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Abstract Drug abuse is an issue of considerable concern due to its association with numerous
public health problems. Mathematical models developed to describe the spread of drug abuse
have generally assumed that the dynamics of drug use and treatment are substantially the
same for women as men. However, research has revealed that the dynamics of women’s
drug use and treatment are different in many ways from that of men’s. Understanding gender
differences in patterns of drug use is essential to identify the influences of gender on the
trends of drug abuse in order to develop appropriate and effective prevention programs.
We formulate a sex structured compartmental model for the spread of drug abuse using
nonlinear ordinary differential equations. The least squares curve fit routine (lsqcurvefit) in
Matlab with optimization is used to estimate the parameter values. The model is fitted to
data on individuals under substance abuse treatment centres of the Western Cape Province
of South Africa and parameter values that give the best fit chosen. The projections carried
out the long term trends of proportions for male and female rehabilitants. The results show
that the proportion of male drug abusers in Cape Town is expected to continue to decrease
whereas that of female drug abusers shall continue to increase but steadily. The estimated
proportion of female drug abusers in specialist treatment centres of Cape Town was observed
to be approximately 34% by the year 2030.
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Introduction

Historically, drug research has focused mostly on males as compared to females and drug
treatment programs have been based upon the concerns of men [9]. Neglect of women in the
area of drugs has been typified by the “too small numbers” argument, that is, too few women
drug users to be a serious enough problem to warrant attention and/or justify special services
[9]. From the onset, researchers and practitioners generally assumed that the dynamics of
drug abuse and treatment were substantially the same for women as men, that is, it simply
never occurred to some researchers that there might be variations on the basis of gender. Thus,
the literature on gender differences in substance abuse treatment has been limited [30,39].
Drug abuse research is oriented almost exclusively to males [36]. In the United States of
America, concerns for women drug users began to gain attention in the 1970s. In 1974, the
National Institute on Drug Abuse (NIDA) developed a program for women’s concerns and
new training initiatives for drug treatment service providers were developed in 1985 [18].
In South Africa, data collected by the South African Community Epidemiology Network
on Drug Use (SACENDU) [35] reveals women’s widespread involvement in drugs making
women drug use and treatment an issue of credible concern. Though the data collected by
SACENDU indicate that the majority of clients in substance abuse treatment programs are
men, the number of female clients appear to be rising steadily over the years. This fact gives
rise to the need of more research on substance abuse treatment that includes women so that
treatment programs are structured to suit the needs of both men and women. According to
the Substance Abuse and Mental Health Services Administration (SAMHSA) [32], men are
more likely than women to use almost all types of illicit drugs. The Treatment Episode Data
Set (TEDS) [34], reveals that for most age groups, men have higher rates of use or dependence
on illicit drugs and alcohol than do women. However, women are just as likely as men to
become addicted [1].

In recent years, various mathematical models describing the spread of drug abuse have
been proposed, see for example, [13,19–24,40]. In these models, the spread of misbehaviors is
assumed to have mechanisms similar to epidemic diffusion. There are similarities between the
spread of drug use and that of infectious diseases [6,16]. Compartmental models describing
the spread of drug abuse have been formulated with an SIS or SIR structure or a combination
of both. The compartments in these drug abuse models have not been split to consider male and
female individuals separately. In other words, the basic assumption in all these models is that
there are no gender differences with regards to susceptibility to drug abuse, levels of addiction
and treatment uptake. This is not true. Several drug related data sources indicate significant
gender imbalances for susceptibility to drug abuse, levels of addiction and treatment uptake
[7,10,15,35]. Research has also revealed that the dynamics of women’s drug use are different
in many ways from that of men’s [29,31]. Suffet and Brotman [33] reported, for example,
that women and men are initiated differently into illicit drug use. Whereas men are usually
introduced to drugs by male peers, in a study by [9], most women reported being turned on by
males, often a boyfriend. In this paper, we formulate a more realistic compartmental model
for drug abuse that takes into account gender differences in the dynamics of drug abuse.
The model explicitly captures the contact pattern between males and females initiating drug
abuse. Compared to previous mathematical models of drug abuse, a key novelty of our model
is the inclusion of sex structured compartments to explore the impact of gender differences on
the spread of drug abuse. Inclusion of such sex structured groups increases the realism of the
model and allows trends of drug abuse to be examined in the respective sub groups. Detailed
analysis of gender differences in the dynamics of drug abuse can yield important information

123



Int. J. Appl. Comput. Math (2018) 4:47 Page 3 of 21 47

about changing lifestyles in relation to patterns of drug use and about the potential efficacy
of drug prevention and treatment services for different groups.

The paper is arranged as follows; in “Model Formulation” section, we formulate and
establish the basic properties of the model. The model is analysed for stability in “Model
Analysis” section. In “Numerical Simulations” section, we carry out some numerical sim-
ulations. Parameter estimation is also presented in this section. The paper is concluded in
“Conclusion” section.

Model Formulation

We propose a mathematical model that takes into account the spread of drug abuse amongst
males and females. We include the class of individuals under treatment so as to assess
the role of rehabilitation in controlling the spread of drug abuse. In this paper we assume
that treatment is on an ‘inpatient’ basis and individuals are released from treatment centers
when they have recovered. The human population is divided into eight sub-populations,
Sm(t),Um(t), Tm(t), Rm(t), S f (t),U f (t), T f (t) and R f (t). The class Sm(t)/S f (t) represents
the male/female population at risk of being initiated into drug abuse, Um(t)/U f (t) denotes
males/females initiated into drug abuse together with relapsed male/female drug users. The
class Tm(t)/T f (t) represents male/female clients of rehabilitation services in treatment and
Rm(t)/R f (t) denotes the class of recovered males/females. It is upon this stage that a relapse
can only occur. The total population is thus given by

N (t) = Nm(t) + N f (t)

where

Nm(t) = Sm(t) +Um(t) + Tm(t) + Rm(t) and N f (t) = S f (t) +U f (t) + T f (t) + R f (t)

with Nm(t) and N f (t) being the total number of males and females respectively. The rate
at which the general population enter the susceptible population, that is, the demographic
process of individuals reaching age 15 years in the modelling time period is represented by
Λ, a proportion p being males and the complementary proportion (1− p) entering the female
population. Susceptible males are initiated into drug abuse following contact with male drug
users at a rate λm = βmUm

Nm
or upon contact with female drug users at a rate λ fm = β fm U f

N . The
per capita contact rate βm is a product of the effective number of contacts cm , between male
drug users and the susceptible male population, and the probability β̂m , that such a contact
results into initiation into drug use, that is βm = cm β̂m . The per capita contact rate β fm is a
product of the effective number of contacts c fm , between female drug users and the susceptible
male population, and the probability β̂ fm , that such a contact results into initiation into drug
use, that is β fm = c fm β̂ fm . Upon being initiated into drug use, a susceptible male moves into
the compartment Um , of male drug abusers. Susceptible females are initiated into drug abuse
following contact with female drug users at a rate λ f = β f U f

N f
or upon contact with male

drug users at a rate λm f = βm f Um

N . The per capita contact rate β f is a product of the effective
number of contacts c f , between female drug users and the susceptible female population, and
the probability β̂ f , that such a contact results into initiation into drug use, that is β f = c f β̂ f .
The per capita contact rate βm f is a product of the effective number of contacts cm f , between

male drug users and the susceptible female population, and the probability β̂m f , that such a

contact results into initiation into drug use, that is βm f = cm f β̂m f . Upon being initiated into
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drug use, a susceptible female moves into the compartment U f , of female drug abusers. In
this paper, we shall assume that male drug users have more contact with susceptible males
as compared to susceptible females. Thus, we can safely assume that βm f = εmβm which
corresponds to λm f = εmλm where 0 < εm < 1. Similarly, we assume that female drug
users have more contact with susceptible females as compared to susceptible males. Thus,
we can also safely assume that β fm = ε f β f which corresponds to λ fm = ε f λ f where
0 < ε f < 1. Removal from the male/female drug users’ class that include drug related death
rate is represented by rm /r f . The natural recovery rate for male/female drug abusers is given
by δm /δ f . The rate at which male/female drug users are recruited into rehabilitation is given
by σm /σ f . Recovery rate for male/female drug users under treatment is given by γm /γ f . The
mean rate at which recovered males/females relapse into drug use is represented by ρm /ρ f .
Individuals experience natural death at a rate μ. The model involves two assumptions which
are of critical importance and these are:

• Individuals in each compartment are indistinguishable and there is homogeneous mixing
so that those at risk of drug use are equally susceptible. In practice, susceptibility to drug
use varies. This is due to differences in behavioral, social and environmental factors.

• Drug users in treatment use drugs but cannot initiate non-drug users since they are
completely immersed in the program and separated from the general population.

The schematic diagram below shows the movement of humans as their status with respect to
drug use changes (Fig. 1).

Combining the parameters, assumptions and the schematic diagram, we obtain the fol-
lowing set of nonlinear ordinary differential equations:

Fig. 1 Model flow diagram
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSm
dt

= pΛ − (
λm + ε f λ f

)
Sm − μSm,

dUm

dt
= (

λm + ε f λ f
)
Sm + ρm Rm − (μ + rm + δm + σm)Um,

dTm
dt

= σmUm − (μ + γm)Tm,

dRm

dt
= γmTm + δmUm − (μ + ρm)Rm,

dS f

dt
= (1 − p)Λ − (

λ f + εmλm
)
S f − μS f ,

dU f

dt
= (

λ f + εmλm
)
S f + ρ f R f − (μ + r f + δ f + σ f )U f ,

dT f

dt
= σ f U f − (μ + γ f )T f ,

dR f

dt
= γ f T f + δ f U f − (μ + ρ f )R f .

(1)

We assume that all the model parameters are positive and the initial conditions of the system
(1) are given by

Sm(0) = Sm0 > 0, Um(0) = Um0 ≥ 0, Tm(0) = Tm0 ≥ 0, Rm(0) = Rm0 ≥ 0,

S f (0) = S f 0 > 0, U f (0) = U f 0 ≥ 0, T f (0) = T f 0 ≥ 0, R f (0) = R f 0 ≥ 0.

Model Analysis

Positivity of Solutions

We now consider the positivity of system (1). We prove that all the state variables remain non-
negative and the solutions of system (1) with positive initial conditions will remain positive
for all t > 0. We thus state the following theorem.

Theorem 1 Given that the initial conditions of system (1) are Sm(0) > 0, Um(0) > 0,
Tm(0) > 0, Rm(0) > 0, S f (0) > 0, U f (0) > 0, T f (0) > 0 and R f (0) > 0. There exists
(Sm(t),Um(t), Tm(t), Rm(t), S f (t),U f (t), T f (t), R f (t)) : (0,∞) → (0,∞) which solve
system (1).

Proof Assume that

t̂ = sup{t >: Sm > 0, Um > 0, Tm > 0, Rm > 0, S f > 0,U f > 0,

T f > 0, R f > 0} ∈ [0, t].

Thus t̂ > 0, and it follows from the first equation of system (1) that
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dSm
dt

= pΛ − (
μ + λm + ε f λ f

)
Sm .

Thus

d

dt

[

Sm(t) exp

{

μt +
∫ t

0

(
λm(s) + ε f λ f (s)

)
ds

}]

= pΛ exp

[

μt +
∫ t

0

(
λm(s) + ε f λ f (s)

)
ds

]

.

So

Sm(t̂) exp

[

μt̂ +
∫ t̂

0

(
λm(s) + ε f λ f (s)

)
ds

]

− Sm(0)

=
∫ t̂

0
pΛ exp

[

μt̂ +
∫ t̂

0

(
λm(ν) + ε f λ f (ν)

)
dν

]

dt̂,

giving

Sm(t̂) = Sm(0) exp

[

−
(

μt̂ +
∫ t̂

0

(
λm(s) + ε f λ f (s)

)
ds

)]

+ exp

[

−
(

μt̂ +
∫ t̂

0

(
λm(s) + ε f λ f (s)

)
ds

)][∫ t̂

0
pΛ exp

[
μt̂

+
∫ t̂

0

(
λm(ν) + ε f λ f (ν)

)
dν

]

dt̂

]

> 0.

From the second equation of system (1), we obtain

dUm

dt
= (

λm + ε f λ f
)
Sm + ρm Rm − (μ + rm + δm + σm)Um

≥ −(μ + rm + δm + σm)Um,

⇒ Um(t̂) ≥ Um0e
−(μ+rm+δm+σm )t̂ > 0.

In a similar fashion, it can also be shown that Tm(t) > 0, Rm(t) > 0, S f (t) > 0, U f (t) > 0,
T f (t) > 0 and R f (t) > 0 for all t > 0, and this completes the proof. ��
Invariant Region

It follows from system (1) that

dN

dt
= Λ − μN − rmUm − r f U f .

Note that
dN

dt
≤ Λ−μN . Using a theorem by Birkhoff and Rota [2] on differential inequality,

it follows that 0 ≤ N (t) ≤ Λ

μ
− C

μ
e−μt , where C is a constant. Then, lim supt→∞ N ≤ Λ

μ
.

Thus, the feasible region for system (1) is
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Ω =
{

(Sm,Um, Tm, Rm, S f ,U f , T f , R f ) ∈ R
8+ | N ≤ Λ

μ

}

. (2)

It is easy to verify that the region Ω is positively invariant with respect to system (1).

Drug-Free Equilibrium and the Abuse Reproduction Number

The model has a drug-free equilibrium given by

G0 =
(
S0
m,U 0

m, T 0
m, R0

m, S0
f ,U

0
f , T

0
f , R

0
f

)
=

(
pΛ

μ
, 0, 0, 0,

(1 − p)Λ

μ
, 0, 0, 0

)

,

a scenario depicting a drug-free state in the community or society. The abuse reproduction
number Ra of the model, is defined herein in the drug-using context as the average number
of people that each drug user will initiate to drug use during the drug-using career in a
population of completely potential drug users. Usually, Ra < 1 implies that drug abuse
will die out, whereas Ra > 1 implies that drug abuse will persist within a community and
Ra = 1 requires further investigation. The determination of Ra is done using the next
generation matrix approach [37]. This method has been explored in many papers, see for
instance [4,11,14,17,38]. Using this method we have

F =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

βm 0 0
pβ f ε f
1−p 0 0

0 0 0 0 0 0

0 0 0 0 0 0
(1−p)βmεm

p 0 0 β f 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

gm1 0 −ρm 0 0 0

−σm gm2 0 0 0 0

−δm −γm gm3 0 0 0

0 0 0 g f1 0 −ρ f

0 0 0 −σ f g f2 0

0 0 0 −δ f −γ f g f3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where

gm1 = μ + rm + δm + σm, gm2 = μ + γm, gm3 = μ + ρm,

g f1 = μ + r f + δ f + σ f , g f2 = μ + γ f , g f3 = μ + ρ f .

Thus, the abuse reproduction number is given by

Ra = 1

2

(

Rm + R f +
√

(Rm − R f
)2 + 4ε f εmRmR f

)

(3)

where
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Rm = βm

gm1 (1 − Φm)
and R f = β f

g f1

(
1 − Φ f

) (4)

with

Φm = ρmδmgm2 + ρmγmσm

gm1gm2gm3

and Φ f = ρ f δ f g f2 + ρ f γ f σ f

g f1g f2g f3
. (5)

We can clearly note that
(
ρmδmgm2 + ρmγmσm

) ≤ (
gm1gm2gm3

)
and

(
ρ f δ f g f2 + ρ f γ f σ f

)

≤ (
g f1g f2g f3

)
. Therefore, Ra is non-negative. The abuse reproduction number Ra of the

model, is the average number of secondary cases generated by one drug user during his/her
duration of drug use in a population of completely potential drug users. Here, Ra is a com-
bination of two sub-reproduction numbers Rm and R f representing the contributions of
individuals in compartments Um and U f respectively. Theorem 2 follows from Driessche
and Watmough [37] (Theorem 2).

Theorem 2 The drug-free equilibrium point G0 of system (1) is locally asymptotically stable
if Ra < 1 and is unstable if Ra > 1.

Drug-Persistent Equilibrium

The drug-persistent equilibrium G∗ =
(
S∗
m,U∗

m, T ∗
m, R∗

m, S∗
f ,U

∗
f , T

∗
f , R

∗
f

)
always satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = pΛ −
(
λ∗
m + ε f λ

∗
f

)
S∗
m − μS∗

m,

0 =
(
λ∗
m + ε f λ

∗
f

)
S∗
m + ρm R∗

m − gm1U
∗
m,

0 = σmU∗
m − gm2T

∗
m,

0 = γmT ∗
m + δmU∗

m − gm3 R
∗
m,

0 = (1 − p)Λ −
(
λ∗
f + εmλ∗

m

)
S∗
f − μS∗

f ,

0 =
(
λ∗
f + εmλ∗

m

)
S∗
f + ρ f R∗

f − g f1U
∗
f ,

0 = σ f U∗
f − g f2T

∗
f ,

0 = γ f T ∗
f + δ f U∗

f − g f3 R
∗
f .

(6)

Here, the drug-persistent equilibrium G∗ is given in terms of
(
λ∗
m, λ∗

f

)
where
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗
m = pΛ

μ + λ∗
m + ε f λ

∗
f
, U∗

m =
pΛ

(
λ∗
m + ε f λ

∗
f

)

gm1 (1 − Φm)
(
μ + λ∗

m + ε f λ
∗
f

) ,

T ∗
m =

pΛσm

(
λ∗
m + ε f λ

∗
f

)

gm1gm2 (1 − Φm)
(
μ + λ∗

m + ε f λ
∗
f

) ,

R∗
m =

pΛ
(
λ∗
m + ε f λ

∗
f

) (
γmσm + δmgm2

)

gm1gm2gm3 (1 − Φm)
(
μ + λ∗

m + ε f λ
∗
f

) ,

S∗
f = (1 − p)Λ

μ + λ∗
f + εmλ∗

m
, U∗

f =
(1 − p)Λ

(
λ∗
f + εmλ∗

m

)

g f1

(
1 − Φ f

) (
μ + λ∗

f + εmλ∗
m

) ,

T ∗
f =

(1 − p)Λσ f

(
λ∗
f + εmλ∗

m

)

g f1g f2

(
1 − Φ f

) (
μ + λ∗

f + εmλ∗
m

) ,

R∗
f =

(1 − p)Λ
(
λ∗
f + εmλ∗

m

) (
γ f σ f + δ f g f2

)

g f1g f2g f3

(
1 − Φ f

) (
μ + λ∗

f + εmλ∗
m

) .

(7)

Here,

λ∗
m = βmU∗

m

N∗
m

and λ∗
f = β f U∗

f

N∗
f

(8)

where N∗ = N∗
m + N∗

f with

N∗
m =

pΛ
(
gm1gm2gm3 (1 − Φm) +

(
ε f λ

∗
f + λ∗

m

) (
σm

(
gm3 + γm

) + gm2

(
gm3 + δm

)))

gm1gm2gm3 (1 − Φm)
(
μ + ε f λ

∗
f + λ∗

m

)

(9)

and

N∗
f =

(1− p)Λ
((

λ∗
f +εmλ∗

m

) (
σ f

(
γ f +g f3

)+g f2

(
δ f +g f3

))+g f1g f2g f3

(
1−Φ f

))

g f1g f2g f3

(
1 − Φ f

) (
μ + λ∗

f + εmλ∗
m

) .

(10)

Using (7), (9) and expression for λ∗
m in (8) leads to the following equation

gm2

(
gm3

(
λ∗
m

(
λ∗
f ε f + gm1 (1 − Φm) + λ∗

m

)
− βm

(
λ∗
f ε f + λ∗

m

))

+δmλ∗
m

(
λ∗
f ε f + λ∗

m

))
+ λ∗

mσm
(
gm3 + γm

) (
λ∗
f ε f + λ∗

m

)
= 0. (11)
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Solving (11) for λ∗
f gives

λ∗
f = λ∗

m

(
gm2

(
gm3

(
λ∗
m − βm

) + δmλ∗
m

) + λ∗
mσm

(
gm3 + γm

) + gm1gm2gm3 (1 − Φm)
)

ε f
(
gm2

(
gm3βm − λ∗

m

(
gm3 + δm

)) − λ∗
mσm

(
gm3 + γm

)) .

(12)

Similarly, using (7), (9) and expression for λ∗
f in (8) leads to the following equation

(
λ∗
f + λmεm

) (
g f2

(
δ f λ

∗
f + g f3

(
λ∗
f − β f

))
+ λ∗

f σ f
(
γ f + g f3

))

+g f1g f2g f3λ
∗
f

(
1 − Φ f

) = 0. (13)

Solving (13) for λ∗
m gives

λ∗
m =

λ∗
f

(
g f2

(
δ f λ

∗
f + g f3

(
λ∗
f − β f

))
+ λ∗

f σ f
(
γ f + g f3

) + g f1g f2g f3

(
1 − Φ f

))

εm

(
g f2

(
β f g f3 − λ∗

f

(
δ f + g f3

)) − λ∗
f σ f

(
γ f + g f3

)) .

(14)

Substituting (12) into (14) leads to the following fourth order polynomial equation of λ∗
m

λ∗
m

(
ξ3λ

∗3
m + ξ2λ

∗2
m + ξ1λ

∗
m + ξ0

) = 0. (15)

Solving (15) gives λ∗
m = 0 which corresponds to the drug-free equilibrium or

ξ3λ
∗3
m + ξ2λ

∗2
m + ξ1λ

∗
m + ξ0 = 0, (16)

where

ξ0 = g f2g f3g
2
m2

g2
m3

βmε f (β f gm1(1 − Φm)((εmε f − 1)Rm − 1)

+ (1 − Φm)(1 − Φ f )g f1gm1(Rm − 1)),

ξ1 = −gm2gm3(g f2(g f3(−gm1(Φm − 1)(ε f σm(gm3 + γm)(β f + g f1(Φ f − 1))

+ gm2(ε f δm(β f + g f1(Φ f − 1))

+gm3(ε f (β f + g f1(Φ f − 1)) + βm(ε f εm − 2)))) + βm(2ε f σm(gm3

+ γm)(β f (ε f εm − 1) − g f1(Φ f − 1))

+ gm2(2ε f δm(β f (ε f εm − 1) − g f1(Φ f − 1))

+ gm3(2ε f (β f (ε f εm − 1) − g f1(Φ f − 1)) + βm(1 − ε f εm))))

+ g2
m1

gm2gm3(Φm − 1)2) + δ f gm2gm3(gm1(Φm − 1) + βm)(βm(1 − ε f εm)

+ gm1(Φm − 1))) + σ f gm2gm3(γ f + g f3)(gm1(Φm − 1)

+βm)(βm(1 − ε f εm) + gm1(Φm − 1))),

ξ2 = −(σm(gm3 + γm) + gm2(gm3 + δm))(g f2(g f3(ε f σm(gm3

+ γm)(g f1(Φ f − 1) + β f (1 − ε f εm))

+ gm2(ε f δm(g f1(Φ f − 1) + β f (1 − ε f εm))

+gm3(ε f (g f1(Φ f − 1) + β f (1 − ε f εm))

+ 2βm(ε f εm − 1))) + gm1gm2gm3(Φm − 1)(ε f εm − 2))

+ δ f gm2gm3(gm1(Φm − 1)(ε f εm − 2)

+ 2βm(ε f εm − 1))) + σ f gm2gm3(γ f + g f3)(gm1(Φm − 1)(ε f εm − 2)
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Table 1 Number of positive roots

ξ3 > 0

ξ2 > 0 ξ2 < 0

ξ1 > 0 ξ1 < 0 ξ1 > 0 ξ1 < 0

ξ0 > 0 ξ0 < 0 ξ0 > 0 ξ0 < 0 ξ0 > 0 ξ0 < 0 ξ0 > 0 ξ0 < 0

i∗ 0 1 2 1 2 3 2 1

+ 2βm(ε f εm − 1))),

ξ3 = (
ε f εm − 1

) (
σ f

(
γ f + g f3

) + g f2

(
δ f + g f3

)) (
σm

(
gm3 + γm

) + gm2

(
gm3 + δm

)) 2.

We now determine the number of possible positive real roots of polynomial (16) using the
Descartes Rule of Signs. The possibilities can be tabulated as shown in Table 1 below.

From Table 1, we observe that system (1) can have a unique drug-persistent equilibrium.
For this case, the bifurcation at Ra = 1 is forward. However, system (1) can have multiple
drug-persistent equilibrium. Hence, system (1) has a backward bifurcation at Ra = 1 from
the drug-free equilibrium to multiple drug-persistent equilibrium.

Conditions for the existence of backward bifurcation follow from Theorem 4.1 proven in
[5]. We deliberately avoid rewriting the theorem and focus on its application. The theorem
has been duplicated by many authors [3,8,23].

Let us make the following change of variables:
Sm = x1, Um = x2 Tm = x3, Rm = x4, S f = x5, U f = x6 T f = x7, R f = x8, so that

N =
∑8

n=1
xn . We now use the vector notation X = (x1, x2, x3, x4, x5, x6, x7, x8)

T . Then,

system (1) can be written in the form
dX

dt
= F(t, x(t)) = ( f1, f2, f3, f4, f5, f6, f7, f8)T ,

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x
′
1(t) = pΛ − βm(x2 + θε f x6)x1

N
− μx1 = f1,

x
′
2(t) = βm(x2 + θε f x6)x1

N
+ ρmx4 − gm1x2 = f2,

x
′
3(t) = σmx2 − gm2 x3 = f3,

x
′
4(t) = γmx3 + δmx2 − gm3x4 = f4,

x
′
5(t) = (1 − p)Λ − βm(εmx2 + θx6)x5

N
− μx5 = f5,

x
′
6(t) = βm(εmx2 + θx6)x5

N
+ ρ f x8 − g f1x6 = f6,

x
′
7(t) = σ f x6 − g f2 x7 = f7,

x
′
8(t) = γ f x7 + δ f x6 − g f3x8 = f8.

(17)

We now define

β f = θβm (18)
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with θ = 1 signifying that the chance of initiating drug abuse habit upon contact with a male
drug user or upon contact with a female drug user is the same, θ ∈ (0, 1) signifying a reduced
chance of initiating drug abuse habit upon contact with a female drug user as compared to a
male drug user, θ > 1 signifies an increased rate of initiating drug abuse habit upon contact
with a female drug user as compared to a male drug user.

Let βm be the bifurcation parameter, Ra = 1 corresponds to

βm = β∗
m = g f1

(
Φ f − 1

)

2θ
(
ε f εm − 1

) + θgm1 (Φm − 1)

2θ
(
ε f εm − 1

)

+
√(

g f1

(
Φ f −1

)+θgm1 (Φm−1)
)

2+4θg f1

(
Φ f − 1

)
gm1 (Φm − 1)

(
ε f εm − 1

)

2θ
(
ε f εm − 1

) .

The Jacobian matrix of system (1) at G0 when βm = β∗
m is given by

J ∗(G0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−μ −pβ∗
m 0 0 0 −pθβ∗

mε f 0 0
0 pβ∗

m − gm1 0 ρm 0 pθβ∗
mε f 0 0

0 σm −gm2 0 0 0 0 0
0 δm γm −gm3 0 0 0 0
0 −(1 − p)β∗

mεm 0 0 −μ −(1 − p)θβ∗
m 0 0

0 (1 − p)β∗
mεm 0 0 0 (1 − p)θβ∗

m − g f1 0 ρ f

0 0 0 0 0 σ f −g f2 0
0 0 0 0 0 δ f γ f −g f3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

System (17), with βm = β∗
m has a simple eigenvalue, hence the center manifold theory

can be used to analyse the dynamics of system (1) near βm = β∗
m . It can be shown that

J ∗(G0), has a right eigenvector given by w = (w1, w2, w3, w4, w5, w6, w7, w8)
T . Further,

the left eigenvector of J ∗(G0), associated with the zero eigenvalue at βm = β∗
m is given by

v = (v1, v2, v3, v4, v5, v6, v7, v8)
T .

The computations of a and b are necessary in order to apply Theorem 4.1 in Castillo-
Chavez and Song [5]. For system (17), the associated non-zero partial derivatives of F at the
drug-free equilibrium are given below. We make use of the following notation:

∂2 fk
∂xi∂x j

= fk(i, j) and
∂2 fk

∂xi∂β∗
m

= fk(i,β∗
m ),

with fk(i, j) = fk( j,i), i, j, k = 1, 2, . . . , 8.

We now write the associated non-zero partial derivatives in terms of the following two non-
zero partial derivatives:

f1(1,2) = −(1 − p)μβm

Λ
and f1(2,3) = pμβm

Λ
. (19)

Thus, the remaining associated non-zero partial derivatives are as follows:

f1(1,6) = θε f f1(1,2), f2(1,2) = − f1(1,2), f2(1,6) = −θε f f1(1,2),

f5(1,2) = f5(2,3) = f5(2,4) = f5(2,7) = f5(2,8) = −εm f1(1,2)

f5(2,2) = −2εm f1(1,2), f5(2,6) = −(θ + εm) f1(1,2), f5(6,6) = −2θ f1(1,2),

f5(3,6) = f5(1,6) = f5(4,6) = f5(6,7) = f5(6,8) = −θ f1(1,2),

f6(1,2) = f6(2,3) = f6(2,4) = f6(2,7) = f6(2,8) = εm f1(1,2)

f6(2,2) = 2εm f1(1,2), f6(2,6) = (θ + εm) f1(1,2), f6(6,6) = 2θ f1(1,2),
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f6(3,6) = f6(1,6) = f6(4,6) = f6(6,7) = f6(6,8) = θ f1(1,2),

f1(2,4) = f1(2,5) = f1(2,7) = f1(2,8) = f1(2,3),

f1(2,2) = 2 f1(2,3), f1(2,6) = (1 + θε f ) f1(2,3), f1(6,6) = 2θε f f1(2,3),

f1(3,6) = f1(4,6) = f1(5,6) = f1(6,7) = f1(6,8) = θε f f1(2,3),

f2(2,2) = −2 f1(2,3), f2(2,6) = −(1 + θε f ) f1(2,3), f2(6,6) = −2θε f f1(2,3),

f2(2,3) = f2(2,4) = f2(2,5) = f2(2,7) = f2(2,8) = − f1(2,3),

f2(3,6) = f2(4,6) = f2(5,6) = f2(6,7) = f2(6,8) = −θε f f1(2,3),

f5(2,5) = −εm f1(2,3), f5(5,6) = −θ f1(2,3), f6(2,5) = εm f1(2,3),

f6(5,6) = θ f1(2,3), f1(2,β∗
m ) = −p, f1(6,β∗

m ) = −pθε f ,

f2(2,β∗
m ) = p, f2(6,β∗

m ) = pθε f , f5(2,β∗
m ) = −(1 − p)εm,

f5(6,β∗
m ) = −(1 − p)θ, f6(2,β∗

m ) = (1 − p)εm, f6(6,β∗
m ) = (1 − p)θ.

It thus follows that

a =
∑

vkwiw j fk(i, j), i, j, k = 1, 2, 3, . . . , 8 (20)

and

b =
∑

vkwi fk(i,β∗
m ), i, k = 1, 2, 3, . . . , 8.

We thus have the following result

Theorem 3 If a > 0 and b > 0, then system (1) has a backward bifurcation at Ra = 1,
otherwise if a < 0 and b > 0 then the drug-persistent equilibrium is locally asymptotically
stable for Ra > 1 but close to one.

Numerical Simulations

A Case Study for the Western Cape Province of South Africa

We present an application of our model to a case study of Cape Town of South Africa. We
focus mainly on the trends of drug abuse amongst males and females. The 2011 United
Nations World Drug Report identified South Africa as one of the countries still experienc-
ing ‘some increase’ in the use of ‘undefined amphetamines’. The major contributor to an
increase in the use of amphetamine-group substances has been an increase in consumption of
methamphetamine in Cape Town and the surrounding Western Cape Province. This informa-
tion has been documented via admissions to treatment centres, see [25–28]. Data collected
by the Medical Research Council (MRC) from specialist substance abuse treatment centres
in Cape Town (as part of the South African Community Epidemiology Network on Drug
Use-SACENDU) show that males continue to consistently dominate patient intake.

Parameter Estimation

We make use of Matlab to estimate model parameters used in our numerical simulations
through curve fitting, which is a process that allows us to quantitatively estimate the trend
of the outcomes. The curve fitting process fits equations of approximating curves to the raw
field data. Nevertheless, for a given set of data, the fitting curves of a given type are generally
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Table 2 Male and female substance abuse patients in the Western Cape Province of South Africa for the
period 1998a–2015b (%)

Year 1998a 1998b 1999a 1999b 2000a 2000b 2001a 2001b

Male (%) 81 81 80 83 84 82 80 84

Female (%) 19 19 20 17 16 18 20 16

Year 2002a 2002b 2003a 2003b 2004a 2004b 2005a 2005b

Male (%) 83 80 81 82 80 78 78 75

Female (%) 17 20 19 18 20 22 22 25

Year 2006a 2006b 2007a 2007b 2008a 2008b 2009a 2009b

Male (%) 74 75 76 76 74 75 74 74

Female (%) 26 25 24 24 26 25 26 26

Year 2010a 2010b 2011a 2011b 2012a 2012b 2013a 2013b

Male (%) 74 76 74 76 76 75 76 75

Female (%) 26 24 26 24 24 25 24 25

Year 2014a 2014b 2015a

Male (%) 77 73 76

Female (%) 23 27 24

Letter ‘a’ represents the first six months of the year and ‘b’ represents the last six months of the year

not unique. Thus, a curve with a minimal deviation from all data points is desired. This
best-fitting curve can be obtained by the method of least squares. The least squares curve fit
routine (lsqcurvefit) in Matlab with optimization is used to estimate the parameter values.
Many parameters are known to lie within some intervals. During the estimation of parameter
values, unknown parameter values are given a lower and upper bound from which the set of
parameter values that provide the best fit are obtained. The parameters obtained from curve
fitting and intervals used are given in Tables 3 and 4. We present an application of system
(1) through fitting the model to data from the Medical Research Council’s (MRC’s), South
African Community Epidemiology Network on Drug Use (SACENDU) project. We fit the
system (1) to data on male and female patients who are primary substance abusers in Cape
Town of South Africa. We use data in Table 2 which was collected by the South African
Community Epidemiology Network on Drug Use (SACENDU) [35].

Results

Figure 2 shows the trends in the proportion of male substance abusers in treatment centres
of Cape Town. As can be seen in Fig. 2, the model fits well with the data from Table 2.
The results show that the proportion of male substance abusers in Cape Town shall continue
to steadily decrease over the years. However, male substance abusers continue to dominate
their female counterparts. Parameter values estimated using data for male substance abusers
in Cape Town are shown in Table 3. This estimation assumes that the dynamics remain the
same over the entire period.

Figure 3 shows the trends in the proportion of female substance abusers in treatment
centres of Cape Town. The results show that the proportion of female substance abusers
in Cape Town shall steadily increase over the years. However, female substance abusers
continue to be dominated by their male counterparts. Parameter values estimated using data
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Fig. 2 System (1) fitted to data for substance abuse male patients (a) and projected for more years (b) in Cape
Town. The blue circles indicate the actual data and the solid red line indicates the model fit to the data

Table 3 Parameter values and
ranges obtained from data fitting
using data for male substance
abusers in Cape Town

Parameter Range Value Source

p 0–1 0.0393 Estimated

βm 0–1 0.6877 Estimated

β f 0–1 0.1207 Estimated

εm 0–1 0.1623 Estimated

ε f 0–1 0.9999 Estimated

σm 0–1 7.9161 × 10−4 Estimated

σ f 0–1 0.0572 Estimated

rm 0–1 0.4742 Estimated

r f 0–1 0.4985 Estimated

δm 0–1 2.3432 × 10−6 Estimated

δ f 0–1 0.0010 Estimated

ρm 0–1 0.8093 Estimated

ρ f 0–1 0.7096 Estimated

γm 0–1 1.2395 × 10−4 Estimated

γ f 0–1 0.0147 Estimated

Λ 0.028–0.080 0.0324 Estimated

μ 0.019–0.021 0.020 Ref. [12]

for female substance abusers in Cape Town are shown in Table 4. This estimation assumes
that the dynamics remain the same over the entire period.

Numerical Results

We carry out detailed numerical simulations using matlab programming language to support
our theoretical findings. Numerical solutions of a model depend on the values of all its
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Fig. 3 System (1) fitted to data for substance abuse female patients (a) and projected for more years (b) in
Cape Town. The blue circles indicate the actual data and the solid red line indicates the model fit to the data

Table 4 Parameter values and
ranges obtained from data fitting
using data for female substance
abusers in Cape Town

Parameter Range Value Source

p 0–1 4.2 × 10−5 Estimated

βm 0–1 0.6015 Estimated

β f 0–1 2.1535 × 10−6 Estimated

εm 0–1 1.8173 × 10−5 Estimated

ε f 0–1 3.0700 × 10−6 Estimated

σm 0–1 0.1132 Estimated

σ f 0–1 2.1447 × 10−6 Estimated

rm 0–1 0.3747 Estimated

r f 0–1 0.9999 Estimated

δm 0–1 5.3434 × 10−5 Estimated

δ f 0–1 3.8806 × 10−6 Estimated

ρm 0–1 0.3528 Estimated

ρ f 0–1 0.2285 Estimated

γm 0–1 1.9912 × 10−6 Estimated

γ f 0–1 0.1367 Estimated

Λ 0.028–0.080 0.04 Estimated

μ 0.019–0.021 0.020 Ref. [12]

parameters. The initial conditions used are: Sm(0) = 450,Um(0) = 10, Tm(0) = 0, Rm(0) =
0, S f (0) = 350, U f (0) = 5, T f (0) = 0, R f (0) = 0.

Figure 4 illustrates the effect of varying parameters βm , β f , δm and δ f on the prevalence
of drug abuse. Figure 4a shows that increasing the contact rate βm lead to an increase in the
prevalence of both male and female drug abusers. Though the contact rate βm as defined in
“Model Formulation” section, accounts for the interaction between males only, we observe
that increasing βm also results in an increase in the prevalence of female drug abusers. Thus,
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Fig. 4 Effects of varying βm , (a), β f , (b), δm , (c) and δ f , (d) on the prevalence of drug abuse, starting from
0.2 up to 1.0 with a step size of 0.1 across all the parameters

we can deduce that reducing the magnitude of βm results in a decrease in the prevalence of
female drug users. The same can also be observed for the parameter β f . Figure 4b shows
that increasing the contact rate β f lead to an increase in the prevalence of both male and
female drug abusers. As given in “Model Formulation” section, parameter β f accounts for the
interaction between females only, but we observe that its increase also results in an increase
in the prevalence of male drug abusers. Thus, we can deduce that reducing the magnitude of
β f results in a decrease in the prevalence of male drug users. Figure 4c, d illustrate the effect
of parameters δm and δ f on the prevalence of drug abuse for both males and females. We
observe that parameter δm has more impact on decreasing prevalence of drug abuse for both
males and females as compared to δ f . Encouraging male drug abusers to quit drug abuse is
of significant importance in controlling drug abuse amongst both males and females. Note
also that encouraging female drug abusers to quit drug abuse is of importance in controlling
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Fig. 5 Effects of varying εm , (a), ε f , (b), σm , (c) and σ f , (d) on the prevalence of drug abuse, starting from
0.2 up to 1.0 with a step size of 0.1 across all the parameters

drug abuse, but more effort should be directed to male drug abusers as they are currently the
main contributors to most cases given their increased number.

Figure 5 illustrates the effect of varying parameters εm , ε f , σm and σ f on the prevalence
of drug abuse. Figure 5a show that increasing the parameter εm results in an increase in
the prevalence of both males and females, however with a proportionally higher increase in
female drug abusers. Thus, efforts targeted at reducing the prevalence of female drug abusers
should be directed towards reducing parameter εm . Figure 5b show the effect of parameter
ε f on the prevalence of male and female drug abusers. We observe that increasing ε f results
in an increase in the prevalence of both males and females, however with a proportionally
smaller increase for both sexes. Figure 5c, d illustrate the effect of parameters σm and σ f on
the prevalence of drug abuse for both males and females. We observe that parameter σm has
more impact on decreasing prevalence of drug abuse for both males and females as compared
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to σ f . Encouraging male drug abusers in need of help for overcoming the drug problem to
seek treatment can be of great help in the fight against drug abuse amongst both males and
females. Note also that encouraging female drug abusers in need of help to overcome the
drug problem is also of great importance in controlling drug abuse, but more effort should
be directed towards encouraging more male drug abusers as they are currently more of them
who might be in need of help to overcome the drug problem given their dominance over
females.

Conclusion

The goal of this paper is to model gender differences in the spread of drug abuse. The
sex structured model developed in this paper explicitly captures the drug abuse dynamics
amongst male and female individuals. Compared to previous drug abuse models, the model
differentiates the human population in terms of sex and considers possible interactions within
respective classes not considered in past drug abuse models. The model is fitted to data on
drug abusers reporting in the treatment centres of Cape Town. The least squares curve fit
routine (lsqcurvefit) in Matlab with optimization has been used to fit the model to data on
male and female drug abusers reporting in treatment centres of Cape Town of South Africa.
The model was observed to fit well with this data and parameters from model fitting were
obtained. Performing a visual predictive check on the figures from data fitting suggests that
the proportion of male drug abusers in Cape Town is expected to continue to decrease whereas
that of female drug abusers shall continue to increase but steadily. The estimated proportion
of female drug abusers in specialist treatment centres of Cape Town was observed to be
approximately 34% by the year 2030.

Numerical results from this study have lead to other important insights in the dynamics
of drug abuse. The identification of parameters that have more impact on the prevalence of
drug abuse for males and females will be of priceless help for policy makers in coming up
with relevant policies for the control of this dynamic social epidemic. Some investigation on
the impact of some parameters on the prevalence of drug abuse was performed via numerical
simulations. It was observed that parameters βm and β f though linked to a specific gender,
have a direct effect on the prevalence of drug abuse for both sexes. Intuitively, one might
regard the control of parameter βm to be of effect to males only and that of β f to be of effect to
females only. But as observed, increasing/decreasing βm or β f leads to an increase/decrease
in the prevalence of drug abuse for both males and females. It was also noted that increasing
the magnitude of parameters δm and σm result in a significant decrease in the prevalence of
drug abuse for both sexes as compared to increasing parameters δ f and σ f . This was seen to
be the case since males currently dominate females in drug use and treatment. Thus control
efforts targeted to males tend to have more impact as compared to efforts directed to females.
This however should not be taken to mean that control measures should do away with females,
rather the results suggest that more effort should be directed to males to achieve enhanced
positive results. The study presented here is not exhaustive, it can be extended to include
contextual dynamics, such as drug supply chains or changes in interdiction. Incorporating
these processes will undoubtedly facilitate in the understanding of drug abuse dynamics.
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