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a b s t r a c t

A mathematical model was designed to explore the co-interaction of gonorrhea and HIV in the pres-
ence of antiretroviral therapy and gonorrhea treatment. Qualitative and comprehensive mathematical
techniques have been used to analyse the model. The gonorrhea-only and HIV-only sub-models are first
considered. Analytic expressions for the threshold parameter in each sub-model and the co-interaction
model are derived. Global dynamics of this co-interaction shows that whenever the threshold parameter
for the respective sub-models and co-interaction model is less than unity, the epidemics dies out, while
eproductive number
reatment
entre Manifold
tability

the reverse results in persistence of the epidemics in the community. The impact of gonorrhea and its
treatment on HIV dynamics is also investigated. Numerical simulations using a set of reasonable param-
eter values show that the two epidemics co-exists whenever their reproduction numbers exceed unity
(with no competitive exclusion). Further, simulations of the full HIV-gonorrhea model also suggests that
an increase in the number of individuals infected with gonorrhea (either singly or dually with HIV) in the
presence of treatment results in a decrease in gonorrhea-only cases, dual-infection cases but increases

ases.
the number of HIV-only c

. Introduction

By January 2006, AIDS had claimed more than 25 million lives
ince its recognition in 1981, and nearly 40 million people were
iving with HIV around the World (UNAIDS/WHO, 2006). Sexually
ransmitted infections (STIs) other than HIV account for a signif-
cant portion of illness globally, with more than 340 million new
ases of curable STIs (mainly gonorrhoea, syphilis, chlamydia and
richomoniasis) occurring globally in adults aged 15–49 each year
WHO, 2006). Together, HIV and sexually transmitted infections
STIs) are responsible for the destruction of health on a massive
cale globally (Anon., 2010a). We shall focus on gonorrhea mainly
hich is one of the most common STDs. In the US, CDC estimates

hat more than 700,000 persons get new gonorrheal infections each
ear (CDC, 1998). Out of the 40 million people with HIV worldwide,
.3 million were infected in 2006 alone and 24.7 million live in sub-
aharan Africa, the region of the World currently experiencing the

ighest concentration of global emergencies (UNAIDS/WHO, 2006).
IV and STIs spread and kill most quickly in populations affected by
overty, social unrest and lack of health infrastructure. These fac-
ors are commonly present in humanitarian emergencies (Anon.,
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2010a), and it is not surprising why these diseases are so rampant
in the developing World. In addition, STIs facilitate the transmis-
sion of HIV infection (WHO, 2006). Men who are infected with both
gonorrhea and HIV are more than twice as likely to shed HIV in their
genital secretions than are those who are infected only with HIV and
moreover, the median concentration of HIV in semen is as much
as 10 times higher in men who are infected with both gonorrhea
and HIV than in men infected only with HIV (CDC, 1998). There-
fore, understanding the relationship between these two diseases is
important as they fuel each other.

Gonorrhea is a sexually transmitted disease caused by a type
of germ, a bacteria called Neisseria gonorrhoeae. It is passed from
one person to another during vaginal, anal, and oral sex. It can
be found in the throat, vagina, urethra, and anus. Babies can be
infected during birth, causing eye infections. Its symptoms appear
within 10 days after a person is exposed to the germ, then disap-
pear (CDC, 1998; Anon., 2010b). Women often have no symptoms
at all, but both women and men whose symptoms have disap-
peared are still infected and infectious. For infection in the throat
through oral sex, one may feel like having a sore throat. Gonorrhea
is more easily spread to the throat by penis-mouth sex and rarely

by mouth-vagina sex (Anon., 2010b). In men, gonorrhea can cause
epididymitis, a painful condition of the testicles that can sometimes
lead to infertility if left untreated. Without prompt treatment, gon-
orrhea can also affect the prostate and can lead to scarring inside
the urethra, making urination difficult. Gonorrhea can spread to

dx.doi.org/10.1016/j.biosystems.2010.09.008
http://www.sciencedirect.com/science/journal/03032647
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he blood or joints (CDC, 1998; Anon., 2010b; Hook and Handsfield,
999), a condition which can be life-threatening. The predominant
ransmission mode of both HIV and other STIs is sexual intercourse.

ethods for preventing sexual transmission of HIV and STIs are the
ame, as are the target audiences for interventions. High rates of
exually transmitted infections continue to be experienced in the
outhern African States. This is of great concern as the communities
re loosing their active force (manpower) (SADC, 2006).

Whereas single disease models have flourished for a long time,
o-infection models are now coming to the limelight (Bhunu et
l., 2009a; Mtisi et al., 2009; Mukandavire et al., 2009; Roeger et
l., 2009; Sharomi et al., 2008). Our model is fundamentally dif-
erent from previous one in the sense that none of those studies
onsidered treatment of both diseases. Diseases co-dynamics are
ery complex processes, but in order to keep the model reason-
bly simple, we make a number of simplifying assumptions, which
ould be modified in line with relevant (empirical) data (if any!).
evertheless, the proposed deterministic model (which is not for
specific country or nation) incorporates some basic epidemio-

ogical features of the co-dynamics of HIV and gonorrhea and our
pproach does not preclude the possibility of joint infections. Due
o an increase in gonorrhea cases during this HIV era, it is not clear
o what extent this (gonorrhea epidemic) may have contributed to
he spread of HIV/AIDS. For people living in emergency settings,
reventive measures and treatment for HIV and STIs are rarely
vailable. Our objective therefore is to forecast future trends in the
ncidence of the two diseases using a deterministic mathematical

odel in the presence of gonorrhea treatment and antiretroviral
herapy in a community. For this purpose, we wish to answer the
ollowing question: What is the impact of an increase in the number
f infected individuals with gonorrhea in a population in which HIV
s prevalent? It is our view that this study represents the very first

odelling work that provides the in-depth analysis of the qualita-
ive dynamics of HIV-gonorrhea co-interaction.

We begin with a description of the model and derived some of its
asic properties in the next section. The sub-models for gonorrhea
nd HIV are presented and analysed in Sections 3 and 4 respec-
ively. The analysis of the full HIV-gonorrhea model is carried out
n Section 5. Numerical simulations of the model are presented in
ection 6, while the last section concludes the paper.

. Model description

The total sexually-active population at time t, denoted by N, is
ub-divided into mutually exclusive compartments, namely sus-
eptibles (S), newly-and asymptotically-infected individuals with
IV only but displaying no clinical symptoms of AIDS (IH), individ-
als infected with gonorrhea only IG, individuals dually-infected
ith HIV and gonorrhea displaying no clinical symptoms of AIDS

ymptoms (IGH), HIV-infected displaying AIDS symptoms of both
iseases (AH), AIDS individuals dually-infected with gonorrhea and
isplaying clinical symptoms (AGH), AIDS patients singly infected
ith HIV and are on antiretroviral therapy (AHT) and AIDS patients
ually-infected with HIV and gonorrhea who are on both antiretro-
iral and gonorrhea treatment (AHGT), so that

= S + IH + IG + IGH + AH + AGH + AHT + AGHT .

The susceptible population is increased by the recruitment
f individuals (assumed susceptible) into the population through
irth and migration at a rate �. Both singly and dually-infected
ndividuals transmit either gonorrhea or HIV not both. Susceptible
ndividuals acquire infection following contact with HIV-infected
ndividuals at a rate �H, and acquire gonorrhea infection follow-
ng effective contact with gonorrhea infectives at a rate �G. It is
ssumed that individuals infected with gonorrhea only recover
tems 103 (2011) 27–37

after treatment and return to the susceptible class at a rate �1. Fur-
thermore, natural mortality rate occurs in all classes at a constant
rate �. The force of infection associated with HIV infection, denoted
by �H, is given by

�H = ˇH[IH + �IGH + �A(AH + �1AGH) + ϑAHT + ϕAGHT ]
N

(1)

where, ˇH is the effective contact rate for HIV transmission, the
modification parameter � > 1 accounts for the relative infectious-
ness of individuals dually-infected with gonorrhea and HIV but
displaying no clinical symptoms of AIDS in comparison to those
with HIV infection alone with no AIDS symptoms. The modification
parameter �A > 1 captures the fact that individuals in the AIDS class
are more infectious than those HIV-infectives not yet displaying
AIDS symptoms. This is due to the fact that individuals in AIDS stage
have higher viral load compared to other HIV-infected individu-
als displaying no clinical symptoms of AIDS. Also, the parameter
�1 > 1, models the fact that AIDS individuals dually-infected with
gonorrhea are more infectious than those infected with HIV alone
and displaying AIDS symptoms. AIDS patients on antiretroviral
only (AHT) and those on both antiretroviral therapy and gonorrhea
treatment (AGHT) are assumed to transmit infection at a reduced
rate (0 ≤ ϑ ≤ ϕ ≤ 1) due to the fact that treatment reduces the viral
load for these individuals. Similarly, susceptibles acquire gonor-
rhea infection following effective contact with gonorrhea infected
individuals at a rate �G, given by,

�G = ˇG[IG + �GH(IGH + �2AGH) + ϕAGHT ]
N

. (2)

In (2)ˇG is the effective contact rate for gonorrhea infection,
�GH > 1 is a modification parameter accounting for the increased
likelihood of infection by individuals dually-infected with gonor-
rhea and HIV compared to those singly infected with gonorrhea.
Further, the parameter, �2 > 1 models the fact that AIDS indi-
viduals dually-infected with gonorrhea are more infectious than
the corresponding dually-infected individuals displaying no AIDS
symptoms.

The population of individuals infected with HIV only (and dis-
playing no clinical symptoms of AIDS) is generated following
infection (at a rate �H) and by the recovery from gonorrhea infec-
tion after treatment by individuals dually-infected with HIV and
gonorrhea but displaying no AIDS symptoms at a rate �2. Individ-
uals in this class acquire gonorrhea infection at a rate ��G, where
� > 1, accounts for the assumed increase in susceptibility to gonor-
rhea infection as a result of HIV infection. This population is further
decreased following progression to AIDS at a rate � .

The population of individuals with AIDS symptoms only is gen-
erated following the progression to AIDS by individuals infected
with HIV alone but displaying no clinical symptoms of AIDS at a
rate � and the recovery from gonorrhea infection after treatment
of AIDS individuals dually-infected with gonorrhea at a rate �3.
Individuals in this class also acquire gonorrhea infection at a rate
��G and die of AIDS-related illness at a rate .

The population of individuals infected with gonorrhea only is
generated following infection at the rate �G, and this population
decrease following the recovery of infectives after treatment at a
rate �1. Individuals in this class acquire HIV infection at a rate ˛�H,
where ˛ > 1, accounts for the assumed increase in susceptibility to
HIV infection as a result of gonorrhea infection.

The population of AIDS individuals dually-infected with gon-
orrhea is generated by progression to AIDS of individuals

dually-infected with HIV and gonorrhea but displaying no AIDS
symptoms at a rate �� , where � > 1 represents the assumption
that individuals dually-infected with HIV and gonorrhea but dis-
playing no clinical symptoms of AIDS progress to AIDS at a faster
rate compared to those with HIV only and displaying no clinical
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Fig. 1. Mod

ymptoms of AIDS. Individuals in this class suffer an additional
isease-induced mortality at a rate . AIDS patients are treated
t a rate ω, either singly or dually-infected, and dually-infected
ndividuals are assumed to recovery from gonorrhea epidemic at
constant rate �4. AIDS patients eventually succumb to HIV mor-

ality as the drug wanes out at a reduced rate (0 < � < 1). The model
ow diagram is depicted in Fig. 1 below.

From the aforementioned description and assumptions together
ive rise to the following deterministic system of nonlinear differ-
ntial equations

S′ = � + �1IG − �GS − �HS − �S,

I′G = �GS − ˛�HIG − (�1 + �)IG,

I′H = �HS + �2IGH − ��GIH − (� + �)IH,

I′GH = ˛�HIG + ��GIH − (�� + �2 + �)IGH,

A′ = �I + � A − �� A − (ω + � + )A ,
(3)
H H 3 GH G H H

A′
GH = ��IGH + ��GAH − (ω + �3 + � + )AGH,

A′
HT = ωAH + �4AGHT − ��GAHT − (� + �)AHT ,

A′
GHT = ωAGH + ��GAHT − (�4 +  + �)AGHT .
diagram.

3. Gonorrhea-only sub-model

Before analysing the full model system (3), it is instructive to
gain insights into the dynamics of the gonorrhea-only sub-model
(obtained by setting IH = IGH = AH = AHT = AGH = AGHT = 0) in (3) given
by

S′ = � − �GS − �S + �1IG

I′G = �GS − (�1 + �)IG,
(4)

where �G = ˇGIG/NG, and now NG = S + IG. This is a simple generic
SIS model without disease-induced death rate. Since death due to
gonorrhea is rare and occurs in far less than 1% of cases, it is not
accounted herein; this does not alter the dynamical outcome of
the analysis. Even though this submodel does not account for some
of the features of the disease such as vital dynamics (due to the
fact that the complete gonorrhea model cannot cleanly be decouple
from the proposed co-dynamic model), its joint dynamics with HIV
does, but it is still worth investigating the submodel to set the scene

in the sequel. For system (4), it is straightforward to verify that the
region

�G =
{

(S, IG) ∈R2
+ : NG ≤ �

�

}
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s positively invariant and attracting. Thus, the dynamics of
onorrhea-only model will be analysed in �G. The gonorrhea-only
odel (4) has a disease-free equilibrium point given by,

0
G = (S, IG) =

(
�

�
, 0

)
(5)

The linear stability of E0 is governed by the basic reproductive
umber R0 (Anderson and May, 1991; Brauer and Castillo-Chavez,
001; Castillo-Chavez et al., 2002; Hethcote, 2000). The stability of
his equilibrium will be investigated using the next generation oper-
tor (Diekmann et al., 1990; van den Driessche and Watmough,
002). Using the notation in van den Driessche and Watmough
2002) on the system (12), the matrices F and V, for the new infec-
ion terms and the remaining transfer terms are respectively given
y

= (ˇG),andV = (� + �1).

It follows that the basic reproduction number for model system
4), denoted by RG is given by

G = �(FV−1) = ˇG

� + �1
(6)

here � represents the spectral radius (the dominant eigenvalue
n magnitude) of FV−1. The reproductive number (RG) gives the
umber of secondary gonorrhea infectious cases produced by a
onorrhea infectious individual during his or her infectious period
hen introduced in a population of mostly gonorrhea susceptibles

n the presence of treatment.

.1. Sensitivity analysis of (RG)

Here, the reproductive number, RG is analysed to determine
hether or not treatment of gonorrhea patients (modelled by the

ate �1) can lead to the effective control or elimination of gonorrhea
n the community. It follows from (6), that the elasticity (Caswell,
001) ofRG with respect to �1 can be computed using the approach

n (Chitns et al., 2008) as follows:

�1

RG

∂RG

∂�1
= − �1

� + �1
(7)

Eq. (7) suggests that an increase in treatment of gonorrhea
nfectives have a positive impact in controlling gonorrhea in the
ommunity. The sensitivity index of the reproduction numbers is
sed to assess the impact on the relevant parameters to disease
ransmission. That is, the elasticity measures the effect a change in
1, say has as a proportional change inRG . We note that the elastic-

ty to �1 increases linearly with �1, so that the proportional change
f RG to �1 is small for �1 near zero, and very large for �1 near one.
ig. 2 shows the impact of increase in gonorrhea treatment in the
ommunity.

The graphical representation suggests that an increase the num-
er of gonorrhea infectives who receive treatment will have a
ositive impact in controlling gonorrhea epidemic in the commu-
ity. Using Theorem 2 in van den Driessche and Watmough (2002),
he following result is established.

emma 1. The disease-free equilibrium(E0
G) of model system (4) is

ocally asymptotically stable (LAS) ifRG < 1 and unstable ifRG > 1.

Lemma 1, implies that gonorrhea can be eliminated from the

ommunity (whenRG < 1) if the initial sizes of the sub-populations
f the model system (4) are in the basin of attraction of the disease-
ree equilibrium E0

G . To ensure that elimination of the virus is
ndependent of the initial sizes of the sub-populations, it is nec-
ssary to show that the DFE is globally stable.
Fig. 2. Graphical representation of the relationship between gonorrhea reproduc-
tive number RG and treatment rate �1.

3.2. Global stability of the disease-free for gonorrhea-only model

We claim the following result

Lemma 2. For any positive solution(S(t), I(t)) of model system (4),
ifRG < 1, then, the disease-freeE0

G is a global attractor.

Proof. Let f∞ = lim inf t→∞f(t), f∞ = lim sup t→∞f(t).
From I′G(t) = (ˇGIGS/NG) − (� + �)IG, and (S/NG) ≤ 1, (IG/NG) ≤ 1,

it follows that

I′G(t) ≤ ˇGIG − (�1 + �)IG

≤
(

ˇG

� + �1
− 1

)
IG

≤ (RG − 1) IG.

(8)

Choose a sequence tn → ∞ such that I(tn) → I∞G , and I′G(tn) → 0.
(see (Thieme, 1993)), then

0 ≤ (RG − 1) I∞G .

Since (ˇG/� + �1) ≤ 1, we have I∞G = 0, therefore lim t→∞IG(t) = 0.
Finally, We choose the sequences t1

n → ∞, such that S(t1
n ) → S∞.

Then, from the first equation in (4), noticing that IG(t) → 0 as t → ∞,
it follows that

0 ≤ � − �S∞, 0 ≥ � − �S∞. (9)

From (9), we obtain

S∞ = S∞ = �

�
,

and the proof is complete. �

3.3. Global stability of the endemic equilibrium for
gonorrhea-only sub-model

We claim the following result.
Lemma 3. The endemic equilibrium of the gonorrhea-only sub-
model (4) is globally asymptotically stable in�G whenever RG > 1.

Proof. It can be shown, as in Lemma 2 above, that the unique
endemic equilibrium is globally asymptotically stable for RG > 1.
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urther, NG = �/� as t → ∞. Thus, using S = NG − IG = �/� − IG and
ubstituting in (4), we obtain

′
G = �G

(
�

�
− IG

)
− (� + �)IG. (10)

Using Dulac’s multiplier 1/IG, it follows that

∂

∂IG

[
ˇGIG

IG�/�

(
�

�
− IG

)
− (�1 + �)

]
= −ˇG�

�
= −ˇG

N
< 0. (11)

Thus, by Dulac’s criterion, there ar no periodic orbits in �G.
ince �G is positively invariant, and the endemic equilibrium exists
henever RG > 1, then it follows from the Poincare–Bendixson

heorem (Perko, 2000) that all solutions of the limiting system orig-
nating in �G remain in �G for all t. Further, the absence of periodic
rbits in �G implies that the endemic equilibrium of gonorrhea-
nly sub-model is globally asymptotically stable wheneverRG > 1.

In summary, the gonorrhea-only sub-model (4) has a globally-
symptotically stable infection-free equilibrium whenever RG <
, and a unique endemic equilibrium whenever RG > 1.

. HIV-only sub-model

Consider the HIV only sub-model (obtained by setting IG = IGH =
GH = AGHT= 0) in (3) given by

S′
H = � − �HSH − �SH,

I′H = �HSH − (� + �)IH,

A′
H = �IH − (ω + � + )AH,

A′
HT = ωAH − (� + �)AHT .

(12)

here �H = (ˇH(IH + �AAH + ϑAHT)/NH), and now N = SH + IH + AH. For
ystem (12) it can be shown that the region

H =
{

(SH, IH, AH, AHT ) ∈R4
+ : NH ≤ �

�

}

s positively invariant and attracting. Thus, the dynamics of HIV-
nly model will be analysed in �H. The HIV-only model (12) has a
isease-free equilibrium point given by,

0
H = (SH, IH, AH, AHT ) =

(
�

�
, 0, 0, 0

)
(13)

Following van den Driessche and Watmough (2002) (as in Sec-
ion 3, on the analysis of the gonorrhea-only model), it can be shown
hat the reproduction number for model system (12), denoted byRH

s given by

H = ˇH[�ϑω + (� + �)(��A + ω + � + )]
(� + �)(� + �)(� + ω + )

. (14)

The reproduction number RH measures the average number of
ew infections generated by a single HIV infected individual (but
ot infected with gonorrhea) during his or her infectious period
hen introduced in population of HIV susceptibles who have no

onorrhea.

.1. Sensitivity analysis of (RH)

In this section, the impact of antiretroviral therapy is inves-
igated using the reproductive number, RH . It follows from (14),
hat the elasticity (Caswell, 2001) of R with respect to ω can be
G

omputed using the approach in Chitns et al.(2008) as follows:

ω

RH

∂RH

∂ω
= − �ω[�(�A−ϑ)+(��−ϑ)]

(�+ω+)[(�+�)(�+ω+) + �(�A(� + � + ϑω))]
(15)
tems 103 (2011) 27–37 31

Thus, the treatment of AIDS patients will have a positive impact
in reducing HIV burden only if ϑ ≤ ��. Using Theorem 2 in van
den Driessche and Watmough (2002), the following result is estab-
lished.

Lemma 4. The disease-free equilibrium(E0
H) of model system (12) is

locally-asymptotically stable (LAS) ifRH < 1 and unstable ifRH > 1.

Lemma 4 implies that HIV can be eliminated from the commu-
nity (when RH < 1) if the initial sizes of the sub-populations of the
model system (12) are in the basin of attraction of the disease free
equilibrium (E0

H). To ensure that elimination of the virus is inde-
pendent of the initial sizes of the sub-populations, it is necessary
to show that the DFE is globally stable.

4.2. Global stability of the disease-free for HIV-only sub-model

We shall use the following Theorem of Castillo-Chavez et al.
(2002) in the sequel (herein stated for elucidation)

Theroem 1. (Castillo-Chavez et al., 2002) If system (12) can be
written in the form

dX

dt
= F(x, Z),

dZ

dt
= G(X, Z), G(x, 0) = 0,

(16)

whereX ∈Rm denotes (its components) the number of uninfected indi-
viduals andZ ∈Rn denotes (its components) the number of infected
individuals including latent, infectious, etc.E0

H = (x∗, 0) denotes
the disease-free equilibrium of the system. And assume that (i)
For(dX/dt) = F(X, 0), X∗ is globally asymptotically stable (GAS), (ii) G(X,
Z) = AZ − Ĝ(X, Z), Ĝ(X, Z) ≥ 0 for (X, Z) ∈ �H, where A = DZG(X ∗ , 0) is
anM-matrix (the off diagonal elements of A are nonnegative) and�H

is the region where the model makes biological sense. Then the fixed
pointE0

H = (x∗, 0) is a globally asymptotic stable equilibrium of model
system (12) provided thatRH < 1.

Applying Theorem 1 to model system (12) gives

Ĝ(X, Z) =

⎡
⎣ ˇH(IH + �AAH + ϑAHT )

(
1 − SH

SH + IH + AH + AHT

)
0
0

⎤
⎦ ,

(17)

Since, SH ≤ NH(SH + IH + AH + AHT) thus Ĝ(X, Z) ≥ 0, and by Theorem
1, E0

H is GAS. We summarise the result in Lemma 5.

Lemma 5. The disease-free equilibrium(E0
H) of model system (12) is

GAS ifRH < 1 and unstable ifRH > 1.

4.3. Local stability of the endemic equilibrium for HIV-only model

We now employ the Centre Manifold theory (Carr, 1981) as
described in Theorem 4.1 by Castillo-Chavez and Song (Carr, 1981),

to establish the local asymptotic stability of the endemic equilib-
rium. Let us make the following change of variables in order to
apply the Center Manifold theory: SH = x1, IH = x2, AH = x3, AHT = x4,
so that NH = x1 + x2 + x3 + x4. We now use the vector notation X = (x1,
x2, x3, x4)T. Then, model system (12) can be written in the form
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dX/dt) = F = (f1, f2, f3, f4)T, where

x′
1(t) = f1 = � − ˇH(x2 + �Ax3 + ϑx4)

4∑
n=1

xn

x1 − �x1,

x′
2(t) = f2 = ˇH(x2 + �Ax3 + ϑx4)

4∑
n=1

xn

x1 − (� + �)x2,

x′
3(t) = f3 = �x2 − (� + ω + )x3,

x′
4(t) = f4 = ωx3 − (� + �)x4,

(18)

The Jacobian matrix of system (18) at E0
H is given by

(E0
H) =

⎡
⎢⎣

−� −ˇH −�AˇH −ϑˇH

0 ˇH − � − � �AˇH ϑˇH

0 � −� − ω −  0
0 0 ω −� − �

⎤
⎥⎦ , (19)

from which it can be shown that the HIV/AIDS induced repro-
uction number is

H = ˇH[ϑ�ω + (� + �)(�� + ω + � + )]
(� + �)(� + )(� + ω + )

(20)

If ˇH is taken as a bifurcation parameter and if we consider the
ase RA = 1 and solve for ˇH gives

H = ˇ∗
H = (� + �)(� + )(� + ω + )

[ϑ�ω + (� + �)(�� + ω + � + )]
. (21)

Note that the linearised system of the transformed Eq. (18) with
H = ˇ∗

H , has a simple zero eigenvalue. Hence, the Centre Manifold
heory can be used to analyze the dynamics of (18) near ˇH = ˇ∗

H .
or convenience, the Centre Manifold theory is reproduced below.

heorem 2. Consider the following general system of ordinary dif-
erential equations with a parameter�,

dx

dt
= f (x, �), f : Rn × R→ andf ∈C2(Rn × R), (22)

here 0 is an equilibrium of the system that isf(0, �) = 0 for all� and
ssume

1: A = Dxf(0, 0) = (( ∂ fi/∂ xj)(0, 0)) is linearisation of system (22)
around the equilibrium 0 with� evaluated at 0. Zero is asimple
eigenvalue of A and other eigenvalues of A have negative real
parts;

2: Matrix A has a right eigenvector u and a left eigenvector v corre-
sponding to the zero eigeinvalue.

Letfk be theKth component of f and

a =
n∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj
(0, 0),

b =
n∑

k,i=1

vkwi
∂2fk

∂xi∂�
(0, 0).

(23)
The local dynamics of (22) around 0 are totally governed by a and
.

i. a > 0, b > 0, When� < 0 with| � |« 1, 0 is locally asymptotically stable,
and there exists a positive unstable equilibrium; when0 < � < < 1, 0
tems 103 (2011) 27–37

is unstable and there exists a negative and locally asymptotically
stable equilibrium;

ii. a < 0, b < 0. When� < 0 with| � |« 1, 0 is unstable; when0 < � < < 1,
asymptotically stable, and there exists a positive unstable equilib-
rium;

ii. a > 0, b < 0. When� < 0 with| � |« 1, 0 is unstable, and there exists a
locally asymptotically stable negative equilibrium; when0 < � < < 1,
, 0 is stable, and a positive unstable equilibrium appears;

iv. a < 0, b > 0. When� changes from negative to positive, 0 changes
its stability from stable to unstable. Correspondingly a negative
equilibrium becomes positive and locally asymptotically stable.

It can be shown that the Jacobian of (18) at ˇH = ˇ∗
H has a

right eigenvector associated with the zero eigenvalue given by
w = [w1, w2, w3, w4]T , where

w1 = −ˇ∗
H(w2 + �Aw3 + ϑw4)

�
, w2 = w2 > 0, w3 = �w2

ω +  + �
,

w4 = ωw3

� + �
. (24)

The left eigenvector of J(E0
H) associated with the zero eigenvalue

at ˇH = ˇ∗
H is given by v = [v1, v2, v3, v4]T , where

v1 = 0, v2 = �v3

� + � − ˇ∗
H

, v3 = v3 > 0, v4 = ϑˇ∗
Hv2

� + �
. (25)

Computations ofaandb:
For system (18), the associated non-zero partial derivatives of F

associated with a at the disease-free equilibrium are given by

∂2f2

∂x2
2

= − 2ˇ∗
H

�

�
,

∂2f2
∂x2∂x3

= ∂2f2
∂x3∂x2

= − ˇ∗
H

(1 + �A)�

�
,

∂2f2

∂x2
3

= − 2ˇ∗
H

�A�

�
,

∂2f2
∂x2∂x4

= ∂2f2
∂x4∂x2

= − ˇ∗
H

c(1 + ϑ)�

�
,

∂2f2
∂x3∂x4

= ∂2f2
∂x4∂x3

= − ˇ∗
H

(�A + ϑ)�

�
,

∂2f2

∂x2
4

= − 2ϑˇ∗
H

�

�
.

(26)

From (26), it follows that

a = −2ˇ∗
H�

�
(w2 + w3 + w4)(w2 + �Aw3 + ϑw4)v2 < 0. (27)

For the sign of b, it is associated with the following non-
vanishing partial derivatives of F,

∂2f2
∂x2∂ˇ∗

H

= 1,
∂2f2

∂x3∂ˇ∗
H

= �A,
∂2f2

∂x4∂ˇ∗
H

= ϑ, (28)

from which it

b = (w2 + �w3 + ϑw4)v2 > 0. (29)

Thus, a < 0andb > 0 and Theorem 4.1 item (iv) above, the fol-
lowing result is established: the endemic equilibrium E∗

H is locally
asymptotically stable for RH > 1, but close to 1.

Lemma 6. The endemic equilibrium of the HIV-only sub-model (12)
is globally asymptotically stable in�H wheneverRH > 1.

5. Analysis of the HIV-gonorrhea model

Having analysed the dynamics of the two sub-models, the full
HIV-gonorrhea model (3) is now considered. Its disease-free equi-
librium is given by, ( )

E0

GH = (S, IG, IH, IGH, AH, AGH, AHT , AGHT ) = �

�
, 0, 0, 0, 0, 0, 0, 0

(30)
Using the next generation method (van den Driessche and

Watmough, 2002), it can be shown that the reproductive number
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dx8
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= f8 = ωx6 + ��Gx7 − (�4 + � + �)x8,
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or the full HIV-gonorrhea model (3) denoted by RGH is given by

GH = max

{
ˇG

� + �1
,

ˇH[�ϑω + (� + �)(��A + ω + � + )]
(� + �)(� + �)(� + ω + )

}
,

(31)

so that the following results follows from Theorem 2 in van den
riessche and Watmough (2002).

emma 7. The disease-free equilibrium(E0
GH) of model system (3) is

ocally asymptotically stable (LAS) ifRGH < 1 and unstable ifRGH > 1.

.1. Global stability of the disease-free of the full HIV-gonorrhea
odel

We claim the following result from Lemmas 2 and 5 above.

emma 8. The disease-free equilibrium(E0
GH) of model system (3) is

AS ifRGH < 1 and unstable ifRGH > 1.

roof. The proof is based on using a Comparison Theorem
Lakshmikantham et al., 2010) (by closely following the approach
n Gumel et al., 2006; Mtisi et al., 2009; Sharomi and Gumel, 2007).
ote that the equations of the infected components in system (12)
an be written as

dIG
dt
dIH
dt
dIGH

dt
dAH

dt
dAGH

dt
dAHT

dt
dAGHT

dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= (F − V)

⎛
⎜⎜⎜⎜⎜⎜⎝

IG
IH

IGH

AH

AGH

AHT

AGHT

⎞
⎟⎟⎟⎟⎟⎟⎠

−
(

1 − S

N

)

×

⎛
⎜⎜⎜⎜⎜⎜⎝

ˇG 0 �GHˇG 0 �GHˇGH�2 0 ϕˇG

0 ˇH �ˇH �AˇH �AˇH�1 ϑˇH ϕˇH

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

IG

IH

IGH

AH

AGH

AHT

AGHT

⎞
⎟⎟⎟⎟⎟⎟⎠

here F and V are given by

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ˇG 0 �GHˇG 0 �GHˇGH�2 0 ϕˇG

0 ˇH �ˇH �AˇH �AˇH�1 ϑˇH ϕˇH

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and⎛
⎜⎜⎜

� + �1 0 0 0 0
0 � + � 0 0 0
0 0 �� + � + �2 0 0
= ⎜⎜⎜⎜⎝
0 −� 0 ω + � +  −�3 0
0 0 −�� 0 ω + � +  + �3 0
0 0 0 −ω 0 � +
0 0 0 0 −ω 0
tems 103 (2011) 27–37 33

Since S ≤ N, (for all t ≥ 0) in �GH, it follows that⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dIG
dt
dIH
dt
dIGH

dt
dAH

dt
dAGH

dt
dAHT

dt
dAGHT

dt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≤ (F − V)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

IG

IH

IGH

AH

AGH

AHT

AGHT

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(32)

Using the fact that the eigenvalues of the matrix F − V all
have negative real parts, it follows that the linearized differential
inequality system (32) is stable whenever RGH < 1. Consequently,
(IG, IH, IGH, AH, AGH, AHTAGHT) → (0,0,0,0,0,0,0) as t → ∞. It follows
by a Comparison Theorem (Lakshmikantham et al., 2010) that (IG,
IH, IGH, AH, AGH, AHTAGHT) → (0,0,0,0,0,0,0) as t → ∞ and evaluating
system (3) at, IG = IH = IGH = AH = AGH = AHT = AGHT = 0 gives, S → S0

for RH < 1. Hence, the DFE (E0
GH) is GAS for RGH < 1. �

5.2. Endemic equilibrium of the full HIV-gonorrhea model

We establish the stability of the endemic equilibrium of the HIV-
gonorrhea model (3), using the Centre Manifold theory. To apply
this theory, the following simplification and change of variables are
made first. Let S = x1, IG = x2, IH = x3, IGH = x4, AH = x5, AGH = x6, AHT = x7
and AGHT = x8, so that N = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8. Further,
by using the vector notation x = (x1, x2, x3, x4, x5, x6, x7, x8)T,
the HIV-gonorrhea model system (3) can be written in the form
(dx/dt) = F(x), with F = (f1, f2, f3, f4, f5, f6, f7, f8)T

dx1

dt
= f1 = � + �1x2 − �Gx1 − �Hx1 − �x1

dx2

dt
= f2 = �Gx1 − ˛�Hx2 − (�1 + �)x2,

dx3

dt
= f3 = �Hx1 + �2x4 − ��Gx3 − (� + �)x3,

dx4

dt
= f4 = ˛�Hx2 + ��Gx3 − (�� + �2 + �)x4,

dx5

dt
= f5 = �x3 + �3x6 − ��Gx5 − (ω + � + )x5,

dx6

dt
= f6 = ��x4 + ��Gx5 − (ω + �3 + � + )x6,

dx7

(33)
0
0

� −�4

�4 + � + �

⎟⎟⎟⎟⎠
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RH(RG) = ˇH[(RG(� − �) + ˇH)(RG( − � + ω) + ˇH) + ��(RG(� − � + �ω) + ˇH)]
(RG(� − �) + ˇH)(RG(� − �) + ˇH)(RG( − � + ω) + ˇH)

(35)
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with

H = ˇH[x3 + �x4 + �A(x5 + �1x6) + ϑx7 + ϕx8]
8∑

n=1

xn

,

and

G = ˇG[x2 + �GH(x4 + �2x6) + ϕx8]
8∑

n=1

xn

,

The method entails evaluating the Jacobian of the system (33)
t the disease-free (E0

GH) denoted J(E0
GH). This gives

(EH) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−� −ˇH + �1 −ˇH −�ˇH − �GHˇG −�AˇH

0 ˇG − � − �1 0 �GHˇG 0
0 0 ˇH − � − � �ˇH + �2 �AˇH

0 0 0 −k3 0
0 0 � 0 −k4

0 0 0 �� 0
0 0 0 0 ω

0 0 0 0 0

where

k1=�AˇH�1−�GHˇG�2, k2=ϕ(ˇH+ˇG), k3=��+�+�2, k4=ω + � + 

k5 = ω + � +  + �3, k6 = � + �, k7 = �4 + � + �.

Consider, the case when RGH = 1 (that is, RG < RH = 1). Sup-
ose, further, that ˇH = ˇ∗

H is chosen as a bifurcation parameter.
olving for ˇH from RH = 1, gives

H = ˇ∗
H = (� + �)(� + �)(� + ω + )

[�ϑω + (� + �)(�� + ω + � + )]
.

It follows that Jˇ∗
H

, the Jacobian of system (33) at the disease-

ree with ˇH = ˇ∗
H has a simple zero eigenvalues (with all other

igenvalues having negative real part). Hence, the Centre Manifold
heory (Carr, 1981) can be used to analyze the dynamics of system
33).

Eigenvectors ofJˇ∗ :
For the case when RH = 1, it can be shown that Jˇ∗

H
has a right

igenvector (corresponding to the zero eigenvalue) given by w =
w1, w2, w3, w4, w5, w6, w7, w8)T , where

w1 = −ˇ∗
Hw3 − �Aˇ∗

Hw5 − ϑˇ∗
Hw7

�
, w2 = 0,

w3 = w3 > 0, w4 = 0, w5 = �w3

� + 
, w6 = 0,

w7 = ωw5

� + �
, w8 = 0.

Further, the Jacobian Jˇ∗
H

has a left eigenvector (associated with

he zero eigenvalue) given by v = (v1, v2, v3, v4, v5, v6, v7, v8)T ,
here

v1 = v2 = 0, v3 = v3 > 0, v4 = (�ˇ∗
H + �2)v3 + ��v6

�� + � + �2
,

v5 = �Aˇ∗
Hv3 + ωv7

ω + � + 
, v6 = �Aˇ∗

H�1v3 + �3v5 + ωv8

ω + � +  + �3
,

ϑˇ∗ v3 ϑˇ∗ v3 + �4v7
v7 = H

� + �
, v8 = H

�4 + � + �
.

Computations ofaandb:
It can be shown, after some algebraic manipulations (involving

he associated partial non-zero partial derivative of F (at the DFE)
tems 103 (2011) 27–37

−k1 −ϑˇH −k2

ˇGH�2 0 ϕˇG

ˇH�1 ϑˇH ϕˇH

0 0 0
�3 0 0
−k5 0 0

0 −k6 �4

ω 0 −k7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (34)

to be used in the expression for (a) in Theorem 2), that

a = −2�ˇ∗
Hv3(w3 + w5 + w7)(w3 + �Aw5 + ϑw7)

�
< 0

and

b = v3(w3 + �Aw5 + ϑw7) > 0,

so that the following results follows from Theorem 2 item (iv)
above.

Lemma 9. The full HIV-gonorrhea model (3) has a unique endemic
equilibrium state which is locally-asymptotically stable (LAS) ifRGH <
1 and unstable ifRGH > 1.

5.3. Impact of Gonorrhea on HIV dynamics

Trends in the incidence of a communicable disease are related
to the number of new cases caused by each infective (the infectee
number, analogous to the net reproductive rate in population
dynamics) (Nold, 1979). The sensitivity indices of the reproduc-
tion numbers which measures initial disease transmission (Chitns
et al., 2008) with respect to the relevant drivers (of the disease) are
key in quantifying their impact on the disease dynamics. That is,
the reproduction numbers for gonorrhea and HIV, RG and RH are
directly related to the infection levels of the respective diseases (in
the absence of the other disease) (Roeger et al., 2009). Thus, we con-
sider the theoretical impact of gonorrhea on HIV by first examining
the effect of RG on the prevalence of HIV. Rewriting RH in terms of
RG , we have
Fig. 3. Effect of increasing secondary gonorrhea infection on the transmission
dynamics of HIV.
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Table 1
Model parameters and their interpretations.

Parameter Symbol Value Source

Recruitment rate for humans � 100 000 yr−1 Malunguza et al. (2010)
Natural mortality rate for humans � 0.025 yr−1 Castillo-Chavez et al. (1997)
AIDS-induced mortality rate  0.333 yr−1 Malunguza et al. (2010)
Rate of progression to AIDS stage � 0.125 yr−1 Malunguza et al. (2010)
Transmission probability for HIV infection ˇH 0.011–0.95 Bhunu et al. (2009b) and Hyman et al. (1999)
Transmission probability for gonorrhea infection ˇG 0.05 Castillo-Chavez et al. (1997)
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Graphical representation of (35) is shown in Fig. 3 with param-
ter values as in Table 1 and Fig. 3 suggests that an increase in
onorrhea prevalence may have a significant impact on the infec-
ion level of HIV. It is worth noting that other factors may also play
n important role such as the rate of progression to AIDS of indi-
iduals already infected with gonorrhea, nevertheless, gonorrhea
nfection has a negative effect on the health of the population, irre-

pective of their HIV status and possibly other infections as well,
nd as such, control of gonorrhea should be reinforced in resource
imited settings. The good news is that the immune changes caused
y gonorrhea infection do revert to normal after its successful
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treatment. Therefore, reducing the burden caused by gonorrhea
infection is attainable.

Fig. 3 suggests that an increase in secondary gonorrhea cases
may result in increased HIV prevalence when the two epidemics
co-exists in the community (with no competitive exclusion). Fur-
ther, sensitivity analysis on the impact of gonorrhea treatment is
carried out by computing the partial derivatives of RH(RG) with

respect to gonorrhea treatment �1. It follows from Eq. (7) on the
analysis of the reproductive number (RG) on the impact of gon-
orrhea treatment whenever the gonorrhea epidemic exists in the
community, that gonorrhea treatment has an impact, and also it
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nfected with HIV and gonorrhea but displaying no clinical symptoms of AIDS (IGH

able 1 with ˇH = 0.15 and ˇG = 0.51 (so that RG = RH = RGH = 2.285).

s worth noting that from the graphical representation of Eq. (35)
n increase in gonorrhea epidemic may result in an increase in HIV
n the community implying that (RG/RH(RG))(∂RH(RG)/∂RG) > 0.
hus, the elasticity (Caswell, 2001) ofRH(RG) with respect to �1 can
e computed using the approach in (Chitns et al., 2008) as follows:

�1

RH(RG)
∂RH(RG)

∂�1
= �1

RH(RG)

[
∂RH(RG)

∂RG
× ∂RG

∂�1

]
< 0. (36)

Biologically and economically speaking, Eq. (36) suggests that
onorrehea treatment may have a positive impact in controlling
he two epidemics whenever they co-exists and their reproduc-
ion numbers exceeds a unity (with no competitive exclusion) and
his further suggests that when two epidemics co-exists in poor
ommunities of sub-Saharan Africa, gonorrhea treatment which
s usually available and is less expensive compared to antiretro-
iral therapy may have a positive impact in controlling the two
pidemics.

. Numerical simulations
In order to illustrate the results of the foregoing analysis, numer-
cal simulations of the full HIV-gonorrhea model is carried out,
sing a set of plausible parameter values given in Table 1. Unfor-
unately, the scarcity of data on HIV-gonorrhea co-dynamics limits
y (IG), individuals with HIV only but no AIDS symptoms (IH) and individuals dually-
he case RGH < 1, using various initial conditions. Parameter values used are as in

our ability to calibrate, but nevertheless, we assume some of the
parameters in their realistic ranges for illustrative purpose. These
parsimonious assumptions reflect the lack of information currently
available on the co-infection of the two diseases. Since this theo-
retical study is seemingly the first of its kind, it should be seen as a
template for future research, especially in data collection.

Fig. 4 illustrates the solution profiles of the population of indi-
viduals infected with gonorrhea only (IG), individuals with HIV only
but no AIDS symptoms (IH) and individuals dually-infected with
HIV and gonorrhea but displaying no clinical symptoms of AIDS
(IGH) for the case RGH < 1, using various initial conditions. Param-
eter values used are as in Table 1 with ˇH = 0.015 and ˇG = 0.051
(so thatRG = RH = RGH = 0.23) shows convergence to the disease-
free equilibrium in line with Lemma 7.

Fig. 5 illustrates time series plots of individuals infected with
gonorrhea only (IG), individuals with HIV only but no AIDS symp-
toms (IH) and individuals dually-infected with HIV and gonorrhea
but displaying no clinical symptoms of AIDS (IGH) for the caseRGH <
1, using various initial conditions. Simulating the model (3) using
parameter values given in Table 1 with ˇH = 0.15 and ˇG = 0.51 (so

that RG = RH = RGH = 2.285) shows convergence to the endemic
equilibrium in line with Lemma 9. Fig. 5(d) illustrates that forRGH >
1, (RH = RG = 2.285) the population of dually-infected individu-
als always has a higher steady-state value followed by HIV-only
infected population and lastly gonorrhea infected individuals. Fur-
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her, these simulations show that whenever RGH > 1, there is
lways co-existence of the two diseases no matter which repro-
uction number is greater. Consequently, there is no competitive
xclusion of the two diseases.

. Conclusion

The study of the joint dynamics of gonorrhea and HIV present
ome mathematical challenges even though the modes of transmis-
ion are quite similar. Although there is overlap in the populations
t risk of gonorrhea and HIV, the magnitude of the proportion of
ndividuals at risk for both diseases is not known. Herein, we con-
idered a simplified deterministic model that incorporates their
oint dynamics (gonorrhea and HIV infections). A deterministic

athematical model for investigating the co-interaction of HIV
nd gonorrhea in a community in the presence of treatment is
resented and rigorously analysed. We began with with a com-
rehensive qualitative analysis of the two sub-models, namely the
onorrhea-only model and HIV-only model. The epidemic thresh-
lds parameters which are closely related to disease transmission
it also determines the outcome of the disease) in each model
two sub-models and the co-interaction model) is computed and
sed to assess the dynamics of the disease(s) in the community.
nalytical result reveal that the two sub-models studied sep-
rately are globally stable whenever their respective threshold
arameter is less than unity and unstable otherwise. The Centre
anifold theory is used to prove the local asymptitoc stabil-

ty of the endemic equilibrium for the HIV-only model and the
ull model when the associated reproduction number is greater
han unity. Thus, there is no competitive exclusion occurring. The
mpact of Gonorrhea on HIV dynamics is investigated numerically.

question was posed at the beginning of this study. To deter-
ine the effect an increase in the number of infected individuals
ith gonorrhea in a population in which HIV is prevalent has on

he HIV dynamics. Numerical results suggest that an increase in
he number of infected individuals with gonorrhea (singly and
ually infected with HIV) in the presence of treatment results in
decrease in gonorrhea-only cases, dual-infection cases but with

n increase in HIV-only cases and this may suggests that gonor-
hea treatment only is a bright approach in curtailing the epidemic
n the community but its not enough. Consequently, apart from

alaria and TB, one other factor that fuels the high incidence of
IV in sub-Saharan Africa is the dual infection with gonorrhea.
his negative impact of the synergistic interactions between HIV
nd gonorrhea have not been given prominence worldwide, and
here is almost no existing statistical or mathematical models that
xplore the consequences of their joint dynamics at the popula-
ion level. Nevertheless, our approach is closely related to those
ound in the literature as we focus on the joint dynamics of the
wo infections with therapeutic measures (gonorrhea treatment
nd antiretroviral therapy for HIV/AIDS) in a pseudo-competitive
nvironment at the population level, with a fundamental differ-
nce that none of those studies considered treatment of both
iseases. The model assumes that invasions are bad news for
ach single host and that joint invasions are worse. This was
lso the conclusion in a recent study on TB and HIV co-infections
Roeger et al., 2009).

This in-depth study of the co-interaction of the above men-
ioned diseases in a community can be extended in various ways:
y (1) investigating their dynamics in the presence of HIV inter-

ention strategies (preventive and therapeutic) such such as the
se of condom use, voluntary HIV testing and screening as well
s branding; (2) considering the possible consequences of HIV-
onorrhea co-infection in vertical transmission (mother-to-child)
f HIV. Some diseases maintain unacceptable levels even if much of
tems 103 (2011) 27–37 37

the population at risk receives adequate medical care, and gonor-
rhea is an example (Nold, 1980). The dynamic behavior of a family
of disease models for a heterogeneous population is important as
it was shown in Nold (1980) that the effects of particularly infec-
tious subgroups within a population should be given prominence
as relatively small numbers of infectives having numerous contacts
during their infectious periods fuels the epidemic.
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