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ABSTRACT 

Genomic selection (GS) in rubber tree (Hevea brasiliensis) has huge potential to meet future demands of 

rubber in an economically and environmentally sustainable way. In Hevea breeding programmes, 

genomic selection can be used early in the breeding pipeline to obtain genomic estimated genetic values 

(GEGVs) for making clonal selections for further large-scale evaluation as potential commercial clonal 

cultivars. Thus, genomic selection could enhance the efficiency of Hevea breeding significantly through 

decreasing the generation interval and increasing selection intensity, therefore increasing genetic gains 

per cycle. Within-family genomic selection for rubber latex yield was performed using two sets of 179 

and 125 F1 clones from a cross between RRIM600 and PB260 evaluated in two separate phenotypic trials 

in Côte d‘Ivoire. The clones were genotyped using the genotyping-by-sequencing (GBS) approach, which 

resulted in 3,420 SNPs. A genetic linkage map of the rubber clones was constructed using the JoinMap 

5.0 software and two marker imputation methods (Beagle 3.3 and random forest algorithm) were used to 

impute the missing marker data. The ridge regression best linear unbiased prediction (rrBLUP) was used 

to predict the GEGVs of clones across-sites. In addition, the effect of marker density on genomic 

selection accuracy was investigated. Furthermore, the GS accuracies obtained were compared to the GS 

accuracies obtained using SSR markers and the same phenotypic data. The genetic map contained 1,769 

SNPs spanning 2600.9 Centimorgans (cM) and with an average of one SNP in every 1.47 cM. The 

genetic map also encompassed 308 SSR markers which spanned across 18 linkage groups and with a 

density of one marker in every 8.4 cM. Beagle imputation performed better than random forest imputation 

(RFI) as it gave a GS accuracy of 0.52, against 0.48 with RFI. Results also showed that GS accuracy 

increased with an increase in marker density, and a plateau was reached at 1,000 SNPs with Beagle 

imputed marker data and at 2,000 SNPs with RFI marker data. The mean between site GS accuracy 

obtained in this research is similar to the one obtained using SSR markers and the same phenotypic data, 

opening the way to a cost-effective application of GS in rubber. Results of this study demonstrate that 

GBS is a rapid, efficient and cost-effective approach for implementing genomics-assisted breeding. This 

research also showed that GS has high potential to increase yield genetic gain in rubber breeding. 

Key words: genomic selection, genomic estimated genetic values, genotyping-by-sequencing, 

genetic gain, rubber tree. 
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Background 

Rubber tree (Hevea brasiliensis, hereafter Hevea, 2n = 36), the prime source of natural rubber 

(cis-1,4-polyisoprene), is a preferentially cross pollinating, deciduous perennial crop that belongs 

to the Euphorbiaceae botanical family (Lau et al., 2016). Hevea is considered one of the most 

important crops globally as it provides 99% of natural rubber in the world (Rose and 

Steinbüchel, 2005), with latex being the major economic product (Pethin et al., 2015). Natural 

rubber production was at 13.28 million tons in 2017 and demand is expected to reach 19.1 

million tons by 2025 (Fong et al., 2018; Warren‐Thomas et al., 2015). Although the crop 

originated from South America in the Amazon rainforest of Brazil, 89% of the world‘s natural 

rubber is produced in Asia with Thailand, Indonesia, and Vietnam being the leading producers 

(Umar et al., 2011; Wu et al., 2016). Thailand is the leading producer of natural rubber in the 

world and in 2017 it produced a total of 4.6 million tons (Syahputri et al., 2017). After Asia, 

Africa is the second largest natural rubber producing continent, contributing only 6.7% to world 

rubber production. Côte d‘Ivoire is the 7
th

 highest producer of Hevea in the world and the leading 

producer in Africa. Hevea draws its importance on the global market because of its indispensable 

status as the sole viable source of natural rubber, of which approximately 70% is used in the tire 

industry with the remaining 30% being used in the manufacture of medical supplies and other 

industrial purposes (Bandyopadhyay et al., 2008).  

However, the Hevea industry is facing increasing accusations for causing extensive 

deforestation, accelerating biodiversity loss and increasing carbon emissions, especially in the 
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top natural rubber producing countries of South-East Asia (Min et al., 2017; Warren-Thomas et 

al., 2018). The crop is also facing severe competition for land from other profitable crops 

especially palm oil, particularly in South-East Asia. Because of the amount of arable land 

available for cultivation which has become limited due to climate change, desertification and 

environmental degradation, it has become almost impossible to simply open up untilled land, 

especially wetlands, to meet rubber production needs (Ronald, 2011). This means that future 

demands of natural rubber must be met by producing the crop on the same land area as today. 

There is therefore need for a sustainable solution that increase yields per hectare whilst 

minimizing environmental impact, and at the same time increasing profits for the poor small-

scale farmers who produce approximately 80% of natural rubber globally (Rivano et al., 2013). 

The genetic improvement of natural rubber clonal varieties through genomic selection 

(Meuwissen et al., 2001), which is a modern, state-of-the art approach of marker assisted 

breeding for quantitative traits, could play a key role to meet this objective.  

Genomic selection has emerged as one of the most promising selection strategies to enhance 

genetic gain, reduce breeding costs and breeding cycle time in tree breeding programs, and its 

several advantages over both phenotypic and Quantitative Trait Loci (QTL) – based marker 

assisted selection (MAS) (which depends on marker-trait associations) have been demonstrated 

(Voss-Fels et al., 2018). Unlike QTL-based marker assisted selection, genomic selection utilizes 

dense genome-wide markers simultaneously, to predict the genetic values of individuals in the 

selection population (Wang et al., 2018). One key assumption in genomic selection is that a large 

set of markers are in linkage disequilibrium (LD) with every QTL controlling the phenotypes of 

interest (Bartholomé et al., 2016). Several high through-put and low-cost single nucleotide 

polymorphism (SNP) chips and next generation sequencing (NGS) technologies such as 
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genotyping-by-sequencing (GBS) and whole genome sequencing (WGS) platforms have 

facilitated the production of large amounts of SNP markers for use in genomic selection 

(Dimitrijevic and Horn, 2018; Li et al., 2018). 

The first step in genomic selection is to establish a training population which should consist of 

several hundreds to a few thousand individuals that are related to the validation population and 

with phenotypes for the traits of interest (Akdemir and Isidro-Sánchez, 2019). The training 

population is genotyped for a genome-wide panel of markers and also phenotyped for the 

targeted traits, and a prediction model is developed using these genotypic and phenotypic data. 

The selection population (for example, 2 weeks old seedlings) is also genotyped but not 

phenotyped, and the prediction model calculates the genomic estimated breeding values 

(GEBVs) or genomic estimated genetic values (GEGVs) of the selection population (Edriss et 

al., 2017a). For example, selection among a large number of clones to identify new elite cultivars 

or clones to be used to advance to the next selection stages could be done at the seedling stage 

based solely on the GEGVs, thus increasing selection intensity and reducing the generation 

interval. The main challenge for deriving the genomic selection prediction equation is that the 

number of SNP effects (p) to be evaluated is way higher than the number of individuals (n) 

evaluated (Mei and Wang, 2016). Plant breeders should therefore use an appropriate statistical 

model that can deal with this problem of ‗large p, small n‘. Several statistical models have been 

developed to calculate GEGVs and to deal with genomic selection challenges (Howard et al., 

2014). The ridge regression best linear unbiased prediction (rr-BLUP) is among the most 

commonly used prediction approach. It was proposed by Meuwissen et al. (2001) in their ground 

breaking research paper, and is a parametric model which estimates SNP effects according to a 
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normal distribution with variance common to all SNPs, thus matching to a genetic determinism 

following the infinitesimal model.  

Besides the statistical model, accuracy of genomic selection can also be affected by the effective 

population size and marker density, size and structure of the training population, genetic 

architecture of the traits, relatedness between the training and validation population, level of 

linkage disequilibrium, trait heritability and method used to impute the missing marker data (as 

genomic selection models cannot handle them) (Atefi et al., 2016; Rasheed et al., 2017; Wang et 

al., 2017; Zhang et al., 2019). Genomic data from GBS is characterized by high levels of missing 

data and several methods such as Beagle and Random Forest (RF) algorithm have been 

developed to impute the missing data (Chan et al., 2016). The Beagle algorithm is widely used to 

impute marker data. It is a map dependent imputation method which makes use of hidden marker 

models (HMM) and allele frequencies to impute missing data, thus requiring knowledge 

regarding marker positions. In rubber tree, due to the scarcity of genomic resources, a physical 

map corresponding to the 18 chromosomes cannot be achieved currently, and therefore the 

imputation must be made using a genetic map and a map dependent imputation method such as 

Beagle version 3.3 (the last version of this software using this type of information). On the other 

hand, RF is a powerful non-parametric machine learning method which can be used for map-

independent imputations, that is, it does not use the linear order of markers to impute missing 

values.  

1.2 Problem Statement 

Like all tree breeding programs, the major challenge to rubber breeders is the very long time of 

the breeding cycle which can last for decades (De Souza et al., 2018). The uncertainties 

associated with planning and conducting such breeding programs can be very high. Conventional 
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breeding in Hevea based on phenotypic selection is less effective for quantitative traits with low 

heritability, which are influenced by genotype by environment (G×E) interactions (Bhat et al., 

2016), and is also laborious, require large land and is not cost effective. The three multi-

environment and multi-year phenotypic based selection stages (seedling evaluation trials (SET), 

small-scale clone trials (SSCT) and large-scale clone trials (LSCT)) are the major causes for the 

high costs and an extended breeding cycle of 20 to 30 years which ultimately limits the number 

of clonal candidates to be evaluated (Gonçalves et al., 2005).  

In the SET stage, a large number (around 2000) of full-sib seedlings are evaluated for early 

identification of traits that are correlated with yield at maturity (Souza et al., 2017).  The SET 

stage is the most critical stage for reducing the large number of genotypes issued from hand 

pollination to a manageable size (less than 200) in the SSCT. However, studies have shown that 

selection for latex yield at the SET stage using traits such as girth size, latex vessel size, and 

number of latex vessel rings is less accurate since these traits are poorly correlated with 

productivity at the adult stage because they are indirect measurements (Gonçalves et al., 2005, 

2004). Direct quantification of latex productivity is feasible at the SET stage and better 

correlated with productivity at the adult stage, but not sufficiently enough to predict the potential 

value of new clones at adult stage. Indeed, the SET is the most inaccurate of all the three 

selection stages because of the weak juvenile-mature trait correlations and also failure to 

accurately distinguish between genetic and environmental effects due to G × E interactions.  

The use of QTL-based MAS was proposed as an alternative method to shorten breeding cycle 

time and to enhance genetic gains in tree breeding programs. Although important advances were 

made in QTL-based MAS, especially for qualitative traits, QTL-based MAS did not make it to 

the real tree breeding world. The use of QTL-based MAS is ineffective when breeding for 
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polygenic traits such as latex yield in Hevea, and no reliable QTL-based markers have been 

identified so far (Heslot et al., 2015; Robertsen et al., 2019; Shamshad and Sharma, 2018). As a 

result, efforts to apply QTL-based MAS to reduce the generation interval and enhance genetic 

gains in tree breeding have been fruitless (Crossa et al., 2017).  

When breeding for quantitative traits, QTL-based MAS has been shown to be inferior even to 

traditional phenotypic selection (Zhao et al., 2014). There is therefore need to explore new and 

advanced selection methods that are cost effective, fast and with enhanced selection intensity. 

1.3 Justification 

Genomic selection is a proven technology in both plant and animal breeding to accelerate 

selection response and genetic gain, but its potential is yet to be fully utilized in perennial crops, 

and in particular in Hevea (Li and Dungey, 2018). Compared to conventional phenotypic 

selection and QTL-based MAS, genomic selection has high potential to enhance the rate of 

genetic gain in perennial crops owing to its ability to estimate the genetic values of large 

numbers of selection candidates early in the breeding pipeline (Sousa et al., 2019). In addition, 

genomic selection allows cheaper and easier selection for late expressing traits and those traits 

that are difficult to measure such as latex yield, pest and disease resistance, so that more rubber 

clones can be evaluated than in phenotypic selection, thus allowing for an increase in selection 

intensity. 

Several studies have demonstrated that genomic selection for complex traits is superior to 

phenotypic selection in terms of genetic gain per cycle and selection response (Beyene et al., 

2015; Massman et al., 2013; Michel et al., 2017; Yamamoto et al., 2017). Because of the 

reduced selection cycle time in genomic selection, annual genetic gain is expected to be two to 
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three times greater than that of conventional phenotypic selection (Sorrells, 2015). For example, 

Resende et al. (2012a) showed that genomic selection can potentially reduce the duration of a 

conventional eucalyptus breeding program by half, that is, from around 18 to 9 years. 

In rubber breeding, the more accurate and efficient genomic preselection could replace the time 

consuming and costly SETs (Cros et al., 2019) and possibly, SSCTs.  

However, despite natural rubber‘s high economic importance and the reported success of 

genomic selection in other crops, it is surprising that there is only one published article on 

genomic selection in Hevea  (Cros et al., 2019). The study focused on within-family genomic 

selection in rubber using simple sequence repeat (SSRs) markers. The article gave very 

promising results of a selection response increase of 10%. The authors pointed out that the 

practical implementation of genomic selection in Hevea requires a high-throughput and cost-

effective genotyping method, which is not the case with SSRs. Therefore, it is the goal of this 

research to study genomic selection in Hevea using GBS marker data from a family of full-sib 

rubber clones. 

1.4 Objectives 

1.4.1 General objective 

To evaluate the potential of genomic selection in rubber tree clones of a single cross (full-

sibs family) using single nucleotide polymorphisms (SNPs) marker data obtained from 

genotyping-by-sequencing (GBS). 

 1.4.2 Specific objectives 

The specific objectives are:  

1. To construct a high-density genetic linkage map of rubber clones of a single family. 
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2. To compare the performance of two different marker imputation methods (Beagle 3.3 and 

Random Forest algorithm) on genomic predictions accuracy. 

3. To quantify the effect of marker density on genomic predictions accuracy.  

4. To compare genomic predictions accuracy obtained with SNP markers and that obtained 

by using SSR markers and the same phenotypic data. 

1.3 Hypotheses 

1. Single nucleotide polymorphisms (SNP) marker data from genotyping-by-sequencing 

can be used to construct a high-density genetic linkage map of rubber clones from a 

single family. 

2. The accuracy of genomic predictions is affected by the method of marker imputation.  

3. The accuracy of genomic predictions is affected by SNP density. 

4. The accuracy of genomic predictions is affected by the type of markers used. 
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CHAPTER TWO 

2.0 LITERATURE REVIEW 

2.1 The rubber tree 

Rubber tree (Hevea brasiliensis - hereafter referred to as Hevea), the prime source of natural 

rubber, is a deciduous perennial tree of 30 – 40 m high in its natural habitat (the Amazon forest), 

belonging to the spurge family (Euphorbiaceae) together with other economically important crop 

species such as the castor oil plant (Ricinus communis) and cassava (Manihot esculenta) (Souza 

et al., 2018). The leading Hevea producing countries in the world are Thailand, Indonesia, 

Malaysia and China (Tanielian, 2018). Natural rubber is an essential raw material for the tire 

industry and for more than 50, 000 industrial, health care and household products that have 

elasticity as a functional attribute (Rahman et al., 2013).  

Despite the presence of synthetic rubber made from natural gas and petroleum, the importance of 

natural rubber as a major component of tires used in construction, automotive industry and 

aircrafts is unmatched due to its unrivalled toughness, resilience, elasticity and resistance to heat 

build-up (Gonçalves et al., 2009). Some of the alternative sources of natural rubber are: Guayule 

rubber tree (Parthenium argentatum), West African rubber tree (Ficus vogelii), Ceara rubber 

(Manihot glaziovii), Russian dandelion (Taraxacum kok-saghyz), Indian rubber plant (Ficus 

elastica), Panama rubber tree (Castilla elastica), False rubber tree (Holarrhena floribuda), Lagos 

silk rubber tree (Funtumia Africana), Madagascar rubber tree (Cryptostegia madagascariensis), 

and Palay rubber (Cryptostegia grandiflora).  
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2.1.1 Rubber latex 

The latex is harvested by tapping the laticifers (latex vessels), which is a non-destructive latex 

extraction method that ensures continuous production of the precious colloidal suspension. 

Tapping is usually done every 2 to 5 days per week for 9 to 11 months each year and the amount 

of latex obtained from tapping each tree is about 300 ml per year (Sakdapipanich and Rojruthai, 

2012). Latex is a colloidal suspension consisting of mainly rubber particles and also proteins, 

organelles and other non-rubber particles. Hevea latex contains two classes of rubber particles: 

(1) large rubber particles (LRPs) which are surrounded by rubber elongation factors (REF) on 

their surfaces and account for 94% of rubber particles in latex; and, (2) small rubber particles 

(SRPs) surrounded by small rubber particle proteins (SRPP) accounting for only 6% of the 

rubber particles in Hevea latex (Berthelot et al., 2014). In most cases, latex is harvested from the 

cups as cup-lumps which are naturally coagulated latex. After the transfer of cup-lumps to the 

factory where they are stored for a few days or weeks, the cup-lumps are re-processed in the 

factory in order to wash them (eliminating all impurities), dry them in an air-dryer and are finally 

pressed to obtain a standardized rubber block with well characterized physical properties. When 

harvesting is done during the rainy season, formic acid is added to avoid the dilution of latex by 

the rain in the harvesting cups. It is this processed rubber which is the raw material for 

manufacturing a countless number of end products with a wide range of industrial, household 

and health applications. 

2.1.2 Plant structure and ecophysiology 

The genus Hevea consists of 11 inter-crossable species namely H. brasiliensis, H. pauciflora, H. 

guianensis, H. camargoana, H. nitida, H. microphylla, H. spruceana, H. rigidifolia, H. 

camporum, H. paludosa and H. benthamiana (Mantello et al., 2012). Mature Hevea trees shed 
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their trifoliate leaves completely for a period of 3 to 4 weeks in a process known as wintering, 

after which they produce new shoots, leaves and flowers. Flowering normally occurs once a year 

after leaf shedding and is affected by climatic factors such as rainfall, temperature, latitude and 

photoperiod (Calle et al., 2010). Hevea is a monoecious tree, with lateral inflorescences bearing 

both pistillate and staminate flowers that are greenish to yellow in colour (Yeang, 2007). The 

rubber tree is considered mature for tapping after six to seven years when it attains a trunk girth 

of 50 cm at 125 cm height from the ground (Chandrasekhar et al., 2005). Hevea produces large 

seeds (3.5 – 6.0 g) that are ovoid in shape with a hard and shiny seed coat that is brown or grey-

brown in colour with numerous streaks (Daud et al., 2012). The plant has a long juvenile phase 

of 5 to 8 years before it starts to flower (Dornelas and Rodriguez, 2005). 

2.1.3 Harvesting 

Rubber latex is harvested from the laticifers by tapping or cutting the bark of the rubber tree 

using a sharp and specialized knife (Montoro et al., 2018). Latex is obtained by periodic tapping 

every two, three, four or five days depending on the type of clone or labour availability (Liu et 

al., 2016). The most common type of tapping rubber latex is the excision method in which the 

same cut is reopened at each harvest. With this method, harvesting starts as soon as the trees 

reach the minimum required girth. Trees grown through budding are harvested when the trees 

reach a girth of at least 46 cm at a height of 1.5 m from the ground, whilst for trees grown from 

seedlings latex harvesting starts when a girth of at least 46 cm is reached at a tree height of 75 

cm from the ground (as increase in trunk growth is faster in trees grown from seedlings than 

trees grown from grafting) (Aurélien and Monteuuis, 2017).  

Latex production can be enhanced by the application of ethephon once every one or two months, 

thus increasing the frequency of tapping (Sainoi et al., 2017). Tapping creates competition for 
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photosynthetic assimilates between latex production and growth of the tree resulting in 

significant reduction in girth growth during the tapping period (Chairungsee et al., 2013). 

Tapping systems around the world are characterized by variations in tapping frequency, 

concentration and frequency of stimulant (ethephon) application, and tapping cut length. 

2.1.4 Rubber breeding objectives 

The key breeding objective in Hevea is the development of improved high yielding clones with 

desirable secondary traits such as tolerance to major pests and diseases (Oidium, Colletotrichum, 

Corticium, Corynespora, Microcyclus), thick and smooth bark with a good latex vessel system, 

high growth rate after initiation of latex harvesting, and tolerance to wind (Costa et al., 2000). 

Cultivation of natural rubber has extended into sub-optimal conditions characterized by 

occurrence of extreme climatic conditions such as prolonged drought, strong winds, low winter 

and high summer temperatures and also extreme latitudes. Breeding for these abiotic stresses is 

therefore an important breeding objective in most Hevea breeding programmes (Jinagool et al., 

2015). Such sub-optimum growing conditions also require breeders to develop clones that are 

high yielding even under high planting densities and poor soil fertility. In Latin America, focus 

was given on developing clones that are resistant to the South American Leaf Blight caused by 

the fungus Microcyclus ulei (Moraes et al., 2012). 

Girth or trunk circumference is a measure of vigour and is also considered an economically 

important trait because it determines the age at which latex harvesting through tapping can begin 

and is, therefore, important in reducing the uneconomic immature period of the rubber clone 

(Gonçalves et al., 2005). Tapping panel dryness (TPD) syndrome is a physiological disorder 

which reduces rubber yields and as such developing clones that are tolerant to TPD is also of 

considerable importance to rubber breeders. Several researches have been done to identify genes 



13 
 

that determine the onset of TPD in rubber (Li et al., 2010; Venkatachalam et al., 2009). Other 

breeding objectives depend on socio-economic factors like the availability and cost of labour. In 

regions where labour is cheap, farmers prefer clones that are adapted to high intensity tapping 

whilst in areas where labour is expensive, farmers opt for clones that are suited to low intensity 

tapping.  

2.1.5 Rubber breeding and selection 

Conventional Hevea breeding can be classified into introductions, ortet selection, hybridization 

and clonal selections. Introductions involve the exchange of rubber breeding material between 

countries usually under bilateral and multilateral agreements (Ghimiray and Vernooy, 2017). The 

clones that are already grown at commercial scale in the country of origin are subjected to further 

evaluations in the receiving country to select those clones that are adaptable to local growing 

conditions (Jahufer et al., 2016). After the agronomic evaluations, promising clones are 

recommended for commercial planting. 

Ortet selection, also known as mother tree selection, is one of the oldest Hevea breeding methods 

(Carron et al., 2009). It involves systematic evaluation and selection of high performing and 

outstanding genotypes that are a result of natural genetic recombination in clonal gardens. Clones 

developed through ortet selection are known as primary clones (Gonçalves et al., 2007). Notable 

old primary clones that are still grown today include GT1, Tjir1 and PB86. 

Hybridization and clonal selection are the most important conventional breeding methods in 

Hevea and have resulted in the release of some outstanding Hevea genotypes (Gonçalves et al., 

2011). With this breeding method, desirable parents are mated to exploit the phenomenon of 

heterosis and the desirable and selected hybrids are then fixed and maintained easily through 
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vegetative propagation to produce clonal hybrids. Notable clonal hybrids that are a product of 

hybridization and subsequent selection are RRIM500 and RRIM600. 

Selection in Hevea is divided into 3 stages namely seedling evaluation trials (SET), small scale 

clonal trials (SSCT), and large-scale clonal trials (Costa et al., 2000). In the SET, a large number 

(around 2000) of seedlings issued from hand-pollination are evaluated. Screening at SET is done 

between and within families and lasts for a period of 2 to 6 years. In the SSCT, few (about 100 to 

200) selected full-sib clones from the SET are evaluated in replicated trials for a period of 4 to 8 

years. The last stage is the LSCT in which multi-year and multi-locational trials are conducted to 

evaluate clones on traits such as latex yield, tapping panel dryness, resistance to wind damage 

and also biotic and abiotic stress tolerance. In the LSCT, only a few promising clones (6 to 20) 

from the SSCT are evaluated for a period of 15 to 20 years. The three stages can take 20 to 30 

years after which an improved clone will be released for commercial plantings (Luke et al., 

2015).  

2.3 Genomic selection 

2.3.1 Principle 

Genomic selection (GS), initially used in dairy cattle breeding, utilizes whole genome marker 

data of a phenotyped and genotyped training population to predict the phenotype of a selection 

population without prior QTL detection as in QTL-based marker assisted selection (Meuwissen 

et al., 2001). The prediction model developed using genotypic and phenotypic data of the 

training population is used to estimate the genetic values of the selection population for which 

only genotypic information is available (Resende et al., 2012b). The major advantage of genomic 

selection over QTL-based marker assisted selection is that all markers are incorporated in the 

prediction model, regardless of the magnitude of their effects, making it one of the most 
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promising breeding strategies to enhance genetic gain (Cobb et al., 2019) for complex traits like 

latex yield and trunk girth. Genomic selection offers an opportunity for rapid selection of 

superior genotypes and to shorten breeding cycles and increase selection intensity especially in 

perennial crops (Cros et al., 2015). 

The base GS prediction model used to estimate the marker effects is a linear mixed model of the 

form: 

             

Where y is the vector of phenotypes of training individuals, m is a vector of the random marker 

effects, β is the vector of fixed effects (for example related to the experimental design, like trials 

or blocks), Z is the incidence matrix for the vector of marker effects (m), i.e. the matrix of 

genotypes of training individuals, X is the incidence matrix of fixed effects (β), and   is the 

vector of residual effects. This model is purely additive (i.e. non additive genetic effects are not 

taken into account). In this case, the GEBV of the selection candidates ( ̂ ) are given by:  

 ̂     ̂ 

Where    is the matrix of genotypes of the selection candidates and  ̂ the vector of marker 

effects estimated with the data of the training set. 

2.3.2 Genotyping-by-sequencing (GBS) in genomic selection 

Genotyping-by-sequencing (GBS) follows a modified restriction-site associated DNA 

sequencing (RAD-Seq; Baird et al. 2008) based library preparation protocol for next generation 

sequencing in an inexpensive and robust multiplexed simple system (Jiang et al., 2016). The 

GBS approach has gained popularity in genomics-assisted breeding as a technology for high 
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throughput and low-cost genotyping (Wickland et al., 2017). Unlike RAD sequencing, GBS 

library preparation protocol involves fewer steps, require less DNA and it lacks a size selection 

step (He et al., 2014). Important features of GBS include its ability to simultaneously conduct 

marker discovery and genotyping, and it involves reduced sample handling, no reference 

sequence limits, fewer PCR and purification steps, efficient barcoding, low cost and easiness to 

scale-up (Torkamaneh et al., 2017). In addition, GBS does not require prior sequencing of the 

genome and it allows genotyping of plants with complex genomes without prior SNP discovery, 

thus making the approach more useful for non-model species (Kagale et al., 2016) such as 

Hevea. The GBS technique allows for the detection of thousands to millions of SNPs in large 

plant populations that can be used in linkage mapping, genetic diversity studies, genome-wide 

association studies and genomics-assisted breeding.  

Despite its several advantages, the GBS approach has a few limitations. GBS has a high number 

of missing values as a result of low depth sequencing (Annicchiarico et al., 2015). In addition, 

GBS is also associated with high levels of sequencing errors (Goonetilleke et al., 2017), 

requiring to make quality controls to remove bad SNPs and possibly bad samples as well. 

Performing SNP quality control is therefore critical before proceeding to genomic predictions.  

In brief, the GBS protocol follows the following steps: normalization of genomic DNA, 

digestion with restriction enzymes, ligation of barcoded adapter sequences, direct pooling of 

PCR products (pooling of 96 genotypes to get 1 GBS library), DNA purification on column, 

PCR amplification with adapter specific primers, double purification of DNA and sequencing on 

NGS platform (Bhatia et al., 2013). The original GBS protocol which utilizes one enzyme 

ApeKI has been modified in plants into a two-enzyme (Pst1/Msel) GBS protocol to reduce 
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genome complexity and to enable the development of a uniform library for sequencing (Peterson 

et al., 2014).  

2.4 Factors affecting the accuracy of genomic selection  

The accuracy of genomic selection is the correlation between the genomic estimated breeding 

values (GEBVs) or genomic estimated genetic values (GEGVs) and their true values (Lin et al., 

2014). Prediction accuracy is important in genomic selection due to its linear correlation with 

genetic gain. Heffner et al., (2010) compared the genetic gains per unit time and cost from QTL-

based MAS and GS for complex traits in maize and winter wheat using simulated data. Wheat 

results showed that genetic gain per cycle doubled after increasing GS accuracy from 0.25 to 0.5. 

Since genomic selection accuracy is correlated with genetic gain per unit of time, it is therefore 

imperative to explore the various factors that influence the accuracy of genomic selection in 

plant breeding programs. Factors influencing the accuracy of genomic selection include effective 

population size and marker density, size and structure of the training population, heritability of 

traits, genetic architecture, statistical models, relatedness between the training and validation 

population, linkage disequilibrium, validation approach and method of imputation of missing 

marker data.  

2.4.1 Effective population size and linkage disequilibrium 

Effective population size (Ne) is the number of randomly mating individuals in a population 

which lead to the observed rate of inbreeding (Jiménez-Mena et al., 2016). A lower effective 

population size result in higher rates of inbreeding in a population which ultimately leads to 

genetic drift (Poets et al., 2015). One main assumption in genomic selection is that DNA marker 

coverage is dense enough so that linkage disequilibrium (LD) between the quantitative trait loci 

(QTLs) and markers will not be broken-up following recombination. The LD between markers 
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and causal loci is a strong determinant of genomic selection reliability (Meuwissen et al., 2001), 

and Ne determines the accuracy of genomic predictions through its effect on LD. In populations 

with lower Ne, LD is high due to higher genetic drift. There is an inverse relationship between 

LD and the distance between loci. As the distance between loci increases, LD decreases due to 

more recombination. Generally, strong LD result in higher prediction accuracy (Wientjes et al., 

2013). Plant and tree breeders can increase the chances of LD between markers and QTLs by 

deliberately reducing Ne (Grattapaglia and Resende, 2011). One way in which genomic selection 

accuracy can be increased through increasing LD is to use full-sib families, half-sib families and 

also within family designs (like in the present study).  

Schopp et al. (2017) assessed genomic selection accuracy within and across bi-parental maize 

families. The authors trained the GBLUP models with individuals from full-sib, half-sib and 

unrelated individuals of various training set sizes and varying heritability levels. The authors 

observed high prediction accuracy within full-sib families (0.41 – 0.97) and for half-sib and 

unrelated individuals, prediction accuracy was 40 – 60% lower depending with the traits. In 

addition, Lenz et al. (2017) made an assessment of factors that affect genomic selection accuracy 

for growth and wood quality traits in black spruce (Picea mariana). The authors observed a 

significant reduction in genomic selection model accuracy after using information from half-sibs 

instead of full-sibs, indicating that the increase in effective population size which was brought 

about by inclusion of relatedness contributed to higher accuracies. Furthermore, Riedelsheimer et 

al. (2013) investigated on how the training set composition affects prediction accuracy in 

interconnected bi-parental maize populations. Results showed a 42% decline in genomic 

prediction accuracy when half-sib double haploid lines replaced full-sib double haploid lines, 

further indicating the effect of Ne on prediction accuracy.  
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In nature, outcrossing species with various modes of self-incompatibilities such as Eucalyptus 

globulus (McGowen et al., 2010) are genetically diverse and have a high Ne. Such species have 

lower LD leading to low prediction accuracy. Beaulieu et al. (2014b) observed a sharp decline in 

prediction accuracy for all traits in white spruce after removing the relatedness between the 

cross-validation (CV) sets. Researches have showed high genomic selection accuracy when the 

relationship between the training and validation population was close (Makowsky et al., 2011; 

Meuwissen, 2009).  

2.4.2 Marker density and type 

Several researches have been conducted to investigate the possibility of using a reduced marker 

set in genomic selection without reducing prediction accuracies. Plant breeders are interested in 

the prospects of using a reduced marker set, since it would considerably reduce costs of 

genotyping for each line in the training set, making it possible to genotype more individuals at 

the same cost (Robertsen et al., 2019). The number of markers (marker density) needed for 

genomic prediction largely depends on the extent of LD (Werner et al., 2018), which in turn is 

determined by Ne and population structure design. There is a positive linear relationship between 

marker density and the accuracy of genomic selection. A high marker density usually results in 

higher prediction accuracy. The reason for an increase in genomic selection accuracy when 

marker density is increased is because most QTLs will be in LD with some genetic markers and 

estimates of marker effects will lead to accurate predictions of individual genetic values (Ala 

Noshahr et al., 2018). 

Norman et al. (2018) investigated the effect and interaction of population structure, training set 

size and marker density on bread wheat genomic selection accuracy. They showed that genomic 

selection accuracy was high when they increased marker density, and that high marker density is 
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more critical when predicting distant relatives. The number of markers required to attain good 

prediction accuracy is also determined by the relationship between the training population set 

and the validation set. 

 Liu et al. (2015) published a paper on the effect of genetic relationship and linkage 

disequilibrium on marker density and size of the training population required to achieve high 

genomic selection accuracy in maize. Results showed that the closer the real genetic relationship 

between the training population and the validation population, the fewer the number of markers 

required to reach a good prediction accuracy. Nielsen et al. (2016) reported that a minimum 

marker set of 1,000 is required to avoid a decline in prediction accuracy. Atefi et al. (2016) used 

simulated animal data to assess the accuracy of genomic selection under various levels of marker 

density (500, 750 and 1000), trait heritability (0.15, 0.3 and 0.45) and generation intervals of the 

validation population. Results showed that prediction accuracy increased as the number of 

markers was increased, reaching the highest when 1000 markers were used. Duangjit et al. 

(2016) reported an increase in prediction accuracy when the number of markers was increased 

from 500 to 5000 markers. The authors also noted that different traits responded differently to 

changes in marker density. For example, tomato fruit weight prediction accuracy did not vary 

much when using different number of markers.  

Solberg et al. (2008) studied the effects of marker type and density on genomic selection 

accuracy using simulated data. They compared two marker types (microsatellites and SNPs) and 

also the use of marker haplotypes in genomic selection versus the use of marker genotypes alone. 

The different marker densities used were 2; 1; 0.5; and 0.25 Ne markers per morgan using 

microsatellites and for SNP markers it was 8;4; 2; and 1 Ne markers per morgan, where 1 Ne 

markers per morgan meant 100 markers per morgan, if the effective population size (Ne) was 
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100. Results of the study showed that by using microsatellites, accuracy of genomic selection 

increased from 0.63 to 0.83 after the density was increased from 0.25 Ne per morgan to 2 Ne per 

morgan. In addition, by using SNPs, genomic selection accuracy increased from 0.69 to 0.86 

after the marker density was raised from 1 Ne per morgan to 8 Ne per morgan. The authors also 

noted that it required 2 to 3 times greater density with SNPs to achieve the same accuracy as that 

of using microsatellites. Using direct marker effects resulted in higher accuracy as compared to 

using marker haplotypes. 

Through assessing the interaction between marker density and population structure on genomic 

selection accuracy, Norman et al. (2018) reported that the response to increased marker density 

is very high when using a more diverse training population set to predict between poorly related 

genotypes. 

2.4.3 Size and structure of the training population 

The size of the training population has been shown to influence the accuracy of genomic 

prediction in different crops. Nielsen et al. (2016) reported a decline in genomic selection 

accuracy when the number of spring barley lines in the training set was below 200, at which 

accuracy was more dependent on family structure of the selected training population. Norman et 

al. (2018) studied the effects and interaction of marker density, population structure and 

population size on genomic selection accuracy in bread wheat (Triticum aestivum L.). They used 

a panel of 10,375 inbred lines genotyped with 18,101 SNP markers. Results showed that 

prediction accuracy increased with increasing number of training population size, and the 

increase in prediction accuracy was slow beyond 2,000 lines, indicating that a ceiling will be 

reached at which an increase in training set size will have little impact on prediction accuracy. 

The population structure of the bread wheat panel was assessed using K-means clustering and 
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principal component analysis, and its effect on genomic selection accuracy was assessed using 

cross-validation analysis according to K-means clusters and breeding cohorts. Results showed 

that prediction accuracy could be increased if diversity is increased within the training 

population set, particularly when the relationship between the training and validation population 

is low.  

Sarinelli et al. (2019) also reported that an increase in training population size resulted in an 

increase in genomic selection accuracy in winter wheat. Duangjit et al. (2016) evaluated the 

effect of training population size on genomic selection accuracy in tomato (Solanum 

lycopersicum). Results showed that maximum prediction accuracies were obtained with a 

training population containing 75% of the tomato accessions. When the size of the training 

population was reduced from 75% to 25% of accessions, prediction accuracy also decreased. 

Zhang et al. (2017) reported an increase in genomic selection accuracy when the size of the 

training population was increased. Cao et al. (2017) evaluated the effects of training population 

size and marker density on genomic prediction accuracy of tar spot complex resistance in maize. 

The authors noted an increase in prediction accuracy when the training population size was 

increased in all the maize populations. However, there was a very slow increase in accuracy 

when the training population was increased from 40% of the population to 90% of the population 

and the highest accuracy with the smallest standard error was observed when the training 

population consisted of 60% of the total population, indicating that the optimum training 

population size was 60% of the total population.  

The minimum size of the training population and marker density required to achieve good 

genomic selection accuracy also depends on the relatedness between the training and validation 
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population (Gorjanc et al., 2017). For example, Bernardo and Yu, (2007b), Lian et al. (2014) and 

Hickey et al. (2014) showed that to achieve a prediction accuracy of 0.5 in a bi-parental family, a 

training set composed of at least 100 phenotyped individuals that have been genotyped at a few 

hundred markers is needed. These low requirements are because of the low diversity within a 

family and the high relatedness between the training and validation set found in within-family 

individuals. However, to achieve the same level of prediction accuracy when dealing with across 

family individuals, the training set should be composed of a few thousand phenotyped 

individuals that are genotyped with about 10,000 markers (Hickey et al., 2014). The high 

requirements are because of the high diversity among families and also the low relatedness 

between the training and validation sets (Pszczola et al., 2012). 

2.4.4 Heritability of the traits 

The higher the heritability of the trait, the greater the accuracy of genomic selection. Atefi et al., 

(2016) reported an increase in genomic selection accuracy from 0.53 to 0.75 when the trait 

heritability was increased from 0.15 to 0.45. In a study on the implementation of genomic 

selection in perennial rye grass (Lolium perenne L.), Grinberg et al. (2016) found out that forage 

quality traits had the highest prediction accuracy as compared to yield related traits, indicating 

that the heritability of forage quality traits was higher than that for yield related traits, and hence 

the higher accuracy. Sarinelli et al. (2019) found the same results in winter wheat. Results 

showed that prediction accuracy amongst all prediction methods were 0.56 for test weight; 0.64 

for grain yield; 0.73 for plant height; 0.71 for date to heading and 0.60 for powdery mildew 

resistance, indicating that accuracy was high in traits with high heritability levels (plant height 

and date to heading) and low in traits with low heritability levels (test weight and grain yield). 
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Duangjit et al. (2016) also reported high genomic selection accuracy in traits with high 

heritability levels in tomatoes. Although the research was mostly focusing on the effect of 

marker density on prediction accuracy, the authors noted that traits that had a greater increase in 

prediction accuracy with increased marker densities also had higher heritability levels than traits 

that had low response to increasing marker density. For example, fruit weight (0.814) and 

soluble solids (0.714) had the highest mean accuracies and the two traits had high heritability 

values of 0.88 and 0.6, respectively. On the other hand, Aspartate (0.126) and Lysine (0.21) 

content had the lowest prediction accuracies and were also among the traits with the lowest 

heritability levels, 0.284 for Aspartate and 0.322 for Lysine.  

Zhang et al. (2017) evaluated genomic prediction accuracy in 22 bi-parental maize populations. 

Results showed that an increase in trait heritability, marker density and size of the training 

population resulted in an increase in genomic prediction accuracy. The authors noted that trait 

heritability was the most important factor determining prediction accuracy and marker density 

was the least important.  

Viana et al. (2016) reported an increase in genomic selection accuracy when trait heritability was 

increased from 0.3 to 0.7, regardless of marker density and training population size. However, 

relative accuracy was high in genomic selection as compared to conventional phenotypic 

selection when the trait heritability was 0.3 and when heritability was raised to 0.7, genomic 

selection became less efficient than phenotypic selection, indicating that genomic selection is 

more suitable for traits with low heritability. Heff et al. (2011) also noted that the relative 

accuracy of genomic selection in comparison with conventional phenotypic selection is highest 

for traits with the lowest heritability. 
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2.4.5 Statistical models for GS predictions 

The major statistical challenge in genomic selection is that the number of markers (p) can vastly 

exceed the number of records (the problem of large-p small-n) (De los Campos et al., 2013).  

Different statistical models have been developed for use in genomic selection. Simulation studies 

have shown clear differences between genomic selection methods in terms of their predictive 

ability. These methods include the ridge regression (RR) (Whittaker et al., 2000), the Bayes A 

and Bayes B (Meuwissen et al., 2001), Bayes C and Bayes Cr (Habier et al., 2011) and the 

Bayesian LASSO (de los Campos et al., 2009). These methods differ regarding their assumptions 

on SNP distribution. The rrBLUP model is a linear parametric genomic selection method which 

assumes a normal distribution of SNP marker effects with a common variance and a zero mean, 

and it shrinks all effects equally towards zero using the parameter λ, which controls the trade-off 

between the model fit and the complexity (Zhao et al., 2013). The rr-BLUP is one of the first GS 

methods proposed by Meuwissen et al. (2001), and is one of the most common GS prediction 

methods. The Bayes A method also assumes that all markers have an effect, but that some of 

them are in LD with QTLs of moderate to high effects, and therefore have large effects that 

would not be compatible with the normal distribution. The Bayes B method is similar to Bayes A 

except that it assumes that some SNPs are in genomic regions where there are no QTLs and thus 

their effect is zero (Meuwissen et al., 2001).  

2.4.6 Genetic architecture 

It is hypothesized that different prediction methods deal differently with genetic architectures of 

quantitative traits, i.e. number of QTLs, distribution of their effects and contribution of different 

gene actions (additive versus non-additive) in traits. Knowledge of the effects of trait genetic 

architecture and its interaction with statistical models on genomic selection accuracy is important 
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to plant breeders depending on the breeding objectives. When selecting clones based on per-se 

performance for use in commercial plantings, including models that capture dominance effects is 

crucial. However, since dominance effects cannot be transmitted to the next generation, breeders 

should consider models that capture additive effects when their goal is to use clones as parents of 

new segregating populations (Stich and Van Inghelandt, 2018). 

Noshahr et al. (2018) studied the effect of different genetic architectures and different genomic 

selection methods on prediction accuracy. The authors compared three Bayesian methods (Bayes 

A, Bayes B and Bayesian LASSO) using stochastic simulation across three Ne. Results showed 

that Bayes B had the greatest selection accuracy for traits influenced by low QTL numbers, low 

marker density and high Ne. Resende et al. (2012a) compared the accuracy of ridge regression 

best linear unbiased prediction (rr-BLUP), a modified rr-BLUP known as rr-BLUP B, Bayesian 

A, Bayesian Cπ and Bayesian LASSO in loblolly pine (Pinus taeda L.). Seventeen traits with 

different genetic architectures and heritability, including stem diameter, total height to the base 

of the live crown, lignin content, wood specific gravity, rooting ability (root number and 

presence or absence of roots) and Fusarium rust resistance were studied. Results showed that 

Bayes A, Bayes Cπ and the rr-BLUP B had higher prediction accuracy than Bayesian LASSO 

and rr-BLUP. In addition, the rr-BLUP B model performed equally well as the Bayesian 

approaches. The performance of rr-BLUP on fusiform rust was expected since the model 

assumes that all markers contribute equally to observed variation yet the disease is controlled by 

a few major genes (Sniezko et al., 2014). De Almeida Filho et al. (2016) observed a significant 

improvement in prediction accuracy when they shifted from using Bayesian Ridge Regression 

(BRR) and Bayesian LASSO (BL) to using Bayesian A and Bayesian B in predicting oligogenic 

traits. 
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When the contribution of dominance gene action increases, the overall genomic prediction 

accuracy of prediction models declines (de Almeida Filho et al., 2016). This may be because of 

the inability of prediction models to account for dominance effects the same way they account 

for additive effects. In addition, epistatic gene action has been shown to be a major contributor of 

genetic architecture of quantitative traits in model organisms and thus may improve accuracy of 

predicting breeding values (Morgante et al., 2018). Viana et al. (2016) reported higher genomic 

prediction accuracy in a population in which additive variance was 49% higher than the other 

population. For example, prediction methods incorporating non-additive gene interactions, such 

as the reproducing kernel Hilbert space (RKHS), are more suitable in predicting how a variety 

will perform in the future.      

2.4.7 Relatedness between the training population and validation population. 

The accuracy of genomic selection highly depends on the relatedness between the training and 

the validation population (Daetwyler et al., 2013). A critical parameter in the genomic selection 

equation is the effective number of independent loci (Me) (Daetwyler et al., 2010). Generally, as 

the relatedness between the training and validation population increases, prediction accuracy also 

increases. This is because, the more related the training and validation population is, the lower 

the effective number of independent loci (Me), and the higher the accuracy of genomic selection. 

Due to its critical role in determining prediction accuracy, several approaches have been 

proposed for predicting the effective number of independent loci (Me) and these can be divided 

into two categories. The first category is the population-based approaches, which are based on 

the variation of realized relationships (Visscher et al., 2006), and which include the two 

parameters, effective population size (Ne) and genome length in morgans (L). The approaches 

result in expressions for Me of:      [  (    )]
   ,     ,  and      where L is the genome 
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length in morgans (Goddard, 2009; Hayes et al., 2009). The total number of independent loci 

(Me) can be calculated by the equation 
    

   (    )
. The parameter Me is very low in full-sibs and 

thus prediction accuracy is higher than their half-sib counterparts. 

Plant breeders can improve accuracy of genomic selection by using training and validation 

populations that are closely related (Sonah et al., 2015). Heffner et al. (2011) observed a 

significant reduction in genomic selection model accuracy after using information from half-sibs 

instead of full-sibs, indicating the importance of relatedness between the training and validation 

population.  

Ly et al. (2013) assessed the effect of relatedness between the training and validation set in 

Cassava (Manihot esculenta Crantz). Two cross-validation schemes were created to evaluate the 

influence of relatedness on genomic selection accuracy. The first scheme known as cross-

validation no close relatives (CV-noCR) was used to avoid closely related clones, whilst cross-

validation close relatives (CV-CR) was used to force close relatives between training and 

validation sets. The relatedness between the training and validation population was measured by 

identifying for each individual in the validation population, the 10 most closely related 

individuals in the training population (Clark et al., 2012). Results showed that prediction 

accuracy was the lowest in CV-noCR and the highest was in CV-CR. Edriss et al. (2017b) found 

similar results when they evaluated the effects of population structure, imputation methods and 

genotype × tester, trial and management interactions on genomic prediction accuracy in a large 

African maize population. Cross-validation was used to assess prediction accuracy. Prediction 

accuracy was highest within clusters (0.2 – 0.36) and lowest between clusters (0.04 – 0.26), 

reemphasizing the effect of relatedness on genomic selection accuracy. Edwards et al. (2018) 
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evaluated the effects of training population design on genomic selection accuracy in wheat. 

Results showed that using related crosses in training and validation populations resulted in 

higher prediction accuracies than the use of unrelated crosses, indicating the importance of 

training population design in genomics assisted breeding. 

The effect of relatedness between training and validation population on genomic selection 

accuracy is also because of the effect of relatedness on LD. The closer the relationship between 

two populations, the higher the LD (Daetwyler et al., 2012). However, the impact of relatedness 

on prediction accuracy may decrease as the number of SNPs increases.  

2.4.8 Validation approaches 

Before the practical application of GS, it is necessary to validate the predictions, i.e. to measure 

the GS accuracy. For this purpose, plant breeders often run cross-validation (CV) schemes within 

the collected training data (Blonk et al., 2010; Meuwissen et al., 2001). Cross-validation 

procedures involve the division of a data set into a training and a validation set, omitting some 

phenotypes from the prediction model and predicting them using the model.  

However, CV can overestimate GS accuracy (Beaulieu et al., 2014a; Lorenz et al., 2011, p.94; 

Ly et al., 2013b), and therefore validation approaches using independent sites are better (i.e. 

using one site to train the model and the other site to estimate GS accuracy).  

2.5 Marker imputation in Genomic selection 

Genotyping by sequencing (GBS) has emerged as the marker platform of choice for genomic 

selection owing to its high SNP coverage, its low cost and its ability to discover SNPs even for 

species without a reference genome (Peterson et al., 2014; Rasheed et al., 2017; Yang et al., 

2016). Although it can discover thousands to millions of SNPs, GBS is characterized by a high 
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rate of missing data because of low sequencing coverage which significantly reduces marker 

density and the number of usable SNPs (Wickland et al., 2017). The percentage of missing data 

depends on library complexity and also depth of sequencing. High depth sequencing results in 

low proportions of missing data but also in high sequencing costs (Alipour et al., 2019). 

Reducing sequencing depth is cost effective but it comes with high proportions of missing data 

and leads to a reduction in prediction accuracy (Cericola et al., 2018). 

Marker imputation is mandatory in genomic selection as the prediction models cannot handle 

them. Also, it has been shown to be an effective method of mitigating the effects of missing data 

in genomic selection and genome-wide association studies (Gorjanc et al., 2017). Factors that 

influence imputation accuracy include population structure and the frequencies of marker 

genotypes in the population (Dassonneville et al., 2011). Over the years, a wide variety of 

imputation methods like Beagle (Browning et al., 2018), Impute 2 (Howie et al., 2009) and 

Random Forest algorithms have been developed to account for high levels of missing data in 

genetic studies. The accuracy of different marker imputation methods may vary under different 

imputation scenarios due to differences in algorithms and differences in use of information 

sources. Therefore, it is imperative for plant breeders to select the optimum imputation approach 

to be used in the population of interest. 

2.5.1 Random Forest Imputation (RFI) 

Random forests (RF) are considered as one of the most successful and widely used general 

purpose algorithms used to solve regression and classification problems (Biau and Scornet, 

2016). A random forest is a collection of trees, where each of the trees is constructed randomly 

based on the same tree algorithm (base tree algorithm) and same data set. Each tree in the forest 

is different due to the inherent randomness of the base tree algorithm. Another source of 
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randomness in random forest is the process of sub-sampling in which only a sample of the data is 

used to construct an ensemble of trees. Random forests make predictions by averaging the 

individual tree predictions in the forest. Random forest is one of the most successful machine 

learning algorithms owing to its ability to make accurate and robust predictions in a variety of 

applications (Belgiu and Drăguţ, 2016). When using random forest there are several parameters 

which need tuning and these include, the number of trees in the forest, choice of base tree 

algorithm to use, size of leaf nodes, and also the rate of data sub-sampling. Random forest 

imputation does not require previous information about the order of markers and hence can be 

implemented without construction of a genetic map (Rutkoski et al., 2013). 

The RF algorithm starts by sorting markers according to the level of missing data (from lowest to 

highest). The missing markers are then initialized by sampling the data based on allele 

frequencies (simple way of imputation), and then a Random Forest regression model is fitted and 

iterated. One hundred regression trees are grown for each marker vector y with missing values 

using the non-missing values through bootstrapping. In each tree and at each node, a random 

sample of √     predictors is used as splitting variables, in which predictors are other markers 

at the same row with the missing part of y, and n is the number of markers. Each tree‘s terminal 

node then gives a prediction of the missing part of y and the average predictions of the missing 

part of y in all trees are regarded as the imputed values. These steps are repeated until 

convergence is reached or up to the maximum number of iterations.  

2.5.2 Beagle Imputation 

Beagle was initially developed for marker imputation in human genetics (Ma et al., 2013). 

Beagle 3.3 is a population-based imputation approach which makes use of linkage disequilibrium 

(LD) information between the missing SNPs and the observed flanking SNPs to impute missing 
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data. Beagle is well suited for imputation in unrelated individuals and the approach involves the 

use of a graphical model to construct a tree of haplotypes present in the training population, and 

a direct acyclic graph (DAG) is used to summarize the tree by joining its nodes based on 

haplotype similarity (Sun et al., 2012). In Beagle, haplotypes are clustered using the hidden 

Markov model (HMM). First, Beagle gathers haplotype clusters at each marker and it defines an 

HMM to get the most likely haplotype pairs based on known genotypes of each individual 

(Weng et al., 2013). Beagle estimates parameters for cluster configuration using empirical 

frequencies.  The next step is estimating the probability of each possible haplotype using 

genotypic information and the forward-backward algorithm. The last step is a series of iterations, 

and the default 10 iterations have been shown to obtain high accuracy (Browning and Browning, 

2007). The probability of a missing genotype is calculated by simply averaging the posterior 

genotype probabilities over a series of iterations. 

2.6 Experimental results in perennial crops 

Cros et al. (2019) is so far the only article on genomic selection in rubber tree. The authors 

studied within family genomic selection for rubber yield using a set of 189 and 143 F1 clones 

genotyped with 332 simple sequence repeat (SSRs) markers and planted in two separate field 

trials in Côte d‘Ivoire. The effects of statistical genomic prediction methods, size of the training 

population and marker density on the accuracy of genomic selection was assessed both within 

and between sites. Between-site genomic selection accuracy was 0.53 when all clones were used 

in the training population and with all the markers. Results also showed that marker density and 

training population size strongly affected genomic selection accuracy. In addition, using 300 

markers was sufficient enough to achieve a good GS accuracy and increasing the training 

population size beyond 175 clones would have had a marginal impact on GS accuracy. When 
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SSR markers with the highest heterozygosity were used, GS accuracy rose to 0.56. Furthermore, 

genomic selection mathematical models did not affect GS accuracy. Simulation results also 

showed that implementing genomic pre-selection on 3,000 clones of the considered cross 

between RRIM600 and PB260 would have raised selection response for rubber latex production 

by 10.3%. The authors concluded that within-family genomic selection in rubber could lead to 

the release of more improved rubber varieties which will ultimately lead to higher rubber yields 

than the current conventional phenotypic based breeding methods.  

Cros et al. (2015) estimated genomic selection accuracy in oil palm (Elaeis guineensis) using 

SSR markers. Two parental populations (Deli and Group B) involved in conventional reciprocal 

recurrent selection were used. Each population consisted of 131 individuals and were genotyped 

with 265 SSRs. Within-population genomic selection accuracies were estimated for the two 

populations when predicting breeding values of the non-progeny-tested individuals for eight 

yield traits. Three methods were used for sampling the training sets and the GEBVs were 

estimated using five statistical methods. Results showed that in Group B, genomic selection 

could account for both family effects as well as Mendelian sampling terms whereas in Deli it 

could only account for family effects. Genomic selection accuracy was high ranging from 0.41 to 

0.94 and there was a positive correlation between GS accuracy and the relationship between the 

training set and validation set. The five statistical methods had no effect on genomic selection 

accuracy. Results also showed that genomic selection can be applied as genomic pre-selection 

for progeny tests to major yield traits, thus increasing selection intensity. 

Cros et al. (2017) evaluated genomic pre-selection in commercial oil palm hybrid crosses using 

SNPs from GBS. The accuracy of GS of seven oil yield components (i.e., annual cumulative 

bunch production (FFB), annual average bunch weight (ABW), annual cumulative bunch 
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number (BN), fruit-to-bunch ratio (FB), oil-to-pulp ratio (OP), pulp-to-fruit ratio (PF), and oil 

extraction rate (OER)) was estimated using A × B hybrid progeny tests with 500 crosses used for 

training the model and 200 crosses used for independent validation. A panel of more than 5,000 

SNPs from GBS was used for genomic preselection. The GBLUP was used to perform GS 

predictions using SNP data of both the training and validation population and phenotypic data of 

the training crosses. Results showed that prediction accuracies increased with an increase in 

marker density up to 500 SNPs. Prediction accuracies started to plateau from 500 SNPs up to 

2,000 SNPs. Prediction accuracies varied from high (0.73) to low (0.28) depending on traits. GS 

was able to capture genetic differences that were present within families, and it required at least 

2,000 SNPs with less than 5% missing data, and imputed using pedigree information. The 

authors concluded that genomic preselection could have had increased the selected hybrids 

bunch production yield by more than 10%.   

Kwong et al. (2017) evaluated the effect of two marker systems and eight modelling methods for 

implementing genomic selection in Nigerian dura × Deli dura family with 112 individuals. The 

traits selected were shell-to-fruit (S/F), mesocarp-to-fruit (M/F), fruit-to-bunch (F/B), kernel-to-

fruit (K/F), oil per palm (O/P) and oil-to-dry mesocarp (O/DM). The two marker systems 

evaluated were single nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs). 

Eight genomic selection modelling methods used for estimating the accuracy of genomic 

selection for the traits were Ridge Regression, RR-BLUP, Bayesian A, B, Cπ, LASSO and two 

machine learning methods (Random Forest and Support Vector Machine (SVM)). Results 

showed that O/DM had the highest genomic heritability whilst O/P and P/B had the lowest. 

Genomic selection accuracies were low with SSRs, with trait accuracies around 0.20. The 

average genomic selection accuracy of the two machine learning methods was relatively higher 
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(0.24), as compared to 0.20 achieved by other GS methods. Traits with the lowest mean 

accuracies were M/F and O/P (0.18), whilst F/B (0.28) had the highest accuracy. The accuracies 

for all traits were improved by using genome-wide SNPs especially for M/F (0.30), S/F (0.39) 

and O/DM (0.43). The average genomic selection prediction accuracy of the two machine 

learning methods was 0.32, as compared to 0.31 of the other methods. 

Ratcliffe et al. (2015) studied the potential of genomic selection in interior spruce (Picea 

engelmannii × glauca) breeding utilizing a genotyped population of 769 spruce trees derived 

from 25 open-pollinated families. Repeated tree height measurements were done at ages 3, 6, 10, 

15, 30, and 40 years to allow the temporal testing of genomic selection methods. Single 

nucleotide polymorphism (SNP) discovery was done using the genotyping-by-sequencing (GBS) 

pipeline for non-model species. Three unordered marker imputation methods (K-Nearest 

Neighbor with special family weighting (KNN), mean imputation (M60) and singular value 

decomposition (SVD)) were used to impute the data which had 60% missing information. Three 

genomic selection models were evaluated based on their predictive accuracy, and their 

subsequent marker effects. Prediction accuracy was moderate (0.31 to 0.55) and were of enough 

capacity to deliver enhanced selection response over traditional pedigree-based selection. 

Temporal genomic selection prediction accuracy decreased with increasing difference in age 

between the training population and validation set (0.04 – 0.47). Imputation results showed that 

SVD and KNN yielded a higher number of SNPs and had higher prediction accuracies than mean 

imputation (M60). In addition, the Bayes Cπ and ridge regression BLUP (rrBLUP) yielded the 

same level of prediction accuracy and performed better than the generalized ridge regression 

heteroscedastic effect model for the traits under study. 
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Muranty et al. (2015) studied the accuracy and responses of genomic selection (GS) for key traits 

in apples. Prediction accuracy and selection response was assessed for key culling traits namely: 

fruit cropping, pre-harvest dropping, per cent of russet, attractiveness, fruit size, and four 

components of skin colour, over-colour, per cent over-colour, ground colour and type of colour. 

The training population consisted of 977 individuals derived from 20 pedigreed full-sib families. 

Historic phenotypic data for 10 traits related to fruit productivity and external appearance were 

available. The genotypic data for the 7,829 SNPs was generated with an Illumina 20K SNP 

array. A genome-wide prediction model was built using these data and was used to calculate the 

genomic breeding values of five application full-sib families. These five application families 

were phenotyped for one year and their phenotypic values were compared with the predicted 

breeding values. Results showed that genomic prediction accuracy for the 10 traits reached a 

maximum value of 0.5 with a median value of 0.19. In addition, GS accuracies were strongly 

affected by heritability of traits and phenotypic distribution. Significant selection response was 

observed for traits with symmetric phenotypic distribution and high heritability. Non-significant 

response was observed on traits with low heritability or traits with reduced or skewed phenotypic 

variation. Furthermore, the degree of relatedness between the training and validation population 

did not affect prediction accuracies among the five application families. They concluded that 

genomic prediction has huge potential to accelerate breeding progress in fruit tree crops by 

overcoming the long generation intervals and high phenotyping costs. 

Iwata et al. (2013) evaluated the prospect of applying genome-wide association studies and 

genomic selection in Japanese pear (Pyrus pyrifolia) breeding. The study used 76 pear cultivars 

to detect significant associations of 162 DNA markers with nine agronomic traits which include 

harvest time, fruit size (fruit weight), resistance to black spot, fruit shape in longitudinal section, 
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sugar content, acid content, vigour of tree and number of spurs. Multi-locus Bayesian regression 

models accounting for categorical phenotypes were applied for both GWAS and GS model 

training. Significant marker-trait associations were observed at harvest time, number of spurs and 

black spot resistance and two associations were closely linked to known loci. Whole genome 

predictions for genomic selection were highly accurate (0.75) for harvest time, at moderate levels 

(0.38 – 0.61) for fruit shape in longitudinal section, resistance to black spot, fruit size, number of 

spurs, firmness of flesh and acid content and were low (< 0.2) for sugar content and tree vigour. 

Beaulieu et al. (2014) assessed genomic selection accuracies between and within environments 

and breeding groups (BG) in white spruce. Genomic prediction accuracies for growth and yield 

traits were determined using 1748 trees and 6,932 single nucleotide polymorphisms (SNPs). 

Each of the breeding groups had an effective size of Ne ~ 20 and marker subsets were also 

tested. Results showed that cross-validation (CV) prediction accuracies for least absolute 

shrinkage and selection operator and the ridge regression (RR) models reached those of 

pedigree-based models. In addition, with strong relatedness between CV sets, prediction 

accuracies for RR within environment and breeding group were high for wood (r = 0.71 – 0.79) 

and moderately high for growth traits (r = 0.52 – 0.69) depending on the heritability of the traits. 

Accuracies for both classes of traits reached between 83% and 92% of those obtained with 

phenotypic and pedigree data. Prediction accuracy in untested environments was moderately 

high for wood (r ≥ 0.61) and dropped significantly for growth traits (r ≥ 0.24), pointing out the 

need for phenotyping in all test environments and to model genotype-by-environment 

interactions (G×E) for growth traits. In addition, prediction accuracies for all traits and sub-

populations decreased sharply, as the relatedness between CV sets was removed. They concluded 
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that in order to obtain good prediction accuracies, high relatedness between CV sets is needed, 

and genomic selection models should be built within the same breeding population only. 

Li and Dungey. (2018) evaluated the potential gains of implementing genomic selection over 

forward selection in conifer breeding using stochastic simulation. The authors selected several 

methods to speed up deployment of selected material and these include using additional 

replicates of conifer clones in archives for crossing, top-grafting on mature seed orchard ortets, 

embryogenesis and clonal propagation. Results showed that genetic gain per generation 

increased when the training population size was large (800 c.f. 3000 clones) and/or when the 

heritability of the traits was higher (0.2 c.f. 0.5). The largest genetic gain of 24% was realized 

when a large training population size (3000 clones) and high traits heritability (0.5) were 

combined. In addition, the accuracy of GEBVs increased with an increase in training population 

size, heritability of the traits, and also SNP marker density. Furthermore, results of calculated 

prediction accuracies of genetic gain per unit time and GEBVs suggested that a minimum 

training population size of 2000 clones is required for effective genomic selection of conifers. 

They concluded that with genomic selection with a training population size of 2000 clones and a 

60K SNP panel, breeders can expect a 1.58 mm per year increase in diameter-at-breast-height 

(DBH) and 2.44 kg/m
3
 per year increase for wood. The authors concluded that deploying genetic 

material (clones) selected using genomic selection with top-grafting for early cloning could be 

the best option in forest tree breeding. 

Suontama et al. (2019b) studied the potential of genomic selection across two Eucalyptus nitens 

breeding populations with varying selection histories. A breeding population consisting of 691 

individuals representing two seed orchards with varying selection histories were genotyped using 

a high-density SNP chip (EUChip60K). Records of phenotypic data on growth and form traits, 
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and for wood quality traits at age seven were available. The GBLUP was used to build the 

prediction model, which was compared to the traditional pedigree-based alternative using the 

ordinary BLUP. Results showed that substantial improvement of genetic gain and breeding value 

accuracy can be achieved with GBLUP. In addition, cross-validation within and across two 

different seed orchards showed that higher GS predictive accuracy can be achieved through 

increasing the training population size. 

 

 

CHAPTER THREE 

3.0 MATERIALS AND METHODS 

3.1 General overview 

The study used phenotypic and genotypic data of 304 Hevea clones from the F1 cross between 

PB260 × RRIM600. The clones were evaluated in two different small-scale clonal trials (SSCTs) 

in Côte d‘Ivoire, with 179 clones at HR46 and 125 at Sapest13 under the Center for International 

Cooperation in Agronomic Research for Development (CIRAD) and French Rubber Institute 

(IFC) rubber breeding programme. The two SSCTs were implemented using conventional 

experimental designs, which enabled the reliable estimation of clone values (phenotypes). In 

addition, the clones were genotyped by GBS, resulting in 3,420 SNP markers. Genomic selection 

(GS) models trained using genome-wide marker data and phenotypes of clones in one site were 

used to predict the phenotypes of clones in another site (across-site predictions). Across-site 

predictions were performed to test the potential of replacing phenotyping by GS predictions. A 
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high-density genetic linkage map was constructed prior to Beagle imputation and the effect of 

two marker imputation methods (Beagle 3.3 and Random Forest Imputation) on GS accuracy 

was quantified. The effect of marker density on GS accuracy was investigated.  

3.2 Study sites 

The field experiments for phenotyping were conducted in the south-western parts of Côte 

d‘Ivoire. Experiments comprised two study sites, namely Sapest13 located at Société Africaine 

de plantations d‘Hévéas (SAPH) estate and HR46 located at Société des Caoutchoucs de Grand-

Béréby (SOGB) estate. HR46 is characterized by gravelly clay-loam soils and it lies at an 

altitude of 33 meters above sea level (m.a.s.l) with a longitude of 7° 06' 05" W and a latitude of 

4° 40' 54" N. Sapest13 has deep sandy soils and it has a longitude of 4° 36' 39.74" W, a latitude 

of 5° 19' 47.79" N and it lies at an altitude of 89 m.a.s.l. Both sites experience the same tropical 

climatic conditions, with an annual average temperature of 26
°C

 and annual average rainfall of 

1,600 mm. 

3.1.2 Planting material and field phenotyping 

A total of 304 F1 clones were phenotyped in the study, with HR46 and Sapest13 having 179 and 

125 clones, respectively. There were two common clones in both sites, thus making a total of 

304 clones altogether. Data from the two common clones was only used to train the genomic 

prediction model and excluded from the validation sets.  

The 304 F1 clones belong to a cross between the secondary rubber clone RRIM600 and PB260, 

in which RRIM600 was used as a male and PB260 as a female. RRIM600, a widely grown and 

universally adapted accession from Malaysia which originated from a cross between primary 

rubber clones PB86 and TJI1, is a high yielding clone even under sub-optimal environments. 
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PB260, also a Malaysian clone, was derived from a PB5/51 (PB56 × PB24) × PB49 cross, and is 

a high yielding clone which is highly fertile and also considered suitable for sub-optimal areas. 

The planted ramets were produced under nursery conditions by grafting on root stocks generated 

from seeds produced from natural pollination of primary clone GT1 of Indonesia. The average 

number of ramets per clone at HR46 and Sapest13 was 11 and 13, respectively, giving a total of 

2,016 and 1,869 ramets per site, respectively. 

The HR46 trial was planted in July 2012 and the Sapest13 trial was planted in July 2013. Ramets 

were planted at a spacing of 2.5 × 2.5 meters with a plant population of 1,600 per hectare. The 

research used an almost complete block design with individual trees randomized within each of 

the 6 blocks. The trait under study was rubber latex production. 

Data collection on rubber yield was recorded in both sites and for each ramet by tapping 3 times 

a week for 3 consecutive months. In HR46, tapping started at the end of the dry season at 32 

weeks after planting whilst at Sapest13 tapping started 38 weeks after planting, at the end of the 

rainy season. At HR46, each tree had a mean cumulative partly-dried rubber yield of 78.7 g, 

which ranged from 0.50 to 318 g per tree, meanwhile at Sapest13 the mean per tree was 244.6 g, 

with a range of 0.25 to 840.1 g per tree. To get the clone values using raw ramets data from the 

two sites, a linear mixed model and Best Linear Unbiased Predictor (BLUP) analysis was carried 

out using ASReml-R version 3.0 statistical package (Butler et al., 2009). The clone values were 

in adjusted forms so as to cater for effects related to blocking and also variations in size among 

the trees at the time of tapping. In this research study, the adjusted clone values are referred to as 

phenotypes. The broad sense heritability (H
2
) at each site was 0.9, and was calculated as per 

equation below:  
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Where   
  is the genetic variance of clones,   

  is the residual error variance and    is the trial 

harmonic mean number of ramets per clone (Gonçalves et al., 2006), with   
 

 and   
   obtained 

from the linear mixed model.  

3.2 Marker genotyping 

3.2.1 Genomic DNA extraction 

Young and healthy leaflets were collected and genomic DNA was extracted from leaf slices of 6 

mm in diameter, each ring weighing 1 mg. Extraction of high-quality genomic DNA was done 

on Macherey-Nagel magnetic beads, using the Beckman robot. In brief, the process of DNA 

extraction was done in three stages as follows: 

Grinding of leaf samples: the leaf samples were placed in a 96-well Corning deepwell of 1.1 ml 

round wells in the presence of a 3 to 4 mm diameter ball. The samples were then frozen and 

crushed in liquid nitrogen using a Genogrinder ball mill.  

Lysis stage: the buffer was preheated to 72 ° C and the leaf sample powder was mixed with 400 

μl of hot extraction buffer. The mixture of leaf sample powder and hot extraction buffer was 

shaken by vortexing and incubated at 72 ° C for one hour in an oven. This was followed by 30 

minutes of high-speed centrifugation at 4000 rpm using an Eppendorf 5810R centrifuge. 

Purification: this process was performed on the Beckman robot which features fully automated 

milling, leaching and eluting steps. The automated purification protocol proceeded as follows:  

1. Preparation of binding on magnetic beads in a deepwell by mixing 20 μl of diluted 

magnetic beads and 300 μl of isopropanol.  
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2. Removal of 300 μl of supernatant and addition to the binding buffer followed by 

incubation. 

3. Ringing of magnetic beads on the magnetic support and elimination of the supernatant. 

4. Washing cycles using wash buffers (MC3, MC4) and ethanol (EtOH80) followed by 

addition of the elution buffer (MC6).  

5. Use of the program 02_elution and recovery of the supernatant in PCR96 Sorrenson 

plates. 

 

3.2.2 Genotyping-By-Sequencing (GBS) 

After DNA extraction, the DNA was digested by two enzymes Pst1 and MSE1, in league with 

the barcode and adapters, and multiplexed to 96 individuals per bank. The banks were sent to 

GENEWIZ (USA) for sequencing using a next generation sequencing technology known as 

Genotyping-By-Sequencing (GBS) (Elshire et al., 2011). In brief, the GBS protocol followed the 

following steps: normalization of genomic DNA, digestion with restriction enzymes, ligation of 

barcoded adapter sequences, direct pooling of PCR products (pooling of 96 genotypes to get 1 

GBS library), DNA purification on column, PCR amplification with adapter specific primers, 

double purification of DNA and sequencing on NGS platform (Bhatia et al., 2013). 

After sequencing, the SNP data was sent back to CIRAD in the form of Fastq files that were then 

transformed to the Variant Call Format (VCF) file. Indels and SNPs that were not biallelic were 

removed from the VCF file using VCFtools (Danecek et al., 2011). All SNPs with a minor allele 

frequency of less than 15% were also removed, as this was not compatible with the possible 

segregation patterns expected with biallelic markers in a single cross. In addition, SNP 

datapoints with a read depth less than eight were set as missing and SNPs with more than 50% 
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missing data were removed. This resulted in a raw VCF file with 83,259 SNPs, which was 

provided by CIRAD to conduct the present thesis work. 

3.3 Production of the final SNP dataset  

To get the final VCF file from the VCF file converted from the Fastq format in order to perform 

genomic predictions, the following steps were followed to ensure suitable molecular data quality: 

1. Removal of 30 illegitimate individuals (identified in a separate study) from the VCF file 

using VCFtools in Linux. 

2. Removal of 396 SNPs that were monomorphic. This resulted in a VCF file with 82,863 

SNPs. 

3. Thinning of SNPs to keep only one SNP per window of 500 base pairs apart. This 

resulted in a VCF file with 35,802 SNPs. 

4. A histogram of percent missing data per individual was plotted in R and the five 

individuals with percent missing data greater than 50% were removed from the VCF. 

5. A histogram of mean read depth (DP) per SNP was plotted in R, and 116 SNPs that 

appeared as outliers, that is, with a mean DP greater than 400 were identified and 

removed from the VCF file, as it was assumed that they were found in duplicated regions 

of the genome. This resulted in a VCF file with 35,686 SNPs.  

6. Separating the VCF file into parental VCF and progeny VCF. 

7. Each of the two parents was replicated three times in the VCF file and a script was run in 

R to determine the true genotypes of the two parents. The genotype which appeared at 

least twice amongst the 3 replicates of the parents was chosen as the true genotype and 

the other genotype(s) (if any) were regarded as genotyping errors. In the case in which all 

the three loci were different, the data point was set as missing data.  



45 
 

8. The percentage of heterozygous genotypes per SNP was computed in R using the 

following formulae:  

                               

                                        
 

A histogram of percentage heterozygosity was plotted and all SNPs with heterozygosity 

percentage greater than 80% and less than 20% were removed both in the parental VCF 

and the progeny VCF, as this was not compatible with the possible values expected with 

biallelic markers in a single cross. This resulted in parental and progeny VCF files with 

33,517 SNPs each.  

9. Removal of SNPs that did not pass the comparison test of expected and observed 

segregation (0/1 × 0/1, 0/1 × 1/1, 0/1 × 0/0, 1/1 × 0/1, 0/0 × 0/1) using a p value < 0.01, 

following the Monte Carlo exact multinomial test. This was done with the function 

‗multinomial.test’ in the EMT R package (Lawal, 2003) in both the parental and progeny 

VCF files, and resulted in 3,458 SNPs. 

10. Removal of SNPs that were homozygous in the two parents with different alleles (AA × 

BB) as they were not compatible with the possible segregation patterns expected with 

biallelic markers in a single cross 

The histograms that were plotted in R to show the distribution of percentage missing data per 

SNP, percentage of missing data per individual, mean read depth per SNP, and percentage 

heterozygosity after the above quality assurance steps are shown in Figure 3.1 below. 
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Figure 3. 1: Distribution of percentage missing data per SNP (top left), percentage missing 

data per individual (top right), mean depth per SNP (bottom left), and percentage of 

heterozygous genotypes per SNP. 
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Figure 3. 2: Pipeline to produce VCF files for genomic predictions
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The pipeline that was developed to check and correct the quality of SNPs and to produce the 

final VCF file with 3,420 SNPs for use in genomic predictions is shown in Figure 3.2 in the 

previous page. 

3.4 Construction of genetic linkage map  

In order to make imputation with Beagle 3.3, a genetic map is required. Prior to linkage map 

construction, the R software was used to convert the final marker dataset from the VCF file 

format (0/1, 1/1, 0/0) to the cross-pollination (CP) population type format (hk, kk, hh, nn, ll, np, 

lm) which is compatible with the JoinMap software (Stam, 1993). SNP markers were grouped 

into two categories based on their segregation patterns. The first group consisted of markers that 

segregated in a 1:1 ratio and these were the test-cross markers in which one parent was 

heterozygous whilst the other parent was homozygous (<nn×np> or <lm×ll>). The second 

category of markers segregated in a 1:2:1 ratio, and these were the inter-cross markers in which 

both parents were heterozygous (<hk×hk>). To identify linkage groups according to those 

already in previous studies such as Lespinasse et al. (2000) and Pootakham et al. (2015), SSR 

markers were included in the genetic map. Linkage analysis was done using JoinMap 5.0 using 

parameters set for cross-pollinated (CP) population types. Assignment to linkage groups was 

done based on the logarithm of the odds (LOD) threshold value of 6.0. The research used 

linkages with a recombination (REC) rate of < 0.4, a map LOD value of 0.05, and a goodness-of-

fit jump threshold set at five for inclusion into the linkage map and for calculating the linear 

order of markers within a linkage group. The Kosambi mapping function (Kosambi, 1944) was 

used to estimate map distance and to convert the recombination fractions between markers to 

map distances in centiMorgans.  
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3.5 Comparing the performance of marker imputation methods 

The Beagle 3.3 (Browning and Browning, 2007) was the map-dependent imputation method 

used, whilst Random Forest regression algorithm (Stekhoven and Bühlmann, 2012), represented 

the map independent method. For the two algorithms, imputation was performed on the p × n 

matrix of p individuals and n SNP markers whose data points, presented in (0, 1, 2, NA) format, 

represented the three possible genotypes and the missing value (NA), respectively. Beagle was 

selected amongst the map dependent imputation methods since it is widely used for GS 

imputation and because it offers considerable flexibility to tune the imputation algorithm to 

specific needs depending on the genetic structure of data sets. This is also the imputation 

software used for the rubber GS study of Cros et al. (2019). The Random Forest algorithm was 

chosen for this research because it came top amongst five other map-independent algorithms in a 

recent study with GBS data (Rutkoski et al., 2013).  

3.5.1 The Beagle algorithm  

Because a proper physical map for the Hevea clones with 18 linkage groups is not available, 

because of lack of a good reference genome, Beagle 5.1 (the latest version of Beagle) could not 

be used to impute missing markers since it requires physical distances between SNPs. Beagle 

3.3, which is the last version of Beagle able to make imputation from genetic distances without 

requiring physical distances, was therefore used to perform marker imputation. Imputation was 

performed on the set of SNPs that were mapped with JoinMap, using the following parameters: 

nsamples=20 and niterations=25. 

3.5.2 The Random Forest algorithm  

For the random forest imputation (RFI), missing SNP markers were estimated using the random 

forest regression (Breiman, 2001), using all the 3,420 available SNP marker data. The RFI was 
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implemented in R using the package ―missForest‖ (Stekhoven and Bühlmann, 2012) and the 

function missForest. To decide on the number of iterations and the number of regression trees to 

grow, a data matrix was created from marker data and random non-missing datapoints (10% of 

the total) were set as missing using the ProdNA function in ―missForest‖ and three combinations 

(10 iterations and 100 regression trees, 15 iterations and 150 regression tress, 15 iterations and 

300 regression trees) of number of iterations and decision trees were used as parameter sizes to 

impute the data with 10% missing information.  

After the imputation, the out-of-bag error (OOB) was computed and the combination of 15 

iterations and 300 regression trees was chosen to impute the real data, as it gave the lowest OOB 

error. To perform the random forest imputation, markers were first converted to a format 

compatible with RFI as follows: 0/0 as 0, 1/1 as 1, 0/1 or 1/0 as 2 and ―.‖as NA. The RFI 

procedure used to impute missing SNP datapoints is implemented in missForest as follows:  

1. For the marker matrix M, SNP markers were first sorted in ascending order (from lowest 

to highest percent missing) and missing values were then imputed using mean imputation 

(MNI). 

2. At each marker j containing missing values, non-missing values were used to grow 300 

random forest regression trees (𝜣1,…,300). Each of the 300 RF regression trees was 

grown using a bootstrap sample of individuals Y, and a random sample of √    marker 

predictors were used, where n-1 is the total number of markers excluding marker j. Each 

of the RF trees (𝜣) contains terminal node values and instructions for recursive 

partitioning of observations into the terminal nodes. These instructions include split 

variables at each node, and the value of the split variable that is used for partitioning. 

3. The missing values at each marker j were imputed as shown on equation 3 below: 
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             where x is an input vector. 

4. Marker j was then updated in the marker matrix M using the  ̂ values as the estimate of 

missing values. 

5. The steps 2 to 4 were repeated for each marker until all the markers were imputed. 

6. Using the imputed matrix, steps 2 to 5 were repeated until convergence occurred or for a 

maximum of 15 iterations. The convergence was declared as soon as the 𝛥N went up for 

the first time as shown on equation 4 below: 

𝛥  
∑ (         )

 

∑ (     ) 
 

Where M1 is the newly imputed marker matrix and M0 is the previously imputed marker matrix. 

When the convergence criteria were met, the research used M0 as the final estimate of M. 

Two imputed datasets of SNPs from Beagle and RFI were used to perform genomic predictions, 

and the accuracy of the two imputation methods was measured by comparing the prediction 

accuracies obtained with the two imputed SNP datasets.   

3.6 Genomic predictions 

To perform across-site genomic predictions using rrBLUP, the two marker data files from Beagle 

and RFI were split into two SNP matrices, the first one contained the 179 HR46 clones and the 

second SNP matrix contained the 125 Sapest13 clones. To proceed to GS predictions the format 

of markers was converted to the {-1, 0, 1} format which is compatible with rrBLUP in which 1 is 

homozygous for allele one, 0 is heterozygous and -1 is homozygous for allele two.  
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A purely additive GS model and the random regression best linear unbiased prediction (rr-

BLUP) method (Meuwissen et al., 2001) were used to estimate the genomic estimated genetic 

values (GEGVs) of the full-sib rubber clones. This was chosen as Cros et al. (2019) did not find 

any difference in accuracy when using this approach and other standard prediction approaches 

(including approaches modelling non additive effects). Marker effects were estimated using the 

following linear mixed model: 

             

Where y is the vector of adjusted phenotypic values, m is a vector of the random marker effects, 

β represent the vector of fixed effects (the mean phenotype), Z is the incidence matrix for the 

vector of random marker effects (m) , i.e. the matrix of genotypes, X is the incidence matrix for 

the vector of fixed effects (β), and   is the vector of residual effects. 

The structure of the means and variances for the rr-BLUP model are as follows:       (   ), 

 ( )    ,       (       
 ),      ( )          ,   

   (  
  ) ⁄        

  

Where n is the total number of marker loci,   
  is the variance which is common to each marker 

effect, and   
  is the residual error variance (Resende et al., 2012b). The rr-BLUP mixed model 

for prediction of m is equivalent to:  

 [
      

        
  
 

(  
  )⁄

] [  ̂
 ̂
]  [

   

   
] 

where   relates to the number of SNP markers used and   
  and   

  refer to the total genetic 

variance of the trait and the residual variance, respectively. An estimate of the effect of each SNP 

marker was obtained by solving the mixed model equations presented above. The predicted 
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genomic estimated genetic value (GEGV) of the individual rubber clone j was given by  ̂  

∑    ̂   The Z matrix was constructed from the number of alleles that were observed in each 

marker (-1, 0 or 1).  

Residuals are assumed to be normally distributed with zero mean. The genetic variation at each 

locus, which is the amount of genetic variation explained by each SNP is given by   
  ⁄ , where 

  relates to the number of SNP markers used, and is given by the equation:    ∑   
 
 (    ), 

where    represents the allele frequency of one of the alleles of loci i. SNP marker effects m and 

residuals errors e are assumed to be independent. The ridge parameter   
   

      was used to 

control the shrinkage of marker effects.  

The variances were calculated by restricted maximum likelihood (REML). The ridge-regression 

BLUP analysis was performed using the ‗mixed.solve‘ function in the R software package 

rrBLUP (Endelman, 2011). 

3.7 Across site genomic predictions  

Analyses were performed for predictions between sites, leading to two different validation 

approaches (HR46 towards Sapest13 and Sapest13 towards HR46). In the first scenario, 179 

individual clones from HR46 were used to train the GS model, and the 123 clones in Sapest13 

were used as the validation population. In the second scenario, the 125 individual clones in 

Sapest13 were used to train the GS model, to predict the GEGVs of the 177 clones in HR46, that 

were used as the validation population. The GS predictive ability was obtained for each set as the 

Pearson correlation between the GEGV ( ̂) and the phenotype (y) of clones composing the set. 

The GS accuracy was obtained by dividing the predictive ability by the square root of broad 

sense heritability (H
2
).  
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3.9 Effect of marker density on GS accuracy 

To study the effect of marker density on GS accuracy, the SNP matrices imputed with RFI and 

Beagle were imported into R. A loop was created in R to select random SNP samples in which 

each sample size had 30 replicates. The 3,420 markers from Random Forest imputation and the 

1,769 markers from Beagle imputation were selected as the first marker subsets, from which 

SNP markers for lower densities were randomly selected. The different SNP sample sizes for the 

SNP matrix from RFI were as follows 25 SNPs, 50 SNPs, 100 SNPs, 250 SNPs, 500 SNPs, 1000 

SNPs, 2000 SNPs and 3420 SNPs. For Beagle imputation, the different SNP sample sizes were 

as follows: 25 SNPs, 50 SNPs, 100 SNPs, 250 SNPs, 500 SNPs, 1000 SNPs,1500 SNPs and 

1769 SNPs (corresponding to the number of SNPs that could be mapped with JoinMap 5.0). 

Random sampling of SNPs was done in R using the function sample. Genomic predictions were 

performed at each marker density and for all the 30 replicates, and the GS accuracies of the 30 

replicates were computed. The average GS accuracy at each SNP sample size was computed and 

plots were made to show the effect of marker density on GS accuracy in the two sites and with 

the two imputation methods.  
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CHAPTER FOUR 

4.0 RESULTS 

4.1 To construct a high-density genetic linkage map of rubber clones of a single family. 

Of the 3,420 SNP markers in the final VCF file for genomic predictions, 1,769 non-redundant 

markers could be located on a genetic linkage map that were spread over 18 linkage groups (LG) 

(Figure 4.1), which almost correspond to the haploid chromosome number of the Hevea tree 

(Lespinasse et al., 2000), except for the presence of one extra linkage group (LG6b), indicating 

that the software split chromosome number 6 into two linkage groups (LG6a and LG6b). Of the 

1,769 markers, 1,339 SNP markers were of the segregation type <hk×hk>, 269 SNPs were of the 

segregation type <lm×ll> and the remaining 161 SNPs were of the segregation type <nn×np>.  

The linkage map encompassed 2600.9 cM, with linkage groups ranging from 42.1 cM (LG6b) to 

181.8 cM (LG10). The number of unique SNP markers mapped to each linkage group ranged 

from 20 SNPs in LG6b to 143 SNPs in LG 5, with an average of 98 SNPs per linkage group 

(Table 4.1). The number of SNPs in each linkage group is also shown on the genetic map below 

each linkage group. The average inter-marker distance for the linkage map was 1.47 cM, with 

61% of the SNP marker intervals less than 1.23 cM. Large gaps of more than 10 cM were 

observed in LG5, LG6b, LG7, LG13, LG14, LG15, LG16, LG17, and LG18. The distance 

between adjacent markers was relatively uniformly distributed in LG10, LG11 and LG12 as 

shown by the maximum marker intervals of 5.26 cM, 5.59 cM and 5.3 cM, respectively.  

The linkage map also encompassed 308 SSR markers spread across 18 linkage groups. Of the 

308 SSR markers on the genetic linkage map, 42 markers segregated in the <ab×cd> fashion, 88 

markers were of the segregation type <ef×eg>, 39 markers in the <hk×hk> pattern, 89 markers in 
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Table 4. 1: Distribution of SNP markers on the Hevea genetic linkage map 

Linkage group Number of Markers Length in cM Average marker 

interval (cM) 

Maximum 

interval (cM) 

LG1 95 130.5 1.37 9.91 

LG2 105 131.7 1.25 6.72 

LG3 99 152.7 1.54 8.65 

LG4 59 137.7 2.3 7.92 

LG5 143 147.9 1.03 18.16 

LG6a 51 114.1 2.24 9.14 

LG6b 20 42.1 2.11 16.65 

LG7 78 165.9 2.13 17.29 

LG8 84 148.1 1.76 7.87 

LG9 112 155.4 1.39 7.17 

LG10 139 181.8 1.31 5.26 

LG11 120 156.5 1.3 5.59 

LG12 86 111.0 1.29 5.30 

LG13 108 150.3 1.39 10.04 

LG14 124 134.3 1.08 11.84 

LG15 112 171.9 1.53 10.56 

LG16 70 135.7 1.94 13.56 

LG17 68 101.4 1.49 10.23 

LG18 96 132.1 1.38 14.55 

Total 1769 2600.9   
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the <lm×ll> segregation, and 50 markers were of the segregation type <np×np>. The number of 

unique SSR markers mapped to each of the 18 linkage groups ranged from 02 markers in LG6b 

to 32 markers in LG10 (Appendix 2). The average SSR inter-marker distance was 8.4 cM.  

On the genetic linkage, LG6 represent LG6a, LG7 is LG6b, LG8 is LG7, LG9 is LG8, LG10 is 

LG9, LG11 is LG10, LG12 is LG11, LG13 is LG12, LG14 is LG13, LG15 is LG14, LG16 is 

LG15, LG17 is LG16, LG18 is LG17, and LG19 is LG18 according to the identification of 

linkage groups by Lespinasse et al. (2000a) 

 

Figure 4. 1: Genetic linkage map of the Hevea based on the progeny of the cross PB260 × 

RRIM600 

 

4.2 To compare the performance of marker imputation methods on GS accuracy  

Results from comparing the two imputation methods showed that Beagle 3.3 performed better 

than random forest imputation. With all markers, and despite the fact that Beagle could only be 

used on the subset of mapped SNPs, the average GS prediction accuracy over the two sites 
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obtained with Beagle was 0.52, whilst with random forest imputed marker data it was only 0.48. 

In addition, Beagle performed better than random forest imputation in both HR46 and Sapest13. 

When the performance of HR46 clones was predicted using Sapest13 clones as the training 

population, molecular marker data from Beagle gave an accuracy of 0.54 whilst marker data 

from random forest imputation gave an accuracy of 0.5. Similarly, when the yield performance 

of rubber clones in Sapest13 was predicted using HR46 clones as the training population, Beagle 

imputed marker data gave a GS accuracy of 0.5 whilst marker data from random forest 

imputation gave a GS accuracy of 0.45.  

Across-site GS predictions using data from the two imputation methods showed that GS 

accuracy was higher when the 125 rubber clones in Sapest13 were used as training population to 

predict GEGVs of the 177 clones in HR46 than when the 179 rubber clones in HR46 were used 

to train the GS model to predict the GEGVs of the 123 clones in Sapest13, despite the larger 

training population in HR46 as compared to Sapest13. The between site difference in GS 

accuracy when performing Sapest13 towards HR46 predictions and HR46 towards Sapest13 

predictions with marker data from the two imputation methods was almost the same, 0.05 for 

Beagle and 0.04 for Random Forest imputation.  

In addition, the saturation point at which increasing marker density resulted in a very small 

increase in GS accuracy was different for the two imputation methods. Despite fewer number of 

markers (1,769) of Beagle imputation as compared to random Forest imputation, a plateau was 

reached with fewer markers (1,000) with Beagle imputation data whilst with marker data from 

random forest imputation, a plateau was reached at 2,000 markers in both directions of prediction 

(Figure 4.2). 
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4.3 Effect of Marker density on GS accuracy 

Results from across-site GS predictions in the two directions, that is, from Sapest13 towards 

HR46 and HR46 towards Sapest13, showed that GS accuracy increased with increasing marker 

density.  By performing GS predictions from Sapest13 towards HR46, the increase in marker 

density from 25 SNPs to the total number of SNPs in respective imputation methods resulted in 

an increase in GS accuracy. With a marker density of 25, 50, 100, 250, 500, 1000, 1500, and 

1769 with Beagle imputation marker data, the GS accuracy increased from 0.17, 0.32, 0.35, 0.45, 

0.5, 0.53, 0.54, and 0.54, respectively (Table 4.3). Performing GS predictions from Sapest13 

towards HR46 using marker data from Random Forest imputation, and with marker densities of 

25, 50, 100, 250, 500, 1000, 2000, and 3420 SNP markers resulted in an increase in GS accuracy 

of 0.17, 0.19, 0.25, 0.33, 0.39, 0.44, 0.49, and 0.5, respectively (Table 4.2). On the other hand, 

 

 

 

 
 
 
 
 
 

 

 
 
 

 

 

Figure 4. 2: Effect of imputation approach on genomic selection accuracy in HR46 

(left) and Sapest13 (right). When not all markers were used, values are means over 

30 replicates 
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performing GS predictions from HR46 towards Sapest13 with Beagle imputation marker data, 

marker densities of 25, 50, 100, 250, 500, 1000, 1500, and 1769 SNPs resulted in GS accuracies 

of 0.17, 0.19, 0.25, 0.33, 0.39, 0.44, 0.48, and 0.5, respectively.  

Table 4. 2: Genomic selection accuracy according to marker density using random forest 

imputed marker data. When not all markers were used, values are means over 30 

replicates 

Number of SNPs  Sapest13 GS accuracies HR46 GS accuracies  

25 0.15 0.17 

50 0.16 0.19 

100 0.22 0.25 

250 0.31 0.33 

500 0.36 0.39 

1000 0.41 0.44 

2000 0.44 0.49 

3420 0.45 0.5 

 

Performing HR46 towards Sapest13 GS predictions with marker data from Random Forest 

imputation using SNP marker densities of 25, 50, 100, 250, 500, 1000, 2000, and 3420 resulted 

in an increase in GS accuracy of 0.15, 0.16, 0.22, 0.31, 0.36, 0.41, 0.44, and 0.45, respectively. 

In addition, by performing Sapest13 towards HR46 GS predictions using marker data from 

Beagle imputation, increasing marker density from 25 SNPs to 500 SNPs resulted in a sharp 

increase in GS accuracy from 0.17 with 25 markers to 0.5 with 500 markers. The increase in GS 

accuracy with increasing marker density started to decline when markers were increased from 
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500 SNPs to 1000 SNPs as shown in Figure 4.2. Beyond 1000 markers up to the 1769 markers of 

Beagle imputation, the increase in GS accuracy in response to increasing marker density started 

to plateau (0.53 to 0.54), indicating that a point will be reached at which increasing marker 

density will result in no significant increase in GS accuracy.  

Table 4. 3: Genomic selection accuracy according to marker density using Beagle 3.3 

imputed marker data. When not all markers were used, values are means over 30 

replicates. 

Number of SNPs  Sapest13 GS accuracies HR46 GS accuracies 

25 0.17 0.17 

50 0.29 0.32 

100 0.35 0.35 

250 0.42 0.45 

500 0.46 0.5 

1000 0.49 0.53 

1500 0.5 0.54 

1769 0.5 0.54 

 

The same trend was seen when HR46 towards Sapest13 GS predictions were performed, except 

for the differences in accuracy between the two prediction directions in which an increase in 

marker density from 25 to 500 SNPs also led to a sharp increase in GS accuracy from 0.17 to 

0.46. From 1000 markers up to the total number of markers (1769), the GS accuracy only 

increased from 0.49 to 0.5.The trend in which a marker saturation point is reached was also 

observed when molecular marker data from random forest imputation was used to perform GS 
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predictions across-sites (Sapest13 towards HR46 and HR46 towards Sapest13). By performing 

Sapest13 towards HR46 predictions, increasing marker density from 25 to 2000 resulted in an 

increase in GS accuracy from 0.17 to 0.49. However, beyond 2000 markers, a plateau was 

reached in which increasing marker density from 2000 to 3420 markers only resulted in a GS 

accuracy increase from 0.49 to 0.5. When GS predictions were performed from HR46 towards 

Sapest13 using random forest imputed data, there was a sharp increase in GS accuracy from 0.15 

to 0.44 when marker density was increased from 25 markers to 2000 markers. As in Sapest13 

towards HR46 predictions, beyond 2000 markers the increase in GS accuracy in response to 

increasing marker density started to stagnate as shown by a small increase in GS accuracy from 

0.44 to 0.45 (Table 4.2 and Table 4.3). 
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CHAPTER FIVE 

5.0 DISCUSSION 

For plant breeders to effectively perform genomics assisted breeding, there is need for a 

thorough understanding of the underlying factors affecting the accuracy of genomic selection. 

The present study utilized a panel of 304 rubber clones that were genotyped with 3420 SNP 

markers to study the effect of marker imputation approach and marker density on genomic 

selection accuracy, among other objectives. The findings of this research will assist plant 

breeders to optimize their breeding programs, thus allowing them to make the most effective and 

efficient use of resources when implementing genomics-assisted breeding. 

5.1 Constructing a high-density genetic linkage map of rubber clones of a single family 

The use of falsely discovered markers in genetic linkage map construction could result in a 

linkage map of compromised quality. Thus, to obtain a high quality Hevea linkage map, stringent 

criteria were applied to call and filter SNP markers. To obtain high quality markers for linkage 

map construction, the pattern of allelic segregation for chi-square goodness-of-fit to the expected 

Mendelian segregation ratios was tested for each locus, and all markers with significant 

segregation distortion were discarded from further analysis in the study. Although the exclusion 

of SNPs with significant segregation distortion from linkage map construction results in low 

marker coverage of the genome, these markers were not included in linkage map construction to 

ensure production of a high-quality map. Markers which showed a deviation from the expected 

Mendelian segregation ratios, that is, with significant segregation distortion, could have led to 

the underestimation or overestimation of recombinant fractions, which ultimately affects both the 

calculation of genetic distances between markers and the order of markers (Zhao et al., 2018). 
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The high proportion of SNP markers that could not be mapped (1,651 out of 3,420) reveals the 

high proportion of genotyping errors on these markers, which is the case especially with SNPs 

obtained by GBS. 

A genetic linkage map with 1,769 non-redundant SNP markers spread over 18 linkage groups in 

which LG6 was split into LG6a and LG6b was obtained. The length of the linkage map (2600.9 

cM) is comparable to previously published linkage maps in rubber and other crops (2,144 cM in 

Lespinasse et al. (2000b), 2,041 cM in Pootakham et al. (2015) and 2,441 cM in Le Guen et al. 

(2011)). The close similarity between the linkage map obtained in this research and the one 

obtained by Le Guen et al. (2011) could be because of a common parent (PB260) between the 

two populations used. The map had an extra linkage group (LG6b) which resulted in a linkage 

map with one LG in excess of the haploid chromosome number of Hevea (n = 18) (Leitch et al., 

1998). A Hevea genetic map with 19 linkage groups has been reported by Pootakham et al. 

(2015). The reason for an extra linkage group could be due to a large interval without a marker, 

making the SNP alleles on the two chromosome segments appear as statistically unrelated. This 

could also be because of a recombination hotspot for which it is difficult to prove the genetic 

proximity between physically close markers. 

 The GBS-based linkage map showed significantly higher marker density as compared to 

previously published microsatellite-based linkage maps obtained using populations of similar or 

smaller size (one marker in every 8 cM in Le Guen et al. (2011), and one marker in every 10 cM 

in Souza et al. (2013)). The marker density of the obtained GBS-based linkage map is 

comparable to the map obtained by (Pootakham et al., 2015). The higher marker densities in 

GBS-based linkage maps is primarily due to the genotyping technique, which was defined with 
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the goal of generating large amounts of markers, as today high marker densities are required for 

many genomic applications, and in particular genomic selection (Pootakham et al., 2015).  

Although SNP markers were relatively uniformly distributed on the linkage map, nine gaps 

larger than 10 cM were observed. The largest gap was 18.16 cM, and was located at the terminal 

portion of LG 5. The number of large gaps greater than 10 cM and the largest inter-marker 

distance in the linkage map is comparable to the linkage map of Pootakham et al. (2015) which 

had seven gaps greater than 10 cM and a maximum inter-marker distance of 21 cM. The 

presence of these gaps could be as a result of the limitation of GBS-SNP markers in detecting 

polymorphisms in certain regions of the genome. Apart from the above, these large gaps could 

represent recombination hotspots or genome sections that were identical-by-descent among the 

two parents and thus lack polymorphisms. The large gaps exhibiting a low degree of 

polymorphisms have also been observed in genetic linkage maps of rubber and other crop 

species, such as rye and common bean (Galeceae et al., 2011).  

The genetic map also encompassed 308 SSR markers spread between 18 linkage groups. The 

SSR inter-marker distance (one marker in every 8.4 cM) in the constructed genetic linkage map 

is almost similar to the marker density obtained in the microsatellite-based linkage map of Le 

Guen et al. (2011) (one marker in every 8 cM). The close similarity in microsatellite marker 

densities between the two maps could be because of the common parent (PB260) shared between 

the clones used in the two studies. It is thanks to these SSR markers that it was possible to 

identify the linkage groups according to those already defined in previous studies. It is also 

thanks to these 308 SSR markers that we were able to know that it is linkage group 6 (LG6) 

which was split into two fragments. 
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The linkage map will serve as an important tool to rubber breeders for genomics-assisted 

breeding, QTL analyses and also to better assemble the Hevea whole-genome sequence. 

5.2 To compare the performance of Beagle 3.3 and random forest imputation 

By comparing the effect of marker imputation approaches on GS accuracy, a relatively higher 

GS accuracy was obtained with Beagle 3.3 imputed marker data as compared to random forest 

imputation. Beagle imputed marker data gave an average GS accuracy of 0.52 using 1,769 

markers whilst random forest imputation gave an average GS accuracy of 0.48 using 3,420 

markers, which is almost double the number of markers in Beagle. The higher accuracy in 

Beagle imputation as compared to random forest imputation could be attributed to the use of 

linkage or haplotype information in Beagle since it is a map-dependent imputation approach (He 

et al., 2015).  Random forest imputation is a map independent imputation, and hence it does not 

use haplotype information to impute missing markers.  

The results obtained with Beagle imputation are useful especially for orphan species that do not 

have a proper reference genome. With orphan species, making a genetic linkage map with SNP 

markers is a good option for performing map-based imputation approaches, because Beagle 

imputation performed better than random forest imputation. These findings clearly demonstrate 

the importance of the availability of a high-quality genetic map for orphan species without a 

proper reference genome in order to perform Beagle imputation.  

However, since the difference in GS accuracy between random Forest imputation and Beagle 

imputation is not that big, Random Forest imputation is still a satisfactory option so scientists can 

make genomic predictions with markers imputed with Random Forest imputation in case a 

genetic map cannot be constructed because of the population which is not suitable for that.  
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5.3 Effect of Marker density on genomic selection accuracy 

The effect of marker density on GS prediction accuracy was assessed by making random SNP 

samples of varying sizes in which SNP data sets from Beagle imputation (1769 SNPs) and 

Random Forest imputation (3420 SNPs) were used as the source SNP data sets from which 

random SNP sampling was made. There was a strong response in GS accuracy to increasing 

marker density with marker data from both Beagle and RFI. In Beagle imputation, there was a 

sharp increase in GS accuracy as the marker density was increased from 25 to 1000 markers, as 

shown by an increase in GS accuracy from 0.17 to 0.53 when prediction was done using 

Sapest13 clones as the training population and from 0.17 to 0.44 when prediction was done using 

Sapest13 clones as the selection population. The sharp increase in GS accuracy was also 

observed with marker data from RFI in which there was a sharp increase in GS from 0.17 to 0.49 

as the marker density was increased from 25 SNPs to 2000 SNPs when Sapest13 clones were 

used as the training population and from 0.15 to 0.44 when Sapest13 clones were used to train 

the GS model. The observed sharp increase in GS accuracy as a result of an increase in marker 

density is because at a very low marker density (25 SNPs), the probability of linkage 

disequilibrium between the QTLs and markers is very low and hence only a smaller proportion 

of genetic variation is explained. However, as the number of SNPs is increased to 1000 markers, 

most QTLs will be in LD with some genetic markers and estimates of marker effects will lead to 

accurate predictions of clone genetic values (Ala Noshahr et al., 2018). For example, using the 

linkage map developed in this research with 2600.9 cM and with a marker density of 25 SNPs, 

on average there is one marker for every 104 cM, but when all the 1769 markers of Beagle 

imputation are used there is one marker in every 1.47 cM. Results of this study are similar to 
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those of Norman et al. (2018) and Liu et al. (2015) who also reported an increase in GS accuracy 

in response to an increase in marker density. 

Results of this study also showed that a plateau was reached at which increasing marker density 

resulted in a very small or no increase in GS accuracy. For Beagle and Random Forest 

imputation, a very small increase in GS accuracy was observed beyond 1000 and 2000 markers, 

respectively, indicating that there is no reason for going beyond this plateau as that would 

increase genotyping costs without any benefit to GS accuracy. Because the plateau was reached 

at a much lower marker density in Beagle as compared to RFI (half the marker density of RFI), 

and with a higher GS accuracy, it shows that Beagle imputation would be the best option for 

plant breeders. Results obtained with marker data from Beagle imputation are similar to those of 

Nielsen et al. (2016) who reported that a minimum marker set of 1,000 is required to avoid a 

decline in prediction accuracy. These SNP numbers are significantly lower than the plateau point 

of previous studies (Norman et al., 2018). The lower number of SNPs required to reach the 

plateau could be attributed to the high relatedness between the training and selection population 

since the study used within family rubber clones. This is because, the more related the training 

and selection population is, the lower the effective number of independent loci (Me), and the 

higher the accuracy of genomic selection (Daetwyler et al., 2013). The lower number of markers 

needed to reach a plateau was due to a high LD which was brought about by a low Me 

(Meuwissen et al., 2001). This explanation is supported by Heff et al. (2011) who reported  a 

significant reduction in genomic selection model accuracy after using information from half-sibs 

instead of full-sibs, indicating the importance of relatedness between the training and validation 

population. In addition, the lower marker density required to reach a plateau in this research as 

compared to the research of Norman et al. (2018b) could also be attributed to the low effective 
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population size (Ne) in within family rubber clones as compared to the wheat lines studied by the 

previous author. The Ne determines the threshold at which a plateau is reached through its effect 

on LD. The LD between QTLs and markers in the genome determines the amount of markers 

needed to reach a plateau (Wang et al., 2017). Generally, at a low Ne, as in within family 

individuals, the number of independent segments in the genome is expected to be small, and 

fewer independent segments means that fewer markers are needed to mark all segments. Here, 

the research used within family rubber clones, which means they have a low Ne, and hence a 

higher GS accuracy at a lower marker density. 

The reason for reaching a plateau in which increasing marker density resulted in a very small or 

no increase in GS accuracy could be because almost all QTLs were in LD with some genetic 

markers. Thus, at the ceiling point, the most important markers were in LD with the QTLs for 

rubber yield and therefore increasing marker density beyond the ceiling point only added 

markers that have very small or no effect to the trait. In addition this could be because as the 

number of SNPs increases, more SNPs will start to support the same QTL (Habier et al., 2011), 

and hence a plateau is reached. 

5.4 Comparison with published results using the same individuals and phenotypic data 

The mean between site GS accuracy obtained here with all markers (0.52) is very close to the 

one of Cros et al. (2019), who performed GS in rubber using SSR markers and using the same 

phenotypic data used in this research: they reported a GS accuracy of 0.53 using a set of 332 

SSRs and 330 rubber clones (which is 28 more clones than used in this research) showing that 

SNPs from GBS, despite the fact that they have higher percentage of missing data and higher 

error rate than SSRs, can be used for GS predictions with no loss in accuracy. In addition, it 

opens the way to the practical application of GS. Indeed, Cros et al. (2019) showed that, to 
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increase the genetic gain in the studied rubber cross, GS required to be applied on a large number 

of selection candidates (>1000), which would not be cost effective with SSRs. However, this 

becomes feasible with GBS, thanks to its much lower cost per sample.  
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CHAPTER SIX 

6.0 CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

This study demonstrates that GBS is a rapid, efficient and cost-effective approach for performing 

genomics-assisted breeding and construction of a high-density genetic linkage map for Hevea. 

Since GBS is a highly reproducible genome sequencing technique, other plant scientists can 

employ the same protocol to construct linkage maps for Hevea using different mapping 

populations based on the same set of SNPs. Results of the present study demonstrate that 

genomic selection has huge potential to increase rubber latex yield and to reduce the generation 

interval in Hevea through increasing genetic gain. In addition, Beagle imputation proved to be 

the marker imputation approach of choice compared to Random Forest imputation when 

performing genomics-assisted breeding. For species in which it is difficult to find a proper 

genetic linkage map, Random Forest imputation could still be a good option for marker 

imputation. Finally, results of this study showed that the minimum marker density required to 

achieve a good accuracy is determined by the relatedness between the training and selection 

population and also the marker imputation approach.  

6.2 Recommendations 

 Further research should consider other traits of interest for rubber, like vegetative growth, 

resistance to diseases, etc. 

 More research comparing genomic selection prediction mathematical models using large 

training and selection populations is needed in order to have a thorough understanding of 

factors that affect the accuracy of genomic selection.  
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 Further research should be done to model genotype by environment interactions in 

genomic selection. 
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APPENDICES 

Appendix 1: Genetic linkage map of progeny of the cross PB260 × RRIM600  

Locus Segregation Group Position (cM) Marker 

L843 <hkxhk> g01 0.00 scaffold0168:1086506_A/G 

L1356 <hkxhk> g01 2.02 scaffold0326:201227_C/G 

L3162 <hkxhk> g01 4.02 scaffold1700:13616_C/T 

g1a134 <efxeg> g01 6.78 g1a134 

g1a274 <lmxll> g01 7.23 g1a274 

g1t319 <efxeg> g01 8.53 g1t319 

g1A2705 <hkxhk> g01 10.09 g1A2705 

g1A2497 <abxcd> g01 10.59 g1A2497 

g1A2746 <abxcd> g01 10.69 g1A2746 

L2522 <hkxhk> g01 43.55 scaffold0872:408342_T/C 

L2322 <hkxhk> g01 44.42 scaffold0746:324277_C/T 

L2321 <hkxhk> g01 46.50 scaffold0746:116707_G/T 

L946 <hkxhk> g01 48.23 scaffold0195:1001662_G/T 

L941 <hkxhk> g01 49.30 scaffold0195:463803_T/C 

L940 <hkxhk> g01 51.07 scaffold0195:381781_T/C 

L645 <hkxhk> g01 53.53 scaffold0113:1897644_T/C 

L2901 <hkxhk> g01 54.61 scaffold1196:208986_C/T 

g1SSH033 <abxcd> g01 105.78 g1SSH033 

L886 <hkxhk> g01 106.36 scaffold0179:1251050_C/T 

L2021 <lmxll> g01 107.09 scaffold0581:142388_G/A 

L3354 <lmxll> g01 108.17 scaffold2730:8125_A/G 

L64 <hkxhk> g01 108.96 scaffold0008:4159882_T/C 

L885 <hkxhk> g01 109.83 scaffold0179:1206342_T/C 

L76 <hkxhk> g01 110.50 scaffold0010:4112757_A/G 

L542 <nnxnp> g01 111.35 scaffold0090:1942100_C/T 

L75 <hkxhk> g01 112.38 scaffold0010:4112209_C/G 

L725 <hkxhk> g01 114.21 scaffold0135:1452303_C/A 

L2412 <hkxhk> g01 114.86 scaffold0809:18562_C/T 

L3181 <hkxhk> g01 115.97 scaffold1731:54803_T/C 

L718 <nnxnp> g01 117.34 scaffold0133:768735_G/A 

L1915 <lmxll> g01 117.78 scaffold0543:842733_A/G 

L3409 <hkxhk> g01 119.07 scaffold4381:5798_G/A 

L3248 <lmxll> g01 121.69 scaffold2013:36869_T/G 

L3083 <hkxhk> g01 123.49 scaffold1532:94876_T/A 

L8 <hkxhk> g01 126.63 scaffold0001:5858685_C/T 
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L3187 <nnxnp> g01 130.46 scaffold1754:4923_G/A 

L224 <hkxhk> g02 0.00 scaffold0029:1513004_A/T 

L1177 <hkxhk> g02 1.92 scaffold0266:1090363_A/T 

L1176 <hkxhk> g02 2.95 scaffold0266:1035328_A/T 

L223 <hkxhk> g02 3.91 scaffold0029:1509715_C/T 

L24 <lmxll> g02 7.62 scaffold0003:5339561_C/T 

L2532 <hkxhk> g02 7.82 scaffold0878:342412_A/G 

L1379 <hkxhk> g02 10.76 scaffold0337:1216058_T/C 

g2BAC12N03rev <abxcd> g02 12.71 g2BAC12N03rev 

L95 <hkxhk> g02 14.09 scaffold0013:26364_T/C 

L98 <lmxll> g02 16.21 scaffold0013:180318_G/A 

L1096 <hkxhk> g02 17.94 scaffold0239:1245236_T/C 

L1095 <hkxhk> g02 21.30 scaffold0239:685526_A/T 

L3061 <hkxhk> g02 35.92 scaffold1490:36216_A/C 

L3048 <hkxhk> g02 36.54 scaffold1460:54106_A/G 

L356 <lmxll> g02 36.66 scaffold0053:19006_G/A 

L3046 <hkxhk> g02 37.74 scaffold1460:50389_A/G 

L3045 <hkxhk> g02 38.77 scaffold1460:46923_G/A 

L3044 <hkxhk> g02 39.23 scaffold1460:8206_C/T 

L3411 <hkxhk> g02 40.04 scaffold4699:4294_A/C 

L924 <hkxhk> g02 40.76 scaffold0189:1467387_C/A 

g2A2734 <efxeg> g02 41.61 g2A2734 

L952 <nnxnp> g02 41.85 scaffold0196:35618_T/G 

L1753 <hkxhk> g02 42.82 scaffold0470:273465_T/C 

g2A2680.L1 <efxeg> g02 45.69 g2A2680.L1 

g2T2607 <lmxll> g02 45.70 g2T2607 

L519 <lmxll> g02 66.70 scaffold0085:1731869_T/C 

L1799 <lmxll> g02 67.77 scaffold0493:64101_A/T 

L1161 <lmxll> g02 68.16 scaffold0258:16515_T/G 

L2859 <lmxll> g02 70.15 scaffold1155:58979_A/T 

L712 <hkxhk> g02 70.88 scaffold0131:706488_G/T 

L1795 <lmxll> g02 71.34 scaffold0490:204904_T/C 

L344 <lmxll> g02 81.43 scaffold0050:390797_C/T 

L94 <hkxhk> g02 81.98 scaffold0012:3603756_T/C 

L309 <lmxll> g02 82.18 scaffold0045:1097675_A/G 

L3370 <hkxhk> g02 82.95 scaffold3076:4527_T/C 

L304 <lmxll> g02 83.37 scaffold0043:2161629_T/C 

L3104 <hkxhk> g02 85.13 scaffold1564:70940_T/A 

L324 <nnxnp> g02 85.40 scaffold0047:1741007_C/A 

g2T2094 <abxcd> g02 86.16 g2T2094 

L824 <lmxll> g02 87.65 scaffold0164:305713_A/G 

L554 <hkxhk> g02 88.90 scaffold0093:2350513_G/A 

L2175 <lmxll> g02 89.40 scaffold0654:321423_C/A 
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g2A2381 <efxeg> g02 90.83 g2A2381 

g2t152 <abxcd> g02 90.98 g2t152 

g2t283 <abxcd> g02 91.76 g2t283 

L2057 <lmxll> g02 92.47 scaffold0593:250124_G/A 

L1165 <hkxhk> g02 96.83 scaffold0261:1396795_C/G 

L1762 <lmxll> g02 97.46 scaffold0474:967774_T/C 

L823 <hkxhk> g02 99.46 scaffold0164:224406_C/G 

L1141 <hkxhk> g03 0.00 scaffold0251:247346_T/C 

L1142 <hkxhk> g03 2.89 scaffold0251:394559_A/C 

L1140 <hkxhk> g03 4.49 scaffold0251:131794_A/G 

L3252 <hkxhk> g03 6.66 scaffold2028:20921_C/G 

L1351 <nnxnp> g03 7.76 scaffold0323:406028_G/A 

g3A2707 <abxcd> g03 46.33 g3A2707 

L1212 <hkxhk> g03 49.98 scaffold0280:31068_G/A 

L609 <nnxnp> g03 54.34 scaffold0104:1561871_T/C 

L2400 <lmxll> g03 55.85 scaffold0802:99062_C/G 

L2645 <hkxhk> g03 60.52 scaffold0959:245013_A/C 

L1255 <hkxhk> g03 64.07 scaffold0297:1274154_A/G 

g3TAs2697 <efxeg> g03 66.06 g3TAs2697 

L688 <hkxhk> g03 67.91 scaffold0123:1900589_A/G 

L1953 <lmxll> g03 69.41 scaffold0556:229667_T/C 

L818 <hkxhk> g03 71.04 scaffold0163:28896_C/T 

g3A312 <hkxhk> g03 71.85 g3A312 

L2391 <nnxnp> g03 71.91 scaffold0795:12323_G/A 

L573 <hkxhk> g03 73.68 scaffold0098:789896_T/C 

L574 <hkxhk> g03 74.98 scaffold0098:1034125_C/T 

L2644 <lmxll> g03 75.22 scaffold0959:145589_C/T 

g3SSH031.L2 <lmxll> g03 76.75 g3SSH031.L2 

L2272 <hkxhk> g03 77.88 scaffold0711:528714_C/T 

L2671 <hkxhk> g03 79.56 scaffold0988:71447_C/A 

L3258 <hkxhk> g03 93.22 scaffold2054:44152_G/T 

L672 <hkxhk> g03 93.77 scaffold0118:1862442_C/T 

g3a403 <nnxnp> g03 94.84 g3a403 

g3SSH059 <lmxll> g03 94.98 g3SSH059 

L2333 <hkxhk> g03 96.60 scaffold0756:435250_T/C 

L1549 <lmxll> g03 96.63 scaffold0400:431053_A/G 

L2332 <hkxhk> g03 97.89 scaffold0756:304301_T/A 

L1078 <hkxhk> g03 98.56 scaffold0235:90271_T/C 

L1079 <hkxhk> g03 99.41 scaffold0235:233569_C/G 
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Appendix 2: Distribution of SSR markers on the Hevea genetic map of the progeny of a 

cross of PB260 × RRIM600 

Linkage 

group 

 Number of SSR 

Markers 

Number of SNP 

Markers 

Total Length in cM 

LG1 13 95 108 130.5 

LG2 21 105 126 131.7 

LG3 15 99 114 152.7 

LG4 12 59 71 137.7 

LG5 20 143 163 147.9 

LG6a 12 51 63 114.1 

LG6b 2 20 22 42.1 

LG7 18 78 96 165.9 

LG8 22 84 106 148.1 

LG9 23 112 135 155.4 

LG10 32 139 171 181.8 

LG11 13 120 133 156.5 

LG12 10 86 96 111.0 

LG13 15 108 123 150.3 

LG14 19 124 143 134.3 

LG15 18 112 130 171.9 

LG16 14 70 84 135.7 

LG17 16 68 84 101.4 

LG18 13 96 109 132.1 

Total 308 1769 2077 2600.9 
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Appendix 3: Segregation of SSR and SNP markers on the Hevea genetic map of progeny of 

a cross of PB260 × RRIM600 

Marker segregation type Number of SSR markers Number of SNP markers 

<abxcd> 42 0 

<efxeg> 88 0 

<hkxhk> 39 1339 

<lmxll> 89 269 

<nnxnp> 50 161 

Total 308 1769 

 

Appendix 4: Distribution of marker effects using marker data from Random Forest   

imputation 
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Appendix 5: Distribution of marker effects using marker data from Beagle imputation 
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Appendix 6: Correlation between marker effects in the two sites (HR46 and Sapest13) 

using markers from Random Forest imputation. 
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Appendix 7: Correlation between marker effects in the two sites (HR46 and Sapest13) 

using markers from Beagle imputation 

 


