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Abstract 

Students face serious challenges in learning mathematical proofs.  Although many studies have 

been done with the aim of improving the learning of mathematical proof beyond mere regurgitation 

of memorised facts, very few studies have been based on students‟ actual proof attempts.  Motivated 

by the need to develop an understanding of students‟ thinking grounded in their actual proof 

attempts the main research question put forward was: In what terms do Zimbabwean 

undergraduate student teachers think of mathematical proof?  The goal was to explore students‟ 

schemes of argumentation and how students‟ thoughts around mathematical proof evolve.   

A case study approach guided by the scientific realist philosophy was applied in the context of a 

teaching experiment that involved 10 undergraduate mathematics education students, 6 female and 

4 male. The student teachers involved in the study had enrolled for the Bachelor of Education 

Degree in Mathematics.  Three tools were used to elicit data: written proof tasks, reflective 

interviews and think aloud interview protocols.  Directed and summative content analysis 

techniques in which theoretical constructs about proof learning such as the notion of technical 

handles and conceptual insights, syntactic and semantic modes of argumentation and ideas drawn 

from Harel and Sowder‟s taxonomy of proof schemes were applied to written responses, the 

transcription texts of audio and video recorded interview data for the purpose of inferring the kinds 

of proof schemes held by the students and how students‟ proof schemes emerge.  

The study revealed that undergraduate student teachers conceptualise mathematical proof in terms 

of logical steps and procedures in which axioms and definitions are handled in order to validate 

mathematical propositions.  The manner in which the axioms and definitions are handled has 

revealed the dominance of low cognitive level proof schemes such as the external conviction 

authoritative and symbolic proof schemes.  Trajectories of proof schemes illuminated lateral shifts 

which indicate lack of growth in the student teachers‟ schemes of argumentation.  Trajectories of 

proof schemes also revealed scenarios whereby proof scheme states regressed from higher to lower 

cognitive level proof scheme states during the transition from pre-university to undergraduate 

mathematics learning.  The decrease in cognitive level just described was accompanied by loss of 

meaning construction as the student teachers engaged with the concept of proof at undergraduate 

level. 

The kinds of proof schemes held by the undergraduate students and the proof scheme trajectories 

that emerged were manifested through students‟ proof behaviours which include: contradictory 

proof behaviour shown through use of axiomatic argumentation in tasks that require proof method 

by refutation and conversely through use of specific instantiations in deductive proof tasks, 

oscillatory switches in students‟ proof behaviour that revealed some instability and fragility in the 

higher level axiomatic proof scheme in which students were forced to slide down the proof scheme 

ladder to lower level empirical proof scheme.   

While, some findings from this study are consistent with existing literature on mathematical proof, 

the instability and fragility in higher proof scheme states, the inconsistent formal rhetoric aspects, 

lateral and vertical downward shifts in  students‟ proof scheme trajectories are new observations 

that might inform the learning of mathematical proof. Hence, the study has developed an 

explanatory theory that accounts for the kinds of proof schemes held by the student teachers as well 

how student teachers‟ proof schemes evolve. In this regard the study has uncovered the existence of 

unstable axiomatic proof scheme states that compel students to switch to lower level cognitive proof 

scheme states such as the external conviction symbolic and empirical-numeric proof schemes. The 

study has implications for teacher preparation in terms the need to foster and sustain high proof 

schemes states among student teachers. The process of conjecturing about mathematical statements 

has been identified by the study as a loose end for further studies.  
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Preface 

Chapter 1 identifies the research problem of the study that concerns the student teachers‟ superficial 

understanding of mathematical proof.  This study is an attempt to understand the student teachers‟ 

thinking around the notion of mathematical proof based on the students‟ own actual voices, that is, 

their own proof productions.   

Chapters 2 and 3 survey literature on mathematical proof including the taxonomies of proof 

schemes available and notions embedded in proof construction processes such as the constructs of 

manipulating, getting a sense-of-articulating (MGA), conceptual insights and technical handles, the 

distinctions between syntactic and semantic approaches to proving.  Features of the Realist process 

are discussed and contextualised in a way that led to the conceptual framework.  Related studies on 

student teachers‟ learning of mathematical proof are examined.   Ideas discussed in chapters 2 and 3 

then influenced Chapter 4 on research methodology.  Chapter 4 discusses how a collective 

instrumental case study was employed in the context of a teaching experiment to design research 

instruments and develop a Realist Analytic Framework on the basis of ideas drawn from the 

Conceptual Framework from Chapter 2.   

The Realist Analytic Framework was then applied to qualitative textual data using directed and 

summative content analysis techniques draw meaning about the terms in which the undergraduate 

mathematics education students think of mathematical proof.  The presentation and discussion of 

results in Chapters 5 and 6 led to an overall conclusion about the students‟ schemes of 

argumentation and how students‟ thoughts about mathematical proof evolve. An attempt to account 

for conclusions to sub-research questions and the overall conclusion led to the formulation of new 

observations made about the student teachers‟ thinking about mathematical proof which stated in 

Chapter 6.  Recommendations from the study from theoretical, teaching, and methodological 

perspectives are discussed.  Finally, suggested areas for further research are discussed and the thesis 

ends with my personal reflections of the entire scholarly journey. 
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Chapter One 

The Research Problem 

1.1 Introduction 

Fundamental ideas driving mathematics education currently are based on the overall view of long 

term human learning.  Hence, the ideas of this thesis are grounded in the belief of life-long learning 

of mathematics concepts.  In Zimbabwe the mathematics education community faces the challenge 

of improving students‟ ability to autonomously produce proofs of mathematical statements at all 

scholastic levels.  Generally, students focus on reproducing proofs, yet mathematics learning 

requires, far more than simply working on exercises by doing desired computations and 

regurgitation of routine proofs.  The emphasis on routine proofs was also a common feature in my 

personal experience with undergraduate mathematics where, in most cases, the major thrust was on 

rote memorisation of instructor‟s notes.  Further, there was a tendency to disregard the meaning of 

logico-mathematical statements and lack of appreciation and understanding in our learning of 

mathematical proof.  For example, I never really understood why and when to use proof by 

contradiction or proof by contrapositive.  Yet we were able to regurgitate proofs involving use of 

the contrapositive of mathematical assertions such as: If       is continuous and   is a compact 

subset of   then      is a compact subset of  . 

Some research studies have indicated that some students have been found to lack the intellectual 

curiosity to wonder why given mathematical propositions are true (Harel & Sowder, 1998, p. 236).  

The lack of intellectual curiosity stems probably from learners‟ view of the role of proof as a tool 

needed to confirm something that is intuitively obvious and already known to be true (Schoenfeld, 

1985).  An exemplification of this point is the proof of the theorem: The square root of 2 is 

irrational.  Before the truth seeking activity (proving process), students are well aware of the fact 

that the square root of 2 is irrational.  The source such of awareness among learners can be 

explained in terms of their met-befores, which precisely refer to the learners‟ previous experiences 

with irrational numbers (Tall, 2008, p. 6).  In secondary school mathematics students would have 

looked at topics that involve the use of irrational numbers such as: Quadratic equations with inexact 

roots.  Thus, the proposition: The square root of 2 is irrational, is perceived as something that is 

intuitively obvious in the sense suggested by Harel and Sowder (1998, p. 236), and, hence, the lack 

of intellectual curiosity in the proposition‟s validation.  Such a viewpoint is a consequence of the 

manner in which mathematics is usually presented to students
__

 as a finished product.  Closely 

linked to this is the idea that students expect to be told the proof rather than take part in the proof 

construction process.  Such students have often exhibited lack of concern and appreciation for 

meaning of mathematical proof, as their perception of it is that it is a collection of truths that 

requires no intrinsic justification for its origin (Harel & Sowder, 1998, p. 236).   Other research 
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studies have pointed to a lack of fundamental grasp of the distinction between empirical arguments 

and mathematical proof as well as a tendency to accept a few examples as evidence of truth of a 

mathematical proposition (CadawalladerOlsker, 2011, p. 44; Stylianides, 2011, p. 11).  Empirical 

verifications are mathematical argumentations in which mathematical statements are quantitatively 

evaluated in one or more particular instances, that is, a mathematical assertion is purportedly 

validated by finding numerical values in a proper subset of all its possible cases (Harel & Sowder, 

1998; Stylianides, 2011, p. 1; Weber & Mejia-Ramos, 2015).  Such arguments should not be 

elevated to the status of a proof because a mathematical statement may hold for numerous cases but 

may fail to hold for at least one case of all cases in its domain. This idea embodies the notion of a 

counter example in mathematics. 

Jones (1997) points out that even the most qualified pre-service teachers may not necessarily have 

the specific kind of subject matter knowledge for promoting students‟ proving abilities.  Jahnke 

(2007) remarks “many school and university students and even teachers of mathematics have only 

superficial ideas on the nature of proof” (p. 80).  Yet, the knowledge of teachers related to proof and 

proving directly influences their ways of teaching proof.  Limited subject knowledge on proofs will 

allow misconceptions in many students regarding proofs to persist (U ̌urel, Morali, Yi ̌it & 

Karahan, 2016, p. 205).  Thus, if undergraduate mathematics education students do not master the 

proving activity adequately, they are less likely later to   propose it to their own learners in a 

persuasive manner.  Undergraduate student teachers should have a deep understanding of 

mathematical proof and proving.  Hence, there is need to put stress on proof construction on the 

student teachers during their educational training period.  Therefore studies to determine 

competences of teacher content knowledge regarding proving are crucial. 

An essential and powerful component involved in learning mathematical proving is the use of 

language. Language enables learners to formulate and communicate conjectures, describe, refine 

and deduce relationships and focus on important ideas about mathematical proofs (Tall, 2008, p. 6).  

However, the use of language in this core area of mathematics has not been smooth.  Research has 

revealed that the interpretability of logico-mathematical terms and notions impedes students‟ 

learning of mathematical proof (Lee & Smith, 2009, p. 21).  For instance, students at all grade 

levels have been found to have difficulties in negating statements when proving conjectures by 

contradiction and that only the ablest students have been able to make successful attempts at such 

indirect proofs  (Antonini,  Presmeg, Marriotti, & Zaslavsky, 2011; Harel & Sowder, 1998 , p .136; 

Morselli, 2006, p.185).  

During the proving activity one has to eliminate one‟s doubts about the truth/falsity a mathematical 

claim (ascertaining) and, in addition, he or she should convince (persuade) others about the truth 

value of the proposition.  This is what is referred to as one‟s   proof scheme.  Thus, an individual‟s 
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proof scheme “consists of what constitutes ascertaining and persuading for that person” (Harel & 

Sowder, 1998, p. 244).  A mathematical proof‟s potential to promote argumentation skills and 

understanding accounts for the central place of proof in the learning of mathematics (Stylianides, 

2011, p.1).  Thus, learning to argue about mathematical ideas is fundamental to truly understanding 

mathematics.   However, a number of studies have shown the absence of a central understanding of 

proof and proving in pre-service teachers‟ proof schemes (Durand-Guerrier, 2003; Stylianides, 

2011, p. 2).  Yet effective teachers need to understand the mathematics they teach at a deep level 

(Varghese, 2009, p. 2).  Hence, there is need for more studies that explore students‟ mental 

constructs (understandings) around the notion of mathematical proof.   

This study aims to contribute to studies that focus on terms in which students think about the notion 

of mathematical proof, henceforth referred to as ontological commitments.  The guiding theoretical 

principle is based on the view of mathematics as a problem solving activity (Schoenfeld, 1985), 

drawing ideas from several taxonomies of proof schemes as well as the mathematical underpinnings 

of the notion of mathematical proof.  A collective instrumental case study research design in which 

the concept of a proof scheme is the unit of analysis employs a realist process approach and key 

notions about mathematical learning such as proof event, technical handles and conceptual insights 

(Maxwell, 2004; Moore, 1994; Raman, 2003; Sandefur, Mason, Stylianides, & Watson, 2013) to 

investigate undergraduate student teachers‟ thinking processes with respect to mathematical 

proving.  The intent is to get insights into the kinds of mental constructs around the concept of 

mathematical proof among undergraduate students in mathematics education. 

1.2 Statement of the problem 

The current study focuses on knowledge of content and students (KCS) which Lesseig (2016) 

describes as knowledge of students‟ typical conceptions or misconceptions of mathematics.  

Mathematical knowledge develops and matures as students engage with proofs.  Therefore 

mathematical proofs play an active role in generating mathematical knowledge and promoting and 

fostering thinking among learners (Stylianides, Stylianides & Phillipou, 2007 cited in Doruk & 

Kaplan, 2015).  However, research has established that undergraduate students have a fragile 

understanding of mathematical proof (Yang, 2010).  Pertinent questions in light of students‟ weak 

command of the concept include: why are student teachers so inept at producing deductive 

arguments?  Why does mathematical proof fail to permeate the undergraduate mathematics 

curriculum?  The focus of the current study, is therefore, on how students‟ thinking around the 

concept of mathematical proof can be apprehended.  For the purposes of avoiding ambiguity, before 

elaborating on the research problem I begin by defining some key terms embedded in the concept of 

mathematical proof: thinking, justification/argumentation, mathematical proof and proving.      
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First, a mathematical proof is a socially sanctioned written product that results from 

mathematicians‟ attempts to justify whether a given conjecture is true (Weber & Mejia-Ramos, 

2011, p. 330).  Second, mathematical proving is the process of searching for arguments used to 

convince a person (community) about the accuracy of mathematical assertion (Bieda, 2010).  Third, 

a justification or argumentation is the process of constructing an explanation or evaluating evidence 

used to validate a mathematical claim (Bostic, 2016; Jonassen & Kim, 2010).  Finally, I adopt 

Jonassen and Kim‟s (2010) definition of mathematical thinking as “a form of formulating and 

weighting the arguments for or against a course of action, a point of view, or a solution to a 

problem” (p. 40).   Following next are comments on these definitions as well as efforts to put the 

research problem into perspective. 

The term “socially sanctioned” captured in the definition of a mathematical proof conveys the 

meaning that while proof can promote some form of understanding as one tries to convince oneself 

and others that a statement is true (or not true) the product of the proving effort is evaluated on the 

basis of proofs produced by a research mathematician who plays the role of an arbiter (Stylianides, 

2007 in Bostic, 2016).  To develop understanding of mathematical assertions students should 

engage in justification rather than assuming truth of mathematical assertions. Justification is central 

to the learning of mathematical proof (Bieda, 2010).  Justification is defined as an act of convincing 

someone that a statement is valid.  There are two types of justification in mathematics.  Balacheff 

(1988) coined pragmatic and conceptual justifications as two modes of justifications prevalently 

used by students.  Pragmatic justifications are based on examples (particular instantiations) while 

conceptual justifications are based on abstract formulations of properties and of relationships among 

pertinent mathematical ideas to the proof one wishes to construct.  Students‟ efforts to justify 

mathematical statements yield exploratory arguments that have certain characteristics.  These 

characteristics give rise to the concept of a proof scheme that is considered in the next section. 

Harel and Rabin (2010) suggests that the concept of a proof scheme is based on the idea of proving 

which is defined as the mental act that a person or a community employs to get rid of doubts about 

the truth of a mathematical assertion.  Harel and Rabin define a mathematical community as 

consisting of a particular setting together with people involved in that setting along with their 

expectations of what constitutes a mathematical proof.  Examples of mathematical communities 

include journal publishers, an examining body or informal settings such as a conversation between 

two mathematicians in the same area of mathematical specialisation.  Hence, proving can be seen as 

the process of constructing a sequence of assertions that supports a mathematical claim or that leads 

to the rejection of the mathematical claim.  A mathematical proof can in this sense be conceived as 

a product that results from mathematicians‟ attempts to establish the truth-value of a mathematical 

claim (Weber & Mejia-Ramos, 2011).  Hence, proof construction compares quite considerably with 
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problem solving that requires that a manifold of mathematical resources come to mind at the right 

time.   

Following Harel and Rabin (2010) a mathematical proof can be described as a particular argument 

one produces to ascertain for oneself and convince others about the truth-value of a mathematical 

proposition.  The argument(s) produced to support mathematical claims by an individual can reveal 

some characteristics.  Persistent characteristics of the proofs produced by an individual constitute 

what is called a proof scheme (Harel & Rabin, 2010).  In this sense, proving is not confined to 

axiomatic proving (Goethe & Friend, 2010) but encompasses students‟ enculturation into socio-

mathematical norms of how correctness is determined in mathematics (Oflaz, Bulut, & Akcakin, 

2016,  p. 134; Yackel & Cobb, 1996).  With this conception of mathematical proof we describe a 

proof scheme as a collection of persistent cognitive characteristics of the proofs one produces.  

When removing one‟s doubts about the accuracy (or lack thereof) of a mathematical proposition, 

one engages in activities that involve manipulating mathematical objects in some specific ways.  

Accordingly, proving can be viewed as a path followed by an individual in the process of producing 

mathematical generalisations (Ersen, 2016).  Activities of the path followed in validating or 

justifying mathematical propositions (i.e., proving) are determined by provers‟ knowledge 

structures.  Therefore investigating students thinking during proving becomes crucial because 

proofs are at the heart of mathematics as they promote thinking.  Proofs help us to justify why an 

assertion is true.  Bell (1976) in Ersen (2016) refers to this sense of proof as illumination which is 

an explanation for why the proposition is true.  The other sense of a mathematical proof according 

to Bell is verification which concerns establishing the accuracy of a proposition.  Finally, Bell sees 

proof as serving the systematization role.  In this sense, proof organizes mathematical results into a 

deductive system of axioms, major concepts and theorems.  This also helps to show the logical 

structure of pertinent ideas by making deductive chains of reasoning clear to a prover (Ersen, 2016).  

Explicit chains of reasoning revealed during proof construction are crucial for this study that aims 

to identify student teachers‟ schemes of argumentation in proving.  The aim of the study is to 

identify the thinking processes and the emergence of those thinking processes among undergraduate 

student teachers.  

Similar to Bell (1976), Baki (2008) describes three phases of the path followed when proving.  

First, there is the accuracy phase where the truth-value of an assertion is ascertained.  Second, it is 

then explained why it is accurate (similar to the illumination sense in Bell‟s three senses of a proof).  

Third, the proof is abstracted by examining to see its application in other contexts.  So depending on 

the truth value of a mathematical proposition proving can either be seen as a search for deductive 

argument to support a true mathematical proposition or the search for a counter-example for the 

purpose of refuting a false conjecture. This process of establishing the truth of a proposition by 
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deductive means or refuting a false conjecture by envisioning conditions that undermine a 

conjecture (i.e., counter-argumentation) makes mathematics distinct from other scientific disciplines 

(Stylianou, Blanton & Rotou, 2015, p. 1).  The act of proving separates mathematics from other 

scientific disciplines because it involves abstraction, a process used to obtain the essence of a 

mathematical concept through the structural mode of thought as opposed to the concrete operational 

mode.  The structural mode of thought omits dependence on real world objects such as numeric 

examples which help to get some sense of the essence of the mathematical relationships (Herlina & 

Batusangkar, 2015).  

It has been noted that the notion of mathematical proof is central in mathematical thinking and 

hence it serves as a vehicle for learning mathematics (Dreyfus, 1990 in Stylianou, Blanton & Rotou, 

2015; Wilensky-Jerde & Wilensky 2011).  A mathematical proof can also be viewed as a 

communicative act made within the mathematical community which ensures correctness of a given 

conjecture by using analytic arguments, that is, through application of both deductive and inductive 

means (Goethe & Friend, 2010).  According to Goethe and Friend a deductive argument that 

supports a mathematical statement begins with some axioms, definitions and previously proven 

theorems and proceeds using sanctioned rules of inference to lead to conclusion. An inductive 

argument on the other hand, is an argument that is construed to include tables, figures specific 

examples and other displays used to ensure correctness of a proposition by structural-intuitive 

means (Weber & Mejia-Ramos, 2011).  A structural-intuitive argument is whereby a prover 

examines the mathematical proposition to determine whether it is a consequence of mental models a 

prover associates with the mathematical concepts embedded in the proposition.  In other words, an 

inductive argument is dependent on use of particular instantiations (Alcock, 2010) 

As a tool for mathematical learning, proof leads to mathematical understanding as the prover 

explains a theorem and the content it concerns (Hersh, 1993; Wilkerson-Jerde & Wilensky, 2011).  

Polya (1957) in Maya and Surmamo (2011) proposes four levels of mathematical understanding 

ability: mechanical, inductive, rational, and intuitive understanding.  Polya describes mechanical 

understanding as one in which a person memorizes rules and procedures that are then implemented 

correctly.  Inductive understanding of mathematical proof occurs when a prover verifies the 

accuracy of a statement by using mathematical objects, (specific examples, diagrams) drawn from a 

proper subset of the set of objects to which the statement pertains (Weber & Mejia-Ramos, 2011).   

The definition of inductive understanding given here is similar to the structural-intuitive warrant 

(Weber & Mejia-Ramos, 2011).  Polya defines rational understanding as when an individual applies 

rules and procedures to establish correctness of a mathematical assertion meaningfully, that is, 

application of such rules and procedures is accompanied by justification (reason).  Finally, intuitive 

understanding is used to denote scenarios in which a person demonstrates awareness of the truth of 
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an assertion and has no doubts about its truth.  In other words, an individual possessing intuitive 

understanding of a mathematical claim would have attained absolute conviction about the truth-

value of a claim (Weber & Mejia-Ramos, 2015).  In this sense, this ontological study of 

undergraduate student teachers‟ proof schemes sought to determine the forms of mathematical proof 

understanding from the students‟ proof attempts as a way of establishing the kinds of proof schemes 

held by the student teachers.   

As noted earlier, the notion of mathematical proof is central to mathematical practice because it 

provides the accuracy (or lack therefore) of mathematical claims and it also provides the reason(s) 

why a statement is considered to be accurate or inaccurate.  Thus while emphasis has been on 

checking the fact that a given proof is indeed true, the essential mathematical activity should be on 

constructing or finding a mathematical proof (Doruk & Kaplan, 2015).  When proof is conceived in 

this manner, proof has the potential to play an important role in developing and shaping the 

mathematical thinking of student teachers.  Hence, it can be seen that doing proofs is different from 

reading a proof.  

Doing proofs is described as a cognitive act performed to eliminate doubts of an individual or 

community regarding the accuracy of a mathematical claim (Iskenderoglu & Baki, 2011). Thus 

doing proofs refers to those efforts intended to eliminate students‟ doubts and should be based on 

these students‟ own voices.   However, in stark contrast, Cirillo and Herbst (2012) have reported 

that proof-oriented instructors rarely ask students to compose proofs of statements or tasks students 

have not seen before so that students do not engage in independent reasoning.   Reading a 

mathematical proof refers to the act of examining an existing argument to check its validity or for 

the purpose of understanding the essence of the given argument (Selden & Selden, 2003; Weber & 

Mejia-Ramos, 2011).  The focus of this study is on developing an understanding of students‟ 

mathematical thinking as they construct proofs as opposed to reading proofs. 

Further, discussions and research efforts on mathematical proof and proving have focused on the 

front of mathematical proof, that is, proof has been conceived as presented in journals and 

textbooks.  However, not much has been explored with respect to what constitutes the back of 

mathematics (Gowers, 2007).  Metaphorically, the back of mathematics is used to refer to activities 

that take place in the workshop of a research mathematician where there is interplay between both 

syntactic and semantic approaches to proof making, which is similar to the analytic mode of proof 

production proposed by Goethe and Friend (2010).    There is overwhelming evidence of students‟ 

difficulties with producing proofs.  One way of overcoming these difficulties could be by 

investigating the cognitive processes and activities of students during proof construction.  Such 

understanding could be developed comprehensively by allowing students to engage in activities of 
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the back of mathematics.  An elaboration on the metaphors back and front of mathematics is 

presented in the next section for the purposes of elucidating the focus of the study. 

In the workshop of a research mathematician who writes proofs analytic proofs are a prevalent 

feature (Goethe & Friend, 2010).  An analytic prover strives to reach mathematical conviction by 

using a mixture of both deductive and induction moves.  In a deductive move, the prover proceeds 

from axioms and then utilizes logical rules to lead to a conclusion.  Induction is construed in this 

context to refer to instantiations of mathematical ideas such as graphs, tables, figures and other 

structural-intuitive displays of ideas pertinent to the mathematical proof task or claim.  In the front 

of mathematics, the prover employs the axiomatic approach, behaving in a conventional ritual 

fashion that demonstrates coherent reasoning that would in turn lead to a clear well- polished proof 

product (Azrou, 2015).  Yet, student teachers‟ proof activities should reflect more features of the 

back as opposed to the front of mathematics.  In other words, student teachers should test and 

experience proofs by themselves because it has been noted that students can follow a proof when 

explained by their instructors in class but would not be able to compose proofs themselves (Maya & 

Sumarmo, 2011, p. 232; Moore, 1994).  Hence, because of the paucity of research into the typology 

of warrant types that characterise the back of mathematics at undergraduate level little is known 

particularly in our local Zimbabwean context about how students conceptualise mathematical proof 

based on their actual voices.  Therefore, the study was an attempt to investigate student teachers‟ 

reasoning based on their actual proving efforts.   

Rav (1999, p. 6) has argued that “proofs are at the heart of mathematics.”  Rav‟s argument has been 

supported by extensive research carried out by many mathematics educators on matters related to 

proving (Kindron & Dreyfus, 2014 p. 302).  However, as earlier noted those research studies have 

tended to focus on students‟ ability to reflect and validate proofs supplied (e.g., 

CadawalladerOlsker, 2011; Harel & Sowder, 1998).  Once again I reiterate that there has been a 

scarcity of research that addresses how students go about constructing proofs.   This dearth in 

research based on students‟ actual proof construction efforts has seen many researchers advocating 

for more in-depth studies into students‟ conceptions of mathematical proof that are based on 

students‟ personal constructions.  For instance, Mariotti (2006, p.198) has pointed out that “further 

investigation is needed into students‟ active production of proofs with particular emphasis on 

analysis of the cognitive processes involved in producing and proving conjectures” (p.198).   

Further, Selden and Selden (2003) even suggest that “considerably more could be also done in 

examining the process of proof construction” (p. 2).  Even in circumstances in which proof-oriented 

instructors try to involve students in proof production Selden and Selden have noted that not much 

time is devoted to helping students to learn how to construct proofs.  Rather, emphasis is on 

producing fragments of proofs or original proofs
 
presented as lecture notes in a neat fashion with 
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little or no resemblance at all with the back of mathematics where an analytic approach is employed 

in constructing proofs.  Hence, while it has been useful to generate knowledge about students‟ 

conceptions of mathematical proof through proof validations (e.g., Bleiler, Thompson, & Kraj ̌evski, 

2014; Pfeiffer, 2010; Weber & Mejia-Ramos, 2015), it is also crucial to gain insights about 

undergraduate student teachers conceptualisations of mathematical proof from their actions and 

behaviour as they engage in proof constructions.  

As noted earlier, proof is essential for deep mathematics learning.  It can be argued that 

mathematics students‟ understanding and ability to construct proofs is not only important for their 

own learning but it is also crucial that these future high school teachers are able to help learners 

learn how to construct proofs (U ̂urel, et al., 2016).  Hence, in order for the student teachers to be 

able to promote proving abilities among their future students they need to be able to build a strong 

foundation of the proof concept.  Although it is now documented that constructing a mathematical 

proof is a complex process that calls for a large expanse of knowledge and skills and is determined 

by the learning context (Pfeiffer, 2010), researchers (e.g., Balacheff, 1998, 2007; Beiler et al., 2013; 

Selden & Selden, 2003) have based their conclusions on arguments students find convincing 

(convincement issues) and validation of proofs supplied to the participants by researchers.  This 

observation was also made by Imamo ̌lu and To ̌rol (2015) who stated that over the past decades 

researchers have focused on proof validations which Selden and Selden (2003) define as readings 

and reflections on proofs to check their correctness.  These proof validations are carried out on 

proof texts supplied by researchers.  I argue that investigations into students‟ understanding of 

mathematical proving should be grounded in students‟ own efforts.  Apart from personal 

observations available literature sources suggest the need for in-depth studies into students‟ 

conceptualisations of mathematical proof.  For instance, Mejia-Ramos and Inglis (2009) have 

reported that there are a few empirical studies on how well students understand proofs. 

I reiterate that most studies have focused on students‟ abilities to recognize correct mathematical 

proofs, that is, proof validations (e.g., Bleiler et al., 2014; Selden & Selden, 2003).  Yet research on 

learning of mathematical proof and associated difficulties must be based on what students really do 

by themselves, rather than relying on students expressing their conviction levels on the validity of 

arguments supplied by researchers (Mariotti, 2006).   Hence the current study responds to the dearth 

in studies into ways in which individual students think around the notion of proof. The study was 

thus designed to develop an understanding of undergraduate students‟ thoughts as they engaged 

with mathematical proof tasks.  

Furthermore, while mathematics students have shown a preference for deductive proofs, a higher 

level proof scheme, research studies have revealed that these students were not able to compose 

proofs by themselves (e.g., Azrou, 2015; Moore, 1994 in Maya & Sumarmo, 2011, p. 232;  
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Styliamdes, 2011).  When those students were asked to produce proofs of tasks that required use of 

formal deductive means they resorted to particular instantiations.  This sort of proof behaviour 

revealed a discrepancy between what students produced as proofs and what they chose as closest to 

their preferences.  It can be inferred that it is often easier to read a proof than to produce a proof.   

This provides further evidence about the limitation of relying on proof readings as basis for 

measuring students‟ competences at constructing proofs.  Hence, I suggest that an understanding of 

the mental processes involved in proving and how proof schemes develop amongst undergraduate 

students merit close attention and one way of ascertaining students‟ proof competencies is by 

examining their proof productions. 

One of the primary goals of mathematics instruction is for students to develop standards of proving 

and conceptions of mathematical proof that are held by research mathematicians (Weber & Mejia-

Ramos, 2015). Hence, research on students‟ mathematical proof competences should involve 

measuring discrepancies between students and mathematicians‟ conception of justification and 

proving processes of mathematics statements.  Therefore, this study was in response to the call to 

bring students proof experiences as close as possible to the practice of mathematicians.  Precisely, 

the intent of the study was thus to determine students‟ thinking abilities on justification and proof 

by addressing the questions of how student teachers go about constructing proofs and how the 

mathematical object (proof scheme) evolves.  In other words, what is the ontology of the proof 

scheme with respect to student teachers‟ conceptualisations of mathematical proof? 

Careful analysis of critical elements of students‟ proof schemes and the individual‟s thinking and 

reasoning around the notion of mathematical proof is needed in current research efforts to raise 

students‟ mathematics proof competence levels.  The goal of the current study is to contribute to 

efforts intended to transform the students‟ view of a mathematical proof as a special form of 

producing written work to a conception of proof as a vehicle for producing reliable explanations for 

the accuracy (or lack thereof) of mathematical propositions and hence a means of achieving 

understanding (Liu & Manouchnri, 2013). 

Mathematical proof is an essential tool in learning mathematics. Understanding how student 

teachers conceptualise mathematical proof is an essential consideration for thinking about how to 

teach proof.  It was therefore anticipated that the current research could for instance, account for 

impasses that characterize students proving efforts whereby students fail to construct a proof 

because simply they do not know what to do.  Developing an understanding of the nature of 

students‟ conceptions of mathematical proof will in turn inform the process of identifying 

appropriate learning opportunities for students to engage in during learning. 

Researchers (e.g., Iaanone & Inglis, 2011; Mariotti, 2006; Varghese, 2009)  have recommended the 

necessity for more studies that illuminate processes students use when they engage in constructing 
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proofs.  Calls for in-depth studies that would uncover salient features of students thinking around 

the notion of mathematical proof created a research base for this study on: the ontology of proof 

schemes in undergraduate student teachers‟ conceptualisations of mathematical proof.  Identifying 

critical elements of students‟ knowledge involved in proving will provide a clearer picture of 

student teachers‟ knowledge of situations for proving (Ball, Thames & Phelps, 2008).  The term 

knowledge of situations for proving is defined as part of teachers‟ knowledge about proof involved 

in the mobilisation of proving opportunities for students (Ball et al., 2008). 

The problem of students‟ understanding of mathematical proof has also illuminated itself in our 

local context at tertiary level.  In Zimbabwe there is paucity in research on undergraduate students‟ 

understanding of mathematical proof, particularly studies with grounding in students‟ individual 

proof attempts.  In the teaching and learning of proof-laden courses such as Real Analysis at 

undergraduate level the sequencing of instruction has followed the format “definition-theorem-

proof.”  In addition,  assessment modes, have focused on how students‟ comprehension of a given 

mathematical proof can be measured through efforts such as reproducing deductive arguments from 

lecture notes or modifying the proof slightly  to prove an analogous statement e.g., lecture notes on 

the theorem: The least upper bound of a subset of   that is bounded above is unique can be 

modified slightly by the student to prove the analogous statement: The greatest lower bound of a 

subset of ℝ that is bounded below is unique.  It can be noted that these types of assessment only 

serve to provide a superficial understanding of mathematical proof because to accomplish the proof 

the student proceeds in a secure ritual manner by just modifying slightly lecture notes on the 

uniqueness of a least upper bound of a subset of real numbers that is bounded above (Mejia-Ramos, 

Fuller, Weber, Rhoads & Samkoff, 2012).    

It can be seen from the foregoing discussion that asking students to express their level of conviction 

in arguments and/or proofs supplied by the researcher does not do enough to involve students in the 

manifold of activities and processes involved in proving.  Furthermore, a study by Pfeiffer (2010) 

has revealed that although the processes of validating and composing a mathematical proof entail 

each other, it is more difficult to construct than to read a proof.  So engaging students in proof 

constructions is more likely to generate more insights into the cognitive processes involved in 

proving.  The idea of exploring students‟ thinking on the basis of their actual constructions has been 

reinforced by Davis, Maher, and Noddings (1990) cited in Greenes (2009) who suggest that to 

know mathematics individuals “make constructions using mathematical objects in a mathematical 

community” (p. 56). 

To further emphasize the need to develop an understanding of student teachers‟ conceptualisations 

through their own voices, I draw ideas from Boero (1999) and Mejia-Ramos (2008).  Mejia-Ramos 

articulated three activities involved in argumentation process that mathematicians engage in when 
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proving: constructing a novel argument, presenting an already existing argument and reading an 

available argument.  I reiterate that constructing a novel argument is more likely to generate more 

insights into students‟ thinking processes than any of the other two activities involved in 

mathematical proving and hence it became the major focal activity of this research.   I emphasize 

the point made earlier that constructing a proof is different from reading an available argument. 

Commenting on the typology of warrant types involved in proving, Boero (1999) noted that while 

empirical justifications and structural-intuitive arguments are useful in some stages of conjecturing 

and proving they do not appear in the products of these two processes, that is, conjectures and 

proofs of theorems.  The point drawn from this piece of literature in connection with the research 

problem is that exposing students to the front of mathematics which is typical of undergraduate 

teaching and learning of proof will obstruct these conjecturing and proving activities which might 

be important in revealing students‟ thinking processes. 

Consequently, the current study builds on existing research studies on students‟ understanding of 

mathematical proof by examining undergraduate mathematics education students‟ mental constructs 

around the notion of mathematical proof as well as developing an understanding of students‟ 

experiences within the universe of discourse (phenomenon of interest), which is mathematical 

proof.   This exploratory study of undergraduate students‟ mental constructs around the notion of 

mathematical proof will be driven by the following main research question.    

1.3 Main Research Question 

The overarching goal of this main research question is to identify the critical elements of the 

knowledge of processes involved in mathematical proof and proving.  This goal will be pursued by 

addressing the research question: In what terms do Zimbabwean undergraduates think about 

proving in mathematics?  In view of the superficial understanding of mathematics highlighted, this 

study seeks to explore the modes (kinds) of undergraduate student teachers‟ mathematical proof 

schemes and how such proof schemes ultimately emerge among undergraduate student teachers.  

Ontology is the systematic account of existence of the being, that is, a study of what ultimately 

exists (Porta & Keating, 2008, p. 21).    It is the study of the fundamental modes or kinds of being.  

Consequently, the set of student teachers‟ ontological commitments, that is, the terms in which they 

think about mathematical proving and how the students‟ proof schemes develop will be investigated 

through the following sub-questions. 

(i) What kinds of proof schemes characterise undergraduate student teachers‟ conceptualisations of a 

mathematical proof? 

(ii) How do the undergraduate student teachers develop their proof schemes? 

To elaborate on each sub-question stated, I first refer to the fundamental ontological question.  

Ontology is a study that addresses the question; “What can we know?” (Porta & Keating, 2008, p. 
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21).  Briefly, ontology is about what exists and can be potentially talked about the object of 

investigation (Corbetta, 2003, p. 13).  We distinguish ontology from epistemology which deals with 

the question of how a phenomenon can be known, that is, epistemology is related to the possibility 

of knowing through different types of inquiry.  The focus of the study is therefore on what can be 

known (ontology) about the object of investigation, which are the proof schemes, precisely their 

schemes of argumentation in validating and refuting conjectures.  I now elaborate on each sub-

question. 

The first sub-question is: what kinds of proof schemes characterise undergraduate student teachers‟ 

conceptualisations of mathematical proof?  The basic ontological question is “how the world fits 

together and how we make sense of it” (Porta & Keating, 2008, p. 21).  Thus ontology is about the 

form and nature of the universe of discourse (UoD), that is, the phenomenon of interest, which in 

this study is the proof scheme.  This study therefore seeks to establish the modes or kinds of being 

of the students‟ proof schemes as a way of establishing their formal praxis, that is, established 

habitual practice regarding proof and proving in undergraduate mathematics.   Ontology also deals 

with categories and the sort of “things” in the categories of being of an object.  Therefore, as a way 

of understanding the basic social process, the study will try to find answers to the questions: what 

are the fundamental categories within the UoD
__

 undergraduate students‟ proof schemes?   In what 

sense can items in those categories be said to be?  Porta and Keating (2008, p. 21) differentiate  

nominalists from realists in connection with the existence of categories of being, where on one 

hand, there are nominalists who posit that   categories of existence are arbitrarily created and, on the 

other, we have realists, according to whom categories of  being are there to be discovered.  This 

study will adopt a realistic view of the existence of categories, these already exist among the 

students and this study attempts to discover the categories by examining the kind of proof schemes 

held by student teachers.   

Another ontological issue of concern to this study is about ultimate existence of proof schemes.  

This concern about the emergence of proof schemes will be dealt with by addressing the sub-

research question: how do undergraduate student teachers develop their proof schemes?  It is 

possible for an individual to hold more than one proof scheme (CadawallladerOlsker, 2011, p. 45; 

Harel & Sowder, 1998).  The switch from one proof scheme to another when confronted with a 

proof task is termed an ontological oscillation and signals inconsistencies or confusions among 

students.  Whilst Harel and Sowder acknowledge such mutual interrelatedness in student teachers‟ 

proof scheme states in their taxonomy, they are silent about the nature and causes of such 

ontological oscillations.  In this regard, the study seeks to unravel what ultimately can be said to 

exist about proof schemes of student teachers bearing in mind that ontology is about the ultimate 
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existence of the „being‟.   Hence, the present study seeks to develop a proposition about the possible 

shifts in student teachers‟ proof schemes in undergraduate mathematics.  

1.4 Justification for the study 

A central reason why it is important that students should be able to construct and evaluate 

mathematical proofs is that they can keep instances of misconception when constructing proofs to a 

minimum level.   A misconception is a measure of the discrepancy that exists between what a 

concept is and what one thinks it is (Mejia-Ramos, Fuller, Rhoads, & Samkoff, 2012, p. 3).   

Determining student teachers‟ experience with mathematical proof is crucial because it influences 

how proving skills can be promoted amongst teachers‟ future students (Isekenderoglu & Baki, 

2011).  Student teachers‟ mathematical proof proficiency affects their classroom activities when 

they teach it in future.   Hence, determining students‟ thinking about proofs is significant because it 

helps mathematics educators find and implement strategies intended to raise students‟ proof 

competences.  

The route followed by teachers in doing proofs influences classroom activities.  The route depends 

on the truth-value of a mathematical claim confronted by the student.  Accordingly, proving is the 

process of establishing the truth-value of a mathematical assertion by deductive means for a true 

conjecture and for false assertions, proving is conceived as the refuting of a mathematical claim by 

means of a counter example.  The development of abilities to construct proofs is an important goal 

in mathematics education in light of the fact that students do not have an accurate conception of a 

mathematical proof (Oflaz, Bulut & Akcakin, 2016).  Promoting and fostering student teachers‟ 

proving abilities allow them to develop a strong command of mathematical proof, which is essential 

for inducing flexibility in learners‟ thinking because proof is a tool for deep learning (Oflaz et al., 

2016).  If student teachers think in a flexible manner then they will be able to promote amongst 

their own future learners the essential crucial interplay between conceptual and procedural 

knowledge of mathematical concepts that underpin a given proof task or proposition whose truth 

value an individual seeks to establish. 

Exploring student teachers‟ proving abilities is important because the notion of proof is core to the 

development of critical mathematical thinking among student teachers from the perspective of proof 

learning.  Critical thinking is a process by which a conjecture is justified to be true or refuted 

through use of counter examples. Critical thinking also involves questioning the implications of 

procedure taken to prove a mathematical statement (Alcock, 2010; Fukawa-Conelly, 2012).   

Hence, critical thinking abilities enable secondary school mathematics teachers to facilitate the 

processes of formulating and proving conjectures amongst learners.  Inducing habits of criticalness 

about mathematical proof among learners will allow proofs to play a prominent role in classrooms 

so that the classrooms become communities of inquiry. To accomplish the goal of turning 
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classrooms into communities of inquiry, student teachers need to build a profound understanding of 

processes involved in proof constructions.  Hence, creating communities of inquiry in classrooms 

can help mathematics educators overcome frequently insurmountable difficulties that students face 

when learning mathematical proof. 

It was anticipated that by engaging student teachers with proving activities the student teachers 

would develop an appreciation of the crucial roles played by proof  in mathematics such as 

providing insights and explanations as to why  mathematical propositions (claims) can be refuted or 

accepted as accurate mathematical statements (Weber, Inglis & Mejia-Ramos, 2014).  From this 

standpoint, the intent is to introduce undergraduate student teachers to the socio-mathematical 

norms of practicing mathematicians thereby narrowing the distance between students and expert 

conceptions of mathematical proof.  For instance, by involving students in proof construction, it is 

anticipated that the study would generate insights about the kinds of student teachers‟ mental 

constructs around the notion of a proof.  An understanding of the nature of such mental constructs 

held by the undergraduate mathematics education students in connection with the notion of 

mathematical proof may contribute towards efforts to raise students‟ proving competence levels to 

those of research mathematicians, that is, experts who compose proofs.   

The justification for the current study of student teachers‟ kinds of proof schemes can be viewed 

from a meta-mathematical level.  It can be noted that although proof is at the core of the 

development of mathematical knowledge, most students have a fragile grasp of what doing 

mathematics entails (Azrou, 2015).  Reflecting on undergraduate student teachers‟ basis for 

rendering mathematics conjectures into facts or their schemes of argumentation in refuting false 

propositions can be useful to mathematics educators by generating insights that may be applicable 

to teaching of mathematical proof.  Thinking through student teachers‟ proof constructions can 

generate insights that influence the role that mathematical proof comes to play in their classrooms.  

For example, reflecting on students‟ proof experiences can reveal reasons for lack of a profound 

understanding of mathematical proof and the tendency to feel insecure with concept of proof.     

Hence,  reflecting on the kinds of students‟ schemes of argumentation can contribute towards an 

enhanced practice in the learning of proof from an emphasis on regurgitation of routine instructors‟ 

notes to construction of meaning as the student teachers  engage in processes of conjecturing and 

proving. 

There are two fundamental notions in social science research, namely, basic social problem and 

basic social process (Charmaz, 2006).   A basic social problem refers to a problematic phenomenon 

from the point of view of people being studied.  For something to qualify as a basic social problem, 

it must not be short-lived (Charmaz, 2006; Silverman, 2010).  Mathematical philosophers, 

mathematicians and mathematics educators have been grappling with the notion of proof for years 
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and perhaps will continue to do so for ages.   Basic social process, means   what the participants 

(people being studied) essentially do in dealing with their basic social problem (Charmaz, 2006).  In 

the context of this study the basic social problem is superficial understanding of mathematical proof 

by undergraduate mathematics student teachers as reflected through the students‟ rote memorisation 

of routine proofs, lack of intellectual curiosity and appreciation for meaning in proof constructions.  

In other words there is no profound (deep and vast) understanding of mathematical proof among 

Zimbabwean undergraduate student teachers.   

Troutman and Litchmberg (1995) cited in du Toit (2009) have identified four types of learning 

activities in mathematics education which are developmental activities, reinforcement activities, 

drill- and- practice activities and problem solving activities.  Developmental activities and problem 

solving activities culminate in conceptual knowledge whereas drill- and-practice and reinforcement 

are more inclined to procedural knowledge (Davis, 2005).  Davis suggests that the sequence of 

learning activities should be to engage students first in developmental and problem solving 

activities so that they get to develop conceptual knowledge before being exposed to procedural 

knowledge for effective learning to take place.  In other words, sequencing learning activities in the 

manner suggested would promote sense-making among students during proof construction.  Yet the 

teaching and learning of mathematical proof has generally been characterised by: 

 Mathematical proof is presented as a finished product in which the learner is a passive knowledge 

recipient (Harel & Sowder, 1998). 

 The teaching/learning of proof has not given emphasis on “why” and “when” mathematicians do 

proofs (Harel & Sowder, 1998, p. 247).  Thus more emphasis has been given to facts and 

procedures rather than to reasoning behind the facts and procedures. 

 Insistence by students during learning, on being told the proof for regurgitation later on, rather than 

taking part in the proof construction process (Harel & Sowder, 1998). 

To shed more light on the importance of the study, I briefly recap main ideas of ontology.  First, I 

recall that ontology is the theory of objects, which in this case are the mathematical proof schemes 

and their ties, that is, their dependencies and relations.  Second. It can be recalled that ontology is a 

branch of metaphysics that examines the fundamental properties, modes and aspects of „being” of 

the Universe Of Discourse (UoD).  Third, ontology is the systematic study of the nature of existence 

of the UoD.    Guided by these main ideas about ontology, the current study examines the basic 

social process, that is, what student teachers essentially do in dealing with meaning construction 

during proving by addressing these ontological issues (Wand, Storey & Weber, 1999).   In this 

regard, this study seeks to establish the modes or kinds of being of student teachers‟ proof schemes.  

The study will investigate the nature of students‟ thoughts about mathematical proof and how such 

thoughts evolve by focusing on the following pertinent questions:  



17 
 

 What are student teachers‟ schemes of argumentation?  

 Why do the student teachers construct proofs in the manner they do? 

 How does students‟ thinking about mathematical proof evolve?  

By seeking answers to these questions it is anticipated that the study could potentially develop an 

explanatory theory about kinds of proof schemes held by the student teachers  and could also  

generate a possible proposition about how student teachers‟ thoughts about mathematical proof 

emerge.  

Finally, the justification for the current study relates to efforts to develop an understanding of 

student teachers‟ struggles with mathematical proving.  With previous studies much emphasis has 

been on checking the fact that a given proof is true, that is, emphasis has been on validating a given 

argument (e.g., Bleiler et al., 2014; Selden & Selden, 2003).  Previous research has documented 

impasses reached by students when composing proofs (e.g., Varghese, 2009), but causal links 

within the impasses have not adequately researched.  Hence, the current study seeks to develop an 

explanatory theory for the kinds of proof schemes held by the students based on their active proof 

production as opposed to validating purported proof texts supplied by researchers.  In other words, 

the intent of the current is to uncover the salient features of students‟ thinking about proof and the 

causal links that give rise to those features.  It is hoped that by examining the sort of “things” in 

those categories (kinds of proof schemes), the study could explicate the causes of the student 

teachers‟ struggles with mathematical proof.  

1.5 General approach to the study 

The study intends to establish the terms in which undergraduate student teachers think of 

mathematics by exploring the student teachers‟ proof construction abilities and their proof 

experiences in the context of a teaching experiment in which  concepts drawn from Real Analysis 

will be taught.  The intent of the current study is to accomplish the following objectives; 

(i) Establishing the basis for the student teachers‟ schemes of argumentation for rendering mathematics 

conjectures into mathematical facts or alternatively the grounds for rejecting conjectures in 

undergraduate mathematics.  

(ii) Identifying and explaining the different trajectories through which the students‟ proof schemes 

emerge. 

 It is hoped that the study will accomplish its major aim of establishing the students‟ formal praxis 

with respect to the notion mathematical proof.  In other words, the study seeks to explore the 

student teachers‟ set of ontological commitments, that is, their mental constructs around the notion 

of proof.  A realist process approach treats proof events and processes as real observable entities 

that are causally relevant for student proof behaviour.  Following Maxwell and Mittapalli (2010), a 

realist approach will be employed to explore undergraduate student teachers‟ schemes of 
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argumentation for rendering mathematical propositions into facts or alternatively refuting them 

through direct and indirect methods of mathematical proof.  

 It has been claimed that the proof scheme held by a person is indispensable from his/her perception 

of what it means to do mathematics (Harel & Sowder, 1998).  For example, a student with a deeply 

rooted ritual proof scheme is persuaded to evaluate proof of a proposition by an appeal to its surface 

appearance (ritualistic aspects) (Martin & Harel, 1989). Such students may doubt the truth of 

arguments presented without symbol manipulations.  The events described here, that is, exploring 

student teachers‟ thoughts about mathematical proof will lead to textual data.  A realist process 

analytic framework developed using underpinnings of mathematical proof such as the notions of 

conceptual insights and technical handles, warrant types in proof and proving, and syntactic and 

semantic proof construction will be applied to the textual data using directed and summative content 

analysis techniques to observe proof events and processes in an endeavour to get sensitising insights 

about the nature of the student teachers‟ basic social problem of superficial understanding of 

mathematical proof (Charmaz, 2006; Punch, 1998, 2005).  The sensitising insights may lead to 

identifying essential features of the proof schemes as opposed to accidental attributes of arguments 

found to be convincing to the student himself or herself (ascertaining) and by other students 

(persuading). 

1.6 Delimitations 

             Undergraduate mathematics education students who would have studied Calculus courses 

participated in the study.  Calculus courses are pre-requisite for many undergraduate mathematics 

courses. The notion of mathematical proof is a crucial and fundamental learning aspect in such 

topics at undergraduate level and hence the choice of such topics.  Hence it was expected that 

involving students in the study would give rich data in the sense suggested by (Charmaz, 2006).  

The study took place in the context of teaching experiment in which a proof laden course Real 

Analysis Course 
__

an advanced form of Calculus was taught to undergraduate mathematics 

education at one state university in Zimbabwe. 

1.7 Outline of thesis 

 In this chapter, I explain the motivation of the study and context, the research problem, the research 

questions, aims and objectives of the study as well as the significance or importance of the study.   

Also included in this chapter is an effort to bring clarity to study intentions by describing the 

context of the study and the general approach to the study of the kinds of mathematical object held 

by the student teachers and how the student teachers‟ proof schemes evolve.  

In Chapter 2, I discuss the Theoretical and the Conceptual Frames and the guiding philosophy of the 

study.  With regard to the Theoretical Framework, underpinnings about the notion of mathematical 
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proof are explained and an effort to relate them to the study context. The mathematical 

underpinnings explained include the meaning and nature of mathematical statements, the idea of 

conjectures and an elaboration on the structure of mathematical proof.  There is also focus on 

different understandings of mathematical proof in order to bring out the basis of argumentation that 

can be made in a given method of proof.  I then turn to the question: which theories tackle the 

issue? Specifically, the question deals with major aspects of related studies which include: a 

theoretical construct called the behavioural schemas in proving (Selden & Selden, 2011), 

taxonomies of proof schemes and theories on mental processes underlying exploration of the 

problem situation during conjecture formulation and the subsequent proof construction. Other 

constructs examined include the concept of key ideas (Raman, 2003; Sandefur et al., 2013).  The 

scientific realist philosophy that treats mental events and processes as real observable phenomena 

that are causally relevant to the explanation of individual and social behaviour (Maxwell, 2004) is 

applied in determining the kinds of proof schemes held by students and how these evolve among 

students. Finally, the Conceptual framework is presented essentially as a fusion of ideas from the 

mathematical underpinnings and scientific realist ideas. 

In Chapter 3, two major sections are presented.  First, specific studies on mathematical proof were 

critiqued for the purpose of explicating the research gap.  The second section focuses on other ideas 

examined from related studies with the intent of illuminating the need to investigate students‟ 

thinking about mathematical proof. 

In Chapter 4, methodological issues are examined.  Ideas derived from Chapters 2 and 3 are used to 

discuss aspects related to methods such as the research design.  Attempts are made to justify the use 

of the case study design using scientific realist positions.  Research instruments are described 

together with data collection procedures and data analysis techniques.  The chapter then concludes 

with a discussion of ethical matters that characterised the research process. 

In Chapter 5, results of the study are presented in the form of data matrices where analytic tools 

drawn from existing studies (e.g., Doruk & Kaplan, 2015; Stavrou, 2014; U ̌urel et al., 2016) and 

primary sources (e.g., Berg, 2009; Corbin & Strauss, 2008; Hennink, Hutter & Bailey, 2013) were 

used to draw meaning about how student teachers think around the idea of mathematical proof and 

how students‟ thinking evolves based on tabulated transcription texts.  Results are presented per 

research question as follows.  First, directed content analysis technique is applied to written 

responses and transcriptions of chalkboard and reflective interviews on students‟ proof attempts to 

address research question one. Second, with respect to research question two summative content 

analysis technique is applied to make inferences from textual data from reflective interviews about 

how the student teachers‟ proof schemes emerge. 
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Finally, in Chapter 6, results presented in Chapter 5 are discussed within the main realist analytic 

framework using theoretical constructs such the idea of micro-reasoning, conceptual insights and 

technical handles and notion of intellectual challenge (Duval, 2006; Koichu, 2012; Sandefur et al., 

2013) in order to address the two sub-research questions.  Main findings are then discussed and 

main conclusion is formulated about terms in which the student teachers think about mathematical 

proof.  Implications for theory, teaching and research methodology are suggested.  Chapter 6 also 

points out limitations of the study and loose ends are identified for further studies.  The chapter ends 

with my personal reflections of the whole research process.  
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Chapter Two 

Theoretical Framework 

In philosophical realism ontology refers to a set of terms and their associated definitions used to 

describe the Universe of Discourse (UoD)
__

 the phenomenon of interest, which in my case is the 

notion of a mathematical proof.  Dunn and Mearman (2006) recognize the need to determine the set 

of theories used to describe the UoD in order to promote deep engagement with it.  Hence, in this 

chapter, I discuss theories embedding the notion of mathematical proof.  The underlying 

mathematical ideas of proof and proving to be examined in this section include:  

 Different understandings of mathematics 

 The idea of a conjecture and its properties including novelty, certainty, originality. 

 Meaning and different forms of mathematical statements.  

 Definition of mathematical proof to include formal and practical meanings of  proof 

 What counts as proof? 

2.1 Different perspectives on mathematics 

This section examines different understandings of mathematics with the view to explicating the 

basis of argumentations that can be deemed mathematically sound in a given method of proof.    

There are different mathematical views or understandings such as the toolbox/instrumentalist, 

Platonist or objectivistic, system, and the process/problem solving views of mathematics.  Other 

prominent understandings of mathematics are constructivism and formalism.  I now comment on 

some of the mathematical philosophies.  

First, we have the toolbox/instrumentalist school of mathematical thought.  The toolbox/ 

instrumentalist understanding of mathematics is the view that mathematics is an accumulation of 

skills, facts, and rules to be learnt in pursuance of something external (Torner, 1998; Viholainen, 

2011, p. 310).  Learning of mathematics is construed as a passive reception of knowledge.  

Accordingly the purpose of a mathematical argument is to verify correctness of a mathematical 

statement.   

Second, there is the Platonist or objectivistic worldview of mathematics which is defined by Ernest 

(1989) as an assertion that mathematics is a unified body of static certain knowledge.  Mathematical 

objects and entities are an objective reality whose existence is independent of the human mind 

(Davis & Hersh, 1981).  In other words, the Universe of Discourse (UoD), which in the current case 

is the proof scheme, consists of distinct properties independent of the enquirer.  Put differently, we 



22 
 

are saying that the meaning of the UoD is inherent in the phenomenon, thus pointing to the 

existence of absolute unconditional truth.    

Third, there is constructivism
__

 which in the context of mathematics is a school of thought founded 

by Luitzen Egbertus Jan Brouwer as suggested by Davis and Hersh (1981).  Davis and Hersh write 

that constructivism recognizes natural numbers as the fundamental basic notions so any meaningful 

mathematics must hinge on natural numbers.  A corollary of this premise is that one cannot 

establish the truth of a proposition by showing that its negation leads to a contradiction. Hence, the 

constructivist mathematician does not accept indirect methods of proving such as proof by 

contradiction and use of contrapositive.  The reason for rejecting these methods of proving is the 

constructivist philosophical stance that all meaningful constructions should hinge on natural 

numbers.  The direct proof method by mathematical induction is an example of a method of proof 

with an inclination towards the constructivist perspective.  

 The fourth mathematical school of thought is the system view alternatively referred to as 

formalism.   The brainchild of David Hilbert, formalism is a philosophy in which definitions and 

axioms are the fundamental building blocks (Torner & Trigushct, 1994).  Proofs depend ultimately 

on underlying definitions (Lay, 2009).  The word definition of a concept refers to the form of words 

used to specify the concept (Vinner & Hershkowitz, 1980).  Definitions need to be precise so that 

they lead to better proofs (Lay, 2009).  For example the exponent    is defined by (Lay, 2009) as 

the number of times   is multiplied by  . Such a definition is valid because it allows learners to deal 

with cases when      and when    .   For example    is interpreted as   is multiplied by   

three times, that is,    =          

Axioms are self-evident truths, that is, statements which do not require proof (Hersh & Davies, 

1981, p. 412).  Precisely an axiom is a statement that cannot be demonstrated in terms of other 

simpler concepts (Haggarty, 1992).  Axioms are rock bottom, self-evident facts upon which 

mathematical structures rest held together by bolts of logic.  Thus axioms are building blocks of 

mathematics theory.  Axioms possess characteristics of consistency, independence, and adequacy.  

By consistency is meant that there is no sentence that should be demonstrated to be both true and 

false at the same time from our set of axioms.  An example is that of a set   of vectors in      one 

should not be able to show that   is both linearly independent and linearly dependent using vector 

space axioms of vector addition and multiplication of vector by a by scalar. When we refer to 

axioms as being independent, we mean no statement from our set of axioms should be derivable 

from other axioms in the set.  Finally, by being adequate we mean axioms should be sufficiently 
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many to constitute a theory. That means we should be able to derive as many results about our 

system from the set of axioms (Haggarty, 1992; Kirkwood, 1992). 

The system/formalist view of mathematics states that mathematics is a system of logical rigorous 

constructions based on axioms. The central role of this view is the systematization role. That means 

various previously known facts or results are brought together using logical rules of inference. An 

exemplification of the systematization role is Euclid‟s Elements (CadawalladerOlsker, 2011; de 

Villers, 1999; Harel & Sowder, 1998) where many results previously proven by the Greeks were 

brought together and ordered to form a deductive system based on a collection of axioms, 

definitions and postulates.         

The fifth form of mathematical understanding is the problem solving or process view.   Here 

mathematics is seen as thinking and learning process that requires both conceptual and holistic 

understanding (Viholainen, 2011, p. 312).  Mathematical arguments deemed to be sound according 

to the process or problem solving perspective of mathematics are those based on more concrete 

representations of the mathematical objects involved in the statement to be proved.  According to 

this view, mathematics is a dynamic and continually expanding field of human creation and 

invention. The crucial role of argumentation is to help an individual understand reasons why a 

statement is true, that is to provide insight into why a statement follows from given data (Weber & 

Alcock, 2004).  The process/problem solving perspective of mathematics thus seeks to engender 

understanding of mathematics by explaining (Viholainen, 2011, p. 309).   Finally, there is the 

fallibalistic view of Mathematics which according to Lakatos in Ernest (1991, p. 19) is the 

philosophy that there are no authoritative sources of knowledge and no source is entirely reliable.  

The Fallibalists consider mathematics as an essentially human pursuit, invented by humans and 

therefore prey to human fallibility.   

The significance or relevance of these different mathematical views to this study of mathematical 

proof schemes is that the form of arguments posited by undergraduate student teachers depends on 

their views of mathematics.  Hence, such arguments should illuminate the terms in which the 

Zimbabwean undergraduate students think about the notion of proof which is therefore indicative of 

their kinds of proof schemes.  Further, recall that ontology is the systematic study of what 

ultimately exists, in terms of categories of proof schemes and their elements.  Thus the kinds of 

arguments put forward by undergraduate student teachers may provide insights into how their proof 

schemes eventually emerge.  
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2.2 The Idea of Conjectures 

I begin this section by making some exemplifications and clarifications on the ideas of observation 

and conjecture as a build up to the definition of mathematical proof.  An observation is a deliberate 

and conscious human act, which can be a mere recognition.  For instance, the realisation that 1 is 

not a prime number  is an example of an observation a learner could make after some learning 

experience/encounter on prime numbers (Harel & Sowder, 1998) or based on lifetime experiences.   

However, despite sensory or passive connotations apparently implied in the description of 

observations, they are a result of people‟s reconstructions (Piaget & Inhelder, 1967 in Harel & 

Sowder, 1998).   Another crucial point to make about observations is novelty.  An observation made 

by an individual is novel to him/her because the person was not aware of it until he/she has realised 

it.  The significance of this notion to this study is that effective learning of proof ought to engage 

the students in situations where they discover relationships as opposed to mere regurgitation of facts 

or procedures.  Characteristics of observations include originality, mode of thought, and certainty 

(Harel & Sowder, 1998). 

Originality in an observation can be illustrated with the following example.  Consider the statement: 

A bounded monotone increasing sequence converges to the least upper bound of the sequence. A 

learner can generate the proof on his/her own by capitalising on definitions of monotone increasing, 

convergence, least upper bound and limit of a sequence and produce the proof on his/her own.  On 

the other hand, the learner can reproduce the proof from lecture notes or alternatively from peer 

discussions of the same proof.  We accordingly classify observations as being innovative and 

imitative.  An innovative observation originates with the observer whilst an imitative observation is 

communicated to the observer by others as exemplified above. 

Mode of thought refers to how observations conceptually emerge, which could be by abstracting a 

phenomenon from several empirical observations or from thought processes with no mediation of 

empirical activities (Martin & Harel, 1989; Stylianides, 2007).  An observation can be made during 

inductive explorations as the learners observe patterns and mathematical relationships through use 

of specific examples (Alcock & Inglis, 2008).  Alternatively an observation can be made by 

thinking through mathematical objects.  For example, by reflecting on definitions of a closed set 

and limit point of a set a learner might then observe that a closed set contains all its limit points.  

Finally, certainty is concerned about how observations are evaluated.  Accordingly we distinguish 

between a conjecture and a fact.  A conjecture is an observation made by an individual with doubts 

about its truth value (Harel & Sowder, 1998, p. 241) whereas a fact is an observation made by an 

individual who is convinced by its truth or falsity.  Hence, the learner‟s classification of an 
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observation either as a conjecture or fact depends on the person‟s conviction in its truth.  Consider 

the theorem:  There exists a real number,    such that     = 2.  In the proof construction process 

there is a stage where we write; Let   {            } and the claim that clearly S is non-

empty is then made.  While the observation that S has elements may be apparent to the teacher, and 

therefore the claim can be labelled a fact from the teacher‟s point of view, there may be lack of 

clarity on the part of the learner.  Such a claim can be considered to be a conjecture from the 

learner‟s perspective.  The discussion so far has been focused on laying the basis for the definition 

of mathematical proof which is now presented. 

2.3 Underpinnings of mathematical proof 

2.3.1 Definition of mathematical proof 

Definitions express the properties that characterise the objects of a given theory and express a 

network of relationships shared by objects in the theory (Wilkerson-Jerde & Wilensky, 2011).  

Hence, definitions can be thought of as complete descriptions of the behaviour, structure, or 

properties of the focal mathematical idea (i.e., mathematical proof) that accounts for all instances of 

that idea.  For example, an odd number   is defined as         where       The definition 

just given captures all instances of the focal mathematical idea
__ 

an odd number.  Mathematical 

proving is defined as, the process employed by an individual to eliminate one‟s doubts about the 

truth|falsity of a mathematical conjecture (Harel & Sowder, 1998, p. 241).  Proving can thus be 

viewed as a process of converting a conjecture into a fact.  A mathematical observation ceases to be 

a conjecture and rendered into fact (or refuted) in the view of the learner once he/she becomes 

certain of its truth value.  Mathematical proof is an argument needed to validate a mathematical 

statement.  Hence, mathematical proving is a truth seeking exercise and a mathematical proof is the 

product of the proving effort.  By a mathematical argument we refer to a connected sequence of 

assertions for or against a mathematical claim (Stylianides, 2007).  In the sequence of assertions 

deductive logic acts as a norm for warranting mathematical conjectures into mathematical facts or 

alternatively refuting the conjectures (Selden & Selden, 2003).  

Proving involves two sub-processes of ascertaining and persuading.  Ascertaining is the process 

employed by an individual to remove his/her doubts about the truth of an observation, while  

persuading is the process a person engages in convincing other people about the truth-value of a 

conjecture (Harel & Sowder, 1998, p. 243).  The process of rendering a conjecture into a 

mathematical fact henceforth referred to as proving, can be done formally or informally 

(CadawalladerOlsker, 2011).  We accordingly distinguish between the formal meaning and practical 

or informal meaning of a mathematical proof.   
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The formal meaning of a mathematical proof is consistent with most definitions suggested by 

(Selden & Selden, 2003; Stylianides & Stylianides, 2009).   A formal proof is a carefully reasoned 

argument that validates a conjecture relative to a set of assumptions, definitions and axioms 

(CadawalladerOlsker, 2011; Haggarty, 1992).  This formal definition of mathematical proof is 

shared by Duval (2002) who defines a mathematical proof as a specialised form of argumentation in 

which deductive logic acts as norm in warranting or validating conjectures.  The term deductive 

logic connotes use of axioms, definitions and previously proven theorems in eliminating one‟s 

doubts about a conjecture.  A formal proof is alternatively referred to as a public or syntactic proof 

(CadawalladerOlsker, 2011; Weber & Alcock, 2004).  On the other hand, the practical definition of 

mathematical proof is informal and imprecise (CadawallaskerOlsker, 2011).  It is essentially about 

what we do to convince other people, that is, make them believe our own proofs of theorems.  Thus, 

the informal or practical   meaning of mathematical proof is somewhat subjective.  Further, while 

there is use of axioms in formal proofs, practical proofs exploit mental instantiations
__ 

graphs and 

other visual representations of the mathematical statement (Presmeg, 2006 as cited by Viholainen, 

2011, p. 4).   

A practical or informal proof is alternatively referred to as a semantic or private proof (Raman, 

2003; Weber & Alcock, 2004).   The central idea in both formal and practical definitions of 

mathematical proof is elimination of one‟s doubts   about the truth of a proposition.  It should be 

reiterated also that there is a distinction between mathematical proof and mathematical proving.  

Proving is a process or activity of removing doubts and may include trains of thoughts which may 

ultimately lead nowhere.  Proof on the other hand is the product of the argumentation process which 

may lead to refuting or, alternatively, turning a conjecture into mathematical fact. 

2.3.2 Forms of mathematical statements and sound mathematical reasoning 

A mathematical statement or proposition is a sentence that is either true or false but not both 

(Bolstock, Chandler, & Rouke, 1992; Haggarty, 1992).  For example the sentence: 5 is a prime 

factor of 40 is a proposition whilst the sentence; “what is a subspace?” is not a proposition because 

it cannot be evaluated to be either true or false.   A proposition should therefore contain sufficient 

information as well as context in which its truth or falsity is to be determined.  Mathematical 

statements can be classified as tautologies and predicates.  The truth/falsity of a sentence involving 

a variable,    depends on the context in which the variable is defined, for example, the statement 

∫
 

 
          is true if   is a positive real number but it is false if   is an element of all real 

numbers.  Such statements are called predicates.  On the other hand we have tautologies which are 
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either true or false statements regardless of the context in which the statement appears (Haggarty, 

1992).  An example of a tautology is that of the fundamental trigonometric identity:  

      +            for all values of the arbitrary angle        The identity       +           is a 

tautology because it holds for any arbitrary value of the angle picked unlike a predicate whose truth 

is determined by input values from the scope of the statement.  

Several statements can be combined to produce a larger composite statement whose truth/falsity is 

determined by the constituent statements in addition to the manner in which the component 

statements are combined (Haggarty, 1992).  This means careful attention must be given to 

propositional connectives.  By propositional connectives, we refer to those words that link simpler 

statements to produce composite statements (Haggarty, 1992; Kirkwood, 1992).   Examples of 

propositional connectives are: if….then, some or all, if and only if.  Most mathematical statements 

can be classified as conditional or biconditional or non-conditional statements.  This classification is 

described in the following section. 

A conditional statement, alternatively referred to as an (if…then) statement, consists of two 

components, namely, the antecedent, alternatively known as a hypothesis or the “if part” and the 

conclusion, also referred to as the consequent component, that is, the “then part.”   The hypothesis 

is a statement that is assumed to be true (Bolstock , Chandler, & Rouke, 1992; Kirkwood, 1992).  

The consequent is a statement that can be deduced if the conditions of the hypothesis hold.  The 

conditional statement:   implies   is symbolically represented (    .  An example of a 

conditional proposition can be illustrated by considering two fundamental concepts of continuity 

and differentiability of a real-valued function.  Consider two statements   and   defined as     is a 

differentiable function on an interval      ) and      is a continuous function over [   ]   The 

conditional statement formed by joining   and   is: If   is a differentiable function on       then   

is continuous on [   ]   This can be written as     .  

To each conditional statement is a statement formed by interchanging the statements   and    called 

the converse of the implication statement.  It is written   implies   or   is implied by  .  

Symbolically the proposition   is implied by   is written     .  We need to observe that a 

conditional statement and its converse are not necessarily of the same truth value. The converse of 

the above conditional statement is: If   is a continuous function on [   ] then f is a differentiable 

function over      __ 
which is not a generally true statement because a continuous function is not 

always differentiable (Kirkwood, 1992).   Another example is p:    = 4 ;          .  The 

implication statement is: If p:    = 4 then       which is necessarily not true because   can also 

take the value  –       
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One can distinguish between the contrapositive and the inverse of a conditional statement.  We 

define the inverse and the contrapositive of   implies   as follows.   If both   and   are negated 

then the implication statement         is called the inverse of      .  Also if both   and   are 

negated then the implication statement written         is referred to as a contrapositive statement.   

I conclude this section by observing that a statement and its contrapositve are logically equivalent.  

That means a statement and its contrapositive are either, both true or false (Bolstock, Chandler, & 

Rouke, 1992; Haggarty, 1992; Kirkwood, 1992).  An example of the contrapositive of the 

composite statement: If   is a continuous function on a connected set   then      is connected is; if 

     is not connected then is   not continuous on the connected set  .  The two statements are 

logically equivalent. That means in order to prove that; if   is a continuous function on a connected 

set    then      is connected, one needs to prove the contrapositive of the statement.  Next, I 

describe an unconditional statement.  Consider statements such as  : the set of prime numbers is 

infinite and     there is no smallest positive real number (Archimedean principle).  These are 

examples of single component statements whose truth value can be determined using the same rules 

of inference applied to conditional statements (Bolstock, Chandler, & Rouke, 1992; Kirkwood, 

1992).   

A biconditional statement is now considered.  Here statements such as          is a point on the 

circle, radius   and centre   and           were considered.   The truth value of   and   when 

considered separately is unknown but we can say: if        is a point on the circle, centre O, and 

radius    then    +   = 4. The converse of this composite statement is also true provided the 

implication statement      is true.  Such a statement is called a biconditional statement.  It is 

important to note that in a biconditional statement the conditional statement       can be truthfully 

reversed  provided that       and       are either both true or false (Haggarty, 1992).  The 

linguistic equivalence of the statement should be:   implies and is implied by    or alternatively;   

is a necessary and sufficient condition for  .  

I now focus on what is meant by sound mathematical reasoning and typology of warrant types in 

mathematical arguments.  To explain the meaning of sound mathematical reasoning, I begin by 

describing the structure of a mathematical argument.  A mathematical argument is a set of 

propositions, one of which is the conclusion, and the rest of which constitute what is known as the 

premises (Curd, 1992).  The premises are meant to support the consequent statement (conclusion), 

that is, the premises provide valid reasons for inferring that the conclusion is true.  An argument is 

said to be valid if it is deductive and provides conclusive evidence about the truth of a conjecture 

(Stylianides & Stylianides, 2009, p. 239).  A mathematical argument is said to be valid if it contains 



29 
 

no errors (Weber & Mejia-Ramos, 2015).  A valid argument is one in which the premises logically 

entail or imply the conclusion.  An argument is deemed to be sound when it is valid and all its 

premises are true. The current study of student teachers‟ thoughts about mathematical proving 

sought to investigate the validity of students‟ arguments from students‟ proof attempts.  

The formal meaning and practical meaning of mathematical proof both involve use of arguments in 

getting rid of the prover‟s doubts.  As noted earlier an argument is a sequence of assertions in 

support of or against a mathematical statement.  An argument can be conceived both as an element 

and a product of mathematical reasoning.  It is thus crucial to examine the notion of argumentation 

in some detail.  To see why and how an argumentation can be considered both as a product and an 

element of reasoning I refer to Toulmin‟s (2003) model of argumentation which stipulates that the 

goal of an argumentation is to construct an explanation, alternatively referred to as a warrant, for 

why the information pertaining the initial state (data) necessitates the statement which is being 

argued (conclusion).   Toulmin further points out that sometimes the support of an authority (a 

backing) is needed in the argumentation process.   On the basis of Toulmin‟s ideas presented above 

it can be noted that the goal of argumentation is to develop an explanation that justifies why the 

premises logically lead to the conclusion, which implies reasoning.   Arguments can be categorised 

as formal or informal arguments.    

An argument is said to be formal if its warrants are based on axioms, definitions and previously 

proven theorems, lemmas and corollaries (Weber & Mejia-Ramos, 2015).     A formal argument 

usually entails rigor and detail and removes all doubts about the truth of a conjecture.  So for true 

mathematical assertions, we can bestow formal deductive warrant types with a more prominent role 

in ensuring that one is convinced that an assertion is true because they provides conclusive evidence 

for the accuracy of an assertion (Weber & Mejia-Ramos, 2011).  

On the other hand, an informal argument is one in which its warrants are based on concrete 

representations (imagery
__ 

visual or other representations) of the mathematical object (Presmeg, 

2006 .  Raman (2003) classified arguments as private or public arguments.   A public argument has 

similar features with a formal argument in the sense that it is based on rigorous constructions and 

rules of inference which must be shown step by step during its construction (Raman, 2003).  

Similarly, a private argument has the same properties as an informal argument in that it is based on 

empirical representation of mathematical objects like visual illustrations.  The main purpose of an 

informal argument is to engender understanding by allowing holistic conceptualisations of 

mathematical concepts (Raman, 2003).   Next, I examine warrant types a prover can produce to 

justify the truth or falsity of a mathematical claim. 
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Weber and Mejia-Ramos (2011) distinguish four types of arguments that an individual can use 

when proving.  First, one can produce empirical evidence.  An empirical justification involves use 

of mathematical objects drawn from a proper subset of the scope of the statement being proved.  

Second, an arguer can increase his/her confidence that a claim is true because an authoritative 

source such as the teacher has endorsed it.  Third, one may attempt to determine the accuracy of an 

assertion by checking if the assertion is a consequence or property of the mental models one 

associates with concepts that constitutes the assertions.  We call this warrant type the structural-

intuitive where the prover refers to informal representations of the mathematical conjecture such as 

diagrams or images that one associates with those concepts.  Finally, one may produce or observe a 

deductive argument that derives the claim from axioms, definitions and lemmas using socially 

acceptable mathematical techniques.  Warrant types are now evaluated in terms of their capacity to 

validate given conjectures. 

Empirical evidence, structural-intuitive warrants, and authoritative endorsements have significant 

limitations in mathematical argumentation.  Empirical arguments may lead to false conclusions 

because the assertion might be true for the examples that one happened to consider but false for just 

one example that was not picked from the scope of the statement.  This limitation about empirical 

evidence points to the critical role played by a counter-example in refuting mathematical claims.  

Similarly, a structural-intuitive justification may be misleading because one‟s mental models of the 

mathematical domain being studied might be inaccurate as suggested by Weber and Mejia- Ramos 

(2011).  Weber and Mejia-Ramos assert that authoritative endorsements might be equally deceiving 

because the authoritative source might be mistaken.  So for true deductive assertions, empirical, 

structural-intuitive and authoritative warrants should not be regarded as conclusive.  However, 

Boero (1999) comments that empirical and structural-intuitive arguments are often useful in some 

stages of proving and conjecturing though they do not appear in the products of these processes 

(i.e., conjectures and proofs).  In other words both structural-intuitive and empirical arguments do 

not result in absolute conviction regarding the truth-value of a deductive task.   

Harel and Sowder (1998, 2007) reported that a mathematical claim remains a conjecture until one 

has acquired absolute conviction about its truth, otherwise one is said to hold relative conviction 

about the truth of a mathematical claim (Weber & Mejia-Ramos, 2015).  A prover is said to have 

relative conviction in a mathematical claim if the subjective probability he/she will attribute to the 

statement being true exceeds a certain threshold to provide a warrant for further attempts to prove it 

(Weber & Mejia-Ramos, 2015).   These warrant types are regarded here as real observable 

mechanisms that influence proof attempts by the student teachers.   
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I conclude this section by recalling that ontology is sometimes defined as a set of terms and their 

associated definitions needed to describe the phenomenon of interest.  Thus the relevance of 

classification of arguments to the study of proof schemes of Zimbabwean undergraduate student 

teachers is that the kinds of arguments generated by students will be examined to address the 

research questions raised.   This study will consider questions such as: what kinds of arguments do 

students produce when constructing proofs of mathematical statements?  I now focus on the 

question: what methods are available for proving mathematical statements?  

2.4 Methods of proving 

We distinguish between direct and indirect methods of argumentations in proving (Bolstock, 

Chandler & Rouke, 1992, p. 155; Kirkwood, 1992).   Under direct proof we have proof by direct 

deduction and proof by mathematical induction.  Methods that employ indirect arguments include 

method of proof by contradiction and proof by use of contrapositive of the given conditional 

statement.  I briefly describe each method of proving conjectures.  Many theorems in mathematics 

take the form      , and to show that       is true one usually adopts one of the following 

schemas. 

2.4.1 Proof by direct deduction 

First, we have the method of proof by direct deduction of the conditional statement         With 

this schema one assumes that   is true and then, endeavors with the aid of some processes, to show 

that q is also true. We note that with this schema, since     is false whenever one of either   or   

is false, there is no need to consider the case where   is false.   Second, we have the method of 

mathematical induction. 

2.4.2 Method of mathematical induction 

This schema is based on the well ordering property of natural numbers (Haggarty, 1992; Kirkwood, 

1992).  The well ordering property of natural numbers states that every nonempty subset of natural 

numbers has a least element and this is fundamental property upon which the schema is hinged. The 

principle of mathematical induction (PMI) (as the schema is often referred) comprises the following 

steps:  

 Empirical explorations of the mathematical statement in specific instances, usually by finding the 

numerical value for       The statement can, however, be quantitatively evaluated for other 

natural numbers not equal to   depending on context of the problem. For example in the proof of 

the statement:  Prove that    –       is divisible by    for all integers greater than 1.  In this 

example, empirical verifications hold when the least value of natural numbers is 2, according to the 

well ordering property of subsets of the set of natural numbers. 
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 Upon completion of empirical verifications, one then makes an induction hypothesis. Here one 

assumes that the statement holds for     ,  once again a natural number.  

 Finally, one proves that the statement holds for         The stage just described is called the 

induction thesis stage. 

After successfully going through the following steps: the base step that involves empirical 

explorations, inductive hypothesis stage and finally the induction thesis stage one then concludes 

that: because the proposition is valid for a possible initial value     and       after assuming 

that it holds for     , it can be concluded that  the statement holds for all natural numbers greater 

than or equal to the least natural number from which empirical verifications can be performed
__

 of 

course basing on well ordering property of the subsets of natural numbers. I now turn to indirect 

methods of proof. 

2.4.3 Proving by use of contrapositive of the statement 

This schema is an indirect method of rendering conjectures into mathematical facts (theorems, 

lemmas, and corollaries) by capitalising on the fact that a conditional statement and its 

contrapositive are mathematically equivalent.  In other words, we are saying the conditional 

statement      and its contrapositive,       are both either true or false.  Therefore to prove 

that        one assumes that   is false and then establish through direct deduction described above 

that the negation of   is also false.   

2.4.4 Method of proof by contradiction 

The schema is also referred to as reducto ad absurdum (Bolstock, Chandler, & Rourke, 1992, p. 

169; Haggarty, 1992).  Let us begin this section by defining a contradiction.  A contradiction is a 

statement that is always false regardless of the truth value of its constituent elements.  Before 

describing the method, we need to recall that the negation of implication statement       given by  

        is logically equivalent to   and not  .  To prove the conditional statement      , we first 

negate the implication statement       and then replace the negation (  (    )) by its less clumsy 

representation   and ~  (Haggarty, 1992).  Thus, for this argument, we assume that   is true and   

is false and show by direct deduction a false statement referred to as a contradiction.  This illustrates 

that the original hypothesis (  and (  )) must be false. This then establishes that the statement (   

and (   )) is false.  But this is logically equivalent to      , which completes the argumentation 

process.  A concrete illustration of this schema is proof of the Archimedean principle in Real 

Analysis.  The Archimedean theorem states that the set of real numbers is unbounded.  To prove the 

theorem, we let    {         } where   is a real number is.  A prover then makes an assumption 

that S is bounded.  We then use the axiom of completeness to show that this assumption will lead to 
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a contradiction and hence S is indeed unbounded.  Studies have demonstrated that students find this 

schema difficult to apply when constructing proofs.  

2.4.5 Proof by use of counter example 

Consider a statement   which is assumed to be true.  To prove that   is false all we need to do is to 

produce one case that shows that p is false.  This single case is called a counter example (Bolstock, 

Chandler, & Rourke, 1992, p. 171; Haggarty, 1992; Harel, & Sowder, 1998; Kirkwood, 1992).  

This schema also helps to reinforce the assertion that empirical verifications need not be elevated to 

the status of a mathematical proof as the following example will illustrate.  For the conditional 

statement         implies       the single case     and       can be used to show that   

as stated is a false statement.  

I conclude on methods of proving by observing that the method of proving by direct deduction is a 

common technique in the method of proof by contradiction, proof through use of contrapositive and 

method of proof by principle of mathematical induction.  Perhaps this serves to explain why these 

methods often collectively referred to as deductive methods (Haggarty, 1992).   Finally, I justify 

inclusion of the methods of proof construction though such an effort has been made already in the 

introduction.  Let us recall that ontology is the study of objects and their ties.  In mathematical proof 

construction (involving processes and relations referred to as ties in ontological terms), there is 

careful attention to detail as regards how basic mathematical  objects  lead to intricate 

generalisations, that is, ultimate existence, which is another ontological concern.  Therefore 

arguments generated by Zimbabwean students will be examined for their rendition of detail in the 

proof construction processes.  

Another point to make on how proofs are constructed is that while proof by use of counter example 

provides complete and conclusive evidence about the truth value of a mathematical conjecture, 

there is, need however, to exercise caution and not confuse empirical arguments (inductive 

explorations) with generic proofs.  In generic proofs, proving of mathematical generalisations is 

demonstrated in particular instances.  In a generic proof the validity of a mathematical statement is 

established through transformations on a mathematical object considered as the typical 

representation of the mathematical object involved in the conjecture (Morselli, 2006, p. 7).   Unlike 

in inductive explorations, particular instances exploited in generic proofs offer complete and 

conclusive evidence about the truth value of a proposition.   An example of a generic proof is that 

involving proof of the proposition: The set of real numbers is uncountable. To demonstrate that the 

set of real numbers is uncountable, the interval     [   ] is used. That is a particular case is used 

and yet it offers complete and conclusive evidence that the set of real numbers is uncountable.  
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2.5 Processes involved in proving mathematical statements 

In this section I focus on the question: how are proofs constructed?  Before I address this question I 

begin by putting into proper context what is meant by proving a mathematical statement.  Proving 

can be seen as a process of constructing an argument that justifies the truth-value of a given 

statement.  The idea of an argument is used in the sense of justifying a conclusion based on data 

(Inglis & Mejia-Ramos, 2009; Toulmin, 2003).  In this sense, mathematical argumentation can be 

viewed as the social activity of reasoning aimed at increasing or decreasing the acceptability of a 

controversial mathematical stand point.  The controversial stand point is taken by the learner with 

respect to a given conjecture.  Acceptability or alternatively refuting of the conjecture is decided on 

the basis of a constellation of propositions (data) that are adduced before a rational judge (Ubuz,  

Dincer, & B ̈b ̈ , 2013).  The rational judge implied by Ubuz et al. (2013) is a member of the 

community of research mathematicians and educators whom I represented in the current study.  

Briefly, proving can be defined as the process of building an explanation about the truth value of a 

mathematical proposition.  But how do proof aspects and modes of reasoning relate when 

constructing these explanations?  

The process of proof construction depends on mathematical reasoning involved.  We accordingly 

distinguish between syntactic and semantic proof productions (CadawalladerOlsker, 2011, p. 38).   

CadawalladerOlsker writes that syntactic proofs are those guided by formal rules of logic in an 

axiomatic system.  In other words, in syntactic proof constructions the prover employs formal 

arguments, using symbolic manipulation of definitions, axioms and previously proven theorems in a 

logically permissible way.  In semantic or referential proof productions there is use of different 

kinds of internally meaningful representations or mental images (instantiations) to guide reasoning 

in proof constructions (Alcock & Weber, 2005, p. 33).   Therefore in semantic proof production, 

there is use of informal or private arguments.  An important observation made from my 

interrogation of literature with respect to syntactic and semantic methods of proof construction is 

that there is an intricate interplay between semantic and semantic modes of proof production.  The 

two methods of proof construction complement each other during proving.  Although the two forms 

of reasoning usually support each other in the process of proving, research mathematicians often 

use semantic reasoning methods to identify and make sense of the mathematical properties and 

relationships they describe.  I elucidate on provers‟ thinking processes by discussing the prevailing 

view among research mathematicians and mathematics educators about proof construction by 

considering Goethe and Friend (2010)‟s description of analytic and axiomatic proofs. 

The distinction between semantic and syntactic approaches to proof construction is strikingly 

similar to the distinction between the axiomatic and analytic methods of proof writing (Goethe & 
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Friend, 2010).  Goethe and Friend define an axiomatic proof construction method as one that 

proceeds via axioms, definitions and previously established theorems to lead to a conclusion using 

sanctioned rules of logical inference.  On the other hand, Goethe and Friend claim that an analytic 

method of proving resolves a mathematical problem by using a mixture of deductive moves and 

“induction” means to construct an explanation, (i.e., proving) about the accuracy (or lack thereof ) 

of a mathematical conjecture.  The word “induction” captured in Goethe and Friend is interpreted to 

refer to tables, diagrams and other visual displays which in this sense are some informal 

representations of the mathematical claim whose accuracy a prover seeks to establish. 

Furthermore, Goethe and Friend (2010) describe analytic proofs as derivations of plausible 

hypotheses to mathematical problems.  In the authors‟ sense a hypothesis is any means (whether 

deductive or inductive) of solving a problem where a problem is viewed as an open mathematical 

question.  Goethe and Friend‟s description of a problem informed selection proof tasks as I ensured 

that tasks used for data collection were open to invite plurality in students‟ responses (Mamona-

Downs & Downs, 2013).  For a hypothesis to be referred to as being plausible it is necessary and 

sufficient that the hypothesis is compatible with existing data.  Data denote all pertinent 

mathematical ideas that exist at the time of trying to establish the proof.  In other words, data are the 

mathematical facts that are a foundation to our claim (Ubuz, Dincer, & B ̈  ̈l, 2013, p. 134).  I 

now comment on literature ideas on analytic and axiomatic methods of proving.  

First, because the analytic method employs both deductive and “induction” moves the axiomatic 

method can be seen as unjustified truncation of the analytic method of proof construction since the 

axiomatic method of composing proofs is only a part of the analytic method where hypotheses 

stated at a certain stage in the form of axioms and definitions are unduly considered as an absolute 

starting point for the proving process (Goethe & Friend, 2010).  Hence, along with Stylianides‟ 

(2007) view that a proof is a sequence of assertions for or against a mathematical proposition, I can 

deduce that the axiomatic method of proof is a subsequence of the sequence of assertions derived in 

an analytic manner. 

Second, another comment I make here relates to similarities and differences observed between the 

analytic and axiomatic proof methods and the semantic and syntactic methods of proof discussed 

earlier.  I observe first that the axiomatic method is similar in many respects to syntactic method in 

the sense that both methods emphasize the prominent role played by axioms and definitions and the 

structural mode of reasoning, which is the vehicle to proof construction with axiomatic and 

syntactic methods of proving. 
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Next, one can also discern that the semantic and analytic means of producing proofs share many 

similarities as implied by use of “induction” means which are construed to refer to tables, diagrams, 

empirical verifications which are particular instantiations captured in the definition of semantic 

methods of proving.  Another strikingly similar feature of the semantic and syntactic methods of 

proving is that both are used by expert mathematicians.  The use of semantic and analytic means to 

validate mathematical statements can be inferred from the following authors‟ remarks.  Goethe and 

Friend (2010) say in workshops of research mathematicians who write proofs we generally find 

analytic proofs not axiomatic proofs.  The point I would like to make here is that although many 

proofs are usually presented in syntactic form, expert efforts that go into their production involve 

the interplay between intuitive mathematical thoughts (semantic proving) and rigorous logical 

reasoning that corresponds to part of analytic thinking processes.  Hence, both analytic and 

semantic proof methods uphold the importance of informal representations of mathematical ideas 

pertinent to the proof task faced by the arguer (Kidron & Dreyfus, 2014).  Finally a key 

distinguishing feature between analytic and semantic methods of proof construction is that the 

analytic method explicitly calls for the use of axioms whilst the semantic method of proof insists on 

use of the referent mathematical objects in the scope of the mathematical statement. 

I conclude on methods of proof construction by indicating that the literature on proof methods was 

important to this study because it provided a window used to determine students‟ thinking as they 

engaged with proof tasks assigned.  For instance, the mode of reasoning involved in students‟ proof 

attempts could be determined by mapping students‟ written responses with Goethe and Friend‟s 

(2010) concepts of axiomatic and analytic methods of proof discussed here.  Hence, this literature 

on methods and thinking processes involved in proving was important in determining the kinds of 

proof schemes held by student teachers which precisely was the focus of research question one.   

To compose proofs, there are aspects provers need to handle technically using certain modes of 

reasoning.  My theoretical perspective on the technical aspects of a proof and the modes of 

reasoning involved in proof construction draws from the works of Selden and Selden (2009) and 

Alcock (2010) respectively.  Selden and Selden (2009) define five aspects of a proof an arguer 

needs to attend to when writing proofs: hierarchical structure, construction path, formal rhetoric 

part, the proof framework, and the problem oriented part.  These aspects are now described.   

Selden and Selden (2009) describe the hierarchical structure of a proof as developing awareness of 

what the proving efforts seek to accomplish.  Such awareness includes being able to coordinate and 

construct sub-proofs and lemmas that are relevant to the proof task.  For example, the cut property 

in   states that: If an ordered pair        of nonempty subsets of   forms a cut in   then there 
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exists a unique element     such that      for all     and     for all       The 

hierarchical structure of the cut property includes being aware that   is unique and also  developing 

awareness of the need to satisfy the conditions      and       The other aspects that need to be 

coordinated in the proof construction exercise include the completeness axiom for bounded subsets 

of   and a call for the definition of a cut in     Further, the hierarchical structure also includes a call 

for the prover to coordinate definition of a cut, the order axiom  and the rational density theorem 

that says: Let       with    , then there is a rational number   such that        

(Selden & Seden, 2009, p. 196) assert that the proof framework is the collection of the conventions 

of proving theorems in mathematics but it does not require one to define any terms that are 

associated with the logical structure of different methods of proving.  For instance, for the proof 

method by contrapositive the prover is expected to be aware that one should start by negating the 

implication statement and then use the method of proof by direct deduction to lead to the 

conclusion, that is, the negation of the implication statement is used to derive the if part (i.e., 

antecedent statement), but one is not compelled to define what is meant by a contrapositive. 

The construction path refers to the means by which the proof is actually produced.  According to 

Selden and Selden (2009, p. 340) the construction path can be adequately described by efforts of an 

idealised prover who has never erred or followed false leads when composing proofs.  Selden and 

Selden define the formal rhetoric component of a proof as one with a focus on predominantly 

behavioural aspects of a proving activity.  It includes the ability to do algebraic and technical 

symbolic manipulations that are performed within the formal structure (scope) of the mathematical 

conjecture (Selden & Selden, 2009; Weber & Mejia-Ramos, 2015).  So the emphasis on technical 

symbolic manipulations performed within the formal structure of the mathematical claim shows that 

the formal-rhetorical component is one the learner can produce by appealing to logic, definitions, 

other theorems without recourse to conceptual knowledge (Selden & Selden, 2009). 

Finally, a prover is expected to handle the problem centred aspect of a proof.  This component 

covers proving matters to do with conceptual understanding and problem solving activities pertinent 

to the proof task.  Precisely, the problem oriented part deals with matters that are non-routine and 

for which there are no standard solution strategies.  The problem oriented aspect calls for the 

prover‟s mathematical intuition and the ability to deploy the right resources at the right time (Selden 

& Selden, 2009; Fukawa-Conelly, 2012).  Hence, different skills are required to construct the 

different aspects.   However the two aspects are inter-related in the sense that by writing the formal–

rhetorical part the other part, that is, the problem to be solved is exposed.    
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If we reconcile Sandefur, Mason, Stylianides and Watson‟s (2013) manipulating (M), getting a 

sense-of- (G) articulating (A), that is, (MGA) construct with Selden and Selden‟s (2009) aspects of 

a mathematical proof we can conceive manipulating (M) and articulating (A)  as proof mechanisms 

or processes connected to the formal-rhetoric aspect of a proof, whilst getting-a- sense-of, (G), is a 

thinking process involved in proof construction tied to the problem-oriented part.  Having described 

the components of a proof, I now consider how proofs are constructed, that is, how the components 

come into existence. 

The aspects of proof in the foregoing discussion are supported by certain modes of thought which 

will be the focus of this section.  There are four modes of reasoning put forward by Alcock (2010, 

p. 78), namely: instantiating, critical thinking, and creative thinking and structural mode of 

reasoning.  A description of each mode of reasoning is now presented.  Instantiating is when a 

prover meaningfully constructs and understands proof of a mathematical claim by manipulating 

mathematical objects drawn from the scope of the focal mathematical statement (Fukawa-Conelly. 

2012; Weber & Mejia-Ramos, 2015).  The mathematical objects consist of graphs, diagrams, 

numeric values.  So instantiating as a mode of argumentation employed in proving is similar to the 

structural-intuitive justification type where a prover examines examples of the mathematical 

conjecture to see if it is a consequence or a property of the mental models one associates with the 

concepts embedded in the conjecture (Weber & Mejia-Ramos, 2011).  Hence, instantiating as a 

mode of thought involved in proving is alternatively called the referential mode of thought by virtue 

of making reference to specific configurations to which the statement applies. 

Creative thinking is defined as a process involving examining particular instantiations with the goal 

of determining the mathematical property that can form the crux of the subsequent proving process 

(Fukawa-Conelly, 2012).  Finally, critical thinking is used as a mode of reasoning in those 

situations where a conjecture is converted into a fact, that is, it is proved through such means as 

questioning the implications of the mathematical claim or envisioning an example that would 

undermine the conjecture.  In other words, the conjecture is refuted by searching for a counter 

example (Fukawa-Conelly, 2012).    

The three modes of thought described so far belong to the semantic or referential mode of proof 

construction (Weber & Alcock, 2004, 2009).  In a referential mode of proof construction the prover 

attempts to produce a proof through some transformations using particular or generic examples 

drawn from the scope of the mathematical statement (CadawalladerOlsker, 2011; Weber & Alcock, 

2009).  In other words, a prover attempts to produce a proof by linking aspects of a mathematical 

claim to configurations in another representation system of the statement such as diagrams to build 
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an informal explanation (Kidron & Dreyfus, 2014).  The informal explanation will then be 

expressed in a formal manner at a later stage.  

Another approach to proof construction qualitatively distinct from the semantic approach is the 

syntactic approach.  In a syntactic proof construction, a prover starts from axioms, definitions and 

previously proven theorems and builds an argument within the representation system, that is, the 

scope of the statement until a conclusion can be deduced in a logically permissible formal deductive 

manner without instantiating (Kidron & Dreyfus, 2014; Fukawa-Conelly, 2012; Weber & Alcock, 

2009).  A formal deductive justification (i.e., public argument) supporting a mathematical claim is a 

sequence of assertions that concludes with a mathematical statement.  According to Kidron and 

Dreyfus (2014), each assertion from the sequence is a claim that is known or is assumed to be true 

or is purported to be a logically necessary consequence of the preceding assertion (Weber & Mejia-

Ramos, 2015).  The validity of a deductive argument depends on whether each assertion in the 

sequence contains an error.  So if each assertion does not contain an error then we call it a valid 

deductive argument. 

Further, one of the assumptions that undergird research in mathematics educational practice is that a 

valid deductive argument is the final word on the matter concerning the proof because it provides 

conclusive evidence about the accuracy of a mathematical claim.  In other words, it is a socio-

mathematical norm of the mathematics education community of research mathematicians who write 

proofs that once a valid deductive argument has been generated it then becomes superfluous to seek 

further confirmatory evidence to establish the truth-value of the mathematical statement (Goethe & 

Friend, 2010; Weber & Mejia-Ramos, 2015).  Hence, once a valid deductive conclusion has been 

established one is expected to hold absolute conviction about the truth-value of a claim.   However, 

in stark contrast even when learners become capable of formal deductive reasoning the effects of 

lower level proof schemes continue to linger in the minds of the learners (Fischbein, 1994 cited in 

Kidron & Dreyfus, 2014).  Having described the syntactic approach to proof construction, I now 

examine the mode of thought associated with this approach. 

We call the mode of reasoning associated with syntactic proof construction the structural thinking 

mode according to Alcock (2010, p. 78).  Alcock describes structural thinking as that mode of 

reasoning in which one draws on definitions, axioms, lemmas and other pertinent ideas to the 

conjecture to build justifications in a purely public or formal manner (Fukawa-Conelly, 2012; 

Raman, 2003).  In other words, in structural thinking proof construction occurs within the formal 

structure of the scope of the mathematical proposition without recourse to informal modes of 

thinking such as instantiations of relevant mathematical ideas of the conjecture. 
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2.6 The notion of Cognitive Unity of Theorems  

In this section I first examine an important theoretical construct known as the Cognitive Unity (CU) 

of theorems.  Next I discuss crucial processes involved in conjecture formulation and the related 

proving process.  Such processes include the notion of dynamic exploration of the problem situation 

and transformational reasoning.  The CU of a theorem is an attempt to describe and interpret 

processes involved in conjecture formulation and also an attempt to explain proving process 

(Garuti, Boero & Lemut, 1998, p. 345).  Key emphasis of the construct is on continuity between the 

formulation of a mathematical conjecture and the possible construction of its proof.  Basic ideas of 

the construct are summarised by (Garuti et al., 1998) as  

during the production of a conjecture, the student progressively works his/her statement through an 

intensive argumentative activity functionally intermingled with the justifications of the plausibility of 

his/her choices. During the subsequent statement proving stage, the student links up with this process in a 

coherent way, organizing some of the previously produced arguments (p. 345).  

The intensive argumentative activities that are a typical feature of the Cognitive Unity of theorem 

construct involve dynamic explorations of the problem situation by the student.  Dynamic 

explorations can be conceived as imagined or concretely performed transformations on space 

configurations (Garuti et al., 1998).  Dynamic explorations may be either goal-oriented or non-goal 

directed during conjecturing and proving.    The distinction between the two kinds of exploratory 

activities is that in non-goal directed argumentation the learner would be „testing the ground‟ 

without knowing exactly what to find.  This usually occurs at the initial phases of proof 

construction.  Typical proving activities at this phase may be in the form of numerical tests and 

reflecting on those examples (Morselli, 2006, p. 6).  The process of reflecting on examples when 

exploring the problem situation is essential as it helps in identifying the underlying mathematical 

property that forms the crux of the proof.    

On the other hand, goal-oriented exploratory activities in proof construction are anticipatory in 

nature and may involve pictorial representation of mental actions in the sense suggested by 

(Thompson, 1994).  Here the learner strives to derive relevant information that deepens one‟s 

understanding of the problem situation thereby potentially leading to proof construction or 

refutation.  Exploration of the problem situation at this level can lead to the generation of new 

statements easier to prove (Boero, 1999).   

Transformational reasoning (CadawalladerOlsker, 2011; Harel & Sowder, 1998) is closely 

connected to the exploration of problem situation.  Transformational reasoning involves envisioning 

the change of a mathematical situation and anticipating results of such a change.   A particular 
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instance involves the transformational use of symbols in proof construction.  In such cases proofs 

are accomplished by translating from verbal language to algebraic language after which standard 

algebraic manipulations are performed.   One‟s interpretation of the final formula then validates the 

statement (Garuti et al., 1998; Stylianides, 2009).  In other cases the learner may not know algebraic 

language and in such circumstances transformational reasoning is done using natural language. In 

such situations the learner explores the statement using natural language before transforming it 

(Boero, 1999).  

2.7 What counts as a mathematic proof? 

Having constructed the proof by either syntactic or semantic means or even by both forms of 

reasoning the next concern is on determining the status of a proof.  The question here was: which 

forms of arguments qualify as proof?  The concern here was on evaluating the status of a 

mathematical proof.  A mathematical proof employs forms of reasoning (modes of thoughts or 

argumentation) that are valid and known to or within the conceptual reach of the mathematical 

community, that is, the proof should be acceptable to mathematicians of impeccable reputation  

(Stylianides, 2011, p. 2; Weber  & Mejia-Ramos, 2015).  In other words, the argumentation should 

be consistent with the conventional understanding of mathematics as proposed by Stylianides  

(2011, p. 2). It uses statements that are accepted by the classroom community- a social process 

(Stylianides, 2007). Such statements are considered as true and available without further 

justification.  

We distinguish arguments just described from empirical verifications/arguments.   Empirical 

arguments are inductive explorations which are based on the use of specific examples that offer 

confirming and yet incomplete evidence about the truth or falsity of a mathematical statement 

(Stylianides, 2009).   Consider again the conjecture: Prove that    – 6k -1 is divisible by    for all 

integers greater than  . Empirical arguments consist of verifying that the statement holds for    , 

and,    . These arguments do not qualify as proofs because they do not provide complete 

evidence that the statement is a multiple of      Hence, such arguments should not be elevated to 

the status of a proof despite their importance in identifying patterns, generating conjectures and 

giving insights on what needs to be proved.  

2.8 The notion of a proof scheme 

2.8.1 Taxonomies of proof schemes 

Ideas discussed in this section will assist in evaluating students‟ arguments in this study on the 

kinds of proof schemes and how such proof schemes develop.  Several studies have led to different 

classifications of students‟ responses to tasks on proofs of mathematical statements.  These include 



42 
 

van Dormolen‟s (1977) taxonomy cited and Balacheff‟s (1988) taxonomy of mathematical proof, 

Harel and Sowder‟s (1998, 2007) taxonomy of proof schemes. I briefly describe the proof scheme 

classifications.  

2.8.2 van Dormolen‟s (1977) taxonomy of mathematical proof 

Varghese (2011, p.182) posits that van Dormolen (1977) differentiated three categories of 

mathematical proof which are outlined below. 

 Use of a particular example. 

 Use of example as a generic embodiment of a mathematical proof. 

 Use of general and deductive arguments in proving. 

2.8.3 Balacheff‟s (1988) taxonomy of mathematical proof 

According to Varghese (2011, p. 182), Balacheff‟s taxonomy of mathematical proof is in fact an 

extension of van Dormolen‟s categorisation scheme.  Balacheff created two broad categories by 

distinguishing between pragmatic and conceptual mathematical justifications.  In pragmatic 

justifications a student‟ doubts about a mathematical conjecture are eliminated by focusing on use 

of examples, actions or “showings.”  That is, there is use of empirical explorations in establishing 

the truth or possibly refuting a conjecture.  Three pragmatic justifications in hierarchical order are 

naïve empiricism, crucial experiment, and generic example. 

Within the Naïve empirical proof scheme, a mathematical conjecture is validated by checking in a 

proper subset of all possible cases in its domain.  The inductive explorations in this category are 

selected primarily on the basis of a few examples chosen out of convenience (Stylianides, 2011, p. 

1).  The crucial experiment class of proof scheme is also characterised by empirical verifications in 

a proper subset of all possible but there is one major distinction.  In the crucial experiment proof 

scheme, the choice of cases is now based on some rationale such as the need for a counter example, 

as opposed to mere convenience as in the former.   In a generic proof as alluded to earlier general 

arguments are illustrated in a particular case seen as a prototype (Harel & Sowder, 1998, p. 243; 

Stylianides, 2011, p.1; Varghese, 2011, p.184).   A generic proof does not have empirical status as it 

provides adequate conclusive evidence that a mathematical claim is true.  The highest level in 

Balacheff‟s taxonomy in terms of mathematical sophistication is the thought experiment which is 

composed of conceptual or intellectual justifications.  With thought experiments, actions are 

internalised and dissociated from specific examples considered (Stylianides, 2011, p.1).   

Both van Dormolen and Balacheff‟s taxonomies show increasing levels of mathematical 

sophistication.  The two taxonomies demonstrate a natural tendency in student thinking to move 
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from inductive towards the deductive modes of thought and towards greater generality (Varghese, 

2011, p.184). 

2.8.4 Harel and Sowder‟s taxonomy 

Harel and Sowder (1998, 2007) give a detailed proof scheme taxonomy comprising three main 

categories which in turn consists of numerous subcategories.  The categories are mutually 

interrelated and represent cognitive levels 
__

intellectual abilities.  The main categories in 

hierarchical order are: the external conviction proof scheme, the empirical proof scheme and the 

analytical proof scheme. 

To recall, the external conviction proof scheme is the lowest cognitive level where conjectures are 

validated through 

 an appeal to the form or appearance of an argument without due regard to correctness of the 

argument, Harel and Sowder describe this subcategory as the ritual proof scheme, 

 approval of an authority such as a textbook or a word uttered by a teacher or an individual 

the learner perceives to be highly knowledgeable in the discipline and accordingly was 

named the authoritative proof scheme, 

 Symbolic reasoning: Here there is manipulation of mathematical symbols without paying 

regard to meaning of the symbols, that is, without establishing a coherent image of the 

problem context in the sense of (Harel & Sowder, 1998, 2007) 
__

symbolic proof scheme.  

 The next cognitive level is the empirical proof scheme. The empirical proof scheme 

(CadwalladerOlsker, 2007; Harel & Sowder, 1998) is one by which conjectures are 

validated, impugned and/or subverted by an appeal to sensory experiences or physical facts. 

This cognitive level of the proving process has two subcategories, namely, inductive and 

perceptual proof scheme. The inductive proof scheme is an empirical proof scheme wherein 

conjectures are validated by quantitatively evaluating them in one or more specific 

instances. Such arguments by their nature should not be elevated to the status of a proof as 

discussed earlier because they do not provide complete and conclusive evidence about the 

truth of a conjecture (Stylianides, 2009).   Harel and Sowder have identified some 

interrelated factors that foster the inductive proof scheme.  Among them is the 

psychologically natural tendency to evaluate conjectures probabilistically, the adverse 

effects of the authoritarian proof scheme, the absence or lack of advanced proof scheme, and 

the natural dislike by learners of method of proof by contradiction. 
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In the perceptual proof scheme, there is use by the learner of rudimentary mental images which 

consist of perception and a coordination of such perceptions.  However the images lack the ability 

to transform or anticipate the results of a transformation (Weber & Alcock, 2007).   By mental 

images we mean the ones (Thurston, 1994) refers to as supporting “thought experiments,” that is, 

they facilitate mathematical reasoning. The development of a perceptual proof scheme can be 

considered to be the initiation of higher order theoretical proof schemes which I now turn to. 

The third main category of proof schemes is the analytical proof scheme with which the learner 

renders conjectures into mathematical facts. The analytical proof scheme has two broad 

subcategories namely, the transformational proof scheme and the axiomatic proof scheme 

(CadwalladerOlsker, 2011; Harel & Sowder, 1998).  The idea of transformational proof scheme as 

examined under transformational reasoning involves use of mental images. Transformational proof 

schemes are characterised by operations on objects and an anticipation of the results of the 

operations (Harel & Sowder, 1998).  Harel and Sowder point out that the transformational proof 

scheme is the foundation of all theoretical proof schemes. Among the various subcategories of the 

transformational poof scheme we have are, the interiorised proof scheme, the internalised proof 

scheme and the contextual proof scheme.   The axiomatic proof scheme, a higher cognitive level 

scheme than the transformational proof scheme, is one by which conjectures are rendered into facts 

or possibly rejected by basing logical deductions on a collection of axioms (basic principles 

comprising undefined terms and defined terms in the sense of Harel and Sowder. 

As mentioned earlier the taxonomies of proof schemes represent cognitive levels which show 

increasing levels of mathematical sophistication. The main goal of this study is to gain insights into 

the kinds of proof schemes held by undergraduate student teachers as well as developing hypothesis 

as to how those proof schemes emerge.  In order to realise this goal I intend to examine the kinds of 

proof schemes by mapping students‟ arguments to Harel and Sowder‟s (1998, 2007) taxonomy. The 

mapping of students‟ responses will be done in an effort to address various ontological concerns 

such as: what ultimately will exist (development of proof schemes) and in what terms do the 

students think about the notion of proof that is, addressing the question of what constitute the 

students‟ mental constructs around the notion of mathematical proof. The classification by Harel 

and Sowder is preferred to other proof scheme categorisations because it has been noted to be 

detailed and highly comprehensive (Balacheff, 2008, p. 504; CadawalladerOlsker, 2011, p. 44).  

As concluding remarks on this section I note that there are other categorisations of proof scheme 

such as the one by Stylianides and Stylianides (2009).   Such a taxonomy also show similar 

characteristic to those described under van Dormolen , Balacheff and Harel and Sowder taxonomies 
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wherein empirical verifications form the lowest level of mathematical reasoning whilst the highest 

level is dominated by conceptual justifications. 

2.8.5 How student teachers‟ proof schemes could be inferred? 

This study intends to explore students‟ thinking around the notion of proof.  It seeks to develop an   

explanation, grounded in data, for the kinds of proof schemes held by Zimbabwean undergraduate 

student teachers as well as developing a proposition about how students‟ proof schemes emerge.  

The crucial question here was: how could we infer the kinds of undergraduate students‟ proof 

schemes from their argumentations about mathematical statements given the latent nature of the 

universe of discourse (UoD), which is the proof scheme?   Put differently, the concern of the study 

was: how could undergraduate student teachers‟ thoughts of mathematical proof be evaluated?  In 

other words, what could be the philosophical guide used in drawing inferences about the terms in 

which undergraduate student teachers think of mathematical proof? 

Dunn and Mearman (2006) define ontology as the general nature of reality and the types of entities 

existing in it.   Ontology is also about the ultimate existence of reality.  The word reality refers to 

whatever it is in the universe; forces, structures, concepts which causes the phenomena we perceive 

with our senses.  Schwandt (1997) describes scientific realism as a school of thought that denotes 

the precise position to the question of how a scientific theory should be conceived.  In the context of 

this study the word reality refers to the object of investigation, that is, the concept of mathematical 

proof and its underpinnings.  Drawing on Dunn and Mearman‟s definition of ontology and 

Schwandt‟s perspective of scientific realism, I can say that the concern of the study was to 

determine the nature of reality (i.e., ontology of proof scheme) and how it evolves as captured by 

the phrase “ultimate existence of reality” in Dunn and Mearman‟s ideas about ontology.  Hence, 

there is need to determine the nature of students‟ thinking around the concept of mathematical proof 

in order to determine how a deep understanding of mathematical proof can be enhanced amongst 

the learners.   

Ontology is the structure of the nature of reality according to Lawson (2009).  Further, phenomenon 

at one level may warrant explanation in terms of phenomena lying at a deeper level.  Lawson here 

cautions against the assumption and temptation to assume that all causes lie at the surface.  Hence, 

the point is that a deep understanding of students‟ argumentation schemes can be developed if 

qualitative data are analysed within the framework of the realist methodology.  The term “scientific 

activity” in the context of this study refers to proof construction activities and processes of 

understanding by the students. Further, “scientific activity” is also used in this study to describe 

how their proof experiences shape their conceptualisations of mathematical proof.   
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In realism a distinction can be made between the object of knowledge (social entity) and the social 

process that produces that knowledge as pointed out by Dunn and Mearman (2006).  In scientific 

realism this distinction is called the intransitive and transitive dimensions of knowledge.  This is a 

critical point in realism because it allows researchers to differentiate social entities from the 

knowledge we have about these entities and from the conventions of science that produced that 

knowledge.  The notion of intransitive and transitive dimensions of knowledge is applicable to this 

study in the following manner.  The object of knowledge or “social entities” captured in this 

definition refer to knowledge of mathematical proof and the conventions of science that produce 

this knowledge designated here as social processes refer to the mathematics community which 

includes research mathematicians and students (Stylianides, 2007).  In this study the undergraduate 

students who participated in this study and I formed the mathematics community.  According to 

philosophical realism the mathematical entities, referring here to concept of mathematical proof and 

its underpinnings have an objective existence as can be inferred from Maxwell and Mittapalli‟s 

(2007, 2010) comment that the world is the way it is but is not objectively knowable.  This school 

of thought is called realist ontology which is a commitment to the existence of an objective reality 

that is however not objectively knowable (Maxwell & Mittapalli, 2007, 2010).  Thus, scientific 

realism asserts that there can be more than one correct way into which reality can divided into 

categories (Maxwell, 2004).  This realist position is in stark contrast to scientific objectivism which 

asserts there is only one correct way of knowing the real world.  

The realist position presented implies that reality has an independent existence.  Hence, in van 

Fraassen‟s (1980) view, a realist with respect to a given theory or discourse holds that, the sentences 

making that theory are either true or false.    van Fraassen writes that what makes these sentences 

either true or false is something external, that is, the truth-value of a mathematical theory from a 

realist perspective is not determined by our sense data whether real or imagined or our language.  

An implication of this realist stance for the study is that the term “something external” signifies the 

objective existence of mathematical knowledge that is represented by the proof conceptions of the 

community of mathematicians who compose proofs.  I represented the community of 

mathematicians.   I emphasize the point that there can be more than one scientifically correct way of 

acquiring this knowledge which exists independently of our minds (Maxwell, 2004; Maxwell & 

Mittapallli, 2010).  The terms “our sense data” and “language” refer to students‟ proof attempts and 

utterances as they engaged with the object of investigation.  The primary goal of the study was to 

measure the discrepancies between research mathematicians‟ conceptions and the students‟ 

conceptions.   
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I followed van Fraassen‟s (1980) conceptualisation of scientific realism.  Van Fraassen asserts that 

scientific realism provides an answer to the question of what it is to accept or hold as scientific 

theory.  The importance of van Fraassen‟s ideas to the study is that the realist process approach that 

will be employed in this study will allow me to determine the kinds of proof schemes held by the 

students as well as enabling me to trace the emergence of students‟ proof schemes.  However, it is 

still not very clear how scientific realist ideas will make it possible to pursue these research goals so 

I now address the question; how will the realist process theory approach make it possible to address 

the research questions?  

The realist process approach employed in this study asserts that mental events and processes 

involved in proving are real observable mechanisms and processes (Maxwell, 2004; Maxwell & 

Mittapali, 2007, 2010; Patton, 2001).  A huge question that remains to be tackled is: how can the  

observation of causal relationships be made in light of the caution by Dunn (1978) in Maxwell 

(2004) who warns that “there are still no cheap ways to deep knowledge about other persons and the 

causes of their actions” (p. 171).  Similarly, Becker (1966, p. 69) cited in Maxwell (2004) 

commenting on direct observation of events and processes in scientific inquiries argues that 

“Observable, yes, but not easily observable, at least for scientific purposes.”  Hence, in an attempt 

to address these concerns about direct observation of causative mechanisms and processes from 

students‟ proof events, I will capitalise on a key psychological construct called a schema and its 

implications for mathematical proving. 

 A schema is a key psychological framework concerned with the issue of organized content 

knowledge in the human mind (Tall, 2008).  In simple terms a schema is a coherent collection of 

objects and processes (Tall, 2008).  A schema is a cluster of organised knowledge, in its various 

forms such as strategic and syntactic, that helps learners to understand and represent a given 

problem and provide cues for the activation of relevant strategies during the solution process (Tall, 

2008).  Further, we observe that a person‟s knowledge of a particular mathematical concept refers 

to the individual‟s tendency to invoke a particular schema in order to deal with, understand, or make 

sense out of a perceived problem (Tall, 2008).  It can be discerned here that the learner‟s schema 

cannot be observed directly because of its internal nature
__

 in the human mind.  The nature of one‟s 

proof scheme can only be inferred from an individual‟s actions as he or she may or may not bring 

his schema to bear on problems.    It follows therefore that the kinds of proof scheme held by 

undergraduate student teachers will be inferred from their actions expressed in written, verbal or 

behavioural forms as the learners interact with proof tasks.  Scientific realism asserts that mental 

events can be inferred from one‟s behaviour (Maxwell, 2004). 
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2.9 Mathematical understanding 

This study aims to explore students‟ thinking about the concept of mathematical proving and how 

students‟ experiences with the notion of mathematical proof shape their conceptualisations of 

mathematical proof.  This goal of the study was pursued by evaluating students‟ understanding as 

they constructed mathematical proofs; hence it is crucial to address the question: what is 

mathematical understanding?  Mathematical understanding can be seen when a student brings 

together different types of mathematical resources to engage in the complex interaction between 

rigorous and intuitive thought that is characteristic of the mathematicians‟ practice.  Further, 

mathematical understanding is not only a matter of possessing and connecting between varied 

knowledge resources (i.e., “items”), but also requires an awareness of exactly what purposes are 

served by these resources (Michner, 1978; Wilkerson-Jerde & Wilensky, 2011).  Hence, in the next 

section I discuss and illustrate key notions involved in use of mathematical resources as a way of 

showing how mathematical understanding can be discerned.   

To clarify the meaning of what understanding mathematical proof entails, I draw on Hanna‟s (2000) 

idea of mathematical understanding and appreciation to describe the key elements of proof using the 

notions of key ideas in the form of conceptual insights and technical handles, depth and width of a 

proof, rote and generational memory (Hanna & Mason, 2014; Sandefur, Mason, Stylianides & 

Watson, 2013, p. 329; Raman, 2003).  Hanna suggests that a mathematical proof is most valuable to 

a prover when it leads to real mathematical understanding.  Real understanding of mathematical 

proof is differentiated from superficial understanding of mathematical proof which is characterised 

by rote memorisation and reproduction of uncoordinated and unrelated facts about proof.  In this 

section I discuss with exemplifications the key elements of proof which are the potential indicators 

of a profound mathematical understanding. 

Tim Gowers in Hanna and Mason (2014) uses the metaphor of width to describe the pseudo-

measure of distinct pieces of information one has to keep in mind at any one time in order to be able 

to (re) construct and follow reasoning in proofs.  Depth of a proof is captured by fresh ideas and 

conceptual insights that come to mind in sequence in order to complete a proof (Hanna & Mason, 

2014).  Fresh ideas or conceptual insights associated with the notion of depth of a proof are in 

Raman‟s (2003) terms known as key ideas.  Key ideas are subdivided into conceptual insights and 

technical handles (Hanna & Mason, 2014, p. 146; Sandefur et al., 2013 p. 328).  A  conceptual 

insight alternatively known as  a heuristic idea or „surprise calculation‟ in  Gowers‟ terms is an idea 

that aid thinking by illuminating a sense of the structural relationships that indicate why a 

mathematical conjecture is likely to be true or false (Sandefur et al., 2013, p.328).  The term 

technical handle, also known as a procedural idea, is used to denote the specific techniques for 
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manipulating symbols or diagrams and specific forms of calculations used to map a heuristic idea 

into a mathematical proof (Raman, 2003; Sandefur et al., 2013, p. 328).  Examples of technical 

handles in mathematics include: the techniques for solving a system of linear equations by Gauss-

Jordan elimination, technique for finding an orthogonal basis for a subset   of a finite-dimensional 

vector space   over a field   using the Gram-Schmidt algorithm, and the method for finding a basis 

and the dimension of the solution space of a homogeneous system of linear equations.  

The notions of conceptual insights and technical handles (key ideas) provide some measure of 

degree of precision for (re) constructability of a proof.  Key ideas are indicative of depth of a proof.  

The notions of conceptual insights and technical handles are the major focus of this study that aims 

to determine the kinds of proof schemes held by Zimbabwean undergraduate pre-service teachers 

and the manner in which those proof schemes emerge.  The utilization or non-utilization of key 

ideas by undergraduate students will provide a window through which the nature of theorem and 

proof images can be determined.  To increase clarity on what proof understanding entails, the ideas 

of depth and width and key ideas of a proof illustrated in the following examples.  I re-cap that 

heuristic ideas and technical handles are collectively known as key ideas. 

An example on the concepts of depth and width of a proof adapted from Hanna and Mason (2013, 

p. 6) is now shown. 
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          ×63               …………………………………………………………………………...(i) 

               

       + 141 

                                                       

      (  –  )       + 10 × 47……………………………………………………..(iii) 

     = 2500 – 9 + 470 …………………………………………………………………(iv) 

                = 2961    …………………………………………………………………………...(v) 

The need for multiple digits in steps (i) and (ii) of the computation has been removed in steps (iii) 

and (iv) through the evocation of the insightful idea of concept of difference of two squares.  In 

Gowers‟ terms the conceptual idea, that is, difference of two squares has reduced the large-width 

operation.  In other words width has been replaced by depth.  We now state and exemplify how 

conceptual insights and technical handles are employed to construct proofs by discussing the 

following theorem and its proof. 

Theorem                                         
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Let   {            }.  First observe that S ≠    e.g.,    S  Next, observe that    is 

bounded above e.g., it is bounded above by 2.  If   was not an upper bound then      such that  

    which implies that 4<         Here   is strictly less than  , a contradiction and hence   is an 

upper bound.  So by the axiom of completeness,   has a least upper bound.   Let this be  .  Clearly,  

   , 1 is in S and   is an upper bound.  Claim:     .  If claim was false then either      or 

     . We want to prove that neither of the two assertions is true.   

If      then 2 -      leading to 
    

    
> 0. ………………………………………………(i)   

 By corollary 3 to the Archimedean principle, there exists a natural number, n, such that  
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 which simplifies to    +  
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 < 2 leading to   
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   <    +  
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  2…………………………………………………………….(ii) 

 Factorizing we obtain (  
 

 
)
 

< 2. Hence, (  
 

 
)    . This is a contradiction since   is a 

supremum of  , so the assertion that    < 2 is false.   

If      then         leading to   
    

  
 >0. ………………                                          (iii) 

Once again by corollary 3 to the Archimedean principle     natural number m such that  

 
 

 
 < 

    

  
, which simplifies to 2<   -

  

 
.  

Now 2<   - 
  

 
 

 

   ………………………………………………………………………...(iv) 

 and factorizing gives 2 <  (  
 

 
)
 

   Since  is a supremum of  ,        such that  

2 < (  
 

 
)
 

   , a contradiction since   is an upper bound of   and hence the assertion that 

      is false.  Therefore the claim that      is true, and hence there is a real number   such 

that   = √   

In Gowers‟ terms there are steps in the proof of the existence of √   that seem to “spring‟ from 

nowhere” such as the choice to divide 2 –    by the quantity (the notion of a „surprise calculation‟)   

     in step (i), to get  
 –  

    
  .  This is a crucial conceptual insight which allows application of 

technical handles that is, the subsequent factorization process.  Dividing by      is both 

convincing and legitimate (Hanna, 2000) because we see here the order properties of   being 

utilized in proof of square root of  .  Ideas being employed in the “surprise calculations” 
 –  
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  and 
    

  
   emanate from a consideration of   as an ordered field   The specific order property 

giving the conceptual insight is       and     then         where    and   are arbitrary 

elements picked from the real field     Other conceptual insights include: 
    

  
    

 

  
 <  

 

 
.  Such 

conceptual insights allow the prover to apply results of the axiom of completeness in the proof of 

the existence of √     

The next question is: how do the key ideas arise during proving?  Key ideas come to mind either 

through rote memory or generational memory.  When key ideas strike a prover‟s mind through 

generational memory he/she just remembers a few important ideas about a proof and then develops 

a technical skill to convert them quickly into a formal deductive proof.  With generational memory 

ideas do arise naturally as if without effort (Hanna & Mason, 2014).  The proof construction process 

is generational when there is no expenditure of intentional and explicit effort as connoted by the 

term “as if without effort” in the definition.  Generational memory is differentiated from rote 

memorisation by noting that in rote memorisation there is recourse to one‟s ability to remember 

unrelated and uncoordinated steps (Hanna & Mason, 2014).   For instance  from personal 

experience of undergraduate mathematical analysis, I always remember with excitement my last 

minute exigency in memorising the Bolzano-Weistrass theorem in order to replicate it in the 

examination without appreciating the depth of reasoning involved.  Thus we should not equate the 

ability to replicate a theorem and its proof with the ability to re-construct and hence understand the 

proof (Hanna & Mason, 2014).  From this discussion of key elements of mathematical proof 

construction, I present the definition of mathematical proof understanding that will guide this study. 

Hanna and Mason (2014) define the term understanding of a mathematical proof as having access to 

a theorem so as to be able to make use of both the form or method of proof and the result itself (the 

conclusion) in other situations as well as to be able to read, follow, reason with, appreciate, 

comprehend and re-construct other theorems that depend on the theorem (Balacheff, 2008; Hanna & 

Mason, 2014).   The term accessing a theorem means that the conceptual insights forming the depth 

of the proof come to the mind of the prover in sequence as if without effort and are accompanied by 

relevant and accessible technical handles (Hanna & Mason, 2014; Sandefur et al., 2013).  From this 

definition it can be seen that understanding of proof is closely aligned to generational memory.  

However, this definition is used while being well aware that the terms mathematical understanding 

and explanation are somewhat elusive terms.  According to Hanna (2000) mathematicians and 

mathematics educators acknowledge that there is such a thing, most of them actually  share the view 

that proof becomes both convincing and legitimate to a prover  when it leads to understanding, that 

is, helping the individual to think clearly when solving mathematical problems (Hanna, 2000, p. 7).  
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Hanna points out that  thinking more clearly and effectively about mathematics is in its own sense 

elusive just as the word understanding and hence difficult to ascertain. It is perhaps useful to turn to 

Tim Gowers‟ conceptualisation of mathematical understanding. 

Hanna (2000, p. 7) cited in Gowers (2007) holds the view that mathematicians must see proof not as 

a syntactic derivation, that is, as a sequence of sentences in which each sentence is an axiom or the 

immediate consequence of preceding sentences by application of rules of inference.  Hanna 

proposes that mathematicians should see proofs as primarily conceptual, with the specific approach 

being secondary.  Hanna seems here to give prominence to conceptual insights and devalue 

technical handles, although lack of technical facility can be just as much an obstacle as not having 

conceptual insights proving (Hanna & Mason, 2014).  Hence, I emphasise here the importance of 

the intricate interaction between the intuitive semantic mode of reasoning and rigorous reasoning.  

Intuitive reasoning can be seen by the utilisation of conceptual insights whilst the later form of 

reasoning can be seen by manipulation of axioms, definitions and previously proven mathematical 

results. 

The discussion of mathematical understanding has revealed that mathematical knowledge can be 

seen as a network of resources in the form of conceptual insights and technical handles between 

which mathematicians traverse when composing proofs.  We can therefore assert that learning new 

mathematics can be thought of as the creation of a network of mathematical resources as suggested 

by Sierpinska (1994).  Duffin and Simpson (2000) in Wilkerson-Jerde and Wilensky (2011) further 

categorise mathematical understanding by differentiating building, having, and enacting as different 

components of mathematical understanding.  Duffin and Simpson describe building as an aspect 

that refer to the process of developing the connections, having denotes the state of the connections 

and enacting is used to describe the process of applying the connections available to solve a 

problem.  We observe that the link between Sierpinska‟s description of the network of mathematical 

resources and Duffin and Simpson‟s categories of mathematical understanding is that having; 

building and enacting can be viewed as mechanisms by which relationships in the network can be 

established and used in resolving proof tasks.  I leverage on this literature on mathematical 

understanding by using it as a window to generate insights on students‟ conceptualisations of 

mathematical proof.  I now elaborate on Sierpinska‟s conceptualisation of mathematics proof 

learning as the creation of a network using some concepts from the Real Analysis course.  A 

network of concepts from Real Analysis at undergraduate is presented in Figure 1.  
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Figure 1: Mathematical proof as a network of concepts 

Figure 1 illustrates how central the axiom of completeness is in proof and proving.  The axiom of 

completeness states that every bounded subset of real numbers has a least upper bound (supremum) 

or a greatest lower bound (infimum) accordingly as it is bounded above or below.  This notion is 

needed in the proof of the Archimedean principle by contradiction.  The Archimedean principle 

says the set of real numbers is unbounded.  The Archimedean principle is used together in re-

constructing the proof of the theorem: a bounded monotone sequence of real numbers converges 

either to its least upper bound or infimum, depending on whether it is a monotone increasing or 

decreasing sequence.  This gives us our first criterion for convergence of a sequence.  The theorem 

on bounded monotone sequence can then be used to prove Bolzano Weistrass theorem: a bounded 

infinite set of real numbers has at least one limit point.   Thus knowledge of bounded monotone 

sequences is used in conjunction with ideas of a limit point of a set and a sub-sequential limit point 

to construct the Bolzano-Weistrass Theorem which will be used to read, follow reasoning, and re-

construct other theorems that depend on it. 

Informed by the discussion of the term mathematical understanding and metaphors of depth, width, 

and the notion of mathematical knowledge as a network of connected resources, the meaning of 

mathematical proof understanding that was considered in the study refers to having access to key 

ideas (in the form of technical handles and conceptual insights) forming the depth of a proof in 

order to construct, validate, and complete proof tasks.  This definition was used in the study to 

determine how student teachers‟ proof construction attempts illuminated the kinds of proof schemes 

held by the pre-service teachers
__

 corresponding to research question one.   Students‟ narrations of 

their proof experiences as they went through various scholastic levels were scrutinized in order to 

Completeness property 

Monotone convergence criterion Bolzano-Weiestrass 

Archimedean principle 
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determine how students‟ proof schemes evolved
__

 corresponding to research question two.  I used 

the perspective of mathematical understanding described here, bearing in mind the following 

considerations.  Proving as a mathematical practice should strive to achieve a balance between two 

often competing and conflicting considerations: mathematics as a discipline and students as learners 

(Ball et al. 2008; Stylianides & Stylianides, 2009, p. 239). 

Regarding the consideration of mathematics as a discipline, a mathematical proof should provide 

complete and conclusive evidence about the truth of a conjecture through deductive means 

(Stylianides & Stylianides, 2009) for true mathematical assertions while the search for 

counterexamples should prevail when a prover is dealing with false assertions.  The notion of 

mathematics as a discipline thus denotes use of axioms and definitions and formal deductions as 

valid modes of argument presentation and appropriate modes of argument presentation.  Here 

mathematical proof needs to be conceived in the context of what is typically agreed in the domain 

of mathematical theories
__ 

the so called conventional understanding of mathematics suggested by 

Stylianides (2011, p. 2).  Regarding the consideration of students as learners, it is desirable that 

proof and proving activities be within the students‟ conceptual reach.   The concerns of this study 

with respect to the two considerations were: identifying proof qualities resembling those associated 

with formal deductive arguments among undergraduate student teachers‟ constructions and 

validations that may be closely aligned to semantic or private arguments (Raman, 2003).  Qualities 

identified were used to determine the terms in which undergraduate student teachers think around 

the notion of mathematical proof.    According to realism such universals exist independent of the 

act of perception and hence they had to be unravelled through examining students‟ argumentations 

on tasks involving proof and proving.  

2.10 Conceptual Framework 

A conceptual framework is a representation in narrative or graphical form of the main concepts 

and/or variables involved and their presumed relationships (Punch, 1998, 2005).  A conceptual 

framework is defined as a collection of interrelated concepts which guide the study, determining 

which variables or concepts a researcher will investigate and how she/he will interpret data.  In the 

current study, the guiding philosophy is scientific realism whose focus is on investigating causal 

relationships through direct observation of mechanisms and processes connecting students‟ proof 

events.  The conceptual framework refers to a collection of interrelated concepts that are the focus 

of the study.  I reiterate that the concern of the investigation was not measuring the influence of one 

variable on another.  In other words, I did not employ the variance theory approach (Mohr, 1982, 

1996).  Instead, a realist process understanding of causality was employed to observe causal links 

that could account for the kinds of students‟ proof schemes as well as how their proof experiences 
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could be used to determine how proof schemes evolve.  These goals of the study were compatible 

with the realist process approach.  The thesis title is: Undergraduate student teachers‟ 

conceptualisations of mathematical proof.  From this title the main constructs investigated are: 

(i) mathematical proof and its underpinnings including the concept of a proof scheme, 

(ii) students‟ pre-university proof experiences, 

(iii) students‟ undergraduate proof experiences 

 (iv) students‟ proof construction abilities 

 (v) students‟ conceptualisations of mathematical proof. 

The main conceptual strands are mathematical underpinnings, student proof construction abilities, 

students‟ proof experiences, taxonomies of proof schemes.  What is the ontology of the student‟s 

proof scheme, that is, the structure of nature of existence of the student‟s proof scheme?  How can 

we characterise the mathematical object in terms of underpinning concepts?   What can be known 

about these constructs amongst Zimbabwean undergraduate student teachers‟?  The underlying 

assumption was that by addressing these questions I would generate insights into students‟ 

conceptualisations of mathematical proof.  Figure 2 shows the conceptual framework in graphical 

form which I constructed from the theoretical underpinnings of the concept of mathematical 

proving within the realist process perspective. 

 

 

 

Proving.  

 

 

 

 

 

Figure 2: Conceptual framework of students‟ conceptualisations of mathematical proof 

The line with arrows at both ends connecting the constructs: proof experiences and proof 

construction abilities is illustrating the interrelatedness between the two constructs investigated.  I 

argue that students‟ pre-university and university experiences influence their proof construction 

Students‟ proof 

experiences 

Students‟ 

conceptualisations 

Proof scheme 

trajectories 
Kinds of proof 

schemes 

Students‟ proof 

constructions 
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abilities and vice versa.  Some of the theoretical constructs that guided the study are Ausbel‟s 

theory of learning and Tall‟s (2008) notion of a met-before.  I drew on these constructs to illustrate 

the connections between a learner‟s proof experiences and his/her proof construction ability.  

Ausbel‟s theory of learning points out that learning takes place by assimilating new information into 

existing conceptual structures of the learner (Varghese, 2009, p. 6).  This process of information 

filtering depends on students‟ met-befores, which is a collection of the student‟s prior knowledge, 

beliefs, prejudices, preconceptions and misconceptions (Tall, 2008).   An exemplification of a 

robust met-before in proving is the tendency to remove doubts about conjectures through empirical 

verifications and this has been reported to resist strongly any attempts to switch to conceptual 

justifications.  A student with a robust empirical proof scheme is likely to exhibit a propensity to 

evaluate mathematical statements through use specific examples from the scope of the mathematical 

proposition.  

Students‟ expressions of terms in which they think about the idea of mathematical proof could be 

inferred from their proof experiences as well as from proof productions examined through the 

lenses of taxonomies of proof schemes.  For example, Harel and Sowder (1998, p. 243) point out 

that it is possible to switch from one level of proof scheme to another.  Further, it is possible for a 

student to hold more than one proof scheme during the same encounter.  However, the taxonomy is 

silent about the nature of such consistencies and inconsistencies in student‟s proof schemes 

henceforth called ontological oscillations (CadawalladerOlsker, 2011; Wand, Storey & Weber, 

1999).  Hence, this study aimed at accounting for students‟ ontological oscillations through the 

realist process approach that holds that these students‟ behavioural tendencies are real observable 

phenomena that can be explained in terms of causative mechanisms and processes (Maxwell, 2004, 

Maxwell & Mittapalli, 2007; Yin, 2009). 

Given the impossibility to directly observe the development of students‟ concept images on 

mathematical proof, we shall use the idea of a learning event.  A learning event is said to have 

occurred when a student communicates and applies his/her new understanding of the concept of 

proof.  Closely linked to the notion of a learning event is also the idea of concept usage drawn from 

Moore‟s (1994) model of concept-understanding schemata.  Concept usage refers to the ways a 

student uses a concept in generating examples or in doing proofs (Housman & Porter, 1997, p. 141).  

The constructs described guide this study of the kinds of proof schemes held by undergraduate 

student teachers.  The students‟ proof events were scrutinised through the lenses of the 

underpinnings of mathematical proof such as technical handles, conceptual insights, micro 

reasoning and intellectual need in order to determine their attention to detail in an effort to 



57 
 

determine the nature or kinds of proof schemes that characterise undergraduate student teachers‟ 

conceptualisations of mathematical proof.  

 I conclude this chapter by summarising the main goals of this study of students‟ proof schemes 

which are;  

(i) What is the nature of Zimbabwean undergraduate student teachers‟ proof schemes and what can 

be known about them in terms of modes of being, characteristics? The objective here is to get 

insight into the nature of the students‟ formal praxis, that is, established habitual practice with 

respect to the notion of proof construction and develop an explanation for the formal praxis so 

established.   

(ii) Further, the study also sought to determine how the mathematical object evolves amongst 

undergraduate students.  In the process of achieving this goal I attempted to address pertinent 

questions such: what features of proof schemes are essential as opposed to mere accidental 

attributes among undergraduate student teachers‟ emerging categories of proof schemes?  The 

categories are the ways in which the proof scheme can be addressed such as its „‟ whatness‟‟ or 

essence.  The idea, here, is to get insights into the structure and form of the mathematical object as 

it evolves. 

Finally, by merging an explanation of the formal praxis (i.e., the kinds of proof schemes), and an 

account of how the proof schemes emerge I intend to develop an explanation about the terms in 

which students think around the concept of mathematical proof.  Precisely the aim was to establish 

a set a causal links in the ways student teachers think of mathematical proof.  In other words, the 

main goal was to develop an explanatory theory about students‟ conceptualisations of mathematical 

proof. 
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Chapter Three 

Related Studies 

This chapter presents results of literature survey in connection with students‟ learning of 

mathematical of proof.  In the process of examining related literature an attempt was made to 

explicate the gap the study sought to fill.  There are two main sections covered by this chapter.  The 

first section focuses on specific previous studies with a discussion of each piece of literature 

reviewed structured under the following headings: 

 The research problem, 

 What the study sought to accomplish including theoretical considerations that informed 

efforts to realise the articulated goals, 

 Data collection procedures, 

 Data analysis, 

 Findings/conclusions from the study. 

When each piece of literature was examined, I paid particular attention to flaws and strengths of the 

study in relation to the current study thereby illuminating the research gap as well as informing 

research design and analytical framework used in the present study.  The second section covers 

other pieces of literature reviewed about mathematical proof and proving for the same purpose of 

explicating the research focus of this study in the following areas: research instruments, data 

collection procedures, data analysis and reliability and validity matters.  

3.1 Studies on mathematical proof and proving 

First, I reviewed an article by Weber and Mejia-Ramos (2011) on, why and how mathematicians 

read proofs: an exploratory study.  With the goal of establishing research mathematicians‟ 

motivations and strategies for reading published proofs, Weber and Mejia- Ramos used semi-

structured interview guides to capture reasons why research mathematicians read proofs and how 

they behave when trying to comprehend published proofs.  To accomplish this goal the semi-

structured interview guide included the following question, what do you think it means to 

understand a proof?   The purpose of posing the question was to tease out the sort of behaviour 

demonstrated by the research mathematicians when reading proofs.    

I drew from Weber and Mejia-Ramos‟ semi-structured interview guide.  I modified the question 

item just described in order to explore students‟ proof behaviour during reflective interviewing.  

Hence, a similar item in the reflective interview guide was crafted as: In your opinion what is a 

mathematical proof?  It was anticipated that students descriptions of their conceptions of 
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mathematical proof would be parallel with proof behaviour demonstrated during their proof attempt 

to given tasks.  The connection between students‟ conceptions of proof and proof behaviour is in 

line with the realist stance that mental events and processes are real entities that are causally 

relevant to the explanation of individual and social behaviour (Maxwell & Mittapalli, 2007). 

For data analysis Weber and Mejia-Ramos used the following technique. The question posed was 

first stated. Then an excerpt of the exchange that took place between the research mathematician 

(interviewee) and the interviewer was presented.  For instance the following excerpt involving the 

interviewer (1) and one of the research participants with the code (M4) went on something like this:  

1: What do you hope to gain when you read this proof? 

M4: Okay. Two things. One is I would like to find out whether their asserted result is true,  

or whether I should believe that it's true. And that might help me, if it's something I'd like  

to use, then knowing it's true frees me to use it. If I don't follow their proof then I  

would be psychologically disabled from using it. Even if somebody I respect immensely  

believes that it's true. More importantly, I want to understand the proof technique in case I  

can use bits and pieces of that proof technique to prove something that they haven't yet, 

 that the original author hasn't yet proved (p. 334).  

This exchange was then followed by researchers‟ comments on the participant‟s motivation and 

strategies for reading published proofs (for details see Weber and Mejia-Ramos (2011, p. 334)).  

The data analysis strategy just described was found strategic for my study when drawing meaning 

from verbatim transcription texts of reflective interviews on students‟ proof attempts to assigned 

proof tasks and recorded student utterances of students‟ proof experiences. That is, I treated written 

responses and verbatim transcriptions in a similar manner and then followed by researcher 

comments just as was the case with Weber and Mejia-Ramos (2015).  

A perusal of Weber and Mejia-Ramos‟ result section revealed that their study uncovered many 

reasons for research mathematicians‟ motivations and strategies for reading published proofs such 

as searching for new ideas,  checking for utility and originality of ideas generated in theorems read 

(pp. 335-336).  While I acknowledge that these are important insights with respect to efforts to 

understand  the learning of mathematical proof I would like to take cognisance of the fact that these 

findings were based on participants‟ evaluations or validations of proofs supplied to them and not 

their own productions.  Azrou (2016) has emphasised that it is important “to analyse students 

written tasks produced individually” (p. 81).  Therefore the current study responded to this dearth in 

research by exploring student teachers thinking about mathematical proof based on students‟ own 
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“voices” by engaging students with proof tasks with the intention of eliciting students‟ thoughts 

about proof and proving.     

Second, a report of a research study by Stavrou (2014) on: Common errors and misconceptions in 

undergraduate mathematical proving by education undergraduates, was reviewed.  The study that 

took place in the context of two proof laden courses, namely, Number Theory and Abstract Algebra 

had two main goals.  One of the main goals was to identify common errors and misconceptions 

made by the students when proving.  The other major goal was to determine how students‟ proof 

behaviour would change when student teachers were made aware of those errors.  Accordingly data 

collection proceeded in two phases that I now describe. 

 Phase one of the data collection procedure involved examining homework given to 97 students for 

the purpose of compiling errors made by the students in the homework.  I observed some flaws in 

this procedure. The students worked on assigned tasks at home, so independent reasoning was most 

likely to have been compromised as students could present „workings‟ from other sources.  Novelty 

of proof tasks assigned was also likely to have been compromised because Stavrou (2014) stated 

that participants proved routine statements covering basic Number Theory and Abstract Algebra (p. 

2).  In the current study, such flaws were avoided by asking students to work on assigned proof 

tasks individually in the mathematics lecture room in order to get independent students‟ reasoning.   

Phase two of data collection involved 91 new students who had been informed of the common 

errors compiled from phase one responses. The purpose of informing them of errors was to detect 

any changes in proof behaviour as a result of that awareness.  The participants were then asked to 

work on the assigned task after being made aware of the errors made by the previous group.   

For data analysis, Stavrou presented the students‟ written responses and used those written solutions 

to describe the common errors and misconceptions as well as identifying emerging patterns in 

students‟ proof behaviour after they had been made aware of common errors and misconceptions.  

Similar to the analytic technique employed by Weber and Mejia-Ramos (2011) presented solutions 

were then followed by researcher comments that consisted of Stavrou‟s descriptions of common 

misconceptions identified from presented solutions and changes in students proof behaviour.  

Stavrou‟s analytic techniques were considered strategic in my study that sought to determine the 

kinds of students‟ proof schemes in the students.  Along with Stavrou‟s data analytic techniques, 

written responses were presented in a similar manner and then used to construct students‟ proving 

profiles.  However, as discussed earlier some flaws were noted in the methodology that includes 

assigning tasks as homework that could have compromised students‟ actual voices.  Informed by 

such flaws, I then sought to explore students‟ mental constructs around the notion of a proof on the 
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basis of students independent reasoning (Duval, 2006).  Major findings from Stavrou‟s study are 

now briefly described.    

With respect to research question one to which Stavrou sought to identify common errors made by 

students, the most common error was violation of proof framework (Selden & Selden, 2009).  

Students assumed that the conclusion was true before producing evidence to support that the 

conclusion was true yet the premises should logically imply the conclusion (Styliandles & 

Stylianides, 2009).  Another common error was that students only proved the implication statement 

of a biconditional statement and did not consider the converse of the statement.  To find out how 

students‟ proof behaviour change as a result of being aware of common errors made by the previous 

group, seven prospective teachers identified using categories of errors that emerged from the study 

of written responses were then interviewed using a semi-structured interview.  With regards to 

research question 2 to which Stavrou sought to determine changes in undergraduate students‟ proof 

behaviour, Stavrou‟s study revealed that students proceeded to use specific examples after 

producing valid deductive arguments further revealing the tenacity of the empirical proof scheme 

among students.  In other words, the education undergraduate students had relative conviction about 

proofs of statements produced (Weber & Mejia-Ramos, 2015).  Findings from the current study 

would be compared with these findings for similarities and differences for the purpose of building 

an explanation about the kinds of proof schemes held by student teachers and how the proof 

schemes emerged (Corbin & Strauss, 2008). 

Third, Doruk and Kaplan‟s (2015) research report on: Prospective mathematics teachers‟ 

difficulties in doing proofs and causes of their struggles with proofs, was reviewed.  Before 

discussing Doruk and Kaplan‟s study under the headings outlined earlier as research goal 

(problem), participants, data collection, data analysis and results, I begin by outlining students‟ 

difficulties with proof documented in Doruk and Kaplan‟s research report. Some of the difficulties 

students have with proofs include; 

 Not knowing how to make a proof structure using definitions 

 Being unable to use concept images  

 Not knowing how to begin the proof construction process 

Doruk and Kaplan‟s main goal was to uncover prospective teachers‟ difficulties with mathematical 

proof as well as revealing reasons for such difficulties from the perspective of the actors, i.e., the 

prospective teachers.  A case study was considered strategic for the purpose of studying prospective 

teachers‟ difficulties and their evaluations of the causes of such difficulties. 
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With respect to data collection the prospective teachers were asked to prove a theorem drawn from 

topology of real numbers.   Precisely the students were asked to prove that, every neighbourhood is 

an open set.  Students‟ responses were in written form. The data collection technique by Doruk and 

Kaplan was considered to be also strategic for the current study because documenting students‟ 

proof attempts have been suggested to be effective in illuminating students thinking (Manilla and 

Wallin, 2009).  Hence, the same data collection technique was adopted in the current study.  

However I somewhat questioned the novelty of the statement given that it appears to be routine 

since it is one of the basic ideas in most mathematics literature texts on topology of the real line. 

Written responses from 121 prospective teachers were assessed for correctness with the assistance 

of other specialists in Real Analysis.  

Doruk and Kaplan‟s semi-structured interview guide included the question: what is the reason for 

this difficulty in a person?  This question was posed with the intent to develop an account of the 

difficulties noted in written responses to the task that required students to prove that, every 

neighbourhood is an open set.  I found this data collection technique to be strategic for the current 

study that sought to account for the emergence of proof schemes among students.  Doruk and 

Kapalan‟s interview guide informed the formulation of the reflective interview guide questions used 

to address research question two in the current study, how do undergraduate students develop their 

proof schemes?  For instance, a review of Doruk and Kaplan‟s data collection section helped me to 

craft questions such as: what differences have you noticed at various scholastic levels in the way 

proofs are done? 

For content analysis of written responses, Doruk and Kaplan first presented the written responses 

and then described the difficulties they inferred from the student‟s proof attempts.  Doruk and 

Kaplan‟s data analytic technique was also considered to be strategic for the current study.  However 

I hold the opinion that numbers involved in Doruk and Kaplan‟s study were too large for one to 

apply content analysis efficiently.  The study involved 121 students during the initial phase.  

Emphasis in case studies should be on in depth study of few cases.  The researchers involved 7 

students in the interviews for the purpose of developing an account of the difficulties identified 

when research question one was addressed.  This was a strategic case study data collection 

technique which the current study derived from since it involved 10 students. 

Major findings from Doruk and Kaplan‟s study are now described.  Regarding difficulties 

encountered with proof the study revealed that prospective teachers were unsuccessful in proving.  

One of the difficulties encountered in proving related to use of definitions in proving.  Prospective 

teachers failed to state definitions correctly and failed to organize the definitions into a valid proof.  
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Second, prospective teachers failed to use mathematical language correctly.  For example, students 

confused notations and language because they did not grasp ideas involved in the propositions.  In 

such situations pre-service teachers failed to pay attention to the scope of the statement to be 

proved.  The consequences of such superficial understanding of proof concepts resulted in pre-

service teachers resorting to proving other propositions instead of the statement in question.  

Interview transcription texts were used to determine students‟ thoughts of the causes of their 

difficulties with mathematical proof.  Interview data revealed that prospective teachers were aware 

of difficulties they encountered with proofs.  The teachers expressed that they experienced negative 

feelings when they struggle with proofs.  Negativity about proving stemmed from the teachers‟ 

belief that proving was a useless activity that had no practical value in their lives.  So one‟s belief 

has an influence on one‟s ability to prove statements.  This finding parallels Furinghetti and 

Morselli‟s (2009) finding.  Interview data also revealed that the pre-service teachers preferred to 

learn proofs by rote memorisation of facts and they invested little study time to mathematical proof 

and proving.  Pre-service teachers attributed the difficulties they experienced with proofs to the way 

proofs are taught.  These findings would be useful in interpreting students‟ proof experiences at 

various scholastic levels from transcription texts from reflective interview data. 

Fourth, U ̌urel, Morali, Koyunkaya and Karahan‟s (2016) study on, Pre-service secondary 

teachers‟ behaviours in the proving process, was examined.  The major goal of the study was to 

generate insights about the kinds of proof behaviours revealed by pre-service teachers when 

attempting to prove a given proposition.  U ̌urel et al. studied 15 volunteer pre-service teachers of 

whom 5 were male and 10 were female.  To solicit data, each pre-service teacher was asked to 

prove a given proposition on the chalkboard by thinking aloud as the student teacher presented the 

proof.  Researchers used the first 5-7 minutes to remind the participant of the purpose and content 

of the study.  Researchers present in the room in which the pre-service teacher was presenting 

encouraged the student to explain his/her thoughts during the think aloud interview protocol.   

The data collection technique employed was considered strategic in conducting the current study.  It 

would be used in the current study for students‟ chalkboard demonstrations of their proof attempts 

during both mid-instruction and end of instruction assessment data collection phases.  However, for 

the purposes of triangulating data, that is, locating an unknown point from more than two known 

points, the chalkboard demonstrations were followed by reflective interview audits of the 

chalkboard demonstrations, something missing from the study by U ̌urel et al. (2016).  During data 

collection U ̌urel et al. did not impose time restriction on students as they engaged in think aloud 

interview protocols.  Along with U ̌urel et al. the current study would not also impose time 
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restrictions on students during chalkboard demonstrations.  However, in the study by U ̌urel et al. 

data collection was a one day event which made it impossible for the study to derive benefits 

associated with prolonged engagement in the research setting that would have allowed U ̌urel et al. 

to uncover less visible aspects about students‟ proof behaviour difficult to unravel in a single day 

(Lewis, 2009; Maxwell, 2004; Maxwell & Mittapalli, 2007).  Further, collecting data on a single 

day was likely to result in conversational fatigue on the part of participants and even the researchers 

themselves.  To counter the effects described here, data collection for the current study would take 

place over four days. 

For data analysis, the researchers started by transcribing data from the video recordings of the think 

aloud protocols.  U ̌urel et al. then applied content analysis to the transcription texts.  The 

researchers applied content analysis separately and then met to discuss emerging themes and codes.  

They agreed on three main themes from their separate content analyses of the data namely; 

behaviours shown before proving, behaviours exhibited when proving, and use of particular 

instantiations throughout the proving process.  Each emerging theme had two or more sub-themes 

(for details see U ̌urel et al. 2016, p. 210).  For the current study, the three major themes from 

U ̌urel et al. informed the crafting of the observation guide for the chalkboard demonstrations in 

that I divided the observation guide into sections that captured student proof behaviour before, and 

during chalkboard demonstrations.  Along with U ̌urel et al., I also checked for instances in which 

students used particular instantiations during written responses and chalkboard demonstrations.   

For data presentation and analysis U ̌urel et al. used a table that had 2 columns in which the first 

column identified the participant and second column entries consisted student‟s utterances from 

think aloud protocols.  The tables used by these researchers to display their results formed the basis 

of the data matrices I employed to draw meaning from students‟ written responses and chalkboard 

demonstrations about the kinds of proof schemes held by the students and how those proof schemes 

evolved among the students.  Similar to Weber and Mejia-Ramos‟ (2011) and Stravrou‟s (2014) 

analytic techniques, the tables by U ̌urel et al. were accompanied by some researcher comments.  

The researcher comments consisted of descriptions of student proof behaviour inferred from column 

2 transcription texts captured from the think aloud protocols.  I would employ the same analytic 

techniques in the current study for the purpose of describing proof scheme elements identified 

which would then be subsequently mapped to existing literature during efforts to develop an 

explanatory theory about students‟ schemes of argumentation when proving mathematical 

statements.   
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From the results section, the major proof behaviours revealed by U ̌urel et al. are now described. 

Regarding the first theme, main findings include reading the given proposition aloud and making 

some comments aimed at comprehending the given proposition.  Proof behaviour demonstrated 

before proving also included efforts to express the proposition in students‟ own words.  Efforts to 

express the proposition in students‟ own words included attempts to interpret language and meaning 

of mathematical symbols.  Regarding the second theme, that is proof behaviours shown during 

proving, pre-service teachers experienced difficulties in expressing their own opinions about proof 

construction particularly, when those opinions involved abstract ideas concerning the proposition.  

Further, ambiguous statements were a common feature of this major theme (see U ̌urel. et al., 

2016, p. 216). 

With respect to use of particular instantiations when proving, U ̌urel et al. found that some students 

could produce examples by themselves while others could do so through some guidance from the 

researchers.  It was also concluded that the pre-service teachers resorted to use of examples after 

failing to use mathematical representations to construct the proof of the proposition.  The purpose of 

employing examples was to concretise the proposition in order to interpret it.  These findings were 

significant to the current study since they provided some lens to evaluate students‟ proof attempts to 

the assigned proof tasks. 

In conclusion it can be noted that while I appreciate efforts by U ̌urel et al. to apply the emic 

approach, that is, to determine students‟ proof behaviour by engaging students in proof construction 

process during the  think aloud interview protocols, the fact that data collection took place in a 

single day and that just a single proposition was used in data collection point to the need for further 

studies that will allow the „voice‟ of the student to be heard in order to illuminate the kinds of 

student‟s schemes of argumentation during proving.  Hence, more studies in which the student‟s 

voice is prominent are vital to avoid what Hennink, Hutter and Bailey (2013) call a mere passing 

mention of an event with respect to proof and proving in mathematics education.  So in the current 

study, I responded to this paucity in studies based on the student‟s actual proof productions through 

prolonged involvement in the research setting.   

Finally, another piece of literature reviewed is a study that focused on: Providing written feedback 

on students‟ mathematical arguments: proof validations of prospective secondary mathematics 

teachers by Bleiler, Thompson and Kraj ̌vski (2014).  The study had two aims, one of which was to 

evaluate the effectiveness of an instructional sequence in improving pre-service teachers‟ abilities to 

validate arguments produced by high school students.  Another aim of the study was to determine 

the sort of errors pre-service mathematics teachers, (PSMTs), attend to when validating 
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mathematical arguments purported to be proofs by high school students.  To pursue these goals the 

researchers raised the following research questions.  (i). In what ways do PSMTs‟ validations of 

students‟ written arguments differ before and after the implementation of a set of structured 

activities? (ii). To which errors in authentic samples of high school students‟ written mathematical 

arguments do PSMTs attend when engaging in proof validation? 

Bleiler et al. then designed and implemented a sequence of intervention activities with the intent of 

increasing the pre-service teachers‟ awareness and skills in validating mathematical arguments.  

The design of the sequence of activities was informed by two critical ideas drawn from the three 

researchers‟ survey of literature on students‟ behaviour during proof validations. First, students 

have shown a tendency to use inductive arguments to prove mathematical propositions.  Second, the 

instructional activities were influenced by the finding that teachers tend to focus on local 

components of an argument rather than focusing on reasoning and the logic sustaining the entire 

argument (Knuth, 2002).  The consequences of focusing on the specifics as opposed to considering 

the proof as a holistic entity include the following proof behavioural tendencies.  In some cases a 

biconditional mathematical statement was considered to be valid when a proof of the implication 

statement     has been provided without proof of its converse,       The purpose of the study 

by Bleiler et al. was  thus  to determine the effectiveness of an instructional sequence that gave 

particular attention to these limitations in students‟ proof behaviour.  Precisely, the study sought to 

determine whether the instructional intervention could ameliorate the proclivity by students to use 

particular instantiations and to evaluate the tendency to focus on local aspects instead of considering 

the proof as a holistic entity.  These critical ideas from literature provided a window through which 

students‟ proof behaviour could be determined from the data sources for the current study about 

students‟ thinking of mathematical proof and how such thinking evolved among students. 

Data collection took place over a period of   semesters.  During the    week long semester, 

researchers met with the students for 3 hours per week.  Unlike in studies of Doruk and Kaplan 

(2015) and U ̌urel et al. (2016), Bleiler et al. had a prolonged engagement with the pre-service 

teachers.  The current study drew on the idea of prolonged interaction with study participants.  In 

the study by Bleiler et al. the instructional sequence was in implemented in 5 phases which I now 

describe. 

During phase one (pre-instruction phase) of the instructional sequence, pre-service teachers 

reflected on high school students‟ written arguments.  In the subsequent three phases pre-service 

teachers engaged in activities meant to change their proof validation behaviour in light of critical 

ideas derived from literature; the tendency to focus on local components instead of global features 
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of an argument and the tenacity of the empirical inductive proof scheme among pre-service 

teachers.  For example, during phases 2,3 and 4 the instructors held discussions with the pre-service 

teachers in which the intent was to motivate contexts on which the PSMTs could employ proof 

methods by deduction and  refutation.  For instance, in phase 2, pre-service teachers discussed and 

validated arguments used in Martin and Harel‟s (1989) study.   

Finally, there was phase 5 (post-instruction) where PSMTs evaluated mathematical arguments for 

the purpose of determining the impact the instructional sequence had on proof validation behaviour.  

Both the pre-instruction and post-instruction proof validation activities had explicit instructions that 

pre-service teachers had to follow.  These include the fact that a specific grading criterion for the 

arguments had to be followed by the PSMTs.   First, the pre-service teacher was required to assign a 

numeric score to the argument that ranged from 1 up to 4.  Scores 1and 2 were used to rate 

unsuccessful proof attempts while scores 3 and 4 were used for successful proof attempts.  A score 

of 4 was used for an error-free proof construction effort (see Bleiler et al. 2014, p. 113 for details on 

scoring criterion).  After scoring, the PSMTs were each asked to write a short paragraph justifying 

the scoring he/she had done.  Further, for wrong answers, PSMTs were asked to explain why the 

argument was wrong and to suggest how students could improve their solutions.   

I employed a similar data collection technique with undergraduate student teachers involved in the 

current study when conducting reflective interviews on students‟ proof attempts.  During the 

reflective interviews, students were asked to explain why they had decided that the given statements 

were either true or false and provide some justifications (further details are in the data collection 

procedure section of Methodology in Chapter Four).   

The data presentation style by Bleiler, Thompson and Kraj ̌vski (2014) was similar to the way 

U ̌urel et al. (2016) presented their data, that is, tables were used to facilitate the data reduction 

process (Miles, Huberman, & Saldana, 2014).  Bleiler et al. presented data in tables that contained 

the argument validated by the pre-service teachers.  The researchers‟ judgements of proof validation 

effort were then shown in parentheses.  The data reduction technique by these researchers informed 

the construction of data matrices in the current study.  However, the tables were modified to include 

a separate column for researcher comments and another column for researcher inferences of proof 

scheme elements instead of using parentheses.  For further details about how tables from studies by 

Bleiler et al. and U ̌urel et al. (2016) were modified to facilitate data reduction in the current study 

refer to Chapter Four on data analysis procedures section.  I now describe the data analysis 

procedure. 
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Data analysis was conducted per research question.  Research question one sought to determine the 

discrepancies between pre-service teachers‟ pre-instruction and post-instruction proof validations.  

To address research question 1 pre-instruction PSMTs‟ proof validations were compared with post-

instruction PSMTs‟ argument reflections for similarities and differences.  It can be inferred that 

Bleiler et al applied Corbin and Strauss‟ (2008) constant comparison analytic tool.  The current 

study would employ the same analytic tool used by Bleiler et al. to compare Mid-instruction 

assessment verbatim transcriptions with End-of-instruction assessment transcription texts of written 

responses to proof tasks.  A similar process would be used in the current study for the purpose of 

detecting changes in students‟ proving behaviour as a result of the teaching experiment conducted 

in the current study.  Data analytical tools for research question two, To which errors in authentic 

samples of high school students‟ written mathematical arguments do PSMTs attend when engaging 

in proof validation?,  are now described.  

With respect to research question 2 to which Bleiler et al aimed to determine the sort of errors to 

which the pre-service teachers attended to, the researchers were assisted by two mathematics 

educators and one mathematician in answering it.  The researchers and the assistants created a list 

of errors separately and then met to discuss their compilations.  When a similar error was identified 

they used „expert consensus‟ to formulate a composite statement that could be used to characterise 

that error.  The activity of comparing individually compiled lists of errors for the purpose of 

composing was some form of data reduction technique.  The current study would be influenced by 

this notion of composite ideas by Bleiler et al when main observations from student proof profiles 

would be used to construct composite tables of students‟ proof behaviours (for further details see 

data analysis section of the methodology chapter).    

I emphasise the point that the study by Bleiler et al. used data based on pre-service teachers‟ proof 

validations of arguments supplied to them by the researchers.  This justified the call for more 

studies based on students‟ own proof constructions instead of reflecting on arguments supplied by 

the researchers.  Hence, the current study sought to fill this gap in studies based on students‟ own 

constructions.  I now describe efforts by Beiler et al. to validate their findings.   

To validate their inferences from data, Bleiler,  et al. used their expert consensus, that is, the 

researchers met and agreed on emerging categories from the data about the effectiveness of the 

instruction sequence and the kinds of errors PSMTs attended when validating arguments given to 

them.  In place of expert consensus I would consider using member checks and conference 

presentation critiques by peers to validate conclusions drawn from data about the kinds of proof 
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schemes held by students as well as how the proof schemes emerged. Main findings from the 

reviewed research piece are now described. 

Regarding research question one that focused on student proof behaviour as a result of 

implementing the instruction sequence, the following findings were obtained.  Bleiler et al reported 

that the instructional sequence increased students‟ awareness of the fundamental limitation of the 

empirical proof scheme as shown by the evidence produced by PSMTs when validating empirical 

arguments produced by high school students.  In stark contrast, Bleiler et al. reported that PSMTs‟ 

superficial understanding of indirect methods of proving was persistent.  For instance, with respect 

to method of proof by contrapositive PSMTs did not realise the need to start by negating the 

consequent part of the implication statement,    , that could then lead to         

Research question two focused on the sort of errors PSMTs attended to when they validated 

arguments assigned to them.  The study revealed that students did not draw meaning from 

mathematical objects constructed.  For example, some students did not provide a justification why 

the fraction 
    

 
 is irrational when given that   is irrational and   is a rational.  Other errors also 

include endorsing arguments with imprecise or incorrect definitions and violation of the proof 

framework when proving (for exemplifications see Bleiler et al, 2014, p. 117).   These findings 

provided a window through which students‟ written responses and chalkboard demonstrations were 

examined in order to determine the kinds of proof schemes held by students. 

While the studies discussed thus far pointed to the need for more studies that examine students‟ 

thinking as they engage with mathematical proof,  I considered it necessary to survey other studies 

of mathematical proof in order to develop a comprehensive view of students‟ proof behaviour.  

Hence, the need to further explicate the research gap motivated me to examine other research 

studies on mathematical proof.  So, the next section focuses on other ideas gathered from literature 

search of students‟ proof behaviour.  I reiterate that the realist position that emphasises that mental 

events and processes are causally relevant to the explanation of student behaviour informed 

literature search.  

3.2 Studies on student teachers’ proof behaviour 

Studies on students‟ understandings of mathematical proof run the gamut from university level 

where studies have involved pre-service mathematics education student teachers and mathematics 

majors (e.g., Housman & Porter, 2003; Stylianou, Chae & Blanton, 2006; Varghese, 2009) to the 

secondary  level where the thrust has been proof validations, wherein students reflected on and 

evaluated arguments supplied by the researcher (Balacheff, 1988; Knuth, 2002  Stylianides & 
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Stylianides, 2009, p. 328) and to the perspective of pre-service elementary teachers (e.g., Martin & 

Harel, 1989).  Some studies have uncovered a variety of phenomena regarding the ways students 

comprehend and appreciate the notion of  mathematical proof that include holding an empirical 

conception of mathematical proof  (e.g., Stylianides & Stylianides, 2009;  Stylianides, 2011).  Other 

studies have also clarified the nature of patterns of that exist between students‟ proof schemes and 

problem solving strategies (Housman & Porter, 2003), as well as revealing student teachers‟ 

superficial understanding of the notion of a counter example.  In the following section, I review 

those studies and relate them to thrust of the present study.  

Recio and Godino (2001, p. 83) with the aim of determining the nature of arguments student 

teachers find convincing  in different institutional contexts  studied proof schemes of lower level 

(year one) mathematics students at University of C‟ordoba in Spain.  During data analysis students‟ 

proof schemes were then related to different contexts of mathematics, such as daily life, 

experimental sciences, logic and mathematical foundations.  Their main conclusion pointed to 

students‟ difficulty with axiomatic proofs.  The study was done at transitory phase, that is, a few 

days after commencement of university mathematics courses.  Many studies, and indeed from my 

personal experience with the concept of mathematical proof, have shown that both elementary and 

secondary school mathematics curricula are characterised by low intensity of mathematical proof 

activities (Stylianides, 2007, p. 289, Stylianides & Stylianides, 2009, p. 237).  The current study 

seeks to uncover the kinds of proof schemes held by undergraduate student teachers after those 

students would have learnt many introductory courses involving the notion of mathematical proof.  

Housman and Porter (2003) investigated patterns among proof schemes of 11 above average 

mathematics students and strategies the students used to learn a new mathematical concept.   

Housman and Porter used task-based interviews to elicit students expressions of mathematical 

arguments they find convincing and these expressions were classified according to Harel and 

Sowder‟s (1998) taxonomy of proof schemes.  Task-based interviews, were also used to elicit 

expressions that contained strategies used by upper level undergraduate mathematics students to 

learn a new mathematical concept and those expressions were categorised according to a taxonomy 

of learning strategies suggested by (Dahlberg &  Housman, 1997).  Housman and Porter went on to 

examine patterns among learning strategies and proof schemes and the following were observations 

were made.  The study revealed an increased awareness of the fundamental limitation of inductive 

explorations as only one student exhibited an empirical conception of proof.   The student with 

empirical conception, as if conforming to the dictates of the proof scheme category, generated 

examples far more than other students.    All except one student exhibited two or more proof 

schemes and one student actually exhibited four different proof schemes
 
thereby revealing a high 
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intensity of ontological oscillations.  The students who demonstrated an external conviction proof 

scheme reached an impasse in proving as they could not generate examples, reformulate concepts 

and let alone concept usage.  The same pattern regarding use of learning strategies observed with 

students in the external conviction scheme was also noted by (Stylianou, Chae, & Blanton, 2006, p. 

57).  Students who exhibited the axiomatic proof scheme were successful in reformulating concepts, 

and could engage in example usage.  Further, students within the axiomatic proof scheme 

demonstrated high mathematical sophistication in their concept understanding schemata (Moore, 

1994) in the sense that the students did not generate examples and non-examples spontaneously, but 

rather examples were generated only when it was necessary to disprove conjectures (Housman & 

Porter, 2003, p. 155).   

Such research studies as (Housman & Porter, 2003; Recio & Godino, 2001) while providing useful 

information  for mathematics educators and mathematicians on the nature of proof schemes held by 

students, they do not elaborate on use of key ideas in characterising student teachers‟ proof 

schemes.  So the current study sought to elucidate on how students access and use technical handles 

and evoke conceptual insights when involved with proof construction tasks.  It was therefore 

anticipated that studying students‟ use of key ideas could then shed light on kinds of proof schemes 

held by students.  Further, an examination of student actions, utterances and written responses 

during their engagement with the proof tasks could provide important insights into whether the 

tasks were completed through either or a mixture of rote memorisation or  generational memory in 

the sense suggested by Gowers (2007, p. 40). 

Informed by the notion that the process of constructing a mathematical proof is similar to the 

process of solving a mathematical problem, Stylianou, Chae,  and Blanton (2006) studied 34 

undergraduate  mathematics students enrolled in  a first year course with a strong emphasis on 

mathematical proof.  Transcribed audiotaped interviews were examined to identify, for each 

student, his/her proof scheme using Harel and Sowder‟s (1998) taxonomy.  Stylianou et al. went on 

to look for possible patterns of the proof schemes observed.  Results revealed the dominance of the 

empirical proof scheme (18 out of 34 students) and a significant proportion (12 out of 34 students) 

were in the external conviction proof scheme category.  Further, students who had exhibited 

external conviction proof scheme reproduced definitions but there was no further explanation or 

discussion to fit those definitions into the relevant problem situations and the students reached an 

impasse (Stylianou, Chae, & Blanton, 2006, p. 58).  This result parallels Doruk and Kaplan‟s (2015) 

finding that pre-service student teachers had difficulties in using definitions correctly to prove 

theorems and propositions. Students with empirical proof schemes differed widely from the 

aforementioned students in their proof behaviour.  Students within the empirical proof scheme 
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category tried many numeric examples but lacked symbolic representations of the problem.  Few 

students (2 out of 34) who exhibited an axiomatic proof scheme introduced relevant definitions  and 

produced longer segments of analysis and  could link  new information to the initial problem 

(Stylianou, Chae, & Blanton, 2006, p. 58).   

While, the research generated useful information on problem solving patterns within a proof scheme 

category, it did not shade light on light on the level of accessibility of conceptual insights and 

technical handles during students‟ attempts to resolve the proof tasks.  For instance, for those 

students with an empirical conception of proof, what is the nature of the students‟ key ideas that 

potentially could have hindered progression to higher proof scheme levels such as the 

transformational proof scheme?  The current study aims to contribute to our understanding of 

students‟ schemes of argumentation by developing an explanation about why undergraduate student 

teachers would produce proofs in the manner they would do as they engaged with proof tasks 

assigned. 

The theoretical framework guiding the current study is scientific realism that holds that the 

universals (properties) of the entity, that is, the proof scheme have an objective reality.  However, 

according to realism there can be more than one way of knowing this reality (Maxwell, 2004).  

Hence, the purpose this study was to uncover the nature of existence of this reality among the 

Zimbabwean undergraduate students using different sources of data.  The word reality here is used 

to refer to the nature of students‟ thinking about mathematical proof.  It was anticipated this would 

be illuminated through student proof behaviour revealed as students engaged in mathematical 

proving (Maxwell, 2004; Pawson & Tilley, 2004). 

Varghese (2009) took a case study approach involving 17 prospective mathematics student teachers 

to examine both students‟ conceptions and their ability to construct proofs of given mathematical 

statements (Varghese, 2009, p. 3).  All the students were mathematics majors who had completed 

undergraduate courses and just commenced studies on pre-service teacher education.  The study  

findings regarding  students‟ conceptions of mathematical proof indicated that the dominant 

meaning of proof was one in which proof is viewed as serving the verification purpose (9 out of 17) 

and the least number of responses was in the category where proof was considered by students as a 

tool  for  explaining  and discovering of mathematical knowledge.  Regarding proof construction 

process, 13 out of 17 suggested a teacher guided step- by- step procedure as the way to complete 

proof tasks.  It can thus be inferred that Varghese‟s study revealed the dominance of the external 

conviction proof scheme, specifically the authoritative sub-proof scheme where the teacher and the 

textbooks were authorities for the right answer as the step-by-step procedures suggested by the 
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students were supposed to be led by the teacher.  Proof behaviours revealed from Varghese‟s study 

were important lens for explaining proof behaviours demonstrated by the students involved in this 

study.  Further, along with Varghese, the current study also employed the case study to allow 

prolonged engagement with students. 

Motivated by the desire to confront Balacheff‟s (1988) categorisation of proof schemes, Varghese 

(2011) administered the tasks used by Balacheff (1988) to a group of university students who had 

rich proof experiences.  Varghese‟s decision to evaluate  Balacheff‟s  (1988) taxonomy of proof 

schemes had stemmed from the realisation that Balacheff had earlier  worked with thirteen and 

fourteen year old children who had limited experience with mathematical proof.   The study showed 

that most students‟ written responses and verbal utterances indicated traces of the thought 

experiment, the highest level of Balacheff‟s taxonomy of proof schemes in terms of mathematical 

sophistication corresponding to the axiomatic proof scheme in Harel and Sowder‟s taxonomy of 

proof schemes.  The results were not surprising given the high intensity of mathematical proof in 

the university curriculum.  The current study sought to establish the kinds of students‟ thinking at 

university level in light of the proof behaviour revealed by participants involved in Varghese‟s 

study. 

In a study involving 39 prospective elementary mathematics education students (Stylianides & 

Stylianides, 2009) examined the students‟ ability to construct and evaluate proofs.  The combined  

„construction-evaluation‟ activity employed by Stylianides and Stylianides in their study helped to 

illuminate prospective teachers‟ understandings of proof that tend to defy scrutiny when using the 

technique of asking students to indicate arguments they find convincing from a set of arguments   

supplied by researchers.  In other studies students were required to construct proofs of given 

statements without being required to evaluate the arguments.   In Stylianides and Stylianides study 

some student teachers provided empirical arguments as evidence of mathematical proofs.  However 

an analysis of their evaluations revealed that the students were conscious of the limitation that 

inductive explorations, even though readily accessible to students as a method of verifying 

mathematical propositions, do not count as proofs since they do not offer complete and conclusive 

evidence about the truth of a conjecture.  Thus, an empirical argument is not a valid general 

argument in the sense suggested by (Stylianides & Stylianides, 2009, p. 239).  Being valid means 

the mode of argumentation involves use of deductive logical inferences from a set of axioms, 

definitions and previously proven theorems.  In other words, a general mathematical argument 

makes use of all cases from the scope of the statement.  This property of an argument is usually 

satisfied by picking arbitrary elements from the domain of the statement (Stylianides, 2007, p. 292; 

Stylianides & Stylianides, 2009, p .239).  Stylianides and Stylianides noted that it is highly probable 
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that if students‟ proof constructions had been considered without the accompanying evaluations a 

false conclusion that students have an empirical conception could have been reached.   

From the above discussion it can be observed that the combined „construction-evaluation‟ technique 

used by Stylianides and Stylianides (2009) helped to illuminate a correct proof conception by 

teachers of the distinction between proofs and empirical verifications.  This suggests that an 

element of student self-evaluation of the validity of one‟s own proof construction is valuable.  

Hence, the present study would employ a similar strategy whereby student teacher informants 

would be asked to evaluate their written responses, transcriptions from chalkboard demonstrations 

and reflective interviews for the purpose of determining the kinds of Zimbabwean undergraduate 

student teachers‟ conceptualisations of mathematical proof.    

In another study by Iaanone and Inglis (2011, p. 1), prospective elementary school teachers showed 

awareness of the limitation of empirical arguments.  In their analysis of 222 proof attempts 

produced by 74 first year mathematics students the researchers found that from  the onset of year 

one most students in their sample could associate the request for a mathematical proof  with the 

production of a formal deductive argument.   Findings by Iaanone and Inglis (2011) and Stylianides 

and Stylianides (2009) indicate lack of development in student teachers‟ proof schemes beyond the 

empirical proof scheme.  In spite of their understanding of the limitations of empirical arguments, 

students justified mathematical conjectures through empirical arguments by default, implying that 

these are the only forms of mathematical reasoning accessible to them, that is, within their 

conceptual reach.  There is therefore, an intellectual need for advancement in students‟ proof 

schemes beyond use of particular instances.  Such an objective can eventually be realised perhaps 

by first increasing our understanding of the nature of students‟ thinking about mathematical proof 

and how such thinking evolves. 

Furthermore, manifestations of a deeply rooted empirical proof scheme have been unearthed by a 

several studies.  For example, Harel and Sowder (1998, p. 254) reported that there is a natural 

tendency to evaluate conjectures probabilistically, that is, through use specific instances.  Lovell 

(1971) as cited in Harel and Sowder (1998, p. 254) noted a high percentage of 14-15 year-old 

students in his study employed a sequence of particular examples to derive the truth of a 

mathematical statement.  In yet another study by  Martin and Harel‟s (1989), out of the 101 pre-

service student teachers who wrote a written test in which the students had to evaluate given 

arguments, Martin and Harel found that as many as 80% of the elementary student teachers relied 

on empirical explorations to prove mathematical statements.  Interestingly, to reach conviction 

about the truth of a mathematical statement the students did not employ a multitude of cases but 
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rather a single example was used.  Students believed that since the single example was randomly 

chosen and it satisfied the general statement, then it qualifies as „proof‟ of the statement.  I reiterate 

that empirical arguments do not count as proofs.  Stylianides (2011, p. 2) has reported that there is 

lack of grasp of this fundamental limitation of inductive argumentation among pre-service teachers. 

However, by presenting the above severe limitation of empirical proofs, I had no intention to 

devalue the importance of inductive explorations in conjecturing and proving in mathematics.  

Some benefits derived from empirical explorations include, identifying patterns or finding the 

property leading to formulating and communicating the conjecture.  Put another way, use of specific 

examples promotes understanding and appreciation of the problem (Stylianides, 2007, p. 290; 

Morselli, 2006, p. 185).  Other benefits of inductive thinking are: offering insights into what needs 

to be proved through exploring the conjecture and discovering theoretical arguments that can 

potentially be mobilised in the subsequent proof construction process (Morselli, 2006, p.185).  

Further, example usage has been shown to have explanatory power in mathematics in general and in 

particular in proof and proving activities.  

Kedem (1982) cited in Harel and Sowder (1998, p. 235) found that students did not have an 

appreciation and understanding of proof as a valid general deductive argument that does not require 

further empirical verifications.  Thus even after producing a valid general deductive argument of a 

mathematical statement, the students still wanted to verify the proven result using one or more 

specific examples.  Some studies also found that students have a shaky grasp of the notion of a 

counter example.  The students have been reported to hold the conviction that even if a counter 

example to mathematical assertion has been found; the statement still stands, because the counter 

example is just an exception (Harel & Sowder, 1998, p. 235).  The aforementioned proof 

conceptions are serious threats to students‟ opportunities to learn proof.   I now discuss another 

major finding reported in literature that pertains to how student teachers evaluate mathematical 

arguments. 

Knuth‟s (2002) study involving 16 secondary mathematics teachers revealed that a large proportion 

of the teachers (10 out of 16) failed to identify an invalid proof.  The teachers in Knuth‟s study 

validated a biconditional statement in which only the proof of the converse of the statement had 

been given.   A proof to a biconditional statement consists of proofs to both the implication and the 

converse of the statement.  Knuth attributed this proof behaviour to a tendency by teachers to focus 

on local details of a proof instead of adopting a holistic approach where the overall reasoning and 

assumptions should show an alignment with the global components of the argument.  Knuth‟s 

finding parallels Bleiler, Thompson and Kraj ̌evski‟s (2014) finding on pre-service mathematics 
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teachers‟ proof validation efforts. According to realism mathematical entities have an objective 

existence independent of the human mind.  A biconditional mathematical statement being one of 

such mathematical entities, have an objective truth independent of our conceptual schemes.  

Ontology is about the nature of relations and categories of being of the entities.  What is the level of 

awareness of these entities (biconditional statements) among undergraduate student teachers in 

Zimbabwe?  Techniques such as the one described can be useful in determining students‟ thinking 

about mathematical proof in situations involving biconditional statements.  Hence, this research 

finding influenced my selection of proof tasks included in Mid-assessment and End-of-instruction 

assessment data collection tools.  I anticipated that arguments produced by students as proofs of 

biconditional statements would help to reveal the kinds of proof schemes held by the students.   

Proof scheme taxonomies discussed in Chapter Two, offer a comprehensive view of the notion of a 

mathematical proof in several ways that include the fact that the taxonomies all indicate increasing 

levels in mathematical sophistication.  The proof classification schemes concur that mathematical 

justifications are likely to proceed from inductive towards the deductive end (Stylianides, 2011, p. 

2).   However the focus of the taxonomies has been mainly on the types of arguments of arguments 

students find convincing.  Stylianides and Stylianides (2009) as stated before have employed the 

combined „construction-evaluation‟ strategy.   Other studies have focused on strategies used by 

students to resolve „prove that …‟ tasks (Iaanone & Inglis, 2011).  Further, Iaanone and Inglis have 

suggested that current research focus should be on process used by students to produce deductive 

arguments.  But in many studies little if any attention has been made to characterise the kinds of 

proof schemes held by students in terms of students‟ own proof attempts.  

The present study is focused on Zimbabwean undergraduate students‟ conceptualisations of 

mathematical proof.  Based on a disciplined study of a phenomenon that goes beyond  mere thick 

descriptions of what is being studied, in conceptualising one develops one or more concepts to 

explain the causal relationships in the phenomenon being studied (Punch, 2005; Yin, 2009).  

Accordingly the study seeks to explore the kinds of students‟ mental constructs around the notion of 

proof and explain in terms of theoretical constructs such as technical handles and conceptual 

insights, how students develop their proof schemes.  

The terms proving and proof assume different meanings depending on the specific contexts in 

which the concepts are considered.   Varghese (2009, p. 4) posits that the definition of a proof may 

be based on the purpose of teaching proof, the forms of reasoning involved in the proving process, 

and the needs the process of proving is seen to address such as verification, explanation, 

systematization, and intellectual challenge (Pfeiffer in Bleiler, Thompson & Kraj ̌evski, 2014, p. 3).  
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It can be argued that just as there are concept images associated with student understandings and 

appreciation of a technical term, there are also theorem images and proof images (in the form of 

diagrams, associations)  which parallel and support undergraduate student teachers‟ understandings 

of mathematical proof (Hanna & Mason, 2014).  In this regard the current study is interested in the 

forms of reasoning (modes of argumentation) leading to student teachers poof and theorem images 

(Stylianides, 2007, p. 291).  Thus the study aims to explore students‟ thoughts about proof and 

proving as illuminated in their proof and theorem images, designated in this study as proof schemes.  

Specifically, the study aims to develop a characterisation of students‟ proof schemes in terms the 

notions key ideas, proof framework, hierarchical order (Raman, 2003; Selden & Selden, 2009).  

Thus, the study aims at developing an explanation grounded in the data about the kinds of proof 

schemes held by student teachers.    

The key ideas provide a skeleton of the reasoning involved in the construction of proof.  How can 

the undergraduate Zimbabwean student teachers‟ proof schemes be characterised in terms of key 

ideas referring here to conceptual insights and technical handles) of a proof (Sandefur, Mason, 

Stylianides & Watson, 2013).   Much of the focus of the several proof scheme taxonomies has been 

on the type of arguments students find convincing from those supplied by researchers (Balacheff, 

1998; Harel & Sowder, 1998; Housman & Porter, 2003).  Little attention has been given to 

processes students use to produce arguments meant to validate conjectures.  This review of 

literature has shown an increased awareness among students that valid deductive argument 

constitute proof and at the same time that empirical arguments should not be elevated to the status 

of proof. Why then do student teachers continue to resort to use of empirical verifications as proofs 

of conjectures?  It is therefore the goal of this study to explore students‟ thinking processes as they 

engage with proof tasks. 

It can be seen from the foregoing discussion that few studies have focused on students‟ justification 

efforts on the basis of students‟ actual proof constructions (e.g., Doruk & Kaplan, 2015; Stylianides, 

2009).  Further, even in such cases when attempts were made to determine students‟ proof 

behaviour on the basis of their own constructions (e.g., Doruk & Kaplan, 2015; U ̌urel at al. 

(2016)), this Chapter has uncovered flaws that were characteristic of such studies.  Flaws include 

lack of long term involvement of the researchers, and limitation associated with data collection 

tools such assigning tasks that seemed to be routine exercises in Topology.  Hence, this study is part 

of efforts to respond to the paucity of studies that explore students‟ thinking based on their own 

productions and guided by awareness of flaws in methodologies discussed in this chapter. 
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Chapter Four 

Research Methodology 

4.1 General approach 

Blumer (1969) cited in Corbin and Strauss (2008, p. 65), commenting on the purpose of an 

exploratory research study writes: 

The purpose of an exploratory investigation is to move towards a clearer understanding of how one‟s 

problem is to be posed, to learn what are the appropriate data, to develop ideas about significant lines of 

relation and to evolve one‟s conceptual tools in line of what one is learning about in the area of life. 

One of the goals of the study was to establish the kinds of proof schemes that characterise student 

teachers‟ conceptualisations of mathematical proof.  The other goal of the study was to generate 

insights about how the mathematical object (proof scheme) emerges.  Scientific realism was 

considered to be strategic for this investigation into students‟ thinking around mathematical proof.  

van Fraassen (1980) asserts that scientific realism is used to denote the precise position on the 

question of how a „scientific theory‟ should be understood and what scientific activity really entails.  

In the current study the “scientific theory” is the student teacher‟s conceptualisation of 

mathematical proof.  The term “scientific activity” in the context of this study refers to proof 

construction activities and processes of proof understanding by the student teachers.  Further, 

“scientific activity” is also used in this study to describe how students‟ proof experiences shape 

their conceptualisations of mathematical proof.  The question of how the student‟s 

conceptualisation of mathematical proof should be understood can be answered by ascertaining the 

distance between expert conceptualisations and learners‟ conceptualisations of mathematical proof.  

Huge discrepancies between students‟ conceptualisations and those held by research 

mathematicians indicate limited command of proof knowledge.  Ideally, students should develop 

proof understandings held by research mathematicians (Weber & Mejia-Ramos, 2015).        

Scientific realism enables a researcher to study what Maxwell (2004) calls local causality.  Local 

causality refers to specific events and processes that illuminate the nature of the basic social 

problem (Charmaz, 2006; 2014).  The basic social problem in this regard was students‟ superficial 

understanding of mathematical proof.   So by applying scientific realist ideas I could determine the 

nature of the basic social process (Charmaz, 2006, 2014).  The basic social process refers to what 

students actually do in dealing with the basic social problem.  Hence, the ontology, that is, the 

structure of the nature of the basic social problem was determined by applying realist ideas. 

Scientific realism holds that the context of the phenomenon being investigated is intrinsically 

connected to the causal explanation that can be developed (Maxwell, 2004; Maxwell & Mittapalli, 
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2010; Pawson & Tilley, 2004).  This is a critical realist stance that allowed me to consider the 

context of the teaching experiment when trying to build causal explanations for the kinds of proof 

schemes held by undergraduate students.  The influence of context on students‟ proof experiences 

was also considered.  The influence of context as a key feature of scientific realism was crucial in 

analysing students‟ emotions, utterances during data analysis.  Precisely, the scientific realist 

positions articulated here influenced my analytic framework.   

Furthermore, in the realist theoretical perspective direct observation of causal mechanisms and 

processes that connect events in proof constructions is even possible in single cases and situations 

without requiring a comparison group in which the presumed causal effects are absent or present 

(Maxwell, 2004;  Maxwell & Mittapali, 2007).  This realist position affirms the value of case 

studies in developing causal explanations in qualitative studies which was really the method of this 

study.  Hence, the realist process approach which can be used to unravel causative mechanisms and 

processes for the occurrence of individual and social phenomena in case studies was considered to 

be strategic for this study.   

The argument presented here has shown that case studies producing textual forms of data can 

generate causal explanations through direct observation of causative mechanisms and processes 

connecting proof events.  The main aim of this study was to generate an explanatory theory 

grounded in the data that accounts for the kinds of proof schemes held by undergraduate student 

teachers as well as developing a hypothesis about how students develop those proof schemes.  The 

research methodology had to account for the nature of existence of a mathematical object (proof 

scheme in this case) by addressing the following research questions:  

(i) What kinds of proof schemes characterise undergraduate mathematics student 

teachers‟ conceptualisations of mathematical proof? 

(ii) How do the undergraduate student teachers proof schemes come into being?  

The concern here was on the terms in which student teachers think of the mathematical object, that 

is, the concept of mathematical proof.  Hence, the study focused on conceptualising the kinds of 

proof schemes and developing a hypothesis about how proof schemes emerge.  Precisely, I specify 

the two objectives of this study.  First, the intent of the study was to develop an explanation about 

the kinds of proof schemes held by students.  Second, the goal was to build a hypothesis about how 

proof schemes emerge.  The explanatory theory and the proposition are outputs from the research as 

opposed to being inputs to the research process as is the case with most quantitative research 

designs.   
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In the current study the hypotheses evolved from the study.  This is compatible with qualitative 

research methodology that was used in this research with a focus on generating hypotheses as 

opposed to quantitative research methodology where the major goal is verification of pre-specified 

hypotheses.   Second, the generalisations I would make from the study are called naturalistic 

generalisations (Starke, 1988 as cited by Punch, 2005) or alternatively referred to as theory-

connected or analytic generalisations.  Generalisations are described as such because they involve 

understandings that are furthered or abstracted from data.  Hence, a qualitative research design was 

used in this study and a discussion of the research design now follows.  

4.2 Research Design 

A research design is an overall plan of how a piece of research will be executed (Punch, 2005, p. 

241).  The research design is concerned with a shift from what data will be collected to a 

consideration of how data will be collected and from who the data will be collected under a specific 

theoretical framework (Punch, 2005, p. 243).  A case study research design was used in this study 

because of the following reasons.    The aim of the study was to develop an in-depth understanding 

of the kinds of proof schemes that characterise students‟ conceptualisations of mathematical proof 

and how students‟ proof schemes emerge.  In this study a design that employed a scientific realist 

approach was used.   A case study allows an in-depth understanding of a case or perhaps a small 

number of cases using methods considered strategic by the researcher (Punch, 2005, p.143). 

Miles and Huberman (1994) define a case as a phenomenon that exists within some bounded 

context.  A case can assume several forms such as an individual, a role, a process, an incident or an 

event, a small community or a policy (Punch, 2005, p. 144).  In the current study, the individual 

student teacher is a case implying that there were 10 cases involved in the study.  The proof scheme, 

which consists of what is both ascertaining and persuading to an individual when validating 

mathematical conjectures, is the unit of analysis (i.e., object of study)  for proving process for which 

the study intended to develop an in-depth understanding among student teachers at university level.   

In as much as there are different themes that make up cases, e.g., process, policy, individual, 

incident, there are different types of case studies classified according to the purpose the study seeks 

to accomplish.  Stark (1994) in Punch (2005) distinguishes three types of case studies.  First, there 

is an intrinsic case study whose goal is to have an in-depth understanding of a case.  The second 

type of a case study is called an instrumental case study where a researcher aims to generate 

insights on or refine theory using a particular case studied.  Third, there is a collective instrumental 

case study which is an extension of the instrumental case study design that covers several cases in 

order to generate insights about a phenomenon (Punch, 2005, p. 144).  Similarly, Yin (2009) 
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distinguishes two case studies: an explanatory case study and an exploratory case study.  Baxter and 

Jack (2008) write that the difference between the two types of case studies is that the former 

addresses the why question whereas the later addresses the how question.  Hence, in the context of 

this study a collective instrumental case study with an explanatory bent was used to establish a set 

of causal links within the student teachers‟ proof schemes.  Further, a collective instrumental case 

study with an exploratory orientation was used to address how proof schemes evolve among student 

teacher informants. 

A scientific realist process approach treats mental events and processes as real observable 

phenomena which were causally relevant to the explanations of students‟ behaviour, emotions and 

actions as they engaged with proof tasks (Maxwell, 2004; Maxwell & Mittapali, 2007).  Further, the 

realist research methodology allows the direct observation of mental processes and causative 

mechanisms involved in proving in a few cases or even single cases (Maxwell, 2004, Yin, 2009).  

Hence, we can infer that there is compatibility between the realist positions and the case study with 

regards to the two research questions the study addressed.   Therefore, it was on the basis of these 

advantages of the case study that I considered it to be strategic in pursuing the goals of this study. 

The purpose of the research design was therefore, to fit the research questions to data.  „Fitting‟ data 

to research questions means that relevant data were gathered to generate insights about 

undergraduate student teachers‟ conceptualisations of mathematical proof.  In other words, it was 

anticipated that data would give some sense of students‟ proof images (Hanna & Mason, 2014).  For 

instance, the assertion that students espouse an external conviction proof scheme could be evaluated 

on the basis of data elicited.  Data were in the form of written responses to proof tasks and students‟ 

utterances during chalkboard demonstrations and interviews.     

This study sought to explain the kinds of proof schemes held by undergraduate students.  In other 

words, the focus was on establishing the causal links that characterise the kinds of proof schemes 

held by undergraduate student teachers.  Precisely, this is the research objective of research question 

one:  What kinds of proof schemes characterise undergraduate students‟ conceptualisations of 

mathematical proof?  In this regard, the study aimed to develop an explanation about how the 

various categories of proof schemes can be differentiated from each other in terms of the manner in 

which students utilise underlying mathematical ideas involved in proof construction process.  The 

underlying ideas include: key ideas, notion of intellectual need and epistemological justification, 

components of a proof and justification types (Koichu, 2012; Sandefur, Mason, Stylianides & 

Watson, 2013; Selden & Selden, 2009; Weber & Alcock, 2011).  I re-cap here that proof scheme 

categories show increasing levels of mathematical sophistication from the external conviction proof 
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scheme right through the empirical up to the analytic proof scheme.  Hence, students‟ level of 

accessibility to key ideas and other underpinnings of the concept of proof in this explanatory case 

study provided a window through which I could differentiate categories of proof schemes.  The key 

ideas refer to heuristic ideas (conceptual insights) and procedural ideas employed during proof 

construction.    Hence, a collective instrumental case study that is explanatory in form was used to 

realise the goal stated, that is, to develop an explanation about the causal links within different proof 

scheme categories (Yin, 2009, p. 7).   

A major goal of this study was to develop an explanation about the kinds of proof schemes held by 

undergraduate student teachers.  It is therefore, important to clarify on what we mean by building an 

explanation in a case study.  To explain a phenomenon is to stipulate a set of presumed casual links 

about it (Yin, 2009, p.141).  By stipulating causal links one is required to provide an account of 

why and how something happened in the manner it did.  For example, why is there so much tenacity 

in the empirical proof scheme and other cognitively lower order proof schemes?  We describe 

tenacity as holding on to ideas and beliefs because they have been accepted as facts for a long time.   

Habits lead us to believe that something is true despite injections of contradictions to the fact.  For 

instance, as observed in Chapter One empirical verifications continue to dominate student teachers‟ 

proof construction attempts despite efforts aimed at increasing grasp of the fundamental limitation 

of the inductive proof scheme.   A detailed account of reasons for the persistent use of inductive 

explorations during proving constitutes an explanation.  An explanation should therefore reflect 

critical insights that contribute to theory building (Yin, 2009, p. 141).   

This study also intended to develop a conceptualisation of how proof schemes emerge.  In other 

words, the intent was to develop an in-depth understanding of how students‟ proof schemes evolve, 

that is, how students develop their proof schemes.  Punch (2005) clarifies the meaning of 

conceptualisation as follows: 

To conceptualize means on the basis of the disciplined study of this case and using methods 

for analysis which focus on conceptualizing rather than on describing [...], the researcher 

develops one or more new concepts to explain some of what has been studied (p. 146). 

Hence, the objective of the present study in this regard was to develop a proposition about how 

proof schemes emerge in terms of mathematical underpinnings of a proof that include: technical 

handles, and conceptual insights, modes of reasoning in proof construction and theory of actions in 

proving (Alcock, 2010; Sandefur et al., 2013; Selden & Selden, 2009).  In other words, I strived to 

conceptualise, that is, to develop one or more concepts that explain how students‟ proof schemes 

emerge.  Hence, a collective instrumental case study case with an exploratory focus (Yin, 2009, p. 
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7), was used to address research question two: how do undergraduate mathematics education 

students develop their proof schemes?   

In summary, it can be said that some features of scientific realism have been used in this section to 

justify the use of a collective instrumental case study design with a focus on generating an 

explanation, that is, to develop an explanatory theory about the kinds of proof schemes that 

characterise students‟ conceptualisations of mathematical proof.  Concerning the emergence of 

proof schemes among students, a collective instrumental case study with an exploratory orientation 

has been enlisted to develop a proposition that accounts for the manner in which the proof schemes 

evolved.  

4.3 Population and sampling 

4.3.1 Participants: Pilot study 

The study involved 20 undergraduate mathematics education student teachers at one university of 

science education in Zimbabwe who had done Calculus.  Calculus courses cover many pre-requisite 

concepts needed to grasp mathematical underpinnings of proof in great depth and hence the 

decision to focus on mathematics education students who had studied Calculus.  Upon graduating, 

these in-service teachers are expected to teach mathematics in high schools and their abilities at 

proving and conjecturing activities will determine how they will teach the same aspects to  learners 

(Jones, 1997) and hence, the focus on  undergraduate students‟ understanding of mathematical 

proof. 

4.3.2. Sampling procedure 

Participants involved in the pilot study were sampled from undergraduate mathematics education 

class I had taught the Real Analysis course for a semester at that university.   Selection of study 

participants was in 2 phases.  First, convenience sampling was used (Berg, 2009).  Berg describes 

this sampling method as one which is based on participants being readily available and accessible.  

Following (Housman & Poter, 2003; Varghese, 2009), undergraduate student teachers who had 

been taught Real Analysis content were individually involved in task-based interviews as settings 

for exploring the student teachers‟ proof schemes. The initial phase involved 20 student teachers 

which is the usual class size for students studying proof related courses at undergraduate level in 

most university contexts in Zimbabwe.  The next phase of the sampling procedure involved 

purposive selection of six undergraduate mathematics student teachers.  Berg (2009) suggests that 

in purposive sampling, the researcher selects some group to represent population of interest basing 

on some expertise about the group. Usually, a purposive sample is selected after some investigation 

to ensure that individuals displaying desired attributes are involved in the study.  This justifies use 
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of task-based interviews with the undergraduate mathematics class in order to identify students 

from each of Harel and Sowder‟ (1998) broad categories of proof schemes namely external 

conviction, empirical, and deductive proof schemes.  That is, two cases from each proof scheme 

category were selected for the subsequent interpretative inquiry of proof schemes.  The aim was to 

generate rich data in the sense suggested by Charmaz (2006, 2014) so that explanations about the 

kinds of proof schemes held by Zimbabwean undergraduate students and proposition(s) about how 

those proof schemes emerge could be inductively inferred from those data.  The 6 students 

identified were then involved in-depth reflective interviewing.         

4.3.3. Participants: Main Study 

Students who had enrolled for the Bachelor of Education Degree (BEd) in mathematics at a second 

comprehensive university participated in the study. The main study involved 10 BEd student 

teachers.  There were 6 female and 4 male students.     The study took place during first semester of 

their final year of studies.  The BEd in-service programme of study has duration of two years of 

full-time study during the course of which student teachers study content and professional courses.  

Mathematics content taught at this level is pitched to the level of third year courses for a four year 

bachelor‟s degree for mathematics majors.  The BEd programme of study includes Calculus and 

Real Analysis courses.  Calculus which is a pre-requisite course for the proof laden Real Analysis 

course had been studied during the first year.  BEd student teachers study professional courses in 

which pedagogical content knowledge (PCK) is emphasised.  In addition to professional and subject 

content courses the in-service student teachers, are required to complete a research project in 

mathematics education.  Research projects in the BEd programme of study focus on teaching and 

learning issues in mathematics. 

Participants were holders of the Diploma in Education: eight students were holders of the diploma 

in education for secondary school level of teaching while 2 student teachers had diplomas in 

primary education.  Both diplomas for secondary and primary education were awarded by a 

Department of Teacher Education of the university where the study was undertaken.  Students who 

were holders of a diploma in secondary education could teach mathematics up to ordinary level for 

the local Zimbabwe School Examinations Council (ZIMSEC). ZIMSEC „O‟ level of secondary 

school learning is similar to Cambridge „O‟ level.  The two students who were holders of the 

Diploma in Primary Education had majored in mathematics during initial teacher training.  Hence, 

they had been exposed to the same subject and professional content as their companions from 

secondary teacher training colleges and so the two student teachers were eligible for the study.  The 

major goal of BEd programme of study was to upgrade the students‟ subject content knowledge 
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(SCK) and their pedagogical content knowledge (PCK) in order to capacitate them to teach 

advanced level mathematics.   

4.4 The study context 

4.4.1Teaching experiment 

The teaching experiment was seen here as a “crucible” for developing and testing theory about how 

proof schemes emerge and about the kinds of proof schemes held by undergraduate student 

teachers.  The teaching experiment involved the teaching of the Real Analysis course to 

mathematics education undergraduates over the whole semester.  Following Selden and Selden 

(2003), in this proof laden course undergraduate student teachers were provided with self-contained 

notes consisting of statements of theorems, definitions of concepts on proof, and requests for 

students to produce proofs of given tasks. The mechanisms and processes involved in the 

development of proof schemes were treated as real observable phenomena in line with the scientific 

realist process approach that was used in this study (Maxwell, 2004; Maxwell & Mittapalli, 2010).   

I used the teaching experiment as setting for addressing the multi-faceted realist question, “What 

works for whom, in what circumstances and in what respects and how?” (Pawson & Tilley, 2004, p. 

2).  The purpose of posing such a question was to deal with the intricacy regarding the kinds of 

proof schemes held and how these objects emerge using a realist analytic framework.  A realist 

approach is defined as that which seeks to explain social phenomenon by reference to mechanisms 

and causal processes below the surface contingent upon specific historical, local and even 

institutional contexts (Maxwell, 2004; Pawson & Tilley, 2004).  The term historical context is 

relevant in this present study whose other main goal was to uncover how proof schemes emerge.  

Students‟ proof experiences were traced from pre-university to undergraduate learning experiences 

and hence the use of the term historical context captured in the definition of the realist approach 

employed in this study was relevant to the study.    

Realism asserts that causal mechanisms and processes can be directly observed rather than being 

inferred from measured co-variation of presumed causes and effects (Maxwell, 2004).  Direct 

observation of causal mechanisms and processes involved in proof and proving activities was even 

possible in single cases without requiring comparison situations or some control group (Maxwell, 

2004; Maxwell & Mittapalli, 2010).  Pawson and Tilley (2004, p. 2) in their programme evaluation 

study define a mechanism as “what it is about programmes and interventions that brings about 

effects.”  Maxwell (2004) refers to a mechanism as a detailed account of the behaviour or an 

account for the makeup, and interrelationships of those processes involved in proving.  In this study, 

mechanisms refer to students‟ behaviours and actions as they engaged with proofs.  Mechanisms are 
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often hidden in a similar manner to the workings of a clock which drive the patterned movement of 

the hands of the clock.    

Another key feature of the realist approach that was employed in this teaching experiment is the 

realist argument that mental events and processes are real phenomena that can be the causes of 

behaviour.  Mental concepts refer to real entities that are causally relevant to explanations of 

individual and social phenomena.  For an example, the tendency to search for appropriate axioms 

and formal definitions (as seen through verbal responses, behaviour and actions) would be 

indicative of axiomatic proof scheme held, which is a mental construct.  Further, realism regards 

beliefs and emotions as real phenomena.  This assertion supports the essentially interpretative 

nature of meaning and intention within the realist approach (Blumer, 1956 in Maxwell, 200      

Another important realist position that informed the study is the role of context in developing causal 

explanations. From a realist perspective, the mechanisms and processes that can be observed 

depend on context in which the proof schemes are observed (Maxwell, 2004; Pawson & Tilley, 

2004). In this regard I considered both the physical and cultural contexts in which the proof 

schemes were studied (Lewis, 2009).  I described the student teachers‟ actions and emotions and in 

that process I made efforts to ensure all the causes of „what happened?‟ are captured (Lewis, 2009).  

As concluding remarks to this section on features of the realist approach the current study employed 

we note that, although causal processes and mechanisms are directly observable, they were not 

easily observable (Becker, 1966 in Maxwell, 2004).  Dunn (1978, p. 171) reinforces the idea that 

causal processes and mechanisms are not easily identified when he argues that “there are still no 

cheap ways to deep knowledge about other persons and the causes of their actions.”  Dunn and 

Becker‟s comments were crucial to this current study as they sensitised me about the fact that 

employing the realist approach to observe causal mechanisms and processes responsible for the 

emergence of proof schemes, for instance was not just a simple exercise. 

4.4.2 Curriculum content for the Real Analysis course  

The curriculum for the course which ran parallel with my research has the following broad content 

areas: ℝ as a field, Sequences of real numbers, Limits and continuity of functions, Differentiation 

and integration of real-valued functions. I now briefly describe major aspects covered in each 

learning area stated. 

First, with respect to ℝ as a field, algebraic, order and completeness properties of ℝ are treated.  

Algebraic properties include addition and multiplicative axioms of elements in ℝ.  Central ideas to 

the development of ℝ as an algebraic structure include the concept of a binary operation.  The 

addition and multiplicative axioms of ℝ and the concept of a binary operation lead to the definition 
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of a field.  Under order properties, the closure properties under addition and multiplication of 

arbitrary elements of the subset   of a field   are considered as well as the Trichotomy rule of an 

ordered field      An understanding of these basic ideas of an ordered field should lead to proofs of 

many theorems such as: If      ℝ then           and     or     and        The 

completeness properties of ℝ as a field are dealt with where the notions of a least upper bound 

(supremum) and the infimum of a bounded subset of ℝ are covered.  The uniqueness of the least 

upper bound of a bounded subset of ℝ is treated.  The axiom of completeness is central here as it 

leads to several theorems such as the Archimedean principle and its four corollaries which form the 

bedrock of many other theorems such as the rational density theorem in ℝ, the nested cells property, 

the theorem on the characterisation of cuts in ℝ and hence revealing the coherence of mathematics. 

Second, another learning area covered involves the treatment of the Real Sequences in ℝ where a 

sequence is conceived as a mapping with domain in ℵ (natural numbers) and range in ℝ.  Central 

ideas are the convergence of a sequence and uniqueness of the limit of a sequence.  These 

fundamental concepts should lead to the formulation and proofs of many theorems on sequences 

such as the squeeze theorem, a theorem on the characterisation of convergence of sequence which 

stipulates that the interval           contains infinitely many terms of a sequence        The 

notion of a monotone sequence is treated, in particular the convergence criterion for a bounded 

monotone sequence.  Subsequences are also covered under this learning area.  An understanding of 

the notion of  subsequential limit points should then lead to the treatment of many theorems such as 

the Bolzano-Weiestrass Theorem. 

Third, the notions of limit and continuity of a real-valued function are treated.  The     

conception of the key notions of limit and continuous functions should be developed.  Further, the 

distinction between limit and continuity in terms of the notions of a deleted neighbourhood as 

opposed to a mere neighbourhood of an arbitrary point    in ℝ should be fostered.  The     

conception of a limit should lead to proofs of many theorems such as those on products, sums, 

composite, and quotients of functions.  The idea of continuity of a function is treated in a similar 

manner but however, it has some additional aspects.  For instance, the concept of uniform 

continuity of a function on a set is treated.   

Fourth, the Real Analysis course covers content on differentiation of a real-valued function.  The 

conception of the derivative a limit of the quotient 
  

  
 as      is emphasised.  The     

understanding of the derivative of a function should lead to proofs of many theorems such as: If a 

function   is differentiable at    then   is continuous at      The converse of this implication 
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statement is not necessarily true.   Other theorems also covered under differentiation include: the 

mean value theorem, the extreme value theorem, and Rolle‟s theorem.   

Finally, the course introduces undergraduate mathematics education students to the Riemann 

integral where key notions such as a partition of an interval, a refinement   of a partition   of a 

closed interval, and the notion of mesh are treated.  An understanding of these basic ideas should 

then lead to a construction of the Riemann integral in terms of the upper and lower Riemann sums 

of a given function.  The Riemann condition for integrability of a function and closely related 

theorems are also treated here.  The Real Analysis course is then concluded by introducing student 

teachers to the concepts of metric spaces and measure theory.  

4.4.3 Theoretical considerations for the teaching experiment 

The teaching experiment for the Real Analysis course was informed by the following theoretical 

positions;  

 (i). Theory of actions in proof constructions (Selden & Selden, 2011), 

 (ii). Cognitive analysis of argumentation in proving (Boero, 1999; Duval, 2002), 

(iii). Manipulating-getting a sense of-articulating (MGA) notion in proof construction  

(Sandefur, Mason, Stylianides & Watson, 2013), and, 

(iv). The notion of rationality in conjunction with the ideas of conceptual insight 

alternatively heuristic idea (CI) and technical handles also referred to as procedural idea 

(TH). (Sandefur, Mason, Stylianides & Watson, 2013; Raman, 2003). 

According to the realist approach the theoretical positions articulated were used to account for 

processes and mechanisms involved in individual student teachers‟ proof behaviours in the 

following ways.  The theory of actions posits that the proof construction process is a sequence of 

mental and physical actions such as drawing or visualizing a graph and reflecting on earlier proof 

attempts (Selden & Selden, 2011).  When the student teacher gains experience the proof 

construction process becomes small situation-action pairs called behavioural schemas (Selden, 

Mckee & Selden, 2010).  Behavioural schemas are persistent mental structures consisting of 

recognising a situation and then taking an appropriate physical or mental action.  In order to 

develop beneficial behavioural schemas one should carry out an action correctly many times.  In the 

teaching experiment I provided participants with a variety of proving opportunities to allow the 

growth of beneficial behavioural schemas.  Students then presented their individual proof attempts 

in class.  Class presentations were video-taped and then analysed to guide subsequent teaching as 

well as to observe mechanisms and processes by which proof schemes emerge. 



89 
 

Another theoretical consideration that guided the teaching of Real Analysis course is Duval‟s 

(2002) cognitive analysis of argumentation in proving.  Ideas drawn from Duval‟s theory include 

the notion of micro reasoning.  Micro reasoning refers to the student‟s ability to identify crucial 

elements in their reasoning.  Micro reasoning also involves being mindful to check the conditions in 

which the theorem applies (Hoyles & Kuchemann, 2002).  An example would be when a student is 

asked to construct proof of the theorem; A bounded monotone sequence converges.  Of interest to 

the prover would be whether the sequence is monotone increasing or decreasing.  Further, the 

student should then determine the least upper bound for a monotone increasing sequence and the 

greatest lower bound for a monotone decreasing sequence.  Thus conditions of the Axiom of 

Completeness must be checked during the proof construction.   

Duval (2002) also distinguishes between two levels of competency in geometric proving.  In the 

first level students should demonstrate the ability to organize statements according to premises, and 

conclusion(s) into deductive steps.  The second level involves turning the deductive steps into a 

proof.  It is crucial to note that from the first step conclusion to the target conclusion valid deductive 

reasoning progresses either through substitution with intermediary conclusion or a coordination of 

conclusions.  Duval points out that as students traverse between the two levels of geometric proof 

competency they may experience difficulties in their reasoning which may result in unsuccessful 

proof attempts.   When addressing research question one it also became a strategy of the study to 

identify and describe the levels of geometric reasoning shown by the students during proving. 

Yet another theoretical construct relevant to the way students learn how to construct proofs is a 

notion suggested by Sandefur, Mason, Stylianides and Watson (2013) called manipulating (M)-, 

getting a sense of (G)-articulating (A), (MGA).  Basic ideas embedded within the construct are that 

when a student is confronted with a puzzling mathematical proof task, it is natural to search for 

something familiar to manipulate.  Manipulating means resorting to the use of familiar 

mathematical objects as worked examples. This may involve acting on symbols and other 

representations for the purpose of getting a sense of (G) of the underlying mathematical structure, 

patterns or relationship.  As the structure gets more coherent as the student gains experience, and 

through repetition of the manipulations, the student may be able to articulate (A) his understanding 

in verbal or written or visual form.  Such articulations serve as manifestations of mental events and 

processes which are treated as real observable phenomena according to scientific realism (Maxwell, 

2004; Maxwell & Mittapalli, 2007).   

However, it is important to observe some flaw in the MGA idea when applied to a teaching 

experiment.  Sandefur, Mason, Stylianides and Watson (2013) say not all manipulations no matter 
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how intentional they might appear, illuminate a true sense of the mathematical relationship.  

Learners may disguise by following rules in doing proofs without making any contact with the 

underlying mathematical structure of the mathematical concepts involved (Ndemo & Mtetwa, 2015; 

Sandefur, Mason, Stylinides, & Watson, 2013). 

Finally, another idea that guided the teaching of Real Analysis course is the concept of rationality 

suggested by Balacheff (2008).  Balacheff defines rationality as the system of rules or criteria 

mobilised when one is advancing an argument.  Balacheff further suggests that rationality depends 

on content and context and also that students do not use the same rules in proving different 

mathematical statements.  An exemplification is noted in that rules and criteria mobilised in 

constructing proof by induction are different from those mobilised in doing proving by 

contradiction.   

Closely related to the idea of rationality is the distinction between semantic and syntactic 

approaches to proofs (Alcock & Inglis, 2008; Sandefur, Mason, Stylianides & Watson, 2013; 

Weber & Alcock, 2004).  Details of syntactic and semantic approaches to proof construction were 

presented in Chapter 2 so a brief re-cap of these concepts is given here.  Briefly, syntactic approach 

is used to denote the manipulation of formal definitions and axioms within the given representation 

system (reference theory) of the mathematical proposition.  On the other hand, a semantic or 

referential approach to proof entails use of referential objects such as graphs and other instantiations 

of the mathematical proposition to guide a prover‟s logical inferences (Weber & Alcock, 2004).  

The two approaches should be seen as complementary rather than dichotomous.  The link with the 

idea of rationality is seen in the kinds of arguments mobilised when using either the referential or 

syntactic approaches to proof construction.   

Also related to the concept of rationality are the notions of conceptual insight (CI) and technical 

handles (TH) suggested by (Hanna & Mason, 2014; Sandefur, Mason, Stylianides & Watson, 2013; 

Raman, 2003).  Once again these ideas were discussed in Chapter 2 so here an effort to show their 

application in the teaching experiment is made.  Conceptual insights are fresh ideas that come to 

mind through generational memory, that is, without recourse to rote memory by a prover.   A 

conceptual insight is a sense of a structural relationship pertinent to a phenomenon of interest that 

indicates why a mathematical proposition is likely to be true (Birky et al., 2009).  A technical 

handle or procedural idea is a way or technique of manipulating structural relationships that support 

the mapping or conversion of a CI into a proof.  The focus of the study in this regard is on assessing 

students‟ level of accessibility to the key ideas from student demonstrations during the teaching 

experiment and the written tasks.  The level of student accessibility to key ideas would then be used 
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to characterise the kinds of proof schemes held by students.  In other words, these theoretical 

constructs are windows that could be used to observe causative mechanisms and processes in proof 

events from written solutions, and chalkboard demonstrations. 

Consequently the above discussion of theoretical considerations for the teaching experiment and 

key features of the realist approach influenced the construction of the following data collection 

tools: observation guide, the reflective interview guide, task-based interview guide and written task 

sheets within the context of the teaching experiment.  Presented next is a discussion of these data 

collection instruments. 

4.5 Research instruments 

The instruments were intended to elicit data that could address the following research sub-

questions: 

 What kinds of proof schemes characterise undergraduate student teachers‟ 

conceptualisations of mathematical proof? 

 How do the undergraduate student teachers develop their proof schemes? 

By addressing these questions I intended to accomplish the following objectives; 

(i) To develop an explanatory theory grounded in the data about the kinds of proof schemes 

held by the students. 

(ii) To formulate a hypothesis (proposition) about how pre-service teachers‟ proof schemes 

emerge?   

The idea was to conceptualise how the mathematical object of proof scheme develops.  An outline 

of the data collection instruments is now presented. Three major sources of data for the study are: 

written tasks which are also known as task-based interviews, chalkboard demonstrations, and 

reflective interviews.   Textual data elicited from these sources were of the forms: written responses 

by student teachers, students‟ utterances from interviews and chalkboard demonstrations.  The task-

based interviews were used as a technique for exploring students‟ proof schemes.  The idea of task- 

based interviews was drawn from studies by (Housman & Porter, 2003; Stylianides & Stylianides, 

2009; Varghese, 2009).  For example, in Stylianides and Stylianides‟ (2009) study pre-service 

teachers were asked to construct proofs of given mathematical tasks after which they were then 

required to evaluate their constructions.  The combined “construction-evaluation” exercise helped to 

establish poof conceptions among the students.  Though some students produced empirical 

arguments as proofs of given statements they were able to point out that their arguments were 

invalid proofs. This study employed the same technique because of the strength just described.  
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Hence, in the current study students‟ evaluations of solutions were audio
_
taped during the reflective 

interviews.    

4.5.1. Written tasks 

Written tasks, alternatively referred to as task-based interviews were used as a setting for exploring 

the kinds of proof schemes held by undergraduate student teachers (Housman & Porter, 1997; 

Varghese, 2009).  The proof tasks were prepared with a focus on addressing research question one: 

what kinds of proof schemes characterise undergraduate student teachers‟ conceptualisations of 

mathematical proof?  There were two task sheets prepared for data collection.   

One sheet of tasks was meant for Mid-instruction assessment data collection phase that occurred 

during week 6 of the teaching experiment.  In order to prepare tasks that had the potential to 

illuminate students‟ thinking about mathematical proof, the selection of the task was informed by 

the need to engage students on tasks that were not routine exercises and for which students had no 

initial overall idea on how to find the solution (Mamona-Downs & Downs, 2013, p. 139).  Hence, 

while students had pre-requisite concepts needed to resolve the tasks, I ensured that the tasks were 

novel to the students.  For instance, the fourth task for Mid-instruction assessment data collection 

was: Prove that the sequence defined by (    
    

     
 converges. Students had dealt with the 

definition of convergence of a real sequence and proved some similar tasks.  However, I considered 

the task to be novel to the students because it was not among tutorial tasks assigned and it was not 

in prescribed textbooks for the Real Analysis course.  Further, students‟ proof attempts when 

piloting the instruments also confirmed the fact that the task was indeed novel.   

Another good measure of a problem employed in task selection was the idea of plurality of different 

directions that the proof tasks could be treated by the student teachers (Mamona-Downs & Downs, 

2013, p.139).  The wording of proof tasks was considered to be a critical factor in this regard to 

ensure that questions were open-ended enough in order to invoke different proof events among 

students.  The specific wording for the task was: Determine whether the following statement is true 

or false.  For all real numbers   and                     Justify your answer.  The same 

task had been used in pilot study and was used in the main study because of its potential to invoke 

different proof events among undergraduate student teachers.  Similar wording was used in crafting 

tasks 2 and 3.  For details of proof tasks for Mid-instruction assessment data collection phase refer 

to Appendices A and B.  In this phase a realist process theory was employed to observe directly the 

causal processes and mechanisms that connect proof construction events (Bostic, 2016; Maxwell & 

Mittapalli, 2007).  A realist process approach was used in this study to account for the students‟ 

formal praxis, that is, the students‟ established habitual practice regarding proof and proving 
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activities in mathematics.  The following definitions of mathematical proof informed the selection 

of tasks included in the task-based interviews 

A mathematical proof is a connected sequence of assertions for or against a mathematical 

proposition used to either convert a conjecture into a mathematical fact or alternatively 

refute/disprove the conjecture (Selden & Selden, 2003; Stylianides & Stylianides, 2009).  Hence, 

depending on whether the student is confronting a true or false mathematical proof task, there are 

two types of proof constructions (Lee, 2011).  For a false mathematical proposition proof 

construction is defined as the search for counter examples to disprove or refute a conjecture.  For a 

true mathematical proposition, proving is conceived as the search for arguments to validate a 

mathematical statement through deductive means where there is use of axioms, formal definitions 

and previously proven theorems (Sandefur, Mason, Stylianides & Watson, 2013).  Accordingly a 

student‟ proof scheme is a cognitive scheme underlying the student‟s proving attempts.  In this 

regard, inductive explorations and deductive inferential processes can be seen as two ends of a 

proof continuum between which students traverse in order to make logical conclusions about 

mathematical propositions.  It is therefore, indicative of low mathematical proficiency for a student 

to search for deductive arguments in situations involving proof-by-counter example tasks, just as 

inductive explorations should not be elevated to the status of a proof for situations requiring proof 

by deductive argumentation.   

The other sheet of written tasks was assigned during the End-of-instruction assessment data 

collection phase.  This second and final phase of data collection took place during week 11 of the 

teaching experiment.  This phase of data collection consisted of questions intended to tease out the 

casual links within proof schemes held by undergraduate student teachers (Maxwell, 2004; Yin, 

2009).  Each student attempted 9 proof construction tasks and the distribution of the tasks was as 

follows.  Four tasks were involved in the Mid-instruction data collection phase and 5 tasks were 

attempted during the End-of-instruction data collection phase.  The mathematical underpinnings of 

the notion of proof examined were decided a-priori by the researcher (Zammunier, 1998 in 

Furighetti & Morselli, 2011, p. 59).  However the order in which students tackled the tasks was not 

prescribed.   An assortment of tasks comprising true and false propositions was prepared.  The tasks 

were drawn from concepts or topics in the Real Analysis course.  Students‟ reasoning and proving 

of implication statements is crucial to the learning of mathematics. Tasks that provide opportunities 

for using counter-examples were also included in data collection sheets.  

Tasks that require deductive justifications have received more attention in other studies than tasks 

that call for proof by refutation so I considered it necessary to include tasks that required proof by 



94 
 

counter-argumentation in the written tasks to explore students‟ thinking of proof.  Students were 

required to decide whether the given statements are true or false and justify their conclusions.  

Students were expected to use deductive-proof constructions for true statements and proof-by-

counter examples for false statements.  During lectures I introduced and explained the notion of 

structured derivations (Wallin & Manilla, 2009) as means of documenting students‟ thinking when 

proving.  Students were encouraged to use structured derivations in the written tasks so as to 

document their thinking.  The tasks were presented in written form on a work sheet.   

4.5.2 Chalkboard demonstrations 

An observation interview guide was used in recording field notes during presentation of proof 

attempts by the student teachers.  The purpose of the guide was to ensure that I stayed focused on 

the most significant aspects of the study and avoid a detour to lesser issues (Yin, 2009).  Therefore, 

I made constant reference to original goal of the inquiry, which was to account for the kinds of 

proof schemes by capturing data that assist in establishing causal links in students‟ schemes of 

argumentation.  For an example, it was anticipated that data collected could provide evidence that 

could assist in describing mental events and processes that could then explain the tenacity of the 

empirical proof schemes or impasses experienced by students when dealing with tasks involving the 

axiomatic proof scheme.   The observation guide was difficult to complete when a student was 

demonstrating so I focused on proof construction activities outside the lenses of video recording 

device.  Details of modifications done the observation guide for chalkboard demonstrations are 

given in the next section.  

4.6 Pilot study 

4.6.1 Context of the pilot study 

The pilot study was intended to validate the research instruments.  In other words, the pilot study 

was carried out to pre-test, that is, to try out the research instruments in this case, the observation 

guide for the chalkboard demonstration, and proof tasks (task-based interviews) and trying out the 

reflective interview guide.  The other major objective of doing the pilot study was to pre-test the 

research procedures, that is, to determine feasibility of the teaching experiment as a setting for 

collecting data needed to explore the kinds of proof schemes held by undergraduate student teachers 

and also to determine how these students develop their proof schemes.  The focus here was on 

evaluating the methodological rigour of the anticipated data collection and analysis processes.   

The Real Analysis course was taught under the Block Release learning mode during which the 

student teachers were taught over a period of two school vacations with each vacation stretching for 

4 weeks.  A school vacation constituted a block and two blocks of learning constituted a semester.   
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The study took place during second week of the second block of the semester.  The second week 

was also considered strategic for assigning the tasks because students would have covered concepts 

required for them to resolve the proof tasks.  Further, I considered it strategic to assign the proof 

tasks when pressure from Real Analysis and other courses had eased.    Thus the decision to 

administer the proof tasks days before the end of block release teaching was made out of the 

realisation that doing so towards the end of the semester when students were about to sit for 

semester examinations would stifle the data collection process because of examination anxiety.  

Two proof tasks were assigned five days away from the end of second block teaching.  A marking 

guide was devised to evaluate student teachers‟ proof attempts.   The selection of proof tasks and 

the marking guides for the two tasks used in the pilot study is described next. 

4.6.2 Task selection and marking guide 

Task 1: Determine whether the statement is true justifying your answer.  For all real numbers   

and  ,    –      ,       -      0.  

Students were required to determine whether the conditional statement is true or false and provide 

supporting evidence for their assertions that the statement is either true or false.  The proof task was 

not in a sense suggested by Selden and Selden (2011, p. 676) a „template‟ problem but on the 

„surface‟ would tempt students to erroneously refer to algebraic and order properties of the real field 

ℝ and yet students just had to find an appropriate counter example.  For example, a =    and   = 

   could be used to refute the claim                   -     0.  

Task 2: Define a sequence (     inductively by          and       = 
     

 
.  Prove that the 

sequence is bounded and determine its limit.   

 It is noted here that a student teacher‟s description of the solution process to a proof task such as 

the one described above can illuminate many of the causal processes involved.  Some of these 

processes are mental rather than physical.  The mental processes were treated as real observable 

phenomena according to the realist process approach employed in this case study.  Proving 

processes were inferred from students‟ behaviour and speech during chalkboard demonstrations of 

their proof attempts.  Task 2 was deemed to be appropriate on the basis of its envisioned potential to 

generate rich data (Charmaz, 2006; Maxwell, 2004).  It was anticipated that task 2 would generate 

rich data because it provided student teachers with opportunities to bring together many proof 

related ideas learnt earlier.  For example, task 2 would provoke students to combine ideas on 

mathematical induction with those about direct deduction methods of proving.  
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First, the proof task required students to apply the relation,          for a monotone increasing 

sequence.  The definition of a monotone increasing sequence would then be used together with the 

principle of mathematical induction to prove that the sequence is monotone increasing.  To 

accomplish this, the student needed to establish that the result holds for initial value(s), say,     

to get    and     , to generate the third term   .  This is the base step of the method of proof by 

induction (Stylianides, Stylianides, & Phillippou, 2007).   Next, students were expected to state the 

induction hypothesis, that is,     >       an essential statement required to prove the implication 

statement.  Third, students were then supposed to establish the induction thesis            which 

would lead to: 

     -      = 
        

 
  - 

    

 
……………………………………………………………….    (1) 

         =  
          

 
   ……………………………………………....................................(2) 

     -          = 
 

 
 (         ) < 0……………………………………………………………(3) 

The implication statement is proved by striving to produce the induction hypothesis as shown in 

step 3. Because from the base step it has been shown that     <      and from the induction thesis it 

has been established that                 after making the assumption that  

    >       , it can be concluded that the sequence (  ) is monotone increasing. 

To prove boundedness, the student teachers were supposed to capitalize on the relation: 

                    ………………………………………………………… (4).  

Step (4) is in actual fact a consequence of Principle of Mathematical induction that has been used to 

establish that the sequence is a monotone increasing.   Substituting for       in (4) gives; 

     - 
    

 
 < 0…………………...............................................................(5),  simplifying gives, 

       < 
 

 
 ……………………………………………………………………..........................(6). 

Hence, the supremum of the set {       } is  
 

 
 .   

Finally, students were supposed to apply the convergence criterion of a monotone sequence: A 

bounded monotone sequence converges, in order to deduce that the limit of the sequence is  
 

 
.  A 

bounded monotone sequence converges to its least upper bound (supremum) or its greatest lower 

bound depending on whether it is increasing or decreasing.  A bounded monotone increasing 
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sequence converges to its least upper bound and a bounded monotone decreasing sequence 

converges to its greatest lower bound.   

4.6.3 Lessons drawn from the pilot for the main study 

The main purpose of the pilot study was to test the feasibility of instruments, methods and 

procedures for later use in the main study.  So I conclude this section by discussing lessons drawn 

from the pilot study and how such lesson helped me to determine whether it was feasible to proceed 

to the main study.   

One useful lesson for main study activities concerns the kind of tasks employed in the pilot study.  

Specifically, the use of non-directional proof tasks contributed in strengthening validity of data 

collected for the study and hence the validity of findings as well.  For the instance, the formulation 

of the task 1: Determine whether the following statement is true or false.  For all real numbers   

and                      Justify your answers as much as possible.  The task is non-

directional in the sense that it does not stipulate the type of mathematical resources participants had 

to deploy to resolve it (Wilkerson-Jerde & Wilensky, 2011).  Consequently, it attracted a variety of 

thinking styles from the students such as use of order properties and specific examples.   It was 

therefore adopted and its formulation influenced the wording of tasks used for the main study. 

During the pilot study data collection was a one day event.  It is possible that students might have 

developed conversational fatigue by switching from one data collection event to another, which is 

from written tasks to chalkboard demonstrations and then to the reflective interviews.  Fatigue 

developed might have compromised the validity of data collected.  To eliminate effects of 

conversational fatigue developed during data collection it was therefore considered strategic to 

collect data over a two day period for the main study.  Collecting data in one day made 

implementation of validity checks such as member checking difficult because of conversational 

fatigue.  Furthermore, implementing structured derivation mechanism was hindered by time 

constraints.   Use of structured derivations and member checks had to be done during main study.   

Emphasis in the pilot study was on assessing the feasibility of instruments, methods and procedures.   

The pilot study was seen as an adaptive trial design that allowed modifications to be made in 

preparation for the main study. The pilot afforded me the opportunity to check on the analytic 

procedures and provided a chance to evaluate their use in data analysis.  In this regard directed 

content analysis was shelved in analysing textual data meant to address research question two: how 

do undergraduate student teachers develop their proof schemes?  This modification of the initial 

analytic plan was necessitated by the realisation that by allowing use deductive codes directed 

content analysis was somewhat restrictive in terms of allowing the data to speak for themselves.  In 
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its place, summative content analysis, which is more inductive because it begins with actual words 

and terms in the data were used to give more room to the data to speak rather than relying on 

inferences on the basis of literature (Berg, 2009; Corbin & Strauss, 2008; Punch, 2005).  In this 

sense, the pilot study provided with ideas that had not occurred to me before conducting it. 

Another lesson drawn from the pilot study relates to the learning mode participants had enrolled for.  

During piloting the Block Release learning mode made prolonged engagement with students 

impossible.   I used my sabbatical leave period to collect data from another state university that had 

a conventional learning mode for mathematics education students.  That way, I ensured that there 

was intensive long term involvement with the participants for the whole semester during which the 

teaching experiment was conducted.  Further, unlike with the Block Release learning mode where 

the experiment could proceed for two weeks and then shelved, with conventional learning mode in 

the study site for main study there was continuous engagement with students.  Continuity ensured 

uninterrupted implementation of the research plan something that was not possible with Block 

Release mode of learning used for pilot purposes.  It was also anticipated that prolonged 

engagement with students in the teaching experiment would contribute towards reducing the effects 

of “think aloud” protocols that were a feature of chalkboard demonstrations.  Hence, use of multiple 

sources of data, that is, triangulation method could help differentiate genuine categories about the 

kinds of proof schemes held by students (Hellinink, Hutler & Bailey, 2013).  Data from task-based 

interviews, chalkboard demonstrations and reflective interviews should therefore be compared for 

similarities and differences to obtain a full revealing picture about the kinds of proof schemes held 

and about the possible trajectories for the proof schemes 

Another useful idea drawn from the pilot study relates to data collection instruments.  The 

observation guide designed for pilot purposes had the format shown in Figure 3 
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Student teacher.....................................    

Task 2: Define a sequence (     inductively by        and      = 
     

 
.  Prove that: 

           (i) the sequence is monotone increasing, 

                         (ii) the sequence is bounded and hence determine its limit. 

Proof scheme category:  (i) External conviction 

                        (ii) Empirical 

                  (iii) Analytic proof scheme 

 

Indicators of proof scheme 

Category of construct 

Technical handle Conceptual insight 

 

(i). Definition of monotone sequence 

  

(ii). Use of PMI to prove sequence is monotone increasing: 

use of empirical verifications.   Use of arbitrary elements 
  

(iii). Boundedness: structural relationship 

( e.g,           <  0) to prove that sequence is bounded. 

  

(iv). Procedural determination of limit (e.g. use of formula) 

 Inferring lub from structural relationship 

 

 

 

 

 

(v). Approach (counter argumentation or deductive)   

Other associated actions 

………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………………………… 

Researcher Comments 

………………………………………………………………………………………………………………………………

……………………………………………………………………………………………………………… 

Figure 3: Observation guide for chalkboard demonstrations by student teachers for pilot purposes  

The guide shown in Figure 3 restricted data collection because it was heavily influenced by my 

preconceptions of proof (e.g., syntactic and semantic approaches to proof construction, notions of 

technical handles and conceptual insights). That way the guide suffered from some sort of threat to 

validity referred to as theory validity (Lewis, 2009).  Lewis use the term theory validity to refer to 

influence of the researcher‟s preconceptions about the phenomenon being studied.  Further, 

completing the observation guide for chalkboard demonstrations was a challenge.  I could not cope 

with the speed of the presenters.  To overcome this challenge, videotaping was critical and I had 

actually to play the videos repeatedly in order to fill in the observation guide. For the main study, 
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the focus of the instrument was on students‟ actions outside the lens of the camera.   To counter 

theory validity threat described earlier I modified the guide based on my pilot experiences.  The 

observation guide for the main study had the following format shown in Figure 4. 

Student teacher………………………………….. 

Task…………………………………………………………………. 

Student‟s actions, proof behaviour, utterances 

………………………………………………………………………..   

Researcher comments 

………………………………………………………………………….. 

Figure 4: Observation guide for chalkboard demonstrations for main study 

Consistent with directed content analysis technique used to analyse data the modified guide stayed 

open for actions and proof behaviours not covered by what I had called “indicators” so that those 

actions and proof behaviours could also be recorded. 

Threats to validity, dependability issues- like ”thinking aloud” verbal protocols by students and 

reactivity matters were given due attention in the main study using validity checklists and reliability 

measures discussed.  For example, the chalkboard demonstrations and the written responses were 

compared for similarities and differences (Corbin & Strauss, 2008; Hellink, Hutler, & Bailey, 

2013).  Comparing these two sources of data served as a test-retest method of measuring the 

reliability of data collected (Lewis, 2009)  

Another useful lesson from the pilot relate to handling of data during data analysis.  Data pieces 

should not be treated in isolation when addressing the research questions. There should be a forward 

and backward movement within the data sources. The back and forth movement within 

transcriptions in the pilot study was facilitated by case study analytical skills employed in this study 

such as pattern matching logic (Yin, 2009).  Pattern matching logic was then employed in the main 

study to map emerging categories to theoretical constructs in the analytic framework because of its 

capacity to illuminate causal links in students‟ proof schemes during the pilot studies.  

Finally, the pilot study provided an opportunity for me to identify a possible line of research to 

pursue that had a potential to inject new ideas into the main study.  The pilot enabled me to identify 

inconsistencies in students‟ proof attempts.  Preliminary directed content analysis revealed that 

students displayed a tendency to use formal axiomatic reasoning in proof tasks that required 

counter-argumentation and vice versa.  Those contradictory behavioural tendencies were followed 

up in the subsequent main study.    In other words, main study involved efforts meant to establish 
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causes of the student formal praxis.   Overall, the outcome of the pilot study was to proceed to do 

main study with modifications of the observation guide as well as a consideration of feasibility 

matters discussed here.   

4.7 Data generation procedure 

4.7.1 Preparing for data collection 

I begin this section by describing the logistical issues dealt with in preparing for both the Mid-

instruction and End-of-instruction data collection activities.  Immediately after settling down in the 

department of the university that was the site of my data collection, I started to make preparations 

for the data collection process.  I began by formalising research assistantship services, including 

negotiating a fee for the technical services and payment modalities of the research assistant fee.  

The fee was staggered over the whole data collection period.  I decided against a once off payment 

because of the reason that the research assistant would possibly lose the urge to offer elegant 

services once the money got finished.   

Second, I then addressed issues related to entry into the research setting.  The purpose of the 

research was discussed with the participants.  During the first three weeks I discussed ethical issues 

with student teacher participants.  Ethical matters were discussed during formal lectures for the Real 

Analysis course that I taught, both as a guest volunteer but formal course lecturer for their grade in 

the course, and as a researcher for my study.  Each lecture was 2 hours long and I met with the 

students twice a week for 15 weeks.  Hence, there was prolonged engagement with the participants 

and therefore data collected were more direct, open and less subject to inference (Creswell, 2009).  

In other words intensive long term involvement with participants allowed the researcher to generate 

rich data as described by  Charmaz (2014) and Maxwell (2004).   

Third, logistical issues also included rehearsing some data collection processes in the research 

venue with the research assistant.  A rehearsal time table was agreed upon with research assistant.  

We met once every week in the Mathematics lecture room to assess feasibility issues such as 

checking if there was adequate furniture in the venue, furniture arrangement, cleanliness and 

ventilation matters in the research venue.  Further, rehearsal time was also used to check whether 

data capturing devices were functioning properly and to ascertain whether support facilities such as 

electric plugs were functioning properly.  Logistical issues also included rehearsing with data 

capturing devices (video camera and audio recording device) and interview guides and testing the 

devices and interview guides for timing and sequencing of interview questions (Hennink, Hutter & 

Bailey, 2013).  The video camera was used to record chalkboard demonstrations of students‟ proof 
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attempts and the audio recorder was used for audio tapping students‟ utterances of their proof 

experiences at various scholastic levels. 

Finally, the preparations for data collection involved securing resource materials such as white 

board markers, erasers and final touches on matters related to functioning of data capturing devices, 

particularly ensuring that audio recording device had adequate storage space and confirming that 

video cameras had no faults.  A few days before the actual day on which data collection could take 

place I checked level of preparedness of students who were also reminded of agreed times during 

which they were to meet with the researcher in the venue.  

The overarching goal of the study was to explore students‟ mental constructs around the notion of 

mathematical proof through an examination of the kinds of proof schemes held by undergraduate 

student teachers and how proof schemes emerge among Zimbabwean undergraduate mathematics 

student teachers.  In other words, the study intended to investigate students‟ basis of schemes of 

argumentation in validating mathematical statements.  In pursuance of this goal the following main 

research question was raised:  In what terms do undergraduate mathematics student teachers think 

of mathematical proof?  Hence, the fundamental goal was to explore students‟ reasoning about 

mathematical proof and to trace how such reasoning evolves among undergraduate student teachers.   

With respect to students‟ reasoning, that is, the kinds of proof schemes held by students data 

collection was meant to address the research question: What kinds of proof schemes characterise 

undergraduate student teachers‟ conceptualisations of mathematical proof?   Data collected to 

answer this research question consisted of: students‟ written responses to tasks, chalkboard 

demonstrations by students of solution attempts and reflective interviews of students‟ proof efforts.  

I now discuss the rationale for using these instruments and the kinds of data captured by the 

instruments. 

4.7.2 Written tasks 

Responding to written tasks was the first activity of the data collection process.  I started by 

distributing answer booklets and task sheets to students seated in the lecture room.  Students were 

then reminded about the purpose of the research, ethical considerations and that there were no time 

restrictions for the activity.  I explained that the written exercise was not an assessment test for the 

Real Analysis course they were taking and for which I was lecturing to them in parallel to the 

related research activity.  There was also no assessment mark to be awarded for the research 

activity.   Further, students were asked to document as much of their thoughts as possible using 

structured derivation format which is now discussed. 
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Documenting one‟s thinking in writing is efficient in explicating one‟s thinking while writing a 

proof and hence the decision to engage students on written tasks described under data collection 

instruments.  Students were encouraged to respond to the proof tasks using a standard mechanism 

called structured derivations.  Black and  von Wright (1999) cited in Manilla and Wallin (2009, p. 

6) describe structured derivation as a modification of Dijstra‟s notion of calculational proof style 

where Black and von Wright devised a mechanism for doing sub-derivations and for handling 

assumptions in proof constructions.  I had demonstrated how structured derivations are used during 

parallel teaching of the Real Analysis course 

Structured derivations were used to facilitate the data collection process during this study of kinds 

of students‟ proof schemes and how those proof schemes emerge.   I illustrate this standard format 

by considering a situation in which the learner is confronted with the problem:  Solve the inequality 

   >    for       The example on use of structured derivations in proof construction was adapted 

from Manilla and Wallin (2009, p. 65). 

Solution:     >     

{Add     to both sides}……………………………………………………(i) 

   - 3x > 0 

{Factorize}  …………………………………………………………………(ii) 

         

{By assumption both   and  –   are positive, hence by the order properties of  ,  

     implies that     and     or     and    } …………………(iii) 

As illustrated above with structured derivations we start with a description of the problem and its 

assumptions.  The solution is then arrived at by reducing the original term step by step (Manilla & 

Wallin, 2009).  Each step in the sub-derivation comprises a relation and an explicit justification, 

inside brackets, for why each term has been transformed from the preceding step.  The justifications 

shown inside brackets constituted data for this study of students‟ proof schemes.  As each step in 

the derivation was justified, the final product contained documentation of the thinking the student 

was engaged in while proving.  Therefore it was anticipated that the explicated thinking through use 

of structured derivations would illuminate the kind of proof scheme held by undergraduate students 

in terms of the level of utilisation of key ideas and other underpinnings of mathematical proof.   

I illustrated the structured derivation format just described to the participants through use of 

examples using calculus content material the students are familiar with.  The main reason behind 

the illustrations was to encourage students to document their thinking as they completed tasks on 
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proofs.  During data collection students were asked to justify as much as possible steps in their 

proof attempts in order to enable the researcher to determine proof events from students‟ attempts 

(Bostic, 2016).   

Data collection took place in the Mathematics lecture room.  The seating arrangement was such that 

it allowed students to respond to the tasks individually (Housman & Porter, 2003; Selden & Selden, 

2003; Varghese, 2009).  I used the time students were working on the proof tasks to take field notes 

about students‟ actions, bodily expressions and facial expressions.  The student teachers worked 

without researcher assistance until the task was successfully completed or reached an impasse, that 

is, there were no time restrictions imposed.  Students spent about 1 hour 15 minutes on written tasks 

during Mid-instruction data collection phase.  For the End-of-instruction data collection phase, 

students took about 1 hour 35 minutes working on the written tasks.  After completing the written 

tasks, I perused students‟ written attempts to decide on the follow up questions during chalkboard 

demonstrations and the reflective interviewing.  To increase validity of data and hence credibility of 

findings about the kinds of proof schemes held by students it was necessary to use a multitude of 

sources of data (Creswell, 2014; Lewis, 2009).  Hence, I gathered more data about students‟ 

thinking about mathematical proof from chalkboard demonstrations of students‟ proof attempts.  I 

now describe the chalkboard demonstrations by student teachers as they worked on the proof tasks.    

4.7.3 Chalkboard demonstrations 

Task-based interviews were followed by chalkboard demonstrations by students.  I availed  

chalkboard erasers and 5 new white board markers for use by the students to demonstrate their 

solutions.  Students were not told in advance the tasks they would attempt on the chalkboard.   

Doing so would have given students an opportunity to use 10 minute short break allowed between 

written tasks and chalkboard demonstration to prepare proofs in advance.  Further, students could 

use time during which other students would be demonstrating to prepare their proofs.  So such a 

measure was meant to avoid mere regurgitation of already prepared solutions but to dig deep into 

their thinking as they were confronted with the proof tasks.  Each student was asked to solve a task 

on the chalkboard.   

The research assistant recorded videos of the students‟ demonstrations.  The video camera recorded 

duration of each demonstration which was then also recorded by the researcher.  I used the period 

when students were working on the tasks to record proof behaviours and actions outside the lens of 

the video camera.  Video recordings of students‟ chalkboard demonstrations were then studied in 

order to determine questions to include in the reflective interviews on proof task attempts by 

students.  This exercise involved playing each video recording several times to determine the range 
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of issues raised by students and depth involved in each proof attempt (Hennink, Hutter & Bailey, 

2013). 

Mid-instruction and End-of-instruction data collection activities consisting of written tasks, 

chalkboard demonstrations and reflective interviews took place in two days.  It was observed during 

the pilot study that going through all the three activities in one day was not feasible because 

participants were likely to develop conversational fatigue (Maxwell, 2004).  Effects of such fatigue 

would lead them to what Corbin and Strauss (2008, p. 67) call a “rush” past diamonds in the rush.  

In other words, I was likely to miss some crucial data because conversational fatigue was likely to 

stifle data collection process.  So the students answered the written tasks and performed chalkboard 

demonstrations during day one.  Reflective interviews took place the following day and I now focus 

on how the reflective interviews were conducted. 

4.7.4 Reflective Interviews on written responses and chalkboard demonstrations. 

The proof construction exercise and the chalkboard demonstrations were followed by reflective 

interviewing where students were to justify specific actions taken.  Students‟ articulations of 

specific actions and their beliefs serve as indicators of causal processes and mechanisms responsible 

for learning events (Housman & Porter, 1997; Maxwell, 2007).  One of the key features of scientific 

realism is that mental events, beliefs are treated as real phenomena that are responsible for 

behaviour (Maxwell, 2007).  This realist stance provided the basis for how I interpreted student 

teachers‟ actions and verbal and written articulations as manifestations of the students‟ 

understandings of their proof constructions. 

The theme of the interview was on the nature of causal links within student teachers‟ proof 

schemes.  On day two reflective interviews were conducted in order to collect strands that would be 

used to explore students‟ thoughts when they had engaged with the proof tasks through written 

responses and chalkboard demonstrations.  The purpose was to approach the unknown point, that is, 

the kinds of proof schemes from more than two known points (Lewis, 2009).  The known points in 

the context of this study were the written tasks and the chalkboard demonstrations.  Therefore with 

respect to research question one, reflective interviews served as some form of triangulation measure 

that would strengthen the validity of inferences about the kinds of proof schemes held by 

undergraduate mathematics student teachers (Creswell, 2009; Lewis, 2009).  

Hence, I engaged students with reflective interviews in order to validate students‟ thinking as they 

engaged with proof attempts.  The in-depth reflective interviews involved all 10 BEd students on 

areas I had identified to have the potential to provide rich data, based on students‟ written responses 

and chalkboard demonstrations.  The students‟ verbal reformulations of given proof concepts were 
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considered as part of the students‟ evoked theorem and proof images that would in turn indicate  the 

kinds of proof schemes held.  The other goal of this study was to conceptualise how student 

teachers develop their proof schemes by addressing the research question: how do undergraduate 

student teachers develop their proof schemes?  I now describe how reflective interviews were used 

to gather textual data that illuminated how students‟ proof experiences shaped how the 

mathematical object, (i.e., proof scheme) emerges among student teachers. 

4.7.5 Reflective interviews on student proof experiences 

With respect to research question two, the major theme of the interviewing sessions for both Mid-

instruction and End-of-instruction data collection phases was on causal processes and mechanisms 

about how students‟ proof schemes emerge.  Before conducting reflective interviews I sought the 

services of the technical assistant to check whether the audio recorder was functioning properly.  

The interviewing process started with questions meant to allow the interviewees to settle down and 

also to gain insights about their conceptions of mathematical proof.  I then conducted individual 

interviews on students‟ experiences with mathematical proof at different scholastic levels by posing 

the questions such as: (i). describe your pre- A level, A level and undergraduate experiences with 

mathematical proof.  (ii). what differences have you noted at different levels about your proof 

experiences?  For further details   of reflective interview guide refer to Appendix C.   

Students produced narrative accounts of their proof experiences.  The intent of the interviewing  

was to tease out from students‟ descriptions different trajectories through which their proof schemes 

come into being and the structure of the nature of the proof scheme, that is, its ontology (Lawson, 

2009).  The undergraduate students responded to the interview questions verbally and these were 

audio-taped.  Verbal responses were intended to remove the strain of writing (Punch, 1998) and 

served as some form data triangulation.   

Data collection was guided by the notions of theoretical sampling and theoretical saturation 

(Charmaz, 2006), meaning reflective interviews continued until no further theoretical insights could 

be detected from data. Hence, I played audio tapes later played to determine completeness and 

adequacy of data.  Areas that needed clarification were identified for further reflective interview 

auditing which is now the focus of the next section. 

4.7.6 Reflective interview audits for tasks and students‟ proof experiences 

The purpose of the interview audits was to seek clarity on students‟ thoughts as they solved the 

proof tasks as well as getting clarifications on students‟ experiences with mathematical proof.  For 

instance during piloting of research instrument, some inconsistency noted in students‟ formal 



107 
 

rhetoric aspects was revealed where they showed a tendency to use axiomatic reasoning in proof 

situations requiring use of counter examples and vice versa.  The contradictory behavioural 

tendency just described was further explored through interview audits to develop an account such 

proof behaviour.  

Another purpose served by the reflective interview audits was to tease out reasons for the impasse 

reached by the student teachers when they engaged with the proof tasks in order to explicate 

students‟ thinking.   Reflective interview questions crafted were in line with the research goal of 

trying to stipulate a set of causal links in students‟ proof schemes.  Furthermore, reflective interview 

audits served as some form of member checking whereby I solicited feedback about data and my 

preliminary interpretations of those data from student teachers (Creswell, 2009; Lewis, 2009; 

Maxwell, 2004).  I referred to the interpretations as being “preliminary” because they emanated 

from my initial readings of the data.   Member checking was a crucial technique meant also to 

strengthen the validity of data elicited and hence ensuring credibility of the findings.    Interview 

audits can be seen from the perspective of member checking since they provided me with an 

opportunity to correct errors and misinterpretations and to incorporate the students‟ perspectives 

and meanings in data interpretation.   

Developing an understanding of a phenomenon from participants‟ own perspectives is a central 

requirement of the scientific realist philosophy that guided the study (Lewis, 2009; Maxwell, 2004).   

However, use of interview audits as some of member checking was employed while taking into 

account the fact that member checks are not always accurately produced because they could be 

constrained by, for instance, the lecturer/student relationship I shared with the participants.  Hence 

in the next section, I discuss efforts taken to strengthen reliability and validity of the study. 

4.8 Validity and reliability issues 

In this section I discuss efforts intended to determine if proof tasks, chalkboard demonstrations and 

reflective interviews could provide the kind of information needed to give a revealing picture about 

the kinds of proof schemes held by undergraduate student teachers as well as how these proof 

schemes emerge.  A number of threats to validity were addressed in this study. 

First, this study of students‟ proof schemes employed verbal- protocol methods during the reflective 

interviewing phase.  During such interviews students were asked to “think aloud” while validating 

mathematical statements.  One of the major potential threats to validity was that with the “think 

aloud” verbal protocols students could only verbalise the conscious components of the proof 

processes and yet some processes involved in proof and proving may not be part of their conscious 
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efforts (Selden & Selden, 2003, p. 5).  It is therefore possible that some crucial information 

regarding how students would have completed the proof tasks might be left out during the reflective 

interviewing phase.  This validity threat was countered through triangulation.  In other words data 

from the three sources: written responses, chalkboard demonstrations and interview audits were 

compared.   

Second, data might have contained some errors made during transcribing.  Transcribing involves 

producing a written record of the interview.   I checked for accuracy of transcripts to ensure that 

they do not contain mistakes (Corbin & Strauss, 2008; Creswell & Miller, 2000; Creswell, 2014).  I 

read the transcript while playing the audio recorder several times to check for mistakes during 

transcribing (Hennink, Huttler & Bailey, 2013).  Hence, to increase validity of data, there was back 

and forth movement within and between transcripts.  For instance, I could identify a category in one 

transcript and then had to re-read earlier parts of that transcript for the same student in order to 

clarify the issues about that particular category.  Alternatively, I could switch from Mid-instruction 

to End-of-instruction where similar words or phrases had been uttered by the same student.  That 

way, I was able to distinguish between a passing mention of an issue from one which was a 

meaningful category that I could then explore further during the interview audits.    

Third, another threat to validity is related to the notion of veridicality suggested by (Padayachee et 

al. 2011, p. 22).  The requirement that students verbalise their thinking processes could have 

reduced the level of cognitive resources undergraduate mathematics education students devoted to 

the primary tasks, that is, solving problems related to theoretical underpinnings of mathematical 

proof (Lewis, 2009).  Therefore, the data elicited through verbal protocols may not reflect with total 

accuracy the thinking processes students engaged in as they resolved the tasks on proof and 

proving.  Another important resource pertinent to proving is the prover‟s command of language.   

For instance, regarding the characterisation of connected sets in    a description of the proof of the 

biconditional statement: a subset of ℝ is connected if and only if it is an interval, may present some 

challenges to undergraduate student teachers because an outline of the theorem involves showing 

that there does not exist two open sets   and   that satisfy axioms for connectedness.  To deal with 

effects of veridicality just described triangulation was employed to invoke different proof scheme 

states among students.  Furthermore, data collection place over two days to reduce conversational 

fatigue (Maxwell, 2004).       

Another threat to validity of data suggested by Shadish, Cook and Campbell (2002) is concerned 

with the question about whether data are forced to fit a theoretical orientation of the researcher.  

Hence, in order to resist the temptation to impose data on, for instance, proof scheme taxonomies, 
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ideas about semantic and syntactic proof constructions, I tried as much as possible to be open 

minded and allowed data to speak for themselves.  For example, in summative content analysis of 

students‟ proof experiences categories were inductively driven with in-vivo codes used to exemplify 

the inductive categories (Corbin & Strauss, 2008; Punch, 2005).  In other words, inductive 

categories were derived using actual words and phrases from the data.  That way I avoided forcing 

data to fit a given theory.  Further, adhering to case study skills suggested by (Yin, 2009, pp. 68-72) 

that include asking good questions, being a good listener and avoiding being trapped by my grasp of 

issues to be investigated contributed significantly in minimizing the effects of theory validity 

described here.  Thus, when studying undergraduate students‟ proof schemes, caution was exercised 

to ensure that students‟ conceptions are not contaminated by my ideologies or preconceptions of 

mathematical proof schemes.   

The underlying assumption in data analysis was that those students‟ kinds of proof schemes could 

be illuminated through level of accessibility to key ideas and other underpinnings of mathematical 

proof in constructing proofs.  The idea was to try to be unbiased in data collection by being mindful 

of the influence of my presence in the research setting more so in light of the tutor-student 

relationship I had with the participants.  A pertinent question in this respect was: how much of what 

I was observing was being influenced by my presence in the research setting?  The term reactivity is 

used to refer to the influence of the researcher‟s presence in the research setting, which for this 

current study was a teaching experiment.  Maxwell (1996) cited by Lewis (2009) states that 

interviewees often have a tendency to react to the interviewer and not the situation being observed.  

This study was done alongside the usual teaching for the Real Analysis course which was to be 

examined at the end of the semester.  It is possible that the desire to impress the instructor 

(researcher) might have influenced students during the interviewing process.  Thus despite my 

assurances that students should not fear any retribution of any sort as a result of their participation 

in the study, students‟ motive to participate might have been out of the need to be close to their 

tutor.  In other words, while student teachers were assured that participation was voluntary, the 

motive to participate in the study could have emanated from the need to impress their lecturer for 

the course. Intensive long term involvement in the research setting allowed me to develop mutual 

trust with the student teachers who then could even suggest possible changes to data collection 

schedule I had proposed. 

An important data analysis activity that has far reaching consequences on reliability and validity of 

research findings is coding of data.  Corbin and Strauss (2008) define coding as deriving and 

developing concepts from data.  Regarding coding of data, I used a system that enabled me to keep 

track of which participants go with which set(s) of data.  The strategy was useful when I took my 
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interpretations of students‟ proof attempts and explanation(s) about how those proof schemes 

develop back to the students in order to check for validity of inferences the researcher had made or 

seek further clarifications and elaborations from the students (Padayachee et al., 2011, p. 22).  This 

technique of assessing the validity of interpretations about data and inferences made from these data 

from research participants is called member checking (Cresswell, 2009, 2014).  Member checking 

strengthened the validity of the study because the member checking strategy made it possible to 

consider the perspectives of students and meanings they attached to inferences I had drawn.  This is 

a crucial factor in the realist process theory approach that informed the study. 

Intensive long term engagement in the context of a teaching experiment allowed me to collect rich 

data that were more direct and less dependent on inference (Cohen, Manion, & Morrison, 2011; 

Maxwell, 2004).   Intensive long term involvement of the researcher is one way of developing 

explanatory theory in qualitative research.  The intent was to generate rich data (Charmaz, 2006; 

Maxwell, 2007; Yin, 2009).  For this study, I met with undergraduate student teachers for 4 hours 

per week during the 15 week long semester during which the teaching experiment was conducted.  

Prolonged interaction with student teachers in the teaching experiment allowed me to generate rich 

data.  Rich data often and erroneously referred to as thick description are data that are detailed and 

more revealing about the nature of causal links in students‟ proof schemes. Thick description on the 

other hand refers to descriptions of observable features or changes within a phenomenon without 

giving an account of reasons giving rise to such changes.  Thus in thick descriptions there is no 

articulation about how and why such features or changes came about. The focus of the study was on 

generating rich data as opposed to thick descriptions.  Soliciting rich data through prolonged 

engagement allowed me to identify the range and depth of issues involved in proof construction 

from the perspectives of the students.  Further, prolonged contact with participants allowed me to 

distinguish substantive categories within students‟ proof schemes from a passing mention of a 

category that is typical of research designs in which data collection takes place over a short period 

of time. 

Another area of focus for this section had to do with reliability concerns.  Lewis (2009) defines 

reliability as a measure of whether a particular research instrument will yield the same data if 

applied repeatedly to the same participant.  Two reliability measures were applied: test-retest 

method and the split half method.  The two methods were deemed appropriate because they served 

as means of assessing the reliability of data from the three different sources.  I describe each method 

of assessing reliability and illustrate how it was applied during data collection in this pilot study. 



111 
 

The test-retest method is a method of ensuring the reliability of data by determining whether 

previously gathered information from a respondent is accurate.  The underlying idea is that once the 

information has been collected, the researcher can then check its accuracy by interjecting the 

information later into the conversation.  Research question one: What kinds of proof schemes 

characterise undergraduate student teachers‟ conceptualisations of mathematical proof?, was 

addressed through students‟ proof attempts in written form from task-based interviews and through 

student teachers‟ articulations and „workings‟ during chalkboard demonstrations.  To assess their 

consistency the two sources were then compared for differences and similarities during data 

collection as some form of test-retest reliability measure because student chalkboard demonstration 

involved the same tasks they had solved in task-based interviews earlier on.    

Another method is the split–half method for estimating reliability of data collected.  The split- half 

method determines the reliability of data by soliciting several responses to the same question 

framed in different manners (Lewis, 2009).  For example, regarding the reflective interviewing that 

sought to explore different proof scheme trajectories, the question: How do you compare your A 

level and current proof experiences? and  the instruction: Describe any differences you noted in 

your A level and current proof experiences, though framed differently were both aimed at evoking 

differences in „A‟-level and undergraduate proof experiences.   

The scientific realist process approach was used to conceptualise the kinds of proof schemes held 

by the students and how the proof schemes evolve.  While proving events and processes are real 

observable phenomena, Dunn (1978) in Maxwell (2004) cautioned that there are no cheap ways to 

deep knowledge about people‟s lives.  Hence, processes and mechanisms involved in proving were 

not easily observable but rather characterised by problems.  Therefore the discussion about validity 

and trustworthiness of findings would be incomplete without examining potential problems 

associated with explanation building in the case study.   

Explanation building process is iterative that requires comparing propositions developed in the 

study with those in the literature as one refines the emerging hypotheses from data (Yin, 2009, p. 

141).   A lot of analytic insight was needed during the iterative process so that the research could 

not drift away from the study of student teachers‟ proof schemes.  Yin suggests that constant 

reference to purpose of the inquiry can help reduce the potential problem.  Therefore I tried to stay 

focused on the goal of developing an explanation about the kinds of proof schemes held by students 

and to conceptualise how proof schemes emerge.  These were the most significant goals of the 

study.  Constant reference to these goals helped in avoiding detouring into less important issues. 
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Having noted the need to remain focused on the research goals, there was also need for me to attend 

to all evidence in the analysis of case study data (Yin, 2009, p. 141).  Attending to all evidence 

implies that I should also account for disconfirming evidence.  Yin suggests that rival explanation 

be defined and explained in the midst of data analysis.  For example, while literature has pointed to 

the tenacity within the empirical proof scheme, possible contradictory proof behaviour deserved 

careful attention during data analysis for findings to retain credibility.  Having examined problems 

that characterised explanation building in the case study, I still need to address the question: How 

transferable are the research findings to other similar contexts?  Hence, transferability of case study 

findings becomes the focus of the next section. 

The discussion on transferability of findings begins with a recap of the thesis title: undergraduate 

mathematics students‟ conceptualisations of mathematical proof.  While generalisations are not 

necessarily the main objectives of many qualitative research projects (Punch, 2005, p. 146), 

findings from case can be transferable.  Hence, results from this case study that embraced both 

exploratory and explanatory features can be more broadly applicable to other undergraduate 

students in Zimbabwe and other countries. Therefore, while there were only 10 undergraduate 

students involved in the study the question of transferability of results was addressed in the 

following manner.    

It is possible for a researcher to produce transferable results from a case study depending on the 

degree of rigor in data analysis (Punch, 2005, p. 146).  Hence, the purpose of a case study has a 

bearing on data analysis.  Punch suggests that if a case study seeks to conceptualise, that is, to 

stipulate a set of causal links within a phenomenon studied then results can potentially be applicable 

to other similar contexts.  A major goal of the study was to develop an explanation about the kinds 

of proof schemes held by the students in terms of their level of utilisation of technical handles and 

conceptual insights and other underpinnings of mathematical proof such as micro reasoning.   

Another major goal of the study was to conceptualise how students‟ proof schemes emerge, that is, 

developing a hypothesis about how students develop their proof schemes.  Further, as stated earlier 

the way data are analysed impacts on transferability of findings (Punch, 2005, p. 146).  For results 

to be transferable data analysis needs to be conducted at a sufficiently high level of abstraction.   

The study focused on developing constructs, a process which raises data analysis above simple 

descriptions of what students do during proving.  Consequently, I can claim with some confidence 

that the findings of this study can be used to represent students‟ thinking about mathematical proof 

in other institutions in Zimbabwe and other countries.  Having taken steps to strengthen validity and 
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hence credibility of the study, attention then shifts to preparing data for the subsequent data analysis 

process.  

Table 4.1 : Summary of data gathering process 

Phase Activity Instrument Purpose 

Mid-instruction 

data collection 

Task-based interviewing (1 hour 15 

minutes) 

Chalkboard demonstrations (1 hour 

45minutes) 

 

Task sheets 

Proof tasks 

Observation guide 

 

To solicit textual data 

(written responses) for 

research question 

Reflective interviews on proof 

attempts  (2hours 20 minutes) 

Reflective interview on students‟ 

proof experiences (2 hours) 

 

Interview guide on 

proof attempts 

Interview guide on 

students‟ proof 

experiences 

 

Textual data for research 

question 1 

To address research 

question 2 

Reflective interview auditing on 

proof attempts (1 hour) 

Reflective interview audits on  

emerging themes proof (1 hour 10 

minutes) 

 

Reflective 

interview guide 

 

Further exploration of 

students‟ kinds of proof 

schemes 

Further exploration of 

emergent trajectories of 

proof schemes 

End-of- 

instruction 

assessment data 

collection 

Task-based interviewing (1 hour 35 

minutes) 

Chalkboard demonstrations (2 

hours 40 minutes) 

 

Written tasks 

Proof tasks 

Observation guide 

 

To generate data meant for 

data for research question 1 

 Reflective interviews on proof 

attempts (1hour 43 minutes) 

Reflective interview on students‟ 

proof experiences (1 hour 27 

minutes) 

 

Interview guide on 

proof attempts 

Interview guide on 

students‟ proof 

experiences 

 

To solicit data intended for 

research question 1 

To address research 

question 2 

 Reflective interview auditing of 

proof attempts (1 hour 15minutes) 

interview audits on  emerging 

themes (53 minutes) 

 

Reflective 

interview guide 

Reflective 

interview audit 

guide 

 

Further exploration of 

students‟ kinds of proof 

schemes 

Further exploration of 

emergent trajectories of 

proof schemes 
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4.9 Data analysis 

4.9.1 Preparation for data analysis 

Preparing data for analysis involved three main tasks: producing verbatim transcriptions of the 

interviews, data cleaning, and anonymising data.  These tasks were intended to increase the 

credibility of data in order to allow me to immerse in valid data for the purpose of identifying and 

interpreting students‟ experiences with mathematical proof.  A description of the three tasks is now 

presented.   

Producing verbatim transcription involved making a written record of interview data.  The purpose 

of the research was to develop a proposition about how the mathematical proof scheme evolves 

among student teachers.  The focus of the interview transcriptions was on what was said and how it 

was said.  I tried to produce a word-for-word replica of the spoken words (Hennink et al., 2013, p. 

210).  When transcribing of data, I paid attention to some aspects that would aid data interpretation 

such as speech fillers (e.g., eee you know), verbal gestures (e.g., umm aaah) and pauses.  Verbal 

transcriptions were in this case informed by the multi-faceted scientific realist question: what works 

for whom, in what circumstances and how (Pawson & Tilley, 2004).  Further, the verbal gestures, 

pauses were treated as real observable phenomena that were intrinsically relevant to the explanation 

of how proof schemes evolve among students.  

Verbatim transcriptions also included emotions expressed by student teachers.   Emotions expressed 

by student teachers were indicated in square brackets, [ …] while verbal gestures such as, umm 

aaah, were captured in parentheses (…).  The verbal gestures and emotions were treated as real 

observable phenomena that are causally relevant to the explanation of how proof schemes come into 

being (Maxwell, 2004).   

Each verbatim transcription captured words spoken by both the interviewer and interviewee, that is, 

the questions I posed and student teacher participant responses.  In addition, verbatim transcriptions 

produced identified the speakers and differentiated words spoken by myself from those uttered by 

the students about their proof experiences.  Furthermore, during the interview recordings I made 

efforts to achieve descriptive validity by capturing everything said in the student‟s exact words.   

With regard to the data cleaning process it was necessary to check each verbatim transcription for 

accuracy and completeness.  Some of the steps taken to guarantee accuracy of verbatim 

transcriptions include: listening to audio-tapped interview while reading the written record of the 

interview in order to identify any omissions and inaccuracies.  After cleaning, each transcript 
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produced was then labelled with a filename so that I could quickly identify the verbatim 

transcription whenever the need to do so arose during data analysis.  Hence, it was necessary to 

create a folder named: Reflective interviews for Mid-instruction data collection.  An extract of this 

folder that involved my conversation with a student called Taku had the following format shown in 

Figure 5. 

Filename: Taku 

Study site: Department of Science and Mathematics Education 

             Venue: Mathematics Lecture Room 

Gender: Male 

Interviewer: Researcher 

Date:  

Duration of interview:  

Researcher……………………………………………. 

Taku………………………………………………… 

Figure 5: Mid-instruction reflective interview transcript for student teachers 

The dotted space represents the recorded conversation between the student teacher and me.  Similar 

folders of interview transcripts for the End-of-instruction and reflective interview audits were 

created.  Finally, there was anonymizing of data.  Anonymizing involved removing any identifiers 

from the transcript to preserve the anonymity of the student teachers.  Students‟ names were 

removed and some pseudonyms were used instead.  Once data were anonymized I was then ready to 

begin the process of data analysis which is the focus of the next section of this chapter.  

4.9.2 Data analysis procedures. 

The main goal of data analysis was to establish students‟ thinking around the notion of 

mathematical proof.  The word “thinking” has dominated discussions in many sections of this thesis 

so far so I considered it necessary to begin this section by defining the word thinking.  Sfard (2008) 

conceives thinking as some kind of intrapersonal communication wherein one argues, asks 

questions, formulates and waits for one‟s responses as well as informing oneself.   In the context of 

this study mathematical thinking is used to denote the intrapersonal communication the student 

teachers engaged in as they argued, questioned the validity of mathematical statements when they 

engaged with proof tasks.  The aim of this study was to determine the kinds of mathematical 

thinking involved in proving and how such thinking evolves.  
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I accordingly discuss data analysis procedures per research question.  First, I discuss data analysis  

that addressed research question one: What kinds of proof schemes characterise undergraduate 

student teachers‟ conceptualisations of mathematical proof?  The essential idea is that an 

explanation for the kinds of proof schemes held by students and a hypothesis about how proof 

schemes emerge were inductively developed (Charmaz, 2006, 2014; Punch, 2005, p. 243).  In other 

words, theory was abstracted from data.  Abstracting means concepts and propositions were 

inferred from data.       

The logic of my analytic framework, that is, the main ideas that drove data analysis and 

interpretation are as follows.  Proof can be conceived as part of discourse of practice in which we 

differentiate discourse with oneself from discourse with others (Sfard, 2008).  Discourse with 

oneself is similar to Harel and Sowder‟s (1998, 2007) notion of ascertaining when one is trying to 

convince oneself about the validity of a mathematical statement.  Discourse with others is similar to 

the notion of persuading which, according to Harel and Sowder, is when one strives to convince 

others about the truth of a mathematical statement.  Mason (1985) cited in Raman (2003) proposes a 

pedagogical suggestion of creating a proof that bears some resemblance with Harel and Sowder‟s 

two notions of ascertaining and persuading in the following manner. Mason (1985) in Raman 

(2003) suggests that the proof construction process should involve convincing oneself, convincing a 

friend and finally convincing one‟s enemy. Thus discourse of practice regarding proof and proving 

can be construed as efforts to create self-conviction as well as trying to communicate the truth or 

falsehood of a conjecture with others.  I argue here that the kind of discourse of practice is 

determined by the degree of accessibility to mathematical underpinnings of mathematical proof 

such as heuristic and procedural ideas which in turn would illuminate the kind of proof scheme held 

by an undergraduate student teacher.  

 Because of the internal and personal nature of a student‟s proof scheme the state and 

characterisation of proof events and mechanisms within the proof scheme could be inferred from 

students‟ verbal and written communication.  Hence, a student‟s explanation of his or her proof 

construction attempts to a given task provided a glimpse of the kind of proof scheme(s) held by that 

student.  Given the impossibility of directly observing the kinds of students‟ proof schemes and the 

corresponding key ideas employed in accomplishing given proof tasks I drew on Dahlberg and 

Housman‟s (1997) notion of a learning event and a closely related concept of a proof event by 

Bostic (2016).  

A learning event is said to have occurred when a student communicates and applies a new 

understanding of a concept.  A communication could be in the form of an utterance or in written 
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form as students describe or justify the basis of their argumentation schemes when validating 

statements in completing proof tasks.  An application involves using both heuristic and procedural 

ideas (key ideas) to solve proof tasks, re-explain proof steps during the reflective interview phase 

and working on the given tasks during the task-based interviews (Housman & Porter, 1997; Moore, 

1994).    A proof event is said to have occurred when a conjecture and a justification have been 

provided (Bostic, 2016).   

I argue here that proof events are some special form of learning events in which underpinnings of a 

mathematical proof are applied to produce conjectures and their justifications.  This study restricts 

discussion of a proof event to production of a justification of a given statement that is, to schemes 

of argumentation used to validate given statements because the study did not involve conjecturing.  

To reiterate, learning events and proof events are real entities that can be directly observed 

(Maxwell, 2004; Maxwell & Mittapalli, 2007, 2010). 

This section  therefore, focuses on how qualitative data, that is, text from written responses and 

transcripts of audiotapes and chalkboard demonstrations were interpreted using the realist process 

approach that drew upon Dahlberg and Housman‟s (1997) notion of a learning event and Bostic‟s 

(2016) idea of a proof event.  Precisely, the notion of a proof event was used to determine the kinds 

of proof schemes held by undergraduate student teachers by allowing me to determine the extent to 

which key ideas of a mathematical proof were utilised in the task-based interviews in the manner 

observed.  Hence, the student teachers‟ proof behaviours exhibited as the students engaged with 

proof tasks were some form of mappings to kinds of proof schemes held by the students.  In other 

words, those observable proof events, that is, students‟ proof behaviours illuminated the kinds of 

proof schemes held by those student teacher informants.  

Therefore the degree of utilisation or lack thereof key ideas of a mathematical proof assisted me 

gain insights on the structure of the proof schemes held by students and hence   a measure of 

students‟ understanding of mathematical proof (Hanna & Mason, 2014; Raman, 2003).  Further, in 

studying the kinds proof schemes held by students, a pertinent question is: How did the key ideas 

arise, that is, how did the key ideas come to students‟ minds?  Did such ideas arise through 

generational memory, that is, as side effects or consequences of the sense making process during 

proving (Gowers, 2007, p. 40)?  In generational memory key ideas are accessed without much 

intentional effort through processes such as evocation and recognition.  Therefore body language, 

students‟ questions and comments during reflective interviews phase and chalkboard 

demonstrations could provide cues on whether access to key ideas would have been through 

generational memory or rote memory during proving.  
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Selden and Selden (1995) argue that students‟ inability to convert informally written mathematical 

statements into the language of calculus prevents them from recognising the logical structure or 

proof framework that enables them to determine the correctness of a given statement. That is, 

students are not able to validate the statement.   Raman (2003) defines a key idea as the mapping of 

a heuristic idea (conceptual idea) into a formal proof with appropriate mathematical rigor (technical 

handle).  I suggest that the process of converting informally written mathematical statements into 

the language of predicate calculus prior to the application of technical handles (procedural ideas) 

depends on the availability of relevant conceptual insights within the students‟ proof schemes.   

From this discussion a crucial issue that informed the data analysis process had to do with 

recognising which underlying ideas are easily accessible to students within a proof scheme 

category.   For instance, I needed to determine whether the identified proof scheme was dominated 

by procedural ideas or heuristic ideas and how those ideas were connected.  Recalling that, ontology 

is the study of the nature of existence of objects and their relations, how then in light of this 

definition could the nature of relationships of objects be determined?  Having discussed the focal 

issues regarding research question one now focus on how data were analysed to address issues 

raised. 

Berg (2009) identifies three main approaches to the analysis of qualitative data namely: 

interpretative, social anthropological, and collaborative social research approach.  This study used 

an interpretative approach, an orientation in which the researcher treats human action as text.  Berg 

observes that a researcher with this theoretical bent will see human action as a collection of symbols 

expressing layers of meaning.  For instance, it was anticipated that students‟ comments and facial 

expressions could provide clues on whether key ideas come to students‟ minds either through 

generational or rote memory.  This study adopted a more general interpretative orientation whose 

aim was to organize and reduce data through identification of patterns, and analytic categories 

within data.  

Which specific technique was used to unravel the set of students‟ ontological commitments?   The 

specific method in line with nomothetic approach of knowledge generation is content analysis 

which Hsieh and Shannon (2005) define as a careful, detailed, systematic examination and 

interpretation of qualitative data intended to identify patterns, themes, biases and meanings.  Hsieh 

and Shannon discuss 3 main techniques to the conduct of content analysis of qualitative data which 

differ depending on the degree of inductive inferences made during data analysis.  The three content 

analysis techniques according to Hsieh and Shannon are: conventional, directed and summative 

content analysis.    
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Conventional content analysis involves using codes and categories that have been directly and 

inductively developed from the data themselves.  The purpose is to develop theories and 

explanations grounded in the data.  Consequently other methodologists often refer to it as Grounded 

Theory Analysis (GTA).  Summative content analysis is very much similar to conventional content 

analysis described here since a researcher using summative content analysis develops codes and 

categories by beginning from words and phrases in the data themselves hence the term summative 

content analysis (Berg, 2009, p. 339).  

Directed content analysis allows the researcher to immerse herself/himself in data guided by codes 

and categories derived from existing theories and explanations relevant to the research focus as well 

categories that can emerge from the data themselves (Hsieh & Shannon, 2005).  To address research 

question one, directed content analysis was deemed appropriate.  Directed content analysis allowed 

me to engage with  data while being guided by theories that include proof scheme taxonomies 

(Balacheff, 1998, Stylianides, 2011) and mathematical underpinnings of the notion of proof and 

notion of key ideas by (Hanna & Mason, 2014; Raman, 2003).  Directed content analysis is thus 

versatile and flexible as it also allows the analyst to stay open for inductive codes and categories 

that could possibly be inferred when data were fractured and hence its preference to the other 

content analysis techniques in addressing research question 1.  

Directed content analysis of data from written responses, chalkboard demonstrations, and reflective 

interviews on tasks was accomplished in the following way.  For each student and for the Mid-

instruction and End-of-instruction assessment data collection phases a data matrix with the 

following column entries was constructed.  Column 1 entries are proof tasks attempted by the 

student.  In column 2, entries consist of written responses, utterances from reflective interviews on 

the tasks, students‟ actions, transcriptions from chalkboard demonstrations.  Column 3 entries are 

profiles of students‟ proof attempts.  These profiles are my own descriptions of the students‟ proof 

efforts.  In the fourth column, I recorded descriptions of identified proof scheme elements and 

interpretations of students‟ proof attempts in terms of the mathematical proof concepts drawn from 

the analytic framework.  Hence, for each student two data matrices: Mid-instruction and End-of- 

instruction assessment data matrices were constructed for the Real Analysis tasks attempted.  For 

each student teacher, data matrix for Mid-instruction data collection phase has the following format; 

 

 

 

 



120 
 

Table 4.2: Mid-instruction assessment data matrix (e.g.,Tino) 

Task Student‟s response behaviour (written, oral, actions) Profile of student‟s 

proving 

Proof scheme 

elements 

……… ………………………………………………… 

………………………………………………… 

…………………… 

…………………… 

………………. 

This matrix was then followed by the End-of-instruction assessment data matrix for the same 

student.  Thus, for each student two matrices were composed giving a total of 20 data matrices for 

the 10 students involved in the study.  The corresponding End-of-instruction assessment data matrix 

has the same format; 

Table 4. 3: End-of-instruction assessment data matrix (e.g., Tino) 

Task Student‟s response behaviour (written, oral, actions) Profile of student‟s 

proving 

Proof scheme 

elements 

……… ………………………………………………… 

………………………………………………… 

…………………… 

…………………… 

………………. 

The reason for having the End-of-instruction assessment data matrix immediately after the Mid-

instruction assessment data matrix was to scrutinise and compare the student profiles of their proof 

behaviour for differences and similarities (Hellink, Butter & Bailey, 2013).  The two matrices 

illustrated here represent the first level in data reduction of the data analysis process.  This 

corresponds to level of discrete facts in the nomothetic view of knowledge (Punch,1998, 2005).  

Columns 3 and 4 entries represent the first level of the data reduction process.  These matrices 

constitute the greater part of Chapter Five. 

At the second level of the data reduction process composite profiles of student proof behaviours 

were constructed using fourth column entries of level 1 data matrices.  Scientific realist process 

approach holds that mechanisms and processes connecting events in a phenomenon being studied 

are real observable entities.  So the proof events and processes were treated as directly observable 

real entities even in single cases, e.g., individual students without requiring a comparison group 

(Maxwell, 2004; Pawson &Tilley, 2004).  So this realist feature allowed me to observe proof 

schemes even from level 1 data matrices of individual students.  Hence, in precise terms, proof 

scheme elements observed from the fourth column entries of level 1 data matrices were used to 

construct the composite profiles summary matrix that has the following format. 

Table 4.4: Composite profiles of students‟ proof behaviours 

Student teacher Summary of proof behaviour s observed (proof scheme elements) 

 

Taku ………………………………………………………………………………………… 

……………… …………………………………………………………………………… 

Getrude ……………………………………………………………………………… 
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For the 10 student participants, a matrix was then composed.  Table 4.3 illustrates level 2 of data 

reduction of the analysis process (Miles & Huberman, 1994).  In terms of Punch‟s (1998, 2005) 

nomothetic perspective of scientific knowledge generation, the summary of composite profiles of 

student proof behaviours represent level 2 of abstracting concepts from data at which there are 

empirical generalizations.  Level 2 generalizations are so called because theory at this level is not 

yet refined.  Then column 2 entries derived from directed content analysis of students‟ proof 

behaviours were once again mapped to constructs from the analytic framework as an effort to build 

an account of the empirical generalizations from level 2.  In other words, discussion of composite 

student profiles of their proof behaviours was an attempt to build an explanatory theory for the 

kinds of proof schemes held by undergraduate students.    

Another major goal of the study was to determine how students‟ thoughts about mathematical proof 

evolve.  This goal was pursued by addressing the research question: How do the undergraduate 

student teachers develop their proof schemes?  Data available to answer this question were from in-

depth reflective interview transcriptions of students‟ descriptions of their proof experiences.  So 

summative content analysis was used in this collective instrumental case study with an exploratory 

bent to develop a proposition about how proof schemes emerge among the students.  Briefly, 

summative content analysis begins with phrases and words in the data themselves to build inductive 

categories (Hsieh & Shannon, 2005).  This underlying idea (use of exact words and phrases spoken 

by participants) of summative content analysis was instrumental in establishing the criterion of 

selection in content analysis of data.  So the objective analysis of messages conveyed in the 

transcriptions from audio tapes from in-depth reflective interviews and reflective interview audits 

were accomplished by first establishing a criterion of selection (Punch, 2005; Yin, 2009).   

The criterion of selection refers to explicit rules which must be consistently applied and adhered to 

during the course of data analysis so that other researchers or readers scrutinising the same data get 

the same or comparable meaning, patterns and themes (Berg, 2009; Yin, 2009).  The categories that 

emerge when developing the criterion of selection must be sufficient to cater for all relevant aspects 

and variations in the undergraduate student teachers‟ proof construction attempts (Marshall, 2006, 

p. 158).  Further,  phraseology is a crucial consideration in developing the selection of criterion in 

the sense that categories must retain as much as possible the exact  words or phrases used by the 

undergraduate student teachers as opposed to an arbitrary naming or superficial naming of the 

students‟ statements (Hsieh & Shannon, 2005; Yin, 2009). 

Along with Berg (2009), Hsieh and Shannon (2005) and Yin (2009) summative content analysis of 

data involved use of in-vivo codes, that is, use of actual words and phrases spoken  by the student 
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teachers.  During summative content analysis the validity of words and phrases (i.e., categories) that 

constituted students‟ utterances of their experiences with mathematical proof was checked by 

identifying whether they were repeated across different interviews (Corbin & Strauss, 2008; Hsieh 

& Shannon, 2005 in Berg, 2009; Hennink et al., 2013).  Hence, frequencies of such categories were 

then determined to differentiate codes from just a passing mention of an issue by students.    

To develop inductive codes during summative content analysis of data, first, the data were read for 

overall content where I identified the range of issues raised in the interview transcripts and the 

depth of each narrative account of student teachers‟ experiences with proof as proposed by 

Hennink, Hutter and Bailey (2013).  In this regard, specific words and phrases used by participants 

were noted and their frequencies recorded.  Second, textual data were annotated by writing down 

explicit issues raised by students about their proof experiences.  Annotating data involved posing 

questions and noting issues about categories I had to pursue further by way of reflective interview 

audits.  Third, I paid attention to changes of topic in students‟ narrations of their proof experiences 

in order to identify potential categories.  Hennink et al. suggest that a natural change in the topic 

may indicate the end of an issue and the beginning of another issue.  Hence, one of the strategies 

employed during summative content analysis involved checking for topic changes in student 

teachers‟ utterances of their proof experiences.  This helped to delineate categories in students‟ 

proof experiences.  Having discussed strategies used to develop inductive categories I now discuss 

how textual data were used to develop a proposition about how students‟ thinking around 

mathematical proof evolved among undergraduate student teachers.   

First, verbatim transcriptions were studied to determine students‟ conceptions of mathematical 

proof.  Emerging categories were formed using the exact words spoken by students.  This resulted 

in a   by   matrix where  , the number of rows was determined by the number of categories that 

emerged from the data.  The column entries that were constructed are as follows: column 1 is made 

of the identified category, column 2 entries were exemplifications of data that belonged to that 

particular category, and the third column captured the frequencies of the categories that emerged to 

reveal a picture of dominant characteristics in students‟ proof experiences.  Consequently, the data 

analysis matrix for research question two has the format:  

Table 4.5: Mid-instruction reflective interview on for example ways to gain conviction in proofs 

category Example of student utterance Frequency (f) 

…………… ………………………….. …………….. 

……………. ………………………….. ……………….. 

n………… ……………………………. ………………. 
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Matrices of the same format were constructed for End-of-instruction reflective and the reflective 

interview audits of students‟ experiences with mathematical proof.  Matrices were constructed on 

various issues raised in the interview guides for different scholastic levels such as pre-Advanced 

level, Advanced („A‟) level and university experiences with mathematical proofs.  In Zimbabwe, 

„A‟-level refers to fifth and sixth years of secondary school learning.  Another matrix was formed 

from my efforts to account for inconsistency in student teachers‟ formal rhetoric behaviour where 

formal axiomatic reasoning was used in proof situations that required proof methods by refutation 

and vice versa.  The inconsistent student behaviour was identified during analysis of pilot data. 

Similar to research question one, the matrix illustrated here represents level 1 of the data reduction 

process during data analysis.  This level of data analysis corresponds to level of discrete facts in 

form of students‟ actual utterances when we view the matrices from the nomothetic perspective of 

knowledge generation (Punch, 1998, 2005).   These discrete facts were then raised to a slightly 

higher level of data abstraction through researcher‟s comments that accompanied these level 1 data 

analysis matrices.   

Once again in a similar fashion to the way research question one was addressed I then moved to 

level 2 of the data reduction process where discrete facts that represented initial level data reduction 

were converted to empirical generalizations (Miles & Huberman, 1994; Punch, 1998, 2005).  To 

accomplish the formation of empirical generalisations, level 1 data analysis matrices together with 

researcher comments were used to construct level 2 matrices.  At this level of the reduction process, 

the scientific realist process approach was used to directly observe main features of students‟ proof 

experiences from level 1 data analysis matrices for Mid-instruction reflective, reflective interview 

audits and End-of-instruction reflective interviews.    

The realist position that causal mechanisms and proving events are real entities that can  directly be 

observed  provided a basis for abstracting the level 2 empirical generalisations from discrete facts 

formed at level 1 data matrices (Berg, 2009; Maxwell, 2004).  As a result of the efforts just 

described a level 2 data analysis matrix was constructed that has the following column entries.  

Column 1entries consisted of main aspects picked from researcher‟s examination of reflective 

interviews.  The main features picked from the researcher‟s comments constituted the first level of 

data abstraction.  Hence, main observations were used to form composite data matrices on the 

themes; inconsistent student proof behaviour, conceptions of mathematical proof, pre-university and 

university students‟ mathematical proof experiences.  Thus the themes indicated constituted the 

rows of level 2 data analysis matrix in which summative content analysis guided by the realist idea 
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that proof events and experiences are real entities that are directly observable was used to construct 

column 2 entries. 

Column 3 contains the researcher‟s comments which were attempts to raise the empirical 

generalizations from level 2 to a higher level of abstraction in light of the nomothetic perspective of 

knowledge generation (Punch, 1998, 2005).  To accomplish the data reduction process, main ideas 

inferred from level 2 data matrix were mapped to constructs from the analytic framework that 

include proof scheme taxonomies (Balacheff, 1998; Harel & Sowder, 1998, 2007), syntactic and 

semantic methods of proof (Weber & Alcock, 2012), modes of thoughts in proving theorems 

(Alcock, 2010).  Consequently, a data analysis matrix of order   by   was constructed that has the 

following format: 

Table 4.6: Students‟ experiences with mathematical proof from pre-university to university level 

Aspect Main observations Researcher comments 

 Students’ conceptions of 
proof 

……………………… ………………………… 

 Pre- A level experiences 
with  

 Proof 

 ……………….. 

 etc 

………………………………. ……………………….. 

   

The next level of data reduction in an attempt to develop a hypothesis about how students‟ thinking 

about mathematical proof evolves involved discussion of the results.  I engaged in the discussion of 

the results with the aim of drawing a conclusion about how proof schemes emerged among 

undergraduate mathematics education students.  In the discussion of the results, I wrote ideas about 

categories and their relationships that came to my mind during data analysis (Corbin & Strauss, 

2008; Punch, 2005).  Documenting ideas about relationships between categories was important 

because it helped in conceptual elaboration of how proof schemes emerge (Miles & Huberman, 

1994, p. 172).  It can be noted that in the process of searching for regularities or inconsistencies in 

students‟ proof schemes, concepts would be developed from data by raising empirical 

generalizations to higher levels of abstraction.  Documenting ideas emanating from fractured data 

during analysis facilitated the crucial data abstraction process.  A conclusion about how students‟ 

thinking around the concept of mathematical proof evolves was drawn.  An account of the 

conclusion about the kinds of proof schemes held and how proof emerges emerge among 

undergraduate students was then provided. 

Table 4.7 presents a summary of ideas discussed in this chapter that pertain to data collection, data 

analysis and conclusions drawn about how students think about mathematical proof and how such 

thinking evolves among student teachers. 
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Table 4.7: Summary for data collection and analysis procedures 

Research question Data source Data analysis procedure Research outcome 

1. What kinds of proof 

schemes characterise 

undergraduate students‟ 

conceptualisation of 

mathematical proof? 

Written responses 

Chalkboard 

demonstrations 

Follow up interviews 

on students‟ proof 

attempts 

Directed content analysis Explanatory theory about 

the kinds  proof schemes 

held by students 

2. How do the undergraduate 

student teachers‟ develop 

their proof schemes? 

Reflective interviews 

Reflective interview 

audits 

Summative content analysis Proposition about how 

proof emergence of proof 

schemes among students 

Analytic induction was then applied to address the main research question: In what terms do 

undergraduate student teachers think about the concept of mathematical proof?  Analytic induction 

consists of a series of both inductive and deductive steps whereby inductively developed categories 

are verified by deductive means, which is, mapping them to literature (Punch, 1998, 2005).  Hence, 

codes derived from data about students‟ schemes of argumentation on proof tasks attempted and 

codes developed from verbatim transcriptions of students‟ descriptions of their proof experiences 

were compared with existing literature for similarities and differences for the purpose of drawing an 

overall conclusion about the terms in which students think around the notion of proof and how such 

thinking evolved (Corbin & Strauss, 2008; Hennink et al., 2013; Miles, Huberman, & Saldana, 

2014). 

4.10 Realist Analytic Framework 

 

 

 

 

 

 

 

 

 

Figure 6: Realist process analytic framework 
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Scientific realism treats student teachers‟ proof schemes as real observable entities.  To 

conceptualise the kinds of proof schemes held by students and how those proof schemes evolve a 

nomothetic view of knowledge generation was used.   The nomothetic view holds that theory can be 

abstracted from discrete facts in the data, hence the approach has been considered to be appropriate 

for this study.  The underlying idea of the nomothetic view is that theory building proceeds from 

discrete facts to explanatory theories.  According to Punch (1998, 2005), there are three distinct 

levels of theory development.  At the lowest level we have discrete facts in the form written 

responses from proof tasks and transcriptions of chalkboard demonstrations.   

Discrete facts at level 1 of data reduction also consisted of verbatim transcriptions of students‟ 

proof experiences at various scholastic levels.  As shown in Figure 6 directed content analysis was 

applied to these discrete facts (students‟ proof attempts) to generate themes and categories 

(empirical generalisations) tabulated in composite table as main observations for research question 

one. Similarly, summative content analysis data reduction technique was applied to verbatim 

transcriptions of students‟ descriptions of their proof experiences to obtain empirical generalisations 

recorded as main observations in the composite table of students‟ proof experiences.  The 

composite tables formed level 2 of data the reduction process.  In other words, at level 2 there are 

empirical generalisations comprising patterns and processes inferred from initial codes and 

categorical themes which are formed by grouping discrete facts together (Punch, 1998, 2005).  

Level 2 empirical generalizations were then mapped to theoretical constructs from literature such 

the notion of technical handles and conceptual insights, Manipulating-getting a sense of-articulation 

(MGA),  cognitive analysis in argumentation, and syntactic and semantic approaches to composing 

proofs (CadawalladerOlsker, 2011; Raman, 2003; Sandefur et al. 2013).  Harel and Sowder‟s (1998, 

2007) taxonomy of proof schemes also informed the data reduction process.  Main conclusions 

were drawn from Level 2 data reduction to reach level 3 
__

 the highest level.  At the highest level, 

we have theory, whose function is to explain the terms in which the student teachers think of the 

concept of mathematical proof (Berg, 2009; Punch, 1998, 2005).   

4.11 Ethical considerations 

 Major ethical issues which were pertinent to this research study include: participants‟ interest, 

participants‟ informed consent in addition to being honest and ensuring   participants‟ autonomy as 

suggested by Denscombe (2007) in Padayachee, Boshoff, Olivier and Harding (2011).  First, 

regarding protecting participants‟ interest, issues pertaining to confidentiality and anonymity were 

considered.  Mathematics student teachers were assured that during data coding and reporting, 

anonymity was guaranteed through use of pseudonyms (Gravetter & Forzano, 2009, p. 114).   The 

second ethical consideration is participant‟s informed consent.  The undergraduate students were 
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assured that participation was voluntary and they were free to withdraw from the study without any 

form of retribution such as compromising their grades in the undergraduate Real Analysis course in 

which I provided tutoring services.  Written consent was secured from each participant where each 

student confirmed voluntary participation by completing a form
__

 see Appendix I for a sample of 

completed informed consent forms.   

Third, I was honest and ensured that there was no betrayal (Creswell, 2009).  According to Creswell 

betrayal occurs when participants understand one commitment but the investigator does other things 

from those agreed upon with participants.  I adhered to the objectives of the study I had agreed on 

with students.   For instance, assessment of Real Analysis and data collection for the study were 

separate activities and this distinction was made explicit to students.  Hence, students‟ proof 

attempts to proof tasks were not used to determine their coursework scores for the Real Analysis 

course. The entire process was also overseen by research project supervisors.  

Fourth, I made efforts to ensure autonomy of the participants (Creswell, 2014, p. 135).  The 

undergraduate mathematics education students‟ rights were respected by ensuring that the relevance 

of research was explained to the students, that is to generate insights about students thinking about 

proof in order to inform the teaching and learning of proof at university level.  Fifth, when 

interviewing students,  I tried as much as possible to be sensitive to how students I probed and also 

to be sensitive to the way I handled students‟ responses to avoid embarrassing students (Creswell & 

Miller, 2000; Lewis, 2009).  Further, interactions with students during interviewing were 

transparent and free of personal biases in order to develop a relationship of mutual trust with the 

participants.    

Finally, after the data collection process, students were allowed access to interview and audio 

transcripts in order for them to inject contradictions, confirm or make any necessary changes 

deemed necessary from their point of view (Creswell, 2009).  Member checking strategy allowed 

student teachers to verify interpretations made from data analysis.  In addition, the technical 

assistant was not exploited in interviewing and other data collection processes other than providing 

technical services.  So the technical assistant did not place noticeable influence on the participants‟ 

integrity and composure. 
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Chapter Five 

Results 

The analysis presented here is based on students‟ written responses to proof tasks and interview 

transcriptions based on students‟ chalkboard demonstrations of their attempts to proof tasks.  To 

gain more clarity on the kinds of proof schemes held by students, reflective interviews on how 

students had tackled the proof tasks were conducted.  During these follow up interviews student 

teachers were asked various questions with the aim of developing an understanding of the kinds of 

proof schemes held by undergraduate student teachers.  The questions also aimed at establishing 

how students‟ thinking around the notion of mathematical proof evolves.  Accordingly, data 

analysis is now presented per research question that was investigated. 

5.1 Results: Research Question One 

The first research question was: what kinds of proof schemes characterise undergraduate student 

teachers‟ conceptualisations of mathematical proof?  The goal of the research was to establish a set 

of causal links within student teachers‟ proof schemes.  In other words, the goal was to build an 

explanation that accounts for the undergraduate student teachers‟ set of proof schemes by focusing 

on what mechanisms and processes that characterise undergraduate student teachers‟ proof 

attempts. Tables 5.1-5.20 illustrate student teachers‟ responses to research question one. 

Table 5.1: Mid-instruction assessment data matrix for Tino on Real Analysis proof tasks  

Task Student’s response  

(written, oral, 

actions) 

Profile of students’ proving 

attempts 

Proof scheme elements present 

Describe 

whether the 

following 

statement is 

true or 

false. For 

all real 

numbers   

and 

      
     

     >0. 

 

 Written 

response 

If           

  >0. Multiply by   

       …..(1) and 

also multiply by   

     ………….(2)   

Joining (1) and (2)                 

           

          by order 

properties                 

The statement is false 

 

Multiplying by   is a flawed 

process as it disregards the idea that 

  can be a negative number.  

Therefore the statement shown as 

(2) is not always true. The same 

argument applies to statement  (1).  

Student joined statements (1) and 

(2) to get      . Student then 

concluded that the statement is 

false. The premises do not logically 

entail the conclusion drawn and 

therefore the argument is not sound.  

The student wrote: “       by 

order properties”,  but specific 

order properties employed were not 

stated     

 

Tino used formal deductive 

argumentation that failed to draw 

on all elements of the reference 

theory as shown by his disregard 

for cases when the expression 

    is multiplied by negative real 

numbers. While the student claimed 

to use order axioms to prove the 

statement, he violated the order 

axioms. In spite of the flaw 

highlighted here, the argument built 

by the student shows that the 

proposition is true as shown by  

      but the student concluded 

that: “The statement is false.”  In 

other words there was manipulation 

of symbols without getting the 

essence of underlying ideas (Hanna 

& Mason, 2014; Sandefur et al., 

2013).   
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  Follow up interview 

Researcher: […] You wrote that 

           […]  Now is 

this necessarily true?  Is the 

implication statement true? 

Tino:  I overlooked one fact that 

if you are dealing with this 

inequality you should consider 

cases where     and     

and cases where     and 

   .   I only considered one 

case then I only realizing later 

that I had made a mistake. 

The flaws in the statements 

     ……...……..(1) 

and       ……...(2) 

that were later joined to 

give      >0 were later 

realized by the student 

during the follow up 

interview when he stated 

that he had a mistake by 

not considering cases in 

which   and   are negative 

real numbers. 

 

Although the student confirmed that 

he had made a mistake by not 

considering negative real numbers, 

he did not question the implication 

of multiplying by negative real 

numbers.  For instance, the student 

could not justify whether it would 

still be valid to use deductive 

reasoning to prove the statement.  It 

can therefore be inferred that traces 

of symbolic proof scheme 

manifested during Tino‟s proof 

effort. The proof behaviour 

described above confirms the 

lingering effects of the symbolic 

proof scheme (Alcock, 2010; 

CadawalladerOlsker, 2011) 

Determine  

whether the 

statement is 

true or 

false.  If 

  is an  

integer, 

then      

is an even 

integer.  

Justify your 

answer. 

 

 Written response 

             multiply 

two consecutive integers ,you 

get an even number       is 

even is true. If   

                

                is 

even 

 

Factorising enabled Tino 

to notice that the 

expression      is a 

product of two consecutive 

integers   and     and 

the student then concluded 

that      is an even 

number if       Student 

also attempted to provide 

an alternative proof.  The 

set from which the element 

  is drawn is not specified. 

It is also noted here that 

while the expression  

         shows that 

     is even, the student 

wrote the statement as 

            instead 

of                

The mathematical process of 

factorising gave Tino some insight 

into the underlying ideas pertinent 

to the statement to be proved. 

However, the alternative proof 

presented by Tino illustrates that 

the student lacked confidence in the 

single deductive statements such as 

“multiply two consecutive integer, 

you get an even number.”  

Therefore, Tino had to spice the 

formal deductive statement with 

symbol manipulation to reach 

conviction. Hence, it can be 

inferred that Tino had relative 

conviction in the argument he had 

produced (Weber & Mejia-Ramos, 

2015). 

Determine 

whether the 

statement is 

true or 

false. 

Justify your 

answer.  

For all real 

values of 

       
      
      
implies that 

      . 

 

This is false. 

Proof                
       =2x(x+4)-1(x+4) 

              =(2x-1)(x+4) 

When x=-3 f(x)=18-21-4 

                      =-7 which <0 

 

The student started by 

asserting that the statement 

is false and then provided 

evidence for the decision.  

While factorising was 

done successfully it was 

however not used to show 

that the statement is false 

but it was just a dead end.  

Rather a counter example 

picked was substituted into 

the original expression 

                   

From the description of Tino‟s  

proving effort, it can be seen that 

his proof constructions were 

characterised processes that 

involved handling symbols (TH) 

without the student establishing a 

sense of the structural relationship 

(CI).  The symbol manipulations 

were not ultimately utilized in 

drawing the conclusion.  For 

instance, the factor form obtained 

through factorisation was not used 

in proving that the proposition is 

false. Instead, a counter example 

was used by the student to refute 

the claim that       ,      

            implies that 

      . Tino lacked access to 

relevant conceptual insights (CI) 

and hence could not draw meaning 

from the solution constructed 

(Koichu, 2012; Sandefur et al., 

2013) 
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Prove that 

the 

sequence 

defined by 

     
    

     
 

converges. 

 

 Written response 

           
 

 
  

 

       
 

     

 Proof  

Given     we need to 

determine a natural number 

     s.t.         implies that 

|     |    

|
    

     
 

 

 
|     |

      
 ⁄

     
|          

|
    ⁄

     
|    

 

 
            

 

  
        

 

 
(

 

  
  )            

 

  
 

 

 
   

   
 

  
 

 

 
        The limit of    

exists. 

The limit of the sequence 

  
 

 
 was found by 

dividing each term by the 

dominant term   . Tino 

then stated the formal 

definition of a sequence 

correctly.  This definition 

was applied to the task and 

algebraic manipulations 

were accurately performed 

up to the stage where the 

student wrote 
 

 
(

 

  
  )  

    that led to 
 

  
 

 

 
  .  

Student then drew the 

conclusion that the 

sequence converges. 

 

The proof attempt revealed that the 

student had a strong command of 

the hierarchical structure of the 

proof task (Selden & Selden, 2009) 

as well as the formal rhetoric aspect 

of the proof task as shown by 

executed behavioural components 

of the proof task in the form 

accurate algebraic manipulations. 

However a wrong deduction was 

made when student moved from 
 

 
(

 

  
  )     to  

 

  
 

 

 
   

since      for       Finally the 

student concluded that the sequence 

converges without explaining how 

the algebraic manipulations 

illustrate that the natural number 

     sought exists.  In other words 

student did not get a sense  of 

symbols handled (Raman, 2003; 

Sandefur et al., 2013) 

  Chalkboard 

demonstration 

[Looks at the task and proceeds 

as follows] {So the first thing is 

to determine whether there is a 

limit to that sequence, determine 

L}[student writes]      det L 

[for determine L]{So we divide 

throughout by the dominant 

factor [referring to the dominant 

term], which is   so   } 

[Student writes]   = 
  

 

  

  
 

  

  

{Then the limit of this sequence 

as n goes to infinity is equal 

to}[Student writes]            

= 
 

 
 {so the limit is equal to 

 

 
  so 

the limit exists, so the proof} 

[Student writes] Proof Given 

   , we need to determine   

     s.t. for        , |  -L|< 

 . {So we say}. [Writes the 

following while verbalizing it]. 

|
    

     
 

 

 
|<  |

           

        
|<   {Commo

n denominator.  Uuu, this 

[referring to      ] into that 

[referring to the common 

denominator].  That‟s       

minus this [referring to    into 

that [referring to common 

denominator],  multiply     by 

this [referring to      ] we 

get } [Student writes]  

|
           

        
|<   |

  

        
|<   

 

        
 <   {Uuu, simplifying 

Similar to the written 

response data source, the 

student started by 

determining the limit   of 

the sequence.  Once again 

as was the case with 

written responses, student 

stated the formal definition 

of   convergence of a 

sequence and then this 

definition was applied to 

the proof task correctly.   

During the chalkboard 

demonstration the error 

(             was not 

committed by the student.  

He stated correctly that: 
 

 
(

 

  
  )      and raised 

each side of the inequality 

to the power 
 

 
 that led to  

  √
 

 
(

 

  
  ). Tino 

concluded that the limit 

exists once again could not 

justifying how the 

algebraic manipulations 

has led him to that 

conclusion. 

 

Tino‟s proof effort demonstrated 

strong command of the formal 

rhetoric aspect of the proof task as 

he could articulate what the proving 

exercise sought to accomplish: 

“Given    , we need to determine 

       s.t. for        , |  -L|< 

 .”   Not only was Tino able to 

articulate the behavioural 

knowledge of the proof, he could 

execute this articulated knowledge 

as shown by accurate algebraic 

manipulations  that allowed him to 

determine the natural       
However, the student could not link 

the natural number obtained to the 

consequent statement.  It can 

therefore be inferred that Tino had a 

weak command of the problem 

centred aspect of the proof task, 

that is, he had no sense of the 

structural relationship (Hanna & 

Mason, 2014). 
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that} [referring to 
 

        
 <  ] 

 

 
 <   (     ) 

 

  
 < (     ) 

{
 

  
 less than      } 

 

 
(

 

  
 

 )     {Taking roots both 

sides}[student writes]    

√
 

 
(

 

  
  ){Then I got to this 

stage.  So my conclusion is, the 

limit exists} 

 

Table 5.2: End-of-instruction assessment data matrix for Tino on Real Analysis proof tasks 

Task Student’s response 

(written, oral, actions) 

Profiles of students’ proving attempt Proof scheme 

elements present 

Define a 

sequence 

(     

inductively 

by        

and      = 
     

 
. Prove 

that (      is 

a bounded  

monotone 

sequence  

and hence 

determine 

its limit. 
   

 

 Written response 

         
     

 
 

      

 
 

 

 
  

  =     
     

 
 

 (
 

 
)  

 
 = 

22 

   =     
     

 
 

       

 
= 

  

 
              ……. 

     is bounded below and 

not bounded above        

has no limit since it is not 

bounded above 

The student teacher used specific 

examples to explore the behaviour of 

the sequence.  The term    was 

correctly determined.  A wrong value 

(        was used to find the fourth 

term     Inductive explorations were 

used to infer that               
The student then claimed that the 

sequence is not bounded, this claim 

could have been influenced by wrong 

empirical evaluations done.  Tino did 

not state explicitly whether the 

sequence was monotone increasing or 

decreasing, Hence, empirical 

evaluations not linked to some 

demands of question.  Student then 

concluded that the sequence has no 

limit.    

Particular 

instantiations were 

used to explore the 

boundedness property 

of a sequence. 

Specific examples 

were used also to 

determine whether the 

sequence has no limit.  

In this case Tino 

concluded on the basis 

of wrong empirical 

evaluations that the 

sequence does not 

converge. It can 

therefore be noted 

from the above 

information that the 

student had fragile 

grasp of the 

fundamental limitation 

of the empirical proof 

scheme.  Further, Tino 

exhibited a weak 

command of 

convergence criterion 

for bounded monotone 

sequences (Morselli, 

2006) 

 Use the 

definition of 

an 

appropriate 

limit to 

prove that 

   
   

(
  

   

 
 

   
)

   
 

 Written response 

The limit of   as     is 3 

if given              s.t 

if   |   |       then  
|      |     then we 

need to determine          

  |   |       

 |(
  

   
 

 

   
)   |     

 (               
     
  

   
 

 

   
 

    

   
 

The formal definition of the limit of a 

function       as      was correctly 

applied to the proof task as shown by 

correct substitution of the function     

and the limit    into the expression, 
|      |   .  The goal the proving 

efforts sought to accomplish was 

clearly specified: “need to determine 

         Algebraic manipulations 

were performed accurately including 

factorising the expression 
    

   
. After 

factorising the student stated that 

Deductive reasoning 

was employed 

correctly by the 

student.  A strong 

command of the 

formal-rhetoric aspect 

(Selden & Selden, 

2009) was 

demonstrated by the 

student. Accurate 

algebraic 

manipulations that led 

to the correct value of 
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………………………….. 

|        |    
……………………………

………… 

|   ||   |       set 

    =1 

|   |         
|   |           
             
|   ||   |        

 |   |     

|   |  
 

 
 

Set          {  
 

 
} 

 

“   )    instead of    )  .  A 

correct value of      was obtained 

despite the wrong formulation    )     
It is again noted that student did not 

explain how the value of      illustrate 

that the function has limit as      

       being 

determined. As was 

noted with other tasks 

Tino did not explain 

how the value of  

       determined 

illuminated that the 

function has limit 

    as       It 

can be inferred here 

that Tino lacked the 

relevant conceptual 

insight.  His failure to 

connect the value of  

       calculated 

reveals that he had 

weak conceptual 

understanding of the 

notion limit although 

his procedural 

knowledge was deep 

as illustrated by 

successful algebraic 

manipulations. Hence, 

according to 

Wilkerson-Jerde and 

Wilensky (2011) the 

student had no 

coherent connection 

of mathematical 

resources to enact on 

the proof task. 

Use the 

definition of 

an 

appropriate 

limit to 

prove that 

   
   

(
  

   

 
 

   
)

   
 

 Chalkboard 

demonstrations 

 

[student quietly writes the 

question on the chalkboard] 

      (
  

   
 

 

   
)           

  |    |          
|      |    [Student is 

urged to talk to which he 

responds] {I am trying to 

,uuu, …[inaudible].  Ok, 

from the definition of limit 

of a function, aaa,     , sorry 

[student erases      that has 

been written} [student writes 

while verbalizing] Given 

            s.t. if 

|    |<      then 

|      |    {So    here 

is  , our limit is  .  I want to 

determine ..}[student writes]  

We want to determine      

s.t.if    |   |<      

then |
  

   
 

 

   
  |    

{So from this part here, we 

say } [student writes] 
  

   
 

 

   
  |

    

   
  |  

  {If you simplify this part 

The proving attempt started with 

moments of silence as student tried to 

recall the definition.  He was even 

urged to talk and he mumbled trying to 

produce the definition and had also to 

erase the chalk board about twice. 

Once again the formal definition of 

limit of a function was correctly stated 

in terms of an arbitrary element,   . 

Student identified     to be 1 and the 

limit   as 3 and these were substituted 

in the expression:|      |   . 

Algebraic manipulations involving 

dividing      by     and 

factorizing        were 

successfully handled.  Efforts were 

then made to justify the need for the 

element 1by noting that “if we set      

to one” , a point not mentioned in the 

written response section. He then 

proceeded to note that          
from which he set    .  This value 

was then substituted into the expression  
|     ||     |    

and simplified to |   |  
 

 
 .  The 

final answer is stated as “Set     = 
 

   
”, that is different from the one stated 

under the written response section.   

The element 1 whose existence the 

Erasing the 

chalkboard  and 

mumbling in an effort 

to reproduce the 

definition of limit of a 

function may point to 

the fact that the notion 

of limit was not 

strongly grasped by 

the student. Although 

the student could 

recall and apply the 

definition of limit of 

function to determine 

the size of        a 

major weakness was 

that the student did 

show the relevance of 

the quantity obtained.  

Tino could not prove 

that the limit is 3 on 

the basis of answer 

obtained. In other 

words, Tino could not 

see how the piece of 

knowledge he had 

constructed resolved 

the problematic 

situation he was 

confronted with 
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here.  If you factorize this 

[referring to     ], it 

becomes}     =    
           {So we 

substitute this part into that 

it becomes}………... Set 

    = 
 

 
 

  

student tried to justify earlier is not 

used in stating the final answer 

(        {  
 

 
}  as expected.  It 

was obser ved that         

determined by the student was not used 

to explain the fact that the function 

     has a limit as       

(Koichu, 2012).   In 

other words Tino 

engaged in symbolic 

manipulations without 

getting a sense of the 

underlying ideas.   

 

Table 5. 3: Mid-instruction assessment data matrix for Tafa on Real Analysis proof tasks 

Task Student’s response (written, oral, 

actions) 

Profiles of students’ 

proving attempt 

Proof scheme elements 

present 

Describe 

whether the 

following 

statement is 

true or 

false. For 

all real 

numbers   

and 

      
     
  >0. 

 
 

 Written response 

      and               >0. If 

                 
     Required to prove that     
         >0.        >0  

             By order 

properties       and          

            or       and 

                       Setting 

  
 

 
   

 

 
    

 

 
 

 

 
   true 

  (
 

 
)
 

 (
 

 
)
 

   true also         

          true          

true     ( 
 

 
)  (

 

 
)    true.  

 

 
 

 

  
 

  true.  From the given examples it is 

always true that for any chosen real 

number                  
      

Tafa started by noting 

that if         
              
These statements are 

flawed since for instance,  

      but,       
     .  The symbol 

manipulations above 

were then disregarded 

without drawing 

meaning out of them.  

Student then considered 

the consequent statement 

          that he 

expressed as a difference 

of two squares:    
         . Order 

axioms were then applied 

to give      , and 

      or       

and      .  Use of 

arbitrary elements in 

building the argument 

was suddenly abandoned 

and the student switched 

to specific examples 

(  
 

 
 and   

 

 
) and 

also              .  

A wrong statement: 

  
 

 
 (

 

 
)     true” 

was stated by the student.   

Student teacher 

concluded on the basis of 

specific examples given 

that the given proposition 

is always true.   

Tafa‟s proving attempts 

reveals the cyclic nature of 

his argument as can be seen 

from:             
     In other words, there 

was no interplay between 

technical handles and 

conceptual knowledge. A 

simple counter such as the 

one illustrated under Tafa‟s 

proof profile could have 

helped the student realize 

limitations of squaring both 

sides done by the student.  

Student had a weak 

command of the proof 

framework as shown by 

arguing from the consequent 

statement;            
 .  Order axioms correctly 

manipulated but their use in 

reaching the intended goal 

not illuminated. Student 

manipulated the objects 

without getting a sense of 

their relationships. Tafa‟s 

proof attempt revealed some 

ontological oscillations   as 

he moved from symbol 

manipulations to use of 

specific examples.  The 

decision to resort to 

particular instantiations 

revealed students‟ struggles 

with structural reasoning 

(Alcock, 2010; Hanna & 

Mason, 2014). 

Describe 

whether the 

following 

statement is 

true or 

false.  For 

all real 

numbers   

and 

      
     

 Follow up interview 

Researcher:[…] Let me see how you 

tackled it [referring to the solution 

booklet] 

Tafa:  [Laughing] Aaa, at first I 

thought of both axioms and eee... then I 

was stuck. That‟s where I was stuck 

like I can see kuti (that) after there then 

I started using actual numbers because 

there were closer to home than the 

axioms.  

The researcher‟s goal 

was to elicit data from 

the student that would 

account for behavioural 

tendencies displayed 

when proving in 

particular the switch 

from use of axioms to 

instantiations. Tafa 

explained that specific 

examples were used 

Tafa described use of specific 

examples as part of their 

culture. Use of particular 

instantiations was seen as an 

alternative method of proof 

after failing to make progress 

with symbolic manipulations; 

“first I thought of both 

axioms and eee... then I was 

stuck. That‟s where I was 

stuck like I can see that after 
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  >0. 

 

 

Researcher: So in other words, people 

are more comfortable with numbers? 

Tafa: But it is like, it‟s coming from 

where we are coming from that we 

were taught to just use numbers even 

when we are looking at word problems. 

Yes but you will always change it to a 

mathematical statement and go down 

and obtain number solutions we are 

used to working with numbers. 

when the student was 

stuck.  Tafa stated that 

the examples were such 

that they satisfied 

conditions of the 

antecedent part, that is, 

     .  He described 

use of empirical 

verifications as part of 

their culture 

there then I started using 

actual numbers because there 

were closer to home than the 

axioms.” It can be inferred 

from Tafa‟s proof solution 

that use of particular 

instantiations was not done 

out of the realisation of their 

potential benefits such as 

providing counter 

argumentation cases, 

illuminating the 

mathematical  property that 

can form the crux of the 

proof (lack of accessibility to 

relevant conceptual insight 

(Alcock & Weber, 2005; 

Sandefur et al., 2013). 

 

Determine 

whether the 

statement is 

true or 

false.  If   is 

an integer, 

then      

is an 

integer.  

Justify your 

answer. 

 

 Written response 

An integer is a number that is divisible 

by 2 without leaving a remainder.  If x 

is an integer we want to show that 

     is an even number.  Setting 

            even         
      which is even       
      which is even      
        which is even     

    —    which is even    

        —     which is 

even          —    which is 

even                  
            which is even.  From 

the above examples it is clear that 

     is always even. 

The student defined an 

integer as a number that 

can be divided exactly by 

2. Tafa stated that the 

expression      is 

even and set out to 

provide evidence for the 

claim.  Then Tafa used 

specific examples to 

determine whether 

     is even.  Contrary 

to the definition of an 

even number given, the 

empirical tests by the 

student involve the 

numbers 3 ,-7 and -1 that 

are not exactly divisible 

by 2.   

A weak command of proof 

framework (Selden & Selden, 

2009) shown by the student 

stating the conclusion before 

he provided the premises.  

Student‟s numerical tests not 

guided by definition of an 

integer the student had  stated 

as the specific examples also 

includes numbers not 

divisible by     Tafa had 

defined an integer as “a 

number that is divisible by 2 

without leaving a remainder” 

It can therefore be inferred 

that Tafa lacked micro 

reasoning  since his proof 

attempt involved integers 

outside the scope of the given 

mathematical statement.  

Determine 

whether the 

statement is 

true or 

false.  If   is 

an integer, 

then      

is an even 

number.  

Justify your 

answer. 

 

 Follow up interview 

Researcher: You wrote […] , an integer 

is a number divisible by 2 without 

leaving a remainder. Is this true […] a 

correct statement. 

Tafa: Aaaa, that‟s not. I wanted to say 

an even number.... 

Tafa: Why is not true? 

Researcher: Can you explain why? 

Tafa: Because there are other integers 

that can be divided by 2 and they leave 

a remainder.. 

Researcher: Ok, just making a follow 

up what you wrote here.       and 

you evaluated. In other words, why did 

you opt for specific examples? 

Tafa: It‟s a culture that is in us. You 

are taught maybe to talk about real 

numbers, whole numbers and very 

rarely do we talk about […] the 

numbers we are used to , it‟s very rare 

that when we were working that I 

realised that Oh, if I forget it, I will put 

During the follow up 

interview I first queried 

the definition of an 

integer written by the 

student.  Tafa explained 

that the definition he had 

written was for an even 

number instead of an 

integer in general.  He 

explained why the 

definition as written 

could not apply to 

integers in general, 

“Because there are other 

integers that can be 

divided by 2 and they 

leave a remainder.”  

Upon being asked why 

he had used specific 

examples Tafa reiterated 

that use of examples was 

a “culture in us.”  He 

pointed out that “we 

Tafa clarified the definition 

of an integer by explaining 

that “Because there are other 

integers that can be divided 

by 2 and they leave a 

remainder.” This clarification 

made on the definition might 

explain why specific 

examples used picked 

included odd numbers.  The 

prominent use of specific 

examples in proving was also 

described as a “culture in us” 

and the formal axiomatic 

proof scheme referred as “the 

other” was not exploited as 

much as the empirical-

numeric proof scheme. 

Hence, Tafa manipulated  the 

mathematical object with a 

full awareness of the 

fundamental limitation of 

inductive arguments (Duval, 
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a negative number.  were not very much 

involved with the other 

side.” The “other side” 

mentioned by Tafa 

presumptively refers to 

use of axioms and 

arbitrary elements to 

prove theorems.   

2002; Morselli, 2006). 

 

Determine 

whether the 

statement is 

true or 

false.  

Justify your 

answer. 

For all real 

values of 

       
      
        

      . 

 Written response 

                     

           

             

                  
              

                 OR 

               

                                   
 

 
, 

                 
 

 
   

[These solutions were illustrated on  

number lines and graph of      drawn] 

First, the student 

factorized the quadratic 

expression          

to get          
      Order axioms of 

the real field were 

applied to solve the 

inequality obtained after 

factorizing.  Then Tafa‟s 

graphical representation 

of the inequalities 

               
 

 
 , the t 

graphical instantiations 

in the form of number 

lines led to the solution 

  
 

 
. An argument 

similar to the one 

described was applied to 

the inequalities      

and   
 

 
 yielded the 

solution           
Graphical illustrations 

were then used to refute 

the proposition that 

                  

implies that        
        

From the description of the 

proof attempt it can inferred 

that Tafa had a strong 

command of the formal 

rhetoric aspect of the proof as 

can be seen in accurate 

algebraic manipulations and 

strategic use of order axioms 

in solving the inequality  
              

(Selden & Selden, 2009). 

Graphical instantiations used 

to refute the proposition 

revealed students‟ grasp of 

the method of counter 

argumentation. It can 

therefore be inferred that 

Tafa deployed the correct 

mathematical resources  for 

which he had a command of 

the problem centred part, that 

is, conceptual insight  of the 

proof as solutions obtained 

helped in refuting the claim 

(Koichu, 2012; Sandefur et 

al., 2013). 

 

Determine 

whether the 

statement is 

true or 

false.  

Justify your 

answer. 

For all real 

values of 

       
      
        

      . 

 Chalkboard demonstration 

{Task 3 says for all real values 

function of   is identical to } [Students 

writes] 

                  implies that   

        
{Right, aaa, umm, lets assume   

             we solve this we 

get} [Student writes]            
                    

                  

                

By order properties [referring      

implies either     and     or 

    and    ]       and 

       or       and    

              
 

 
. {Right, this 

will give me     ; this    
 

 
.  We 

draw our number lines that will give us 

   here [pointing to the number line] 

{This gives us    here,   there, circle 

there, circle there} [referring to the 

endpoints]. [Student erases upon 

realizing that the number line 

First, the student started 

by reading the question. 

Next, the student 

assumed that the 

statement is true.  

Method of factorization 

was applied in a similar 

manner to the working 

under the written 

response section.  Order 

properties were 

mentioned and applied to 

solve the inequality 

                
Similar to the written 

response section order 

axioms of the real field 

were used to obtain 

solutions for the 

inequality.  Then the 

student argued by 

graphical means that in 

the interval      
 

 
 , 

the function       
           is 

From the description of the 

chalk board illustration it can 

be seen that the two sources 

had many common features 

such as accurate algebraic 

manipulations, and strategic 

use of order axioms of the 

real field and use of graphical 

instantiations to draw the 

conclusion that the 

proposition is false.  One of 

the few distinctive features 

noted is that with chalkboard 

demonstrations Tafa started 

by assuming that the 

statement is true, “lets 

assume                
but this was never referred to 

in the whole argument. This 

suggests that Tafa had not 

reflected on the whole 

argumentative process to 

determine if the sequence of 

assertions is logically 

consistent. Despite a 

somewhat vague formulation; 
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illustration is wrong. Student draws 

another number line; {The intersection 

for this [pointing to the number line] 

  
 

 
 {That‟s for this side [pointing to 

the      and  
 

 
 ], that means our 

solution is   is greater than or equal to 
 

 
} [This is written on the board]   

 

 
 

{For this side [referring to       

and       ], we are going to have 

} [verbalizes and writes] 

        
 

 
 {Again we have our 

number line} [Student draws number 

line{This was now intersecting this 

side }[pointing to points less than -4 

and student writes the solution] 

      {Our solution there is   
  .  Aaa, if we are going to represent 

this on a graph, our graph is going to 

be} [Student draws the graph][Student 

describes the graph drawn] 

{From this the other part is negative} 

[pointing to the part of the graph below 

the x-axis] 

{And from this, we can conclude that 

function of   is not identical to 

                  

Implies that          real values of 

 } 
Researcher: Can you explain why you 

were able to make that conclusion 

Tafa: Because for this graph [pointing 

to the graph], the other part (repeated) 

from    ,from -4,       
 

 
, thus 

exclusive aaa, the function of   is less 

than  }. From      
 

 
, the 

      . 

negative.  Student then 

used this graphical 

argument to draw the 

conclusion: And from 

this, we can conclude 

that function of   is not 

identical to         

          

Implies that          

real values of  }.  . 

“is function of   is not 

identical to         

          Implies that 

         real values of      
Tafa did leverage on the 

graphical instantiation by 

explaining that, “from -4,  

     
 

 
, thus exclusive 

aaa, the function of   is less 

than     Hence, the student 

used the graph to refute 

statement. Tafa‟s proof 

attempt reveals he had 

acquired the relevant 

instrumental knowledge as 

shown by correct by correct 

algebraic manipulations that 

were well complemented by 

a good grasp of relevant 

conceptual insight. Hence, 

there was critical reasoning 

shown by Tafa (Alcock, 

2010). 

Prove that 

the 

sequence 

defined by 

(    
    

     
 

converges. 
 

 

 Written task 

     
    

     
         (

  
 

  

  
 

  

 
 

 
)    

converges given        a natural 

number        such that |    |  

  |
    

     
 

 

 
|       

   
                

        
     

           

        
      

  

        
   

………………………………………

…………….. 

√
     

  
    √      √

     

  
            

since        then the sequence 

defined by       
    

     
 converges to 

      

Student divided each 

term by the dominant 

term,     and evaluated 

the limit of the sequence 

     as       The 

limit   was found to be  
 

 
 

and student stated that 

the sequence converges.  

Tafa then stated correctly 

the formal definition of 

the convergence of a 

sequence.  The sequence 

     and the limit  = 
 

 
 

were substituted into the 

expression|    |   .  

Student then applied the 

theorem: If   
       | |       

       to get rid of 

the modulus symbol.  

Student then took the 

part     and used it to 

The conclusion that:  the 

sequence converges was 

stated after finding the limit, 

  
 

 
. According to Selden 

and Selden, 2009), Tafa‟s 

proof behaviour revealed he 

had an awareness of the 

hierarchical order shown by 

articulated goal of the 

proving effort: to determine 

if “  a natural number 

       such that |   
 |      However Tafa had 

weak command of formal 

rhetoric aspect which could 

be seen from lack of accuracy 

in algebraic manipulation  

that led to a complex solution 

√
     

  
    being found.  

Hence, the conclusion drawn 

that      converges is not a 

logical consequence of the 
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get 
  

        
   that was 

then simplified to √
     

  
   

   . Student then made 

the claim that        
which is not a 

consequence of √
     

  
   

  .  

argument built by Tafa 

because         so the 

existence of the natural 

number,     , the student 

was searching for was not 

connected to the working. 

This lack of clarity of the 

structural relationship of the 

objects manipulated became 

the focus of the follow up 

interview. 

Prove that 

the 

sequence 

defined by 

(    
    

     
 

converges. 
 

 Follow up interview 

Researcher: How did your working  

here lead you to the conclusion that the 

natural number exists? 

Tafa: I thought maybe the denominator 

will end up being a negative and 

negative and negative will be positive. 

Researcher: But the denominator is    

and here you stated that    is always 

greater 0. So is there any way this 

denominator will be negative.  

Tafa: No 

Researcher: What is causing this? 

Tafa: Eeee improper use of modulus 

Researcher: I mean, what is causing 

you to deduce this could be sometimes 

less than   yet you started with 

something that is greater than  ?  

Tafa: Hee,hee [Laughing]. That‟s not 

wrong. I think it‟s coming from 

improper use of the modulus because 

in this point, I was suppose to have 

eeee, uum, ignore the use of negative 

because I was taking the modulus.  

 

The lack of clarity about 

the existence of the 

natural number      was 

revealed during the 

follow up interview 

when Tafa explained that 

he thought that the 

denominator will end up 

being negative.  When 

reminded that there was 

nowhere the denominator 

would be less than    

because      The 

explanation provided by 

Tafa centred on improper 

use of the modulus 

property. 

The follow up interview 

revealed that procedural 

techniques were a prominent 

feature of student proof 

construction efforts ahead of 

sense making of notions  

pertinent to the proof tasks 

(Hanna & Mason, 2014).  

The point made is supported 

by Tafa‟s  failure to justify 

the existence of the natural 

number,        Further, 

Tafa‟s working resulted in a 

situation where      being a 

complex number, a weird 

solution outside the reference 

theory of the proof task.  This 

further reinforces the 

observations that Tafa 

engaged in algebraic 

manipulations without paying 

attention to their sense  

(Sandefur et al., 2013). 

 

Table 5.4: End-of- instruction assessment data matrix for Tafa on Real Analysis proof tasks 

Task Student’s response 

(written, oral, actions) 

Profiles of students’ 

proving 

Proof scheme elements present 

Prove that 

     =    

         
is 

uniformly 

continuous 

on [   ]  

 Written response 

     is uniformly 

continuous on [   ] if it is 

differentiable on        

such that  

  |         |       
then  

|
     

   
|              

Student teacher wrote that 

     is uniformly 

continuous on the interval 

if it is differentiable on the 

same interval.  The 

condition for uniform 

continuity is stated as 

follows:   |     
    |       rather than: 

|         |   .  

Student finally 

differentiated the function 

     =              
Tafa‟s  proof attempt 

surprised the researcher 

because  the concept had 

been covered in the 

Fundamentals of Analysis 

course a few days before 

the end of instruction data 

collection phase. 

Work presented by Tafa, shows a 

mix up of mathematical ideas.  The 

concept of uniform continuity was 

confused with the idea of 

differentiation.  There was complete 

chaos as the student engaged in an 

irrelevant process, that is, 

differentiating instead of applying 

the definition of uniform continuity. 

Tafa lacked micro reasoning as he 

worked outside the reference theory 

of the proof task. A weak command 

of the concept of uniform continuity 

shown also by statements such as: “: 

  |         |         Tafa‟s 

proving profile reveals that he had 

not established a coherent network 

mathematical resources and shown 

by failure to enact the right 

resources at the right time (Duffin & 

Simpson, 2000; Wilkerson-Jerde & 
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Wilensky, 2011). 

Use the 

definition 

of 

appropriat

e limit to 

prove that 
 

       
√       

 
 

= √   . 
 

 Written response 
Let     be given we need 

to determine        st 

       such that       

exist that     then 

|      |     

|
√     

 
 √ |       

|
√       √    

 
 
√      √   

√       √   
|  

    

……………………………

……………………… 

|
 

 √       √   
|    but we 

note that 
 

     
  

 

   since 

   

      
 

 √       √   
 

 

 √  
…………..

 √ 

 
   

 

  set    
 √ 

 
 

Tafa‟s attempt of the 

formal definition of the 

limit of a function   as 

    contained glaring 

errors.  First, the quantity 

     is not an element of 

the set of natural numbers 

as stated by the student. In 

any case, the focus should 

have been on finding 

      Also, the numbers 

  and   do not belong to 

the set of natural numbers. 

However the student 

showed a strong command 

of algebraic manipulations 

as shown by correct 

application of the identity 

√  √  
   

√  √ 
 in 

simplifying the expression 

|
√     

 
 √ |   .  Strong 

command of Algebraic 

manipulations was seen in 

the observation    
      that enabled the 

student to determine   in 

terms of   chosen. 

Conclusion not stated. 

While the student had set out to find  

       which was incorrectly 

stated as an element of natural 

numbers, the student ended up 

finding a number   in terms of   

chosen and   was also conceived in 

terms of a natural number.  It can be 

noted from the description of Tafa‟s 

proof attempt that although correct 

algebraic manipulations were 

performed and enabled the student 

to determine the correct value of  , 

these algebraic manipulations  are 

not connected to goal articulated 

earlier, that is, to determine      
    Therefore in terms of the 

construct,  Tafa engaged in technical 

symbolic manipulations without 

establishing a sense of the 

underlying ideas  (Sandefur et al.,  

2013) 

 

Table 5.5: Mid-instruction assessment data matrix for Tendai on Real Analysis proof tasks 

Task Student’s response 

(written, oral, actions) 

Profiles of students’ proving Proof scheme elements 

present 

Describe 

whether the 

following 

statement is 

true or 

false. 

For all real 

numbers   

and 

      
     
      

 
 

 Written 

response 

…………………………

…… 

      a+b    

              
                
       -      

 

Student focused on the consequent 

statement:        . The 

student used an alternative 

representation of the statement, the 

difference of two squares:    
   a+b  for        Student 

expanded       a+b    and 

got   -        Conclusion was 

not stated. 

 

Proof convention, that is, the 

proof framework was 

violated by the student who 

worked from the conclusion 

instead of inferring the 

conclusion from the premises 

(Selden & Selden, 2009).  

The premises presented by   

Tendai do not logically imply 

the conclusion and hence the 

argument produced by 

Tendai is not valid 

(Stylianides & Stylianides, 

2009). Non-goal directed 

symbolic manipulations  

were performed for which the 

student had no essence of the 

underlying ideas. 

Prove that 

the 

sequence 

defined by 

(    
    

     
 

converges 

 Written 

response 

  

   
 
  

   

   
 
  

 
 

 
 

  it converges because 

the limit is 
 

 
 which 

Tendai divided each term of the 

sequence by the dominant term,    

and evaluated the limit as     in 

the expression got as a result of 

dividing by the dominant term. 

Then Tendai concluded on the basis 

of the limit,   
 

 
   that the 

sequence converges.   The 

Although Tendai could 

determine the limit    
 ⁄   

of the sequence, her proof 

attempt revealed severe 

limitations about her 

knowledge of the concept of 

a sequence.  First, the need to 

determine a natural number 
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approach    |    |    
 

 
   

statements |    |    and  
 

 
   then suddenly sprang from 

nowhere without any explanation 

for their purpose by the student. 

     for some fixed     

not shown but rather a wrong 

statement  |    |     
instead of |    |     was 

written.  Second the 

inequality “ 
 

 
  ”  was 

stated without explaining its 

purpose.  Third, the link 

between ⌊    ⌋    and 
 

 
   not explained. Overall, 

Tendai‟s proof behaviour 

revealed a tendency to 

engage in symbolic 

manipulations  for which the 

student had no essence of 

their meaning (Hanna & 

Mason, 2014). 

For all real 

values of 

       
      
      
implies that 

      . 
 

 

 Written 

response 

Suppose           
    , implies that 

          
   √      

  
 

     
   √             

    
  

……………………… 

  
 

 
 or       critical 

condition  

  
 

 
   

Tendai started by assuming that the 

statement was true.  The general 

quadratic formula was then used to 

determine the zeros of the given 

function:           
 

 
. Finally, 

the student wrote: “ 
 

 
 or    critical 

condition.”  No conclusion was 

given as to whether the supposition 

made earlier holds or should be 

refuted.  This lack of clarity on the 

status of the proposition became the 

focus of the follow up interview. 

As was also noted with the 

task on sequences Tendai‟s 

written response to this task 

consists of disjointed 

statements.  For instance the 

supposition:  Suppose 

              , 

implies that       , was 

not connected to the 

conclusion:   
 

 
  .  The 

statement  “   
 

 
 or       

critical condition”  also not 

linked to the conclusion.   

The conclusion did not 

specify whether the 

proposition is true or false.  

The proof behaviour reveals 

that Tendai manipulated 

mathematical objects  

without establishing their 

essence  (Weber & Mejia-

Ramos, 2011).  

 For all real 

values of 

       
      
      
implies that 

      . 
 

 Follow up 
interview 

Researcher:     Here you 

have question 3 here you 

solved it as if it‟s an 

equation [it was an 

inequality] apply 

quadratic formula and 

you got ½ or -4. How did 

it then lead to this answer 

[referring to   
 

 
  ]   

Tendai: I prefer to use ½ 

because it is a positive. 

Researcher: Oh, 

since it was written 

greater than 0. So you 

prefer to take ½? 

Tendai: Because it is 

positive than     
Researcher: But when 

you look at     you will 

Probing on meaning of answers 

obtained by using the quadratic 

equation revealed that Tendai 

misconstrued the question.  She 

took the condition:        in the 

proof task to imply that only 

positive values from the domain of 

     were needed: “I prefer to use 

½ because it is a positive.” Tendai‟s  

misinterpretation of the proof task 

and hence her tendency to look for 

positive values of    was affirmed 

by the statement “Because it is 

positive than       When she was 

reminded that values of   less than 

   would also give       , 

Tendai looked stuck and no further 

explanation could be elicited from 

her. 

 

The follow up interview 

revealed that Tendai had 

difficulties in interpreting the 

question.  Utterances such as 

“I prefer to use ½ because it 

is a positive,” reveal that 

despite procedural techniques  

engaged in, the student was 

clueless about the  demands 

of the task as she thought her 

task was to find positive 

values of   using the general 

quadratic formula.  It can 

therefore be inferred that 

Tendai had a wrong 

interpretation of the question 

and set out to find values of   

that had no connection with 

the proof task. Tendai‟s 

failure to interpret the 

question explains why she 
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realise that the function 

will be positive also 

below    . So why did 

you opt for the half? 

Tendai: [silent looks 

stuck] 

 

was stuck when pressed to 

justify conclusion drawn. The 

proof behaviour demonstrates 

that she failed to see how the 

piece of knowledge she had 

constructed is a solution to 

the  proof task at hand 

(Koichu, 2012). 

Determine 

whether the 

statement is 

true or 

false.  If   is 

an integer, 

then      

is an 

integer.  

Justify your 

answer. 

 

 Written 
response 

Let   be              
  is even number 

A single specific example was used 

to prove that the statement is true. 

It can be seen from the single 

example used that Tendai did 

understand the limitation of 

empirical verifications. 

Determine 

whether the 

statement is 

true or 

false.  If   is 

an integer, 

then      

is an 

integer.  

Justify your 

answer. 

 

 Chalkboard 
demonstration 

{If the statement is true 

or false.  If the integer, if 

  an integer then    –  is 

even. Justify your 

answer. Then I said}  

[Student writes] If   is an 

integer then    –  is an 

even number. {Then I 

said , let   be a 3} 

[Student writes] Let 

      {Then we say    

minus 3} [writes]    -  

{We get say      .  

Then my answer , then 

my answer becomes 

    So   is our integer 

then   is an even 

number….[inaudible], 

then is my integer} 

{Then let   be  } 

[Student writes] Let   be 

  {Then I substitute} 

   -2 

     
  {Then I also get an 

even number}. 

Similar to the written response 

effort, Tendai used specific 

examples to evaluate the status of 

the statement given.  However 

during the chalkboard 

demonstration one additional 

example:     was used.  “Then I 

also got an even number”.  Tendai 

then concluded on the basis of two 

empirical verifications that: “ […], 

if   an integer then    –  is even.”   

Although Tendai used two 

specific examples, her efforts 

also revealed her limited 

understanding of the 

fundamental limitation of 

particular instantiations, that 

they cannot be used to 

represent general cases.  

Conclusion was provided 

first and then specific 

examples were then used to 

support the conclusion made: 

If   is an integer then    –  

is an even number.  It can be 

seen that conventions of 

proof, proof framework 

(Selden & Selden, 2009).  

Tendai did not adhere to 

logical rules in proof making 

which stipulate that the 

premises should logically 

entail the conclusion. 

Table 5.6: End-of-instruction assessment data matrix for Tendai on Real Analysis proof tasks 

Task Student’s response (written, 

oral, actions) 

Profiles of students’ 

proving 

Proof scheme elements 

present 

A sequence (  ) 

of real numbers is 

defined by    =  

√  and      = 

√     .   

Prove that (  ) 

converges and 

find its limit. 

        

 Written response 

   √        

   √  √       

   √  √  √          

   √  √  √          

   and    holds 

Specific instantiations 

were used to explore the 

behaviour of the given 

sequence.  The statement 

    and    holds” that is 

in apparent reference to 

the base step of the proof 

method by mathematical 

induction is not 

It can be noted that  Tendai 

wrote the statement     and 

   holds” without 

scrutinizing results of 

particular instantiations 

made.  It can be seen that 

Tendai handled 

mathematical objects  

without grasping the 
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                           is a 

monotonic sequence is 

increasing and converge at 2 

which is the limit         

         √        

Square both (√    )
 
 

  
             

                            

 (   
         

………………………………… 

(                   
               

                      

       this implies that 

              which is the 

limit because    converges 

connected to the specific 

instantiations done by the 

student.  For instance the 

statement that (  ) is 

monotone increasing 

sequence is contrary to 

instantiation:        , 

          .  The 

student wrote that the 

sequence converges to   

before she determined 

that the limit was indeed 

    The student wrote the 

statement:  
        which is in 

stark contrast to the 

claim made earlier that 

(  ) is monotone 

increasing sequence.  

The student then 

performed algebraic 

manipulations on the 

flawed statement:  

         
      

that led to the factor form        

(             .  

Order axioms were 

wrongly applied and 

yielded      ,   

      It should have 

been      ,   and  

       for this 

statement to be true.  

Tendai‟s proof attempt 

also revealed lack of 

consistency in use of 

symbols e.g.,       
   was later written as   

       The conclusion    

    this implies that 

      “, which is not 

connected to the working 

just sprang from 

nowhere.  Tendai finally 

wrote: “     which is 

the limit because    

converges” The 

statement       is 

misleading as it gives the 

impression that all 

natural numbers will map 

to    that is sequence 

consists of constant term 

  

essence of their structural 

relationships.  For example, 

according to Tendai 

      but  she wrote  

       .  This statement 

might suggest that Tendai 

did not reflect on particular 

instantiations made earlier 

on to get a sense  of their 

meaning.  Similar to the 

previous proof effort the 

student started by stating 

the conclusion: “     is a 

monotonic sequence is 

increasing and converge at 

2 which is the limit.” 

Once again the limit is 

stated before the student 

determined it, another 

violation of the proof 

framework. Algebraic 

manipulations  that ensued 

the declaration that the limit 

is   do not point to the fact 

the limit is     For example, 

Tendai wrote           
             which 

should have led      and 

     .  The intersection 

of these is a null set (no 

solution).  But Tendai 

ignored the inequality sign 

and wrote “    .  So 

Tendai manipulated the 

objects without getting their 

sense. Tendai wrote 

“   this implies that 

              which is 

the limit because    

conveges” which is flawed 

argument. These 

misleading statements 

reveal that Tendai did not 

reflect on meaning on 

mathematical processes 

engaged in but the need to 

prove that     converges 

regardless of mathematical 

legitimacy of processes  

leading to this goal was 

influencing the 

manipulations. 
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A sequence (  ) 

of real numbers is 

defined by    =  

√  and      = 

√     .   

Prove that (  ) 

converges and 

find its limit. 

        

 

 Chalkboard 

demonstration 

[Student reads the question] {A 

sequence of real numbers is 

defined by    =  √  and      = 

√     .  Prove that (   ) 

converges and find its limit. We 

have..} [student verbalizes and 

writes]       =  √       

= √     {Then }    =  √  

{Which is equivalent to} 

     =  1.41{Then    which is 

equivalent to     } 

   = √  √  =      

{Then   }   = √  √  √  

= 1.832 

{Then   }    = 

√  √  √  √ =      {

Then we see that our sequence 

from    to    is decreasing, so 

we say.} [student writes] 
   and    holds {Then    } 

    {Then        } 
       {Then we see 

that}            

{Then we say}              

{Then we subtract our 

     which is } √          

  0 {Then we say }  

√          {The we have} 

        
  [student then 

erases the above statement and 

writes]          
    [erases 

again and writes]         
  

   {Then we say (slowly)} 

    
  +         0{Then we 

factorize, we get}    -   (   +1) 

+ 2(   +1)              
      {Then we say}        

    or 2 +    < 0) {The we 

say}        or     

  [student goes back to 

                and 

changes statement to]      

    or 2 -    )         or 

      [No justification 

adduced by student]{Then 

[silent], we have}            

[student says] {Which implies 

that} [student then writes} 

      [student concludes that]  

{For the sequence then the limit 

is  }                                                          

After reading the 

question the student 

verbalizes the specific 

instantiations she had 

made from her written 

response efforts.     and 

   not defined and the 

claim that    and    hold 

not justified. The 

statement}          

is contrary to “that our 

sequence from    to    

is decreasing.”  Further, 

            is 

confirms Tendai‟s claim 

“that our sequence from 

   to    is decreasing.”     

The student erased the 

statement and 

immediately replaced it 

with          
   .  

Tendai again erased this 

statement.  Slowly and 

with some hesitation, she 

wrote     
  +        

 0.  The expression was 

wrongly factorised to 

give            
      .  As was also 

the case in the written 

response effort, order 

axioms were incorrectly 

applied to get       

or       and the 

student suddenly 

changed        to 

       without 

justifying the change of 

sign.  Then the student 

mentioned that “we have 

         ” and then 

deduced that          
This was yet another 

awkward formulation 

that was not linked to 

what the student was 

engaged with. From the 

same statement:   
      , the student 

concluded that the 

sequence converges to 

    but the student did not 

justify this claim. 

Tendai‟s actions: erasing 

the chalkboard and writing 

slowly and with some 

hesitation, unjustified and 

undefined statements such 

as “   and    holds” point 

also to weak conceptual 

knowledge  of the student 

in the area of sequences.  

These severe limitations in 

the student‟s knowledge 

were also manifested 

through contradictory 

claims made about the 

behaviour of the sequence 

e.g., the use of the relation 

           , yet Tendai 

had asserted that the second 

term is greater than the first 

term.  Such statements 

reveal inconsistencies in 

logic. TH manipulated 

without reflecting on 

underlying ideas. Tendai‟s 

chalkboard demonstration 

also revealed weak 

command of central ideas 

in Real Analysis e.g., 

incorrect application of 

order axioms of the real 

field to solve inequality 

formed.  Perhaps influenced 

by the claim made earlier in 

the written response section 

that the limit of the 

sequence prior to the 

calculation is    Tendai had 

produced some awkward 

formulations that led her to 

conclude that the sequence 

has limit  . It can be 

inferred that Tendai‟s 

procedural knowledge and 

conceptual knowledge did 

not show a connection in 

Tendai‟s proof attempts yet 

there should be some 

interplay between 

procedural  and conceptual 

ideas during proving  

(Raman, 2003; Weber & 

Alcock, 2004). 

 

Use the definition 

of appropriate 

limit to prove that 

       
√       

 
 

= √   . 

 Written response 

Let     be given,        st 

 |    |      

 

Upon fixing     

Tendai‟s goal should 

have been to determine 

    for which  

     |      |  

 Student had a weak 

command of knowledge of 

limit involving infinity.  

This interpretation can be 

supported by student‟s 
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 .  Rather, Tendai stated 

that she intended to find 

     such that |     
 |    which is not the 

focus of limit of   as 

     

stated goal: to find if “ 

       st |    |   .” 

Student did not mention the 

fact that       .  Tendai 

stated the symbols without 

getting sense of what is 

involved in the proof. 

According to Raman (2003) 

Tendai had procedural 

fluency not well 

coordinated with 

conceptual understanding. 

Use the definition 

of appropriate 

limit to prove that 

   
   

(
  

   

 
 

   
)    

 

 Written response 

Let     be given we want to 

produce      st   |    |  
      |   |        

The definition was not 

properly stated because it 

had the condition: 

“  |    |      ”. 
First it can noted that 

     is a quantity 

associated with the 

domain of and not the 

range of the function    
Second, the condition   

  |    |      ” 
point to a deleted 

neighbourhood of the the 

limit L, yet we should 

just have a mere 

neighbourhood of   

The flaws in the definitions 

stated point to the weak 

command of underlying 

ideas.  Tendai thought of 

proving in terms of 

symbolism without 

reflecting on  meaning of 

the symbols involved, no 

conceptual insight  attained.   

Table 5.7: Mid-instruction assessment data matrix for Cortney on Real Analysis proof tasks 

Task Student’s  response  

(written, oral, actions) 

Profiles of students’ proving Proof scheme elements 

present 

Determine 

whether 

the 

statement 

is true or 

false.  If 

  is an 

integer, 

then 

     is 

an even  

integer.  

Justify 

your 

answer. 

 

 Written responses 
Given   is an 

integer {         } 
    , substituting     

         

      which is even 

         which is 

neither even nor odd 

       which is even 

        which is even 

                

which is even        is an 

even holds for  

   integers with 0 excluded 

Specific values            

were substituted into the 

expression     . These 

empirical verifications were 

used by Cortney to conclude 

that      is even for all 

integers that exclude  .  After 

stating that   is neither even nor 

odd Cortney kept on generating 

examples disregarding the fact 

that the question had specified 

that   is an integer.   

The empirical proof scheme 

was exhibited as shown by 

Cortney‟s use of specific 

examples to evaluate the 

proposition. Cortney showed a 

weak command of the concept 

of a counter example in 

proving (Stylianides, 2011).  

The fact that the proposition 

failed for integers that yielded 

0 should have led to the 

refutation of the proposition.  

This sort of proving behaviour 

reveals severe limitations in 

student‟s ability to use counter-

argumentation. She continued 

generating specific examples 

despite the fact that a counter 

example had been found. 

Determine 

whether 

the 

statement 

is true or 

false.  If 

  is an 

integer, 

then 

     is 

an integer.  

 Chalkboard 
demonstration 

[Student begins by reading 

the question] 

{If   is an integer, eee,    – 

  is it even, is the result an 

even number?  So I 

considered x to be a set of 

integers.}  [Student teacher 

then writes] 

  = {-1,0, 1,2,…} 

Similar to the written response, 

particular instantiations were 

used to evaluate the statement.  

However, when Cortney 

substituted with   , she got 

  instead of  . She noted that 

  is neither even nor odd.  

Influenced by the fact   is 

neither odd nor even if   is an 

integer    –   is not even.  In 

other words Cortney refuted the 

 The inductive proof scheme 

elements were revealed 

through use of specific 

examples by the student in 

refuting the claim (Alcock & 

Weber, 2005).  Although the 

statement was refuted by the 

student her conception of the 

idea of a counter 

argumentation was still fragile 

as revealed by use of many 
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Justify 

your 

answer. 

 

{And then substituting, 

substituting} 

[Student writes and 

verbalizes] 

Substituting -1,    –  = 

      -1  

 0(not even) 

Sub 1     –   =0 (not even)

 …………… 

Sub 2     -2 = 2 (even) 

{Substituting -1 into    –  , 

the result is       -1 which 

is 0, and substituting 0-0 =0 

and substituting 1, what do 

we have ?  Aaa, are you 

sleeping? [referring to the 

class]   What do we get, 1, 0 

and  [inaudible].  When I 

substituted 2, I got 2.  So, 

aaa, at the substitutions 

when I substituted -1, I got 0 

[….] I got 0 either and when 

I substituted 2 I got 2.  So 

zero is neither even nor odd.  

[Student then considers 

results of substitutions and 

determined whether they are 

even or odd]{Well here 

[referring to    – 2 =2] we 

are getting an even and so 

the conclusion here was that 

considering integers    –   

doesn‟t give us an even 

number.} 

 

assertion.   other specific examples when 

the case yielding   had been 

found.  In other word the 

student should have realised 

that after getting 0 for    –   

then subsequent empirical 

evaluations were no longer 

necessary.  Cortney should 

have refuted the statement on 

the basis of a single example 

generated (Alcock, 2010). 

Cortney‟s proof behaviour 

shows that procedural 

knowledge dominated her 

proof attempts while micro 

reasoning  ability was low 

(Duval, 2002). 

Describe 

whether 

the 

following 

statement 

is true or 

false. For 

all real 

numbers   

and 

      
   

   
  >0. 

 
 

 Written response 

Consider two real numbers 

    and            

substituting we have 

            which 

holds    Also         

                which is 

true. Consider also      

and               
substituting we have  

                    

which is false       , 

implies      >0 for all 

positive real numbers only.                        

Cortney considered examples.  

In the first case considered that 

is,     and    , Cortney 

established that the statement is 

true but the same statement was 

false when she instantiated with 

     and       .  Overall, 

she concluded that the statement 

holds for positive real numbers 

only.  This conclusion was 

reached on the basis of a single 

empirical evaluation involving 

    and    .  

 Once again a fragile grasp of 

the idea of counter-example 

revealed in this empirical proof 

scheme.  Weak command of 

counter-argumentation was 

revealed in the conclusion 

when Cortney concluded that 

the statement holds for positive 

numbers. Her micro reasoning 

was also weak as  she did not 

capitalise on the term “For all 

real…” in the formulation of 

the proof task. Hence she 

should have refuted the 

statement upon realising that it 

fails for negative numbers 

evaluated  into the expression. 

Describe 

whether 

the 

following 

statement 

is true or 

false. For 

all real 

numbers   

and 

 Follow up interview 
 

Researcher:You ended using 

examples. 

Cortney: I ended up using 

examples because I didn‟t 

know anything about the 

(eee) order properties which 

I now understand.  

Researcher: I now want to 

When I asked Cortney to justify 

use of examples, Cortney 

explained that she did not know 

anything about order properties.  

The student was also probed 

about her conclusion on the 

task.  Probing was necessitated 

by apparent confusion shown by 

the student.  Student was then 

asked to go through her written 

Order axioms were indeed 

irrelevant in this task.  Critical 

thinking, that is, use of 

counter-argumentation was 

strategic in this case and 

Cortney should have defended 

their  use especially in light of 

the fact that she refuted the 

claim using the substitution  

     and        (Alcock, 
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  >0. 

 
 

understand specific 

questions about question  . 

What is your overall 

conclusion? Is the statement 

true or false? 

Cortney: I didn‟t indicate 

may I please go through it so 

that I can determine what I 

wanted to say [reads 

solution]       implies 

        for all positive 

real number only.  Well, I 

think it is false [……]I said 

it was a holding for positive 

numbers only since I tried 

out with the negative I was 

getting a negative value. 

solution so that she could 

determine how she had 

concluded.  She then concluded 

that the proposition was false 

because “ it applies somewhere 

and does not apply somewhere”.  

By this statement, Cortney 

meant that the statement was 

holding for positive numbers 

only because when she tried it 

with negative integers she got 

       . 

2010).  In other words Cortney 

failed to get a sense of how 

pieces of knowledge generated 

were solutions of proof task. 

Once more, failure to articulate 

purpose of counter example 

revealed Cortney‟s fragile 

command of proof by 

refutation (Raman, 2003; 

Sandefur et al ., 2013). 

Prove that 

the 

sequence 

defined by 

(    
    

     
 

converges. 
 

 Written response 

……………………………

………. 

  
 

  

  
 

  

 =
 

 
           |    |    

   |    |    

……………………………. 
  

     
    

     

   
  

  
 

 

First, Cortney determined the 

limit  
 

 
 . Immediately after 

finding the limit, the statement: 

“  |    |     just sprang 

from nowhere and was 

transformed to   
   |    |   . Algebraic 

manipulations led to 
  

     
  .  

Cortney did not apply the 

modulus that should have 

resulted in |
  

     
|     that 

should have yielded 
 

     
  . 

Meaningless statements such as 

   
  

  
  appear in Cortney‟s 

proving profile.  

 

Student incorrectly applied the 

modulus property: If     

then | |          . 

The modulus symbol should 

have vanished. This reveals 

lack of profound grasp of the 

modulus properties. The weak 

command of modulus 

properties forced Cortney to 

engage in meaningless 

algebraic manipulation.  For 

instance expression such as 

   
  

  
  could result in 

complex solutions that are 

irrelevant could have been 

avoided by correct application 

of modulus rule. It thus be 

noted from Cortney‟s  proof 

attempt that she engaged in 

algebraic manipulations  when 

her command of underlying 

ideas  on sequences was weak 

(Inglis & Mejia-Ramos, 2009; 

Koichu, 2012; Raman, 2003) 

Table 5.8: End-of-instruction assessment data matrix for Cortney on Real Analysis proof tasks 

Task Student’s response  (written, 

oral, actions) 

Profiles of students’ proving Proof scheme elements 

present 

Use the 

definition of 

appropriate 

limit to prove 

that 
 

       
√       

 

= √   . 
 

 Written responses 

Proof    Let     be given,   

we need to determine     

such that if     then |     

 |   |
√       

 
 (√ )

 

  |       

…………………………………

………. 

                  
 

 
    Set    

 

 
 

Student started by stating the 

need to determine to establish 

    instead of       that 

satisfies the condition that if 

    then |      |   .  

     and   were identified 

and substituted in the 

expression: |      |    .  

Student then squared each 

term inside the modulus sign 

to get |
√       

 
 (√ )

 

  |       

Wrong algebraic 

manipulations led to   

It can be noted from 

Cortney‟s proving efforts 

here that she engaged 

with algebraic 

manipulations  without 

relating them ultimately 

to the goals set out to 

pursue. Student lacked 

good command of formal 

definitions of concepts 

she engaged with.  For 

example, it was not clear 

to Cortney that she 

needed to determine a real 

number   for which 
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    . The algebraic operations 

in this case violated properties 

of modulus.  While the student 

had set out to find    , she 

at the end wrote: “Set    
 

 
 ” 

The student was as a matter of 

fact trying to find    .  

Conclusion was not 

articulated, that is, although 

the student wrote:    
 

 
, she 

did not explain how this value 

proves that              

|      |     Thus, 

there was lack of critical 

thinking (Alcock, 2010) 

as shown by squaring 

each term inside the 

modulus sign without 

questions being raised 

about the implications of 

such a move in light of 

properties of modulus.  

Hence, while Cortney 

managed to state that: 

“Set   
 

 
”, she did not 

realize how this piece of 

knowledge generated 

resolves the problem 

situation she engaged in 

(Koichu, 2012).  

Cortney‟s proving profile 

reveals mechanical 

symbolic manipulation 

without grasping the 

essence behind the 

symbolic manipulations 

(Inglis & Mejia-Ramos, 

2011). 

Use the 

definition of 

appropriate 

limit to prove 

that 
 

       
√       

 

= √    

 Chalkboard 

demonstration 

So I am going to start up with 

the definition of an appropriate 

limit} {student writes and 

verbalizes the following]  Let 

    be given, we need to 

determine     s.t. if   
  then {what} [student writes] 

|         |    [….] 

[referring to [
√       

 
] minus 

this [referring to √ ], must be 

less than  .  So, eee, umm} 

[student writes] 
√       

 
  [Student immediately 

erases the above expression and 

says]{Ok, we will square here} 

[student writes] |
 √        

 

   

 √   |      {And this is go to 

yield } [….]{It means , I will 

get ,umm, big  .  Now, Iam 

going to set    √
 

 
 .  I think 

Iam done}. 

 

Cortney stated that she was 

going to start by giving the 

definition of the limit of the 

function   as    .  Similar 

to written response effort, 

Cortney described that for 

    chosen her goal was to 

determine     s.t. if   
  then {what} [student writes] 

|         |     Another 

flaw can be identified here in 

the definition where in place 

of the limit   the student now 

has        Student then 

identified      as 
√       

 
 and 

the limit   as √ .  Student 

wrote 
√       

 
  . And 

immediately erased the 

expression.  Then she referred 

to |
√       

 
  √  |    

squared each term inside the 

modulus sign to get |
       

   

 |     that finally led to 

√
 

 
     She then concluded 

that “it means I will get my 

big     Now Iam going to set 

   √
 

 
 .”  

As was noted in the 

written response section, 

the argument is flawed in 

that squaring  was done 

indiscriminately, 

disregarding properties of 

modulus. The student 

squared term by term not 

taking into account 

properties of the reference 

theory of the 

mathematical domain, 

thus affirming my earlier 

interpretation that 

Cortney held an external 

conviction symbolic proof 

scheme.  Typical 

behaviour shown in line 

with the external 

conviction symbolic proof 

scheme where the 

expression |     
    |    (TH) was 

stated instead of |     
 |    but the student 

pointed out that the limit 

is √  . It can therefore be 

inferred that there is lack 

of consistency in the 

definition articulated and 

algebraic manipulations  

engaged in by Cortney 

(Sandefur et al., 2013). 

Prove that 

     =    
 Written response 

Proof  Let     be given,   

Cortney‟s definition of 

uniform continuity is flawed 

Cortney‟s efforts to 

determine      were 
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         is 

uniformly 

continuous on 

[   ]  
 

       such that if    
  |   |       
then|         |    

…………………………… 

Set      
 

 
 

in two ways. First the arbitrary 

elements     should be 

elements from  the interval 

[0,3]and not natural numbers 

as indicated by Cortney.  

Second, the condition:  

   |   |      ” implies 

that   and   should be distinct, 

not a requirement in uniform 

continuity 

based on definitions 

which had flaws 

highlighted under 

description of her proof 

attempts.       found by 

Cortney was also not 

stated precisely.  She did 

not capture the essential 

condition that         
It can be inferred also that 

the quantity determined 

was not used to prove that 

the function is uniformly 

continuous an indication 

that student had 

procedural knowledge of 

the concept of uniform 

continuity (du Toit, 

2009). 

A sequence 

(  ) of real 

numbers is 

defined by    

=  √  and 

     = 

√     .   

Prove that 

(   ) 

converges and 

find its limit. 

 

 Written responses 
Now we prove it‟s a monotone 

sequence. 

…………………………………

……… 

inductively 

   √           

   √                  

…………………………………

…………….. 

   √                 
From above,  

               

We conclude that it holds for  

                 
We now assume that it holds for 

     in other words we saying 

         We now want to 

prove if its true for        

        √    

 √       

…………………………………

…………………. 

                       =
       

√     √      
      

From the  hypothesis from the 

induction            we 

conclude that the sequence is a 

monotone increasing which  

converges to its lub.  Now 

determining the limit which is  

the lub. 

          

(√    )
 
     

     

…………………………………

…. 

                

By order properties either 

       and        or 

           and         

…………………………………

√        …its limit is   

Particular instantiations 

(   √              
             were used to 

investigate the behaviour of 

the sequence and the student 

wrote:             
   . In other words particular 

instantiations were used to 

infer that (    is a monotone 

increasing sequence.  Cortney 

then assumed that the fact that 

the sequence is a monotone 

increasing sequence holds for 

   .  The induction 

hypothesis was correctly 

stated as         .  The 

student then correctly proved 

the implication statement 

         by proving that the 

statement holds for       

that was established by 

performing algebraic 

manipulations on expressions 

for:           The identity 

√  √  
   

√  √ 
  was 

correctly applied though 

implicitly without being 

stated.  Induction hypothesis 

was correctly applied to reach 

the goal that the sequence is a 

monotone increasing 

sequence. This conclusion 

stated prematurely because 

she had to show that the 

sequence is bounded.  

However, the student went on 

to prove that      is bounded 

by noting that  
          which 

followed logically from the 

assertion that the sequence is 

monotone increasing  that the 

While the student‟s proof 

effort revealed sound 

knowledge about the 

formal rhetoric part of the 

proof (Selden & Selden, 

2009), her argument 

showed a serious 

violation of the formal 

proof framework, that is 

the mathematical 

conventions involved in 

proving.  The following 

evidence supports these 

observations.  

Conclusions were first 

stated and then premises 

were later on presented.  

This is in stark contrast to 

the idea that the premises 

should logically entail the 

conclusion for an 

argument to be valid 

(Stylianides & 

Stylianides, 2009). For 

instance, Cortney 

concluded that the 

sequence      is 

monotone increasing on 

the basis of specific 

examples.  Then she went 

on to formulate the 

induction hypothesis and 

established the 

implication           It 
was noted that Cortney 

stated the conclusion in 

the base step of the 

method of mathematical 

induction yet the 

conclusion should have 

stated when all the stages 

of proof by induction had 

been completed as they 
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student had established.  Order 

axioms of ℝ were applied to 

this inequality to deduce that  

     is bounded and 

consequently has   as its 

supremum, which is the limit 

of      

form the basis of the 

conclusion. According to 

Curd (1982) the premises 

should logically entail the 

conclusion which was not 

the case in this example. 

Table 5.9: Mid-instruction assessment data matrix for Bea on Real Analysis proof tasks 

Task Student’s response (written, 

oral, actions) 

Profiles of students’ proving Proof scheme elements 

present 

Describe 

whether 

the 

following 

statement 

is true or 

false. 

For all 

real 

numbers   

and 

      
      
  >0. 

 

 

 Written response 
           

              

  √   √   

               
Therefore the statement is true 

Bea started by noting that  
           which is 

a correct deduction.  She then 

stated the conclusion [then 

part] of the proposition that 

she inferred would lead to   

        However, she then 

deduced that √   √    a 

wrong deduction.  For 

instance if      and     , 

the statement could lead to 

     which is a wrong 

assertion.  Bea then stated that 

               and 

finally concluded that the 

statement is true 
 

From the description of the 

proof attempt by Bea it can be 

seen that she engaged with 

algebraic manipulations 

without paying due attention to 

the reference theory or 

mathematical domain 

concerned, e.g., the deduction 

√   √    (Duval, 2002).  It 

can also be observed from the 

solution that Bea lacked grasp 

of the relation | |  √   as 

can be seen from √   √  . 

Also Bea started by stating the 

conclusion instead of 

developing an argument that 

would lead to the conclusion. 

Hence Bea violated the proof 

framework (Selden & Selden, 

2009).  

Determine 

whether 

the 

statement 

is true or 

false.  If 

  is an 

integer, 

then 

     is 

an even 

integer.  

Justify 

your 

answer. 

 

 

 Written response 
Taking    to be an odd number 

e.g                

(even).                
                            
      If   is an even 

number e.g              
  (even)              

(even)          
          […] the statement 

only holds for     and 

   .  Therefore since the 

statement does not hold for 

    and       the 

statement is false 

  

Bea used specific examples to 

refute the statement.  First, she 

used odd numbers (3, 5, 7) 

and noted that empirical 

evaluations of the expression 

     with these odd 

numbers gave even numbers.  

Next even numbers (2,4,6) 

were evaluated into the 

expression and the student   

obtained an even number in 

each case.  Bea observed the 

statement does not hold for the 

cases     and     and 

consequently concluded that 

the statement was false.  

However no evidence was 

adduced by her to justify her 

claim that the statement is 

false when     and when 

    

All specific examples used 

gave even numbers.  Bea stated 

that the statement does not hold 

for the cases     and    .  

This claim was not justified by 

Bea and her basis for drawing 

the conclusion that the 

statement is false was not 

articulated.  Bea‟s proving 

profile reveals her weak 

command of the concept of a 

counterexample because she 

failed to justify how the 

particular instantiations 

rendered the statement invalid 

(Alcock, 2010). Therefore 

examples were used without 

drawing meaning from them. It 

can be inferred that Bea did not 

grasp how pieces of knowledge 

generated are solutions to 

given tasks given (Fukawa-

Conelly, 2012; Koichu, 2012).  
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Determine 

whether 

the 

statement 

is true or 

false.  If 

  is an 

integer, 

then 

     is 

an even 

integer.  

Justify 

your 

answer. 

 

 

 Chalkboard 
demonstration 

[Student writes the statement 

while reading aloud what is 

being written] 

If x is an integer, determine 

whether    –  is an even 

number. {If   is an integer, 

determine whether    –  is an 

even number}[Student writes} 

even  {Aaa, I started with   

as an even number and I 

considered  .  If you substitute 

2, if you substitute     its    

which is …} [Student writes] 

If       {Its      we get 4 

minus   which is equal to 2.  

If       its   , which is 

     we get   } [Student 

writes]         even {Then 

if   is  , its    which is 

    , you get   , which is 

an even number} 

     even [Student 

writes even against each of 

case for           and 

writes the following on the 

board] But if      and     

{But if     consider   
  and    , if    , the 

answer is   and if    , the 

answer is  } 

           [referring to answers 

obtained by inputting   and   

into the expression    –  ] 

{And 0 is not an even number, 

therefore the statement    –  

is an even number is false 

because 0 is not an even 

number} 

[Student writes the 

conclusion]     –  is an even 

number is false because   is 

not an even number. 

Similar to the written response 

effort, specific examples were 

used.  Empirical evaluations 

involving         and 

    yielded even numbers. 

During this phase Bea was 

able to produce examples to 

support her claim that the 

statement is false by 

considering cases when     

and when       She 

explained that empirical tests 

with these numbers  gave the 

answer     Bea concluded on 

the basis of this counter 

argumentation that the 

conditional statement: if x is 

an integer then    –  is even 

is a false statement.   

A similar argument to the one 

in written response section 

with the exception that for the 

chalkboard demonstration Bea 

justified the conclusion that the 

expression    –  is even is 

false by citing the integers    
and   as counter examples.   

Prove that 

the 

sequence 

defined by 

(    
    

     
 

converges. 
 

 Written response 

     
    

     
  divide each 

term by    

      

  

   
 

  

   

   
 

  

 
 

 
      

Therefore the sequence 

converges to 
 

 
  

Bea divided by the dominant 

term and established the limit 

  
 

 
. Bea concluded that the 

sequence converges to  
 

 
         

Bea focused on techniques  for 

finding the limit rather the 

meaning of the concept of limit 

in terms of finding a natural 

number for which |    |  
 . In other words Bea‟s 

proving profile focused on 

instrumental techniques for 

determining the limit of a 

function as opposed to 

exploring conditions that 

establish that a sequence 

converges. Precisely, Bea 

should have focused on finding 

a natural number      for 

which |    |            
This limitation in student‟s 
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grasp of definition of 

convergence of a sequence was 

the focus of the reflective 

interview on Bea‟s proof 

construction effort. Hence, 

Bea‟s proof attempt reveals 

lack of interplay between 

procedural and conceptual 

knowledge (du Toit, 2009). 

  

 Follow up interview 
Researcher: […] Anyway after 

dividing by the dominant term 

and taking limit as n 

approaches infinity,   you got 

half.  Does this prove that it 

converges to  
 

 
?   

Bea:  You are supposed to go 

further taking this [pointing to 

working ], the modulus of this 

[referring to the sequence 

     ] minus the limit.  We 

say this must be less than  . 

Researcher:  What are you 

trying to find by applying 

modulus? 

Bea:  To verify whether the 

sequence converges. 

Researcher: In other words, to 

prove whether it converges? 

Bea:  Whether it converges. 

Researcher: Can you explain 

further?  What are you doing 

here [referring to attempts to 

determine n in terms of   in ] 

Bea: But after simplifying 

maybe after simplifying here 

Researcher: Ehee 

Bea:  And get the answer then 

multiply the denominator by   

and bring the   here.  Aaa, Iam 

not quite sure on how to 

conclude the 

statement[repeated]. 

Researcher: Now you were 

talking about dividing by   .  
what are you trying to find 

when you are dividing by    
Bea:    
Researcher: What is  ? 

Bea: Is it greater than, is it 

greater than  ? (laughs) 

Researcher: […] How do you 

define the convergence of a 

sequence?  When do we say a 

sequence converges? 

Bea:  [silent].  I am not well 

versed in that because [silent].  

This is why..[apparently 

stuck] 

 

The focus of the follow up 

exercise was to examine Bea‟s 

conceptions of the idea of 

convergence because her 

solution effort had not 

revealed much data from 

which to infer the kind of 

proof scheme held by the 

student.  First, she admitted 

that her efforts were 

inadequate and described the 

need to go further with the 

proving process.  When asked 

to clarify what she would be 

trying to establish by 

“applying modulus”, Bea 

stated  that one would be 

trying to “verify whether the 

sequence converges.”   When I 

probed Bea on what she was 

trying to achieve by 

expressing   in terms  , Bea‟s 

explanation tended to be 

focused on instrumental ideas 

rather than the conceptual 

ideas driving those procedural 

efforts, e.g., “simplifying 

…and get the answer .. and 

multiply”.  She did not explain 

the goal she sought to 

accomplish by engaging in the 

procedural ideas and she even 

said “Iam not quite sure how 

to conclude”.  Further, when 

pressed about what   

represents, once again her 

explanation had a procedural 

or instrumental bias e.g., “…is 

greater than       In addition 

when asked to define 

convergence of a sequence she 

retorted: “I am not well versed 

in that.” 

While Bea demonstrated an 

awareness of the formal 

rhetoric aspect (Selden & 

Selden, 2009) she could not 

proceed and execute the plan.  

Selden and Selden say it is not 

important that a student 

articulates the behaviour but he 

or she must be able to act on it.  

Thus while Bea explained that 

there was need to proceed 

further and determine   in 

terms   she could not execute 

this plan.  Moreover, Bea was 

supposed to describe the need 

to find a natural number      

such that |    |   .  Bea 

could not explain these 

underpinnings  of convergence 

of a sequence but rather her 

explanation centred on 

procedural techniques whose 

purposes she could not justify .  

When asked about crucial ideas 

on sequences like convergence, 

Bea retorted: “I am not well 

versed in that…”   Responses 

such as this reveals that Bea 

engaged with mathematical 

ideas when they have limited 

knowledge about their 

underlying ideas. e.g., Bea 

talked about “is greater than 

   , without having a clear 

picture of the quantity that had 

been determined.  Such proof 

behaviour point to mechanical 

manipulation of symbols by the 

student without grasping the 

essence behind those 

manipulations (Duval, 2002; 

Koichu, 2002). 
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Table 5. 10: End-of-instruction assessment data matrix for Bea on Real Analysis 

Task Student’s response 

(written, oral, actions) 

Profiles of students’ proving Proof scheme elements 

present 

A sequence (  ) 

of real numbers 

is defined by    

=  √  and      

= √    . 

Prove that (  ) 

converges and 

find its limit. 

        

 

 Written response 

   √  
     
      

 

√     A sequence      
converges to a real number 

iff every subsequence of 

     converges to L.  

Proof 

Bea just recalled one of the 

theorems covered during the 

Fundamental of Analysis 

Course. Its application in 

solving the problem at hand 

was not demonstrated. An 

impasse was reached as can be 

seen by the blank space that 

appears after student‟s 

declaration of intention to 

produce a proof. 

Bea could not relate the 

theorem she stated to the task 

she was supposed to solve.  

She might have memorised 

the theorem without grasping 

how it can be applied in 

problem solving (Koichu, 

2012).  Bea lacked a coherent 

network of resources on 

proof and proving because 

student could not link the 

stated resource, that is , she 

could not relate the theorem 

to the   task and hence the 

impasse experienced 

(Wilkerson-Jerde & 

Wilensky, 2011). 

  Chalkboard 
demonstration 

[Reads the question taking 

a bit of time, about 1 

minute. Student verbalizes 

and writes] 

   =  √        = √    .  

[student then describes 

that] 

{A sequence converges to 

a real number   iff every 

subsequence of (  ) 

converges to   } [student 

writes] Proof we have    =  

√ , then         

√     [Students erases 

and says] {Its √  √  

and      {This number 

[pointing to √  √ ] is 

less than √    Then      

      

√  √  √     
[Student is silent for a 

while, then rubs what has 

been written and says]  {I 

wanted to show that}       

√    {This number is 

eee}  [ writes]   √   . 

[student changes sign and 

writes]  

√  √  √     . 

[student says] {Then } 

          {Then the 

next step is its proof by 

induction} [rubbing the 

board and analysing earlier 

statements}  [Student says] 

Bea read the question to be 

answered slowly.  She then 

mentioned the theorem from 

the written response data 

source and then wrote: 

“Proof.”  This was then 

followed by specific 

instantiations that had no 

connection with the theorem 

stated. In carrying out the 

numerical tests, Bea erased the 

board on each attempt, that is, 

when she evaluated    and 

     During the empirical 

verifications, false claims 

were made.  For instance Bea 

stated that: “This number 

[…]√  √ ] is less than 

√      Also, meaningless 

statements were produced 

during the proving attempt: 

“         

√  √  √    ”.  The 

notation:      is not 

consistent with      given.  

Also when the statement cited 

above is followed through it 

would give       which is 

senseless.  While the 

representation of     is not 

true , the statement 

√  √  √     is not 

consistent with what the 

student had written earlier: 

    √  √  √   . Bea 

then concluded that    
        Just as before the 

formulation       is 

 Just as was the case with the 

written response a theorem 

was just mentioned and never 

brought to bear on the task at 

hand.  Bea showed lack of 

confidence when she dealt 

with problem.   Lack of 

confidence was shown by 

actions such as erasing what 

had been written, being silent 

for some moments during  

question attempt, reading the 

question slowly and changing 

signs and writing senseless 

statements such as:  “    

      √  √  √  
  ”.  These actions and 

senseless utterances and lack 

of confidence point to Bea‟s 

fragile grasp of the structural 

relations between underlying 

mathematical ideas , that is, 

severe limitations in Bea‟s 

knowledge about concepts of 

monotone sequences.  In her 

proving effort, Bea did not 

attend to the question 

demands, that is, she did not 

articulate her goals precisely 

which should have been to 

determine whether the 

sequence was monotone 

increasing or decreasing, 

exploring whether the 

sequence is bounded and 

finally finding the limit.  The 

concepts examined: 

boundedness, limit and 

monotone increasing or 
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{Proof by induction, but 

ndinenge ndakanwa 

zvokumberi [I have 

forgotten the subsequent 

steps]} 

 

senseless and a justification 

for such a conclusion not also 

given.  Student finally erased 

the chalkboard and gave up on 

the proving effort as implied 

by the statement: “I have 

forgotten the subsequent 

steps” 

decreasing give rise an 

important criterion for 

convergence of a sequence 

which is stated in the form of 

a theorem.  Bea‟s efforts did 

not show the interrelatedness 

in those concepts. Hence, she 

could not access the relevant 

theorem (Raman, 2003; 

Sandefur et al., 2013). 

  Follow up 
interview 

Researcher: You can move 

on to other steps you are 

familiar with 

Bea: Zvimwe zvacho 

ndakanganwa ( I have 

forgotten the steps) 

Researcher: You may refer 

to your answer sheet if you 

want. 

Bea: Hapana pakatosara 

pari blank (There is 

nothing written)  . I can‟t 

recall some of the steps 

that Iam supposed to 

follow 

Follow up interview on how 

the student had engaged with 

the task confirmed the 

impasses experienced by the 

student when writing the tasks 

and when also presenting the 

tasks on the chalkboard.  Bea 

mentioned that she could not 

remember steps she was 

supposed to follow.  When I 

urged her to refer to her 

answer booklet on written 

responses, Bea stated that: 

“There is nothing written” 

Severe limitations in Bea‟s 

grasp of the convergence 

criterion of bounded 

monotone sequence were 

confirmed during the 

reflective interviewing phase.   

She explained that the 

concepts were far out of her 

reach that she could not 

remember even the steps 

involved.  These data reveal 

that Bea experienced 

challenges with the task to a 

point where she could not 

figure how to begin the proof 

construction process.  Bea 

conceived proving in terms 

steps to be remembered and 

followed.  

Use the 

definition of 

appropriate 

limit to prove 

that

       (
  

   
 

 

   
)    

 

 Written response 

Let     be given. 

Required to find     

such that if   
  |      |    

|
  

   
 

 

   
 

 

 
|     

 

|
           

   
|     

………………………….. 

|
       

   
|     

…………………………

… 

             

Definition of limit of function 

  as      confused with the 

definition of limits involving 

infinity   The condition of a 

deleted neighbourhood not 

shown in the definition given.  

Student wanted to determine a 

real number   instead of 

establishing the existence 

of          that would make 

it possible to map points in the 

neighbourhood of   to the 

neighbourhood of the limit  . 

Student was then stuck after 

factorising. 
 

Bea‟s woes with proof tasks 

continued also with this task 

on limits.  Limits involving 

infinity were confused with 

the limit of a function as the 

function        Procedural 

aspects were handled 

successfully as shown by 

correct factorisation.  

Impasses experienced after 

factorising can be attributed 

to weak command of 

concepts involved in limits. 

Underlying ideas  of limit of 

a function were not accessed. 

Therefore algebraic 

manipulations were done 

without in-depth 

understanding of underlying 

ideas and the goals such 

efforts sought to accomplish. 

These were persistent 

characteristics of Bea‟s 

proving profile (Harel & 

Rabin, 2010). 
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Table 5.11: Taku‟s Mid-instruction assessment data matrix on Real analysis proof tasks 

Task Student’s response 

(written, oral, actions) 

Profile of student’ proving Proof scheme elements 

present 

Describe whether 

the following 

statement is true 

or false. 

For all real 

numbers   and 

          

     >0. 

 
 

 Written response 
          

squaring both sides   

             >0. 

  The statement is true 

The statement     
       is true.  However 

the process of squaring was 

done without taking into the 

effect of squaring negative 

real numbers e.g.,       

but     .  After squaring 

both sides Taku then   

concluded that the statement 

is true.  

The description of Taku‟s 

proof attempt reveals that 

mathematical processes are 

sometimes used in an 

instrumental fashion by 

students, that is, without 

attention to reference theory 

of the proof task.  For 

example Taku did not 

question implications of 

squaring elements of 

  (Alcock, 2010). 

Determine 

whether the 

statement is true 

or false.  If   is 

an integer, then 

     is an 

integer.  Justify 

your answer. 

 

 Written response 
         
  ……Plugging integers 

                    

-2(-2-1                
    6                 0 
…………………… 

From the result obtained 

shows that it is true 

Taku started by factorising 

the expression       .  

Integers were then plugged 

into the expression and Taku 

on the basis of these 

empirical validations 

concluded that the statement 

is true. 

Student was convinced by 

just two examples that the 

expression      is even if 

  is an integer.  This reveals 

that Taku had a weak grasp 

of the limitation empirical 

verifications as means of 

validating mathematical 

statements (Stylianides, 

2011).  Further, the fact that 

  is neither even nor odd was 

not understood as shown by; 

“      0  The result 

obtained shows that it is true”  

Prove that the 

sequence defined 

by (    
    

     
 

converges. 
 

 Written response 
…………………………

…… 

   
  

 

  

  
 

  

 =
 

 
    

Given that there is      
for a natural number     

s.t. 

        there is a 

natural number          
……………….. 

|
           

        
|     

|
  

        
|       

 

     
 

  

………………………….. 

  √
    

  
  which is     

Therefore the sequence 

converges 
      

First, Taku found the limit 

by dividing each term of the 

sequence by the dominant 

term.  Next, Taku described 

the formal definition of 

convergence of a sequence.  

The definition lacked clarity 

as shown by  “for a natural 

     then there is    . 

The definition as stated 

serves little purpose because 

if   is a natural number then 

it is by implication greater 

than 0.  Despite flaws in the 

definition , Taku managed to 

perform correctly the 

algebraic manipulations  and 

was able determine the size 

the natural number        

Also, the definition reveals 

that the student has limited 

knowledge regarding the 

proof framework, 

conventions of doing.  In this 

case     must be chosen 

first and it will determine the 

natural number      that will 

determine convergence. 

Student had a superficial 

grasp of the underlying 

notion of convergence of a 

sequence. The formulation   

      reveals a severe 

limitation in the student‟s 

conception of         
Although the natural number 

was found in terms of   the 

student did not explain how it 

proves that the sequence 

converges.  In other words, 

Taku did not explain how the 

piece of knowledge he 

constructed resolved the task 

he was faced with (Koichu, 

2012).   
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Table 5.12: End-of-instruction assessment data matrix for Taku on Real Analysis proof tasks 

Task Student’s response  (written, oral, 

actions) 

Profile of student’ 

proving 

Proof scheme elements 

present 

Prove that  

     = 

        
  isuniformly 

continuous on 

[   ]  
 

 Written response 
Let     be given and there exists 

       for     |         |    

for   and   such that |   |    

|                |     

|           |    
|                 |    

Factorising     |          
  |    

|            |    

|      |        |   |  
 

 
    Set  

     
 

 
 

Taku did not state the set 

from which the arbitrary 

elements     were 

selected, that is, he 

should have written that: 

    [   ]   It can also 

be observed that the 

definition of uniform 

continuity by Taku 

included the condition 

    and a wrong 

expression |   |    

instead of |   |  
    . Algebraic 

manipulations done to 

determine        were 

correct..  However, the 

substitution:        

was not justified.  

Although, the student 

managed to find an 

expression for         

, he did not explain how 

the value found showed 

that      is uniformly 

continuous on the given 

interval.  

The flaws noted in the 

definition show that Taku 

had weak grasp of the 

concept of uniform 

continuity. For instance the 

statements:|   |    and 
|         |   , show  

that the same quantity 

    works for both the 

domain (set) and the range 

a serious misconception 

about the concept of 

uniform continuity.  Taku 

thought of proof 

construction in terms of 

symbol manipulations but 

meaning of those was not 

understood.  Algebraic 

manipulations  meant to 

determine size of        

were correctly done but 

student lacked micro 

reasoning (Duval, 2002) 

and carried out the 

mathematical processes 

outside the reference 

theory of the proof task 

Prove that  

     = 

        
  isuniformly 

continuous on 

[   ]  
 

 Follow up interview 
Researcher: […] Can you 

describe uniform continuity Taku ?    

Taku: Right. Then we say given, let be 

given      right then there is, then 

we are to find  ( ) which is an element 

of the set of natural numbers, right in 

such a way that  from zero up to say 

absolute values of      is less than       
Right then we are going to have 

            being [silent] 

Researcher: So f              
What are you saying on uniform 

continuity? 

Taku: Ok. I am say           then 

we put them in absolute then there 

should be less that limit [referring to L] 

 

 

Taku could not describe 

uniform continuity 

properly.  For instance, 

Taku thought of       as 

a natural number.  There 

was a mix up of ideas as 

shown by Taku‟s claim 

that “absolute values of 

     is less than      
yet     is a quantity 

associated with the range 

of the function, that is, 

|         |   .  

Uniform continuity was 

also confused with the 

concept of limit of a 

function as shown by the 

claim that |     
    |     where    
denotes the limit of a 

function.      

Taku had a fragile 

understanding of the 

concept of uniform 

continuity.  First, Taku  

thought of      as a 

natural number.  He might 

have confused the 

definition of convergence 

of a sequence with uniform 

continuity.  Second his 

weak understanding of 

uniform continuity was 

shown also by mixing up 

ideas of uniform continuity 

with the idea of limit of a 

function as     . 

A sequence 

(  ) of real 

numbers is 

defined by    

=  √  and 

     = 

 Written response 
………………………………………

……………. 

   √          

    √  √  =1.848 

Specific examples were 

used to explore the 

behaviour of the 

sequence. Empirical 

evaluations done by 

Taku lacked accuracy 

While empirical 

verifications are good at 

unwrapping the underlying 

property that usually forms 

the crux of the proof they 

failed to serve that purpose 
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√    . 

Prove that 

(  ) 

converges and 

find its limit. 

 

   √  √        

         

            

This is a monotone decreasing 

sequence which began increasing but 

ultimately decreased.   Upper bound is 

1.848 and lower bound is 1.414 

e.g.,             
     , which is senseless 

statement because (  ) is 

a monotone increasing 

sequence.  Also, the   

student had    

√  √   and    

√  √ , the same value 

for the two terms     and 

     but two  different 

values were obtained as 

shown earlier. 

Inaccuracy in empirical 

evaluations led to a 

somewhat vague 

formulation: “monotone 

decreasing sequence 

which began increasing 

but ultimately 

decreased.” 

because Taku was not 

accurate (Alcock, 2010; 

Morselli, 2006)  For 

instance, Taku wrote a 

somewhat vague 

statement: “This is a 

monotone decreasing 

sequence which began 

increasing but ultimately 

decreased.   Upper bound 

is 1.848 and lower bound 

is 1.414” 

Define a 

sequence 

(     

inductively by 

       and 

     = 
     

 
.  

Prove that  

(      is a 

bounded  

monotone 

sequence is 

bounded and 

hence 

determine its 

limit.. 

 

 Written response 
………………………………………

……………………... 

          
      

 
 

 

 
      

   
 (

 

 
)  

 
  =

  

 
       

Since                   

So it is a monotone increasing 

sequence 

Proof by induction 

                   from 

above 

Assume it hold for     We are to 

prove that       it also hold 
       

 
 

     

 
 

      

………………………………………

……….. 
 

 
[
     

 
 

      

 
]    

              

  it is a monotone sequence 

     {  
 

 
 
  

 
   

     

 
 

      
    

 
    lub is   glb is    It 

has lower limit is and  upper limit is   

 Specific examples were 

used:         , 

         .  Taku then 

used these empirical 

evaluations to draw the 

conclusion:       
           . It can 

be observed here that 

there was a mix up in 

notation.   The task 

involved terms,      of   

the sequence (     and 

yet Taku introduced 

terms    of sequence 

(   . Also, senseless 

statements like    
          
    were used to 

conclude that (     is a 

monotone increasing 

sequence.  Further, 

statements such as  

             
        featured in 

Taku‟s solution effort 

without specifying  the 

meaning of the quantities 

     and     .  

Justification for the claim 

that         not given.  

Taku also wrote 

      
    

 
   .    

that was given as 

subscript in the inductive 

definition of the 

sequence just vanished.  

Taku concluded that the 

least upper bound is 

infinity and infimum is 1. 

Taku used empirical 

evaluations to draw the 

conclusion that the 

sequence (     is 

monotone increasing. The 

student demonstrated lack 

of awareness of the 

limitation of empirical 

explorations in proving 

statements that require 

formal deductive reasoning 

(lack of relevant insihts.  It 

can be seen from Taku‟s 

effort that proving is 

largely conceived in terms 

of symbol manipulation  

without drawing meaning 

from such symbols.  The 

disregard of meaning of 

symbols was of an 

alarming level to a point 

where the student teacher 

specified terms as    for 

the sequence 

(       Mathematically 

ambiguous and incorrect 

statements such as 

“      
    

 
    lub is 

  glb is  .  It has lower 

limit is and upper limit 

is      Mathematical 

induction was not done 

properly.  For instance the 

induction hypothesis (lack 

of was not stated clearly 

and hence was not used to 

infer that the sequence is 

not monotone increasing 

Selden & Selden, 2009).     

 Define a 

sequence 
 Chalkboard demonstration Student found the first 

three terms,        and 

The chalkboard 

demonstration confirmed 
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(     

inductively by 

       and 

     = 
     

 
.  

Prove that  

(      is a 

bounded  

monotone 

sequence is 

bounded and 

hence 

determine its 

limit.. 

 

{Aaa, Iam going to work out number 

one just I like I have done in my write 

up.  Right, according to that question it 

says define a sequence (     

inductively by    and      as given.  

So I will write. You are given} [student 

writes]       ,         = 
     

 
   

{So now for   , we put the value of     

here [pointing to 
     

 
] which we are 

going  to get something like} 
   

 
   

 

 
.  {Then     we put our 

 

 
 here} 

[students writes] 
 
 

 
  

 
   

 

 
  

 
 

  

 
      

             
 

 
     

  

 
 {Now after 

doing this, first, second and third, I 

would like to see how my sequence or 

how my sequence in numbers are 

going, the trend that they are following.  

Right, may somebody punch for me in 

the calculator, I want to change this 

into decimal} [Student writes down 

answers given by other members] 

                             {If 

we are to look here, we will see that 

that [student writes]            {in 

essence , we can just say }         

{Then from this, we can easily see that 

the sequence is increasing.  Now we 

have been asked to show that it is what, 

it is bounded [silent] and then it is a 

monotone sequence and aaa, we also 

asked to find the limit.  Right after 

doing this maybe we need to do it by 

induction} [Student writes] Prove by 

induction {Now from the numbers, that 

we have, we can easily see that } 

[Student writes]             {So we 

now assume, since            , so for 

the numbers, we said it holds.  We 

assume, it is or it is going to hold for 

   } [Student writes] Assume   
 {So what are we saying now, we want 

to prove, we want to get  for     
 } [Student writes]       {So I 

will [inaudible] come with my number, 

this one [referring to      = 
     

 
  ], 

that is where Iam going to put all these 

values and prove by induction.  So our 

  is going to be } [student writes] 
       

 
 {And for our k+1, we are going 

to get}     
     

 
[Student the writes]  

       

 
   

     

 
{Now fro this [pause], 

it can easily be seen that a number that 

is less than   here will always give us a 

less the number than is the one that is 

 .  So from this I can, I have proved 

…[inaudible].  Then the other part is 

saying hence determine the limit.  

    of the sequence. Then 

he noted that         
   and he then claimed 

that in essence}    
      Student then 

pointed out that he was 

going to prove by 

induction that the 

sequence (     is 

bounded.  An ambiguous 

statement           

immediately followed 

and the student 

concluded that from the 

numbers, referring here 

to the specific examples, 

the statement was true.  

Because the student had 

not correctly articulated 

the induction hypothesis 

he had difficulty in 

deducing that        .  

An impasse then ensued 

and the student admitted 

that he had not grasped 

the concepts well.  

the tenacity of the 

empirical proof scheme.  

Taku calculated the second 

term and the third term of 

the sequence and then 

concluded basing only 

these two empirical 

evaluations that the 

sequence is monotone 

increasing. Taku then 

wrote “           {in 

essence , we can just say } 

        {Then from 

this, we can easily see that 

the sequence is 

increasing.”  An effort to 

prove by induction  proved 

to be a challenge.  Student 

did not explain meaning of 

“             written and 

did not state the induction 

hypothesis clearly. Hence, 

technical handles were not 

strategically and readily 

accessed (Hanna & Mason, 

2014; Raman, 2003). As a 

result Taku‟s efforts to 

prove that the sequence is 

bounded were not 

successful.  It can be 

observed from Taku‟s 

solution that he was aware 

of the hierarchical order of 

the proof.  In other words 

he knew the goal that he 

intended to accomplish 

through the method of 

mathematical induction but 

failed to coordinate 

different parts of the proof 

(Selden & Selden, 2009).  

For instance, he could not 

establish the implication 

statement because he had 

failed to state clearly the 

induction hypothesis.  

Hence, Taku was unable to 

prove by mathematical 

induction that the sequence 

is bounded.  Therefore, he 

could not proceed to 

determine the limit of the 

sequence which depended 

on the fact (     is a 

bounded monotone 

sequence, a fact Taku 

failed to establish. Hence, 

Taku reached an impasse 

in a similar fashion to 

impasses experienced by 

participants in a study by 

Varghese (2009). 
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Maybe to get the limit the way I 

worked it out. [silent apparently stuck].  

Unfortunately I did not do that part 

maybe one of the reasons could be 

when you started this topic I was away.  

I didn‟t grasp some of the concepts 

well.  I have been the first to be asked 

to present.  I am still trying to learn on 

how to go about it} 

 

 

 

Define a 

sequence 

(     

inductively by 

       and 

     = 
     

 
.  

Prove that  

(      is a 

bounded 

monotone 

sequence is 

bounded and 

hence 

determine its 

limit.. 

 

 Follow up interview 

Researcher: [ …] You have 

   

 
 

 

     

[…] how did you conclude that the 

least upper bound is infinity?  

Taku: Maybe initially I had to divide 

by the highest power [referring to the 

dominant term] which was   and then 

as   approaches what infinity, aaaa, I 

ended up getting something like         
over [referring to divide by]   which 

then [inaudible] it becomes undefined.  

Researcher: So you took this one 

[referring to    ] as a very small 

number dividing into…[interruption 

from student teacher] 

Taku: Yes, I took this [   ] as a very 

small number dividing say this whole 

thing [ referring to 
   

 
  ] divided by 0 

which becomes undefined. This is how 

I got it. 

 

The notation       = 
     

 
 was not grasped by 

the student.  Subscript 

notation     was treated 

as just the variable    
This led to wrong 

algebraic manipulations  
   

 
 

 

     . This working 

illustrates that there was 

a mix up of concepts 

here.  The idea of limits 

involving infinity was 

confused with 

convergence of a real 

sequence 

Taku had challenges in 

interpreting the inductive 

definition of the sequence 

     .  So the    
     term of the sequence 

was interpreted as  
    

 
 

There was lack of access to 

relevant technical handles.  

It can be noted student‟s 

reasoning about the proof 

task was not consistent 

with the reference theory.  

The student was thinking 

about a different concept to 

the one required by the 

proof task. So Taku 

engaged in irrelevant 

algebraic manipulations  of 

limits involved as a result 

of failing to operate within 

the area of real sequences 

He lacked  grasp of 

structural relationship 

(Hanna and Mason, 2014; 

Koichu, 2012) .  He ended 

up mixing concepts and 

therefore could not succeed 

proving.   

Table 5.13: Mid-instruction assessment data matrix for Debra on Real Analysis proof tasks 

Task Student’s response (written, oral, 

action) 

Profiles  students’  proving Proof scheme elements 

 

Determi

ne 

whether 

the 

followin

g 

statemen

t is true 

or false. 

For all 

real 

numbers 

  and 

    
      

    
   0. 

 

 Written response 

…………………………………… 

If       then     and 

                   If 

     then              
  .  If      then          
       
……………………………………. 

Since          and       it 

is false that      >0.  Proof 

                    given 

                    if 

                  (1) 

       

If                     
         ………..(2)  If   
           …………..(3) 

NB       or    ,        or –   

First, a correct observation  

was made that        
        Next the student 

then considered cases where 

       and        

described by Debra as 

follows.  If     , 

presumably referring to   as 

being a negative real number 

that then gave  

               . The 

student then made the claim 

that since           and 

      it is false that that 

     >0.  Debra used 

order axioms of a field to 

prove the claim that “it is 

false that      >0.”  She 

From Debra‟s proof profile 

Debra used the order 

property of ℝ to refute the 

proposition that for all 

     ,           
        The specific order 

property employed by Debra 

is: if      and     then 

        Hence, it can be 

deduced that Debra could 

access the strategic technical 

handle which correctly 

applied to refute the claim.  

Therefore although Debra‟s 

proof attempt contained some 

somewhat vague notation: “If 

     then           
     ” and “If   
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adding (2) and (3)  

            ….      
  Which is a contradiction to  

      0.    …          It is 

false that        . 

applied the concept,     

and     then        to 

refute the statement that 

        

       0. 

    

         ,” she used 

axiomatic reasoning correctly 

to refute the given 

proposition. 

Prove 

that the 

sequence 

defined 

by 

(    
    

     
 

converge

s. 
 

 Written response 

     
    

     
  

  
 

  

  
 

  

    

As         converges to 
 

 
. 

Let      then there exists 

       if it converges.  

|
 

 
   

 

 
|       

             
 

Debra divided the 

expression by the dominant 

term and evaluated the limit 

to be 
 

 
. This stage was then 

followed by a wrong 

formulation of the definition 

of convergence of a 

sequence.  Debra considered 

  to be a element of ℝ.  She 

then claimed that if      
converges then a real 

number      exists.  It can 

be noted from Debra‟s 

attempt that the quantity   in 

the definition was never 

specified.  An expression 

|
 

 
   

 

 
|      just sprang 

from nowhere and its 

connection with      and 

the element   was not 

articulated.  Finally, another 

isolated bit of information  
            was then 

written. 

 

 

 

 

Debra‟s proving profile 

reveals severe limitations in 

her knowledge of the concept 

of a sequence.   A sequence 

is a mapping from natural 

numbers to real numbers, yet 

Debra took the domain of 

real sequences to be  ℝ.  

Further, statements such as: 

 |
1

2
+L-

1

2
| <    point to a 

fragile grasp of the notion of 

convergence of a sequence.  

Symbols just sprang from 

nowhere without an 

explanation provided for the 

purposes they served.  Hence, 

symbols were handled in a 

mechanical way without 

Debra showing evidence of 

grasping their essence (no 

access to CI). No conclusions 

could be drawn from the 

“working” presented.  

Debra‟s proving profile is 

typical of the external 

conviction ritual proof 

scheme (Harel & Sowder, 

1998; CadawalladerOlsker, 

2011). 

Determi

ne 

whether 

the 

statemen

t is true 

or false.  

Justify 

your 

answer.  

For all 

real 

values of 

       
     
      
implies 

that 

     
 . 

 
 

 Written response 
Factorising       
                    

                    
              

                      or       

………………………………… 

  
 

 
              [solutions 

illustrated on number line] 

       has a solution   
 

 
  

 

Debra factorized the 

quadratic expression and 

obtained           
      One case of the 

order axioms was applied to 

the factors and yielded 

   
 

 
       These two 

inequalities were then 

represented on the number 

line. She then concluded that 

    has a solution   
 

 
. 

The conclusion stated did 

not address the consequent 

(then part) of the 

proposition. 

Although Debra factorised 

the quadratic expression 

successfully, she showed a 

weak command of the order 

axioms.  The case     and 

    leading to      was 

used by Debra while the 

other case     and      

was not used. The conclusion 

drawn did not show a link 

with the question.  Debra did 

not determine whether the 

proposition is true or false 

but rather she looked for 

solutions to the inequality 

         So failure to 

interpret the question 

correctly led to an irrelevant 

conclusion being drawn. It 

can therefore be inferred that 

Debra did not grasp how the 

piece of knowledge 

constructed resolved the 

problem confronted (Koichu, 

2012). 

Determi  Chalkboard demonstration  Debra started by stating her Debra‟s chalkboard 
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ne 

whether 

the 

statemen

t is true 

or false.  

Justify 

your 

answer.  

For all 

real 

values of 

       
     
      
implies 

that 

     
 . 

 
 

{So solving for   at}. [Student then 

writes while saying], {we are 

having }              

{Then factoring the left hand side 

we have} [Then writes]  

                {Grouping 

in pairs and then factoring out 

common factors we have} [Student 

then writes]                
                   

[Student then explains]{So for a 

product to be positive, it means the 

two terms multiplying each other 

must be all positive or must be all 

negative, that is, they must be all 

greater than 0 or they must all be 

less than 0.  So its either ….} 

[Student then writes the following 

while verbalizing what she writes] 

       and         or 

        and       {Then 

solving the inequalities}  [Reads 

what is being written]    
 

 
 ,   

    {Then representing the 

solution on a number line we 

have}[Student teacher draws 

number line describes the 

illustrations]{So we have   
 

 
 , 

then we have       . So our 

solution equals…}  [Student then 

writes]   
 

 
 [Student then 

considers          and 

      and writes] {Then we 

have}         ,        

{Then representing the solution on 

a number line} [Student draws the 

number line] {We have     
 

 
  and 

     . So our solution two} 

[Student then writes]      

[verbalized the answer]{Then 

combining the two solutions } {We 

have    
 

 
, then      .  Since 

there is no intersection there 

[referring to the illustration] it 

means that it is not always that 

given that  at   identical to   

         ,   at   is always 

greater or equal to 0 since we can 

see from this illustration [pointing 

to the number line], that between -4 

and 
 

 
 ,      is not greater or equal 

to zero} 

goal “so solving for f”.  She 

then factorised the quadratic 

expression successfully. She 

then used order axioms to 

solve the inequality     
             Debra 

applied order axioms 

correctly to solve the 

inequality             
   The student illustrated the 

two solutions of the 

inequality on the number 

line.  The graph was then 

used to refute the given 

proposition.   

demonstration is different 

from her written response in 

two main ways.  First, Debra 

considered both cases of the 

order axiom         
  and     or     and 

      In the written 

response section she had just 

considered the case   
  and     and left out the 

other alternative     and 

      Second, the solutions 

obtained were related to the 

demands of the proof task.  It 

can be seen from Debra‟s 

proving profile that her use of 

semantic and syntactic 

approaches to resolve this 

proof task helped to 

illuminate the important 

interplay between informal 

and formal mathematics. 

Hence, from Debra‟s proof 

profile it can be seen that  

knowledge of order 

properties were combined 

with particular instantiations 

in the form of number line 

illustrations to reach the 

correct conclusion that the 

statement is false (Raman. 

2003;Weber & Alcock, 

2004). Further, Debra‟s proof 

construction effort reveals 

that she had a strong 

command of the notion of a 

counter example and had 

grasped the essence of how 

the piece of knowledge she 

generated resolved the proof 

task (Harel & Sowder, 1998, 

2007; Koichu, 2012). 

Determi

ne 

whether 

the 

statemen

t is true 

or false.  

 Written response 
If      integer then      if   is 

negative or     if  is positive 

If                     
           (1)   If   
                 =     ----

(2)From (1), let      

The student considered cases 

when the variable   would 

be negative and cases    

would be positive.  These 

ideas were then expressed in 

a somewhat awkward 

manner:      if   is 

Despite an awkward 

formulation introduced by the 

student: “      if   is 

negative or     if   is 

positive”, the particular 

instantiations made were 

consistent with the form of 
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If   is an 

integer, 

then 

     is 

an 

integer.  

Justify 

your 

answer. 

 

                      

                          From (2) 

let                       

                         

  if    is an integer then      is 

an even number. 

 

negative or     if  is 

positive.”  This formulation 

then gave two distinct 

expressions for     : 

     for     and  

     for    . Specific 

examples consistent with the 

expressions stated, that is, a 

positive integer (     and 

a negative integer (    , 
were substituted into the two 

expressions. Even integers 

were obtained in each case.  

Basing of these two 

instantiations Debra 

concluded that the statement 

is true. 

reasoning displayed.  The 

student used two specific 

examples only and concluded 

that the statement is true.  

Such tendencies which are 

typical of the empirical proof 

scheme revealed that the 

student is not aware of the 

fundamental limitation of 

empirical evaluations that 

they cannot be elevated to the 

status of a proof for 

deductive proof tasks 

(Stylianides, 2011). 

 

Table 5.14: End-of-instruction assessment matrix for Debra on Real Analysis proof tasks 

Task Student’s response (written, oral, 

actions) 

Profiles of students’ 

proving 

Proof scheme elements 

present 

A 

sequence 

(  ) of 

real 

numbers 

is 

defined 

by    =  

√  and 

     

=

√    

. Prove 

that (  ) 

converge

s and 

find its 

limit. 

 

           

 Written response 
Let     be given, it is required to 

find       , s.t.        if 

       then |    |     

   √             

√  √               

√  √                

   √                   

    √  √                  

   √  √        [student 

writes and deletes]    is monotonic 

decreasing, that is           
            

 √                  

    
  

…………………………………….. 

     or            [student 

draws number line]. So       
  

|    |                

                    converges 

and its limit is    

 Debra started by stating the 

formal definition of the 

convergence of a sequence, 

just as a dead end because it 

was never brought to bear on 

the problem.  Rather after 

stating the definition she 

resorted to particular 

instantiations. However the 

empirical evaluations were 

not correctly done, e.g., 

         ,           

          which is not true 

for      , a monotone 

increasing sequence.  These 

inaccurate empirical 

evaluations resulted in the 

wrong conclusion that      
is a monotone decreasing 

sequence.  The definition of 

a monotone decreasing 

sequence was applied to 

form the inequality: 

         
 . Solution 

attempts to the inequality 

were not successful as the 

student got      

or              Debra then 

wrote:        .  This 

is not a logical consequence 

of the solutions stated by the 

student.  Springing from 

nowhere was the statement   

|    |   , which was 

correctly transformed to 

            . Debra 

finally concluded that      
converges to     
  

Debra did not recognise that 

use of the formal definition 

could complicate matters 

when applied to this task.  

Student‟s failure to access 

relevant conceptual insights  

that is, structural relationship 

of bounded monotone 

sequences   might have 

forced Debra to shelve 

formal deductive reasoning 

and was shelved without 

providing any justification.  

Debra then started to use 

particular examples.  It can 

be inferred that while Debra 

showed a preference for the 

axiomatic proof scheme she 

abandoned this approach and 

switched to use of examples.  

The shift from a higher level 

proof scheme to a lower level 

proof scheme might have 

been caused by the fact that 

Debra had not grasped the 

monotone convergence 

criterion Debra did not 

succeed in exploring 

properties of the sequence 

using the instantiations 

because of inaccuracy 

(Morselli, 2006).  She then 

gave the wrong conclusion 

that the sequence was 

monotone decreasing. Wrong 

symbolic manipulations then 

followed which led the 

conclusion that:  “     

converges and its limit is     
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which was not a logical 

consequence of the 

statement: “         
  Chalkboard demonstration 

So we are given that (  ) is a 

sequence of real numbers then our 

first term is   } [student writes] 

   =  √           = √     .   

{So the definition is [student reads 

from answer book], let     be 

given} 

Let     be given {Then it is 

required to  (  , which is an 

element of natural numbers such 

that     (   then if      L 

which is the limit then    –    less 

than  .  So, first all we have to 

prove that  

   converges.  So we will first of 

all find the terms of the sequence} 

[Student verbalizes and writes] 

   =  √  = 1.4142  

   =√    √ )         

   =  √    √      ) =        

   = √    √      ) =       

{Then we substitute      by 

√      , so it becomes } [student 

writes]  

√           √         

{Then squaring both sides} 

         
  {Then taking terms 

on the LHS to the right we will 

have}   
          {Then we 

solve for the LHS by factorization.  

We factorize the LHS} 

    
             

                   

      )(    )   

{If       )(    )  , it means 

that these two expressions 

[referring to factors] are all positive 

or they are all negative, so} [student 

writes]        and           

       and       
          {Then on 

this part we give}{So we have our 

solution}       and 

     -1      {So the 

solution is the same 1    
   {So our question requires to 

prove that  (    converges.  

So as you have seen that it was 

 

For the chalkboard 

demonstration,           Debra 

preferred to use her write up 

to aid her presentation.  As a 

result the chalkboard 

demonstration and the 

written responses shared 

many similar features.  For 

instance the formal 

definition of convergence 

for sequence was correctly 

verbalised and was 

immediately abandoned.  In 

other words the definition 

was just stated and never 

used to tackle the task.  

Rather, the student started 

using specific examples.  

Inaccurate empirical 

evaluations were used by 

Debra to infer that (  ) is a 

monotone decreasing 

sequence.  The inequality 

        led to a wrong 

expression          
  

that was factorised to give  

     )(    )  .  One 

notable distinction between 

the chalkboard illustrations 

and written responses was 

that with the latter order 

axioms of the real number 

field were applied to 

produce two solutions: 

       and     . The 

solution        tells us 

that the sequence is bounded 

above by    which 

contradicts the fact that 

   √  , a sequence of 

positive terms.  On the other 

hand the solution,       
indicates that the sequence is 

not bounded above and 

hence has no supremum.  

Presumably, because of facts 

noted above the student 

disregarded the two 

solutions and finally wrote:  

-1        Perhaps the 

solutions were neglected to 

allow Debra to squeeze the 

sequence (  ) between    

and  .   

 

 

 

The two data sources have 

many similar features 

because the student used her 

write up to do her 

presentation.  So most of the 

inferences made under 

written response section 

apply to this section. 

However, some distinctive 

features were noticed. For 

instance, Debra claimed that 

“we will first of all find the 

terms of the sequence.”  The 

statement was made without 

realising that the set of 

natural numbers (domain of 

real sequences) is infinite.  

Debra stated her goal without 

reflecting on the definition of 

a sequence: a function with 

domain the set of natural 

numbers and range which is a 

subset of the real numbers. 

Another distinguishing 

feature between the written 

response and the chalkboard 

demonstration was that the 

student could not explain 

how the solution obtained 

resolved the proof task.  

Student did not get a sense  

of technical symbolic 

manipulations engaged in 

(Hanna & Mason, 2014).    

She might have been 

influenced by answers 

obtained in the previous 

attempt (written response).  

Debra wanted to squeeze the 

sequence between     and  . 

Further, the conclusion 

drawn that (  ) has limit    

was made that once again 

was not a logical 

consequence of the working 

shown.  It can be, therefore, 

inferred that the premises did 

not logically entail the 

conclusion drawn (Curd, 

1992; Stylianides & 

Stylianides, 2009). 
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decreasing, therefore it converges 

to -1. A sequence converges to its 

limit therefore the limit is   }                                

Prove 

that 

     = 

   

      
   is 

uniforml

y 

continuo

us on 

[   ]  
 

|         |           

 Written work 
Let     be given, it is required to 

find        such that     

[   ] and              
 

 
, 

     
 

 
   |         |    

                               
 

 
 

 

 
   

 

The first formulation of the 

definition was correct as 

shown by an awareness that 

     had to be chosen first 

before          can be 

determined.  Efforts to 

produce the definition turned 

into a total mess when the 

student wrote          

,       
 

 
,      

 

 
. The 

condition          

was presumptively drawn 

from the area of Cauchy 

sequences and confused with 

uniform continuity.  Debra 

then wrote: |     
    |    and no 

conclusion was stated, there 

was symbol manipulation 

only.  . 

From the description of 

Debra‟s proof attempt it can 

be inferred that Debra 

confused the concept of 

Cauchy sequences with the 

notion of uniform continuity.  

The condition |     |    

for natural numbers     
   where   is a positive 

integer was drawn from 

Cauchy sequences. The fact 

that no conclusion was drawn 

might suggest that that the 

student had no contact with 

underlying ideas in symbols 

she manipulated.  In other 

words, Debra did not explain 

how the answer obtained 

showed that       =    

         is uniformly 

continuous on [   ]  Debra‟s 

proof is typical of the 

external conviction symbolic 

proof scheme 

(CadawalladerOlsker, 2011; 

Harel & Sowder, 1998) 
   

Prove 

that 

     = 

   

      
   is 

uniforml

y 

continuo

us on 

[   ]  
 

 Follow up interview 
Researcher: […] describe uniform 

continuity. […] What is your 

definition of uniform continuity? 

Debra: Ehee, given     

Researcher: You can illustrate if 

you want 

Debra: [silently writing] 

Researcher: Talk Debra 

Debra: OK, let  >0 they exist 

     ok [silent apparently stuck] 

Researcher: Now you have 

forgotten? 

Debra: [laughs] 

Researcher: If I may take you back 

to what you wrote here. You say if I 

pick   and   that are 

Debra: Ehee, domain function 

At first Debra struggled to 

state the definition of 

uniform continuity, was 

silent and apparently stuck 

during the follow up 

interview on the task.  Debra 

agreed that she had forgotten 

ideas on uniform continuity 

and in an attempt to “just 

write something,” she ended 

up mixing ideas on Cauchy 

sequences with those on 

uniform continuity.  She 

attributed her difficulty with 

task to lack of practice that 

would allow one to 

differentiate concepts so that 

one can properly apply the 

Moments of being stuck and 

silent confirm the inference 

made under the written 

response that the student 

actually confused concepts of 

uniform continuity and ideas 

on Cauchy sequences and 

therefore, statements such as 

“so I was just trying to write 

down something,” were 

uttered. She attributed 

difficulties she faced to lack 

of practice.  She argued that 

enough practice would allow 

one to distinguish and 

classify problems. Hence, 

Debra‟s problem solving 

abilities were weak (Fukawa-
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Researcher: Ehee and then   and   

that greater than    which is a 

natural number. What were you 

trying to do here? 

Debra: Actually I had forgotten 

the concept on uniform continuity 

so I was just trying to write down 

something.  So I think I was mixing 

concepts. 

Researcher: Yaa, because I thought 

here you were no thinking about 

Cauchy sequences […] yet you are 

dealing with functions […] what do 

you think is the cause of this where 

one ends up mixing concepts like 

you were mixing Cauchy sequences 

and uniform continuity? 

Debra: Yaa, I think it‟s lack of 

practice so that someone will be 

able to differentiate the concept so 

that you can properly know where 

to apply this and where to apply 

this other concept.  

Researcher: […] you said when you 

wrote the tasks you had forgotten 

but how do you prove now? Do you 

have some idea? 

Debra: Ok.  You can prove by the 

magnitude of     is less than 

     

Researcher:You can write that 

[referring to what the student 

teacher is narrating] 

Debra: The magnitude of m, may 

be          where   and   

are the elements of the domain 

function then at   minus   at   less 

than  . 

Researcher: Where are you picking 

  and   from?  Where are you 

getting them from? 

Debra: From the domain function 

Researcher: Ok.  From the set.  And 

then? 

Then we substitute where we have 

  at   and   at  .  We will be 

given a function. So in this case we 

are given the function          
    .  So we substitute for   by   

then we substitute   by   then we 

find the difference of the function 

[referring to |         | 
Researcher: Alright. […].  

And then this      that would have 

been found, does it work for every 

element that is in this domain? 

Debra: Yaa, I think so. 

Researcher: Why do you say so? 

Debra: [Laughs] Because the 

difference must be small. 

Researcher: Is that the reason? 

Debra [Laughs, stuck] 

concept.  When asked to 

describe her current [at the 

time of interview] 

understanding of uniform 

continuity, Debra could state 

correctly the conditions 

|   |       and  
|         |    but her 

description of where the 

elements   and   are picked 

from was not convincing.  

She referred to the set as 

“the domain function” 

instead of mentioning the 

specific interval [0,3] 

Conelly, 2012; Mamona-

Downs & Downs, 2013). 
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Table 5.15:  Mid-instruction assessment data matrix for Tina on Real Analysis proof tasks 

Task Student’s response (written, oral, 

actions) 

Profiles of students’ 

proving 

Proof scheme elements 

present 

Determi

ne 

whether 

the 

followin

g 

statemen

t is true 

or false. 

For all 

real 

numbers 

  and 

    
      

   
  >0. 

 

 Written response 
We assume that       does not 

imply           If       and 

    and   is a positive real 

number   -Since       it means 

that        that is, it is closed 

under the above operation. So 

      where   is positive. 

     >0 is the same as       

by considering       and taking 

  to be a negative integer,     

still holds and we know that all 

negative numbers are less than    so 

is        Taking      and   
   we have      and by squaring 

both sides of the inequality sign we 

have              which implies 

that      which is not true so 

                      so is 

not the same as              

Tina kicked off by 

assuming that the 

statement is false.  An 

incomplete statement was 

then written: “If       

and     and   is a 

positive real number”.  

Closure property under 

addition was stated for 

      but no evidence 

was adduced for insisting 

that        Tina claimed 

that      and if b    , 

    still holds.  Tina 

further claimed that all 

negative numbers are less 

than  .  This claim would 

have been true if Tina had 

assumed earlier that 

       These efforts to 

build an argument to 

Tina‟s proof effort indicates 

that he intended to accomplish 

the proof by contradiction.  

The mode of argumentation 

that followed was in terms of 

arbitrary real numbers drawn 

from  , unjustified claims 

were a feature of mode of 

reasoning, e.g., “So       

where   is positive.” Hence, 

the student could not access 

relevant conceptual insights. 

From the opening remarks, one 

would have thought that the 

goal of the prover was to 

establish a contradiction 

because Tina started by 

negating the consequent 

statement.  Lack of consistency 

in the argument might account 

for the impasse reached.  Tina 

 

  
     
   

(
  

   

 
 

   
)

   

Use the 

definitio

n of 

appropri

ate limit 

to prove 

that:  

 

|      |    

                     

|             |    

  |     |   |   |    

 Written response 
Let     be given it is required to 

determine         such that 

            implies 

|      |    then  

            implies 

|
  

   
 

 

   
  |    

……………………………………

……… 

                           

………………………………. 

                       

……………………………………

……Set            

……………………………………. 

|     |  
 

 
    Set      

 

 
 

Debra showed an awareness 

for the need to fix      in 

order to determine the size 

of         However the 

condition        
      that is true for a right 

hand limit of a function was 

written instead of   
|    |       . Algebraic 

manipulations were accurate 

including successful 

factorisation of 
    

    
 to get 

         Debra realised 

the need to express      
  in terms of      . A 

constant   was introduced to 

accomplish this goal.  The 

constant was determined by 

comparing coefficients, one 

of the methods of solving 

identities.  However a minor 

mistake was made by Debra 

when she wrote: Set 

       instead of 

          The condition  

set        not utilized in 

stipulating the value of       

that was just stated as “ Set 

     
 

 
  rather than 

      min{  
 

 
}    

Conclusion was not stated. 
 

 

The description of student‟s 

proof attempt reveals that 

Debra used the definition of a 

special limit, the right hand 

limit to represent the general 

case.  Student demonstrated a 

good command of the formal 

rhetoric aspect of the proof 

(Selden & Selden, 2009).  

This was shown by 

successful algebraic and 

technical manipulations such 

as being able to solve the 

identity involving the 

constant introduced constant 

   The value of         

determined by the student 

was not used to draw a 

conclusion. In other words, 

the student did not show an 

awareness of how the 

solutions obtained served as 

solutions to the proof task 

(Koichu, 2012). 
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does not imply that        so it is 

false. 

 

validate the proposition in 

terms of arbitrary elements 

  and   were then 

abandoned and Tina 

switched to use of the 

specific example,       

and     that was then 

used to refute the assertion 

that           
  >0. 

        

then switched to use of a 

counter example and then 

asserted that the proposition is 

false. Hence, the impasses 

experienced and ontological 

oscillations from deductive to 

empirical-numeric proof 

schemes show Tina‟s 

discomfort with this proof task 

(Harel & Sowder, 1998, 2007; 

Varghese, 2009). 

Determi

ne 

whether 

the 

followin

g 

statemen

t is true 

or false. 

For all 

real 

numbers 

  and 

    
  
   
    
  >0. 

 

 Chalkboard demonstration 
    implies    -    .  

{      also} 

      implies    -    . 

{So we are supposed to state 

whether it is true or false that 

      implies    -    .  

Now we assume that , eee,     
  does not, does not imply    -

    .}[Student writes] We 

assume that       does not 

imply    -    .{If a and b are 

real numbers and we know that 

     , this means that, aaa, 

    since the subtraction of a 

smaller number from a bigger 

number gives a number which is 

greater than 0}-if      , and 

      {Now, aaa, moving on 

with our statement we can see that 

if       then   –   should be a 

real number since real numbers are 

closed under the operation of 

subtraction}[Student teacher writes] 

If       then        {We 

want to consider    -    .  This 

means that    <    since we are 

subtracting a smaller number from 

a bigger number, we get a number 

which is greater than 0}    -     

   <    {Now from this statement, 

we can get back to our first 

statement (slowly) which was 

   }[Student writes]  we know 

that    {     which means, 

any number which is less than a 

which could be a negative as well 

as a positive depending on, aaa, 

which is chosen then} [pointing to 

    written on the chalkboard]. 

{Now take for example a number 

which is less than  , considering 

that   is positive and   can be 

positive or negative}[student 

writes] Considering that   is 

positive and   can be positive or 

negative  

{Now we have    , lets take for 

example          Lets say   

representing  } 

Similar to the argument in 

the written response 

section, Tina started by 

assuming that the 

statement is false.  The 

closure property of 

elements of ℝ under 

addition was also stated 

and the student claimed 

that      ℝ by the 

closure property stated 

above. As was the case 

with the written effort, 

attempts to build deductive 

arguments were shelved 

and student used specific 

examples to refute the 

proposition.   

The chalkboard demonstration 

and the written response were 

similar in many respects and 

consequently inferences drawn 

about the written response also 

apply here.  However, while an 

appropriate counter was used 

to refute the claim, it‟s 

doubtful if Tina had a strong 

command of the method of  

proof by counter 

argumentation.  If he had a 

good command of counter 

argumentation it was therefore 

needless for him to repeat the 

part where he tried to use 

formal deductive reasoning 

once he had generated a 

counter example.  Hence, Tina 

had relative conviction in the 

argument he had produced 

(Weber & Mejia-Ramos, 

2015). 
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       {That is this statement is 

true that      } [Student 

verbalizes and writes] If we square 

both sides of the inequality sign we 

get    <    

{But if we substitute our numbers 

there [referring to    <   ], we get 

something like }       {which is 

not true, aaa, that   [apparently 

stuck], which is not true that     -

    .  Because if we take these 

numbers [pointing to      ], aaa, 

that    and   we substitute then 

[pointing to    -    ]  The 

number we get is greater than   but 

because    , its like if you want 

to get a positive you have to 

interchange this statement [pointing 

to    ]}{Which means that   is 

now less than   but initially it was 

greater than b,  So we can say 

therefore} [student writes]     
    does not imply    -     

and it is false [student faces class 

and says] {I think , aaa, and its all I 

can do} 

For all 

real 

values of 

       
 
     
      
implies 

that 

     
 . 

 Written task 
                       

                          

                        

This implies that        for 

values of      So is     for 

    values 

Specific instantiations: 

                      

and       were used to 

establish that for some 

values,        while for 

other values          
However the conclusion 

was not well articulated.  It 

does reveal clearly whether 

the proposition was refuted 

or turned a mathematical 

fact by the student  

Instantiations used by Tina 

revealed that there are some 

values of    for which the 

function           This 

observation should have made 

the student realise that the 

statement is false.  Tina 

presented many counter 

examples. The moment she got 

             She should 

have stopped generating the 

examples the moment she got a 

single specific example that 

would give          It can 

be inferred that Tina had a 

weak command of the notion 

of   counter- argumentation. 

Tina did not establish essence  

behind the proving effort 

(Sandefur et al., 2013). 

 

Determi

ne 

whether 

the 

statemen

t is true 

or false.  

Justify 

your 

answer. 

For all 

real 

values of 

       

 

 Follow up interview 
Researcher:  […] So what is your 

overall conclusion about the 

statement. 

Tina: Haaa 

Researcher: It is greater than 0 for 

some values and less than 0 for 

other values. So what is your 

overall conclusion? 

Tina:  Aaaa. The overall 

conclusion there might be, there 

might be just from –  to +  

because if are check for values 

which are less than 0, aaa! 

 

The focus on the interview 

was on understanding from 

the student whether his 

efforts had led to the 

rejection of  the statement 

or not. When the 

researcher sought 

clarification on the 

conclusion Tina‟s response 

showed he engaged with 

the task without 

understanding what the 

task required him to do.  

For example statements 

 

From the description of Tina‟s 

proof attempt it can be noted 

that Tina engaged with the task 

without interpreting the 

question correctly, that is, he 

did not get a sense .  Responses 

which showed that the student 

was clueless about what the 

question demanded included: 

Aaaa. The overall conclusion 

there might be, there might be 

just from –  to +  because if 

are check for values which are 

less than 0, aaa.  Even after 
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implies 

that 

     
  

Researcher: You said for some 

values it is greater than   and for 

others it is less than  . This is what 

you wrote here. 

Tina: Yes. So this conclusion is 

based on what I have, what I had 

worked above. I could see the trend 

of the numbers. 

Researcher: And in your working 

here, you established that it is 

greater than   for a some values of 

  and less than   for other values ? 

Tina: Ok. Actually I was 

referring to the output there.   For 

all values that are greater than  , I 

took them as the domain, those 

numbers which I could substitute in 

but the output varied, they range 

from minus…,minus 

Researcher: For instance here 

[referring student‟s proof attempt] 

minus when they are negative, and 

then you have positive, positive 

there positive. 

Tina: Yes. So I could conclude if I 

substitute negative numbers you 

could get negative numbers also up 

to  ,  greater than 0.  But for 

numbers greater than 0, actually 

they were positive as outputs.   

Researcher: I get you but the 

statement had said: Prove that if 

            then this implies 

       for all    What is your 

overall conclusion after doing this? 

Tina: [Coughs] 

Researcher: Are you accepting this 

statement or you‟re saying it‟s 

wrong? 

Tina: So it‟s a wrong statement 

because some of the real numbers 

are negative but we are not getting 

numbers greater than  . 

 

like: “The overall 

conclusion there might be 

from     to     Efforts to 

redirect the interviewee 

elicited responses such as 

“I was referring to the 

output there…the output 

varied, they range from 

minus…minus.”  It took 

the researcher huge efforts 

in probing Tina to arrive at 

the conclusion that the 

statement is false but still 

he could not provide 

convincing evidence to 

justify conclusion reached.  

probing student‟s responses 

such as: So it‟s a wrong 

statement because some of the 

real numbers are negative but 

we are not getting numbers 

greater than  , reveal  that 

Tina did not understand  the 

demands of the proof task as he 

could not discern that the focus 

of the task was not on negative 

real numbers only but rather on 

finding single real number 

  for which           
Overall, it can be inferred that 

Tina engaged in formal 

deductive reasoning and 

instantiation without having a 

clear focal goal being pursued 

(Fukawa-Conelly, 2012; 

Koichu, 2012). 

 

Prove 

that the 

sequence 

defined 

by 

(    
    

     
 

converge

s. 
 

 Written response 

(    
    

     
       

  
 

  

  
 

  

  converges 

   
 

   and   
 

   

The student found the 

correct value of the limit 

by dividing each term by 

the dominant term      
However the student did 

not show an awareness for 

the need to find a natural 

number dependent on   for 

which the condition 

|   
 

 
|    is satisfied.  

The symbol   was not 

explained, that is, what it 

is and the purpose it was 

supposed to serve in 

resolving the task.  Once 

again Tina did not provide 

an explicit statement for 

The student wrote expressions 

without providing meaning to 

those expressions ( no essence 

of conceptual insight 

involved).  For instance Tina 

wrote: “   
 

   and   
 

      

The purpose of symbol   not 

stated.  It can thus be inferred 

that Tina thought of proof in 

terms of symbolic 

manipulations which is a 

typical case of the external 

conviction symbolic proof 

scheme as relevant technical 

handles and conceptual insights 

were not accessed (Harel & 

Rabin, 2010). 
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the conclusion. 

  Follow up interview 
Researcher: […] how does it lead 

to    
 

  ? Where is it coming 

from?   How did you get to this 

stage here? What were you trying to 

find? 

Tina: To tell you the truth, I 

knew nothing, […] but I know 

when you are testing for 

convergence it has to do with   

greater than something actually I 

had not grasped the formula, it‟s 

like that |    |   should be less 

than       That‟s  what I was trying 

to apply but actually I had not 

grasped the [inaudible].   So what I 

wrote here was just a matter of 

writing, I did not know.   Actually I 

was writing for the sake of 

answering the question 

When asked to explain 

how he got to the stage 

where he had an 

expression for   in terms 

of   and what is he was 

trying to find, Tina‟s 

explanation revealed he 

had limited knowledge 

about the convergence of a 

sequence.  He stated that  

he knew nothing except 

that it involved “with   

greater than something …”   

Responses such as these show 

that  Tina was not aware of the 

underlying ideas of the 

convergence of a sequence of 

real numbers but “was actually 

writing for the sake answering 

the question”, presumptively 

referring here to the idea just 

putting down something with 

having contact with its 

meaning, some sort of “ritual” 

undertaking so that one is seen 

to have done something. This 

interpretation is further 

supported by the idea that Tina 

could not even explain what 

the quantity     meant and 

its significance or purpose. 

Determi

ne 

whether 

the 

statemen

t is true 

or false.  

If   is an 

integer, 

then 

     is 

an 

integer.  

Justify 

your 

answer. 

 

 Written response 
Suppose     and      and 

considering that   is an odd 

number, -we want to take      and 

  as odd numbers           and    

are still odd numbers because if we 

square an odd number we still get 

an odd number. Considering 

       where   is divisible by 

   so             
 

   
  

  Since we introduced   as 

divisible by 2 it means it is even 

  Since we know that if   is 

subtracted from an odd number we 

get an even number, it means     

is even.  An even number can be 

written as      , where 

       which is even and 

every even number is divisible by   

Tina considered cases 

when       are odd 

numbers and then asserted 

that their squares (        
  ) are also be odd 

numbers.  Tina then 

considered the expression 

       where 

         as specified 

by Tina.  Tina indicated 

that the number   is even 

and     is also even.  

Hence according to Tina‟s 

argument         
 

   
 = 

    

    
.   

Tina „s argument is flawed 

because it excludes other odd 

numbers that can be obtained 

by dividing numbers that are 

not even.  An appropriate 

counter- argumentation could 

be   
  

 
 

   

   
 which 

contradicts Tina‟s argument 

that odd   
    

    
. It can be also 

be noted that Tina did not 

connect the premises with 

consequent statement. 

Therefore Tina‟s effort to use 

deductive argumentation was 

to no avail.  Tina did not reflect 

on symbol manipulations done 

(Koichu, 2012; Stylianides, 

2011). 

Determi

ne 

whether 

the 

statemen

t is true 

or false.  

If   is an 

integer, 

then 

     is 

an 

integer.  

Justify 

your 

answer. 

 

 Follow up interview 
Researcher:  How did you show 

that    and   are odd?   

Tina: Ok, ok, it‟s like aaaa, iii,  I 

missed a certain statement there I 

could use the actual numbers like 

you take 3 for example,    you get 

a   which is odd.  If you square 

  then you get    

 

When the interviewee was 

asked to justify that the 

square of odd numbers is 

also an odd number, Tina 

picked specific examples   

and    and used to show 

that the square of an odd 

number is also odd. 

 

Tina switched from use of 

arbitrary real numbers to 

particular instantiations in 

order to show that the square 

that of an odd number is also 

odd.  The switch from a higher 

level proof scheme to lower 

level scheme revealed that Tina 

faced difficulties with 

axiomatic reasoning and had to 

find comfort in use of specific 

examples.  Hence, ontological 

oscillations were forced by 

impasse reached with 

axiomatic reasoning (Harel & 

Sowder, 1998, 2007; 

CadawalladerOlsker, 2011). 
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Table 5.16: Tina‟s End-of-instruction assessment data matrix on Real Analysis proof tasks 

Task Student’s response (written, oral, 

actions) 

Profiles of students’ 

proving 

Proof scheme elements 

present 

A sequence 

(  ) of real 

numbers is 

defined by 

    =  √  

and  

     = 

√     .   

Prove that 

(   ) 

converges 

and find its 

limit. 

        

 

 Written response 
It is a monotonic sequence which is 

increasing since         

√        

     √         
  

   √                     and 

   √  √         

√     √ √     

   √          the sequence 

converges to   and the limit is   

Alternatively        

√             

 √           

                
…………………………………… 

                 

(  
  

 
)
 

           

……………………………………

……….. 

               
 

 
 
  

Using the binomial expansion 

     *
 

 
     

 

 
(
 

 
  )(    )

  
 

 +    *
 

 
       

 

 
       

     
 

 
(
 

 
  )          

  
 

 
 

 
(
 

 
  )(

 

 
  )(

 

 
  )    

  
+ 

The student first sought 

to establish that (  ) is a 

monotone increasing 

sequence.  The argument 

presented to support the 

claim consisted of a mix 

of particular 

instantiations and 

symbolic manipulations. 

For the particular 

instantiations Tina used 

   √  ,         
    .  False statements 

were a feature of this 

mix. For instance Tina 

wrote    

    √  √       

and    √       

 . On the basis of these 

incorrect empirical 

evaluations Tina 

concluded that the 

sequence (  ) converges 

to     Another awkward 

symbolic formulation 

was presented as an 

alternative proof.  From 

nowhere Tina stated that 

       

√             

which led         
         Tina made  

    the subject of the 

formula and claims to 

apply the Binomial 

Theorem were then made 

in an effort to determine 

  the limit of the 

sequence.  The student 

teacher then reached an 

impasse.  No conclusion 

was arrived at regarding 

whether the sequence 

     converges. 

Tina had a weak command of 

the proof framework (Selden & 

Selden, 2009).  The logical 

structure of a proof should be 

such that the premises should 

logically entail the conclusion.  

Rather, Tina started by asserting 

that the sequence is monotone 

increasing.  However, according 

to his empirical evaluations 

“                     
That is the second term in 

Tina‟s attempt was inaccurate.  

The particular instantiations 

revealed that the sequence (  ) 

consisted of a constant term, 

which is a false assertion.  An 

ontological oscillation was 

noticed here when the student 

switched to use of algebraic 

manipulations that involved 

somewhat complicated and 

lengthy expressions such as: 

   

  *
 

 
    

 

 
(
 

 
  )(    )

  
   +   

 *
 

 
     

 

 
       

     
 

 
(
 

 
  )          

  
 

 
 

 
(
 

 
  )(

 

 
  )(

 

 
  )    

  
+.” The 

expression were overwhelming 

for the student and he could not 

find the limit as has been 

articulated.  Once again the 

external conviction symbolic 

proof scheme was robust 

(CadawalladerOlsker, 2011). 
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A sequence 

(  ) of real 

numbers is 

defined by 

    =  √  

and  

     = 

√     .   

Prove that 

(   ) 

converges 

and find its 

limit. 

        

 

 Chalkboard demonstration 
{A sequence (  ) of real numbers 

is defined by}  [Student writes] 

   =  √        = √     

{Now we want to prove that       

converges} [Students verbalizes 

and writes]    converges and find 

its limit {Now, aaa, since it is a 

sequence, we know that whenever 

we are given a sequence we know 

that it must be a monotone 

sequence but we don‟t know 

whether it is an increasing 

monotone or decreasing.  So what 

we have to do to prove that is to 

subtract the subsequent from the 

first one.  So we are saying} 

[student writes] 

          √          

{Our      is root   plus   .  Then 

on the RHS we have to remove the 

square root sign.  How do we 

remove it?  We have to square this 

side [RHS], so that we get rid of the 

square root.  So its} [student then 

writes]          =  √     

    
  {If we square this side [RHS], 

we end up having}        = 

        √         
  

{Now, aaa, we have to group the 

like terms such that if we take that 

   
  as our first term we get} 

[student writes] 

        =     
       

   √     {If we take   , we 

have something like} [student 

writes]   =√  √  {We can 

substitute here [        ], we can 

take   for   then we have 

something like}       {Which 

must be equal to [silent]..} [student 

writes]       = √  √  

 √  {Since this [√  √  

 √ ]                              
ans that it converges, it must have a 

limit.  So  given} [student writes] 

      {a natural number which 

must be greater than N}     s.t.  

       {Now, for the value of 

  , we have } [student writes] 
         

 
     

         

 
 <     

{Then we are left with} 
         

 
 < 

    {Aaa, if we simplify that 

expression, we end up having }      

{Aaa, actually, Iam mixing up.  I 

am on number one instead of 

..[student looks confused and 

embarrassed by the mix up. 

Student started by stating 

his goal: to establish that 

      converges and then 

determine its limit.  A 

false claim was made 

that any sequence given 

must be a monotone 

sequence.  The student 

teacher then wrote: 

          

√        . Tina 

then squared the right 

hand side and then wrote 

        =     

   √         
 . 

Student then used 

specific examples.  He 

started by noting that 

  =√  √ .  Student 

described that for     , 

one would have 

       √  √  

√    Student then argued 

that since        , it 

means the sequence 

converges.  Student did 

not provide a  

justification for the claim 

that         .  These 

particular instantiations 

were abandoned and the 

student switched to the 

formal definition which 

was not correctly started 

because the student had 

       in the 

definition instead of  

|    |   . An 

awkward substitution  
         

 
     was 

made, yet the sequence 

involved terms in        
This mix up was 

confirmed by the student 

who even felt 

embarrassed by this. 

 

 

 

Student had a weak command of 

the hierarchical order (Selden & 

Selden, 2009).  He was 

supposed to prove that the 

sequence was monotone 

increasing.  Rather, he made a 

false claim that “we know that 

whenever we are given a 

sequence we know that it must 

be a monotone sequence but we 

don‟t whether it is an increasing 

monotone or decreasing.”  A 

sequence need not necessarily 

be monotone sequence.  A 

single particular instantiation 

“        , led to the 

conclusion that the sequence  

(  ) converges.  It can be noted 

that Tina‟s argument is flawed 

because he had not 

demonstrated that the sequence 

is a bounded monotone 

sequence. It can be deduced that 

the  structural relationships of 

underlying ideas were not 

accessed (Hanna & Mason, 

2014), referring here to the 

monotone convergence 

criterion.   Student then shelved 

empirical explorations and then 

resorted  to symbolic 

manipulations of the expression: 

          =  √     

    
 ”.  Symbolic manipulations 

were flawed, for instance Tina 

squared the right hand side only 

and the difficulties faced with 

this proof task were revealed 

more explicitly when he mixed 

up notation and wrote: “  
         

 
       He 

ultimately gave up the proof 

attempt. Therefore Tina‟s proof 

attempt revealed that he 

engaged with the task without 

clear goals about what he sought 

to accomplish Weak command 

of the proof framework was 

exhibited through flawed 

algebraic manipulations.  Tina‟s 

proof attempt revealed that 

proving is conceived in terms of 

handling symbols but student 

lacked a grasp of exact goals he 

pursued. Hence, he failed to get 

essence of how answers 

obtained resolve the proof task 

at hand (Koichu, 2012).  
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Define a 

sequence 

(     

inductively 

by        

and      = 
     

 
.   

Prove that 

(      is a 

bounded  

monotone 

sequence is 

bounded 

and hence 

determine 

its limit. 

 

 

 Written response 
……………………………………

…………………… 

          
     

 
 

      

 
 

 

 
 

 
 

 
   For a monotonic increasing  

             

(
     

 
   )     

         

 
   

    

 
   As      

    

 
 

   which means there is a 

contradiction, so    is bounded 

Given      there exist a number 

which is a natural number   such 

that      therefore         

We know that      
     

 
, then 

   
       

 
                   

 
 ⁄  As            so   is the 

limit of    

 

 

A single example was 

used to infer that      is 

a monotone sequence.  

Tina compared     and 

   and concluded that on 

the basis of a single 

instantiation that 

           The single 

empirical evaluation was 

wrong,    was given as 

 
 

 
 instead of 

 

 
.  The 

definition of a monotone 

increasing sequence was 

applied correctly to the 

stage where the student 

got 
    

 
     What 

followed after getting to 

this stage was a complete 

mess.  Student claimed 

that as      
    

 
    

and claimed to have 

established a 

contradiction which led 

to the conclusion that 

     is bounded.  An 

awkward switch to the 

formal definition was 

done.  The definition was 

not properly stated.  

Student wrote that there 

exists a natural number 

 , such that     [ ]    
Tina‟s claim revealed 

that he had not grasped 

tha   is implied in the 

definition of a sequence 

and rather, we should 

strive to find a natural 

number   depending on 

       The expression 

        should have 

been stated as |    |  
   because it is possible 

to get terms of       less 

than   and such terms 

would make     which 

is a senseless statement. 

Statements not linked to 

the definition of 

convergence of a 

sequence were written, 

e.g.,        
     

 
 and 

    was made the subject 

of the formula and 

student got    
       

 
  

a wrong expression.  

Specific examples were 

then written:    

 

A weak grasp of the notion of a 

counter example was shown 

because Tina used to conclude 

that the sequence is monotone is 

increasing that was not even 

accurate: “     
 

 
    instead of   

 

 
.  Tina‟s proof attempt can be 

described as chaotic.  Although, 

he was able to apply the 

definition of a monotone 

increasing sequence the working 

degenerated into “mess” when 

he evaluated the limit 
    

 
 as 

   . As before the 

underlying idea not accessed.  

Tina claimed that to have 

established a contradiction, 

which is a false assertion. An 

ontological oscillation was 

noticed when the student then  

switched to use of the formal 

definition of convergence of a 

sequence. The fact that this 

definition was not correctly 

stated revealed that Tina had a 

weak command of the concepts 

he was using.  For instance Tina 

claimed that “there exists a 

natural number   such that…”  

Rather, the focus should have 

been on determination of     . 

Further, the fact Tina‟s proof 

effort was loaded with many 

senseless statements, e.g., 

“   
       

 
” and false claims 

that a contradiction had been 

established pointed to serious 

challenges Tina faced in his 

proof effort. Tina had no grasp 

of fundamental ideas pertinent 

to proof and ended up mixing 

ideas as he switched from one 

approach to another.  He could 

not draw from the formal 

structure of definition of 

convergence of a sequence 

(Duffin & Simpson, 2000; Lay, 

2009) 
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  (given),    
 

 
, a 

wrong value different 

from the one stated 

earlier for the same 

question.   

 Define a 

sequence 

(     

inductively 

by        

and      = 
     

 
.   

Prove that 

(      is a 

bounded  

monotone 

sequence is 

bounded 

and hence 

determine 

its limit. 

 

 Follow up interview 
Researcher: […] you wrote here as 

       
   

 
   which is a 

contradiction.  I want to understand 

how you arrived at such a 

conclusion that this [referring to 

conclusion] is a contradiction. 

Tina: Umm, actually it was a 

matter of subtracting, eee, a number 

which is, which is before a certain 

number, like numbers which are 

arranged in ascending order. The 

number which is in front of the 

other then you subtract the previous 

number to check if it won‟t give a 

negative or a positive.  So in this 

case I had to take      which is a 

higher number then I had to 

subtract    and the result was 

supposed to be greater than   if 

     is greater than    .  

Researcher: […] you collect like 

terms here [...] you have         

Tina:Yes then we get a negative 

    

Researcher:   Yaa, […] It was 

supposed to negative    
Tina: Ok, ok [agreeing] 

Researcher: But how did then 

reverse this sign [   ] 

Tina:  Aaa, actually I was 

considering a sequence (   .   
Aaaa, if you subtract it from 3 then 

actually as      it, it gets larger 

so you will be subtracting a bigger 

number from   there. So it will end 

up being less than   as   

approaches .  

Researcher: Oh,  yaa, you are 

now subtracting a very huge 

number.  

Tina:  Yes.  As     ,  that 

number there you will be 

subtracting something like a 

thousand from 3.  

 

When the researcher 

sought clarification on 

how the contradiction 

was arrived at, the 

student stated that the 

contradiction was 

established by 

subtracting consecutive 

numbers which were 

arranged in ascending 

order to determine 

whether a positive or 

negative value could be 

obtained. 

Probing revealed  Tina‟s 

confusion as he failed to justify 

how as        
   

 
   

pointed to a contradiction.  Tina 

tried to explain this as “Umm, 

actually it was a matter of 

subtracting, eee, a number 

which is, which is before a 

certain number, like numbers 

which are arranged in ascending 

order. The number which is in 

front of the other then you 

subtract the previous number to 

check if it won‟t give a negative 

or a positive.  So in this case I 

had to take      which is a 

higher number then I had to 

subtract    and the result was 

supposed to be greater than   if 

     is greater than   .”   This 

explanation is not relevant to the 

question posed to Tina, which 

had a focus on how a 

contradiction had been 

established.  It can be, therefore, 

concluded from Tina‟s proof 

behaviour that he had no 

essence of objects manipulated 

(Hanna & Mason, 2014; 

Sandefur et al., 2013). 

Prove that 

     =    

         
is uniformly 

continuous 

on [   ]  
 

 Written responses 
             

          

 

Tina differentiated the 

function      and drew 

the graph of        

as an illustration of 

uniform continuity. 

The decision to differentiate the 

function revealed that Tina had 

not developed the concept of 

uniform continuity.  Further 

irrelevant instantiations were 

done, drawing the graph of the 

derivative of the function.  

Prove that 

     =    

         

 Follow up interview 
Researcher: […] When do we say a 

function f is continuous on a set? 

Tina explained that a 

function is continuous on 

a set if a given range of 

Tina‟s lack of contact with the 

concept of uniform continuity 

was also revealed during the 
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is uniformly 

continuous 

on [   ]  
 

Tina: Aaa, it is continuous if, aaa, if 

a certain, let‟s say if a given range 

of range of numbers aaa, tend to 

increase within a certain range. 

Like I had to represent it 

graphically there [pointing to the 

solution].  

Researcher: This was really going 

to be my next question to say you 

differentiated here, what made you 

differentiate the function. In other 

words, any relationship between 

differentiation and uniform 

continuity 

Tina: Aaaa, I just imagined that 

when we are saying uniform 

continuity, something that is 

uniform is just the same as gradient 

at any given point is just the same 

as we proceed 

Researcher: So that led you to 

differentiate 

Tina: To differentiate then prove 

that… [inaudible] 

Researcher: Why did you 

differentiate?  

Tina: Ok. I differentiated simply 

because I know gradient at any 

point is just the same, is uniform as 

we go along the line.  So I just 

thought uniform continuity 

values of the function 

tend to increase on the 

set. Student then referred 

to the graph of the linear 

function,       .  

When probed about 

reasons that made him to 

differentiate      in 

order to prove that      

is uniformly continuous, 

Tinashe explained that he 

thought that gradient at 

any point on a uniformly 

continuous function is 

just the same, “is 

uniform as we go along 

with the line.” 

reflective interviews about the 

task.  First, he exhibited weak 

command of the concept of 

continuity by describing a 

continuous function as  “if, aaa, 

if a certain, let‟s say if a given 

range of range of numbers aaa, 

tend to increase within a certain 

range.”  He then tried to present 

the same argument graphically.  

When pressed to justify why he 

had differentiated in order to 

establish that      was 

uniformly continuous Tina 

responded that it came from his 

imagination.  In other words he 

had visualized uniform 

continuity as having the same 

gradient as reflected in his 

response: “Aaaa, I just imagined 

that when we are saying 

uniform continuity, something 

that is uniform is `1just the 

same as gradient at any given 

point is just the same as we 

proceed.”  His explanation 

revealed he had no idea of what 

uniform continuity involves as 

tried to solve the task. 

Table 5.17: Tanya‟s Mid-instruction data matrix on Real Analysis proof tasks 

Task Student’s response behaviour 

(written, oral, actions) 

Profiles of students’ 

proving 

Proof scheme elements present 

Describe 

whether the 

following 

statement is 

true or 

false. For 

all real 

numbers   

and 

      
      
  >0. 

 

 Written response 
             suppose 

            where    are 

integers then        
             

    and                 

                    
               which is also true. 

                 is 

true 

The substitution   
  and     was used 

to validate the 

proposition and Tanya 

concluded that on the 

basis of this single 

empirical verification 

that the statement is 

true. 

Tanya‟s proof attempt revealed 

that she had weak grasp of the 

limitation of empirical 

verification and the notion of 

counter argumentation.  She did 

not realize that the proposition 

may be false for just one single 

example she had not considered. 

Determine 

whether the 

statement is 

true or 

false.  If   is 

an integer, 

then      

is an 

integer.  

Justify your 

answer 

 Written response 
Proof by induction 

Let     then        

  the statement is false 

A single empirical 

verification by the 

student led to the 

conclusion that the 

statement is false.  No 

explanation was 

provided to justify why 

     is not an even 

number. 

Similar to what has been noted 

above a single instantiation was 

used draw the conclusion that the 

statement is false.  Tanya did not 

justify why 0 is not an even 

number.  Tanya‟s proof 

behaviour points to the fact that 

she had a good grasp of proof 

method by refutation.  

Determine  Chalkboard Tanya stated that she Similar to the written response 
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whether the 

statement is 

true or 

false.  If   is 

an integer, 

then      

is an 

integer.  

Justify your 

answer 

demonstrations 
[student writes] Given x an 

integer then    –  is even 

{I am going to try to prove by 

induction} [Student writes] 

Proof by induction 

{So let   be equal to 1.  Then we 

are saying } 

Let     ,     –       
  =1(1-1) =0 

{Then I conclude that since    –  

=0 which is not an even number, 

therefore } 

[Student writes] Because    –  

=0 when x =1, then the statement 

is false. 

was going to prove the 

statement by induction.  

But what then followed 

after this declaration 

was a single numerical 

test where the value 

    was evaluated 

into the expression    

– .  A justification for 

the claim that    –  is 

not even was provided. 

Tanya used a single specific 

example to evaluate the 

statement.  While, Tanya had 

declared that she was going to 

prove by mathematical 

induction, she substituted   into 

the expression      –  to get  .  

Contrary to her claims that she 

was going to use induction the 

proof effort ended with this 

single instantiation.  It can be 

noted that Tanya had not 

developed an understanding of 

the proof framework with respect 

to method of proof by induction 

because she confused it with use 

of examples (Selden & Selden, 

2009). However, Tanya‟s proof 

attempt reveals  that she had a 

good grasp of proof by use of a 

counter example. 

Prove that 

the 

sequence 

defined by 

(    
    

     
 

converges 

 Written response 
Let     be given s.t there exist 

an element      |    |     
    

     
 

 

 
      

            

        
   

 

|
  

     
|         

 

     
   

    converges 

In her description of 

the formal definition of 

the convergence of a 

sequence, Tanya wrote 

“there exists an 

element      

without specifying the 

exact set from which is 

selected, which in 

particular case is the 

set of natural numbers.  

The expression for 

|    |    was 

stated initially without 

the modulus symbol 

that was later on 

brought into the 

picture.  Algebraic 

manipulations by the 

student led to 
 

     
 

  from which Tanya 

drew the conclusion 

that      converges 

It was not clear from Tanya‟s 

proof attempt that      that the 

student wanted to determine is a 

natural number because there are 

many real numbers that are 

greater      Tanya was not 

consistent in her use of the 

modulus sign as shown by 
    

     
 

 

 
      No evidence was 

adduced to support the claim that 

the expression  
 

     
    shows 

that the sequence       
converges. So Tanya handled 

symbols without justifying how 

the piece of knowledge 

constructed resolved the proof 

task (Koichu, 2009).   

  Follow up interview 
Researcher: […] What should be 

this  ( )? 

Tanya: It should be         it 
should be an element which is 

natural number. 

Researcher: Very good. So this 

whole thing is flawed, it‟s 

supposed to be […].  You 

illustrate. 

Tanya: Supposed to be   is 

greater (aah) such that there exists 

an element n, which is a natural 

number s.t.      ( ). 

Researcher:[…] What were you 

trying to determine? 

Tanya: Determine if this natural 

When the researcher 

queried the nature of 

    , Tanya explained 

that      should be a 

natural number and 

described that her goal 

was to determine if 

     existed.  The 

researcher asked for 

clarification of how the 

conclusion was drawn.  

She responded that she 

wanted to find        
Tanya could not 

provide an explanation 

about how the 

conclusion was drawn 

and she kept silent 

While, the description of 

Tanya‟s proof effort shows that 

she was aware that her goal was 

to find a natural number,     , 

her working did not show how 

the natural number could be 

determined from the 

expression: 
 

     
  . When 

pressed for a comment Tanya 

replied “We wanted to find 

 (    , that is greater.” 

Tanya‟s utterance point  to the 

fact the concept of convergence 

of a sequence was 

underdeveloped in Tanya‟s 

mind. It can therefore be inferred 

from Tanya‟s proof effort that 
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number exists.  

Researcher: You wrote; 
 

     
 

     it converges.  How did you 

conclude on the basis  that    

converges?   

Tanya: [silent] we wanted to 

find    ) 

Researcher:What is the domain 

 ( ).  Where does it belong? 

Tanya:        Natural numbers 

Researcher: Very good. It‟s a 

natural number. But on the basis 

of this [   ] how did you conclude 

that the natural number exists 

because you went to say therefore 

it converges. 

Tanya: [silent].  We wanted to 

find  (    , that is greater. 

[became silent] 

  

when pressed for an 

explanation. 

she was dealing tasks for which 

she lacked profound grasp 

(Stylianides & Stylianides, 

2009).   

Decide 

whether the 

statement is 

true or 

false. For 

all real 

values of 

       
      
      
implies that 

      . 
 

 Written response 
                 

              either 

        

  
 

 
 and             

[student draws number line and 

writes] Solution 1    
 

 
 or 

         
 

  
  and 

             [Student 

draws number line and writes]   

Solution 2  x    Solution   
       when      and when 

  
 

 
   thus        given 

               is false 

Tanya succeeded in 

factorizing        
    Order axioms: 

      either 

    and     or 

    and    , were 

applied to     
          to 

obtain      and 

  
 

 
 . Solutions were 

then illustrated on the 

number lines. The 

conclusion       
        is false was 

drawn.  However no 

justification for the 

conclusion was 

provided and hence, 

the focus of the follow 

up interview was on 

the basis upon which  

Tanya drew the 

conclusion that the 

statement is false 

Tanya‟s proof attempt illustrates 

that she had a strong command 

of concepts pertinent to the task 

as was shown through correct 

application of order axioms and 

successful factorisation of the 

quadratic expression. These 

processes then led to the 

conclusion that the proposition is 

false. However, the conclusion 

lacked justification.  The lack of 

clarity in the conclusion drawn 

became the focus of the follow 

up interview. 

Decide 

whether the 

statement is 

true or 

false. For 

all real 

values of 

       
      
      
implies that 

      . 
 

 Follow up interview 
Researcher:   How does this 

solution [referring to lead to the 

conclusion that the statement is 

false? 

Tanya: Our statement was saying 

that for        so if you look at 

our solution this [referring to 

number line illustration] empty 

part means our       . 

Researcher: So which method 

have you used here?  

Tanya:Counter-augmentation. 

 

Concerning how the 

conclusion was drawn, 

Tanya used a graphical 

argument to explain 

that between    and 
 

 
, 

         She 

described this method 

of refuting the 

proposition as counter-

argumentation.   

A convincing explanation was 

given by Tanya that was aided 

by graphical instantiations in 

describing how counter 

examples could be selected from 

the interval     
 

 
  and used to 

refute the proposition. Student 

had access to relevant conceptual 

insight. The proof behaviour 

showed by Tanya reveals that 

she had a strong grasp of the 

notion of a counter example. 

Table 5. 18: End-of-instruction assessment data matrix for Tanya on Real Analysis proof tasks 
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Task Student’s response  

(written, oral, actions) 

Profiles of students’ 

proving 

Proof scheme elements present 

A sequence 

(  ) of real 

numbers is 

defined by    

=  √  and 

     = 

√     

Prove that 

(  ) 

converges 

and find its 

limit. 

 

   √          

   √               

   √                 

            and 

       Since       and 

      it holds for    and 

  .  Assume it holds for 

    then it is true for      
We need to prove that it 

holds for  

              

√     √       

   ………………… 

    =  
       

√     √      
 

  =
 

√     √      
    

         (    is a monotone 

increasing sequence then 

          √     

    √           

         
  (   

  
      (         
             or 

             or  

       Discard the value 

of (    that is negative so 

       Thus (    is a 

monotone increasing 

sequence that is bounded 

and converges to its least 

upper bound which is 2  

Specific examples were 

used to determine the 

behaviour of the sequence.  

Student noted that       

and       from the 

empirical evaluations.  

These numerical tests were 

used as base step cases for 

the Principle of 

Mathematical Induction.  

These examples enabled 

Tanya to infer that   and 

   hold. The induction 

hypothesis was just 

alluded to.  The 

implication statement 

        was proved and 

the student concluded that 

(  ) is a monotone 

increasing sequence. 

Definition of monotone 

increasing sequence was 

then employed to prove 

that (  ) is bounded.  

Thus, from         
 ,algebraic manipulations 

led to the factor form 

(                
Order axioms were not 

correctly applied as 

student wrote:         
or        instead of 

        and      
    or vice versa.  Further, 

another wrong use of order 

properties is noted in use 

of word “or” to denote the 

intersection of two sets.  

However, Tanya still 

managed to state that 

     and then concluded 

that the sequence 

converges to    its least 

upper bound.   

 

Tanya‟s proof attempt revealed 

that she had contact with ideas 

she was using during proving.  

First, the method of 

mathematical induction was 

correctly applied to prove that 

(  ) is a monotone increasing 

sequence. Although the 

induction hypothesis was just 

alluded to, Tanya still managed 

to establish the implication 

statement           It can be 

inferred that Tanya had a strong 

command of the hierarchical 

structure of the proof, that is, she 

was aware of what her proof 

efforts were meant to accomplish 

It can be deduced that Tanya had 

access to relevant key ideas 

(Raman, 2003).  Second, she was 

able to apply the relation   
          for a monotone 

increasing sequence to prove that 

(  ) of is bounded.    From  her 

formal rhetoric part , that is, 

behavioural knowledge related to 

proving, the following  weakness 

was noticed.  With respect to use 

of order axioms she used “or” 

instead of “and” in using the 

order property:        
  and     or     and    .  

Tanya rather wrote,         
or         

      or      .  Tanya‟s 
proof behaviour points to the 

eternity of the external 

conviction symbolic proof 

among student teacher 

informants (Harel & Sowder, 

1998, 2007). 
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A sequence 

(  ) of real 

numbers is 

defined by    

=  √  and 

     = 

√     

Prove that 

(  ) 

converges and 

find its limit. 

 

 Follow up interview 
Researcher: You had 

                  
    [ ]  and if I take you 

back to the order properties, 

     implies that, what? 

Tanya:     and     

aaaa, sorry,     

Researcher:  […] you wrote 

here; discard the value    

that is negative.  […] Why 

did you write that statement?  

Tanya: [silent] Because we 

are mapping for sequences, 

we are mapping for real 

numbers to natural numbers. 

Researcher: We are mapping 

what? ℝ to naturals. Are you 

saying so? Where is the 

domain of the set of 

sequences? 

Tanya: the vice versa, 

naturals to reals. 

Researcher: […].  So why 

are you discarding the 

negative? What led you to 

that conclusion?  

Tanya: […] Because I had 

found that the first term for 

the sequence was √  which 

is greater than   , there was 

no way that an can take any 

value that is below √ .  

The focus of the follow up 

interview was to seek 

clarification from the 

student on some flaws 

noted in the written 

response data source.  

First, Tanya could not 

provide clarification on 

order properties of real 

numbers as she had     

and      in her response 

to the question her       
implis what?  Further, 

features of her response 

like “aaa, sorry      
ponted to weak command 

of order properties by the 

student.   Second, Tanya 

justified the decision to 

discard the solution 

       by explaining 

that the first term      

√       However, she had 

suggested earlier on from 

written response data 

source that the reason for 

disregarding    stems 

from the fact  for sequnces 

we are mapping real 

numbers to natural 

numbers which is exactly 

the opposite. 

From the follow up interview 

Tanya‟s command of order 

axioms was also revealed to be 

somewhat weak as could be seen 

from such remarks as “aaaa, 

sorry,         This remark 

reinforced the inference that her 

understanding of order axioms 

was fragile.  During the follow 

up interview Tanya could 

explain why the solution 

      should be neglected by 

noting that    =  √   and (  )   is 

a monotone increasing sequence. 

Tanya could access relevant 

conceptual insights and technical 

handles (Hanna & Mason, 2014). 

Tanya managed also to clarify 

the formal definition of a 

sequence, a mapping from the set 

of natural numbers to real 

numbers that she had described 

as a mapping from real numbers 

to natural numbers. Overall, 

Tanya‟s responses during the 

follow up interview revealed that 

she had established contact with 

mathematical objects she used to 

tackle the task (Wilkerson & 

Wilensky, 2011).  
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Use the 

definition of 

appropriate 

limit to prove 

that 

       
√       

 

= √   . 
 

 Written response 
Let     be given, we need 

to determine      s.t if 

    then | 
√       

 
 

√ |     

 |
√   √  

 

   √ 

 
|     

|√  
 

   √ |     

……………………………

…… 

|
 

 
 √  

 

   √ 
|     

|
 

√     √ 
|    

 

 
 √     √  

 
 

 
 √  √       

 (
 

 
 √ )

 

      

 

 
 ⌈(

 

 
 √ )

 

  ⌉    

Tanya stated the formal 

definition of limit of   as 

    and the definition 

was correctly applied to 

the problem context as 

shown by the substitutions 

made.  Algebraic 

manipulations were 

properly done up to : 

|√  
 

   √ |      She 

was at this stage supposed 

to apply the identity 

√  √  
   

√  √ 
 . Failure 

to use this identity led to 

chaos or complete mess as 

student failed to express   

in terms of   and hence 

could not determine     

for which if     then the 

condition |      |   .  

Hence Tanya could not 

state the conclusion. 

From the description of Tanya‟s 

proof effort it can be noted that 

she tried to use formal axiomatic 

reasoning as was seen from 

correct substitutions made into 

the formal definition.  The goal 

the proof effort pursued was well 

articulated by Tanya so she had a 

sense of what the proving effort 

sought to accomplish (Selden & 

Selden, 2009).  Progress in the 

proving effort was impended by 

the student‟s limitations in 

algebraic manipulations that 

required the use of the identity 

√  √  
   

√  √ 
.  It can thus 

be noted that although Tanya 

was aware of the proof 

framework, because he had 

realized that the method of direct 

deduction and adhered to the 

logical structure by drawing 

from the formal structure of the 

definition algebraic limitations 

impeded progress as student 

could not deploy the right 

resources at the right time Tanya 

lacked access to relevant 

technical handles (Sandefur et 

al., 2013). 

  Chalkboard 
demonstration 

[student is silent after 

writing statement on 

chalkboard] {So we are 

going to first of all define 

the limit as     of a 

function } [student writes 

and verbalizes] Let     be 

given, we need to determine 

    s.t. if     then 

|      |    

(coughs) {And} [student 

verbalizes and writes the 

following] if     then 

|
√       

 
  √  |   {From 

the numerator, we are going 

to factor out   , the square 

root of    so that inside the 

bracket we 

have}|
√    √  

 

   

 
 √ |   

 {If we simplify the 

numerator √    becomes    
and   and the denominator 

[              ] , will cancel 

each other.  Then we have } 

Similar to the written 

response data source, 

Tanya could verbalize and 

write the formal definition 

of limit of a function as 

    and could apply it 

correctly to the task.  

Algebraic manipulations 

were much better than they 

were in the written 

response section.  The 

identity √  √  
   

√  √ 
, 

was correctly stated and 

applied correctly to obtain 

|
 

 
 √  

 

   √ 
|     which is 

flawed in the sense that 

term    should have 

multiplied both terms in 

the denominator, that is, a 

correct representation 

should have been 

|
|  

(√√  
 

   √ )

|
|   .  Once 

again an impasse was then 

reached. At this stage the 

student relooked   at earlier 

working erased some parts 

Although algebraic 

manipulations  were better than 

was previously reported an 

impasse was also reached here.  

Tanya failed to realise that 

|
 

√  
 

    √ 
|  |

 

√
 

   
| 

This limitation in algebra 

manipulations impeded progress 

even though Tanya could 

articulate the formal rhetoric part 

she failed to act on it (Selden & 

Selden, 2009).  It can be noted 

that Tanya had a strong 

command of the hierarchical 

structure of the proof as she 

could describe that “What we  

want  to do here is that we want 

to find ,eee,    in terms of   […]  

I am failing to, uuu, simplify  

but, but I want, what I want is 

that I must get   in terms of  .”  
Therefore, Tanya was aware of 

the goal the proving effort was 

meant to accomplish but failed to 

act on this knowledge. In other 

words Tanya lacked access to 

relevant technical facility 

(Raman, 2003).  
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[Student writes] |√  
 

   

√ |     {We have that 

identity which states that } 

[student verbalizes and 

writes] √   √    
   

√  √ 
 

{So we are going to apply 

this identity here.  Which 

means we are going to 

have}|
  

 

    

√  
 

       √ 
|    {In 

the numerator, 3 and 3 goes 

so we are left 

with}|
 

  √  
 

       √ 
|    

{What we  want  to do here 

is that we want to find ,eee, 

   in terms of  .  This is 

going to be 

(coughs)}|
 

√         √ 
|       

 

√         √ 
 [Student makes 

an effort to simplify, relooks 

at the working and says] {I 

don‟t why…[inaudible].  I 

am failing to, uuu, simplify  

but, but I want, what I want 

is that I must get   in terms 

of  .  So we multiply this, 

this bracket} [silent and 

staring at the working on the 

chalkboard. Student erases 

what has been written. 

Student is apparently stuck 

i.e. an impasse]. 

of the board and ultimately 

gave up the proof attempt. 

 

 

Define a 

sequence 

(     

inductively by 

       and 

     = 
     

 
.  

Prove that  

(      is a 

bounded  

monotone 

sequence is 

bounded and 

hence 

determine its 

limit. 

 

 Written response 

              
 

 
       

  

 
 

              

              

Since        and       

it holds for     and   .  

Assume it holds for    , 

then it is true for     We 

need to prove that it holds 

for       

        
     

 
 

        

 
  

                     

=……………………….. 

                      =
 

 
           

  (    is a monotone 

increasing sequence. 

Because    is a monotone 

sequence 

          

Tanya determined the 

terms        She then used 

these specific examples to 

observe that       and 

        These empirical 

evaluations constituted the 

base step of the Principle 

of Mathematical Induction.  

She was then able to 

conclude that    and    

were valid.  Tanya then 

just alluded to the 

induction hypothesis.  The 

implication statement 

        was well 

articulated and well 

executed.  Student could 

establish through 

mathematical induction 

that the sequence is 

monotone increasing.  

Definition of a monotone 

The chunk of reasoning 

displayed by Tanya was very 

much similar to the one noted 

above with the following 

improvements.  The proof effort 

was not impeded by limitations 

in algebraic manipulations. After 

successful application of 

mathematical induction to prove 

that the sequence is monotone 

increasing and is bounded above 

Tanya capitalized on those  

processes successfully completed 

to determine the limit of the 

sequence.  There was coherence 

in reasoning displayed by Tanya 

as mathematical induction 

process made it possible for the 

student to prove that the 

sequence is monotone 

increasing. The much desired 

interplay between technical 
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 -      

       

 
 

 

 
      - 

   

 
 

  

 
  

   
 

 
          

 ⁄  

     is an increasing 

monotone sequence that is 

bounded and it converges to 

its leas upper bound equal to 
 

  ⁄  

 

increasing sequence was 

then used to prove that 

(     is bounded.  This 

then led to the formulation 

     
 

 
     The 

conclusion that the 

sequence (     converges 

to 
 

 
 .  Tanya provided 

proper justification for the 

conclusion.  No flaws were 

noted her argument. 

handles and conceptual insight 

was illuminated here (Hanna & 

Mason, 2014; Raman, 2003). 

This in turn led to use of the 

relation           to prove 

that the sequence is bounded 

with least upper bound 
 

 
 which 

was deduced to be the limit. 

 

Table 5.19: Mid-instruction assessment data matrix for Getrude on Real Analysis proof tasks 

Task Student’s response (written, 

oral, actions) 

Profiles of students’ proving Proof scheme elements 

present 

Determine 

whether 

the 

following 

statement 

is true or 

false. For 

all real 

numbers   

and 

      
       
  >0. 

 

 

 

 Written responses 
If       then     (by the 

trichotomy law)              and 

                   
          Similarly         
                    
         holds 

          is a true statement. 

If it were not true the        
   would hold (by the trichotomy 

law)                 
  and     which is a 

contradiction to the given 

       

  the above proof holds and 

therefore it is true that  

                

Getrude engaged in symbolic 

manipulations and claims meant to 

justify the symbolic manipulations 

did not resonate well with each 

other. For instance, “if       

then      The student claimed 

the statement holds because of the 

Trichotomy Law.  However the 

application of the Trichotomy to 

link the two statements       

then     not clear.  Student then 

stated that the statement is true.  

She then set out to prove this 

assertion by contradiction.  The 

effort to use the method of proof by 

contradiction to the antecedent 

statement (IF part) did not show a 

link with the consequent statement  

        

From the description of 

Getrude‟s proof effort it 

can be noted that efforts 

to justify mathematical 

claims were flawed 

because the student 

could not deploy the 

right resources at the 

right time (Wilkerson-

Jerde & Wilensky, 

2011).  For instance the 

“resource” Trichotomy 

Law of ℝ as an ordered 

field was irrelevant as it 

did not show why 

           .  

The same argument also 

applies to the situation 

where the student tried 

to apply method of 

proof by contradiction 

to establish that 

            >0.  

The student‟s purported 

proof by contradiction 

did not connect the 

antecedent statement to 

the consequent 

statement.  Overall, it 

can be inferred that 

Getrude applied 

mathematical objects 

indiscriminately as she 

tried to prove that 

             
  (Duffin & Simpson, 

2000). 

Describe 

whether 

the 

following 

statement 

is true or 

false. For 

 Follow up interview 
Researcher: […] for instance 

they say prove that       

then         , then you 

started by  saying by our 

trichotomy law or by your order 

properties when it was easy to use 

Getrude was asked to explain why 

she had decided to use axioms and 

definitions when it was much easier 

to use examples.  She attributed her 

propensity to use axioms to lack of 

experience with tasks of this nature 

and to the way the proposition was 

From the follow up 

interview, it can be 

noted that Getrude 

explained her proclivity 

for use of  axioms in 

terms of lack of 

experience with proof 
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all real 

numbers   

and 

      
      
  >0. 

 

 

a counter example 

Getrude:  So it‟s inexperience the 

more I am more involved in these 

problems the more I know how to 

solve them. When asked I will 

definitely I will use examples and 

not axioms so maybe it‟s 

inexperience on the concept.  

Researcher: But when do you 

decide as a student to say here I 

think I want an example and this 

other situation I think it requires 

axioms? [...] How do you make a 

choice between the use of 

examples and the use of axioms in 

a given a task? 

Getrude: Maybe the way it is 

asked will really direct you on 

what to use [...]. 

formulated.  She stated that the use 

of inequality symbols persuaded her 

to use order axioms.  Limited 

knowledge about how to go about 

proving can force the “learner to try 

to come up with a solution without 

the correct knowledge of the 

method to use, just maybe beating 

about the bush…” 

tasks that demand 

counter-argumentation.  

Getrude also suggested 

that the tendency to use 

axiomatic reasoning in 

proof tasks is caused by 

the manner in which the 

question is framed.  For 

instance the inequality 

symbol “>” in the task 

persuaded her to use 

order properties of real 

numbers in place of 

specific examples. In 

other words, Getrude 

was persuaded to use 

axioms by the 

contextual clues in the 

form of the formulation; 

            >0, 

in the proof task. 

 

Determine 

whether 

the 

statement 

is true or 

false.  If 

  is an 

integer, 

then 

     is 

an integer.  

Justify 

your 

answer. 

 Written responses 
             .  Let us set    
to be  .  If     then        
      an even. 

If     then          
    an even 

Setting     yields  

      =       

…………….(1) Setting     
  

          
          

                            =      
      

Letting     and substituting in 

    and     
Let                      

                                    =2 (even) 

                    

     even. 

Let k=2 

              even 

                    
=12 even 

  if for any value of  .       
       and           are 

both even it is true that       is 

an even number. 

Getrude started by factorizing: 

             .  A plus sign 

was written instead of a minus sign.  

Specific examples:     and 

    were substituted into the 

expression        to get   and 

   respectively.  Student then set 

    into the expression to get 

           .  She then 

substituted the value       into 

the expression and expanded to get: 

        for    .  Student 

then switched back to particular 

instantiations:         into 

expressions  

     and         and the 

student obtained 6 and 12 

respectively.  Student then 

concluded that since        and 

          both yielded even 

numbers it is true that if      then 

      is an even number. 

It can observed from 

Getrude‟s proof effort 

initially used particular 

instantiations, 

presumably these were 

intended to constitute 

the base step of the 

principle of 

mathematical induction.  

This is because soon 

after the empirical 

verification, Getrude 

wrote: ”Setting     

yields  

      =    ”.  
This step was 

presumably constituted 

the induction 

hypothesis.  Next she 

wrote: “Setting     
          
            

=       .” Again, 

presumptively this 

represented the 

induction thesis.  

However, Getrude then 

started to use specific 

examples and concluded 

that: If   is an integer, 

then      is an 

integer.  Although the 

student did not state 

precisely that he tried to 

apply the method of 

proof by induction it 

can be inferred from her 

working that there was a 

switch from formal 

deductive reasoning 
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(axiomatic proof 

scheme) to the empirical 

proof scheme 

(CadawalladerOlsker, 

2011). 

Prove that 

the 

sequence 

defined by 

 (    
    

     
 

converges. 
 

 Written response 
Lets first find the limit   s.t. 

|    |    ………..to find limit 

we divide by       
  

 

  

  
 

   
  as  

     
 

          
 

     

  the sequence converges 

to    ⁄     

Our      
 ⁄    

Proof 

|
    

     
|    for         

|
    

     
 

 

 
|     

   
 

 
 

    

     
   

 

 
    

Considering only the positive by 

our triangle inequality 
    

     
 

 

 
   

     

     
      

              

     
    

…………………………………

…… 
  

     
                   

…………………………………

……………. 
     

  
      (

 

  
 

 

 
)       

 √
 

  
 

 

 
    

 

Getrude started by expressing her 

goal: to find the limit   such that 
|    |      She then proceeded 

to find the limit by dividing through 

out by the dominant term and 

evaluated the limit of the 

expression:    
  

 

  

  
 

   
 as    .  For 

the proof part, the expression 

|
    

     
|    for        has the 

following flaws.  First, the 

inequality          is wrong, 

exactly the opposite is true, that is it 

should have been stated as    
       

Student did not specify the symbol 

she engaged, e.g., Getrude was 

supposed to state that        and 

the quantity     described as a 

small radius.  In her symbol 

manipulations, Getrude wrote 

|
    

     
 

 

 
|    that  was then 

transformed to     
 

 
 

    

     
 

  
 

 
     Getrude then referred to the 

second part of the inequality as “the 

positive of the triangle inequality”.  

Then algebraic manipulations led to   

    √
 

  
 

 

 
  ; a senseless answer 

because the number   concerned is 

a natural number but Getrude got a 

complex number.  Getrude could 

not state the conclusion, that is, she 

could not use results of her symbol 

manipulations to determine whether 

the sequence (    converges. 

  

  Getrude‟s proof 

attempt revealed some 

limitations in her 

understanding of the 

concept of convergence 

of a sequence. The 

flaws include failing to 

describe meaning of 

symbols central to the 

definition such as  

     the natural 

number,      and 

omission of modulus 

symbol.  Her working 

revealed poor algebraic 

and technical 

manipulations that led 

to a complex solution 

which is senseless in 

real sequences.  

Consequently it can be 

inferred that Getrude 

had not built a coherent 

network of  

mathematical resources 

to deal with the proof 

task (Duffin & 

Simpson, 2000; 

Wilkerson-Jerde & 

Wilensky, 2011).   
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Table 5. 20: End of instruction assessment data matrix for Getrude on Real Analysis proof tasks 

Task Student’s response  (written, 

oral, actions) 

Profiles of students’ 

proving 

Proof scheme elements 

present 

Prove that      
=             
is uniformly 

continuous on 

[   ]  
 

 

 

 

 

 

 

 

 

 

 

 Written responses 
If   is uniformly continuous 

on [   ]  if     [   ]    

       st if |   |       
then   

|         |     

|                
      |     

………………………………

…………………………… 

|                 |
   

Let       

|                 |
   

………………………………

……………………………. 

|   |  
 

 
 which is 

independent of [   ] 

The formal definition 

of uniform continuity 

written by Getrude had 

one important aspect 

missing.  The quantity 

     that is 

fundamental to 

definition was not 

specified explicitly but 

only appeared when the 

student wrote |     
    |      However, 

other aspects of the 

definition were all in 

order, e.g., the student 

stated that     [   ]   
Algebraic 

manipulations were 

correctly done  and 

Getrude obtained  

|   |  
 

 
. The 

comment about      

obtained that  

“which is independent 

of [   ]  is not a 

correct characterisation 

of the idea of uniform 

continuity, rather it 

should have been 

described as a quantity 

that is independent of 

arbitrarily elements 

  [   ].  
 

 

From Getrude‟s solution attempt 

it can be seen that her 

conceptual knowledge of 

concepts pertinent to the task 

was somewhat limited.  Lack of 

access to conceptual insights 

could be seen from such 

comments as “|   |  
 

 
 

which is independent of [   ]  
when she was supposed to 

explain that        

determined was independent of 

an arbitrary element drawn from 

the interval [   ]  Some steps 

were not justified, e.g., “Let 

     .”  Getrude did not 

also explain how        

determined showed that      is 

uniformly continuous.  It can 

therefore be inferred that  

Getrude had limited conceptual 

knowledge of the mathematical 

ideas involved.  Her working 

demonstrated she had 

instrumental knowledge of 

uniform continuity because she 

could engage in algebraic and 

determined the size of       
  but could not interpret this 

quantity in terms uniform 

continuity.  It can be concluded 

that Getrude failed to provide an 

epistemological justification as 

to how answers generated were 

solutions to the task (Koichu, 

2012; Pfeiffer, 2010). 

 Define a 

sequence (     

inductively by 

       and 

     = 
     

 
. 

Prove that  

(      is a 

bounded  

monotone 

sequence  and 

hence 

determine its 

limit. 

  

 Written response 
Inductively        

   
      

 
         

   
        

 
 

   

 
        

      ,         

    it holds for          and    

          is true.  Assume 

it is true for     it implies 

that          also holds 

        
     

 
 

       

 
  

                 

……………………… 

            
 ⁄     

       which implies      
    but by induction    
     and hence        .   

it also holds for         
Prove for    is bounded 

monotone sequence 

Student first wrote 

“inductively” and then 

determined the terms 

   and      Getrude 

then noted       and 

     .  Student then 

used the specific 

instantiations to 

conclude that    
       in other words 

Getrude claimed that 

the sequence is 

monotone increasing.  

She then tried to carry 

out steps of 

mathematical induction 

to establish the 

sequence (     is 

monotone increasing.  

Method of proof by 

induction was not 

properly executed e.g., 

Getrude‟s command of the 

proof framework was weak.  

The proof framework refers to 

the conventions of doing things 

in mathematics.  It can be 

inferred from her working that 

she did not adhere to the logical 

structure of doing proofs 

because Getrude concluded on 

the basis of particular 

instantiations that “    it holds 

for          and        
      is true.”  She then set to 
establish that           by 

mathematical induction.  Other 

aspects of her proof attempt 

relate to the hierarchical order 

of the proof, that is, the goals 

the proof effort pursued (Selden 

& Selden, 2009).  Getrude did 

not specify that the sequence is 

monotone increasing. Although 
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………………………………

………… 
     

 
   

………………………………

…………………. 

     
     

………………………………

…. 

    
 ⁄    Since      and 

    
 ⁄  it implies       

 
 ⁄   The sequence is bounded 

and its limit is    ⁄  

          
 

 ⁄            is 

wrong statement used 

to deduce that      
  .  She did not also 

mention whether the 

sequence (     is 

monotone decreasing 

or increasing.  

However, when 

Getrude set out to 

prove that the sequence 

is bounded the 

inequality written: 

          

indicated that the 

sequence is monotone 

increasing. From the 

inequality the student 

substituted and got 

    
 ⁄    Getrude 

then deduced that 

      
 ⁄ .   

Getrude had challenges noted 

about matters to do with the 

proof framework and the 

hierarchical structure, her 

working revealed a good 

command of conceptual 

knowledge (du Toit, 2009).  She 

determined that the sequence is 

bounded by capitalizing on the 

fact the sequence (     is 

monotone increasing sequence.  

After proving that the sequence 

is bounded Getrude then used 

the idea a bounded sequence  to 

deduce that it has limit  
  ⁄ .  

The connection in concepts 

described supports the the 

inference that Getrude had a 

strong conceptual knowledge of 

the ideas involved in the task.  

 

 

Define a 

sequence (     

inductively by 

       and 

     = 
     

 
.   

 Follow up interview 
Researcher: […] you have: 

{You have       
 

 
}   ].   

How did this lead      now to 

your conclusion that the limit 

is      
Getrude: If I remember I 

checked on the behaviour of 

the function, whether it was 

convergent. So in that 

[inaudible] used this inductive 

method. I realised that it was 

monotone increasing 

sequence. So if a sequence is a 

monotone increasing, it means 

that it is bounded above and 

least upper bound becomes the 

limit.  

Researcher: In other words, a 

bounded monotone increasing 

sequence converges that‟s 

what [interjection from  

Getrude] 

Getrude: Yes it converges to 

its least lub [least upper 

bound]. […………] So this 

one was like if it lies between 

this range [     
 

 
] it 

means the terms  are starting 

from up to up to     which 

    . So this one,     

becomes the limit because of 

the what, the monotone 

increasing pattern.  

The focus of the 

interview was on how 

Getrude had drawn the 

conclusion that   ⁄  is 

the limit of sequence 

(        She was able to 

explain that a sequence 

that is bounded above 

converges to its least 

upper bound.  

However, some 

statements produced by 

the student were not 

true.  For instance, 

Getrude stated that,  “If 

a sequence is monotone 

increasing it means it is 

bounded above.”   This 

statement by Getrude is 

not necessarily true 

because a monotone 

increasing sequence 

does not always 

converge.  A monotone 

sequence  converges 

only if it is bounded.  

The follow up interview on the 

task revealed that Getrude had 

grasped the convergence 

criterion for a monotone 

bounded sequence in ℝ.  When 

probed about how she drew the 

conclusion that the sequence 

(     converges she explained 

that “Yes it converges to its 

least lub [least upper bound].  

So when I worked out to see the 

pattern, and the convergence, I 

realised that uhu, my sequence 

was lying between this range.  

So this one was like if it lies 

between this range [     
 

 
 

] it means the terms are starting 

from 1 […] up to     which 

    . So this one,     becomes 

the limit…”  Her explanation 

showed good command of ideas 

pertinent to the task.  However, 

some utterances by Getrude 

during the interview showed 

that she lacked understanding of  

aspects on sequences.  For 

instance claims such as “So if a 

sequence is a monotone 

increasing, it means that it is 

bounded above.”  This is not 

necessarily true.  So while 

Getrude exhibited good 

command of convergence 

criterion for bounded monotone 

sequence, some limitations were 

also revealed, e.g., she claimed 

that every monotone sequence 

converges. 
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Use the 

definition of 

appropriate 

limit to prove 

that 

       
√       

 
 

= √   . 
 

 

 Written response 
Let     be given.        

such that if     then 

|      |    

 

|
√     

 
 √ |     

 

 

The formal definition 

of the limit of a 

function   as     

correctly stated and the 

function      and the 

limit   also correctly 

substituted into the 

expression.  However, 

the student made no 

further progress toward 

determining     

after making the 

substitutions described 

above. 

 

 

Getrude had a grasp of the 

formal rhetoric aspect of the 

proof task but she could not act 

on this behavioural knowledge 

(Selden & Selden, 2009) .  She 

substituted correctly into the 

formal definition but could not 

progress to find     such that 

if     then the function will 

approach.  It is important that a 

prover acts on the behavioural 

knowledge rather than just 

articulating it (Fukawa-Conelly, 

2012). 

Use the 

definition of 

appropriate 

limit to prove 

that 

       
√       

 
 

= √   . 
 

 Follow up interview 
Researcher: […] can you 

suggest reasons why you 

could not make progress in 

question (a) after writing the 

definition.  

Getrude: [Laughing] Ok, aaaa, 

the fact that there are two 

square roots was a challenge 

at first.  But if I had enough 

time I could have solved it. 

However, I didn‟t want to use 

the identity that say [√   

√  
   

√  √ 
 ] why because 

this was one [  ]  is a fraction 

and this one seems to be not  

this one is a fraction because 

of the   here and this one is 

not. So the process was for 

one to put it under one 

denominator then simplify 

then use the identity later on. 

But I knew from my notes 

when I was revising that    is 

supposed to be factored out 

but I couldn‟t remember how, 

so because of time I told 

myself to leave this for a 

moment, do the other simpler 

ones and then I was going to 

come since I left this space. 

Researcher: You seem to be 

very much aware of processes.  

Can you suggest reasons why 

people do not make progress 

despite having a lot of 

knowledge 

about....[interruption from 

Getrude] 

Getrude: Lack of computations 

in algebra. Even if I know the 

formula if I can‟t operate the 

algebraic performances I can‟t 

proceed.  

Upon being asked to 

account for her lack of 

progress with the task, 

Getrude explained that 

the two square roots 

put her off.  She even 

could describe how she 

could have simplified 

the expression 

|
√     

 
 √ |    in 

order to determine 

    for which the 

function converges to 

the limit   as        
She could also describe 

an extremely useful 

identity : √   √  
   

√  √ 
  that could have 

made it possible for her 

to determine the real 

number   in terms of 

the radius    , 

chosen.  She attributed 

lack of success with the 

solution process to 

computational 

challenges in algebra. 

During the follow up interview, 

Getrude explained the cause of 

her impasse during her efforts to 

solve the task as follows.  She 

pointed out that she was 

discouraged in her efforts by 

two square roots: 
√     

 
 and 

√ .  However, she showed a 

grasp of the appropriate 

resources that could have been 

deployed in order to tackle the 

task such as the identity  

√   √  
   

√  √ 
  (TH) but 

she could not execute this 

behaviour because she wanted 

to focus her attention on what 

she called “simpler ones.”  I  

emphasize that behavioural 

knowledge pertinent to 

mathematical problem no matter 

how well articulated but not 

executed is not important 

(Selden & Selden, 2011).  So 

although Getrude could describe 

how she thought she could have 

tackled the task, executing her 

plan could have given insights 

into her thinking as she engaged 

with the task. 
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5.2 Results: Research question two 

How do the undergraduate student teachers develop their proof schemes?   

The focus of the study was on how the mathematical object emerges?  Data from the reflective 

interview guide on students‟ proof experiences were used to address research question two.  

Summative content analysis (Berg, 2009) was applied to the verbatim transcriptions of reflective 

interview textual data.  Summative content analysis of verbatim transcriptions started with actual 

phrases and words in the textual data.  First, students‟ conceptions of mathematical proof were 

explored.  The intent was to establish the nature of “being” of the object, that is, its ontology among 

the student teachers.  The actual words and phrases were then used to inductively build the 

categories of students‟ definitions of mathematical proof.  Second, the student teachers‟ proof 

experiences at pre „A‟-level, „A‟-level and undergraduate level were reported in this section.  

Furthermore, this section also reports on student teachers‟ inconsistencies in student teachers‟ 

formal rhetoric aspects. 

5.2.1 Students‟ conceptions of mathematical proof 

Table 5.21: Inductively developed categories of student teachers‟ conceptions of mathematical proof       . 

Category Examples of responses frequency 

Facts Bea:  […] a mathematical proof refers to some ideas, eee, supporting , that 

is, in favour of or against a statement 

2 

Procedures Taku: Mathematical steps required to reach a conclusion.     3 

Logical 

argument 

Tino: Logical argument needed to convince that something is true 4 

Formula Tina: Finding out if formula is correct 1 

                                                                                                                Total 10 

Researcher’s comments 

Table 5.21 reveals that mathematical proof was thought of mainly in terms of logic, that is, in terms 

of activities with a focus on establishing the truth or falsity of a mathematical proposition as 

indicated by (4 out of 10) responses in this category.  The table also illustrates that mathematical 

proof was thought of as steps or procedures needed to establish mathematical theorems, (3 out of 

10) were in this category.  Definitions are complete descriptions of the behaviour or structure of the 

focal mathematical idea that accounts for all instances of that idea (Wilkersen-Jerde & Wilensky, 

2011, p. 31).   One‟s understanding of a concept determines the manner in which one engages with 

problems for which the concept is focal.  I had therefore, anticipated that the students‟ descriptions 

of a mathematical proof could in turn illuminate how their proof schemes emerged.  The following 

section focused on the students‟ experiences with mathematical proof at various scholastic levels.  

The specific item in the interview guide that captured their pre „A‟-level experiences was: Describe 

your pre „A‟- level experiences with the concept of a proof 
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5.2.2. Undergraduate student teachers‟ pre „A‟-level experiences with proof 

Table 5.22: Inductive codes developed through content analysis of the data for         

Category Example of student utterances relative 

frequency 

Calculations Taku: measuring and calculations , no axioms 2 

Formula Tendai:[…] we were just substituting into the formula 9 

Procedures/steps Bea: […] could easily follow steps 2 

Not challenging Bea: Proofs not challenging could easily follow steps 1 

No proofs Cortney: No proofs […] we were exposed to the stuff 10 

Empirical/experimental Taku: drawing and measuring 3 

Applying memorized 

facts 

Taku: We were just given (Cosine rule, Pythagoras) and  told to 

memorize and apply them 

4 

                                                                                            Total 31 

Researcher comments 

Of the inductive categories derived from content analysis it can be noted at the pre „A‟-level period 

there was “no proof” exploring experiences as shown by (10) responses.  Students reported that they 

did not engage with the concept of mathematical proof during the pre „A‟-level period.  Emphasis 

was on applying formulas to obtain answers as represented by category labelled “Formula.”  An 

interview extract of Tanya revealed the point that the major mathematical activity of the pre „A‟-

level involved applying given formulas.  

Tanya: Aaaa, I would like to believe I did not deal with them so much, maybe at the end I would 

 just be given the result.  

Researcher: Ok. 

Tanya: Then just use the result. 

Researcher: To do what?  

Tanya: Maybe, like we have the quadratic formula where we want to solve for the roots of the  

equation. Then you will just be given how to go about and come out with the proof. I didn‟t know that 

much. 

Researcher: In other words, before you came to this level [undergraduate studies], you did not  

know how to prove the quadratic formula, how to prove the cosine rule, the sine rule, but you were 

using those?  

Tanya: Yaaa. I was using them but we didn‟t really concern ourselves with the part of proving that. 

This extract reinforces the idea that mathematical concepts were transmitted to student with little 

regard for their underpinnings and verification (Varghese, 2009).  These inferences were implied by 

the phrases such as “Then you will just be given…” and “we didn‟t really concern ourselves with 

the part of proving” from the extract.    Utterances by Tino reinforce the point that there were no 

proofs in the primary and secondary school mathematics curricula.  He mentioned that the concepts: 

Pythagoras‟ theorem, Cosine rule were used without proving as their proofs were not included in 

the syllabus. 
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Another student teacher Bea who had defined mathematical proof in terms of steps needed to reach 

a conclusion pointed that out proving at pre „A‟- level was not challenging as she could follow steps 

easily.  Yet another inductive code derived from summative content analysis of data was labelled 

“Calculations.”   This category had a strong link with the category involving use of given formula 

as illustrated by Taku‟s utterances during the reflective interviews. 

Taku: Aaaa, actually I didn‟t experience much about proofs but, aaa, the mathematical concept which 

were actually used to, like the formula, was already provided. You could be provided with the sort of 

formula then you could just substitute the required numbers then you come up with an answer. At that 

stage I had no much experience as far as proofs were concerned. 

Taku‟s utterances revealed that focus was on doing calculations using given formulas and there 

were no proofs done.  Therefore, it can be, concluded that from the students‟ definitions of a 

mathematical proof that proving was not part of their early learning experiences.  The students‟ 

accounts are aligned to their reported conceptions of mathematical proof in Table 5.21.  Students 

conceived mathematical proof in terms of use of facts (axioms and definitions) to validate 

mathematical statements that are often provided in a logical manner.  This view of proof can be 

used to explain why “calculations” and formulas given were not seen as part of proof activities by 

student teachers.  The next section focused on students‟ „A‟-level experiences with proof. 

 

5.2.3 „A‟-level experiences 

Inductive categories derived from summative content analysis of the data are presented in the table 

below 

Table 5. 23: Student teachers‟ A-level experiences with mathematical proof        

 

Category Example of student responses Relative 

frequency 

Applying facts Getrude: There were some facts given. […] applying given facts        5 

Solving equations 

and identities  

Taku: Proof of trig ratios not part of syllabus but solution of trig equations 

and identites 
  

Few proofs Bea: There were not too many proofs   
Deriving formula Taku: […] developing 

 

 
   into 

 

 
         

Not challenging Bea: […] proofs not challenging         1 

Low intensity Cortney: The only proof I remember is induction         2 

                                                                                                               Total        17 

Researcher comments 

Applying given facts dominated learning of mathematics at A-level (5 out of 17 responses).  

Emphasis at „A‟-level was also on solving equations and identities as shown by (4 out 17) responses 

in this category. Thus, not much in terms of proving featured in „A‟-level school mathematics 

learning. There were few proofs at „A‟-level which were within what (Ball, Thames & Phelps, 

2008) call students‟ conceptual reach as illustrated in Bea‟s extract of the interview. 

Bea:  There are not many proofs considering the paper which [silent] I sat for exams paper,  
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pure maths.  It didn‟t have many proofs.  So the proofs are [pause] at that level not challenging again, 

there are just a few proofs at „A‟- level. 

The level of difficulty was also low as pointed by Bea.  It can therefore be inferred from the 

responses, that proving was within students conceptual reach because it consisted of “applying 

given facts” as mentioned by Getrude.  Another response that revealed that the activity of proving 

had a low intensify at „A‟- level came also from Cortney who said; “The only proof I remember is 

induction.”  Cortney even stated that she did not understand the underlying ideas of proof by 

induction.   

At „A‟-level, students concentrated on memorising formulas from sources as was revealed by 

Taku‟s utterances: “We were told we were going to be given some formulae e.g.             

  was not proved … we were given.”  The idea that theorems, formulas and facts were provided to 

students without providing their basis, could also be seen in responses such as:       

Tafa: […] I do not remember any real proof. […] may be you were asked to differentiate. 

Researcher: So how were you learning the double angle identities? 

Tafa: Some of them were just given. 

This interview excerpt with Tafa summarises, how the object of proof scheme existed at A- level, 

that is, low in intensity and mainly thought of in terms of applying given facts and techniques 

through processes such as differentiation.  However, from the interview it can be noted that though 

low in intensity proving had begun to emerge.  The development was followed through to students‟ 

current [at the time of the study] scholastic level, so next I asked the students to describe their 

undergraduate experiences with proof. 

5.2.4 Undergraduate proof experiences 

Summative content analysis of verbatim transcriptions gave rise to the following categories of the 

students‟ experiences with the notion of a proof at undergraduate level.  I re-cap that ontology is the 

study of the existence of the object “being,” the categories of being and entities within those 

categories.  The intent was to develop an understanding about how the world fits together (Porta & 

Keating, 2008).  Put in the context of the study, the focus was to develop an understanding of the 

various categories in students‟ differential experiences with proof and describe the mechanisms and 

processes that operate within a given category. 
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Table 5. 24: Student teachers‟ undergraduate experiences with proof         
Category Examples of student utterances Relative 

Frequency 

Axioms and definitions Tafa: We need to know axioms, aaa, all definitions, the 

lemmas and so forth 

2 

Difficulty/challenging  Bea: […] challenging.  Maybe I think its [pause] because 

something I am not familiar to, 

4 

Use of examples  Tendai: I can fix, I write      I can fix numbers 1 

Time  Taku: Proofs take more time to comprehend 2 

Justification Skills  Debra: […] we were just using without knowing where 

they were coming from […] we can now prove why we 

are using the concepts or some of the formula 

2 

High intensity  Tanya: I have used them so much [referring to proofs], for 

example in linear Algebra […] lots of proofs 

2 

                                                                                  Total 13 

From Table 5.24, it can be seen that proving at undergraduate level was challenging for the 

students.  Challenges and difficulties students faced with proofs at this level were revealed in the 

following student utterances. For example, Bea mentioned that proof was difficult and proving was 

not an extension of her early learning experiences as illustrated in the utterances below:   

Bea: […] challenging because it‟s something I am not familiar with. Taking the whole  

   course with proofs, failing to understand. 

Bea mentioned also that in spite of repeating reading notes many times she had failed to 

comprehend proof of the Cut Property in ℝ.  The difficulties Bea experienced with proofs were 

revealed in the following excerpt. 

Researcher: Can one generate a proof? 

Bea: I do not think, its possible.  At my level.  No, without reference to some written source. 

The difficulties she had in comprehending her notes influenced her into thinking that producing a 

proof to a statement autonomously was impossible, and that one could only do so with the aid of a 

written source.  This excerpt reveals the tenacity of external conviction authoritative proof scheme 

(Harel & Sowder, 1998, 2007) as Bea thought that she could only produce a proof with the help on 

a written resource.  Yet, another excerpt that uncovered the difficulty undergraduate students 

experienced with proofs is now produced. 

Tino: Proofs were challenging 

Researcher: What was challenging? 

Tino: Trying to argue logically to convince.” 

 

Therefore, the process of putting together axioms and definitions to build arguments that were 

convincing posed a challenge to student teachers.  Further, students mentioned that proving 

mathematical statement posed serious difficult to the extent that it was difficult to figure out the 

start and end of the proving process 
__

a result similar to that reported by Doruk and Kaplan (2015). 

Cortney‟s utterances revealed the point made above when she said: 

Cortney:  First it was hard; I couldn‟t tell where we were coming from and where we were  
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going […] 

Another characteristic of the category denoted as challenging is that students‟ experience some 

discomfort with proofs that forced them to react by resorting to what Tendai called “own 

understanding” which is explained after presenting the following excerpt. 

Tendai […] now maybe the theorem, If you did not understand the theorem and it‟s difficult,  

    maybe you can use your own understanding. 

Researcher: What do you mean by your own understanding? 

Tendai: If you say you want to give may be an ordered field theorem then, you use if you want to 

 say      then I can fix, write        I can use numbers. 

Tendai‟s utterances revealed the fact that when she faced challenges in arguing in a formal 

deductive manner, in her case by using order axioms, she could then turn to particular instantiations 

of the order properties.  Another characteristic of proof at undergraduate revealed during the 

reflective interviews concerns the need for justification skills.  The following students‟ utterances 

reflected the need to justify claims made when proving. 

Tanya: Things no longer taken for granted. 

Debra: I can say that I have been learning that things which we were just using without 

       knowing where they were coming from, we can prove why we are using the concepts  

       or some of the formula. 

Content analysis of textual data also led to the emergence of an inductive category denoted as “high 

intensity” that encompassed matters related to increased proving activity at undergraduate level.  

Unlike at the previous scholastic levels at undergraduate level, Taku mentioned that, “There are 

proofs after proofs.”   The increased proving activities were also mentioned by Bea as shown in the 

following interview excerpt.    

Bea: Taking the whole course with proofs.  

Bea‟s utterance points to the fact that the Fundamental of Analysis course is a proof laden course.  

Another feature of undergraduate proof experiences relates to time taken to comprehend proof.  For, 

instance, Tina mentioned, “You take your time on an aspect.  Proofs take time to comprehend.”  

Finally, it can be noted that the use of examples in proving had diminished as students preferred to 

use axioms and definitions to carry out proofs.    In pursuance of how undergraduate students 

develop their proof schemes, it was necessary to trace differences they had noted as they dealt with 

proofs at various scholastic levels.  So presented next are inductive categories from content analysis 

of student‟s verbatim transcriptions from perspective of students‟ differences in proof encounters. 
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Table 5. 25:  Distinctive features of undergraduate proof experiences during mid-instruction interview         

Category Example of student utterances Relative 

frequency 

Level of detail  Debra: At lower lower […] proofs were simple but 

now we are doing proofs in detail.  

5 

Logical presentation of ideas  Tafa: […] but now […] we appreciate the concept of 

presenting arguments logically 

1 

Justification  Cortney: What is unique here [undergraduate level] we 

are looking at the basis where he theorems are coming 

from 

5 

Challenging  Getrude:  Now I can support myself though it‟s still 

challenging. 

2 

Volume of work  Cortney: Yaa since here we are taking this as a course 

and there it was topic  

1 

                                                                         Total 14 

From Table 5.25, it can be noted that students‟ proof experiences differed principally in level of 

detail and in the terms of fostering justification skills among students.  With respect to level of 

detail, students pointed out that while the focus of pre „A‟-level and „A‟-level Mathematics was on 

applying rules and procedures of steps to obtain answers, at undergraduate level particular attention 

needed to be paid to level of detail.  Getrude‟s utterances illustrate the point that has been just made. 

Getrude: At A level we were somehow spoon-fed […] given a fact and told how to use it.  

Commenting on her undergraduate experiences with proofs, Tanya stated that: 

Tanya:  Maybe it just depends on the content.  Proofs at the lower level do not demand that much. 

   At this level [undergraduate level] we actually prove things, we don‟t just take things for  

granted, that is obvious to say     but now we have to prove that    .  We need to give a lot of 

explanation. 

Another excerpt that involved Debra reinforces the point that proof differed in terms of the level of 

detail. 

Debra: Yaa, I think, eee, at a lower level proofs were simple and not detailed but now we are  

doing proofs in detail. 

Researcher: What do you mean by detail? 

Debra: Ok, I think we are now being given enough information to show why we say a given 

            concept has to be used. 

It can be noted also that although the level of detail had increased the student was given that 

information.  From Debra‟s responses cited above we see that Debra played a passive role in 

generating proofs because she was given facts to apply.  Debra‟s response points to a robust 

external conviction authoritative proof scheme (CadawalladerOlsker, 2011; Harel & Sowder, 2011). 

Second, students‟ proof experiences also differ primarily in the way statements are justified at the 

various scholastic levels.  Students reported that they rarely justified claims made.  For instance 

Getrude mentioned that she used to take it to be obvious that      but at a undergraduate she had 

to convince others that        She mentioned that “Now I can support myself though it‟s still 
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challenging.”  Tino‟s utterance reinforced differences highlighted by Getrude in student proof 

experiences in terms of justifying claims and processes engaged in during proving. 

Tino:  If you look at „O‟-level and „A‟-level Mathematics you have to know rules and procedures, the 

steps involved in solving.  But now at this level [undergraduate level] I think you have to 

understand the reasons behind what you are doing […] depth of conceptual understanding is much 

deeper. 

Therefore, unlike at „O‟-level and „A‟-level where emphasis is mainly on obtaining the answer 

(product) focus at undergraduate level as mentioned by Cortney was on “looking at the basis where 

the theorems are coming from.”  Debra‟s utterance reinforces the point made here that students‟ 

verbatim transcriptions illuminated differences in the extent to which justification skills are fostered 

at different scholastic levels in the following interview transcript. 

Debra: I can say that I have been learning that we were just using them [formulas]  

without knowing where they were coming from, we can prove why we are using the    concepts or 

some of the formulas. 

Another category that emerged from content analysis of verbatim transcriptions denoted as Logical 

presentation was about differences noted in presenting ideas when proving.  At undergraduate level 

students described that there was logical presentation of arguments by means of axioms while at 

„O‟- and „A‟-levels focus was on what Bea described as “plugging numbers” in formulas, referring 

here to calculations.  Tendai‟s response reinforces the point made here about use of particular 

instantiations at lower levels of mathematics learning while at undergraduate level use of axioms 

and definitions in building arguments became prominent (Alcock, 2010). 

Tendai: Maybe at „O‟-level its only substituting maybe we were only calculating. 

One of the categories that emerged during summative content analysis encompassed the challenges 

faced by students when they dealt with proofs at the various scholastic levels.  Thus, while students 

explained that they could justify mathematical claims made and provided detail at undergraduate 

level, they expressed the fact that such efforts were challenging.  For instance, Cortney commenting 

on her experiences when she was dealing with axioms of a field mentioned that: 

Cortney: But I can recall it was a bit challenging because we did not have the basis  

(pause) somewhat.   

By “basis” Cortney was referring to relevant prior knowledge that was pertinent to the learning of 

axioms of a field.  I conclude this section on students‟ undergraduate proof experiences by noting 

that volume of work on proof was another category that emerged from summative content analysis 

of the data.  Student highlighted that at „O‟ and „A‟-levels proof was treated as a topic while at 

undergraduate proof was dealt with as a course. The inductive category „volume of work‟ is similar 
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to Selden and Selden‟s (2003) description of Real Analysis as a proof laden course in which 

students spend substantial amount of time reading and writing proofs.  Another dimension that was 

considered to illuminate the nature of existence, that is, ontology of proof scheme at various 

scholastic levels are, ways used by student teachers to reach conviction about the truth of a 

mathematical statement.  So in the next section I present summative content analysis results of 

verbatim transcriptions from the perspective of means of reaching conviction. 

5.2.5 Ways to gain conviction 

Table 5.26: Mid-instruction reflective interview on ways used by students to attain conviction         
Category 

Example of student utterance 
Relative 

frequency 

Use of theories  Tanya: […] should be able to use given theories which support the statement                     
     Getrude: use facts to come up with theorem 

Cortney: Provided facts that support the statement 
  

Use of examples   Taku: trying out integers         

Methods/stages 

calculation  

Tina: Through the channels or steps reaching a certain answer. […] between the 

problem and the answer there are steps required […] 
  

Logical 

presentation  

Tafa: […] logical presentation of statements that are linked […] arranging 

argument 
  

Contradicting Tafa: Contradicting original statement   

                                                                                                            Total    

Researcher Comments 

The dominant means of attaining conviction regarding the falsity/truth of a mathematical 

proposition was through logical presentation of an argument (4 out 19 utterances) and by proving 

using facts rules and laws pertinent to the proof task at hand.   Student teachers expressed that 

attaining conviction through use of particular instantiations emerged as a significant category.  

From the categories;  Methods/stages with (3 out 19 utterances) and Use of theories which had (3 

out 19 responses), it was noted that student teachers shared the view that the methods facts and rules 

should be given to the learner.  In other words, the student teachers felt they should be supplied with 

tools to use.  This category reveals the dominance of the authoritative warrant type (Alcock, 2010; 

Weber & Mejia-Ramos, 2011).   Describing methods as means of reading conviction, Taku said:  

Taku: Applying methods you have been given. 

Tanya expressed the view that to reach conviction theories should be given to the prover to aid the 

proving activity as was noted in the following utterance. 

Tanya: […] should be able to use given theories which support the statement.         

What is common in the two responses by Taku and Tanya is the idea that methods and theories 

employed in proving came from external sources such as the textbook or the teacher. This shows 

the dominance of the external conviction authoritative proof scheme (Harel & Sowder, 2007).  
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Next, I present results on inconsistencies observed among undergraduate student teachers as they 

worked on given proof tasks.  Prior to the presentation of results on the inconsistencies, it is crucial 

that I describe briefly what motivated me to data analysis from this perspective.  It was noted during 

the pilot study and even during main study data collection that student teachers displayed 

inconsistent behavioural tendencies in the following manner.  Student teachers had a tendency to 

use axioms and definitions in proof tasks that demanded use of counter argumentation.   

Conversely, student teachers used particular instantiations to tackle tasks that needed the formal 

deductive approach.  These contradictory behavioural tendencies motivated me to explore students‟ 

thinking in this regard in order to develop an explanation on students‟ mental constructs around the 

notion of proof.  So Table 5.27 presents the results of content analysis of students‟ accounts of the 

inconsistencies in their formal rhetoric aspects with respect to proof construction. 

5.2.6 Mid-instruction interview on student teachers‟ inconsistent formal rhetoric aspects 

Summative content analysis gave rise to the following descriptors that were used to form categories 

used to account for inconsistent student behaviour when solving proof tasks. 

Table 5.27: Mid-instruction interview results on inconsistent student formal rhetoric aspect        

 

Category  Example of student utterances  
Relative 

frequency  

Lack of practice Tendai: I think its lack of practice   

Culture (use of examples) Tafa: using numbers […] more closer home   

Question/statement 

formulation 

Taku: […] its because someone would not yet have grasped 

[…] even the question, what the question requires you to do. 
  

Lack of understanding Tendai: Maybe someone did not understand the axioms.   

                                                                                  Total        10 

 

Table 5.27 reveals that the inconsistent behavioural tendencies displayed by students during proof 

attempts can be explained mainly by lack of knowledge of axioms, definitions, lemmas and 

theorems pertinent to the proof.  The learner could lean towards examples because he/she would 

have failed to master axioms.  For instance the following extracts illustrate the point made here. 

Getrude: […] when the learner has mastered the axioms there won‟t be a problem or a  

challenge straight away the learner will solve the task accordingly. 

        Taku:  […] if they ask you for a certain aspect application of aspect which seem to be difficult  

for my own understanding I can simplify it by using examples.  For example, they can ask me to 

apply a certain axiom yet I don‟t know the axiom, I use examples. 

The two extracts reinforce the idea that students used examples in situations that required use of 

formal deductive reasoning because of their limited knowledge about definitions and axioms 

pertinent to the proof tasks.  The student teachers also explained their use of examples instead of 

formal deduction in terms of the influence of early learning experiences, that is, „A‟-level and pre 
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„A‟-level mathematics experiences where calculations were dominant.  Tanya‟s interview extract 

illustrates the point made above. 

Tanya: I think it‟s a result of maybe people not being exposed to deductive reasoning from  

an early stage because you would find that from the lower levels they are just taught to use 

calculations in whatever you want to show.  Then it is at higher stages that you, start, eee, 

introduced to axioms. 

Summative content analysis revealed that question formulation had led students to use axioms in 

proof tasks where counter arguments could have been strategic.  The following interview extract 

supports the point made here. 

Tafa: Maybe first it‟s the statement that leads people to decide whether to use examples.  Aaa,  

at first I thought about axioms and […] I was stuck.  I started using actual numbers; they were 

closer home than axioms.  The bottom line is the statement.   
 

From Tafa‟s extract we see the effect of a combination two factors: limited knowledge implied by 

the word “stuck” and the natural tendency to use examples to validate statements because Tafa 

referred to examples as being closer home.  Another category that emerged from summative content 

analysis and with a lowest frequency (1 out 13) was lack of practice with proof tasks.  Tendai 

explained the effect of lack of practice as failure by students to distinguish between tasks that 

require counter argumentation from those that could be solved by formal deductive means. I 

pursued the inconsistencies in students‟ formal rhetoric aspects in an effort to develop an 

explanation about why student approached proof tasks in the manner they did.  Table 5.28 presents 

summative content analysis results of interview audits of students‟ accounts of contradictory 

behavioural tendencies. 

Table 5.28: Reflective interview audits on contradictory behavioural tendencies by student teachers        

Category  Example of student response Relative 

frequency  

Calculations  
Cortney: […] we are used to doing calculations […] you always think of 

calculations 
  

Knowledge 

of axioms 

Tanya: […] so one is just using them but one does not fully understand the 

axioms so I think maybe its failure to understand the axioms 
  

Lack of practice  Debra: So if there is lot of practice there  will less problems …   
Question 

interpretation  
Getrude […] In fact it‟s the problem of understanding the question   

Lack of 

confidence  
 Taku: They have no confidence in […] if they use simple examples   

                                                                                                        Total    

Researcher comments 

It can be noted from the table that the use of examples to tackle tasks that demanded use of axioms 

and definitions and use of formal deductive argumentation in situations that demanded proof by 

refutation can be explained mainly through question interpretation and lack of knowledge about 
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axioms and definitions. With respect to lack of knowledge of axioms and definitions student 

teachers mentioned that in such circumstances students would tend to apply axioms and definitions 

indiscriminately as illuminated in the following extract. 

Researcher: […] You said we have been used to calculations. But how do you explain  

this scenario where one is supposed to use examples, one now uses axioms? 

Tanya: I think it‟s maybe because of not really understanding them and then one just maybe  

feels let me use them. But you would find that in most cases that person uses those axioms that 

won‟t be the correct approach. So one is just using them but one does not fully understand the 

axioms so I think maybe it‟s failure to understand the axioms. 

The extract reveals that because of limited knowledge of the axioms students would use them to 

resolve tasks that demanded use of counter examples.  Regarding the inductive code of question 

interpretation, the student teachers expressed the sentiments that the way the task that has to be 

solved or the proposition that has to be proved was formulated had consequences on how a prover 

could approach it.  The following extract has students‟ accounts of how they decided to use axioms 

when a counter example could have been easier. 

Researcher: How do you make a choice between use of examples and use of axioms when given  

a task? 

Tanya: Maybe the way it is asked will direct you on what to use […].  The sign, yaa, because  

of the sign like   –     0  you think of order properties of the relationships of the greater  

than sign.   

Tanya was referring to the Mid-instruction assessment task: For all          –            

        The task demanded students to determine its truth/falsity and students were required to 

justify their answer.  As indicated Tanya used what (Alcock, 2010) calls structural reasoning when 

the task could be proved by refutation.  Another reason that can be used to account for use of 

examples instead of axioms during proving or vice versa relates to lack of practice with proof tasks.  

Tendai‟s sentiments were that lack of enough exposure to proving situations interwoven with 

questions interpretation discussed could be attributed to inconsistencies in student teachers‟ 

approaches to proof tasks.  The following extract illustrates the impact of lack of exposure to 

proving situations on students‟ formal rhetoric behaviour 

Researcher:  How do you account for the use of examples and axioms interchangeably during proving? 

Tendai: Maybe someone didn‟t understand the question so she may choose to solve either 

 to using examples than axioms. 

Researcher: You may choose [interjected] 

Tendai: Easier, easier way. 

Researcher:  Ok, I understand what you are saying Tendai but the question says if  

      then        . […] Tendai wasn‟t it easier and neat to use examples? I am 

responding to your explanation that it‟s much easier to use axioms? 

Tendai: It‟s much easier to use examples. 

Researcher: But why then did some of you use, say, order properties? 

Tendai: Maybe someone didn‟t understand where to use axioms about the given question.  



198 
 

Tendai‟s response revealed that lack of practice twinned with question interpretation would lead to 

students failing to distinguish tasks that needed proof by refutation from those that required formal 

deductive argumentation to resolve them.  Another inductive category that emerged from 

summative content analysis was denoted as “calculations.”  Students‟ utterance revealed that use of 

specific numbers had become a “culture” to them and had also become a comfort zone they could 

turn to when stuck as illustrated by Tanya‟s utterance. 

Tanya: I think it‟s a result of maybe people not being exposed to deductive reasoning from  

an early stage because you would find that from the lower levels they are just taught to use 

calculations in whatever you want to show. Then it is at the higher stages that you start (eee) 

introduced axioms.  

Finally, an inductive category that emerged with minimum frequency encompassed issues related to 

lack of confidence among students.  For instance, Taku stated that students had low confidence in 

use of simple examples during proof constructions. The inconsistencies in students‟ approaches to 

proof tasks were further explored during End-of-instruction reflective interviewing process to try 

and develop a full picture about why students behaved in the manner they did when they tackled the 

tasks assigned in the task-based interviews.  Table 5.29 illustrates summative content analysis 

results of students‟ utterances on reasons for their inconsistent formal rhetoric aspects. 

5.2.7 End-of-instruction reflective interview on contradictory proof behaviour 

The intent was to account for the use of examples in situations requiring formal deductive 

reasoning.  The other goal was to build an explanation for the use of axioms and definitions to solve 

proof tasks that can be solved through counter-argumentation. Summative content analysis of 

textual data led to the following categories. 

Table 5.29:  End-of-instruction reflective interview on contradictory proof behaviour         
Category  Example of students’ utterances Relative 

frequency  

Limited knowledge of axioms and 

definitions. 

Tafa: […] you won‟t be having enough information to 

put into an argument so you kind of learn towards 

what is easier. 

Tanya: […] the fact that people really do not 

understand […]The axioms one might use even when 

they do not apply 

  

Lack of practice  Debra: […] lack of practice   

Culture  Tendai: Maybe we are used in examples a lot.   

Over emphasis of  form deductive 

reasoning 

Taku: You need axioms particularly when dealing 

with analysis. 
  

                                                                     Total    

 

With respect to use of examples in situations requiring use of axioms and definition it, can be noted 

from Table 5.29 that students‟ limited knowledge of axioms and definitions contribute significantly 

as shown by (6 out 16) responses.  Students mentioned that they are forced to use examples instead 
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of axioms and definitions because of lack of in-depth knowledge about axioms and definitions that 

are pertinent to the statement or proposition whose proof a prover would be trying to establish.  The 

point made above can be illustrated using an excerpt from Tafa. 

Tafa: […] eee, its just a case of lack of knowledge […]  That means you won‟t be having  

enough information to put into an argument so you kind of lean towards what is easier. 

 

Tanya reinforced the idea that students have difficult with formal deductive reasoning when she 

stated that: 

Tanya: […] examples easier to use than theorems, easier than axioms. 

 

Turning to the idea, of “culture” that had emerged earlier, it was inferred from students‟ utterances 

that examples are sometimes used by student teachers instead axioms and definitions because 

according to Tanya students are used to the empirical-numeric proof scheme as revealed by the 

following extract. 

Tanya: We are used to solve mathematical problems using numbers.  It‟s a culture, yes. 

 It can be noted here that students‟ earlier experiences with proof which are prominently about 

calculations and procedures of obtaining answers has a bearing on how they approached proof 

tasks.  The tendency by students to use examples to tackle problems that require use of axioms was 

also attributed to lack of practice that made it difficult for them to differentiate and classify 

problems according to whether they can be solved using formal deductive means or solved by 

instantiations (Alcock, 2010; Morselli, 2006). 

The other goal was to elicit data that would help to account for use of axioms and definitions when 

counter argumentation was needed.  From Table 5.29, overemphasis of formal deductive reasoning 

in proof laden undergraduate mathematics courses such as Fundamentals of Analysis emerged as 

the main constituting factor.  For instance, Taku uttered “mathematically when you use an example 

to testify a proof then its wrong […] You need axioms practically when you are dealing with 

analysis you do not have to use an example.” 

Taku‟s response revealed that any proof constructions that did not involve formal deductive 

reasoning were not valid and therefore did not count as proof to a proposition.  An excerpt from 

Tino reinforced the over-emphasis of axioms and definitions at the detriment of counter 

argumentation.  In other words Taku had relative conviction in arguments that did not involve 

axiomatic reasoning (Weber & Mejia-Ramos, 2015). 
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Researcher: How do you explain the use of axioms and definitions in proving when one 

 is supposed to use an example. 

Tino: Maybe because one may fail to recognize that this thing requires an example or woo you 

are trying to show that you have done some proofs.  Uhuu, so may be the idea of trying to pick an 

example to counter may not cross his mind … 

Tino‟s utterance revealed that formal deductive reasoning was overemphasized to the extent that 

students could shy away from use of examples as being inferior to someone who had studied 

mathematical analysis.  Limited knowledge about the axioms could have resulted in their 

indiscriminate use by the students.  That could mean axioms and definitions might be used instead 

of examples because student had a weak command of the axioms as illuminated in Tanya‟s 

utterances. 

Tanya: I think even the fact people really do not understand or do not have crossed well the  

axioms one might tend to use them even when they do not apply.  

Therefore lack of a profound grasp of the axioms and definitions could force student teachers to use 

them in situations where counter argumentation was needed more so if that had been coupled by the 

desire to demonstrate that one had done Analysis.  Finally, the use of axiomatic reasoning instead of 

instantiations could be explained in terms of lack of appreciation of counter examples as illustrated 

by Cortney‟s utterances. 

Cortney: […] you will always think that what if I just come up with a counter example […] I 

 have to make use of axioms so that the answer [proof] gets balanced. 

Cortney‟s utterance revealed that one would still have the urge to use axioms and definitions even 

after an appropriate counter example had been found.   The lack of appreciation of proof method by 

refutation expressed by student teachers was also reported by Harel and Sowder (1998, 2007). 

In this chapter directed content analysis results of students‟ responses to Mid-instruction and End-

of-instruction proof tasks has been presented and analysed.  Analysis of data from the three sources: 

written responses, chalkboard demonstrations and follow up interviews on students‟ proof 

construction efforts were used to address research question: What kinds of proof schemes 

characterise undergraduate student teachers‟ conceptualisations of mathematical proof?   Students 

were prompted through guiding questions on the basis of their written responses and chalkboard 

demonstrations.  These reflective interview questions aimed to clarify some responses thereby 

helping students to interrogate what they had written which in turn helped them to construct and re-

construct proofs of statements posed in the tasks.  Presented in this chapter also are summative 

content analysis results of verbatim transcriptions of audio-recorded reflective interview data about 

students‟ proof experiences as they went through the various scholastic levels.  The focus of the 

study in this regard was on research question two: How do the undergraduate student teachers 
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develop their proof schemes?  The intent of this research question was to develop a hypothesis 

about how students‟ proof schemes emerge.  Addressing these two research questions were part of 

the efforts to establish the terms in which student teachers think about proving at undergraduate 

level. 
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Chapter Six 

Discussion and Conclusion 

6.0 General Approach  

The study aimed at developing a story from the data that is a coherent representation of students‟ 

experiences with mathematical proof.  This representation of student teachers‟ thoughts reflects the 

grit and complexity in student teachers‟ encounter with the concept of a mathematical proof.  One 

of the goals of the study was to develop an explanatory theory about the kinds of proof schemes 

held by undergraduate student teachers.  The intent was to establish a set of causal links in student 

teachers‟ categories of proof schemes.  This goal was pursued by addressing research question one: 

what kinds of proof schemes characterise undergraduate student teachers‟ conceptualisations of 

mathematical proof?  The idea was to account for students‟ proof behaviours.  So the focus with 

respect to research question one was on identifying how students construct and explain why they 

construct proofs in the manner they do.  Another goal was to formulate a hypothesis grounded in 

data about how student teachers develop their proof schemes.  This goal was pursued by addressing  

research question two; how do undergraduate student teachers develop their proof schemes?  

In this chapter, I discuss findings from the two research questions.  The main aim was to explore 

and explain the kinds of proof schemes held by undergraduate students as well as explaining how 

students‟ thinking around mathematical proof evolves.  Consequently the discussion is organised as 

follows.  First, individual student‟s conceptions of mathematical proof are discussed using 

information on students‟ proving profiles drawn from column 4 entries of student data matrices for 

both Mid-instruction and End-of-instruction assessments. Column 4 entries comprised   inferences I 

made about proof scheme elements from column 3 entries of student teachers‟ data matrices.  

Individual student conceptions are compared for similarities and differences in order to discern a 

revealing picture about the kinds of proof schemes held by students (Corbin & Strauss, 2008; Miles, 

Huberman, & Saldana, 2014).  During the discussion the inferences I made about student teachers‟ 

proof scheme elements are mapped to theoretical constructs from the analytic framework that 

include the ideas of a proof event, technical handles and conceptual insights and the notion of 

intellectual need (Bostic, 2016; Koichu, 2012; Raman, 2003; Sandefur, Mason, Stylianides & 

Watson, 2013).  These constructs were considered within the realist process framework.  This part 

of the discussion leads to a formulation of the overall conclusion to research question one.   

Second, with respect to research question two, a summary table was constructed comprising 3 

columns.  In column 1, the main aspects explored were recorded that include pre-„A‟-level and „A‟- 

level and undergraduate student experiences with mathematical proof.  Column 2 consisted of main 
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observations made about students‟ proof experiences.  Finally, column 3 entries consisted of   

comments I made on students‟ proof experiences.  Findings are then mapped to existing literature in 

order to identify similarities and distinctive features in the manner in which students‟ proof schemes 

evolve (Corbin & Strauss, 2008; Yin, 2009).  In-vivo codes are used to support conclusions drawn 

about the way undergraduate students‟ proof schemes emerge (Berg, 2009; Corbin & Strauss, 

2008).  The discussion of results on students‟ proof experiences leads to formulation of the overall 

conclusion to research question two.  

 Efforts to account for the overall conclusions to the two research questions then led to the overall 

conclusion about the nature of students‟ formal praxis with respect to proof and proving in 

mathematics.  In other words, interpretation of conclusions to research questions one and two led to 

the overall conclusion about the terms in which undergraduate student teachers think around the 

notion of a mathematical proof.   

6.1 Discussion of Research Question One Results 

Research question one: what kinds of proof schemes characterise undergraduate student teachers‟ 

conceptualisations of mathematical proof?  A realist process approach was employed to observe 

events and processes in students‟ proof construction efforts.  The notion of a learning event, 

particularly the concept of a proof event (Bostic, 2016; Moore, 1994) was central in identifying 

causal mechanisms from students‟ proof attempts (Maxwell & Mittapalli, 2007, 2010).  A proof 

event is said to have occurred when a conjecture and a justification has been produced (Bostic, 

2016).  In the context of this study a proof event referred to the production of a justification because 

the study did not involve conjecturing but rather involved justifying given statements.    

6.1.1Tino‟s proof scheme elements 

Tino‟s Mid-instruction assessment data matrix for the proof tasks is discussed.  From Table 5.1, in 

Chapter Five, Tino‟s approach to the task: Describe whether the following statement is true or false. 

For all real numbers   and                >0; was primarily syntactic because Tino used 

the structural mode of thinking (Alcock, 2010 in Fukawa–Conelly, 2012).  Tino drew from the 

formal structure of the definitions involved and applied formal deductive reasoning based on order 

axioms of the real field ℝ.  However, structural thinking by Tino lacked criticalness because he did 

not question, for instance, the implications of multiplying both sides of the inequality by     to 

get          Therefore lack of critical thinking (Alcock, 2010) led to the violation of order 

properties because Tino did not question implications of multiplying by    .  

 It can be noted that Tino could not operate within and did not consider all possible instances from 

reference theory ℝ.  For instance multiplying by       could change the inequality       to 
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         This was a manifestation of the external conviction symbolic proof scheme.  Although 

the student later acknowledged that he had made a mistake during the follow up interview, the 

working by the student revealed that he did not deploy the right resources at the right time 

(Wilkerson-Jerde & Wilensky, 2011).  From Tino‟s proof attempt it was also inferred that the 

premises and the conclusion were disjointed.  He had deduced through use of order axioms that 

        but he wrote “therefore the statement is false.”   Furthermore, Tino‟s proof behaviour 

revealed some inconsistency in the formal rhetoric aspect (Selden & Selden, 2009).  The task could 

have been resolved through use of counter arguments but Tino opted for axiomatic or structural 

reasoning (Alcock, 2010). 

 From Table 5.1, Tino‟s proof behaviour exhibited during his attempts to the task: If x is an integer 

then x
2
 – x is even; revealed that he was not convinced that a single deductive statement can 

constitute a proof.  After deducing that: “Multiply two consecutive integers you get an even 

number,” he then engaged in symbol manipulations to prove the same task an indication he was not 

convinced by the statement he had written as a proof to the task. 

From the same Table 5.1 it can be seen that Tino engaged in non-goal directed dynamic 

explorations of proof task:  Determine whether the following is true or false.   For all real values of 

                    implies that       .  Tino factorised the expression but did not use the 

factor form to conclude that was false.  During these non-goal directed dynamic explorations Tino 

could have been testing the ground without knowing exactly what to find (Garuti et al.,1998).  This 

might explain why the counterexample picked was not substituted into the factor form of the 

expression.  Further, Tino violated the proof framework by first stating the conclusion: “This is 

false” prior to proving the statement (Selden & Selden, 2011). 

Regarding the student‟s attempt to the task on sequences:  Prove that the sequence defined by 

(    
    

     
 converges; Tino had an awareness of what the proof construction exercise sought to 

accomplish, that is, to determine a natural number      for which         |    |      

While the student engaged in accurate algebraic manipulations he failed to get a sense of how the 

expressions for the natural number      determined showed that the sequence converges.  

Consequently, Tino could not articulate the conclusion.  He admitted during the follow up interview 

that “Aaa at that stage I had problems in producing that conclusion.”  Tino also failed to articulate 

the sort of problems he had in drawing the conclusion and rather concentrated on procedural 

aspects.  Therefore according to the manipulating-getting a sense of-articulating (MGA) construct 

by Sanderfur, Mason, Stylianides and Watson (2013), Tino could handle the manipulations  (M), 
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but failed to get a sense of (G) and therefore could not articulate (A) the conclusion.  In other 

words, according to Koichu (2012) Tino‟s engagement in the problematic situation (S) represented 

by the proof task led him to construct a piece of knowledge,   √
 

 
(

 

  
  ).  However Tino failed 

to see how the piece of knowledge generated resolves the problem situation      In other words, Tino 

lacked an appreciation of the epistemological justification as to why the answer he had constructed 

resolved the proof task. 

I now discuss Tino‟s End-of-instruction assessment data matrix for the proof tasks.  From Table 

5.2, Tino‟s proof attempt to the task:   Define a sequence (     inductively by        and 

      = 
     

 
.  Prove that  (      is a bounded  monotone sequence and hence determine its limit; it 

can be noted that the type of argument used by Tino is empirical.  While empirical justifications are 

known to serve important purposes such as illuminating the underlying mathematical property
__ 

in 

this case empirical evaluations should have revealed that the sequence is monotone increasing but 

they failed to serve such a purpose because the numerical tests were not accurately performed 

(Morselli, 2006, p. 6).  For example, inaccurate numerical evaluations such as     =     
     

 
 

 (
 

 
)  

 
 = 22,     =     

     

 
 

       

 
= 

  

 
    led to the wrong conclusion “     is bounded 

below and not bounded above. ”  Hence, Tino‟s attempt to use structural-intuitive reasoning to 

explore properties of the sequence was not successful because of wrong empirical evaluations 

(Weber & Mejia-Ramos, 2011).  In other words, Tino failed to benefit from the crucial interplay 

between use of particular instantiation and formal deductive reasoning because of inaccurate 

inductive explorations (Goethe & Friend, 2010). 

From the same Table 5.2, Tino‟s proof attempt to the task: Use the definition of an appropriate limit 

to prove that       (
  

   
 

 

   
)     is now considered.   An ontological oscillation was noted 

when student switched from use of particular instantiations to the syntactic approach.  Structural 

reasoning (Alcock, 2010) was used to find          for which the limit of the function exists.  

Once again in terms of the MGA construct by Sandefur, Mason, Stylianides and Watson (2013), 

Tino failed to get a sense of how the value of         he had determined proved that the limit of 

the function exists.  Thus while Tino could access technical handles he had no grasp of the sense of 

the structural relationship and hence could not articulate the conclusion.  Similarly, Tino‟s 

engagement in the proof task led to the construction of the piece of knowledge    represented by 

      min{  
 

 
}  but the student could not see how the piece of knowledge resolved   .   
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According to scientific realism emotions are part of reality (Maxwell & Mittapali, 2007).  Moments 

of silence, mumbling in an effort to produce the definition of a limit of a function during the 

chalkboard demonstrations pointed to weak grasp of the notion of a limit by Tino and therefore he 

could not articulate the conclusion, despite exhibiting deep procedural knowledge.  Thus the two 

forms of knowledge did not complement each other as suggested by Weber and Alcock (2005).  In 

other words there should be interplay between formal and informal mathematics.  From both the 

chalkboard demonstrations and the written attempt Tino failed to provide an epistemological 

justification as to why        he had found proved that the function has a limit as    . 

From the foregoing discussion of Tino‟s Mid-instruction and End-of-instruction assessment 

matrices the following emerged as persistent characteristics of his proving profiles.  First, Tino 

displayed the tendency to use the structural mode of thought in situations that called for use of 

particular instantiations.  Second, the dominance of the external conviction symbolic proof scheme 

was shown by failure to articulate conclusions.  Third, Tino failed to see how answers generated 

resolved the proof tasks he engaged with (Koichu, 2012).  

6.1.2 Tafa‟s proof scheme elements 

From Table 5.3, Tafa‟s proof efforts to the task: Determine whether the following statement is true 

or false.  For all real numbers   and                  ; revealed that the student 

switched from a higher level to a lower level proof scheme.  According to Duval (2002)‟s cognitive 

analysis of argumentation in proving, Tafa‟s argument that,              revealed serious 

limitations, in students‟ micro reasoning.  Micro reasoning includes the ability to check conditions 

in which the theorem applies.  Process of squaring could have been avoided if the student had 

checked with other elements from reference theory.  Use of deductive argumentation was then 

abandoned and student switched to semantic approach (Sandefur, Mason, Stylianides & Watson, 

2013).  Particular instantiations were not also accurately done.   For instance, Tafa wrote:      

       instead of             The follow up interview revealed that the ontological 

oscillation noted was caused by the student‟s difficulties with formal deductive argumentation.  

Another violation of the conventions of proving statements in mathematics was observed when the 

student started arguing from the consequent statement a
2
 – b

2 
> 0, yet the consequent statement 

conclusion should logically follow the premises (Selden & Selden, 2011). 

From the same Table 5.3, Tafa‟s attempt of the task: Determine whether the statement is true or 

false.  If   is an integer, then      is an integer.  Justify your answer: revealed another violation 

of the proof framework (Selden & Selden, 2009), because the conclusion was stated prior to 

adducing evidence.  Empirical evaluations done were not consistent with definition of an integer 
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stated by Tafa.  The student defended the dominance of empirical proof scheme as a “culture in us” 

and pointed out he was not used to the other side,” referring to deductive reasoning.  Fundamental 

limitation of empirical scheme had not been grasped. 

Tafa‟s written response to the task: For all real values of                    implies that 

      ; revealed that the student had access to technical handles pertinent to the proof task 

(Sandefur et al., 2013).  The student had a grasp of the sense of the structural relationship involved 

and hence could convert the conceptual insight into a proof through the use of strategic technical 

handles (order axioms) (Birky et al., 2009; Raman, 2003; Sandefur et al., 2013).  Hence structural-

intuitive reasoning shown through the use of graphical instantiation on the interval [    ] led to 

refutation of the proposition.  In other words Tafa deployed the right resources at the right time 

(Wilkerson-Jerde & Wilensky, 2011).  According to Duffin and Simpson (2000)‟s components of 

mathematical understanding Tafa had developed a repertoire of mathematical resources (counter 

argumentation skills, order axioms) which were enacted at the appropriate time in a given problem 

context.  Both the chalkboard demonstration and the written response revealed that the student had a 

profound grasp of the problem centred aspect of the proof task (Selden & Selden, 2009) and that his 

procedural knowledge and conceptual knowledge complemented each other (Weber & Alcock, 

2005).  

From Tafa‟s proof effort to the task: Prove that the sequence defined by (    
    

     
 converges; it 

can be seen that while the student had a grasp of the hierarchical structure of the proof, he 

articulated correctly what the proving effort was supposed to accomplish but he could not reach the 

stated goal because he had not built the right resources which one should have enacted to determine 

the natural number      for which the sequence converges.  Hence, limitations in his formal 

rhetoric aspect of the proof attempt shown by inaccurate algebraic manipulations that led to a 

complex solutions and Tafa could not reach his intended goal (Duffin & Simpson, 2000; Selden & 

Selden, 2009; Wilkerson-Jerde & Wilensky, 2011).  In terms of the     construct by Sandefur et 

al (2013), the student failed to manipulate     and hence could not get a sense     that the 

sequence (  ) converges. 

From Table 5.4, it can be observed from Tafa‟s End-of-instruction assessment data matrix, that he 

confused the concept of uniform continuity with the process of differentiation.  Instead of applying 

the definition of uniform continuity, Tafa differentiated the function       =             in order 

to show that      is uniformly continuous on [   ]   This “mess” or “chaos” from Tafa‟s proof 

attempt illustrates that he had no means of actually creating the proof.  In other words, he had a 
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weak command of the construction path of the proof task (Selden & Selden, 2009).  Hence, Tafa 

could not draw from the formal definition of uniform continuity within the reference theory of real-

valued functions.  In other words, he had not built a repertoire of mathematical resources which he 

was supposed to enact to the problem context.  The non-availability of right resources, Tafa was 

supposed to deploy points to absence of relevant technical handles and conceptual insights pertinent 

to the concept of uniform continuity the student had to apply.  Because of lack of accessibility to 

appropriate technical facilities, Tafa differentiated the function.  In other words, the student‟s 

engagement in the problematic situation did not lead to the construction of a piece of knowledge 

that could resolve the problem situation (Koichu, 2012).  In Koichu‟s terms, Tafa‟s did not realize 

the intellectual need and hence he engaged in irrelevant processes such as differentiation. 

From the same Table 5.4, it can also be observed that Tafa‟s efforts to produce the formal definition 

of limit of   as      contained errors such as          such that      .”  The articulated 

goal: “to determine         is not connected to the solution,     
 √ 

 
.  Hence, while the 

algebraic manipulations were accurately done, the student did not have a sense of the structural 

relationships (conceptual insight) of mathematical ideas relevant to the proof task as suggested by 

Sandefur, Mason, Stylianides and Watson (2013).  Thus, while the student deployed appropriate 

technical handles to determine   in terms of  , the resources deployed showed no connection with 

the goal the student had set out to pursue.  In terms of MGA construct by Sandefur et al. (2013), the 

student could perform the algebraic manipulation M, but failed to get the sense of the problem and 

hence could not articulate the conclusion.  This explains why he just wrote “therefore set    
 √ 

 
 ,” 

without further elaboration on how   found proved that       has a limit √   as     .  It can 

therefore be argued that although the student could find   in terms of   he did not understand the 

meaning or properties of those resources.  Michner (1978) cited in Wilkerson-Jerde & Wilensky 

(2011) notes that mathematical understanding is not only about processing and connecting between 

different mathematical resources but requires an awareness of the different purposes served by 

those resources or mathematical items.  

The overall characteristics observed from the discussion of Tafa‟s two data matrices are as follows.  

First, Tafa‟s proving profiles revealed “chaos” or “mess” in the student‟s proving behaviour shown 

by claims such as       ,        which are senseless claims that demonstrate that student had 

weak grasp of the scope of the statements pertinent to the proof task.  Second, Tafa‟s proof attempts 

showed a serious violation of the proof framework, e.g., consequent statements were provided 

before providing the premises yet the premises should logically imply the conclusion.  Third, Tafa 

showed that he had no means of creating proofs illustrated by differentiating when he was supposed 
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to draw from the definition of uniform continuity.   Therefore Tafa thought of mathematical proof 

in terms of syntactic derivations using mathematical objects such as          However the manner 

in which these mathematical items are deployed revealed that Tafa did not have a sense of their 

meaning. 

6.1.3 Tendai‟s proof scheme elements 

From Table 5.5, it can be seen that from Tendai‟s effort to resolve the proof task: Determine 

whether the following statement is true or false.  For all real numbers   and           

        , that Tendai started to argue from the consequent statement         represented 

as a difference of two squares            –        .   Tendai then removed brackets, expanded 

the expression and finally wrote:         .  Selden and Selden (2009) assert that one of the five 

aspects a prover needs to handle mentally and technically is the proof framework which 

encompasses the conventions of proving statements in mathematics.  The proof framework includes 

the logical structure of different methods of proof.  Tendai‟s proof attempt reveals serious violations 

of the proof method of direct deduction because as indicated above she started to argue from the 

consequent statement instead of deducing it from the premises. 

From the same Table 5.5, it can be noted that Tendai‟s written response to the task: Prove that the 

sequence defined by (    
    

     
 converges; revealed that she had not built a network of resources, 

in other words, she had not developed an understanding of the concept of convergence beyond 

instrumental techniques for finding the limit L of the sequence (Duffin & Simpson, 2000).   In 

terms of Duval‟s (2002) levels of geometric competency in proving she had not even attained the 

first level of competency in proving as she could not set the premises and conclusion into a 

sequence of deductive steps.  Her proof attempt just comprised two disjointed flawed statements, 

 ⌊    ⌋    , instead of ⌊    ⌋    and  
 

 
  ” whose purpose Tendai could not articulate and 

yet according to Michemer (1978) mathematical understating can be demonstrated by explaining 

the purpose different mathematical resources serve in resolving a given problem. 

Tendai‟s written response and follow up interview to the task: For all real values of    

                  implies that         illustrates that Tendai had not established contact 

with underlying ideas pertinent to the proof task.  Selden and Selden‟s (2011) theory of actions in 

proof construction posits that proving comprises a sequence of mental and physical actions such as 

reflecting on earlier proofs and taking appropriate physical and mental action.  Selden and Selden 

describe that as the prover acquires experience in proving the sequence of physical and mental 

actions mould into small situation–action pairs called behavioural schemas.  These consist of 
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recognising a situation and then taking an appropriate physical or mental action.  Tendai‟s proof 

effort was in stark contrast to the notion of behavioural schemas proposed by Selden and Selden in 

their theory of actions because her proof effort consists of disjointed statements.  For instance the 

supposition:  Suppose                       is not connected to the conclusion     

  .  Further the link between statement “         –    critical” and the conclusion not illuminated.   

Scientific realism asserts that emotions and utterances are part of reality and that the emotions and 

utterances are causally relevant to the explanation of student proof behaviour.  During the follow up 

interview meant to uncover reasons for the impasse experienced by Tendai, the following exchange 

took place; 

 

Researcher: How did it then lead to this answer [referring to   
 

 
  ]   

Tendai: I prefer to use ½ because it is a positive. 

Researcher: Oh, since it was written greater than 0. So you prefer to take ½? 

Tendai: Because it is positive than     

Researcher: But when you look at     you will realise that the function will be positive  

also below    . So why did you opt for the half? 

Tendai: [silent looks stuck] 

The extract of the follow up interview reveals the chaos that characterised Tendai‟s proof effort 

when she said: “ I prefer to use 
 

 
 because it is positive”.  Tendai had a wrong interpretation of the 

proof task.  She thought that           meant that only positive values of   were required, yet the 

assertion           can also hold for negative values of  .  Further, emotions expressed; looking 

stuck and being silent were confirmatory evidence of chaotic proof behaviour and impasse 

experienced by Tendai.  Next, we consider Tendai‟s proof attempt to the proof task: Determine 

whether the statement is true or false.  If   is an integer, then      is an even integer.  Justify 

your answer. 

Tendai used a single example to assert that: If   is an integer, then      is even.  Her solution 

showed that she had not developed an understanding that empirical verifications should not be 

elevated to the status of a mathematical proof (Stylianides, 2011).  During the chalkboard 

demonstrations only two instantiations were done, also further reinforcing the idea. 

Presented next is a discussion of Tendai‟s End-of-instruction assessment data matrix from Table 

5.6.  First, we consider Tendai‟s proof attempt to the task: A sequence (  ) of real numbers is 

defined by    =  √  and      = √     .  Prove that (   ) converges and find its limit.  It can be 

noted from the proof effort that semantic reasoning or the referential proof scheme was used to 
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explore behaviour of the sequence (  ).  However, the instantiating reasoning process lacked 

accuracy as shown by                         .  This is contrary to Tendai‟s assertion that 

(  ) is a monotone increasing sequence.  This shows that Tendai did not reflect on particular 

instantiations made in making the conclusion that      is monotone increasing.  Hence, there was 

lack of critical thinking because Tendai did not relate the conclusion made to the particular 

instantiations she had done (Alcock, 2010). 

Furthermore, Tendai violated the proof framework, as the conclusion that the limit is 2 was drawn 

prior to adducing evidence.  A flawed formulation was then used to try and determine the limit of 

(  ).  Structural mode of thinking (Alcock, 2010) was then applied through use of order axioms 

which were wrongly applied.  For instance, Tendai wrote “                ” The 

intersection is a null set but Tendai wrote “        this implies that               which is 

the limit because     converges.”  Tendai did not reflect on the meaning of mathematical process 

she engaged the task but had to drive the ball towards the goal post, “   converges” regardless of 

the legitimacy of means used to reach the goal. 

Tendai‟s proof attempt on the task: Use the definition of appropriate limit to prove that  

       
√       

 
 = √     shows that she had not developed a network of resources focal to the 

notion of limit involving infinity (Duffin & Simpson, 2000).  This was shown by the fact that while 

the student should have set out to find    , she wrongly stated that she needed to determine     .   

Similar comments apply to Tendai‟s proof efforts to the task:  Use the definition of appropriate 

limit to prove that        (
  

   
 

 

   
)       Once again the attempt to produce the formal 

definition revealed limitations in her command of the notion of a limit.  For instance the expression 

“  |    |        is flawed in the sense that it contains the quantity      associated with the 

domain of the function.  Such flaws reinforce the inference that Tendai had not built a repertoire of 

mathematical resources that could be enacted in resolving proof task (Duffin & Simpson, 2000).   

6.1.4 Cortney‟s proof scheme elements 

From Table 5. 7, it can be seen that a semantic approach was employed by Cortney to tackle the 

task: Determine whether the statement is true or false.  If   is an integer, then      is even.  

Cortney‟s grasp of the proof method by counter-argumentation was weak because she continued 

with empirical evaluations after an appropriate counter had been found: “0
2
 – 0 = 0 which is neither 

even nor odd.”  A vague conclusion          is an even holds for    integers with 0 excluded,” 

was then drawn.  The conclusion shows that Tendai had a weak command of the use of counter 

examples because once a statement fails to hold for just one single case it is refuted. 
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Cortney‟s proof attempt to the task:  Determine whether the statement is true or false.  For all real 

numbers a and b, a – b > 0 = > a
2
 – b

2
 > 0; shows that she had a fragile grasp of the proof method 

by counter–argumentation.  She picked an appropriate counter example:      and      and 

wrote “we have              , which is false.”  This is a wrong  statement since  

                   Hence according to Koichu (2012) while Cortney had generated a 

counter example which refutes the proposition, she did not see how the generated piece of 

knowledge resolves the proof task as illuminated by her somewhat vague formulations of the 

conclusion: “       , implies      >   for for all positive real numbers.”   Cortney‟s 

utterances which are part of reality during the follow up interview confirmed her shaky grasp of the 

proof method by counter argumentation (Maxwell & Mittapali, 2007).  When probed about her 

apparent confusion Cortney mentioned that she used particular instantiations because order axioms 

were not within her conceptual reach. 

Cortney‟s written response to the task: Prove that the sequence defined by (    
    

     
 converges; 

revealed the eternity of external conviction symbolic proof scheme (Harel & Sowder, 1998, 2007).  

Cortney could handle the instrumental aspect comfortably as she could determine the limit of the 

sequence to be  
 

 
.  The symbolic expression “  |    |   ” then sprang from nowhere and no 

explanation provided.  In other words the purpose of the quantity       was not specified.  Flawed 

algebraic manipulations then ensued.  According to MGA construct by Sanderfur et al (2013),  

Cortney engaged in algebraic manipulations (M) without getting a sense of the underlying ideas 

related to the convergence of a sequence and hence could not articulate (A) the conclusion.  In 

terms of Duffin and Simpson‟s (2000) categorisation of mathematical understanding, Cortney had 

not developed a network of appropriate mathematical resources she could enact on the given proof 

problem.  Further, Cortney‟s lack of awareness of the purpose of mathematical objects she 

manipulated led her to drift out of the reference theory seen by the complex solution    
   

   
 .  

Cortney did not question such a result (Alcock, 2010, Michner, 1978 in Wilkerson-Jerde & 

Wilensky, 2011; Weber & Alcock, 2005). 

From Table 5.8  Cortney‟s proof effort to the task: Use the definition of appropriate limit to prove 

that        
√       

 
 = √   reinforces the point made earlier that Cortney engaged in symbolic 

manipulations without establishing contact with their meaning  (Sandefur, Mason, Stylianides  & 

Watson, 2013).  The symbolic manipulations were non-goal oriented because while Cortney had 

stated that “to determine      she wrote her final answer as “Set     
 

 
” revealing a lack of 

connection between the articulated goal and the final answer (Garuti, Boero & Lemut, 1998).  
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Cortney did not show how “X   
 

 
” proves that the limit of      as     is indeed √      In other 

words, she did not provide an epistemological justification (Koichu, 2012).  The chalkboard 

demonstration had similar features to the written response.  For instance, there was no alignment 

between articulated goal: “to determine “     and the final answer “  √
 

 
. ”   Further, 

algebraic manipulations done were flawed.  For instance, Cortney squared each term inside the 

modulus sign to get   |
       

    |    .  Thus Cortney did not get a sense (G) of the underlying 

ideas and hence could not articulate (A) the conclusion (Sandefur et al., 2013).  In other words, the 

student could not see how the generated piece of knowledge    √
 

 
  resolved the proof task 

(Koichu, 2012). 

Next we consider Cortney‟s written response to the task: Prove that f(x) = x
2
 + 2x -5 is uniformly 

continuous on [0, 3].  The external conviction symbolic proof scheme was exhibited (Harel & 

Sowder, 1998, 2007).  Severe flaws were noted in her attempt to produce the formal definition.  For 

instance “       ” instead of       [   ].  A false condition   |   |       was also 

stated and       was not specified.   Further, the goal of proving activity not stated.  This evidence 

affirms the inference that Cortney had an external conviction symbolic proof scheme.  She could 

not use the piece of knowledge constructed: “Set      
 

 
” to justify that the function is uniformly 

continuous.  In other words, she did not discern sense in her manipulations and hence, could not see 

how the piece of knowledge resolves the proof task (Koichu, 2012; Sandefur et al., 2013). 

The mode of thinking exhibited by Cortney‟s in her proof attempt to the task: A sequence (  ) of 

real numbers is defined by    =  √  and      = √     .  Prove that (   ) converges and find its 

limit; was formal deductive reasoning (Weber & Mejia-Ramos, 2011).  Cortney demonstrated a 

good command of the hierarchical structure by articulating what the proving process sought but 

revealed some limitation with respect to the proof framework (Selden & Selden, 2009).  While the 

student managed to go through the process of mathematical induction, the argumentation process 

was flawed at the base step when Cortney concluded on the basis of particular instantiations 

    √                          that the sequence holds for                    .  

Student then formulated the induction hypothesis and proved the implication.  That is, student 

completed the process of mathematical induction when she had concluded at the base step the 

sequence was monotone increasing.  This was a violation of the conventions of proving things in 

mathematics whereby the conclusion should logically follow from the premises (Selden & Selden, 

2011; Stylianides & Stylianides, 2009).  However, Cortney seemed to have developed beneficial 
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behavioural schemas of the convergence criterion of bounded monotone sequence (Selden & 

Selden, 2011).  Beneficial behavioural schemas could be seen in her ability to produce the statement 

√ < an < 2, which she used to infer that (     is bounded above and has least upper bound  .  

Cortney correctly deduced that (     had limit     The interpretation is that Cortney had a sense (G) 

of manipulations done and hence could articulate the conclusion.  In other words, her engagement 

in the proof task led her to enact appropriate mathematical resources that enabled her to construct a 

piece of knowledge √ <     < 2.  Further, her awareness of the purpose of the resources employed 

allowed her to see how the piece of knowledge constructed resolved the proof task (Duffin & 

Simpson, 2000; Koichu, 2012; Wilkerson-Jerde & Wilensky, 2011;). 

6.1.5 Bea‟s proof scheme elements 

Next the discussion of results focus on Bea‟s proof attempts from her Mid-instruction assessment 

and End-of-instruction assessment data matrices for the proof tasks.   From Table 6.9, Bea‟s proof 

attempt to proof task: Determine whether the following statement is true or false.  For all real 

numbers   and                    indicates that an external conviction symbolic proof 

scheme was exhibited as affirmed by flawed algebraic manipulation done.  For instance, for 

        an appropriate counter argumentation √   √    can be used to refute Bea‟s claim.  Bea 

also violated the logical structure of proof framework by building her argument from the 

consequent statement.  It can, therefore, be concluded that Bea did not develop a sense of her 

manipulations (Sanderfur, et al., 2013).  Further, Bea did not enact the right resources on the proof 

problem (Duffin & Simpson, 2000) and that led to a wrong conclusion: “the statement is true.” 

Second, we focus on Bea‟s proof effort to the task:  Determine whether the statement is true or 

false.  If x is an integer then x
2
 – x is even.  The proof method of counter argumentation was 

correctly applied.  Initially, the student teacher did not justify the conclusion that the statement was 

false but managed to do so during the follow up interview when Bea explained that:     –   is an 

even number is false because   is not an even number.”  From the written effort and utterances 

during the follow up interview it can be inferred that Bea managed to enact appropriate resources 

(counter examples) and through her manipulations got a sense (G) of ideas pertinent to the proof 

task and hence could articulate the correct conclusion (Duffin & Simpson, 2000; Sandefur et al., 

2013). 

Third, regarding the task: Prove that the sequence defined by (     
    

     
 converges;  Bea could 

only engage in instrumental techniques to get  the limit         Beyond this Bea could not even 

access appropriate technical handles to prove that (    converges (Hanna & Mason, 2014).  Hence 
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Bea had not built the necessary mathematical resources to enact on the proof task (Duffin & 

Simpson, 2000).  Probing during the follow up interview revealed that Bea had no contact with the 

concept of convergence of a sequence as the following excerpt affirms.   

Researcher: How do you define convergence of a sequence?   

Bea: [silent] I am not well versed in that. 

Bea could not describe the underpinnings of convergence of a sequence.  For instance, for   

  there is need to find a natural number,    ) for which           implies that |    |      Bea 

admitted that she had not grasped these crucial ideas.  Her utterances tended to be centred on 

procedural aspects rather than on conceptual ideas driving the procedural efforts.  The follow up 

interview thus affirmed the inference that Bea had not developed the concept of convergence of a 

sequence. 

From Table 5.10, we now discuss Bea‟s End-of-instruction assessment proof attempts.  First, we 

focus on the task: A sequence (  ) of real numbers is defined by    =  √  and      = √     .  

Prove that (   ) converges and find its limit.  One of the theorems covered in the Real Analysis 

course was reproduced but the student did not bring it to bear on the task.  It can thus be inferred 

that Bea had not developed an understanding of the theorem recalled (Hanna & Mason, 2014).  The 

theorem reproduced was not accompanied by relevant and accessible technical handles which could 

have allowed Bea to tackle the proof task.  In other words, Bea had not built a network of relevant 

resources to enact on the proof task (Duffin & Simpson, 2000).  According to scientific realism 

emotions are part of reality (Maxwell, 2004).  Bea‟s failure to access relevant technical handles to 

deal with the proof task was also seen during the chalkboard demonstration.  She read the question 

slowly reproduced the same theorem which she did not connect to the proof task.  She erased the 

chalkboard many times and uttered senseless statements like: “   √  √  √    ” and “a2 

< a2” which pointed out Bea‟s severe limitation in her knowledge of the convergence criterion for 

monotone sequences.  Statements such as those indicated here illustrate that Bea had not developed 

the ability to do micro reasoning during her proving efforts (Duval, 2002).  She failed to identify 

crucial elements in her reasoning by not following through the statement “   √  √  √  

  ” in order to realize that it would lead to a3 < a3 which is a senseless formulation.  This lack of 

micro reasoning and failure to access relevant technical handles were affirmed during reflective 

interview when Bea mentioned that she could not remember the concepts.  She admitted that she 

had serious challenges to a point where she could not figure out how to begin proving process.   
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The last row of Bea‟s End-of-instruction assessment data matrix contained entries of proof efforts to 

the task: Use the definition of appropriate limit to prove that       (
  

   
 

 

   
)   .  Bea 

confused the limit of   as      with the limit of a function   as     as indicated by the 

expression: “Required to find     such that if     |      |   .”  Consequently, the 

symbolic manipulations that followed were done without a clear goal and hence the student reached 

an impasse.  It can therefore be concluded that Bea had a weak command of the construction path, 

that is, the actual means of producing the proof (Selden & Selden, 2011), because of her limited 

knowledge of the concept of limit of   as     .   Manipulations were done without a grasp of the 

hierarchical structure of the proof task (Selden & Selden, 2011). 

6.1.6 Taku‟s proof scheme elements 

Next, the discussion section focuses on Taku‟s Mid-instruction assessment data matrix for the proof 

tasks.  From Table 5.11, the first row of this matrix contained entries on Taku‟s proof efforts to the 

task: Determine whether the statement is true or false.  For all real numbers   and       

              Taku's written response revealed severe challenges in Taku‟s micro reasoning 

abilities (Duval, 2002).  Taku was not mindful of conditions in which the proposition applies 

squared both sides to get       in an instrumental fashion without paying attention to the 

representation system of the proposition (Hoyles & Kuchemann, 2002). 

The second row entries contained information on Taku‟s proof efforts to the task: Determine 

whether the statement is true or false.  If x is an integer then x
2
 – x is even.   Taku concluded on the 

basis of two integers plugged into the expression.  The empirical evaluation “ (1 – 1) = 0” was an 

appropriate counter example to warrant refuting the proposition.  Taku could not capitalise on this 

opportunity because the numeric tests were done without micro reasoning (Duval, 2002; Hoyles & 

Kuchemann, 2002).  Taku did not reflect on the scope of the proposition and hence drew a false 

conclusion.  Further, the student had a fragile grasp of the fundamental limitation of the empirical 

proof scheme that numeric tests cannot be used to represent the general case (CadawalladerOlseker, 

2011; Stylianides, 2011, p. 2). 

The last row entries of Taku‟s Mid-instruction assessment data matrix is for the proof task: Prove 

that the sequence defined by (    
    

     
 converges. Taku succeeded in applying the instrumental 

technique to find the limit of (un).  However efforts to reproduce the formal definition of 

convergence of a sequence revealed severe limitation in Taku‟s knowledge of this concept as can be 

seen by weird formulations such as: “there is a natural number           The expression “there is  

“     for a natural number          points to a weak command of elementary ideas such as if 
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    then by implication      .  Further, the claim that there is a natural number          also 

points to Taku‟s shacky grasp of the radius       The student then engaged in manipulations of 

these symbols in a procedural manner without demonstrating, an awareness of the conceptual 

insights, that is without a grasp of the structural relationship (Birky et al, 2009; Hanna and Mason, 

2014).  This affirms Sandefur et al. (2013)‟s warning in their description of MGA construct that a 

learner can disguise and carry out symbolic manipulations without acquiring a true sense of the 

underlying relationships, and can still articulate the conclusions without developing an 

understanding of the ideas  involved (Ndemo & Mtetwa, 2015).  Here Taku could conclude that 

     converges on the basis of      found but had no contact with the concept of convergence of a 

sequence.   

From Table 5.12, we discuss Taku‟s end of instruction data matrix.  First we consider results for the 

proof task: Prove that      =             is uniformly continuous on [   ]   The student‟s 

conception of the notion of uniform continuity can be  described as chaotic because he did not 

specify the set from which arbitrary elements   and   were selected.  The conditions |   |  

  and |         |      show that the radius      worked for both the domain and range of the 

function     Further, the expression for n>N  suggests that the student might have confused the 

convergence of a sequence with the concept of uniform continuity.  The interpretation is that Taku 

was seriously wanting in micro reasoning he failed to identify crucial elements in reasoning during 

proof efforts as illustrated by  |   |    and |         |     (Duval, 2002).  In other words, 

in terms of the MGA construct by (Sanderfur et al., 2013), Taku accessed relevant technical handles 

without developing a profound understating of the structural relationships of ideas pertinent to the 

proof task but could still manage to get      
 

 
.  Because Taku had no sense, G, of the symbols he 

had handled technically he could not articulate, A, the conclusion.  In Koichu‟s  (2012) terms Taku 

could not see how the constructed piece of knowledge “     
 

 
”  resolves the proof task.  Taku‟s 

fragile grasp of uniform continuity was revealed when he confused uniform continuity with the idea 

of a limit.  His utterances also indicated that he thought of      as a natural number, a severe 

limitation given that this concept is fundamental to the course. 

The third row of the End-of-instruction assessment matrix for Taku contains information about his 

proof attempt to the task: A sequence (  ) of real numbers is defined by    =  √  and      = 

√     .  Prove that (   ) converges and find its limit. The empirical proof scheme manifested.  

Taku determined the terms         .  Inaccurate computations led to another senseless formulation 

“               Hence, while one of the purposes served by using specific examples is to 

reveal the mathematical properties or patterns of the focal mathematical idea involved, the 
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particular instantiations failed to serve that purpose because of inaccuracy.  The claim “Upper 

bound is 1.848” is inconsistent with the conclusion that      is monotone decreasing.  It can 

therefore be concluded Taku failed to identify critical elements of his reasoning (micro-reasoning).  

For instance, he should have questioned the existence of an upper bound for what he called a 

monotone decreasing sequence.”  This is so because a bounded monotone decreasing sequence 

converges to the greatest lower bound.  The proof effort also revealed that Taku had not developed 

a connected network of mathematical resources to apply to the problem (Duffin & Simpson, 2000; 

Hoyles & Kuchemann, 2002; Wilkerson-Jerde & Wilensky, 2011). 

Fourth, Taku‟s response to the task:   Define a sequence (     inductively by        and      = 

     

 
.  Prove that (    is a bounded monotone sequence and hence determine its limit, is now 

examined.  Taku used specific examples to conclude that “                 .”  This 

expression shows lack of consistency in notation.  Sequence was given in terms of (      but Taku 

ended up having       It is also vague in the sense that he wrote        which is somewhat a weird 

statement.  The student concluded on the basis of numeric tests that the sequence “is a monotone 

increasing sequence.”  Taku then started to prove by induction that the sequence is monotone 

increasing.  The base step was flawed since he wrote                     The induction 

hypothesis was not well formulated and hence the student faced difficulty in proving the implication 

statement                The boundedness property was not explored.  Efforts to find the limit 

revealed more chaos as student wrote “      
    

 
       without regarding the subscript.  It can 

be concluded that Taku conceived proving in terms of handling symbols without drawing meaning 

from the symbols 
__

which is a typical characteristic of the symbolic proof scheme 

(CadawalladerOlsker, 2011).   Duval‟s (2002) idea of micro-reasoning can be used to explain the 

weird answer       
    

 
   .  The student failed to interpret the notation      = 

     

 
   which 

he decided to treat the sequence as a linear function,      
 

 
      .  

The chalkboard demonstration by Taku on the task affirmed the tenacity of the empirical proof 

scheme as the student used two instantiations only to conclude that the sequence is monotone 

increasing.  Taku wrote “          ” and mentioned that “in essence we can just say     

         As was the case with his written effort, he failed to carry out the process of mathematical 

induction.  Consequently he could not prove that      is bounded and hence he could not find the 

limit.  It can, therefore, be concluded that despite a well articulated hierarchical structure shown by 

the student‟s description of what the proof process sought to accomplish, Taku could not prove that 

the sequence was bounded and also could not determine the limit because he could not access 
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relevant technical handles.  The failure to access relevant procedural techniques might have been 

caused by weak command of convergence criterion of bounded monotone sequences and also weak 

command of proof by mathematical induction.  In Duffin and Simpson‟s (2000) categorisation of 

mathematical understanding we describe this as having no connections of mathematical resources 

that can be used in solving problem.  I can argue that the mathematical resources: student‟s 

knowledge of induction and the concept of bounded monotone sequence did not exist as a coherent 

structure and hence could not be enacted on the proof task posed (Duffin & Simpson, 2000). 

Follow up interview on the task revealed that the student had indeed confused the concept of limit 

of a function  as      with the concept of convergence of a sequence.  It can thus be noted that 

Taku failed to draw on the representation system (reference theory) of the proof task, that is, 

sequences and shifted to functions  (Selden & Selden, 2009). 

6.1.7 Debra‟s proof scheme elements 

Presented now is a discussion of Debra‟s Mid-instruction assessment data matrix for her proof 

efforts.  From Table 5.13, we first examine her response to the task:  Determine whether the 

following statement is true or false.  For all real numbers   and                   .  

Although Debra violated the proof framework or logical structure of an argument by first 

concluding that the statement is false prior to adducing evidence for the conclusion, the argument 

developed to support the conclusion was valid and in terms of arbitrary elements       

(Stylianides & Stylianides, 2009).  Debra capitalised on the order property:  If     and      

then        to deduce that          which contradicts the consequent statement.  The 

interpretation of Debra‟s efforts is that she had developed a coherent network of mathematical 

resources with respect to the order axioms which she mobilised and deployed at the right time to 

resolve the proof task (Duffin & Simpson, 2000); Wilkerson-Jerde Wilensky, 2011).  In other words 

Debra‟s engagement with the problematic situation represented by the proof task led her to  

construct a piece of knowledge  and Debra could see how the piece of knowledge constructed 

resolves the proof task as shown by a correctly articulated conclusion (Koichu, 2012). 

Next is Debra‟s proof attempt to the task: Prove that the sequence defined by (    
    

     
 

converges.  A meaningful aspect of Debra proof attempt was the instrumental technique used to find 

the limit of the sequence.  What followed this procedural technique was complete mess 

characterised by wrong definition of convergence of a sequence.  Debra wrote: “Let     then 

there exist         if it converges.”  According to Wilkerson-Jerde and Wilensky (2011) 

definitions are complete descriptions of the behaviour or structure of a focal mathematical idea that 
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accounts for all instances of the idea.  The definition of convergence of a sequence stated by Debra 

revealed that she had a fragile grasp of the concept of a sequence, which is a mapping from natural 

numbers to real numbers and yet Debra thought of the domain of sequences as ℝ as can be seen by 

“Let         She had also a fragile grasp of the concept of convergence of a sequence, also seen 

by “there exist         ” instead of       .  Debra‟s shacky grasp of these fundamental ideas 

of sequences might explain the coming into the picture of awkward and disjointed expressions 

 |
 

 
  

 

 
|     and  “              which were not explained by Debra.  The interpretation 

of Debra‟s effort is that her fragile understanding of the crucial ideas made it difficult to access 

relevant technical facilities to enact on the problem.  This was confounded by weak contact with the 

structural relationships of ideas as shown by wrong definitions and disjointed statements.  

Third, we consider Debra‟s proof attempt to the task: Determine whether the statement is true or 

false.   For all real values of                   implies that       .  Debra first applied 

procedural techniques (technical handles) to factorize the quadratic expression.  Debra then tried to 

apply order axioms to the factor form:               .  A weak command of order properties 

was shown as can be seen from the omission of the case,     ,     for the property        for 

     .  A semantic approach in which structural–intuitive mode of thinking was employed could 

be seen from the illustration of inequalities on the number line.  Debra did not interpret the question 

correctly as can be seen from “  
 

 
    This conclusion was not consistent with the consequent part 

of the proposition         for all    .   Hence, an irrelevant conclusion  “        has a 

solution   
 

 
,” was drawn.  In other words,  Debra did not determine whether the proposition that:  

For all real values of                    implies that        was true but rather stated one 

of the solutions of the inequality          

Finally from Debra‟s Mid-instruction assessment data matrix we consider her proof attempt to the 

task: Determine whether the statement is true or false.  If   is an integer, then      is even.  

Semantic approach was employed by the student where structural-intuitive reasoning was used to 

deduce that the statement is true (Weber & Mejia-Ramos, 2011).  However, Debra‟s proof effort 

revealed that she had not grasped the limitation of particular instantiations because she concluded 

on the basis of this empirical evaluation that the statement is true.  Proof method by refutation was 

not within her conceptual reach at that instant. 

Table 5.14 shows Debra‟s End-of-instruction assessment matrix for the proof tasks.  The first row 

of the matrix contains information about Debra‟s attempt on the task: A sequence (  ) of real 

numbers is defined by    =  √  and      =√     .  Prove that (   ) converges and find its limit.  
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Debra stated the definition which she did not use to tackle proof task but rather she used numeric 

tests.   She determined the terms    and    of the sequence         The numerical evaluations 

lacked accuracy and this led to the wrong conclusion that      is decreasing.  Order axioms were 

applied to the inequality,      )(    )    formed after applying the definition of a monotone 

decreasing sequence.  Debra then got          and         which was supposed to yield 

      and           As was also noted with  her earlier attempt to apply order axioms in the 

Mid-instruction assessment data matrix, Debra used one case of the order properties, precisely the 

case:    0       and    .  The other case of the order properties (           and 

     was not considered.  Structural-intuitive reasoning that is, the number line was used.  The 

student wrote: “ -1 <    < 2” which is not a logical consequence of the working presented.  It can 

be concluded that Debra engaged in technical symbolic manipulations without reflecting on their 

meaning. 

 From Table 5.14, the third row of Debra‟s End-of-instruction assessment data matrix for the tasks 

contains information about her response to the proof task: Prove that      =             is 

uniformly continuous on [   ]   Debra‟s proof attempt revealed that she had not developed a 

coherent network of mathematical resources around the concept of uniform continuity (Duffin & 

Simpson, 2000;Wilkerson-Jerde & Wilensky, 2011).  Consequently, she could not access relevant 

technical handles because of reported limitations in her grasp of the structural relationships of the 

focal mathematical idea (uniform continuity).  She ended up confusing the concept of uniform 

continuity with the notion of Cauchy sequences (Hanna & Mason, 2014).  For instance, Debra 

wrote: “to find        such that     [   ] and                
 

 
,      

 

 
   |     

    |   ”.  The expressions         ,      
 

 
, and      

 

 
   suggest the evocation of 

the concept of a Cauchy sequence which was then confused with uniform continuity.   According 

Duval‟s (2002) cognitive analysis of argumentation, Debra failed to do micro reasoning, that is, to 

check conditions in which concept applies.  This might explain why there was a mix up of ideas on 

uniform continuity and Cauchy sequences.  Once again according scientific realism mental concepts 

are real entities that are causally relevant to behaviour or emotions (Maxwell, 1999, 2004).  During 

the follow up interview the chaos or mess discussed that characterised Debra‟s proof attempts was 

affirmed by moments of being silent and stuck and she retorted “So I was just trying to write down 

something.”  She attributed this sort of behaviour to lack of practice. 

The fourth row entries have information about Debra‟s proof efforts to the task: Use the definition 

of appropriate limit to prove that       (
  

   
 

 

   
)      Despite a few noted flaws in the 
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definition such as            , which is true for a right hand limit, and inappropriate 

condition “Set         instead of        , Debra‟s proof effort reveals that she was aware of 

the hierarchical structure of the proof as the goal of the proving exercise was well articulated 

(Selden & Selden, 2009).  Further, Debra had a strong command of the formal-rhetoric as can be 

seen by her ability to mobilise relevant technical facilities, successful factorisation and expressing 

the expression for |      |    as a function of    –    .  However her knowledge of the 

structural relationship (conceptual insight) was weak as she could not provide an epistemological 

justification as to how the constructed piece of knowledge      
 

 
 showed that the limit of   as 

      (Hanna & Mason, 2014; Koichu, 2012).   

6.1.8 Tina‟s proof scheme elements 

Presented next is a discussion of the Mid-instruction assessment data matrix for Tina for the proof 

tasks.  From Table 5.15, we consider Tina‟s proof efforts to the task: Determine whether the 

following statement is true or false. For all real numbers   and                 > 0.  While 

Tina‟s opening statement indicates that he intended to accomplish the proof by contradiction, the 

mode argumentation that followed illustrates that proof by direct deduction was employed in terms 

of arbitrary elements   and  .  This lack of consistency might account for the impasses reached.  

Attempts to use structural mode of thought or deductive justification (Alcock, 2010; Weber & 

Mejia-Ramos, 2011) were then shelved and Tina resorted to instantiating (Alcock, 2010).  He was 

then able to refute the proposition.  Thus an ontological oscillation was noted as Tina had to slide 

down from a higher level proof scheme (axiomatic proof scheme) to a lower level proof scheme 

__
empirical-numeric proof scheme.  The chalkboard demonstration and the written response data 

sources had many similar features.  One point that can be made about the chalkboard demonstration 

is that it revealed the fact that Tina‟s confidence and appreciation of the method of proof by 

refutation was doubtful because, when he had found an appropriate counter example, he failed to 

capitalise on earlier proof attempt and repeated deductive argument that he had used in the written 

response section. 

Second, the discussion focuses on Tina‟s proof efforts to the task:  Determine whether the statement 

is true or false. For all real values of                    implies that       .  Although 

the instantiations used revealed that the statement is false, Tina drew a somewhat vague conclusion: 

“This implies that          for values of        so      for       values.”  It is therefore 

doubtful whether Tina had a correct interpretation of the proof task.  His conclusion indicates he did 

not interpret the question properly.  Responses pointing to this fact from the follow up interview 

include utterances such as: “The overall conclusion there might be from     to   .”   Hence, it 
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became clear during follow up interview that Tina had not interpreted the question correctly.  

Therefore it can be concluded that Tina had a weak command of the hierarchical structure that is, he 

was clueless of what the proof task demanded (Selden & Selden, 2009). 

Third, we focus on Tina‟s proof attempt to the task: Prove that the sequence defined by (    

    

     
 converges.  Tina could employ the instrumental technique for determining the limit.  What 

followed after determining the limit   
 

 
 was a complete mess.  Symbolic expressions just sprang 

from nowhere.  For instance Tina wrote “   
 

    and    
 

      He did not describe what the 

symbols represented, that is, the purpose served by the symbols was not specified as well.  The 

interpretation of Tina‟s proof behaviour is that he had not developed a network of mathematical 

resources around the notion of convergence of a sequence and hence, had no grasp of the 

hierarchical structure, that is, what the proving exercise intended to accomplish (Duffin & Simpson, 

2000;  Selden & Selden, 2009).  This interpretation of Tina‟s behaviour was affirmed during the 

follow up interview through responses such as “Actually I was writing for the sake of writing the 

question.”  Presumably, Tina referred to the idea that he was putting down something, as some sort 

of ritual undertaking without establishing contact with underlying ideas.  This sort of behaviour is a 

typical characteristic of the external conviction symbolic proof scheme.  The inference that his 

efforts pointed to the external conviction symbolic proof scheme was supported by Tina‟s failure to 

explain meaning and purpose of the quantity,    . 

Fourth, Tina‟s proof attempts to the task:  Determine whether the statement is true or false.  If   is 

an integer, then      is even.  Justify your answer; are now discussed.  It can be noted that Tina 

tried to use structural thinking (syntactic reasoning) to build the argument that an odd number   has 

the representation:      
    

    
.”   This can be deduced from his claim that    

 

   
  and “     

“Since we introduced   as divisible by 2 it means it is even.   Since we know that if   is subtracted 

from an odd number we get an even number, it means     is even.”   This is a flawed argument 

that can be refuted using the counter example    (odd) = 
  

 
  

     

     
.   It can also be noted that the 

premises were not connected with the consequent statement.  In other words, Tina could not 

conclude.  Proof behaviour exhibited by Tina revealed that his repertoire of mathematical resources 

(skills, objects and knowledge) was wanting in terms of representational forms of odd and even 

numbers.   

According to Wilkerson-Jerde and Wilensky (2011) mathematical definitions are supposed to be 

complete descriptions of the structure or behaviour of the focal mathematical idea that cater for 
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instances of that focal idea.  Tina‟s definition of an odd number did not meet this criterion as shown 

by the counter example given.  For instance, an odd number   could have been represented by 

                and an even number   as        where    .  Hence, Tina failed to draw 

from the formal structure of the definition in his attempts to build a deductive argument to 

determine the truth/falsity of the given proposition.  In other words, Tina‟s command of the 

construction path was weak (Selden & Selden, 2009; Wilkerson-Jerde & Wilensky, 2011).  Further, 

Tina‟s ability to engage in micro reasoning was weak.  He should have been able to identify crucial 

elements in his reasoning especially in cases involving elementary ideas such as “odd  

 

   
            

    

    
  (Duval, 2002; Hoyles & Kuchemann, 2002).   It can further be argued that 

such proof efforts lacked critical thinking (Alcock, 2010) as proof attempts reveal that Tina did not 

question implications of technical symbolic manipulations done. 

When probed during the follow up interview about how he could show that the squares of odd 

numbers are also odd, Tina shelved structural thinking (Alcock, 2010) and used specific examples.  

Thus an ontological oscillation was noted here as Tina had to slide down on the proof scheme 

ladder from higher deductive proof scheme to the lower level empirical proof scheme. 

From Table 5.16, Tina‟s End-of-instruction assessment data matrix for the proof tasks is now 

examined.  The first row entries captured information on Tina‟s proof attempt to the task: A 

sequence (  ) of real numbers is defined by    =  √  and      = √     .  Prove that (   ) 

converges and find its limit.  Tina‟s written effort revealed he had a weak command of the formal 

rhetoric aspect of the proof.  He claimed that (  ) is monotone increasing before adducing 

evidence.  Empirical evaluations done did not back the claim Tina had made.  For instance, Tina 

wrote  “                     a sequence mapping to 2.  Tina then provided an 

alternative proof that consisted of thick symbolic technical symbolic manipulations that were even 

overwhelming to the student to the extent that Tina failed to draw a conclusion.  For instance, Tina 

introduced expressions such as “               
 

 
 
.”  He then tried to find the binomial 

expansions resulting in complicated and lengthy expressions which he failed to handle technically. 

 In terms of Sandefur, Mason, Stylianides and Watson‟s (2013) MGA construct, Tina engaged in 

symbolic manipulations without developing a sense G of the symbolism.  In other words, his 

engagement with the problematic proof task did not lead to the construction of a piece of 

knowledge that could resolve the proof task (Koichu, 2012).  This might explain why no 

conclusion could be drawn.  Tina‟s weak command of convergence criterion for bounded 

monotone sequence was affirmed by his utterances during the chalkboard demonstration such as 
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“we know that whenever a sequence converges it must be a monotone sequence but we don‟t 

know whether it is an increasing monotone or decreasing.”  This is not a necessarily true statement 

because not all convergent sequences are monotone sequences.  Such flaws point to severe 

limitations in the student‟s critical reasoning and micro reasoning because he did not question 

implications of such statements.  Further, Tina did not state the goal he intended to reach by 

engaging in the technical manipulations.  It can also be noted that Tina had no grasp of limitation 

of empirical verification as he concluded on the basis of instantiations done that      converges. 

Similar to the written responses case, Tina shelved particular instantiations and then resorted to 

symbolic technical manipulations that were so overwhelming to him that he ended mixing up 

notation. For instance an awkward formulation, 
         

 
    , was written for this proof task 

involving sequence        Tina faced extreme difficulties with the proof task to the extent that he 

even felt embarrassed by this level of confusion and uttered that: “Aaa actually I am mixing up.”  

The student looked confused and embarrassed by the mix up.   According to scientific realism, 

mental events, and processes are real entities which are causally relevant to the explanation of 

individual behaviour (Maxwell, 2004) therefore, severe limitations in Tina‟s knowledge of 

bounded monotone sequences caused serious discomfort to the student to the point of feeling 

embarrassed. 

The third row of Tina‟s End-of-instruction assessment data matrix contains information on his 

written response to the task Define a sequence (     inductively by        and      = 
     

 
.  

Prove that (      is a bounded monotone sequence is bounded and hence determine its limit.  Tina‟s 

proof attempt revealed that he had not developed a grasp of method of proof by induction and also 

that he had not developed an awareness of the fact that empirical verifications cannot be elevated to 

the status of a proof.  Tina concluded on the basis of a single instantiation      
     

 
 

      

 
 

 

 
  

 

 
   that was not even accurate, that (     is monotone increasing.  The argumentation was 

loaded with false assertions.  For instance, Tina wrote; “As      
    

 
    which means there is 

a contradiction, so    is bounded.”  The conclusion drawn is false because Tina had disregarded the 

subscript and treated sequence      as a linear function f    
   

 
 .  This chaotic mix up of 

concepts made his proof attempt so clumsy that the claim that the sequence      is bounded cannot 

be deduced from his working.  Attempts to reason structurally were abandoned and an ontological 

oscillation was observed when Tina tried to use the formal definition of a sequence that was also 

flawed.  For instance Tina wrote “Given      there exist a number which is a natural number   

such that      therefore         ”  This is a flawed definition because   is implied by the 
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sequence      given so focus should be on finding    .  The definition given is flawed in the 

sense that the condition        does not accommodate terms of the sequence that are less than 

 . These terms will render     which is a senseless formulation.  Rather, Tina should have stated 

that |     |     

The flaws in argumentation and false assertions discussed point to a multitude of challenges 

(chaotic proof behaviour) that Tina faced with the proof task.  The proof behaviour shown by Tina 

can be explained in terms of Duffin and Simpson‟s categorisation of mathematical understanding.  

It can be inferred that Tina had not developed a coherent connection of mathematical resources 

which he could enact in the given proof task.  In other words, his lack of contact with the structural 

relationships of the focal mathematical ideas meant that he could not access relevant technical 

handles to map the conceptual insight (relationship) into a mathematical proof (Hanna & Mason, 

2014; Wilkerson-Jerde & Wilensky, 2011).  The mess displayed in the written response and 

chalkboard demonstration became the central focus of the follow up interview.  Probing during the 

follow up interview affirmed the challenges and flaws in Tina‟s argument discussed.  The following 

interview excerpt reveals the mix up of the concepts of linear function and sequences by Tina. 

Researcher: […] how then did you reverse the sign [referring to how 
    

 
   ended up 

being 
    

 
  ]. 

Tina: Aaa actually I was considering a sequence        Aaa, if you subtract it from 3 then 

    actually as     , it gets larger so you will be subtracting a bigger number. 

The excerpt reveals severe limitations in Tina‟s micro reasoning abilities (Duval, 2002; Hoyles & 

Kuchemann, 2002).  Tina failed to identify crucial elements in his reasoning in the following 

manner.  While he talked about       as a sequence the fact that “it gets larger” as     implies 

that Tina was in fact thinking of      as the linear variable,  .  Once gain this argument supports 

the inference that Tina did not get a sense (G) of the underlying ideas of bounded monotone 

sequences as he engaged with symbolic manipulations.  The proof behaviour manifested is typical 

of the external conviction symbolic proof scheme. 

Finally, from Tina‟s end of instruction assessment data matrix his proof attempt to the task Prove 

that      =             is uniformly continuous on [   ] is now discussed.  Another mix of 

concepts was observed.  To prove uniform continuity, Tina differentiated the quadratic function 

(Alcock, 2010).  An irrelevant structural-intuitive warrant type, that is, a graphical instantiation of 

the derivative was then used to illustrate that                 –    is uniformly continuous.  

Severe limitations were unravelled during the follow up interview such as wrong conception of 

continuity that can be seen from the following interview excerpt: 
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Researcher: When do we say a function f is continuous on a set? 

Tina: Aaa it is continuous if aaa, if a certain let‟s say if a given range of numbers aaa, tend 

  to increase within a certain range. 

These utterances reveal lack of knowledge of the underlying ideas of uniform continuity Tina 

engaged with.  So Tina had not developed mathematical resources with respect to uniform 

continuity (Duffin & Simpson, 2000).  According to Selden and Selden‟s (2011) theory of actions 

in proof construction Tina had not established any behavioural schemas around the notion of 

uniform continuity and thus could not recognise the problem situation so that he could take 

appropriate technical handles to map the conceptual insight (situation) into a proof.  Tina just acted 

out of his imagination as can be seen by the utterance “Aaa, I just imagined that when we are saying 

uniform continuity, something that is uniform is just as gradient at any point is the same as we 

proceed.”  These ideas have no connection whatsoever with the concept of uniform continuity.    

6.1.9 Tanya‟s proof scheme elements 

Tanya‟s Mid-instruction assessment data matrix for the proof tasks is now discussed.  From Table 

5.17, the first row entries captured Tanya‟s efforts to the task: Determine whether the following 

statement is true or false. For all real numbers   and                     Tanya used a 

single particular instantiation involving       and       to decide that the statement is true.   

Tanya‟s proof behaviour points to a weak grasp of the limitation that empirical explorations  cannot 

be used to represent the general case.  Similar to what has been noted with this task, Tanya also 

used a single instantiation       to refute the proposition that if   is an integer then      is 

even.  In the written response section, no justification was provided for the conclusion “  the 

statement is false.”   Tanya‟s chalkboard demonstration gave two important insights.  First, while 

Tanya declared that “I am going to try to prove by induction” she as a matter of fact did not use the 

principle of mathematical induction.  Rather, she used just a single empirical–numeric test.  Second, 

Tanya justified the conclusion that: If    , then      is not  even by saying that “Because 

       when      , then the statement is false.”  Tanya‟s proof behaviour during her 

attempts to the task, If    , then      is  even, reveals that she had a strong command of 

method of proof by counter-argumentation as she just used a single instantiation to refute the 

proposition.  However, her proof behaviour shows she had not developed the schema for proof 

method by induction because she confused it with use of examples.   

The fourth and fifth rows of the Mid-instruction assessment data matrix for Tanya contain 

information on Tanya‟s proof attempt to the task: Determine whether the statement is true or false 

For all real values of                    implies that       . From the fourth row it can 

be seen that Tanya had access to relevant technical handles as shown by successful factorisation of 
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the quadratic expression and use of order axioms to solve the inequality;     –                .  

An appropriate structural intuitive warrant type, graphical instantiation of the solution led to the 

conclusion that “          given               .”  This conclusion lacked clarity and 

therefore it became the focus on the follow up interview that gave rise to fifth row entries.  Tanya 

explained by means of the graphical instantiation (Alcock, 2010) that it was possible to pick 

appropriate counter examples from the interval        in order to refute the proposition, which is 

a convincing explanation. 

Tanya‟s End-of-instruction assessment data matrix for the proof tasks is now discussed.  From 

Table 5.18, the first row entries that capture Tanya‟s proof efforts relating to the task, A sequence 

(  ) of real numbers is defined by    =  √  and      =√     . Prove that (   ) converges and 

find its limit. Tanya‟s effort reveals that she had strong command of concepts pertinent to the proof 

task shown by being able to go through the process of proof method of induction to show that (  ) 

is monotone increasing.  Tanya then capitalised on what she had just established, that is, (  ) is 

monotone increasing to prove that (  ) is bounded.  The fact that (  ) is bounded was then utilised 

in determining the limit.  It can thus be inferred that she had a coherent network of mathematical 

resources around the concept of bounded monotone sequences and she was able to mobilise and 

deploy these resources at the right time (Duffin & Simpson, 2000; Wilkerson-Jerde & Wilensky, 

2011).  In other words, Tanya had strong contact with the structural relationship (conceptual 

insight) that enabled her to access relevant technical handles (order axioms, factorisation process) 

needed to transform the conceptual insights into a mathematical proof.  In terms of the MGA 

construct Tanya had a sense (G) of the symbolic technical manipulations done and hence was able 

to articulate (A) the conclusion that the monotone increasing sequence (  ) is “bounded and 

converges to its least upper bound which is 2” (Sanderfur et al., 2013).  However, Tanya‟s efforts 

revealed a few algebraic glitches, such as the induction hypothesis being alluded to and some slips 

in use of order axioms such as         or         instead of          and       .  

That is, there was wrong use of the propositional connective “or” by Tanya. 

Overall, Tanya‟s written response illustrates that she mobilised and deployed the right mathematical 

resources at the right time (Balacheff, 2008; Wilkerson-Jerde & Wilensky, 2011).  Her mode of 

thought in building the arguments can be described as structural thinking (Alcock, 2010, p. 78).  

She drew from the structure of the formal definitions and used order axioms to tackle the proof task 

using formal deductive reasoning (Alcock, 2010 in Fukawa-Conelly, 2012).  According to Duval‟s 

(2002) level of competency in proving Tanya‟s effort illustrates she had attained the second level of 

competency as can be seen by being able to turn the premises and conclusion into a proof. 
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The follow up interview affirmed the inference that Tanya had good command of the problem-

oriented part as reflected in the discussion of written attempt.  During the follow up interview 

Tanya demonstrated high micro reasoning abilities as illustrated in the excerpt now presented. 

Researcher: […] so why discarding the negative solution? [Referring to       ].  What  

led you to this conclusion? [Referring to √       ]. 

Tanya: […] Because I had found that the first term for the sequence was √  which is greater  

than   , there was no way that (    can take any value that is below √ .  

High level of micro reasoning was demonstrated as Tanya checked conditions that apply to 

sequence      and she was to identify crucial elements in her reasoning by realising that “the first 

term for the sequence was √  which is greater than   ”  

Third row entries contain information on Tanya‟s proof attempt to the task: Use the definition of 

appropriate limit to prove that        
√       

 
= √ .  Tanya‟s formulation of the definition of  as 

     shows that she had a good command of the hierarchical structure, that is, the goal of the 

proving attempt being to “determine      s.t. if     then | 
√       

 
  √ |   .”  However, 

limitations related to the behavioural knowledge of proving (formal rhetoric part) impeded progress.  

For instance, failure to use the identity: √  √  
   

√  √ 
, hindered progress despite Tanya‟s 

awareness of the proof framework.  Tanya‟s working revealed she had realized the need to use the 

proof method by direct deduction.  So despite a profound grasp of the structural relationships she 

could not access relevant technical facility that could map the conceptual insight to a mathematical 

proof (Hanna & Mason, 2014; Raman, 2003).  Tanya‟s proof behaviour affirms that lack of 

conceptual insight can as much be a hindrance to proving as lack of technical facility.   Tanya‟s 

chalkboard demonstration kicked off in a similar fashion to the written response section with correct 

articulation of the intended goal.  Symbolic algebraic manipulations improved as student applied the 

identity: √  √  
   

√  √ 
.  So Tanya cruised comfortably up the point where she got  

|
 

(√  
 

   √ )

|   .  However failure to access the “surprise calculation” or conceptual insight 

 

(√  
 

   √ )

 
 

√
 

   

 impeded progress with the proving exercise. So although Tanya had a strong 

command of the hierarchical structure of the proof reflected in utterances such as “What we want to 

do here is that we want to find eee,   in terms of a […] I am failing to uuu, simplify but but I want 

what I want is that I must get   in terms of  .”  So despite a well-articulated formal rhetoric Tanya 
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failed to act on this knowledge.  Selden and Selden (2009) say it is not important that behavioural 

knowledge is articulated but it is essential that the prover acts on this knowledge. 

Finally, we consider Tanya‟s proof attempt to the task: Define a sequence (     inductively by 

       and      = 
     

 
. Prove that (      is a bounded monotone sequence and hence determine 

its limit.  It can be noted that the chunk of reasoning displayed by Tanya was very much similar to 

that depicted in the third row with the following improvements.  First, her proof construction efforts 

were no longer hindered by glitches in technical symbolic manipulation as illustrated by well 

executed proof method by induction that enabled Tanya to prove that (      is a monotone 

increasing sequence. She then capitalised on the definition of monotone increasing 

sequence            to deduce that (      is bounded.  After showing that (      is bounded, 

that is,             .   Tanya inferred that the limit of the sequence is  
 

 
, which is the least upper 

bound of (    .  So Tanya had a profound grasp of the convergence criterion for bounded monotone 

sequences.  From Tanya‟s proof behaviour it can be inferred she had built beneficial behavioural 

schemas (Selden & Selden, 2011). 

According to the theory of actions in proof constructions by Selden and Selden (2011), Tanya had 

established behavioural schemas in the form of persistent mental structures around the concept of 

monotone sequence.  Her proof behaviour illustrates that her behavioural schemas had moulded into 

small situation-action pairs as she could apprehend situation, e.g., recognising to the need to show 

that the sequence is  monotone increasing and then took an appropriate mental or physical action 

such as implementing proof by induction (Selden & Selden, 2011).  So Tanya‟s engagement with 

the problematic situation (proof task) led her to construct a piece of knowledge;               

that resolved the problem situation.  Further, Tanya could see how the piece of knowledge 

generated resolved the proof task, as seen by a well-articulated conclusion that resulted from a 

coherent reasoning chunk.  In other words, Tanya provided an epistemological justification for the 

proof task (Koichu, 2012).  Tanya‟s proof behaviour also indicates that not only was she able to 

connect between different mathematical resources relevant to the convergence criterion of bounded 

monotone sequences, but she also showed an awareness of the purpose of those different resources 

(Michner, 1978 in Wilkerson-Jerde & Wilensky, 2011). 
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6.1.10 Getrude‟s proof scheme elements 

The discussion now turns to Gertrude‟s two data matrices for the proof tasks. In Table 5.19, the first 

row entries of Getrude‟s Mid-instruction assessment data matrix contains data on Getrude‟s written 

response to the task: Determine whether the following statement is true or false.  For all real 

numbers   and                     From Getrude‟s proof effort it can be noted that 

flawed argumentation processes were employed e.g., “If   –        then       (by the law of 

trichotomy).”  It is not clear how the mathematical tool, Trichotomy law, led to the deduction that if 

  –        then         The same argument can be used for the student‟s claim that application of 

Trichotomy law leads to a contradiction.  This sort proof behaviour illustrates that Getrude 

manipulated symbols without establishing a sense of the symbols.  False claims and flawed 

argumentation process show that Getrude had a weak command of the construction path of the 

proof task and hence, could not mobilise and deploy relevant resources in the form of technical 

handles and conceptual insights to tackle the proof task (Balacheff, 2008; Hanna & Mason, 2014; 

Selden & Selden, 2011).  In other words, Getrude had not developed means for creating the proof 

and hence engaged in flawed processes because she had not built a connection of resources 

pertinent to the proof task (Duffin & Simpson, 2000).  Getrude explained her indiscriminate use of 

mathematical resources as being a result of lack of experience with proof tasks that require counter 

argumentation.  She was also persuaded to use structural reasoning because of the symbol     that 

evoked order axioms from her proof and theorem images (Hanna & Mason, 2014). 

Fourth row entries capture Getrude‟s written proof efforts to the task: Determine whether the 

statement is true or false.  If   is an integer, then      is even.  Justify your answer.  Getrude‟s 

propensity for formal deductive argumentation was also seen in this task as she tried to apply 

mathematical induction to prove the task.  The statements “setting   to  ,”  and “If       then…” 

presumptively constituted the base step of empirical evaluations and the expression “setting 

       referred to the induction hypothesis.  Getrude then used the substitution            in 

order to establish the implication statement        .  Numeric tests were then used to evaluate 

whether             is even when the implication statement         had been stated.  The 

argument developed by Getrude was flawed in the following manner.  The use of mathematical 

induction when   is said to be integer was flawed because the principle of mathematical induction 

is used to prove propositions of the form       for all      where   is the set of natural numbers 

and      is an open statement asserting the relationship between elements of natural numbers 

(Stylianides, Stylianides, & Philippou, 2007).   Getrude did not realise the fact that integers also 

include negative whole numbers and    which are not natural numbers.  This shows lack of micro 

reasoning because the student failed to identify conditions in which the proposition applies (Duval, 
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2002; Hoyles & Kuchemann, 2002).  The conclusion drawn that “  if for any value of  ,         

   and           are both even, it is true that       is an even number,” is vague because it 

is not the correct articulation of the conclusion for proof the method of mathematical induction.  

The switch from structural reasoning to empirical proof scheme by Getrude illuminated another 

instance of an ontological oscillation where she had to move from an external conviction symbolic 

proof scheme to an empiric-numeric proof scheme (Alcock, 2010).  Getrude‟s proof scheme cannot 

be labelled analytic proof scheme because, as noted, although she used arbitrary elements to build 

her arguments, she failed to recognise properties of the representation system of integers.  Therefore 

she engaged in technical symbolic manipulations while disregarding the reference theory, which is a 

typical characteristic of the external conviction symbolic proof scheme.  

Getrude‟s proof attempt to the task: Prove that the sequence defined by (    
    

     
 converges 

revealed some limitations in her knowledge of convergence of a sequence.  Flaws in argumentation 

include the condition         instead of       ) and awkward formulation “considering only 

the positive by our triangle inequality for the expression;    
 

 
 

    

     
   

 

 
,” and the radius 

      which is  fundamental  to the concept of convergence was not described.  Further, severe 

flaws in her technical symbolic manipulations led to a senseless result    √
 

  
 

 

 
       Proof 

behaviour by Getrude reveals that she had no contact with ideas connected to the concept of 

convergence of a sequence.  False claims about the triangle inequality and the inequality          

point to the fact that Getrude had not built a network of resources to enact in the problem context 

(Duffin & Simpson, 2000).  In other words, she manipulated the mathematical objects without 

getting a sense, G of the underlying ideas (Sanderfur et al., 2013). The senseless statement 

  √
 

  
 

 

 
     illustrates that she did not engage in micro reasoning in her attempts to build the 

argument.  She should have identified crucial elements in her reasoning if she had checked 

conditions of the reference theory that is, a real sequence.  She should have questioned the meaning 

of the complex solution given that (    is a real sequence.  Therefore, there was no critical 

reasoning by Getrude when she engaged with the proof task (Alcock, 2010; Duval, 2002; Hoyles & 

Kuchemann, 2002). 

Finally, we consider Getrude‟s End-of-instruction assessment data matrix for the proof tasks.  From 

Table 5.20, first, we consider Getrude‟s proof behaviour when she engaged with the task Prove that 

     =             is uniformly continuous on [   ]   Getrude‟s proof attempts revealed 

limitations in conceptual knowledge seen in such statements as  “|   |  
 

 
 which is independent 
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of [   ]   and the radius      a fundamental idea not mentioned.  The expression “which is 

independent of [   ]   is not a correct a characterisation of property        with respect to 

uniform continuity.   Getrude should have articulated that        she had determined should 

work for every    [   ]   The fact that Getrude did not explain how the specified         

demonstrates that      is uniformly continuous points to the idea that in terms of the MGA 

construct by Sanderfur et al. (2013), she engaged in symbolic manipulations without establishing 

contact with underlying ideas and hence, she could not articulate how        illustrates that the 

the quadratic function                –    is uniformly continuous on [   ]   In Koichu‟s (2012) 

terms Getrude failed to provide an epistemological justification because she did not see how the 

constructed piece of knowledge      
 

 
  resolves the problematic situation (proof task) she 

engaged with.  The chalkboard demonstration affirmed limitations discussed under the written 

response section, such as, failure to specify     and the conclusion that “set      
 

 
  which is 

independent of [   ]    The essential condition        was not also specified.  However, one 

improvement in her proof attempt was that of being able to justify the step: “Let         .”  

This step was supported by the utterance: “Then from the interval I am going to choose a value that 

is going to give me a minimum of the     .”   

The omission of the crucial condition        resulted in the value of      being given as 

     
 

 
 instead of      = min { , 

 

 
}. Such omissions point to low level in micro reasoning 

abilities about uniform continuity which are consequences of weak conceptual knowledge.  Hence, 

Getrude had strong procedural knowledge as shown by being able to access relevant technical 

handles but her weak grasp of heuristic ideas may account for the flaws in her argument (Duval, 

2002; Hanna & Mason, 2014; Raman, 2003). 

Getrude‟s proof attempt to the task:  Define a sequence (     inductively by        and      = 

     

 
.  Prove that (      is a bounded monotone sequence and hence determine its limit is  

discussed next.  Getrude had a weak command of the proof framework, that is, the conventions of 

doing proofs (Selden & Selden, 2011).  She violated the logical structure by concluding on the basis 

of a particular instantiation that the sequence (     is monotone increasing.  After concluding she 

then tried to prove by induction that (     is monotone increasing.  Proof by induction was not well 

executed as seen by statements such as              
 ⁄           “a wrong statement used to 

deduce that           ,” at the induction thesis stage.   
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Despite the challenges noted about the proof framework her proof behaviour showed a good 

command of conceptual ideas pertinent to the proof task.  She demonstrated a coherent chunk of 

reasoning by capitalising on the connection: monotone increasing   bounded   determination of 

limit.  That is after proving that (     is monotone increasing, she used the definition of a monotone 

increasing sequence,        , to prove that (     is bounded.  She then used the fact that (     is 

bounded above by     to deduce that its limit is    . 

The coherent chunk of reasoning illustrates that Getrude had developed a coherent (status of 

resources) network of mathematical resources that she could access in the form of relevant technical 

handles and conceptual insights and brought to bear (enacting) on the proof task (Duffin & 

Simpson, 2000; Hanna & Mason, 2014).  In terms of Theory of Actions in proving Getrude had 

developed beneficial behavioural schemas seen by her ability to recognize situations (e.g. the need 

to explore boundedness) and then taking an appropriate mental or physical situation (e.g., using the 

definition of monotone increasing sequence to establish that       
 ⁄ ).  Therefore Getrude had 

a sense (G) of the technical symbols she manipulated (M) and hence could articulate (A) the ideas 

involved.   For instance, she remarked “I realised that uhuu, my sequence was lying between this 

range [referring to       
 ⁄ ] […] so this one, 3/2 becomes the limit because of what the 

monotone increasing sequence.”  However some statements by Getrude were not true.  For instance, 

“If a sequence is monotone increasing it means it means it is bounded above.”  This is not a 

necessarily true statement because there are monotone sequences that are not bounded. 

Finally, we discuss Getrude‟s proof behaviour when she tackled the task:  Use the definition of 

appropriate limit to prove that        
√       

 
 = √ .  Her written attempt reveals that she was 

aware of the goal the proof construction exercise intended to achieve, that is, she had a good 

command of the hierarchical structure because she stated the need to determine “    such that if 

    then |      |      |
√     

 
 √ |   .”  Not only was she able to state the formal 

definition, she also managed to make correct substitution to get,  |
√     

 
 √ |   .  She could not 

make progress when she reached this stage, so the following remarks are from the follow up 

interview meant to probe reasons behind the impasse reached.  Getrude explained that she was 

discouraged by the two square roots referring here to √         in the expression for       and 

√    the limit.  She gave her main challenge as failure to handle the technical symbolic 

manipulation.  The following interview excerpt illuminates these challenges: 

Researcher: You seem to be very much aware of processes.  Can you suggest reasons why 
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people do not make progress despite having a lot of knowledge about [interruption from 

Getrude]. 

Getrude: Lack of computations in Algebra even if know the formula, I can‟t operate the  

algebraic performances, I can‟t proceed. 

In conclusion, it can be noted that although she could articulate the proving exercise and describe 

useful identities needed to prove that the limit exists, it is crucial that the prover should have 

executed the behaviour articulated so that insights into her thinking as she engaged the task would 

be gained.  From the discussion of students‟ proving profiles the following table of students‟ 

composite profiles was constructed. 

Table 6.1: Composite profiles of students‟ proof behaviours from written responses 

Student 

teacher 

Summary of proof behaviours observed (proof scheme elements observed) 

Tino  Syntactic thinking (Weber & Alcock, 2004) therefore inconsistent formal rhetoric 

 violation of proof construction conventions 

 lack of critical thinking  

 did not adhere to properties of reference theory 

 symbolic technical manipulations done without getting a sense of object 

 inaccurate empirical-numeric tests 

 external conviction symbolic proof scheme 

  

Tafa  No sense of structural relationship (Hanna & Mason, 2014)  

 Ontological oscillation observed, e.g., student had to slide from higher level 

axiomatic proof scheme to a lower level symbolic proof scheme  

 Inconsistent formal rhetoric 

 Limitations in micro reasoning (Duval, 2002) 

 Violations of proof conventions e.g., conclusion drawn  before adducing evidence 

 Could access both technical handles and conceptual insights for some tasks 

 Articulated goals not reached with some proof tasks 

 No awareness mathematical resources employed, that is, no micro reasoning done 

 Mix up of confusion e.g., differentiated as a way of establishing uniform continuity 

 

Tendai  No network of resources around pertinent mathematical ideas to the proof task 

 No proving beyond instrumental techniques for finding to the limit L 

 Disjointed and flawed statement formulations e.g., disconnection between answer 

obtained and goals articulated 

 Wrong interpretation of proof task 

 Single example used to draw conclusion 

 Students did not reflect on meaning of instrumental techniques used 

 Serious flaws in definitions, e.g.,   |    |       –indiscriminate use of 

symbols 

 Particular instantiations used for the general case 

 

Cortney  Referential proof scheme with structural-intuitive mode of thinking (Weber & 

Mejia-Ramos, 2011) 

 Weak command of proof by refutation, e.g., continued with empirical-numeric tests 

even after finding an appropriate counter 

 Flawed technical symbolic manipulations 

 Lack of micro reasoning abilities e.g., did not question    
  

  
  (complex solution 

outside reference theory of real sequences) 

 

Bea  Flaws in algebraic manipulations (external conviction proof scheme) 

 Inconsistent formal rhetoric e.g., use structural or analytic argumentation when 

refutation is needed 

 Could not access relevant technical handles 
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 Weak construction path (Selden & Selden, 2009) ended up mixing ideas e.g., limit 

of   as    confused with limit of   as      

Taku  Micro reasoning challenges e.g., did not check conditions of reference theory in 

squaring     to get       (Hoyles & Kuchemann, 2002) 

 Inconsistent formal rhetoric aspect 

 Empirical proofs used for the general case 

 Weird formulations no contact with meaning of symbols e.g., “        
 “Chaotic” mix up of ideas e.g., |   |    and     in uniform continuity 

 Ambiguity in formulation of conclusion e.g., a monotone increasing which started 

and then decreased  (micro reasoning challenges) 

Debra  Violation of logical structure 

 Coherent network of mathematical resources developed 

 Chaotic proof behaviour, e.g., uniform continuity confused with Cauchy sequences 

 Weak contact with structural relationships “ I was just try into write down 

something 

 Structural-intuitive reasoning shown 

 Use of particular instantiations 

Tina  Ontological oscillation; structural mode of thought shelved and instantiations used 

 Grasp of proof method by refutation weak  continued instantiating when counter had 

been found, chalkboard demonstration student repeated formal deductive proof 

attempt 

 Proof is some form of symbol manipulation without contact with underlying ideas-

external conviction ritual proof scheme Inconsistent formal rhetoric part 

 Micro reasoning challenges 

 No coherent connection of mathematical resources e.g., weak command of 

convergence criterion of bounded monotone sequences 

 Empirical evaluations used to represent general case 

 “chaotic” proof behaviour e.g., mixing concepts-uniform continuity confused with 

differentiation.  “Aaa, actually Im mixing up” [looks confused and embarrassed] 

 Complicated technical symbolic manipulations 

 

Tanya  Single instantiation elevated to status of proof 

 Schema for mathematical induction not developed, it was confused with use of 

examples 

 Relevant technical and conceptual insights accessed e.g., graphical instantiation of 

              well linked to factorised form and use of order properties i.e. 

fruitful interplay, “pairing” between semantic and syntactic forms of argumentation 

(Alcock & Weber, 2005) 

 Strong command of method of proof by refutation 

 A coherent connection of mathematical resources around the concept of bounded 

monotone sequence had been built (Duffin & Simpson, 2000) 

 Had a sense of technical symbolic manipulations but algebraic glitches with use of 

order axioms 

 Drew from formal structure of definition 

 High level micro reasoning shown by considering the representation system 

(reference theory) when proving e.g., epistemological justification provided for 

neglecting solution         and accepting √       

 Failure to access “surprise calculations”  e.g., student could not recognize that  

 |
 

√         √ 
|  |

 

√      
| 

 

Getrude  Flawed argumentation processes “chaotic” proof behaviour e.g., induction confused 

with use of example, “        instead of        for convergence of a 

sequence 

 Indiscriminate use of mathematical symbols e.g., use of order axioms of a field 

when a counterexample was appropriate for the task:               

 Severe flaws in technical symbolic manipulations e.g.,  √
 

  
 

 

 
   senseless result 

given that reference theory is real sequences and    should be a natural number 

 No contact with structural relationships between mathematics, student‟s focus was 
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instrumental techniques 

 Micro reasoning challenges 

 

 

6.1.11 Discussion of inconsistent student proof behavioural tendencies 

Next, I present a summary of inductive codes that emerged from the summative content analysis of 

data on student‟s inconsistent proof behavioural tendencies displayed during their proof attempts.  

Briefly, the contradictory behavioural tendencies were first noted during piloting and they were also 

a prominent feature of the main study hence the motivation to do further exploration of this aspect. 

Table 6.2: Reflective interview results on inconsistencies in student proof behaviour 

Aspect Main observations 

Mid-instruction reflective interview  Limited knowledge of axioms, definitions and theorems.  

Students face difficulties in using structural reasoning with these 

objects (Alcock, 2010) 

 Culture (use of examples). Students indicated that they lean 

towards what is familiar (Morselli, 2006) 

 Question formulation 

 Lack of practice 

Reflective interview audits for mid-

instruction reflective interview 
 Limited knowledge of axioms 

 Question interpretation 

 Lack of practice 

 Calculations (use of examples) 

 Lack of confidence 

End of instruction reflective 

interview 
 Limited knowledge of axioms, definitions, and lemmas 

 Use of examples (culture) 

 Over emphasis of formal deductive reasoning 

 Lack of practice 

 

Regarding the use of particular instantiations in proof tasks that required axiomatic argumentation, 

students‟ descriptions revealed that this inconsistent formal rhetoric behavioural tendency was 

caused by limited knowledge about axioms, definitions and lemmas pertinent to the proposition to 

be proved.  These mathematical objects are essential ingredients for structural reasoning (Alcock, 

2010; Weber & Mejia-Ramos, 2011).  Limited knowledge about axioms emerged as a very robust 

causal factor during End-of-instruction assessment data collection phase thereby revealing the 

students‟ discomfort with proof laden Real Analysis course.  The students‟ discomfort with the 

analytic proof scheme forced them to resort to particular instantiations.  So failure to access these 

objects required for formal deductive reasoning would then force student teachers to react by 

leaning towards use of examples.  Typical exemplifications of students‟ descriptions that revealed 

students‟ difficulty with axiomatic reasoning include: 

Taku: […] if they ask you for a certain aspect application of aspect which seem to be difficult for my  

own understanding I can simplify it by using examples.  For example, they can ask me to apply a certain 

axiom yet I don‟t know the axiom, I use examples. 

Tafa: Maybe first it‟s the statement that leads people to decide whether to use examples. Aaa, at first I  

thought about axioms and […] I was stuck.  I started using actual numbers; they were more closer home 

than axioms. The bottom line is the statement.   
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The two extracts indicate that Tafa and Taku resorted to instantiating when they had faced    

challenges in accessing axioms and definitions, but generally they would have shown a preference 

for deductive argumentation. So when students were „stuck‟, they then switched to empirical 

explorations.  During the three phases of interviewing limited knowledge about axioms emerged as 

a dominant factor in the search for an explanation for student teachers‟ tendencies to use examples 

in proof tasks that demanded formal deductive reasoning.   

Question interpretation was another category that emerged during summative content analysis of 

textual data.   Question interpretation featured during the Mid-instruction interviewing and the 

reflective interview auditing sessions and vanished during the End-of-instruction interviewing 

sessions.  A possible reason why this strong causal factor (question interpretation) did not appear in 

the final reflective interviewing phase is that student teachers might have developed behavioural 

schemas (Selden & Selden, 2011), as they acquired experience in  proving during their learning of 

the Real Analysis course  

Regarding student teachers‟ tendency to employ the axiomatic proof scheme to tackle proof tasks 

that demanded proof by refutation an inductive code that can be used to account for such student 

proof behaviour was denoted as “over-emphasis.”  Students‟ sentiments during the reflective 

interviews showed that conceptual justifications or axiomatic proof schemes (Balacheff, 1998; 

Harel & Sowder, 1998, 2007; Stylianides & Stylianides, 2011) are highly appreciated in terms of 

mathematical sophistication so that other means of eliminating one‟s doubts about the truth of a 

mathematical statement that do not embrace axiomatic argumentation is not regarded as credible.  

Typical exemplifications of this main observation are as follows. 

Taku: You need axioms particularly when dealing with analysis 

Cortney: […] you will always think that what if I just end up with a counter example […] 

Cortney and Taku‟s utterances point to the robustness of the category, “over-emphasis.”  Formal 

deductive reasoning had gained prominence in proving to a point where any proof attempt devoid of 

analytic reasoning was deemed futile by the undergraduate students as supported by Taku‟s 

utterance that “mathematically when you use an example to testify a proof then its wrong […] You 

need axioms particularly when you are dealing with analysis you do not have to use an example.  I 

have to make use of axioms so that the answer [proof] gets balanced.” 

These responses indicate that the proving process is conceived in terms of use of axioms and 

definitions.  Hence, the belief that proof construction is about validating propositions using 

structural thinking had become a leading belief among undergraduate student teachers.  Briefly, the 

construct of a leading belief proposed by Furighetti and Morselli (2011) focuses on detecting 
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reasons behind one‟s decisions.  In the context of this study, a leading belief is a belief that 

influences the way a student teacher engages with the concept of a proof.  Decisions driven by a 

leading belief may include decisions about proof method to use in a task.  The belief that proof 

construction is primarily accomplished through formal deductive reasoning was firmly established 

in students to the extent that they no longer trusted proof by counter examples as can be noted from 

Taku‟s comment that “I have to make use of axioms so that the answer [referring to proof] gets 

balanced.”   Taku was referring his proof efforts after finding an appropriate counter example to a 

proposition.    

Finally, a fragile grasp of axioms has emerged a strong causal factor to the inconsistent proof 

behaviour demonstrated.   Hence, a fragile command of axioms that is typical of external conviction 

symbolic proof scheme emerged as another inductive category that can be used to explain why the 

students employed the analytic proof scheme (axiomatic argumentation) to proof tasks that require 

proof by counter-argumentation.  The underlying idea revealed by the inductive code is that student 

teachers‟ knowledge of axioms, definitions and lemmas is not a coherent network of mathematical 

resources (Duffin & Simpson, 2000; Wilkerson-Jerde & Wilensky, 2011).  The lack of coherence in 

mathematical resources is then manifested through indiscriminate use of the axioms as revealed by 

the following students‟ utterances;  

      Tanya: I think even the fact people really do not understand or do not have crossed well 

     the axioms one might tend to use them even when they do not apply.  

Tendai: Maybe someone didn‟t understand where to use axioms about the given question.  

Hence, a weak command of the axioms and definitions can influence student teachers to employ 

structural reasoning to tackle proof tasks that demand use of counter argumentation.   This causal 

link is coupled with the desire to demonstrate that one had done Analysis.  I now discuss main 

observations made on students‟ thoughts about mathematical proof based on the discussion of the 

student teachers‟  proof attempts.  

6.1.12 Main observations for research question one 

From the discussion of results the following main observations were made about students‟ thoughts 

of mathematical proof from their proof attempts designated here as proof schemes. 

(i) First, mathematical proof was thought of in terms of handling symbols which sprang from 

nowhere without relevant explanations for the purposes served by symbols manipulated.  The 

symbols were handled in a mechanical way.  For example, from Table 5.13 Debra wrote       

       instead of |    |    in connection with the definition of convergence of a sequence.  

Thus the study has revealed the tenacity of external conviction symbolic proof scheme in which 

proof was thought in terms of symbolic manipulations without drawing meaning from the symbols 
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manipulated.  For instance, from Table 5.16 Tina wrote:               
 

 
 
 .  He then claimed 

to apply the binomial theorem to the right hand side and obtained the wrong expression      

*
 

 
     

 

 
(
 

 
  )(    )

  
  +  which has no apparent link to the binomial expression. Further, 

supporting evidence to the inference that the external conviction symbolic proof scheme was 

dominant in student teachers‟ responses can be deduced from the fact the student teachers did not 

reflect on meaning of symbols handled.   

(ii). Second, the discussion has revealed that proving was conceived in terms of particular 

instantiations.  The use of specific examples was done in such a manner that revealed that the notion 

of a counter example was not grasped as in some cases a single instantiation was considered to be a 

valid proof.  For example from Table 5.16 Tina wrote:  

      = √  √   √  

{Since this [√  √   √ ]                              ans that it converges.  

Tina‟s claim is not necessarily true since          does not imply that the sequence converges.  

Further, while quantitative evaluations are good at unwrapping the underlying property that forms 

the crux of a proof they failed to serve this purpose because in the majority of the cases student 

teachers‟ particular instantiations were not accurate.  For example, Taku‟s proof profile in Table 

5.12 indicates that lack of accuracy made it difficult to show that the sequence is monotone 

increasing and bounded.  Taku wrote: 

   √          

    √  √  =1.848 

   √  √        

           

where the inaccuracy is in Taku‟s quantitative evaluations of      and   .  From Taku‟s working it can 

be seen that       and        which is not true for a monotone increasing sequence.  

Furthermore, the terms of the sequence,    and    have the same representation “√  √  , that 

led to two different answers       and         Taku‟s proof behaviour indicates that instantiations 

were done without reflecting on their essence. 

  (iii) Third, the discussion of results has revealed that proving was thought of in terms of logic, that 

is, in terms of steps and procedures with a focus on establishing the truth or falsity of a 

mathematical proposition.  In this regard, proof construction was conceived in terms of processes 

and mechanisms through which mathematical objects in the form of axioms, definitions and 

previously proven theorems were handled in order to validate or refute mathematical statements.  In 
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this respect, proving was understood in terms of the provision of tools and theories required to 

establish the truth of a mathematical assertion.  A prominent feature of this category of proof 

schemes held by undergraduate student teachers is that the facts in the form of axioms, definitions 

and methods of proving should be given or endorsed by an external authority such as a teacher and 

text book.  This revealed the dominance of the external conviction authoritative proof scheme.  In 

other words, proving was seen as truth seeking exercise in which details pertinent to proof task at 

hand are provided. 

6.1.13 Overall conclusion to research question one 

The kinds of proof schemes that characterised undergraduate student teachers‟ conceptualisations 

mathematical proof were the axiomatic, external conviction symbolic and authoritative proof 

schemes. Although the study has uncovered the axiomatic proof scheme as a strong leading belief, 

students‟ weak grasp of the axiomatic proof scheme forced them to resort to the empirical-numeric 

and external conviction symbolic proof schemes.  Furthermore, the external conviction 

authoritative proof scheme was dominant as student teachers expressed that axioms and definitions 

must be given or endorsed by instructors or written sources. 

These kinds of proof schemes that characterised undergraduate student teachers‟ conceptualisations 

of mathematical proof were manifested in students‟ proof behaviours that include the following. 

First, the student teachers‟ proof behaviour was characterised by indiscriminate use of mathematical 

symbols.  Technical and symbolic manipulations were done without establishing contact with the 

structural relationships of mathematical ideas pertinent to the proof task.  In other words, the crucial 

interplay between conceptual insights and technical handles was not evident.  For instance, lack of 

profound grasp of conceptual insights resulted in flawed argumentation process marked by a mix up 

of mathematical concepts.  For example, the case of Taku: for the task involving uniform continuity 

of a function   he wrote |   |       This is a flawed statement because the quantity     is 

associated with the range of the function but it was associated in this case with the domain of      

Another illustration of mechanical use of symbols was the case of Cortney who considered the 

solution     
  

  
  to be valid when she tried to determine the natural number      that would 

ensure that the sequence converges.  The proof behaviours just described indicate the dominance of 

external conviction symbolic proof scheme among the student teacher informants.   

Second, the students‟ proof behaviour can be described as chaotic or messy since it was 

characterised by violations of conventions of proving statements in mathematics.  For example, the 

conclusion was stated before adducing evidence that is, providing the premises.  Other indicators of 
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chaotic student proof behaviour include mix up of concepts e.g., uniform continuity confused with 

Cauchy sequences or with differentiation, and the conditions |   |    instead of |   |        

and     (condition for convergence of a sequence) were confused with uniform continuity.  The 

chaos that was a feature of student behaviour in this study can be explained in terms of severe 

challenges noted in students‟ micro reasoning abilities as students failed to identify crucial aspects 

of their reasoning such as the representation system or reference theory of the proof task. For 

instance, solutions such as  √
 

  
 

 

 
    that are senseless were considered to be valid even though 

the reference theory is real sequences where    should be a natural number.    

Third, student teachers‟ proof behaviour shown was also characterised by ontological oscillations, 

meaning that  while students showed a preference for formal deductive argumentation, that is, the 

use of definitions and axioms during proof attempts, they could slide down the proof scheme ladder 

from the higher level analytic proof scheme to the lower level empirical proof scheme and vice 

versa.  The ontological oscillations were caused by student teachers‟ difficulty with structural mode 

of thinking when attempting the proof tasks.  For instance, from Table 5.16 part of Tina‟s written 

response to the task: Define a sequence (     inductively by        and      = 
     

 
. Prove that 

(      is a bounded monotone sequence is bounded and hence determine its limit, is now 

reproduced.  

           
     

 
 

      

 
 

 

 
  

 

 
   

For a monotonic increasing               (
     

 
   )                 

         

 
   

    

 
  .    As            

    

 
    which means there is a contradiction, so    is bounded 

Given      there exist a number which is a natural number   such that      therefore         

We know that      
     

 
, then    

       

 
                    

 ⁄   

As            so   is the limit of    

It can be seen that Tina started by using inductive explorations and then switched to the structural 

mode of thought which was then shelved and he finally resorted to use of particular instantiations.  

The chaotic proof behaviour by Tina can also be accounted by the fact that students do not have 

coherent connections of mathematical resources to enact on proof tasks.  For example, his claim of 

a “contradiction” does not show how this led to the conclusion that the sequence      is bounded.  

Further, Tina did not reflect on numerical tests done since he had two different values of      
 

 
 

 
 

 
” and “   

 

 
   in the same proof attempt.  Tina could not uncover the underlying property for 
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monotone sequences that could have formed the crux of the proof since the quantitative evaluations 

were inaccurate.  Hence, resources were enacted without an awareness of their essence or relevance 

to the proof situation (Michner, 1978).    

From Table 5.19 Getrude‟s proof attempt to the task: Prove that the sequence defined by (    

    

     
 converges, serves to reinforce the point about students‟ chaotic proof behaviour.  For 

example, Getrude wrote “        instead of        for convergence of a sequence indicating 

Getrude had a fragile grasp of pertinent ideas involved in the concept of convergence of sequences 

of real numbers, indicating the dominance of the external conviction symbolic proof scheme.   

Finally, contradictory behavioural tendencies were also characteristic of student teachers‟ proof 

attempts as they traversed the formal deductive-counter-argumentation continuum when solving 

proof tasks.  Students displayed inconsistencies in their formal rhetoric aspects of proof in the 

following manner.  On one hand, tasks that required proof by refutation were tackled using 

structural or axiomatic reasoning, e.g., use of order axioms to solve the task: Determine whether the 

following statement is true or false.  For all real numbers   and                >0.  On the 

other hand, students used particular instantiations for tasks that demanded proof by analytic 

deductive means.  

6.2 Discussion of Research Question Two Results 

6.2.1 How do the undergraduate student teachers develop their proof schemes?  

 The purpose of posing such a question was to identify possible trajectories that exist regarding the 

emergence of the mathematical object and to account for how the proof schemes emerge among the 

student teachers.  A realist process approach was used in this case study to explore the development 

of proof schemes from students‟ descriptions of their proof experiences from pre „A‟-level to 

undergraduate learning contexts (Maxwell & Mittapali, 2007).  According to scientific realism the 

proof events and processes described by students were treated as real observable phenomena that 

were causally relevant to the explanation of proof encounters experienced at various scholastic 

levels. 

Table 6.3 shows observations on students‟ experiences with proving from pre-„A‟-level to 

undergraduate level.  Here the focus of the study was on teasing out the status of the proof schemes 

at the various scholastic levels and then develop a proposition about how the proof scheme evolves. 
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Table 6.3: Students‟ experiences with proof from pre-A level to undergraduate level 

 

Aspect  Main Observations  Researcher’s Comments  

Students‟ 

conceptions of 

mathematical 

proof 

 Logical arguments 

 Procedural ideas and facts 

The dominant conception of mathematical proof was use 

of proof for verification purposes through step-by-step 

use of facts, rules, and procedures given and endorsed by 

an external authoritative source (Varghese, 2009; Weber 

& Mejia-Ramos, 2011. Proof was not conceived as a tool 

for discovering new mathematics (Wiest, 2015). 

Pre-„A‟-level 

experiences 
 No proof exploratory 

experiences 

 Use of formula 

 Applying memorised facts 

 Empirical proof scheme 

dominated as can be 

inferred from drawing and 

measuring activities. 

Student teachers indicated that there was low intensity to 

no proving activity at all. The empirical-numeric mode of 

argumentation employed as implied by the words 

“drawing and measuring.” External conviction 

authoritative proof scheme was dominant as the teacher 

and textbooks were main sources of “memorised facts” 

applied (Alcock, 2010).  Structural- intuitive (semantic) 

mode of thought was prominent. 

„A‟-level 

experiences 
 Applying facts 

 Few proofs 

 Solving equations 

Emphasis at „A‟-level was on how immensely applicable 

were the memorised facts (formulas and identities) in 

solving equations and identities that is, importance was 

given to usefulness of theorems (Wiest, 2015).  Low 

intensity of proving activities.  There were external 

authoritative sources of memorised facts, so external 

conviction authoritative proof scheme was dominant.  

That is, authoritative sources of applied facts were 

dominant (Weber & Mejia-Ramos, 2011). 

Undergraduate   Difficult/challenging 

 Use of axioms, definitions 

and lemmas 

 Justification skills 

 Time  

 High intensity of proving 

activities 

Students described that proving at undergraduate was 

difficult and challenging and a time consuming exercise.  

Absorbing a piece of mathematics is a painful time 

consuming exercise (Davis & Hersh, 1981).  Truths of the 

mathematics discipline no longer taken for granted that is, 

not just memorized but they were justified.  

Undergraduate student use substantial time reading and 

writing proofs in lectures and textbooks (Inglis & Alcock, 

2012).  That is, there is a high intensity of proof 

construction (Stylianides, 2009).  Syntactic mode of 

argumentation became prominent.   

Distinctive 

features of 

undergraduate 

proof 

experiences 

 Level of detail  

 Justification 

 Challenging  

Mathematical rigour became pronounced as student 

teacher engaged in structural thinking (Alcock, 2010) to 

justify mathematical proposition.  Proving became 

challenging because it was introduced abruptly at this 

level (Stylianides, Stylianides & Philippou, 2007).  There 

was a sudden and abrupt shift from empirical-numeric 

(use of imagistic and visual modes e.g., graphs) to 

structural thinking (Dawkins, 2012, p. 39). 

Ways of 

attaining 

conviction  

 Logical presentation 

 Use of theories 

 Use of examples 

 Methods/stages calculation 

Students mentioned that axioms and definitions are given 

indicating the prominence of the external conviction 

authoritative proof scheme.  Particular instantiations were 

also suggested as means of attaining conviction for proof 

contexts that demanded search for counter examples.  

Summative content analysis revealed that the dominant meaning of mathematical proving held by 

the undergraduate students was seen as one in which proof serves the verification purpose that is, 

establish the truth or falsity of a proposition by means of logical presentation.  This mode of 

thought about mathematical proving is well aligned to Varghese (2009) where proving was rarely 

conceived as a tool for explaining or discovering new mathematics.  In other words, proof was 

rarely thought of as a vehicle for illuminating fundamental properties of focal ideas to the proof task 
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(Wiest, 2015).  One‟s concept usage (Moore, 1994) is determined by one‟s definition of a particular 

concept that in turn provides insights as to how a proof scheme emerges because definitions are 

complete descriptions of the mathematical structure or behaviour of a mathematical idea 

(Wilkerson-Jerde & Wilensky, 2011).  Hence, I considered it vital to explore students‟ conceptions 

of mathematical proof in order to relate it to how students‟ proof schemes develop. 

Regarding undergraduate student teachers‟ experiences at pre-„A‟-level period, most responses 

pointed to the fact there was no exploratory proof experiences as emphasis was on applying  

formulas and facts given and endorsed by external authoritative sources.  So the authoritative 

warrant type (external conviction proof scheme) dominated proving activities at the pre-„A‟-level 

period.  Thus, the dominant proving activity at pre-„A‟-level consisted of applying memorised 

formulas from an external source to obtain answers (product oriented rather process driven) as was 

shown by Tanya‟s interview excerpt.  Thus, the student teachers engaged with technical symbolic 

manipulations of given mathematical ideas without getting a sense of the underlying ideas and 

consequently students at pre-„A‟-level did not develop beneficial behavioural schemas with respect 

to the object of mathematical proof (Selden & Selden, 2011).  Tanya‟s utterances from the results 

section, such as, “then you will just be given …” and “we didn‟t really concern ourselves with the 

part of proving,” support the inference that the student did not develop a network of mathematical 

resources around the concept of mathematical proof.  So according to Duffin and Simpson‟s (2000) 

categorisation of mathematical understanding, during the pre-„A‟-level period students failed to 

develop a network of mathematical resources.  Emphasis was on calculations using given formulas 

as described by Tanya. 

Inductively derived codes indicate that at „A‟-level proof activity had a low intensity because 

“Applying facts” emerged as a dominant inductive code.   Further, the facts applied by the students 

at „A‟-level were given, so the authoritative warrant type (Weber & Mejia-Ramos, 2011) was a 

prominent feature at A-level.  For example, Getrude mentioned that: “there were some facts given 

[…] applying given facts.”  Such utterances support the inference that the external conviction 

authoritative proof scheme was dominant at „A‟-level.  There was low intensity of proving activity 

at „A‟- level as can be seen in utterances, such as, “there are not many proofs […], it didn‟t have 

many proofs […] there are just a few proofs at „A‟-level.”  Cortney‟s utterance that “the only proof 

I remember is induction,” reinforces the idea that the activity of proving at „A‟-level had a low 

intensity.  The major activity at „A‟-level was on applying formulas and identities to some equations 

and expressions.  For instance, Taku mentioned “Proof of trig ratio not part of syllabus but solution 

of trig equations and identities.”  It can thus be concluded that no justification skills were fostered 
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among student teachers who concentrated on memorising facts as seen in the following interview 

excerpt. 

Tafa: […] I do not remember any real proof […] may be you were asked to differentiate. 

Researcher: So how were you learning the double angle identities? 

Tafa: Some of them were just given. 

It can thus be inferred from the interview extract that students engaged in technical symbolic 

manipulations without getting a sense (G) of the underlying ideas of the notion of a mathematical 

proof (Sandefur et al., 2013).  In other words, at „A‟-level the instrumental perspective of 

mathematics was dominant with respect the concept of mathematical proof. 

Emphasis at „A‟- level was on application of procedural steps without establishing contact with the 

structural relationships of focal mathematical ideas pertinent to the processes engaged in (Hanna & 

Mason, 2014).  For instance, from Tafa‟s interview excerpt it can be seen that he engaged in 

processes such as differentiation in a mechanical manner as revealed by utterances such as “I do not 

remember any real proof.”  It can therefore be inferred that according to Selden and Selden‟s (2011) 

theory of actions during proof constructions the student teachers did not develop beneficial 

behavioural schemas of concepts dealt with as emphasis was on instrumental ideas.  In terms of 

Koichu‟s (2012) notion of an intellectual need it can be inferred that student teachers engaged in 

problematic situations involving equations and identities and generated answers (pieces of 

knowledge) without seeing how those pieces of knowledge generated resolved the problematic 

situations. 

Regarding students‟ undergraduate proof experiences the inductively derived code, 

„Difficult‟/challenging‟ had the highest frequency during summative content analysis.  Other 

inductive codes derived from content analysis of textual data are „high intensity,‟ „axioms and 

definitions‟ and „time.‟  It was noted that mathematical proof at undergraduate level was difficult 

and challenging for the students to comprehend.  For instance, Bea explained that she failed to 

understand the cut property in   (If an ordered pair (A, B) of non-empty subsets of   form a cut 

then there exists a unique element     such           and           ) even after 

reading her lecture notes several times.  For Bea the concept of a mathematical cut was so difficult 

for her that she expressed the sentiments that it was impossible for a learner at her level to generate 

a proof by her own as can be noted from the following extract. 

Researcher: Can you generate a proof? 

Bea: I do not think it‟s possible.  At my level. Not without reference to some source. 
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Bea had experienced serious discomfort with the cut property when reviewing lecture notes to a 

point where she doubted the feasibility of producing a mathematical proof autonomously.   Hence, 

the authoritative warrant type emerged as a dominant leading belief as shown by the utterance “Not 

without reference to some source.”   Tino‟s interview extract also illuminates challenges students 

face with proofs at undergraduate level. 

Tino: Proofs were challenging 

Researcher: What was challenging? 

Tino: Trying to argue logically to convince. 

Tino had challenges in putting together arguments in a logical manner.  In other words formal 

deductive modes of argumentation posed serious challenges to students.  The difficulties that Tino 

and Bea faced with proof at undergraduate level can be explained by the fact that proof had not 

been part of the student‟s culture as indicated by no exploratory proof experiences at pre-A level or 

low intensity of the proof activity at „A‟- level.  

At undergraduate level there is an abrupt introduction of the concept of proof where undergraduate 

students are expected to spend substantial learning time reading and writing proofs in lectures and 

from textbooks (Alcock, 2010; Stylianides, Styliandies & Philippou, 2007).   Challenges faced by 

student teachers in constructing proofs forced them to resort to what Tendai called her „own 

understanding‟ as revealed in the extract of the interview. 

Tendai: […] now maybe the theorem, if you did not understand the theorem and its  

      difficult, maybe you can use your own understanding. 

Researcher: What do you mean by your own understanding? 

Tendai: If  say you want to give may be an ordered field theorem then, you use, eee, if  

         you want to say       then I can fix, write       I can use numbers. 

From Tendai‟s interview excerpt, it can be noted that deductive reasoning can sometimes cause 

serious discomfort to students that can force them to slide down the proof scheme ladder from the 

higher level analytic proof scheme to lower level empirical-numeric proof scheme.  This is a typical 

example of an ontological oscillation, a term used to describe a shift from one proof scheme 

category to another  

“High intensity” of proving activity was another category that emerged at undergraduate level.  

There is pronounced proving activity at undergraduate level that is characterised by strides to foster 

justification skills among learners. Therefore according to Koichu (2012), as students engaged in 

problematic proof tasks they should have seen the need to generate pieces of knowledge that resolve 

the proof problems.  In other words, students should provide an epistemological justification as to 

how the pieces of knowledge generated are solutions to the proof tasks. This requirement is in stark 

contrast to the „A‟-level and pre-„A‟-level scenarios where the prominent proving activity was 



248 
 

application of given facts and formulas to get answers by engaging in calculations.  Derivation or 

proving of the “tools” given was not emphasised.  The focus at undergraduate level became 

different, with an emphasis on justifying how “tools” come into being, that is, their ontology.  In 

Selden and Selden‟s (2011) terms undergraduate students should have developed some beneficial 

behavioural schemas.  For instance, Tino‟s utterance points to the need for fostering of justification 

skills at undergraduate level. 

Tino:  If you look at „O‟ and „A‟ level Mathematics you have to know rules and procedures, the  

steps involved in solving.  But now at this level [undergraduate level] I think you have to understand 

the reasons behind what you are doing […] depth of conceptual understanding is much deeper. 

Finally, “Time” also emerged as factor that characterised undergraduate mathematics proof 

learning.  Tina mentioned, “You take your time on an aspect.  Proofs take time to comprehend.”  

Tina‟s comments are aligned with Davis and Hersh‟s (1981) description that absorbing a piece of 

mathematical knowledge is such a painful and time consuming act. 

6.2.2 Main observations to research question two 

From the discussion of summative content analysis results the three main trajectories that emerged 

are now presented.  First, the lateral shift within the lower cognitive level external conviction proof 

scheme category is shown in Figure 7. 

 

 

 

 

Figure 7: Emergent proof scheme trajectory one 

This trajectory was dominant in the study since student teachers indicated that as they moved from 

pre-„A‟-level through to undergraduate mathematics level they engaged in technical symbolic 

manipulations without establishing contact with structural relationships of pertinent ideas involved.  

From the discussion this trajectory consisted of student teachers who were given facts at pre- „A‟- 

level and „A‟- level to apply in doing calculations.  At undergraduate level they engaged in 

technical symbolic manipulations without getting a sense of the underlying ideas of the symbols 

involved.  Further, the lateral shift within the main external conviction proof scheme category 

indicates that there was no cognitive growth with respect to the students‟ conceptualisations of 

mathematical proof.    For instance, the case of Tanya:  

     Tanya: Aaaa, I would like to believe I did not deal with them so much, maybe at the end I  

      would just be given the result.  

Researcher: Ok. 

External conviction 

authoritative 
External conviction symbolic 
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Tanya: Then just use the result. 

Researcher: To do what?  

Tanya: Maybe, like we have the quadratic formula where we want to solve for the roots of  

the equation. Then you will just be given how to go about and come out with the proof. 

 I didn‟t know that much. 

What is central from my exchange with Tanya is that she lacked conceptual understanding of the 

concept of proving.  Further, the influence of the authoritative warrant was evident as implied by 

the term “just given the result.”  Tanya‟s extract reveals that the categories of proof schemes were 

not mutually exclusive but rather interrelated as can be seen by the phrase “solve for the roots,” 

which implies that this trajectory also encompassed the empirical-numeric proof scheme at Pre-„A‟-

level and „A‟-level scholastic levels.  Further, the trajectory indicates loss in sense making because 

during pre-university mathematics learning the students had a grasp of the essence of calculations 

done as indicated by Tanya‟s utterance, “like we have the quadratic formula where we want to solve 

for the roots of the equation.”  However, when they moved to university mathematics there was loss 

of sense making shown by manipulating symbols without getting a sense of the symbols. 

Second, a proof scheme trajectory that shows a scenario where students‟ proof schemes regressed is 

shown in Figure 8. 

 

 

 

 

 

Figure 8: Emergent proof scheme trajectory two 

Figure 8 shows that there was a decrease in student teachers‟ cognitive level with respect to their 

conceptualisation of mathematical proof.  This scenario is contrary to the expected gain in 

mathematical proficiency that should be typical of the transition from a lower to higher level of 

mathematics learning
__ 

pre-university to undergraduate level of mathematics learning.  For example, 

Bea, describing her pre-„A‟-level encounters with proofs, mentioned that “Proofs not challenging 

and could easily follow steps.” The steps were presumably for doing calculations as was confirmed 

by Taku: “measuring and calculations, no axioms”.  This trajectory indicates that students did not 

engage in structural or axiomatic reasoning but manipulated symbols and notation in an 

instrumental way so they attained a lower level proof scheme
__ 

the external conviction symbolic 

External conviction symbolic 

proof scheme 

Empirical-numeric proof scheme 

External conviction symbolic 
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proof scheme.  The dominance of external conviction was also revealed by students‟ proof attempts, 

for example, the cases of students‟ proof attempts discussed in section 6.1.13.   

Finally, summative content analysis also gave rise the inductively inferred trajectory of proof 

scheme shown in Figure 9. 

 

  

 

 

  

 

 

 

Figure 9: Emergent proof scheme trajectory three 

The third trajectory of proof schemes has arrows that are opposing each other.  The arrow directed 

upwards shows a vertical upward shift from a lower cognitive level empirical-numeric to a higher 

cognitive level axiomatic proof scheme.  The arrow pointing downwards indicates that proof 

schemes regressed to the empirical proof scheme.  This scenario reflects lack of stability in the 

axiomatic proof scheme that sometimes forces students move back to the lower level empirical 

proof scheme.   The point about lack of stability in axiomatic proof scheme can be seen in the 

interview extract that involved Tendai. 

Tendai: […] now maybe the theorem. If you did not understand the theorem and its 

       difficult, maybe you can use your own understanding. 

Researcher: What do you mean by your own understanding? 

Tendai: If you say you want to give may be an ordered field theorem, then, you use if you want 

 to say       then I can fix, write        I can use numbers. 

Tendai‟s utterances revealed that when she faced challenges in arguing in a formal deductive 

manner, in her case by using order axioms, she could then turn to particular instantiations of the 

order properties. The ontological oscillation which points to lack of stability in the analytic proof 

scheme among the undergraduate students was revealed by her moving back to empirical proof 

scheme.  

My attempt to get a more revealing picture about how proof schemes emerge by combining the 3 

trajectories gave the schematic representation shown in Figure 10 

Empirical-numeric proof 

scheme 

Axiomatic proof scheme 
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Figure 10: Three trajectories in one schematic representation 

Overall, Figure 10 shows the dominance of lower cognitive level proof schemes.  The external 

conviction symbolic proof scheme was dominant as it featured in two trajectories as shown by the 

two arrows converging to it.  The dominance of the external conviction symbolic proof scheme 

indicates the indiscriminate use of symbols by the student teacher informants as they manipulated 

the symbols without establishing their essence.  Another salient feature of schematic representation 

of the emergent trajectories of proof schemes is a decrease in cognitive level indicated by arrows 

directed downwards.  This is an interesting scenario in the sense that during pre-university 

mathematics learning the students used to handle numeric tests (empirical inductive explorations) 

with meaning (sense making) but when they shifted to the external conviction symbolic proof 

scheme during undergraduate studies, there was indiscriminate use of symbols without drawing 

meaning from the symbol manipulations. The lateral shifts indicated by horizontal arrows and the 

lack of stability shown by  arrows pointing in opposite directions in Figure 10 count as other salient 

features unravelled by this study.  

A proposed proof scheme trajectory is shown in Figure 11. 

 

 

 

Figure 11: Expected proof scheme trajectory 

Axiomatic proof scheme 

Empirical-numeric proof scheme 

External conviction symbolic proof 
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The crucial experiment proof scheme category by Balacheff (1998) is one in which a specific 

example is chosen on the basis of some rationale such as being an appropriate counterexample or 

the instantiation is selected from the proper subset because of its capacity to illuminate the 

underlying property that forms the crux of the proof (Fukawa-Conelly, 2012; Stylianides, 2011).  

The axiomatic proof scheme by Harel and Sowder (1998, 2007) employs arbitrary mathematical 

objects (axioms, definitions) in syntactic derivations which provide complete and conclusive 

evidence about the truth-value of a conjecture.   Hence, the crucial experiment proof scheme 

category would be strategic when a prover wants to refute false mathematical assertions.  On the 

other hand, the axiomatic proof scheme would be strategic when dealing with true mathematical 

propositions.  The explanation just given justifies the suggestion that the given trajectory could be 

ideal.    Another feature of the suggested trajectory shown in Figure 11 is that arrows shown at both 

ends should indicate the crucial interplay or interaction that should exist between the two categories 

of proof schemes.  The arrows need not signify an emotional response to a cognitive challenge as 

was uncovered by this study. 

The expected trajectory of proof schemes proposed here would be difficult to attain in our 

Zimbabwean mathematics curriculum because of the undesirable effects of the authoritative warrant 

type uncovered by this study where learners insist on being given the tools and theories needed for 

composing proofs.  Further, the low intensity of the structural mode of argumentation in pre-

university mathematics reported in this study also requires some attention in order to attain the 

expected trajectory in mathematics learning.  Finally, the proof method by refutation should gain 

some emphasis if we are to make strides towards attaining the expected trajectory.  I now state the 

main conclusion to research question 2. 

6.2.3 Overall conclusion to research question two 

Undergraduate student teachers‟ proof schemes revealed some lateral shifts within the external 

conviction proof scheme category (authoritative to symbolic) and in other cases proof scheme states  

regressed to the external conviction symbolic proof scheme from the  empirical proof scheme.  In 

other cases, proof schemes evolved from the empirical-inductive proof scheme to the axiomatic 

proof scheme which showed instability and fragility. 

Let me attempt to account for the nature of the shifts in students‟ proof schemes.  The central ideas 

are the lack of stability in the desired (highest level) analytic proof scheme and the lack of cognitive 

growth in students‟ schemes of argumentation shown by a lateral shift within the external 

conviction proof scheme category.  Another central idea revealed by the trajectories is the decrease 

in cognitive level of the proof schemes.  The main cause of instability in the inductively developed 
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categories is the discomfort experienced by students when using the structural mode of thinking.  

Informants indicated that they were unfamiliar with proof tasks that involved formal deductive 

schemes of argumentation which were not part of their earlier learning experiences.  The category 

“difficult/challenging” had the highest frequency (4 out of 13).  Typical exemplifications are:   

Bea: […] challenging because it‟s something I am not familiar with.  Taking the whole  

 course with proofs, failing to understand. 

Tino: Proofs were challenging 

Researcher: What was challenging? 

Tino: Trying to argue logically to convince. 

Another reason for the lack of stability and lateral shifts in students‟ schemes of argumentation 

relates to the volume of work as implied in Bea‟s response “Taking the whole course with proofs, 

failing to understand”.  When students fail to understand as indicated by Bea, they resort to 

particular examples which were regarded as part of students‟ culture.  For instance, Tafa‟s extract:  

Tafa: using numbers […] closer home. 

The use of particular instantiations is a culture cultivated through pre-university curricular practices.  

The empirical proof scheme implied by use of particular instantiations and external conviction 

symbolic proof schemes are lower cognitive proof schemes which indicate that there was no 

cognitive growth as students engaged with the concept of mathematical proof at different scholastic 

levels.  Besides lack of stability reported about the trajectory of proof schemes, other additional 

observations made concern the fall in cognitive level and the lateral shifts in proof scheme 

categories as the student teachers moved from pre-university to undergraduate mathematics 

learning.  The decrease in cognitive level can be explained in terms of overwhelming symbolism 

that characterised university mathematics learning.  Contrary to undergraduate mathematics 

learning, at pre-university level the student teachers could draw meaning of the inductive 

explorations (numeric tests). Further, the lateral shifts are interesting observations as they are 

inconsistent with the expected vertical upward shift in schemes of argumentation as the student 

teachers took up undergraduate mathematics. 

6.3 Overall conclusion to main research question 

Overall, the study has revealed that mathematical proof was conceptualised in terms of logical 

steps and procedures through which axioms, definitions, and symbols are handled in order to 

validate mathematical statements.  The manner in which the undergraduate student teachers 

handled axioms and definitions revealed the dominance of the external conviction authoritative and 

symbolic proof schemes. Trajectories of proof schemes revealed lateral and vertical downward 
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shifts in proof scheme states. Furthermore, a vertical upward shift from empirical-numeric proof 

scheme to axiomatic proof scheme was observed 
__

 that however was unstable and fragile. 

Overall, student teachers‟ written responses, chalkboard demonstrations and utterances from 

reflective interviews revealed that mathematical proof was thought of in terms of logical steps and 

procedures through which axioms, definitions, and symbols are used to prove mathematical 

conjectures. Therefore, the structural mode of thought about mathematical proof was shown to be a 

strong leading belief.  Let me point out that, although students thought of mathematical proof 

largely in terms of steps and procedures that involve use of axioms, they encountered serious 

challenges with syntactic proving.  However, despite facing severe challenges with the structural 

mode of reasoning, there was an overemphasis on the construction of formal deductive arguments.  

This caused students to use axioms in situations that require proof by refutation.  Such proof 

behaviour was caused by students‟ lack of appreciation of counter-argumentation.  Typical 

exemplification of students‟ fragile grasp of the notion of a counter example can be seen from 

Cortney‟s interview excerpt below. 

Cortney: […] you will always think that what if I just come up with a counter example […] I  

have to make use of axioms so that the answer [proof] gets balanced. 

 

 Further, the students‟ descriptions revealed that the axioms, definitions and symbols should be 

given and endorsed by instructors indicating the dominance of the external conviction authoritative 

proof scheme.  The study also uncovered that while mathematical proof was conceived principally 

in terms of axiomatic argumentation the evocation of particular instantiations (empirical-numeric 

proof scheme) was caused by lack of in-depth knowledge about the role axioms and definitions 

pertinent to the proof task students sought to resolve.  Weak command of structural mode of 

thought (axiomatic proof scheme) was caused by pre-university mathematics curricula practices that 

were characterised by low intensity of formal proof. 

Mathematical proof was also thought of in terms of manipulating symbols.  The external conviction 

symbolic proof scheme emerged as a robust proof scheme.  For example, from Table 5.16 Tina 

wrote “ 
         

 
       for a task that involved sequence      revealing that symbol 

manipulations were not consistent with the notation involved.  Further, symbols were manipulated 

in a mechanical way without reflecting on ideas embedded in those symbols.  For instance, from 

Table 5.11, Tina regarded the radius         as a natural number and the condition for uniform 

continuity was stated as |   |    instead of |   |         Therefore lack of in-depth 

knowledge about meaning of axioms and definitions intertwined with instrumental handling of 
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symbols support the inference that the external conviction symbolic scheme emerged robust as a 

proof scheme among the undergraduate student teachers.  

While some findings from the current study have shown some consistency with ideas in existing 

literature, the following could count as new insights this study has generated.  First, the study has 

unravelled inconsistencies in students‟ formal rhetoric aspects in the following manner.  The 

contradictory student proof behaviour shown through the use of particular instantiations in 

deductive proof tasks and through the use of syntactic derivations to resolve tasks that require proof 

by refutation as the students traversed the inductive-deductive proof scheme continuum can be 

argued to be an additional insight the study has generated with regard to the learning of 

mathematical proof.  Second, this study has uncovered some ontological oscillations in students‟ 

schemes of argumentation which I now try to explain.  An ontological oscillation refers to a switch 

from one scheme of argumentation to another when resolving a proof task at hand.  The lack of 

stability and fragility of the axiomatic proof scheme can be explained by the fact that deductive 

reasoning by means of definitions and axioms caused serious discomfort to students that forced 

them to slide down the proof scheme ladder from the higher level axiomatic proof scheme to the 

lower level empirical-numeric proof scheme their comfort zone. Thus although the axiomatic proof 

scheme emerged as a strong leading belief students‟ struggles with structural mode of thought 

induced some fragility and lack of stability in the mathematical entity.    

Third, another interesting and unexpected observation was loss of sense making during mathematics 

learning at undergraduate level revealed by the trajectory shown in Figure 8.  This trajectory does 

not only reveal a decrease in cognitive level in the student‟ schemes of argumentation but also 

shows that the student teachers could not draw meaning out of symbols handled.  On the contrary, 

at pre-university level the same student teachers got the essence of inductive explorations or 

numeric tests done.  

Finally, the tenacity of the external conviction authoritative proof scheme was also uncovered by 

this study in which student teachers‟ leading belief was that theories and tools (axioms, definitions, 

symbols) needed to validate mathematical statements should be given or endorsed by external 

sources rather than be generated by self through axiomatic argumentation.  While the tenacity of the 

authoritative warrant type is not new this study has proposed an account of this tenacity in terms of 

huge disparities between pre-university and undergraduate curricula practices with regard to the 

learning of mathematical proof.  The tenacity of the authoritative warrant can also be explained in 

terms of impasses reached during proof construction by the student teachers who would then insist 

that proofs should be given to them by instructors.   
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This study has also unearthed some lateral shifts in students‟ schemes of argumentation represented 

by the trajectory shown in Figure 7.  This trajectory indicates lack of cognitive growth in students‟ 

schemes of argumentation which is inconsistent with the expected cognitive growth during the 

transition from pre-university to undergraduate mathematics.  Therefore, the leading belief 

(authoritative warrant type) acts as a stumbling block in efforts to promote autonomous proof 

productions and promote vertical upward shifts in students‟ schemes of argumentation which can 

then lead to the attainment of higher cognitive level proof scheme states among the student teachers.  

Hence, an explication of the undesirable effects of the external conviction authoritative proof 

scheme in Zimbabwean undergraduate mathematics education students‟ proof schemes presented 

here could also count as an insight generated by this current study.  

6.4 Implications for Theory 

This study has developed an explanatory theory that characterise the structure of the nature of proof 

scheme states among mathematics education undergraduate students.  I now state the theory: 

 Proof scheme states are characterised by an unstable and fragile axiomatic proof scheme.  Lack of 

stability in the axiomatic proof scheme state induces some regression to the empirical-numeric 

proof scheme state.  Furthermore, lateral shifts occur within the external conviction proof category, 

from the authoritative to the symbolic proof scheme.   

Salient features of changes in proof scheme states are; 

 Lack of cognitive growth anticipated as students negotiate the transition from pre-university 

to undergraduate mathematics learning. 

 Dominance of lower cognitive level proof scheme states such as external conviction 

symbolic and authoritative proof schemes 

 Loss of sense making during the transition from pre-university to undergraduate levels of 

mathematics learning. 

I conclude on this section by making the following remarks.  According to Harel and Sowder's 

(1998) taxonomy of proof schemes it is possible for one to hold more than one proof scheme during 

the same encounter.  However, the taxonomy is silent about the nature of the interrelatedness in a 

person‟s proof schemes.  This study has not only explicated the possible trajectories that can exist 

but has also uncovered causal links that informed students‟ leading belief during the shifts from one 

proof scheme to another. These causal links include among others, discomforts experienced with 

use of axioms, and definitions that forced students to resort to the empirical proof scheme as well an 

overemphasis placed on use of axioms and definitions that resulted in use of syntactic approach in 

proof tasks that required proof method by refutation.  Hence, explicating the structure of the nature 
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of proof scheme states and inductively uncovering reasons for possible shifts in student teachers‟ 

proof schemes could count as new observations this study has made to the discipline of 

mathematics education. 

6.5 Limitations of the study 

First, the results of this study are limited to  proof schemes, that is, persistent characteristics 

revealed in proof attempts of ten undergraduate mathematics education students involved in this 

study at one  high ranking state university in Zimbabwe.   Consequently, these findings about the 

kinds of proof schemes held by student teachers and the emergence of the proof schemes among 

undergraduate students cannot be automatically transferred to all mathematics education 

undergraduates in Zimbabwe.   

Second, the use of think aloud protocols during reflective interview phase was some form of threat 

to the credibility of the study.  With respect to research question two data were based on „after the 

effect self-reports‟ by student teachers (Kidron & Dreyfus, 2014, p. 298) and so could have suffered 

from some possible omissions in students‟ self- reports.  However, I believe that these data were 

sufficient for serving the purpose of determining how proof schemes evolve among undergraduate 

student teachers because I used the split-half method, (Lewis, 2009) and triangulation for the 

purpose of generating rich data that could give a revealing picture about students‟ thinking 

processes about mathematical proof. 

Closely related to use of interview protocols is the notion of a mathematical representation.   

Herlina and Batusangkar (2015) define a mathematical representation as an expression of 

mathematical concept (definition, mathematical proposition) that is used by a student to 

communicate outcomes of the student‟s interpretation of that concept.  In the context of this study a 

mathematical representation is an outcome that relates to the students‟ effort to search a solution to 

a proof task at hand.  Mathematical representations include a combination of ideas expressed 

through written responses and an array of ideas which were constructed in students‟ minds and 

expressed verbally during chalkboard demonstrations of students‟ proof attempts.  A limitation 

noted that relates to the concept of a representation as explained is that outcomes of students‟ 

interpretations expressed were surface results of the functioning of the deep mind structures that did 

not depend on the actual awareness of the student teachers (Piaget, 1967 in Duval, 2006).   It is 

certainly quite possible that important thinking processes not part of the students‟ evoked concept 

images during those moments of chalkboard presentations and writing sessions were omitted.  

However, I retain confidence in the validity of the data because data were elicited from different 

sources (triangulation) and this contributes to credibility of the findings. 
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Third, the study could have also suffered from threats related to the researcher-lecturer dual role in 

the following manner.  When probed about their level of conviction during reflective interview 

sessions during both Mid-instruction and End-of-instruction data collection phases, the students 

stated that they had absolute conviction in their proofs.  It is quite possible that these students had 

relative conviction in their arguments, that is, the subjective probability that they had attributed to 

arguments constructed had a certain threshold to provide a warrant for further efforts to verify their 

accuracy (Weber & Mejia-Ramos, 2015).  However, the student teachers could not express their 

relative conviction because of the possibility of a multitude of factors such as: the student‟s mood 

and lecturer-student relationship shared.  So the interpretations of the students‟ utterances during 

reflective interviews and chalkboard demonstrations were done with my full recognition of this 

conversational constraint.  However, I retain confidence in the plausibility of the findings because 

of the consistency of results of data analyses from the three sources: written responses, chalkboard 

demonstrations and students‟ evaluations of their proof efforts during reflective interviews. 

Fourth, the study suffered from threats related to time.  Student teachers spent an average 1 hour 35 

minutes working on proof tasks during Mid-instruction data collection phase and about 1 hour 50 

minutes during End-of-instruction data collection.  In the actual practice of research 

mathematicians, proof construction may span over several weeks or months or even years, 

especially when we take cognizance of the fact that the tasks were novel to the students (Weber, 

2008, p. 449).  Hence, if student teachers had been allowed longer periods of engagement with the 

proof tasks it might be possible that alternative patterns in the kinds of proof schemes could have 

emerged.   Herlina and  Batusangkar (2015) commenting on time as a significant factor in proof 

construction say “when a learner mulls over a problem at some point he/she will gain flash of 

insight and invitation, a vision of the solution he was seeking” (p.129).  Herlina and Batusangkar 

further suggest that the vision of the solution presents itself as a “bunch of intuitive threads that 

have to be woven together and some of the early ones present themselves visually” (p. 129).  Hence, 

although no time restrictions were imposed as students worked on the proof tasks, the fact that 

students worked on the tasks on a single day implies that there could be many aspects involved in 

proof constructions this study failed to capture.   

Nonetheless it is reasonable to claim that the study was able to identify and describe persistent 

characteristics, that is, proof schemes from the student teachers proof attempts because data were 

analysed within the scientific realistic analytic framework using a process theory approach (Harel & 

Rabin, 2010; Maxwell, 2004; Maxwell & Mittapali, 2007).   Critical realism employed in this study 

recognizes and accepts the importance and validity of causal explanations even in single events and 

case studies (Maxwell, 2004).   Furthermore, concepts about the kinds of proof schemes held and 
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how they evolve, such as, the mess or chaotic nature of student conceptualisations of proof schemes 

and lack of stability in higher level proof schemes were abstracted from data within a realist 

analytic framework.  I can therefore, claim with some degree of confidence that the results from the 

case study activities represent typical Zimbabweean undergraduate students‟ thinking about the 

notion of mathematical proof.  

I summarize major limitations of the study.  First, I acknowledge that the limitation that the small 

sample used (10 student teachers) and study context limit transferability of findings.  Second, while 

results reported were based on actual voices of student teachers and I employed member checking 

technique to validate inferences of written responses with the participants, it is possible that the 

study could have suffered from some conversational constraints.  For example, being their lecturer 

the students might have agreed with my interpretation of proof attempts to impress their teacher, 

that is, reactivity might have adduced limitation.  Finally, use of verbal protocol in chalkboard 

demonstrations and reflective interviews had a limitation that the students could only articulate 

concept images evoked during interviews.   

6.6 Recommendations from the study 

Directed content analysis of textual data that focused on research question one and summative 

content analysis for data used to address research question two had implications for mathematics 

educational practice and implications for mathematics educational research.   

6.6.1 Implications for mathematics educational practice 

The goal of research on the concept of mathematical proof is to bring students‟ proof competency to 

secure levels.  In other words, the intent of research on mathematical proof is to promote and foster 

thinking habits among student teachers that are as much as possible close to mathematicians‟ 

conceptions of proof (Weber & Mejia-Ramos, 2015).  The results of this research have contributed 

towards such efforts by uncovering valuable information about the terms in which student teachers 

think about proof.   

 

First, one of the key findings of the current study is that student teachers conceptualise 

mathematical proof in terms of steps and procedures through which axioms, definitions and 

symbols are handled for the purpose of establishing the truth or falsity of a mathematical 

proposition.  These students‟ thoughts about mathematical proving reveal some inadequacy because 

mathematicians conceptualise proof in terms of judicious use of mathematical objects where 

counter-argumentation is used to refute false conjectures and similarly axioms and definitions are 

employed to validate true mathematical propositions.  Hence, proof method by refutation had not 



260 
 

been grasped by student teachers.  In other words, proving was understood in terms syntactic 

derivations to a point where any proving attempt that did not involve use of definitions and axioms 

was not considered being a proof.   A typical example of this point can be seen from the verbatim 

transcription of Taku‟s End-of-instruction reflective interview. 

Taku: You need axioms particularly when dealing with analysis. Mathematically when you use  

     an example to testify a proof then its wrong […] You need axioms practically when you 

     are dealing with Analysis you do not have to use an example. 

Taku‟s utterance reveals that the student lacked an appreciation for a counter example.   Hence, the 

study has uncovered a lack of comprehensive or analytic conception of mathematical proof where 

formal deductive arguments receive more prominence than proof by refutation.  Hence, these are 

important insights for the learning of Real Analysis concepts at undergraduate level because 

understanding what proof is and composing proofs contribute to deep learning (Ersen, 2016).   

Second, the study has uncovered lack of the crucial interplay between the technical handles and 

conceptual insights in the manner in which students deploy mathematical resources (axioms, 

definitions and previously established theorems) during proving in the following manner.  In some 

cases, access to the structural relationships of ideas involved in the proof tasks was not 

accompanied by a strategic access to the relevant technical handles.  For example, from Table 5.16 

Taku stated the crucial relationship           for a monotone increasing sequence but failed to 

access procedural steps of proof method by mathematical induction to accomplish that the sequence 

     is monotone increasing and bounded.  Conversely, in the majority of the cases symbols were 

manipulated without getting the essence of ideas embedded in those symbols.   It is therefore, 

recommended that mathematics education research explore ways of fostering the crucial interaction 

between technical handles and conceptual insights. 

Third, the study has illuminated trajectories that characterise the emergence of proof schemes 

among student teachers which in turn gave a pictorial view of the temporary nature of axiomatic 

proof scheme that forced students to revert to use of empirical verifications.  Previous research 

studies (Mejia-Ramos & Inglis, 2009; Varghese, 2009) have expressed concern about lack of 

knowledge about processes involved in composing proofs as well as impasses experienced by 

students during proving.  This study has contributed towards efforts to address these concerns by 

explicating causes of students‟ discomfort with syntactic proving which include low intensity of 

proving activities in pre-university curricular, and the leading belief that axioms, definitions and 

steps and procedures needed to validate propositions must be given and endorsed by an 

authoritative source such as a teacher.  Hence, the study has revealed the dominance of the external 

conviction authoritative proof scheme
__ 

a low cognitive level proof scheme.  In addition, the study 
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has also uncovered lack of stability in the deductive proof scheme.  This is valuable knowledge that 

could inform the design of tasks that support students in their efforts to produce proofs 

autonomously thereby eliminating the undesirable effects of the external conviction authoritative 

proof scheme such as insisting on being given the proof.   The argument is that students can learn 

more concepts in proof if they compose proofs by themselves.
 
 These insights could inform 

instruction on proof and serve as important strides towards autonomous proof production by 

students.  
 

Fourth, another key finding of the study is that prospective high school mathematics teachers 

demonstrated lack of intellectual need as they engage with the proof tasks (Koichu, 2012).  The 

point is, although students generated solutions to proof tasks assigned they did not see how the 

pieces of knowledge constructed (solutions) resolved the given proof tasks.  In other words, the 

students failed to provide an epistemological justification, that is, interpret how the solutions 

generated were answers to tasks.   Hence, the students failed to develop a rational understanding of 

concepts pertinent to the task but rather demonstrated mechanical understanding.  The student 

teachers lacked rational understanding because they did not know the mathematical concepts 

meaningfully as these were not accompanied with justifications (Maya & Sumarmo, 2011, p. 232).  

Therefore student teachers‟ fragile understanding of mathematical proof revealed in this study 

suggest that to meet their future students‟ needs undergraduate student teachers should have rich 

experiences with mathematical proof in order to frame their mathematics instruction around 

fundamental aspects of the notion of proof.  It can therefore, be recommended that proof oriented 

instructors need to realign their teaching methods.   For instance, mathematics educators should 

employ strategies that would induce habits of self-questioning and reflection (i.e., encouraging 

meta-mathematising) that allow students to realise ideas critical for successful proof constructions.  

Such efforts may help the students to establish connection between their solutions and demands 

stipulated by proof tasks.  Thus, professional development efforts must be directed towards creating 

and fostering proving events among student teachers.   

Fifth, Real Analysis concepts students learn at undergraduate level are built on earlier student 

experiences. This study has revealed pronounced discrepancies between pre-university and 

university curricula with respect to the notion of mathematical proof.  Previous learning encounters 

are essential in effective learning (Tall 2005 in Ersen, 2016).  Student proof behaviour could be 

described as chaotic and messy and was also characterised by some ontological oscillation and 

rampant violations of proof conventions.   Data analysis revealed lack of continuity between pre-

university and university mathematics practices in the learning of proof.   This finding leads to the 

recommendation  that curriculum developers at undergraduate level should be sensitive to the fact 
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that learning requires a student to build on his or her previous learning experiences in a manner that 

may show a fit between the intended learning experiences and student‟s met-befores (Tall, 2005 in 

Ersen, 2016).  Hence, it is recommended that mathematics instructors should devise means of 

developing  argumentation skills at lower scholastic levels so that discomforts associated with 

abrupt changes in mathematical proof styles from use of facts and formulas before undergraduate 

mathematics to formal deductive argumentation at undergraduate level are eased. 

 Finally, the current study has also uncovered inconsistencies in students‟ proof behaviour 

demonstrated by the proclivity by students to use formal deductive reasoning in proof situations that 

call for proof method by refutation and vice versa. An explanation has been proposed for 

contradictory behavioural tendencies in terms of over-emphasis on use of axioms, definitions and 

symbols that caused student teachers to look down upon proof efforts that do not involve axioms 

and definitions.  Conversely, the evocation of empirical-numeric proof scheme was caused by 

discomforts students experienced with the structural mode of reasoning when proving but 

mathematical proof was largely conceptualised in terms of logical steps and procedures in which 

axioms, definitions and symbols are employed in validating conjectures.  These findings are fresh 

insights that could be an important consideration in understanding the problem of mathematical 

proof among student teachers.  Hence, it can therefore be recommended that mathematics educators 

consider these insights in their efforts enable students to overcome the problem of constructing 

proofs with meaning so that proof can be seen as a viable means for producing explanations (Liu & 

Manouchehri, 2013, p. 19).    

6.6.2 Implications for mathematics educational research methodology 

The empirical analysis of the processes involved in students‟ proof construction attempts have 

unravelled the terms in which students think about mathematical proving.  Data analysis has also 

revealed how students‟ thinking  about proving can be characterised based on students‟ actual 

productions as opposed to students‟ evaluations of arguments supplied by researchers.  The process 

of reflective writing (written responses) played a central role in illuminating the kinds of proof 

schemes held by undergraduate student teachers as they engaged with the proof tasks.  For instance, 

the student teachers‟ fragile understanding of mathematical proof was revealed through students‟ 

written responses.  Reflective writing technique was applied with both task-based interviews and 

the chalkboard demonstrations.  Although reflective writing technique is not new, the way reflective 

writing was applied was different.  With previous studies reflective writing was applied to task-

based interviews only or to chalkboard demonstrations only.  The act of applying it to the two data 

sources helped in strengthening inferences by checking for consistency of results coming from two 
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sources.  Hence, use of reflective writing with the two data sources could count as a fresh idea about 

data generation in research. 

After reflective writing, I then tried to determine student teachers‟ levels of conviction in their 

arguments.  In other words, measures were taken to check whether student teachers had absolute or 

relative conviction in solutions to the proof tasks.  Hence, in the reflective interviews I strengthened 

inferences made about the kinds of proof schemes held with follow up questions, such as, are you 

convinced that the statement is true?  Why is the statement true?  Do you have any doubts at all that 

the proof you have just constructed is true?  A more revealing picture grounded in students‟ own 

perspectives was therefore, made about student teachers‟ thoughts on proving
__

 a research strategy 

which is compatible with the realistic analytic framework.  The use of three data sources in pursuit 

of terms in which the student teachers think about mathematical proof could also serve as a 

contribution of this study to research methodology.  I can retain confidence in this claim because of 

the following reasons.  With most previous studies examined there was use of written responses 

followed by reflective interviews and in other cases informants expressed their level of conviction 

in arguments supplied by the researchers.  Hence, the activity of writing when students were 

constructing arguments to validate proof tasks which were considered to be novel to the students 

has an edge over evaluating a supplied argument.  Further, the act probing students during reflective 

interviews helped to determine whether students had absolute on relative conviction in arguments 

produced.  Hence, data generation techniques employed in this study could have serve as efficient 

triangulation techniques that can be utilised in future studies in mathematics education. 

6.7 Further research 

Following Lakatos‟ (1976) dialectic of proofs and refutations, Cirillo and Herbst (2012) have 

proposed that student teachers should not only prove statements given to them but rather student 

teachers should come up with those statements by engaging in conjecturing.  The current study 

focused on students‟ abilities to resolve proof-related tasks supplied by the researcher without the 

students having to ponder about the source of the statements or tasks they had to prove.  Therefore, 

further research into ways of fostering means by which student teachers can do more than just 

producing an argument through conjecturing can help to enrich students‟ proof experiences.  The 

call for further investigation into students‟ conjecturing activities has also been suggested by 

Lampert (1992) in Cirillo and Herbst (2012) who asserted that conjecturing about mathematical 

relationships is an important process of mathematical practice because conjecturing allows students 

to participate in socio-mathematical norms of the discipline in ways that are as close as possible to 

those of research mathematicians who compose proofs.  Hence, testing the plausibility of these 

hypotheses through further research will contribute significantly towards efforts to reduce 
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discrepancies between research mathematicians and student teachers with regard to proof 

construction competences. 

As concluding remarks on this section it is recommended that future studies focus on finding ways 

of fostering and developing key competences that were identified to be lacking among students 

involved in this study.  Areas that need future research attention include ways of raising micro 

reasoning (i.e., issues at meta-mathematical level) when doing proofs.   Mathematics education 

researchers need to identify ways encouraging deep engagement with underlying ideas of 

mathematical proof in order to reduce chaotic behaviour uncovered among student teachers in this 

study, especially by focusing particularly on conjecturing.  Research aimed at promoting stability 

within the axiomatic proof scheme once it has been attained by the students so that they do not 

move back to low level cognitive proof scheme categories is suggested as an area for further 

research.   

6.8 Personal Reflections 

My initial thoughts about the research problem were hardly coherent, characterised with lack of 

clarity on whether the focus was on learning or teaching issues in mathematics education.  Coaching 

from my supervisors and reflecting on comments that followed presentations at departmental level 

helped to shape the incoherent thoughts into a learning problem with the title: Undergraduate 

student teachers‟ conceptualisations of mathematical proof.  During problem refinement process 

after provisional registration I read about a branch of metaphysics called ontology whose ideas 

influenced my thinking about undergraduate students‟ conceptions of mathematical proof and my 

working thesis title then changed to: Ontology of proof schemes in Zimbabweean undergraduate 

student teachers‟ conceptualisations of mathematical proof.  Central ideas of the research involved 

determining the student teachers‟ proof schemes states and how those proof schemes come into 

being.  Hence, there was confusion over whether the focus was on ontology or epistemology 

(process of knowing) of the proof schemes.  My personal reflections on this apparent lack of clarity 

and comments from conferences and mentoring by my supervisors influenced me to revert to the 

initial thesis title at the thesis writing stage after observing that it adequately addresses issues 

pertinent to students‟ thinking processes about mathematical proof. 

 

My Master Degree dissertation explored secondary school students‟ interest levels in contexts for 

learning mathematics.  To develop a sense of students‟ preferences for contexts for learning 

mathematics I employed a survey research design that elicited largely quantitative data that were 

analysed using crosstabulations in which descriptive statistics, Kendall‟s W mean ranks and Chi-

square tests were determined using the SPSS facility.  The current study employed a case study that 



265 
 

yielded thick data that were overwhelming when I fractured them to begin the sense making 

process.   Hence, a paradigm shift from predominantly quantitative to qualitative research skills was 

called for.  Consequently, my data analysis was marked by prolonged periods of frustrations and 

confusion about how to draw meaning from the data.  My personal reading of related studies from 

journal articles and primary sources on qualitative research skills (e.g., Corbin & Strauss, 2008 

Miles & Huberman, 1994, Punch, 1998, 2005; Yin, 2009) helped greatly to improve on qualitative 

research methods.    Reflecting on suggestions by peers and experts that followed my presentation 

at the Southern African Association for Research in Science, Mathematics, and Technology 

Education (SAARSMTE) annual conference in January 2015 in Maputo, helped me to incorporate 

reflective interview audits and member checking as strategies to ensure theoretical saturation in my 

data collection procedures (Corbin & Strauss, 2018). 

Mentoring efforts by my supervisors, especially through parallel research projects I worked on 

together with them complemented my personal efforts to ensure rigor and precision of the research 

process.  For example, the project on Continuing Professional Development (CPD) of mathematics 

teachers that took place in 2015 came at an opportune moment when I was developing my research 

instruments for the pilot study during the same year.  The research study on CPD of mathematics 

teachers involved intensive research techniques ranging from interviewing skills, data capturing, 

validity and reliability to transcribing and analysis of data.  The study also involved research report 

writing and culminated in a published paper in 2015.  These parallel projects helped shape my 

qualitative research methods as I benefited from rub-on effects from experts involved.   

Being a part-time PhD student with full employment obligations meant that I had to deal with heavy 

workloads that sometimes interfered with my studies.  My PhD work rate accelerated significantly 

when I was granted Sabbatical Leave by my employers. I spent 8 months at the study site devoting 

many hours to my studies.  I accomplished the following activities during this period: data 

collection, data analysis and by the end of my Sabbatical stay I had produced  a full first thesis draft 

__ 
something I had failed to achieve during the first three years of study. 

Feedback from reviewers of manuscripts prepared for publication and advice from supervisors 

contributed significantly in refining the thesis draft.  For example, the need to justify inferences 

drawn from qualitative data with in-vivo codes and interpret and account for findings inconsistent 

with existing literature was embraced during thesis refining.  Pondering over comments that 

followed conference and Faculty Higher Degrees Committee (FHDC) presentations helped greatly 

in refining the thesis draft.  For example, most recently during the SAARMSTE annual conference 

in January 2018 in Gaborone  a member of the audience during my parallel session presentation 
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suggested that I find an alternative word to the word “terms” in my main research question: In what 

terms do undergraduate student teachers think of mathematical proof?  Another member suggested 

that I consider errors and misconceptions in my findings.  I considered these suggestions seriously 

and decided that I should not include errors and misconceptions as these were outside the scope of 

the study.  After thinking through the use of the word “terms” and reflecting on literature my 

decision was to retain the word “terms” in the main research question.  At the same conference I got 

a flash of insight into the nature of horizontal and vertical shifts in proof scheme trajectories
__ 

a 

crucial observation I had overlooked during data analysis and thesis writing phases.  

Overall, conducting this research provided me with a new perspective of theoretical and practical 

considerations in the manner in which undergraduate student teachers think of mathematical proof 

and the different pathways through which students‟ thinking come into being.   For instance, a key 

practical consideration for mathematics educators and researchers pertains to the need to attain the 

proposed trajectory of proof scheme.  The whole research journey has enhanced me as both a 

mathematics educator and upcoming researcher. 
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Appendices 

Appendix A: Mid-instruction assessment data collection task sheet 

Task Sheet 1   

Instructions 

Answer all questions  

Justify your solutions as much as possible 

Answer all questions.  Justify your answers as much as possible. 

1. Determine whether the following statement is true or false. 

For all real numbers   and                   

2. Determine whether the statement is true or false.  If   is an integer, then      is even.  Justify your 

answer. 

3. Determine whether the statement is true or false For all real values of     

                                  . 

4. Prove that the sequence defined by (    
    

     
 converges. 
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Appendix B: End of instruction assessment data collection task sheet 

Task Sheet 2   

Instructions 

Answer all questions  

Justify your solutions as much as possible 

1. Define a sequence (     inductively by        and      = 
     

 
.  Prove that  (      is a bounded  

monotone sequence  and hence determine its limit. 

2. A sequence (  ) of real numbers is defined by    =  √  and      = √     .   

Prove that (   ) converges and find its limit.       

3. Prove that      =             is uniformly continuous on [   ]  

4. Use the definition of appropriate limit to prove that 

 

(a).        
√       

 
 = √   . 

 

(b).        (
  

   
 

 

   
)   . 
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Appendix C: Reflective Interview Guide 

Entry phase 

(i) Do you enjoy doing proofs? 

(ii) How often do you engage in proving? 

(iii) What is a mathematical proof?  [If a student were to ask you what a proof is, what would be your 

answer?] 

(iv) How do you usually construct proofs? [If a student were to ask you how a proof is constructed, 

what would be your answer?] 

Reflective phase 

Questioning was interactive in which probing was used to focus on points of change in the students‟ (ways, 

manner/practices of proving) and levels of conviction.  In other words interviewing was directed at eliciting 

students‟ modes of arguments employed.  Stimulated recall questions were used to evoke students‟ earlier 

and current proof construction experiences.  Interview instructions and questions for third and final data 

collection process are reproduced. t 

Please provide a historical account of your experience with mathematical proof at: 

Pre A level 

…………………………………………………………………………………………………………………

………………………………………………………………………………………… 

A level 

…………………………………………………………………………………………………………………

…………………………………………………………………………………………… 

Undergraduate level (student‟s current Rea Analysis experiences) 

…………………………………………………………………………………………………………………

………………………………………………………………………………………….  

Describe any differences you noted as you went through the above phases of learning about proving in 

mathematics. 

…………………………………………………………………………………………………………………

…………………………………………………………………………………………. 

 

 



278 
 

Appendix D: Sample of mid-instruction reflective interview transcriptions 

Student teacher: Tina 

Phase 1: reflective interviews 

Date: 05/04/2016    Venue: Mathematics Lecture room  

Researcher:[…]. Thank you for being one of the participants to this study. […] we have been  

doing proofs in Fundamentals of Analysis. What do you think is a mathematical proof ? 

Tina: Aaa, mathematical proof is something that can be used to come up with various formula or something 

that can be used to prove, maybe event, maybe possibilities. (Laughing). Because, eee, in statistics 

we have analysis but as far as this analysis is concerned actually it is not related to probability but it 

is on its own related to pure maths, sort of.  

Researcher: […] when do we say one has produced a mathematical proof? 

Tina: When one has produced a mathematical proof, actually he/she has to convince the learners or listeners 

to come with something you have to follow certain procedures. And those procedures must reach a 

conclusion whereby the learner is satisfied that that is correct. Through the channels or steps 

reaching a certain answer or stage. 

Researcher: What are you referring to as steps? 

Tina: Actually, I am referring to, eee.  Ok let‟s say you are given a problem and you are asked to prove it 

you cannot just write the problem and then say the proof which is given is the answer. Between the 

problem and the answer there are mathematical steps required which are understandable so that you 

reach to […] (Aaa) sometimes  they have to be logically connected but sometimes not for example, 

when there is a negative operation followed by a positive operation, someone can vice versa start 

with the positive, go to the negative but the operations might be the same.  

Researcher: Ok, thank you. [….] Next, I want you to reflect on your earlier experiences with this idea of a 

proof. […] at these phases, pre-A‟level, A‟level experiences and undergraduate experiences. So we 

will start with your pre A‟level experiences say from Grade one up to Form four. Describe your  

experience with  proofs? 

Tina: Aaaa, actually I didn‟t experience much about proofs but, aaa, the mathematical concept which were 

actually used to like the formula was already provided. You could be provided with the sort of 

formula then you could just substitute the required numbers then you come up with an answer. At 

that stage I had no much experience as far as proofs were concerned. 

Researcher: So, but I understand you were using at primary, the area is   W and the perimeter is  

                At primary how did you come to understand these […] (area and perimeter). 

Tina: Ok, eee, those actually the demonstrations which could be done by the teacher made us to understand 

those formula. 

Researcher: Oh, so teacher demonstrations. 

Tina: Yes, the teacher could demonstrate on the board, draw a rectangle there then label this breadth, length 

or width then he would tell you that area is length x width. Yes. After telling he then demonstrates 
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by labelling those two oh! 4 sides with actual numbers. Then he would demonstrate by substituting 

[…..] Yes like that. Then just reach to the answer. […] The emphasis was on calculations as well as 

identifying sides. 

Researcher: So the proof was at the level of identifying sides, appropriate formula and then applying. 

Tina: Yes 

Tina: How about secondary level experiences? 

Tina: Secondary level, at A‟ level that‟s when I started to experience how to prove. At O‟ level, (huuu), 

proofs – [silent] 

Researcher: But how were you learning the sine rule […] and  Circle Geometry […]. 

Tina: Yes, yaa. On the circle geometry actually, you could be given a theorem and then you were told that 

this is the angle at the centre is twice that it subtends in any remaining part of the circumference by 

just drawing a circle on board. No meaning, no no any idea of proofs were involved in circle 

geometry. There were just theorems. Some of which you could apply (eee) the concepts of triangle 

from form one. But as proofs were concerned not much was being done. 

Researcher: How about proving? 

Tina: In terms of proving maybe it was out of the syllabus but.. 

Researcher: And then at A‟ level now? 

Tina: Now at A‟ level actually that‟s when I started to make proofs, like the formula for finding area of a 

triangle lets say 
 

 
       .  Then that‟s when I started to apply the half base times height concept at 

A level to come up with   
 

 
       , whereas at O level we were being given the formula 

 

 
   or 

 

 
        without proving where they came from but at A level you could actually develop the 

 

 
   

into 
 

 
        

Researcher: How about the double angle identities in trig. The compound angle identities […] were they 

proved? 

Tina: Yes, these were now prove, they could be proved using the concept of cos20=… (stuck). We actually 

went through the proofs but …the 

Researcher: How about the          [ ]  

Tina: Yes we could prove that [repeated].  We could prove that in the interest of the teacher. Actually the 

proofs were not part of our syllabus. The teacher could tell you that the proofs of trig ratios is not in 

your syllabus, what is in your syllabus is the solving of equations  involving trig ratios. 

Researcher: Equations and identities. 

Tina: Equations involving trig. 

Researcher: […]what are your current [undergraduate level] experiences with the idea of a proof. 

Tina: Aaaa, at this level, it‟s a little bit better as far you can take your time on a certain aspect. Proofs at 

this level they take much time to comprehend whereas at A‟ level college level (aaa) you could 
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accomplish to comprehend the proofs on a shorter space of time supply because they were few. […] 

here we deal with greater items. 

Researcher: Ok. Reflecting on those various phases; the pre A‟ level, the A‟ level and the university. Have 

you noted differences in the way the proofs are done? 

Tina: Yes I have noted some difference. 

Researcher: Can you describe the differences? 

Tina: At this level, aaa!  At this level the proofs are done [silent] what can I say. They are done in a certain 

way which leaves one. Actually satisfied… [silent] eeee 

Researcher: […] go on 

Tina […], whereas at those levels the college levels, A‟level, you could not ask; how did you come with this, 

whereas at this level you know as a professional person it will be humiliating if you didn‟t 

….[inaudible].  So you to know, so it‟s a matter of mutual cooperation [….] At university proofs are 

[silent] you ought to know them whereas at A‟ level you can even write the exam without knowing 

them, at the end you get your points.  You don‟t know certain aspects. . 

Researcher: Right. Given a mathematical statement, how do you decide on which method of proof to use? 

Tina: In terms of what? In terms of numbers or algebra? 

Researcher: […] how do you decide on which method to use to prove? 

Tina: Actually, to prove the statement, I think a statement, a mathematical statement. 

Researcher: Yes […] How do you decide to say I think I need induction here, I need contradiction here 

….need direct deduction. […] How do you decide that? 

Tina: Ok, there are certain aspects which go hand in hand such that if you use one, you might get to the 

answer using the appropriate way whereas as there will be the actual way to reach to the answer. 

Aaa, there is a problem because if you apply the Triangular rule [presumably referring to the 

Triangle Inequality] where it is not required then just manipulate up to the required answer I don‟t 

think it‟s a good idea at this level.  

Researcher: Alright 

Tina: Just because you ought to apply the proper formula 

Researcher: […] How do you become convinced that I have produced a proof/ 

Tina: The stages [repeated] I will have gone through convince me that that‟s the correct answer. There is 

some kind of cohesion from stage to another. You check for cohesion. Then you check for proper 

application for certain theorems. 

Researcher: And [….], now let me come to your work [referring to task 3 ] Here on question 3 […] you 

needed to use examples for question              in other words, you decided to pick specific 

examples to prove this statement here. […] Oh so, it is greater than zero  for all      […] this 

implies         for     and        for values of    . So what is your overall conclusion 

about the statement. 

Tina: Haaa 



281 
 

Researcher: It is greater than 0 for some values and less than 0 for other values. So what is your overall 

conclusion? 

Tina: Aaaa. The overall conclusion there might be, there might be just from –  to +  because if are check 

for values which are less than 0, aaa! 

Researcher: You said for some values it is greater than   and for others it is less than  . This is what you 

wrote here. 

Tina: Yes. So this conclusion is based on what I have, what I had worked above. I could see the trend of the 

numbers. For all   

Researcher: And in your working here, you established that it is greater than 0 for some values of x and less 

for other values less than 0? 

Tina: Ok. Actually I was referring to the output there.   For all values that are greater than  , I took them as 

the domain, those numbers which I could substitute in but the output varied, they range from 

minus…,minus.  So I could conclude if I substitute negative numbers you could get negative 

numbers also up to  .  greater than 0.  But for numbers greater than 0, actually they were positive as 

outputs.   

Researcher: I get you but the statement had said: Prove that if               then this implies 

      . What is your overall conclusion after doing this? 

Tina: [Coughs] 

Researcher: Are you accepting this statement or you‟re saying it‟s wrong? 

Tina: It is a wrong statement because when we are saying […] So it‟s a wrong statement because some of the 

real numbers are negative but we are not getting numbers greater 

Researcher: […] As you see, you have used specific examples […] how does it lead to    
 

  ? Where is it? 

Yaa.  [..] What were you trying to find? 

Tina: To tell you the truth, I knew nothing, I didn‟t read about this but I know when you are testing for 

convergence it has to do with   greater than something actually I had not grasped the formula, it‟s 

like that|    |   should be less than       That‟s  what I was trying to apply but actually I had not 

grasped the [inaudible].   So what I wrote here was just a matter of writing, I did not know.   

Actually I was writing for the sake of answering the question.  

Researcher: And then question 2 you said if   and   are odd. How did you show that    and   are odd?  

You made that claim here. If we take     and   as odd numbers, then        and    are still odd. 

Tina: Ok, ok, it‟s like aaaa, iii,  I missed a certain statement there I could use the actual numbers like you 

take 3 for example,    you get a   which is odd.  If you square   then you get    

Researcher: Alright. […] I have noticed that where they [students] are supposed to use axioms they use 

examples and where they are supposed to use examples they use axioms. What do you think causes 

that among learners? 

Tina: Personally, aaa, I think, aaa, as a matter let‟s say, I am examined […] question, to test you properly 

they ask you for a certain aspect, application of aspect which seem to be difficult but for my own 
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understanding I can simplify it by using examples.  For example, they can ask you to apply a certain 

axiom yet I don‟t know that axiom, so I have to use an example.  

Researcher: How about [    ] when you are now supposed to look for examples. You are now axioms? 

Tina: It‟s just the same. It depends on the statement that is written on the question. Some of the questions 

can give examples and they ask for axioms whereas other can […] I actually was trying to make it 

clearer to anyone who doesn‟t understand the aspect if he gets hold of the question. He/she can 

understand as far as use of numbers is concerned. 
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Appendix E: Sample of end of instruction reflective interview transcription texts 

Student teacher: Cortney  

Date: 11/05/2016     Venue: Mathematics Lecture room 

 

Researcher: Afternoon [….] 

Cortney:  Afternoon. How are you sir? 

Researcher: Welcome back to the last session of our interviews.[…].  First of all [… ] I wanted to 

describe your experience of the whole, eee, [interjection from student teacher] 

Cortney: Course! Well, aaa, for starters I can, eee, say that prior to engagement to this course I was one 

person who just, aaa, used the induction method.  Well, maybe it‟s not precisely the induction 

method but supposing values I could say, If I am given something I would simply assume that 

            and try to go on and on till I get maybe 20 or till I get tired. [Laughs],  without 

really its just generalisation based on numbers.  Basing on the examples I wouldn‟t really prove to 

say does it really hold for everything 

Researcher: And now [referring to analysis experience] 

Corney: Now it‟s a different case because after this course I now know how to go about proofs. I now know 

that you don‟t just start by claiming that something is true after working with numbers only. You 

have also consider induction supposing   is something supposing   is     and then making a 

conclusion basing on items getting to   or something. 

Researcher: Thank you […]. Thank you very much. You have just said that there are cases when you used to 

use examples. Now can you account for the reason why there is a tendency to use examples by 

student to prove them [... ] even when they require deductive reasoning? 

Cortney: [inaudible] especially in my case when you don‟t know anything there is really a good reason to do 

that.  But if you look at us, like or myself I now know that I cannot generalise things using numbers. 

I have to use induction or the axioms or something so that I have made my conclusion to the fullest.  

Researcher: Oh, thank you […]. Then my next question is now I think you will agree that there are situations 

where we have to use just a counter example but students have the tendency to use axioms and 

definitions in those cases where they are supposed to use one example. Can you account for that sort 

of behaviour?  

Cortney: Like someone is supposed to use an example, they use axioms? 

Researcher: [...] To take you back for example that problem which says that if       then         

one would just simply look for a counter, but people used axioms and order properties.  Have you 

thought about this scenario […] say, eee, [interrupted by student teacher] 

Cortney: Ok fine. I think when you are given a question like this sometimes you wouldn‟t really know what 

it wants. So looking at the course that we are doing, you will think that maybe everything it wants 

me to use axioms. You will trying to attain better marks so you will always think that what if I just 

end up with a counter example, will it really get all the marks or I have to make use of axioms so that 

the answer gets balanced or maybe you look at the number of marks. 
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Researcher: […] so anything that does not have axioms and definitions wouldn‟t count as proof in your 

opinion right now? 

Cortney: Oh, yaaa. So sometimes if you look at the number of marks like for example, if this question is 

carrying  say 2 marks, I can just do substitution [use examples] but if it is carrying 7 marks, I have to 

consider the axioms so that I get out the examination knowing that well I did the right thing. 

Researcher: Ok, yaaa, it‟s driven by the need to earn marks. 

Cortney: Somewhat, not only that, maybe ok fine we have covered the syllabus we are done so sometimes 

you just feel that ok fine I have covered this now know how to that what if I just put down what I 

know on paper as long its really support that. Kana wanyatsonzwisisa [if you have really understood] 

you can actually put stuff on paper.  

Researcher: Alright Rose. Now I think you have accounted for the behaviour.  Coming back to the previous 

task that you worked on. What do you understand by the limit of a function      as    ? 

Cortney: I know that if I am given this [referring to the definition]  I have to come up with the value of   and 

that   must be greater than, it has to be greater than     .  

Researcher: You can illustrate here [referring to answer sheet paper meant for illustrating] if you want. You 

are free. 

Cortney: I hope I still remember 

Researcher: Yaa, go on it does not matter 

Cortney: So I will have to let     be given.    Now, aaa, we need to determine this big   s.t. the small   is 

an element of   and   element of real numbers then there is also a condition that....well I‟m going 

lost but whatever I know that in the end there must be function of   subtracting the limit under the 

modulus sign there must be less than...but in the end also if I substitute here I am solving for    

Small  , it must be greater than something there and that something the I get I have to set my big   

equal to that something. 

Researcher: […] How do you usually start proving [...] mathematical statements?  Maybe at school or when 

in this course how do you usually start proving some mathematical statements? 

Cortney: Well, prior to engaging in this course, I will just start by plugging in numbers and maybe weeks 

after you know I then started using the induction processes and all that and as time passed I started 

using, aaa, definitions of concepts like for example, if I am trying to come up proofs for limits. 

Whatever that I have to do it must be in line with the definitions of limits.   If I have to prove stuff 

that has to do with uniform continuity I have to come up with the definition for that first. It‟s a guide 

like for example, if you do this especially this one on limits [   ] I will know that I will have to 

substitute for function of    I have to put something  for the limit. I have to put something that  Iam 

given so if you come up with theee, if you start from the definitions  it helps you to come up with 

how to really go about it till you get the answer.  

Researcher: Thank you […]. I appreciate. Do you have anything to say about your experiences with proof in 

this course?  Anything that you might want to say? 

Cortney: In as much as I have benefited on a lot of concepts, I can say I benefited on something. We were 

actually debating just yesterday how I worked out number (aaa).... The one that I did on the board. I 

am not sure what question that was. 
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Researcher: This one? [ referring to task   ] 

Cortney: I thought this was ok to do this and when we were working out even some students thought it was 

ok to do this because sometimes that‟s what we do when working out form 4 stuff but we only get 

the answers by chance. But the proper thing like we got a negative sign, you can‟t square this. This 

and that you have for as long you have a negative sign [inaudible]. […] I am saying I actually 

benefited. If it wasn‟t for this course I was going to keep on confused.  

Researcher: Ok 

Cortney: So somewhat I will remember this and I will simply say I got it from this course. 

Researcher: Thank you […]. May God bless you. 
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Appendix F: Sample of Mid-instruction assessment chalkboard demonstration transcription         texts 

Student teacher: Debra 

Date: 29/03/2016       Venue: Mathematics lecture room 

Task 1: Decide whether the following statement is true or false.  For all       ,        implies that    

-    .  Justify your answer.  

[Student reads task instructions]; {Decide whether the statement is true or false, then the statement is..} 

[Student teacher writes on the chalkboard] 

 For all       ,             -    .   

{So if   and   are real numbers it means that   and   be can be either positive or negative numbers so it 

means that   can either positive or negative.   But if we square both negative and positive numbers, the result 

is positive}   [Student teacher writes and verbalizes the following ] 

If    is –ve             =    

If   is +ve →         =    

{So the result is the same} [referring to squaring of –   and   ]  

{Then to find   ,   can also be positive or negative but if we square  we also find the same rsults} 

[Then the student writes on the chalkboard while verbalizing what she is writing] 

If   is –ve             =    

If   is +ve    .  =   

{So this does not affect the sign , so it means that } [Student teacher writes] 

   -     

{Since the product of negative values of   is the same as the product of positive values of    

And then here [pointing to illustration on If   is –ve             =    

If   is +ve    .  =  ] the negative product (pause), the product of negative values of   is the same as the 

product of positive values of  .  So this statement is true]   [Student writes conclusion on the board] 

  the statement is true 
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Appendix G: Sample of End-of-instruction assessment chalkboard demonstrations transcription texts 

Student teacher: Tanya 

Task 4(a): Use the definition of appropriate limit to prove that 

        
√       

 
 = √  

[Student reads out question] {Use the definition of appropriate limit to prove that } [student writes] 

       
√       

 
 = √  [student is silent after writing statement on chalkboard] 

{So we are going to first of all define the limit as     of a function } [student writes and verbalizes]  

Let     be given, we need to determine     s.t. if     then |      |    

(coughs) {And} [student verbalizes and writes the following] if     then |
√       

 
  √  |    {From the 

numerator, we are going to factor out   , the square root of    so that inside the bracket we have} 

|
√    √  

 

   

 
 √ |      {If we simplify the numerator √    becomes    and   and the denominator 

[              ] , will cancel each other.  Then we have } [Student writes] 

|√  
 

   √ |     {We have that identity which states that } [student verbalizes and writes] 

√   √    
   

√  √ 
 {So we are going to apply this identity here.  Which means we are going to have} 

|
  

 

    

√  
 

       √ 
|       {In the numerator, 3 and 3 goes so we are left with} 

|
 

  √  
 

       √ 
|       {What we  want  to do here is that we want to find ,eee,    in terms of  .  This is going 

to be (coughs)} |
 

√         √ 
|        

 

√         √ 
 

[Student makes an effort to simplify, relooks at the working and says] {I don‟t why…[inaudible].  Iam 

failing to, uuu, simplify  but, but I want, what I want is that I must get   in terms of  .  So we multiply this, 

this bracket} [silent and staring at the working on the C/B.  Student rubs what has been written. Student is 

apparently stuck i.e. an impasse]. 
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Appendix H: Informed consent form 

University of Zimbabwe 

Department of science and Mathematics Education- 

Informed consent form 

Dear BEd Mathematics student 

I am doing research in the Department of Science & Mathematics Education.  I am pursuing a Doctoral 

degree entitled: Undergraduate students‟ conceptualizations of mathematical proof 

The aim of this study is: 

To explore undergraduate mathematics education student teachers‟ thinking around the notion of 

mathematical proof 

Through your participation I hope to understand and describe: 

 Why you construct proofs of mathematics statements in the manner you do, 

 The critical elements of knowledge of the processes involved in proving 

  Your participation in this study is voluntary. You may refuse to participate or withdraw from the study 

at any time with no negative consequence.   There will be no monetary gain from participating in the study.  

Confidentiality and anonymity of records identifying you as a participant will be maintained.  Please sign 

below to show your willingness to participate in the study. 

Thank you: 

Researcher: Mr Zakaria Ndemo 

Contact Details: Department of Science and Mathematics Education 

     zndemo@gmail.com 

     [0779328070] 

 

I (full name)…XXXXXX………YYYYYY…hereby confirm that I understand the contents of this 

document and I voluntarily consent to participating in the study. 

 

Signature of participant   XXXXXXX     Date 29-03-2016 
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Appendix I: Study Leave supporting documents 
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Appendix J: Anti-Plagiarism Report 
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