (MVC)

design rule. The MVC programming paradigm enable the keeping of the web

https://www.educba.com/cheat-sheet-python/
https://www.educba.com/django-framework/
https://www.educba.com/django-framework/

29

application’s user interface (UI) and business logic layers separated. The approach

enabled the reuse of the same business logic across multiple projects leading to the

simplification and speeding up of the development of the web applications by

separating their user interface and business logic layers.

iii. Django also provided for easy customization, scalability, and ability to extend the web

framework by making changes to its decoupled components. At the same time, the

ORM system provided by Django allowed for common database operations and

migration from one database to another without writing additional code.

Disadvantages:

Django, unlike other modern web framework, does not enable individual processes to handle

multiple requests simultaneously as it lacks the capability to handle multiple requests

simultaneously and a work around for this challenge was employed in the design using Celery

3.4.1.7 Celery 4.4.0

Celery is a Python based asynchronous task queuing software package that enables execution

of computational workloads driven by information contained in messages that are produced in

application code (Django in this case) destined for a Celery task queue. Celery can also be used

to execute repeatable, periodic (i.e., scheduled), tasks

Figure 10: Celery 4.4.0 installation screenshot

Advantages:

i. Celery allows for the execution units referred to as tasks to be executed concurrently

on an single or multi server environment

ii. Celery allows for tasks to execute asynchronously (in the background) or even

synchronously (wait until ready)

30

3.4.1.8 Redis

Redis is an open-source, in-memory data structure store that is used as a database, cache, and

message broker. In simple terms, it uses data structures like strings, hashes, lists, sets, bitmaps,

and geospatial indexes to store data in the form of key-value pairs.

Specifically, Redis is used to store messages produced by the application code describing the

work to be done in the Celery task queue. Redis also serves as storage of results coming off the

celery queues which are then retrieved by consumers of the queue

Figure 11: Redis installation screenshot

Advantages:

i. Redis was chosen for being incredibly simple and straightforward to use, as well as

being open source software.

ii. By having all the data in memory, the latency issues on Redis have no comparison to

other disk based DBs and requests can be processed at sub-millisecond latency

iii. Redis has built-in geolocation storage capabilities, thus saving us the time of developing

the logic

Disadvantages:

Because everything is in-memory with Redis, all data must fit in memory and so it’s not

possible to handle more data than you have memory and also lots of RAM is thus needed

31

3.4.1.9 SQLite3

SQLite is a software library that provides a relational database management system. It is a

database engine that is self-contained, serverless, has zero-configuration and is transactional.

Figure 12: Sqlite3 installation screenshot

Advantages:

i. SQLite3 is about relational data. It can grow up into a very large database using

standards. It’s easier to build something and slowly migrate it upwards with SQLite

based standards.

ii. SQLite3 is very efficient at manipulating big datasets because of the SQLite index

system

iii. With SQLite3 it will be easier to upgrade for migration to a real relational database.

Disadvantages:

i. As SQLite3 is a single-user DBMS in a multi-user system development as was this case

in this one with multiple people working on the same database simultaneously, SQLite

was found wanting, because it only allows single write at one time

ii. Database size is restricted to 2GB in most cases.

3.4.1.10 PyCharm

PyCharm is an application that provides programmers and developers with basic tools to write

and test software, specifically for Python programming. It is developed to operate across

multiple platforms, including Windows, Mac OS, and Linux and consists of code analysis tools,

debugger, testing tools along with version control options.

32

Figure 13: PyCharm Community Version

Advantages:

PyCharm provides a great suite of features for Python development, with the ability to run

small code blocks separately without having to run the whole script, thus it helps to test blocks

of codes separately and to debug.

Disadvantages:

i. The high performance and multiple features that PyCharm offers come at a cost of high

amounts of resource usage, particularly, the battery and the RAM, with at least 8GB

RAM or 4 GB graphic card advisable for smooth functioning.

ii. The enterprise version is quite costly.

3.4.1.11 Net-SNMP 5.8.1

Net-SNMP provides tools and libraries relating to the Simple Network Management Protocol

including: an extensible agent, an SNMP library, tools to request or set information from

SNMP agents, tools to generate and handle SNMP traps, etc.

33

Figure 14: NetSNMP installation screenshot

3.4.1.12 Snmp-cmds

Snmp-cmds is a python library for communicating with a target device through SNMP

Figure 15: snmp_cmds package installation screenshot

3.4.13 Design sequence for Web based NMS application

The actual process of designing and code writing and implementation followed a structured

format as indicated in the diagram Figure 16. Drawing on lessons learnt from the shortcomings

of the traditional vendor specific network monitoring systems in industry, a network

monitoring system based on Django network framework was proposed and designed.

34

The first step was the setting up of the Django web framework, this created the base of the

entire project. The setting up of Django includes the installation of the package, creating the

project and the applications, setting up the database, configurations for Celery, integration with

NetSNMP and finally the creation of deployment scripts.

The majority of the work was during the integration with NetSNMP were data was to be

processed between the web application and the SNMP protocol tools. Due diligence was taken

in order to accommodate SNMP data from multiple vendors and also to accommodate future

expansions.

START

SET UP DJANGO FRAMWORK

CREATE A DJANGO PROJECT

CREATE A DJANGO APP

CONFIGURE DATABASE

CONFIGURE CELERY

CREATE API FOR SNMP

CREATE DEPLOYMENT SCRIPT

END

 Figure 16: Software Design sequence for the system application

35

CHAPTER FOUR: RESULTS AND ANALYSIS

4.1 Introduction

This chapter discusses and presents the results of the research focussing mainly on the detailed

design of the network management system and how the different components interact with

each other and it also elaborates on the theory and flow charts behind the design.

Section 4.2 details the actual design solution of the network monitoring system, its architecture

and hardware and software setup and connectivity.

Section 4.3 discuss how the different and various objectives of the main focus of this paper,

which was Monitoring Server Framework design in particular, was achieved with the aid of

process flow diagrams and code snippets of how a solution for each objective was achieved In

addition results obtained or outcomes of from each solution to an objective on the Network

Monitoring System are presented

Section 4.4 analyses and discusses the results of the designed solution in comparison with some

current industry network management systems currently being used by the mobile operators in

the country.

4.2 Network Monitoring Server Design

4.2.1 The system design architecture

As the system was designed around the principle of separation of concern, the high level and

low level system designs were developed with this consideration, to allow for continuous and

parallel development and improvements to the system, without necessarily having the whole

system down.

The system is a web-server online monitoring system developed by the Django network

framework based on the B/S architecture. The Django network framework follows the model-

view-controller (MVC) control mode, which defines the code and the method of data access

(model) separating from the request logic (controller) and the user interface (view) so that each

component can be designed separately without affecting other components [17][18]. The model

section is used to describe the data tables that were collected and interacted with the database

in the server for data. The view part is the graphical user interface, that interface which the

user sees and interacts with, displays the collected snmp data to the user, and receives the user’s

input data [11]. Simultaneously, the view also accepts data update events from the model, so

36

that our network element monitoring data can be displayed in the user interface in real time.

The controller is responsible for logic processing, snmp requests, time, equipment and other

data displayed on the view, calling the model to process the business request.

4.2.2 High Level Design

The high level system design shows that network management is hosted on a Django webserver

and MySQL database, with a connection to the various network elements being monitored via

SNMP. Several clients can be connected to the server via http for user interface connection.

Figure 17: High Level System Design Architecture

4.2.3 Low Level Design

The low level design shows the three layers that were used in the system development which

are

1. Networking, Protocols and device interfacing

2. Data processing and control

3. Data storage and presentation

37

The applications, interfaces, protocols and databases used for the system development are

indicated in greater detail. Sqlite and Redis are the databases that were used in the system

development as indicated in the diagram Figure 18.

Figure 18: Low Level System Design architecture

The high and low level system design architecture has some similarities with that used in the

design of the network monitoring system based on CACTI for the Experimental Advanced

Superconducting Tokamak (EAST) [16].

38

Figure 19: General Schema of CACTI [16]

39

Like the architectural design solution for this research, Cacti uses SNMP protocol to collect

data from different network-attached devices such as switches, routers and servers, in each

interval decided by a cron-based poller [16]. In addition, Cacti also makes use of two databases,

Round Robin Database and MySQL database to store the polled and relevant configuration

information.

4.3 System Design Results

In order to manage devices on the NMS a step of creating the devices was created first. The

process of adding a device to the system provides the communication parameters to the

management system prior to any communication between the NMS and the devices. The

requirements for adding a device to the NMS were established as follows.

Information required before adding a device

 Device IP address

 SNMP protocol version

 Community strings

 Credentials (if using SNMPv3)

 Layer 3 reachability of the device from the NMS.

The process was meant to be vendor and model antagonistic. The system is supposed to

determine the vendor and model via SNMP request to the device. The system design did not

include the verification of the SNMP information during the creation of the device in the NMS,

this feature can be added in further development of the NMS software.

The adding of devices on to the NMS is done in two steps

Step 1: create device by adding the IP address, location and device type

Step 2: Specify device SNMP credentials

All this information is stored in separate database tables.

40

Device creation and information collection

START

Add device

Configure SNMP credentials

Check SNMP Connectivity

Is SNMP OK?
Set device to OFFLINE

state

Set device to ONLINE
state

SNMP get (system
attributes)

Update Database

END

Update Database

Figure 20: Device creation and information collection

4.3.1 Device Enterprise ID Collection

In order to effectively identify device manufacture, a method was created to query the

enterprise OID of a device. The OID for the enterprise ID is ‘1.3.6.1.2.1.1.2.0’. The table below

41

shows the list of enterprise ID’s used in the system and the logic diagram below show the flow

behind the code flow. The use enterprise IDs’ was the basis for achieving capability to monitor

different nodes from different vendors with different sets of object identifiers (OID) and

management information base (MIB) files

Table 4: Vendor Enterprise ID’s

Vendor Enterprise ID

Cisco 9

Huawei 2011

ZTE 3902

Figure 21: System Code for Enterprise ID Collection

 def get_enterprise_id(self):

 """

 Provides the enterpise ID of the device

 :return: Enterprise ID as integer

 """

 SysobjectID = self.device_session.get(oid='1.3.6.1.2.1.1.2.0') # get SysobjectID

 SysobjectID = SysobjectID.split('.')

 enterprise_id = int(SysobjectID[6])

 return enterprise_id

42

START

Query Enterprise ID

ID=3092 Device is a ZTE Device

END

Update Device Vendor Attributes

ID=9

ID=2011

Unknown Vendor

Device is a Huawei Device

Device is a Cisco Device

Figure 22: Design Logic for Device Enterprise ID Collection

43

The output result of a vendor enterprise ID detection and collection is depicted on the

dashboard of the graphical user interface for network monitoring system as indicated below.

For the design process, due to the cost associated with procuring different network nodes from

the various vendors on the market, a maximum of three layer 3 switches were acquired and

were able to be connected and monitored on the network monitoring system.

Figure 23: Vendor statistics on dashboard

Figure 24: A detailed table for vendor details

44

The system was able to list vendors configured on the server and their properties. In addition

the system was able to provide a count of how many devices of each vendor was being managed

and of those devices managed, how many interfaces in total were being monitored.

The following image shows how to add and configure a new vendor into the system, the key

element is to add the Vendor Index which will be used to identify vendors from the snmp

information.

Figure 25: Panel for creating a vendor

Separate dashboards where created for configured vendors. The images bellow shows

dashboards for ZTE, Huawei and Cisco devices.

Figure 26: Huawei Network Node Overview

45

Figure 27: Cisco Network Node overview

Figure 28: ZTE Network Node Overview

4.3.2 Receiving and Parsing SNMP traps

In order to handle traps received from the NetSNMP application, I designed a module for

processing the trap attributes into a format that can be used within the system for data

presentation and storage. The Table 5 show the modules created for the process of handling

traps.

46

Table 5: Modules created for the process of handling traps

Module Role

SNMPTrapManager A manger class for SNMP traps

SNMPTrap An SNMP trap object which extends the SNMPTrapManager class.

This object holds the attributes of a trap

InterfaceTrap Model class for traps related to interfaces

Table 6: Methods created to save and process traps.

Module Method Description

SNMPTrapManager Savetrap Used to save a trap in to the database

__set_trap_model Used to check if the trap belongs to any of

recognised types by the system

__check_interface_trap Used to check if a similar trap was received

before or not

__interfacetrap_handler Used to process traps that belong to an

interface

__interface_status Used to check if an interface is UP or

DOWN.

SNMPTrap retrieve_key Retrieve the key value used to identify the

type of trap received.

Process_IP_from_UDP In the case where the IP was not in the

varbinds, collect the IP address from the

UDP attributes

__ip_key Retrieve the IP from the received

dictionary

__oid Retrieve the OID from the received trap

dictionary

Time Retrieve the time in the trap received in the

dictionary

interface_index Identify the interface index value from the

received dictionary

Device Method to get the corresponding device

object based on the host IP received

The flow chart in Figure 29 shows the code logic, flow and steps in processing traps.

47

From the flowchart below, when a trap is received the system checks the OID of the trap. It

checks to see if the OID represents IFDown or IFUp. After checking the OID, the system

identifies the index of the interface and the IP address of the device. The IP address is extracted

from the source IP of the trap. The system also checks to see if the device is configured in the

system and if the IP address is not defined in the system it is discarded right away. If the system

successfully identifies the IP address of the device it then checks if a record of the trap exists

in the system and if the trap is a new entry it is created or if it exists it updates the record.

48

start

Receive SNMP Trap

Check Trap OID

Identify IF index

Is IFDOWN?

Identify Device

TRAP Exist?

YES

Update Trap DB

NO
Create new Trap

record in DB

Save Trap in DB

YES

NO Is IFUP?

YES

NO

Discard TrapDevice Exist?

YES

NO

END

Figure 29: Trap Processing Flow diagram

49

The key steps in identifying a trap are below

1. Identify the trap type

2. Identify the interface index of the trap source

3. Identify the source IP of the trap, if the IP is does not belong to a device in the system

the trap is considered as spam and it will be discarded.

4. Update the records in the trap database

The sample below is an example of the traps received from the SNMP application

The table 7 shows the keys used for trap processing.

Table 7: Tap Processing Keys

SNMP Dictionary Key Attribute for Trap

IF-MIB::ifIndex IF index

SNMPv2-MIB::snmpTrapOID OID

SNMPv2-SMI::snmpModules.18.1.3.0 Source IP of the SNMP trap

Received traps are presented as alarms on the system as shown in the screenshot below, the

image is showing a device interface showing an interface is disconnected.

{'IF-MIB::ifIndex.3': '3',

'IF-MIB::ifType.3': 'ethernetCsmacd',

 'SNMPv2-SMI::snmpModules.18.1.3.0': '192.168.1.2',

 'SNMPv2-SMI::enterprises.9.2.2.1.1.20.3': '"up"',

'SNMPv2-MIB::snmpTrapOID.0': 'IF-MIB::linkUp',

'SNMPv2-SMI::snmpModules.18.1.4.0': '"public"',

 'SNMPv2-MIB::sysUpTime.0': '0:0:15:07.77',

 'IF-MIB::ifDescr.3': 'Ethernet0/2',

 'SNMPv2-MIB::snmpTrapEnterprise.0': 'SNMPv2-SMI::enterprises.9.1.122'}

50

Figure 30: Interface disconnection alarm displayed on the User Interface

Figure 31: Interface disconnection alarm cleared

4.3.3 System constraints during trap handling

During the process of handling traps, it was noted that some traps where being lost if they are

received whilst the system is still processing another trap. This issue then required me to

implement multi-processing technics within the system. I used Celery library to implement the

multi-process feature.

The diagram below shows how the traps where handled in the two processing methods.

Traphandler
Module

Python Processing
Module for Traps

DataBaseTRAPS

Figure 32: Synchronous trap processing

51

Message Broker
(Redis)

Celery
Worker 1

Celery
Worker 2

Celery
Worker 3

Celery
Worker 4

DataBase

TRAPS

TASKS
TRAPS

Figure 33: Asynchronous processing of traps

The introduction of Celery helped in the asynchronous processing of traps in the application.

4.3.4 Database Structure and SNMP Traps Storage

The main database used for the system design was SqLite3 mainly because of its efficiency at

manipulating big datasets and also with a view of using its easier capability to migrate to some

other relational database either during or after the system development. The other database

used in the system development was Redis, mainly because it is an open-source, in-memory

data structure store that is used as a database. Redis was used to store messages produced by

the application code describing the work to be done in the Celery task queue and also served

as storage of results coming off the celery queues.

The image below is showing how the traps are stored in the database.

Figure 34: Traps stored in the database

52

Device

ipaddressPK

name

region

date_created

enterprise_id

vendor

model

Vendor

indexPK

name

Model

model_indexPK

name

Interface

devicePK

ifDesc

ifAdminStatus

ifIndexPK

ifOperStatus

ifMTU

ifPhysAddress

InterfaceTrap

idPK

occur_time

clear_time

city

hostname

type

version

online

vendor

Alarm

idPK

occur_time

clear_time

device

name

board

device_ip

ifType

ifSpeed

interface

linkstatus

name

InterfacePerformance

idPK

interface

utilization

inoctates

outoctates

device

InterfaceIndicatorCounter

idPK

time

value

InterfaceUtilization

idPK

interface

value

time

InterfaceInboundOctates

interface

InterfaceOutboundOctates

interface

SNMPdetails

idPK

device

rcommunity

wcommunity

version

timeout

retries

security_level

Figure 35: Database Structure

53

4.3.5 Retrieving SNMP attributes from a database and pass them to SNMP

libraries/tools

The system was supposed to be able to store SNMP details for each device. This information

is to be used by the system when establishing SNMP connections with devices. Some of the

SNMP attributes for the devices that were captured and processed by the system are listed in

the Table 8

Table 8: Fig: List of Devices’ SNMP Attributes

Attribute Description

Version SNMP version supported

Read Community Read community string configured on device

Write Community Write community string configured on device

Timeout Snmp timeout interval

Security Level no_auth_or_privacy, auth_with_privacy and

auth_without_privacy

A class was created to hold the attributes of each device. The class contains the logic and

methods used to query and modify the attributes. The UML diagram show the relationship of

the device and the snmp attributes.

Figure 36: Relationship of device and the snmp attributes

54

The Figure 35 show how SNMP details are displayed in the system when retrieved from the

database.

Figure 37: SNMP v2 details for a device

4.3.6 Task Scheduling

One of the requirements of the NMS system is to carry out scheduled tasks unattended.

Scheduled tasks included collection of performance data, heartbeat between NE’s and NMS

and the updating of device information.

Table 9: Task Scheduling

Task Schedule(s) Description

Collect performance 15 Collect performances configured on devices

Polling 10 Check if a device is online

Update device information 30 Update any changes on device configuration

Task scheduling was achieved by configuring Celery beat schedules on the NMS. The code

snippet below shows how the scheduled tasks were configured in the settings.py file of the

project.

55

Figure 38: Celery Beat Schedule configuration

Each task in the snapshot above has a method configured in the task module of the project. The

image below shows the functions in the task module created to meet all our scheduling

requirements.

Figure 39: Task module functions

CELERY_BEAT_SCHEDULE = {

 'get-device-heartbeat-every-10-seconds':{

 'task':'uNMS.tasks.check_all_device_heartbeat',

 'schedule':10.0,

 },

 'update-device-interface-every-30-seconds': {

 'task': 'uNMS.tasks.update_all_device_int',

 'schedule': 30.0,

 },

 'update_all_device_performance': {

 'task': 'uNMS.tasks.update_all_device_performance',

 'schedule': 15.0,

 }

}

56

 The list below describes all the methods created for scheduled tasks in the system.

 check_all_device_heartbeat : Used to poll all devices if they are online

 device_heratbeat: Used to poll a single device heartbeat

 savetrap : Used to save a trap into the database

 device_update_int : used to update the interface attribute of a device

 update_all_device_int : used to update the interface information of all devices

 update_all_device_performance : used to update the device performance data for all

performance instances

 collect_device_performace : collects the performance of each device using SNMP

Application (Task
Producer)

Celery beat (task scheduler)

result

Worker(task consumer)

Broker (task queue)

Figure 40: Celery beat schedule block diagram

4.3.7 Challenges faced in running scheduled tasks.

Running scheduled tasks presented new challenges to the design of the system. The most

visible challenge was the delay in performance data collection. The system was getting slow in

processing active performance data collection requests and in addition, starting any new

requests to the system was also affected. Due to hardware resource limitations it was not

possible to be able to create many Celery workers to handle multiple tasks at once. It was noted

that some performance collection tasks took longer to finish to collect.

57

The ideal solution to the delay in task execution, that would maintain the quality of experience

of using the system, would have been to deploy more celery workers and increase the process

pool for each worker. However due to limited hardware resources we opted for reducing the

frequency of performance information collection. This was a work around which enabled the

achievement of a desired goal but would not be ideal if the system was to be developed for an

enterprise deployment as this would negatively affect the mean time to detect (MTTD) KPI for

network challenges for the service maintenance teams using the system.

Table 10: Performance information collection

Task Schedule(s) Description

Collect performance 60 Collect performances configured on devices

Polling 120 Check if a device is online

Update device information 300 Update any changes on device configuration

Justification of adjusting the schedules

Collection of performance data was changed to 1 minute because data throughput does not go

through very frequent changes. The interval is okay for general data trending. More frequent

data collection is best collected on request to minimize system resource utilisations. The

Polling of device heartbeat was changed to 120 seconds, the interval is sufficient to establish

if a device is online. The updating of device information was changed to 300 seconds on the

assumption that configuration changes do not occur very frequent. In most industrial solutions

configurations are manually synchronised.

4.3.8 Device Heartbeat Polling

One of the objectives of the system is to be able to send periodic heartbeats to the devices and

ensure that communication exists between the NMS and the devices. This action is configured

as scheduled task using Celery beat scheduler. The outcome of this process is to establish if a

device is online or offline and update the status in the database.

The code snippet in Figure 42 shows how the polling functions were written.

58

Figure 41: Polling Functions Code Snippet

The flow chart in Figure 43 shows the heartbeat polling process

59

Figure 42: The process of polling the heartbeat of a device

60

After the polling is complete the device information is update as show in the images below

from the NMS user interface.

Figure 43: Device with failed heartbeat

Figure 44: Device with a successful heartbeat

Figure 45: Device Listing

61

4.3.9 Interface Status Polling

The collection of interface data involves sending SNMP requests to all configured devices and

updating the database. This action is done at specific intervals hence it was designed as a

scheduled task using Celery heartbeat schedule. The flow chart below shows the process of

querying interface information.

Interface status polling

START

Call update interface task for all devices

collect device IP list from DB

Run SNMP get (ifTable) on each
device IP

Is there an error

Update interface database

END

NO

Retry 3 times

YES

Do not update

Is there an error

YES

NO

Figure 46: Interface Polling Status Flow Chart

62

The code snippet below shows the scheduled tasks for interface information polling.

Figure 47: Interface information polling code snippet

Information returned from interface polling is shown in the table below.

Figure 48: Interface database table

@app.task()
def device_update_int(host):
 """
 Task to update device properties in the database
 """
 device = Manager(host)
 device.update_interface_db() # update the interface DB

@app.task()
def update_all_device_int():

 device_manager = DeviceObject() # create a device object manager instance
 devices = device_manager.all() # query all devices configured in the system

 for device in devices:
 device_update_int.delay(device.ipaddress) # call interface update task per device

63

The following image is the result of the processing of the interface information collected from

devices.

Figure 49: Interface listing on the NMS

4.3.10 Interface Performance Collection

Interface performance collection is one of the objectives of the system design. In the

implementation of this requirement, a flow of events was established first in order to come up

with a functional collection of information. The flow chart below shows the sequence of events

for collecting performance data.

64

START

Check if device have instance
configured

Is Instance?

Is utilization configured?

Collect the list of instances

Iterate each instance interface

Collect interface utilization

Is inoctates
configured?

Collect interface inoctates

Is outoctates
configured?

Collect interface outoctates

Save Performance

YES

YES

YES

YES

END

NO

NO

NO

NO

Figure 50: Performance data collection flow chart

65

4.3.11 Collecting and Storing Performance Data.

In order to process performance data a class was created to handle parse and save performance

data collected using SNMP tools. The table below list the methods and purposes for each

method in collecting and processing performance data.

Table 11: Processing performance data

Method Purpose

Interface_instance() Collect interface performance instances configured for a given

interface

check_if_instance_exist() Checks if a performance instance is configured for a given

interface

collect_performances() Collects interface performance based on the instances

configured and save them to the database

collectInterfaceUtilization() Collects interface utilization performance information for a

given interface

save_interface_utilization() Save interface utilization performance into the database

save_interface_inoctates() Save the interface inoctates performance into the database

save_interface_outoctates() Save the interface outoctates performance into the database

4.3.11 Processing performance data

The block diagram below shows the abstract overview of the processing of the performance

data. The performance manager module is responsible for initiating the collection of data and

also the processing of the returned data. When data is received it is raw and it needs to be

manipulated into a format that can be stored in the database.

66

NetSNMP

Raw Perf data

PerfomanceManager DB

Parsed Perf data

Request Perf Data

Figure 51: Performance data processing overview

The following screenshot shows the code snipper of how the PerformanceManager class is

built.

Figure 52: Code snippet of how the Performance Manager class is built.

67

4.3.12 Presenting Performance Data

For the presentation of performance data another class called Performance Display was created.

The role of the class is to handle performance information requests from the user interface and

present it to the user interface. The following block diagram shows the functional building

blocks for achieving the task of presenting performance data to the UI.

UI

Perf data objects

PerfomanceDisplay DB

Raw Perf Data

Request Perf Data Query Perf Data

Figure 53: Building blocks for of presenting performance data to the UI

Table 12: Performance Display Attributes

Method Purpose

parsePerformance() Process retrieved performance data to a format that can

processed by the Django templating system

interface_utilizations Query the database for interface utilization

interface_inoctates Query the database for interface inoctates

interface_outoctates Query the database for interface outoctates

interface_perfomances

Query all performances for all interfaces on a device from the

database

interface_perfomance_all Query the performances for a given interface from the database

68

The method parsePerfomance is used to process data retrieved from the database to a format

that is presentable to the Django templating system. The performance data need to be

transformed into a two separate lists containing values and timestamps. An example of the data

is shown below shows the utilization values collected for an interface GigabitEthernet0/0/21.

Table 13: Values collected for an interface GigabitEthernet0/0/21

id value time interface_id

1152 4.62623535129881 2020-02-18 19:18:16.035603 GigabitEthernet0/0/21

1154 6.74307304785894 2020-02-18 19:18:31.790802 GigabitEthernet0/0/21

1156 10.0224634968177 2020-02-18 19:18:45.991290 GigabitEthernet0/0/21

1158 6.39350379890436 2020-02-18 19:19:01.770487 GigabitEthernet0/0/21

1160 25.9240386324584 2020-02-18 19:19:15.949701 GigabitEthernet0/0/21

1162 1.7119036294819 2020-02-18 19:19:31.930410 GigabitEthernet0/0/21

1163 13.8194489255985 2020-02-18 19:19:45.928581 GigabitEthernet0/0/21

1166 1.4631863383106 2020-02-18 19:20:02.004455 GigabitEthernet0/0/21

1168 25.6832763686514 2020-02-18 19:20:15.874930 GigabitEthernet0/0/21

1170 1.98076580587711 2020-02-18 19:20:31.910327 GigabitEthernet0/0/21

1172 27.1949206349206 2020-02-18 19:20:45.873365 GigabitEthernet0/0/21

1174 8.81988345036345 2020-02-18 19:21:02.080892 GigabitEthernet0/0/21

1176 24.6799193316047 2020-02-18 19:21:15.872800 GigabitEthernet0/0/21

1178 0.0357352768308452 2020-02-18 19:21:31.961101 GigabitEthernet0/0/21

The data from the table above is processed into two lists shown below.

Time =

[18:16.0,18:31.8,18:46.0,19:01.8,19:15.9,19:31.9,19:45.9,

20:02.0,20:15.9,20:31.9,20:45.9,21:02.1,21:15.9,21:32.0]

69

values = [4.626235351, 6.743073048, 10.0224635, 6.393503799,

25.92403863,1.711903629,13.81944893,1.463186338,25.68327637,1.

980765806,27.19492063,8.81988345,24.67991933,0.035735277]

Configuring a performance instance

 The image, Figure 55 showing the interface for configuring the performance collection

instance for a device interface. It shows the configuration of upper and lower thresholds,

selection of indicators and the interface whose performance utilization would be desired to be

measured.

Figure 54: Configuring the performance instance

 The next image, Figure 56 is showing the presentation of the performance graphs.

70

Figure 55: Interface Utilization plotted with thresholds

Figure 56: Performance graph for an interface

4.3.13 Network insight and analytics

Another objective of the NMS is to provide insight into possible faults on the network and help

in making planning decisions. This part of the project mainly focused on monitoring interfaces

on devices. The key performance indicators that this section looked at were the frequency an

interface is in disconnected mode to address issues of link stability, high interface utilization

71

to address issues of interface or link congestion and very low interface utilization to address

issue of degraded service or compromised link quality.

1. Link stability

2. High interface utilization

3. Low interface utilization

4.3.14 Effects of unstable interfaces

An interface that frequently disconnects affects the quality of service experienced on the link.

In some cases the situation can go undetected depending on the monitoring system in place,

leading to unwanted customer experience. Having a knowledge of interfaces with poor quality,

assists both network operations centre (NOC) and service operation centre (SOC) personnel in

achieving one of their key performance indicators which is reducing the Mean Time to Repair

(MTTR) as it improves response time.

How to detect unstable interfaces

Unstable interfaces were identified based on the frequency an interface disconnects and

connects. Each interface status is tracked in NMS, a separate database table was created for

recording changes in interface UP statuses and the times in which they occur. For

demonstration purposes a maximum of 5 disconnections per minute was used as benchmark

for classifying an interface as unstable. The amount of disconnections per minute was

calculated as an average of disconnections over a given period. The formula below was used

to determine the disconnections per minute.

Disconnections per minute =
total disconnections

time in minutes

72

Table 14: Interface stability calculations in an interval of 10 minutes

Interface Disconnection

Count

T of first

disconnection

T of last

disconnection

Disconnections

per minute

GigabitEthernet0/0/21 28

2020-02-18

19:19

2020-02-18

19:29 2.8

GigabitEthernet0/0/22 0

2020-02-18

19:19

2020-02-18

19:29 0.0

GigabitEthernet0/0/23 1

2020-02-18

19:19

2020-02-18

19:29 0.1

GigabitEthernet0/0/24 3

2020-02-18

19:19

2020-02-18

19:29 0.3

GigabitEthernet0/0/25 8

2020-02-18

19:19

2020-02-18

19:29 0.8

GigabitEthernet0/0/26 9

2020-02-18

19:19

2020-02-18

19:29 0.9

GigabitEthernet0/0/27 10

2020-02-18

19:19

2020-02-18

19:29 1.0

GigabitEthernet0/0/28 23

2020-02-18

19:19

2020-02-18

19:29 2.3

The network insight were summarised and presented as part of the dashboard. The image below

shows interface analytics summary. Links of high utilization are shown as congested.

73

Figure 57: Network Insight dashboard

Figure 58: Listing of high utilization interfaces

4.3.15 System properties and performance

This section looks at those system properties whose resource utilization vary with the usage

and performance of the software. Of interest is the system CPU performance, system memory

utilization and the traffic inflows and outflows from the system server to the various monitored

network elements

74

System CPU information

Figure 59: CPU information

For the server hardware hosting the system was a 4 core, Core i7 5th generation processor at

2.4GHz was used. The specs were sufficient for our usage as we were handling fewer devices.

The database used was sqlite which is very light on resources. For industrial use we would

recommend using a more robust database such as Sybase or MySql and they would be need to

deploy this on a separate server or VM for efficiency.

Memory Utilization

The following screen shot show a comparison of the memory usage of the system before and

during running the NMS software. From the screenshots it was observed that the application

used 540Mbytes of memory, and this memory utilization would obviously increase if more

devices are added and more performance indicators are configured for collection. It was noted

the system would be ideal for cases with fewer nodes, if more nodes are required the memory

needs to be upgraded.

Figure 60: System memory before starting the application

75

Figure 61: System memory when running the application

System Performance Trends

Figure 62: System monitoring when running the application

4.3.16 Consolidating the system

In this section the mechanisms used to consolidate, integrate and combine the three layers

making up the different parts of the system are discussed. The following block diagram shows

76

functional requirements of the entire system divided into three sections.

NMS Functional Requirements

SNMP Layer Control and Logic
User Interface and

Database

Device UDP and TCP
communication

Trap Handling

Device SNMP
Configuration

System SNMP
configuration

Network Layer
troubleshooting

SNMP request
handling

SNMP response
parsing

Device creation and
modification

Collect performance
information

Parse SNMP
responses from

SNMP Layer

Process received
alarms from devices

Process interface
information

Retrieve and store
information in DB

Process DB data for
presentation to the

UI

Database Selection

Database Schema
Design

Database Backup
and security

configuration

Database
connection setup

User interface
template design

Device information
display

Performance
information display

Data manipulation
User Interface

Figure 63: System functional requirements:

From the above functional requirements, it can be shown how the three distinct areas were

combined to achieve the task at hand. The control and logic part was responsible for interfacing

between the SNMP networking later and the user interface/database. The control logic was

integrated with the SNMP layer using the python package snmp_cmds and the Django

77

framework provided database and template framework for integrating with the database and

the user interface.

The block diagram below shows the integration points of the system and the technologies used

at each interface.

Control and LogicSNMP

Database

UI

snmp_cmds
Linux

python3

Django.models
django.db.backends.sqlite3

Django.Forms
Django.Views
Django.urls

Figure 64: Integration points

SNMP layer to Control layer integration

The interface uses the snmp_cmds python package for integrations. The library creates SNMP

request from python methods. The return communication from the SNMP tool used basic

python variables which were parsed in the control layer for storage and presentation.

Database to Control Layer integration

The interface between the database and the control layer used the Django APIs for establishing

communication.

UI to Control Layer integration

The interface between the UI and the control layer used the Django APIs (77jango.models and

Django.db.backends.sqlite3) for integration.

78

4.4 Results Analysis and Discussion

4.1 System Design Performance Evaluation

The trend analysis of the system performance provided a view of the variation of key

performance indicators for the system, such as

i. The processing capacity utilisation of each respective CPU on the system with time

,action and activity being performed on the system

ii. The memory utilisation of the system with time and also action or request being

processed

iii. The variation of traffic flow on the network monitoring system with action or request

being processed

Figure 65: System KPI Trend Analysis for Interface Performance Request

 Start of Performance Query Request

79

As can be seen in Figure 65, the systems key performance indicators vary considerably with

the request being processed and for a request such as interface performance query, this action

was shown to be very high demanding on processing power as the CPU utilization rose to as

high as 50% on some of the processors

This is mainly due to continuous and repetitive nature of the action performed and also to the

number of active or enabled interfaces on the respective network node being monitored. If more

nodes were to be connected and monitored, system’s server hardware capabilities would need

to be upgraded for such actions to be easily undertaken without much delay.

A comparison of the designed system’s performance with other industry available network

monitoring systems like the OpManager which is one of the few network monitoring systems

with multi-vendor monitoring capability and is currently being used by some of the mobile

operators, indicates that, high server processing capability is one key performance indicator

that has to be fully resourced if more nodes are to be connected and managed by the designed

network monitoring system

Figure 66: OpManager Server and Node CPU Utilization Capacity

80

Current industry available network monitoring systems have similar Node CPU utilization

performance results for some specific processing requests. A top average of around 50% node

CPU Utilization capacity was also noted for OpManager system however this system is even

equipped with multiple servers to aid in the multiple processing of requests.

The designed network monitoring system was designed with single server due to cost

considerations in acquiring the necessary hardware and software to support a multiple server

design.

4.2 System Memory

For the designed Unified Network monitoring system, the memory utilisation for available

memory of 15.5 GB was noted to be steady around 20% for the given performance requests

that were processed during testing and system operation.

Figure 67: Unified Network Monitoring System Memory Utilisation

This memory utilisation compares very well with that of similar network monitoring systems

currently in use in industry, considering that the available memory space of for the design

system was 15.5Gigabyte against industry available systems with memory of up to 2Terabytes

81

and memory utilisation ranging from 10% up to 80% as indicated below. Such seemingly huge

hardware capacity requirements are desirable for any system to be able to undertake multiple

processes at the same time as well as have the capacity to store , both performance an alarm

data for an appreciable amount of time. Typical storage durations for performance and alarm

data is at least 3months.

Figure 68: OpManager System Performance

For enterprise deployment of the developed monitoring system, it would be desirable to have

more memory capacity to be able to handle memory requests for the multiple requests from the

many monitored network nodes.

4.3 System Dashboard

The designed system dashboard and graphical user interface compares fairly well with other

industry available network monitoring systems as indicated in the figures below. The designed

system dashboard landing webpage has short cut menus to system applications such as, Insight

and Analysis for performance management and trends analysis in both graphical and tabular

form, Device management for system views of all the devices monitored by the system and for

addition of new network nodes that would have been discovered or integrated into network, to

enable monitoring from the network monitoring system.

82

Figure 69: Unified Network Monitoring System Dashboard View

In addition the system dashboard view has tabs for alarm management which provides a system

view of current and historical network nodes alarms whilst the System administration tab

provides for the updating of new vendor profiles and also system view of all snmp devices in

the network.

Figure 70: Unified Network Monitoring System Expanded Dashboard View

83

A comparison of the designed system dashboard view and the dashboard view from similar

network monitoring systems already in operation in the industry indicates that though systems

currently in use have more features and consequently more items displayed on the dashboard,

the basic graphical user interface display items are similar. Links or tabs to alarm management,

device management and system administration are available on the designed network

monitoring system.

Figure 71: OpManager Graphical User Interface Dashboard View

The other graphical user interface features such as configuration management, inventory

management, maps etc. were not included in the development of this monitoring system, purely

because of the limited resources that included, time and financial resources to support

development of a greater magnitude.

4.4 System Device Templates

Device templates view is a system view that enables one to view the different types of network

equipment, their manufacturer or vendor, and also how many of each unique type are currently

monitored by the monitoring system. In addition it also provides for quick discovery of new

network nodes onto the monitoring system if similar nodes from a manufacturer are already

managed by the monitoring system

84

Figure 72: Unified Network Monitoring System Vendor List View

The network monitoring system was designed to be a multi-vendor solution and as indicated

in the diagram above, three vendors’ network elements, namely a ZTE switch, a Huawei switch

and a Cisco switch were successfully integrated and monitored on the system. This capability

compares equally with similar capabilities from other network monitoring systems currently in

use in the industry, if the view from the OpManager below is anything to go by.

Figure 73: OpManager Network Monitoring System Device Templates View

85

4.5 Network Elements Interface Utilization Measurement

The ability to measure or trend interface utilisation is an important key performance indicator

in that it provides a predictive capability of the network’s demands allowing for futuristic

planning necessary to guarantee or maintain good quality of service delivery. This feature was

incorporated in the designed system solution under the Network Insights and Analysis tab.

Sample results from one such test are as shown below

Figure 74: Unified Network Monitoring System Interface Utilisation on Cisco Switch

The feature and functionality compares fairly well with similar features on other similar

monitoring systems even though there is room for further enhancements to match or surpass

the current systems. The designed functionality provides for the measurement and trending of

an interface’s utilisation over a set period, whilst the feature on some mature monitoring

systems includes as well the ability to display this data with even more detail such displaying

outgoing and incoming traffic utilisation, as indicated below.

86

Figure 75: OpManager ZTE Switch Interface Utilisation

4.6 Interface Alarms Monitoring

The ability to have an alarm interface status view for all the interfaces on a network element is

important especially during failure of some but not all services on a network element. This

functionality allows for the operation and maintenance teams to quickly identify those

interfaces that would be faulty or down and quickly narrow down the possible faulty ones.

Figure 75: Interface Alarm Status View

This capability was incorporated in the designed system as indicated in the diagram above

showing the status and type of interfaces on one network element. A comparison of this

87

capability with other network monitoring systems available on the market indicates that the

basic functions for this feature which are, interface status and type of interface, are quite

comparable. Enhancements to incorporate functionalities such as interface protocol type or

cumulative traffic on any interface were not explored purely for reasons of time management

during this research design.

Figure 76: Device Monitoring Snapshot

88

4.7 Comparison of results with other related works

Table 15: Comparison of results

Authors Artwell

Magadzire

2020

C.C.Li, Z.S.Ji,

Feng Wang,

P Wang,

Y Wang,

 Z.C.Zhang

2016

Vincent

Geddes 2008

Title “Unified Multi-

Vendor

Network

Monitoring

System

Development”

“The Network

Monitoring

System based on

CACTI for

EAST”

“Design and

Implementation

of a Scalable

Network

Monitoring

System”

COMMENTS

System Stability

as a factor of

Operating

System used

Linux Ubuntu

Operating

System

 Deamon

processes to run

on Debian

GNU/Linux

Operating

Systems

For stable and

robust systems,

linux operating

systems are the

predominant

preference

System design

architecture

Web-server

online

monitoring

system using

Django network

framework

based on the

B/S architecture

Web-server

online

monitoring

system using

Cacti

Framework

based on the

B/S architecture

Web-server

monitoring

system

implemented

using the SCGI

protocol

Most network

monitoring

systems use B/S

architecture for

the flexibility

that it provides

System design

methodology

Three distinct

paradigms.

Emphasis was

to allow for

continuous

system

development

without the

whole system

being shut down

 Iterative with

more and more

functionality

progressively

developed.

Emphasis on the

system being

buildable and

runnable at

all times.

Continuous

system

development

without any

downtime being

experienced is

key

Protocol and

Databases

SNMP for

devices and

HTTP for GUI

interface.

SqLite3 and

Redis databases

SNMP for NE

devices and

HTTP for GUI

interface.

RRD and

MySQL

databases

SCGI protocol

for web-service

interface, HTTP

for clients,

binary protocol

and CLI utility

for agents

interface

The ease

brought about

by SNMP

protocol in data

collection

enhanced

development

89

Authors Artwell

Magadzire

2020

C.C.Li, Z.S.Ji,

Feng Wang,

P Wang,

Y Wang,

 Z.C.Zhang

2016

Vincent

Geddes 2008

Programming

Language

Python

Programming

Language

PHP

Programming

Language

D Programming

Language

Programming

language with a

big community

provides for

wider support

base

System Feature

Activations and

Licensing

No license

requirements for

all the features

supported by the

system

Open source

software used

for system

development

Software

Licensing

implementation

under the terms

of the MIT/X11

license.

This research’s

design provides

for a cost

effective

solution to

network

monitoring of

nodes in

heterogeneous

transmission

networks

Highlights of some of the key findings and comparisons by previous researchers on the subject

of network monitoring systems design are captured in the table above. The system design

architectures were observed to be almost similar in most cases, due to the flexibility aspect that

comes with web server systems.

Different approaches were taken to address the system design methodology but the

predominant factor in all the previous research works’ methodology, was the need for

continuous system development without incurring any system downtime.

In conclusion, it can thus be observed that different approaches can and have been used to

successfully address network monitoring challenges in a multi-vendor environment. The cost

associated with implementing and subsequent maintenance of the system later, for a particular

solution stands out as one of the key factors to consider in selecting the best solution with

feature activations and licensing impacting hugely on this consideration.

90

CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS

The primary outcome of this research has been to provide a conceptual framework of methods

and tools that can be implemented to monitor diverse mobile communications network

elements .The research focussed on the design and development of a network monitoring

system which is not vendor specific and could manage diverse transmission mobile network

elements with particular emphasis on the monitoring server framework design. The network

monitoring system was supposed to be capable of monitoring multi-vendor network elements,

notably ZTE, Huawei and Cisco devices, in addition to carrying out performance measurement

and output service alarms of these devices on to a dashboard without the need for licenses for

these feature activations and capabilities. The designed system achieved these objectives.

A web-server network monitoring system based on the Django network framework was

designed. Three IP switching transmission network elements from ZTE, Huawei and Cisco

were used to verify and prove the feature and functional capabilities of the designed monitoring

system. This was done by connecting them in a network setup and confirming the status of the

connected network elements from the network monitoring system.

The designed system had basic functional capabilities such fault management and performance

management. Based on the results it can be concluded that a multi-vendor network monitoring

system design that does not require a lot of OPEX and CAPEX for mobile operators, with the

desired features and functionalities is feasible.

This research work has been used as part of a larger project. It forms the middle level of the

complete unified network monitoring system. The physical interface and user interface

component layers depend on this research for a reliable and high-quality network monitoring

system as it completes the configuration and integration of all aspects of the system such as the

display mechanisms for the graphical user interface and SNMP traps handling.

From the results it was demonstrated that the designed network monitoring system had basic

functional system capabilities such as alarm monitoring and interface utilization. Enhanced

feature and functional capabilities, such as early warning capability or service quality

monitoring, for the network monitoring system would require further research work on the

contents and structure of MIB files of each respective vendor equipment. This will be necessary

to be able to manipulate the MIB files and hence be able to have both read and write rights to

the respective network elements. This is one possible area of further research, the

91

implementation of configuration management capabilities of multi-vendor network elements

from one network monitoring system.

Based on the results, it is recommended that further research work be explored in the area of

upgrading multi-vendor network monitoring systems to multi-vendor network management

systems

92

REFERENCES

[1] ITU-T Recommendation M.3010, Principles for a Telecommunication Management

Network , May 1996.

[2] Ludlow, G. (1997). Network management. IEE Colloquium on How to Compete and

Connect: Understanding the Engineering of Telecommunications Network Interconnection.

[2] Abubucker Samsudeen Shaffi, Mohanned Al-Obaidy. MANAGING NETWORK

COMPONENTS USING SNMP. International Journal of Scientific Knowledge Computing

and Information Technology. April 2013. Vol. 2, No.3

[3] S Sasidharan, “Efficient Network Monitoring in Enterprise Data Networks Using Node

Capabilities in Computer Network and Multimedia Technology” CNMT 2009.International

Symposium on, pp. 1-4 ,2009

[4]Case, J., Fedor, M., Schoffstall, M., Davin, J. 1990. “A Simple Network Management

Protocol (SNMP)” Request for Comments 1157, Network Working Group. Accessed 22

January, 2020. http://tools.ietf.org/rfc/rfc1157.txt

[5]Van Renesse, R., Birman, K. P., Vogels, W. 2003. “Astrolabe: A robust and scalable

technology for distributed system monitoring, management, and data mining.” ACM Trans.

Comput. Syst. Vol. 21.2 (May. 2003), p. 164–206. doi:10.1145/762483.762485

[6] Sottile, M., Minnich, R. 2002. “Supermon: A high-speed cluster monitoring system” In

Proceedings of Cluster 2002 doi:10.1109/CLUSTR.2002.1137727

[7] Massie, M. L., Chun, B. N. & Culler, D. E. 2004. “The ganglia distributed monitoring

system: design, implementation, and experience” Parallel Computing, Vol. 30.7, p. 817–840.

doi:10.1016/j.parco.2004.04.001

[8] Xianmin Wei. Design and Implementation of Network Management System Based on

Mixed-mode.2012 International Conference on Applied Physics and Industrial Engineering

pp871-876

93

[9] Yongqi Han, Taihao Li, Yun Zhang, Liying Cao. Research of Network Monitoring Based

on SNMP: 2013 Third International Conference on Instrumentation, Measurement, Computer,

Communication and Control pg 1-4

[10] Regis J, “BUD” Bates. Broadband Telecommunications Handbook 2nd Edition. McGraw-

Hill TELECOM PROFESSIONAL

 [11] Al Kovalick,“Systems Management and Monitoring ,”Video Systems in an IT

Environment (Second Edition), 2009, Pages 345-372.

[12] Suryadiputra Liawatimena, Edi Abduran, Ford Lumban Gaol, Harco Leslie Hendric Spits

Warnars, Benfano Soewito, Bahtiar Saleh Abbas, Agung Trisetyarso, Antoni Wibowo. Django

Web Framework Software Metrics Measurement Using Radon and Pylint. The 1st 2018

INAPR International Conference, 7 Sept 2018, Jakarta, Indonesia

[13] D. P. Pop and A. Altar. (2014). Designing an MVC model for rapid web application

development. Procedia Engineering, 69, 1172-1179.

[14] M. Aniche, G. Bavota, C. Treude, M. A. Gerosa, and A. van Deursen, “Code smells for

Model-View-Controller architectures,” Empir. Softw. Eng., vol. 23, no. 4, pp. 2121–2157,

2018.

[15] Vincent Geddes, Greg Kempe, Michelle M Kuttel, Patrick Marais 2020.”Design and

Implementation of a Scalabale Network Monitoring System” University of Cape Town.

https://www.researchgate.net/publication/255669527

[16] C.C. Li, Z.S. Ji, Feng Wang, P Wang, Y Wang, Z.C.Zhang 2016.” The Network

Monitoring System based on CACTI for EAST” 2016 IEEE-NPSS Real Time Conference (RT)

[17] Song, C., Huo, R., Wang, S., & Lv, C. (2019). Transformer Equipment Temperature

Monitoring Based on the Network Framework of Django. 2019 Chinese Automation Congress

(CAC).

[18] Xue Yaowei. Design and implementation of automatic generation module based on

Django framework management interface [D]. Harbin: Harbin Institute of Technology, 201

[19] POTRAZ “POTRAZ Abridged Postal and Telecommunications Sector Performance

Report: First Quarter 2020” [Online] Available:

http://www.potraz.gov.zw/?page_id=527 [Accessed June2020]

http://www.potraz.gov.zw/?page_id=527

94

https://docs.djangoproject.com/en/3.0/

https://docs.djangoproject.com/en/3.0/

95

APPENDICES

Project Django Settings

"""
Django settings for NMS project.

Generated by 'django-admin startproject' using Django 2.2.4.

For more information on this file, see
https://docs.djangoproject.com/en/2.2/topics/settings/

For the full list of settings and their values, see
https://docs.djangoproject.com/en/2.2/ref/settings/
"""

import os

Build paths inside the project like this: os.path.join(BASE_DIR, ...)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

Quick-start development settings - unsuitable for production
See https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/

SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = '9@-uznt97ct18)@@5o5ab^k@rxac47&c#xbi0c@gpjy95&njub'

SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True

ALLOWED_HOSTS = ['192.168.1.1','localhost','127.0.0.1']

Application definition

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'uNMS',
 'widget_tweaks',
]

MIDDLEWARE = [
 'django.middleware.security.SecurityMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware',
]

ROOT_URLCONF = 'NMS.urls'

TEMPLATES = [
 {
 'BACKEND': 'django.template.backends.django.DjangoTemplates',
 'DIRS': [],
 'APP_DIRS': True,
 'OPTIONS': {
 'context_processors': [
 'django.template.context_processors.debug',
 'django.template.context_processors.request',
 'django.contrib.auth.context_processors.auth',
 'django.contrib.messages.context_processors.messages',
],
 },

96

 },
]

WSGI_APPLICATION = 'NMS.wsgi.application'

Database
https://docs.djangoproject.com/en/2.2/ref/settings/#databases

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

Password validation
https://docs.djangoproject.com/en/2.2/ref/settings/#auth-password-validators

AUTH_PASSWORD_VALIDATORS = [
 {
 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator',
 },
 {
 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
 },
 {
 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
 },
 {
 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator',
 },
]

Internationalization
https://docs.djangoproject.com/en/2.2/topics/i18n/

LANGUAGE_CODE = 'en-us'

TIME_ZONE = 'UTC'

USE_I18N = True

USE_L10N = True

USE_TZ = True

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/2.2/howto/static-files/

STATIC_URL = '/static/'
STATICFILES_DIRS = (
 os.path.join(BASE_DIR, 'static'),
)

#Celery application configurations
CELERY_BROKER_URL = 'redis://localhost:6379/0'
CELERY_RESULT_BACKEND = 'redis://localhost:6379/0'
CELERY_ACCEPT_CONTENT = ['application/json']
CELERY_RESULT_SERIALIZER = 'json'
CELERY_TASK_SERIALIZER = 'json'
CELERY_BEAT_SCHEDULE = {
 'get-device-heartbeat-every-10-seconds':{
 'task':'uNMS.tasks.check_all_device_heartbeat',
 'schedule':10.0,

 },
 'update-device-interface-every-30-seconds': {
 'task': 'uNMS.tasks.update_all_device_int',
 'schedule': 30.0,

97

 },
 'update_all_device_performance': {
 'task': 'uNMS.tasks.update_all_device_performance',
 'schedule': 15.0,

 }
}
CELERY_TIMEZONE = 'Africa/Harare'

98

Project File Structure

99

Project Script Files

Project Forms Definitions

from django import forms
from django.contrib.auth.forms import UserCreationForm
from .models import *

class CreateVendorForm(forms.ModelForm):
 """
 Form to create a bot.
 """
 class Meta:
 model = Vendor
 fields = ('name', 'vendor_index')

class CreateModelForm(forms.ModelForm):

 class Meta:
 model = Model
 fields =('name','vendor')

class CreateDeviceForm(forms.ModelForm):

 class Meta:
 model = Device
 fields = ('ipaddress','type','city','region')

class CreateSNMPProfileForm(forms.ModelForm):

 class Meta:
 model = SNMPdetails
 fields = ('device','rcommunity','wcommunity','version','timeout','retries','security_level')

class UpdateSNMPProfileForm(forms.ModelForm):

 class Meta:
 model = SNMPdetails
 fields = ('rcommunity','wcommunity','version','timeout','retries','security_level')

class InterfaceMonitorConfigForm(forms.ModelForm):

 class Meta:
 model = InterfacePerfomance
 fields = ('device','interface', 'utilization','inoctates','outoctates')

class UpdateInterfaceMonitorConfigForm(forms.ModelForm):

 class Meta:
 model = InterfacePerfomance
 fields = ('utilization','inoctates','outoctates')

100

Project Views Definitions

Create your views here.
class CreateVendor(CreateView):
 template_name = 'uNMS/basic_create.html'
 form_class = CreateVendorForm
 success_url = reverse_lazy('uNMS:list_vendors')

class ListVendor(ListView):
 model = Vendor
 paginate_by = 20
 template_name = 'uNMS/vendor_list.html'
 context_object_name = 'vendors'

class DetailVendor(DetailView):

 model = Vendor
 template_name = 'uNMS/vendor_list.html'
 fields=('name','vendor')
 context_object_name = 'vendor'

class UpdateVendor(UpdateView):
 template_name = 'uNMS/basic_create.html'
 form_class = CreateVendorForm
 model = Vendor
 success_url = reverse_lazy('uNMS:list_vendors')

class DeleteVendor(DeleteView):
 model = Vendor
 success_url = reverse_lazy('uNMS:list_vendors')

class CreateModel(CreateView):
 template_name = 'uNMS/basic_create.html'
 form_class = CreateModelForm
 success_url = reverse_lazy('uNMS:list_vendors')

#######################################Device Views

class CreateDevice(CreateView):
 template_name = 'uNMS/basic_create.html'
 form_class = CreateDeviceForm
 success_url = reverse_lazy('uNMS:list_device')

class UpdateDevice(UpdateView):
 template_name = 'uNMS/basic_create.html'
 form_class = CreateDeviceForm
 model = Device
 success_url = reverse_lazy('uNMS:list_device')

class DeviceList(ListView):
 model = Device
 paginate_by = 10
 template_name = 'uNMS/device_list.html'
 context_object_name = 'devices'

101

Models Definitions

class Vendor(models.Model):

 name=models.CharField(max_length=200)
 vendor_index=models.IntegerField()

 @property
 def models_count(self):
 """
 Return the count of models associted with the vendor
 :return:
 """
 models = self.models()
 return models.count()

 def models(self):
 """
 get all models related to this vendor
 :return: Models list
 """
 models = Model.objects.filter(vendor=self)
 return models

 def devices(self):
 """
 Get devices associted with the Vendor.
 :return:
 """
 devices = Device.objects.filter(enterprise_id = self.vendor_index)
 return devices

 def device_count(self):
 """
 Get device count for devices related to the vendor
 :return:
 """
 devicelist = self.devices()

 return devicelist.count()

 def __str__(self):
 return self.name

class Model(models.Model):
 """
 Device model database table
 """
 name=models.CharField(max_length=200,)
 vendor=models.ForeignKey(Vendor,on_delete=models.CASCADE)
 model_index = models.IntegerField(null=True)

 def __str__(self):
 name = self.name
 if name is None:
 return 'Unconfigured'
 return name

class Device(models.Model):

 DEVICE_TYPE = (('R','Router'),
 ('S','Switch'))
 VENDORS = (('HW','Huawei'),
 ('CS', 'Cisco'),
 ('ZT','ZTE'))

 ipaddress = models.CharField(max_length=15,null=True)
 type = models.CharField(choices=DEVICE_TYPE,max_length=20)
 model = models.ForeignKey(Model,on_delete=models.CASCADE,null=True)
 city= models.CharField(max_length=200,null=True)
 region= models.CharField(max_length=200,null=True)
 version = models.CharField(max_length=200,null=True)

102

 date_created = models.DateTimeField(auto_now_add=True)
 online = models.BooleanField(default=False)
 hostname = models.CharField(max_length=200,null=True)
 enterprise_id = models.CharField(max_length=200,null=True)

 def __str__(self):
 if self.hostname is None:
 return self.ipaddress
 else: return self.hostname

 def get_absolute_url(self):
 return reverse('uNMS:update_device', kwargs={'pk': self.pk})

 @property
 def enterprise_name(self):
 """
 Property to return the vendor name of the device
 :return:
 """
 vendor = Vendor.objects.get(vendor_index=self.enterprise_id)
 return vendor.name

 @property
 def model_name(self):
 """
 Property to return the model name of the device
 :return:
 """
 pass

 @property
 def has_snmp(self):
 """
 Check if device has SNMP details configured on it

 :return: Boolean
 """
 try :
 snmp_profile = SNMPdetails.objects.get(device = self)
 if snmp_profile :
 return True
 except :
 return False

class Alarm(models.Model):

 occur_time = models.DateTimeField(null=True,auto_now=timezone)
 clear_time = models.DateTimeField(null=True,auto_now=timezone)
 device = models.ForeignKey(Device,editable=True,on_delete=models.CASCADE)
 name = models.CharField(max_length=200) # type: CharField
 board = models.CharField(max_length=200)

class Interface(models.Model):

 device = models.ForeignKey(Device, null=False,on_delete=models.CASCADE)
 device_ip = models.CharField(max_length=200,null=True)
 ifType = models.CharField(max_length=200,null=True)
 ifIndex= models.IntegerField(null=False,blank=False)
 ifDescription = models.CharField(max_length=200, null=True)
 ifPhysAddress = models.CharField(max_length=200, null=True)
 ifAdminStatus = models.CharField(max_length=10, null=True)
 ifOperStatus = models.BooleanField(default=False)
 ifSpeed = models.IntegerField(null=True)
 ifMtu = models.IntegerField(null=True)

 class Meta:
 # unique_together = ('device','ifIndex')
 # constraints = [
 # models.UniqueConstraint(fields=['device','ifIndex'],name='unique_device_interface')
 #]

103

 indexes = [
 models.Index(fields=['device','ifIndex',])
]

 def __str__(self):
 return self.ifDescription

class InterfaceTrap(models.Model):
 """
 Table for interface trap update
 """
 occur_time = models.DateTimeField(null=True)
 clear_time = models.DateTimeField(null=True)
 interface = models.OneToOneField(Interface, editable=True,
on_delete=models.CASCADE,primary_key=True)
 linkStatus = models.BooleanField(default=True)
 name = models.CharField(max_length=200)

class InterfacePerfomance(models.Model):
 """
 A model to store inteface related perfomance monitoring
 """
 interface = models.ForeignKey(Interface,on_delete=models.CASCADE)
 utilization = models.BooleanField(default=False) # set true if interface is to monitor utilisation
 inoctates = models.BooleanField(default=False) # set True if interface is to monitor in octates
 outoctates = models.BooleanField(default=False) # set true if interface is to monitor out octates
 device = models.ForeignKey(Device,on_delete=models.CASCADE)

 class Meta:

 constraints = [
 models.UniqueConstraint(fields=['interface','device'], name= 'unique_interface')
]

class InterfaceIndicatorCounter(models.Model):
 """
 Base model for all interface indicators. All indicators inherit this class
 """
 time = models.DateTimeField(null=False)
 value = models.IntegerField(null = True)

class InterfaceUtilization(models.Model):
 """
 A model to store interface utilization parameters
 """
 interface = models.ForeignKey(Interface,on_delete=models.CASCADE)
 value = models.FloatField(null=True)
 time = models.DateTimeField(null=False)

class InterfaceInboundOctates(InterfaceIndicatorCounter):
 """
 A model to store interface inbound octates
 """
 interface = models.ForeignKey(Interface, on_delete=models.CASCADE)

class InterafaceOutboundOctactes(InterfaceIndicatorCounter):
 """
 A model to store the interface outbound octates
 """
 interface = models.ForeignKey(Interface, on_delete=models.CASCADE)

class SNMPdetails(models.Model):

 VERSIONS= ((1,1),
 (2,2),

104

 (3,3),)

 SECURITY=(('no','no_auth_or_privacy'),
 ('auth','auth_without_privacy'),
 ('ap', 'auth_with_privacy'))

 device = models.OneToOneField(Device,on_delete=models.CASCADE,primary_key=True)
 rcommunity = models.CharField(max_length=200)
 wcommunity = models.CharField(max_length=200)
 version = models.IntegerField(choices=VERSIONS,default=1)
 timeout = models.IntegerField(default=5)
 retries = models.IntegerField(default=5)
 security_level = models.CharField(choices=SECURITY,max_length=3,default='no')

 def get_absolute_url(self):
 return reverse('uNMS:detail_snmpprofile', kwargs={'pk': self.pk})

105

Database Schema

106

107

108

109

110

111

Scheduled Tasks

from __future__ import unicode_literals, absolute_import
from NMS.celery import app
from snmp_cmds import Session, exceptions
from .library.snmp_manager import Manager
from .unmslibrary import DeviceObject, SNMPTrap

@app.task(autoretry_for=(exceptions.SNMPTimeout,),max_retries=4, default_retry_delay=5)
def listInterfaces(host):

 device = Manager(host)
 # list = device.device_session.get_table(oid='IF-MIB::ifTable')
 list = device.list_interfaces()

 return list

@app.task()
def check_all_device_heartbeat():

 device_manager = DeviceObject() # create a device object manager instance
 devices = device_manager.all() # query all devices configured in the system

 for device in devices:
 device_heartbeat.delay(device.ipaddress) # call heartbeat task per device

@app.task(autoretry_for=(exceptions.SNMPTimeout,),max_retries=5, default_retry_delay=6)
def device_heartbeat(host):

 device = Manager(host)
 try :
 sysname = device.systemname()

 except exceptions.SNMPInvalidAddress:
 return {host:'INVALID'}

 except exceptions.SNMPError:
 device.device_obj.setOffline()
 return {host:'ERROR'}

 except exceptions.SNMPTimeout:
 device.device_obj.setOffline()
 return {host: 'OFFLINE'}

 device.device_obj.setOnline()
 return {host:'ONLINE'}

@app.task()
def savetrap(data):
 """
 Task to save a received trap. This task invokes methods from the unmslibrary for processing and
saving the trap
 recieved. The trap before being saved needs to be parsed to check if device is configured in
system, enteprise and
 OID.
 :param data:
 :return:
 """
 thetrap = SNMPTrap(data) # initialis SNMP trap object
 thetrap.savetrap() # save the trap into database
 pass

@app.task()
def device_update_int(host):
 """
 Task to update device properties in the database
 :param host:
 :return: None
 """
 device = Manager(host)

112

 device.update_systemname_db() # update the system name
 device.update_device_enterprise_id() # update the enterprise value
 device.update_interface_db() # update the interface DB

@app.task()
def update_all_device_int():

 device_manager = DeviceObject() # create a device object manager instance
 devices = device_manager.all() # query all devices configured in the system

 for device in devices:
 device_update_int.delay(device.ipaddress) # call interface update task per device

@app.task()
def update_all_device_performance():

 device_manager = DeviceObject() # create a device object manager instance
 devices = device_manager.all() # query all devices configured in the system

 for device in devices:
 collect_device_performance.delay(device.ipaddress) # call the collect performance

@app.task()
def collect_device_performance(host):
 device = Manager(host) # create manager instance for the device

 device.collect_interface_performance() # collect performance

113

Configured URLs for the project

from django.conf.urls import include, url
from django.urls import path

from . import views

from uNMS.views import *

app_name = "uNMS"
urlpatterns=[
 path('', DeviceList.as_view(),name='landing_page'),
 path('vendoradd/', CreateVendor.as_view(),name='create_vendor'),
 path('vendorlist/', ListVendor.as_view(),name='list_vendors'),
 path('vendordetail/<str:pk>', DetailVendor.as_view(),name='detail_vendor'),
 path('vendorupdate/<str:pk>', UpdateVendor.as_view(),name='update_vendor'),
 path('vendordelete/<str:pk>', DeleteVendor.as_view(),name='delete_vendor'),
 path('modeladd/', CreateModel.as_view(),name='create_model'),
 path('deviceadd/', CreateDevice.as_view(),name='create_device'),
 path('deviceupdate/<str:pk>', UpdateDevice.as_view(),name='update_device'),
 path('deviceupdate/<str:pk>/delete', DeleteDevice.as_view(),name='delete_device'),
 path('devicelist/', DeviceList.as_view(),name='list_device'),
 path('devicelist/offline/', OfflineDeviceList.as_view(),name='list_offline_device'),
 path('devicelist/online/', OnlineDeviceList.as_view(),name='list_online_device'),
 path('snmpadd/', DefineDeviceSNMP.as_view(),name='create_snmpprofile'),
 path('snmpupdate/<str:pk>', UpdateDeviceSNMP.as_view(),name='update_snmpprofile'),
 path('snmpdetail/<str:pk>', DeviceSNMP.as_view(),name='detail_snmpprofile'),
 path('snmplist/', ListSNMPProfiles.as_view(),name='list_snmpprofile'),
 path('deviceinterfaces/<str:pk>', DeviceInterfaces.as_view(),name='device_interface_list'),
 path('devicemonitoring/<str:pk>', DeviceMonitoring.as_view(),name='device_monitoring'),
 path('ifmon/<str:pk>', InterfaceMonitoring.as_view(),name='interface_monitoring'),
 path('ifmonconf/<str:pk>',
InterfaceMonitorConfigurationView.as_view(),name='interface_monitoring_config'),
 path('ifmondel/<str:pk>', DeleteIFMonitoring.as_view(),name='interface_monitoring_delete'),
 path('updateifmon/<str:pk>',
UpdateIFMonitoring.as_view(),name='update_interface_monitoring_config'),
 path('devmon/<str:pk>', DeviceMonitoringView.as_view(),name='device_monitoring_view'),
 path('interfacealarms', InterfaceTraps.as_view(),name='interface_trap_list'),
 path('dashboard', DashboardView.as_view(),name='dashboard'),
 path('ciscodashboard', CiscoDashboardView.as_view(),name='dashboard_cisco'),
 path('ztedashboard', ZTEDashboardView.as_view(),name='dashboard_zte'),
 path('hwdashboard', HWDashboardView.as_view(),name='dashboard_huawei'),
]

114

Snmptrapd.py file

#!/usr/bin/env python3
from __future__ import absolute_import, unicode_literals
import os
from celery import Celery
import sys
import fnmatch
import datetime

app = Celery('snmptrapd', broker='redis://localhost:6379/0')

def varbind_parser():
 lines = sys.stdin.readlines()
 linecount = len(lines)
 i = 2 # skipp the host and ip entries
 varbinds = dict()
 while i <= linecount-1:
 line = (lines[i].split())
 varbinds[line[0]] = line[1]
 i=i+1

 time = datetime.datetime.now() # get current time
 varbinds['time'] = time.__str__() # add time to varbinds
 varbinds['IPADDRESS'] = lines[1] # assign ip address
 return varbinds

def retrieve_key(dictionary,key):
 keys = list(dictionary)
 key = key + '*'
 for k in keys:
 if fnmatch.fnmatch(k,key):
 return k

def listint(host):
 #function to list interfaces

 app.send_task('uNMS.tasks.listInterfaces', (host,))

if __name__ == "__main__":

 data = varbind_parser() # receive varbinds from snmptrad daemon
 app.send_task('uNMS.tasks.savetrap',(data,)) # create a task to save the trap received

