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a b s t r a c t

TheConjecture, Graffiti.pc 190, of the computer programGraffiti.pc, instructedbyDeLaviña,
state that every simple connected graph G with minimum degree δ and leaf number L(G)
such that δ ≥

1
2 (L(G) + 1), is traceable. Here, we prove a sufficient condition for a graph

to be traceable based on minimum degree and leaf number, by settling completely, the
Conjecture Graffiti.pc 190. We construct infinite graphs to show that our results are best
in a sense. All graphs considered are simple. That is, they neither have loops nor multiple
edges.

© 2018 Published by Elsevier B.V.

1. Introduction

Let G = (V , E) be a simple, connected graph. The degree of a vertex y ∈ V (G), denoted degG(y), refers to the number of
edges in G incident with y. The smallest of the degrees of vertices in G is called the minimum degree, denoted δ = δ(G). The
leaf number L(G) whose applications are numerous in network designs, is the maximum number of leaf vertices contained
in a spanning tree of G, where a leaf is a vertex of degree one and a tree refers to a connected graph without cycles. A
Hamiltonian graph, which is crucial in solving data communication problems, is a graph that contains a spanning cycle. G
is traceable if it contains a spanning path. Thus every Hamiltonian graph is traceable. The problem of determining whether
spanning paths or cycles exist in a graph isNP-complete. More on applications of leaf number, traceability and Hamiltonicity
can be found in [12,31].

To the best of our knowledge, Dirac [7] is the first to establish sufficient conditions for a graph to be Hamiltonian. His
result is based on the order and minimum degree. Ore [28] generalised Dirac’s theorem by considering degree sums for
non-adjacent vertices in a graph. Later, Broersma and others [3] generalised Ore’s result by involving large neighbourhood
unions for non-adjacent vertices in G. Several authors researched on sufficient conditions for Hamiltonicity in G based on
various invariants (see for instance [3,7,10,14,26,28]). Ren [30], Xiong and Zong [33] reported on sufficient conditions for a
graph to be traceable.

However, no sufficient conditions for traceability or Hamiltonicity based on leaf number and minimum degree were
known in literature until Mukwembi [23,24,22], started to solve conjectures posed by DeLaViña’s computer program,
Graffiti.pc [4]. Some of the conjectures of Graffiti.pc are the following:

Conjecture 1 ([4]). Let G be a connected graph with leaf number L(G) and minimum degree δ such that δ ≥ L(G) − 1. Then G is
traceable.

Conjecture 2 ([4] (Graffiti.pc 190)). Let G be a connected graph with leaf number L(G) and minimum degree δ such that
δ ≥

1
2 (L(G) + 1). Then G is traceable.
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Conjecture 1 was solved completely in [24]. However, to date no complete solution has been presented for Conjecture 2.
The purpose of this paper is to provide a complete solution to Conjecture 2 of Graffiti.pc. We mention here that, although
no complete solution was found for Conjecture 2, attempts to solve it were made (see [21,23]). Of crucial importance in this
paper are the following results:

Corollary 1 ([23]). Let G be a connected graph with minimum degree δ. If δ ≥
1
2 (L(G) + 1), then G is 2-connected.

Theorem 1 ([21]). Let G be a connected graph with diam(G) ̸= 2, minimum degree δ and leaf number L(G) such that
δ ≥

1
2 (L(G) + 1). Then G is traceable.

Although a complete solution to Conjecture 2 was not found for graphs with diam(G) = 2, the upper bound on the order
of such graphs was proved.

Theorem 2 ([21]). Let G be a connected graph with diam(G) = 2, order n, minimum degree δ and leaf number L(G) such that
δ ≥

1
2 (L(G) + 1). Then n ≤ 3δ.

Corollary 2 ([21]). Let G be a connected graph with minimum degree δ and leaf number L(G) such that δ ≥
1
2 (L(G) + 1). Then G

has no tree with at least 2δ leaves.

In this paper, we employ cycle related properties to settle Conjecture 190 of Graffiti.pc. Cycle and path related properties
of graphs have been studied for a long time [2,7,26]. Many researchers have estimated the lower bound on the circumference
of graphs by various invariants such as; minimum degree [7,8], minimum degree and girth [9,34], minimum degree and
toughness [1,17], neighbourhood union [11,20] and longest path in V (G) − V (C) [27], where C is a longest cycle in G. The
order of a longest path and a longest cycle in G are denoted respectively by p(G) and c(G). The difference p(G)−c(G) is known
as the relative length of longest paths and cycles in graph G. The relative length in G is denoted by diff (G). A vertex set S ⊂ V
is called an independent set if the elements of S are mutually nonadjacent. The maximum possible cardinality of S in G is
called the independence number, denoted by α. The cycle C is called a dominating cycle if V (G)−V (C) is an independent set.
Relative length has been related to the concepts of Hamiltonicity and dominating cycles (see for instance [29]). The graph G
is Hamiltonian if and only if diff (G) = 0, that is c(G) = p(G). Furthermore, if diff (G) ≤ 1 then every longest cycle in G is a
dominating cycle. Ozeki and Yamashita [29] established a strong result that will help us settle Conjecture 2. We denote by
σk, the minimum degree sum of an independent set of k vertices, provided the independence number is at least k, otherwise,
we let σk = +∞.

Independently, Dirac [7] proved the following result:

Theorem 3 ([7]). Let G be a 2-connected graph and Ck a longest cycle in G. Then | V (Ck) |≥ min(n, 2δ), where n is the order of G.

Recently, Ozeki and Yamashita proved the following result:

Theorem 4 ([29]). Let G be a 2-connected graph, with connectivity κ and minimum degree δ. If diff (G) ≥ 2 then either
c(G) ≥ σ3 − 3 ≥ 3δ − 3 or κ = 2 and p(G) ≥ σ3 − 1 ≥ 3δ − 1.

Turning to leaf number, its determinant is known to be NP-hard [13]. Lower bounds on leaf number based on minimum
degree [15,16,18,19,32], independence number, local independence number, bipartite number and average distance [5,6],
minimum degree and diameter [25], were presented. Of vital importance in this paper is the following result:

Theorem 5 ([16]). Let G be a simple connected graph with minimum degree at least 5 and order n. Then L(G) ≥
1
2n + 2.

Apart from the notation already defined, we shall use the following: If H is a subgraph of G then we denote by V (H)
vertices in Gwhich are not in H , that is, V (H) = V (G)− V (H). The maximum number of leaf vertices in H is denoted by L(H).
A path joining vertices x and y in G is denoted by Pxy. We write Pxy ⊂ P if the path Pxy is a subpath of P . The distance, dG(x, y),
between vertices x and y in G is defined as the length of a shortest path joining x and y. The eccentricity ecc(y) of a vertex
y ∈ V (G) is the distance from y to a vertex furthest from y in G, that is, ecc(y) = maxx∈V (G)(dG(x, y)). The diameter diam(G) of
G is the maximum eccentricity amongst eccentricities of all vertices in G. The neighbourhood, N(x) = NG(x), of a vertex x of
graph G is the set {y ∈ V : dG(x, y) = 1}. Further, we denote a complete bipartite graph with partite sets of order m and n,
respectively, by Km,n.

2. Results

We now settle Conjecture 2 completely. Precisely, we prove the following theorem:

Theorem 6. Let G be a connected graph with minimum degree δ and leaf number L(G) such that δ ≥
1
2 (L(G)+1). Then G contains

a spanning path.
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Proof. Assume that G satisfies the hypothesis of the theorem. Clearly, there is no graph satisfying the conditions of the
theorem if δ = 1. Further, if diam(G) ̸= 2 then we are done by Theorem 1. So it is enough to assume that diam(G) = 2.

If δ = 2, then L ≤ 3 and by Theorem 2, n ≤ 6. We consider n = 6 the proof for n ≤ 5 is easier. If n = 6, the are only two
spanning trees that meet these requirements: A path, say, v1, v2, v3, v4, v5 and a vertex v6 such that v6 is adjacent to v2 or
v3, otherwise, G is traceable. If v6 is adjacent to v3, then if v6 is adjacent to any other vertex in V (G), G has a spanning path.
Since δ = 2 the result follows. If v6 is adjacent to v2, then since δ = 2, we consider the case where v1 and v6 are adjacent
to v4 and v5 is adjacent to v2, otherwise, G is traceable. Then the leaf number is at least 4, which is a contradiction. Thus G
must be traceable for δ = 2.

The following claims and lemma help us settle the results in this paper for δ ≥ 3. Assume that δ ≥ 3.

Claim 1. For δ ≥ 3, if G has a tree, T , say, such that L(T ) = 2δ − 1 then
⏐⏐V (T )

⏐⏐ ≤ 2. Further, if u1, u2 ∈ V (T ) then u1u2 ∈ E(G).

Proof of Claim 1. Since L(T ) = 2δ − 1, no interior vertex of T has a neighbour in V (T ) and each leaf of T has at most one
neighbour in V (T ). Hence there are at most 2δ − 1 edges connecting leaf vertices of T and vertices in V (T ). Also, each vertex
in V (T ) has at least δ −1 neighbours in T , otherwise, we obtain a tree of G that has 2δ leaves contradicting Corollary 2. Hence
there are at most 2 vertices outside, otherwise, we would have at least 3(δ − 1) > 2δ − 1 edges between vertices of T and
vertices in V (T ). Further, if u1, u2 ∈ V (G) then u1u2 ∈ E(G), otherwise, each ui has at least δ neighbours in T , a contradiction
to the fact that there are at most 2δ − 1 edges between vertices of T and V (T ).

Claim 2. For δ ≥ 6, if G has a tree, T , say, such that L(T ) = 2δ − 2 then
⏐⏐V (T )

⏐⏐ ≤ 4.

Proof of Claim 2. If there is an interior vertex, say, x of T that has a neighbour, say, w in V (T ), then T ∪ {xw} is a tree with
2δ − 1 leaves. So the claim follows by application of Claim 1. Assume that no interior vertex of T has a neighbour in V (T ).
If there is a leaf, say, y of T that has 2 neighbours, say, y1 and y2 in V (T ) then T ∪ {yy1, yy2} is a tree with 2δ − 1 leaves and
the result follows by Claim 1. So, we assume that no interior vertex of T has a neighbour in V (T ) and that no leaf in T has
at least 2 neighbours in V (T ). We notice first that every vertex in G has at most 2 neighbours outside T , otherwise, we get a
tree with at least 2δ leaves. To be precise, if there is a vertex, say, w in G, that has neighbours, say, w1, w2 and w3 in V (T ),
then if w is in T , T ∪ {ww1, ww2, ww3} has at least 2δ leaves, a contradiction. If w ̸∈ V (T ) then let Pxw be a shortest x − w

path where x ∈ V (T ), then T ∪ Pxw ∪ {ww1, ww2, ww3} has 2δ leaves, a contradiction again. It follows that, each vertex in
V (T ) has at least δ − 2 neighbours in T . Thus

⏐⏐V (T )
⏐⏐ ≤ 3, otherwise, since each vertex in V (T ) has at least δ − 2 neighbours

in T , there would be at least 4(δ − 2) leaves in T . This would imply that 4δ − 8 ≤ 2δ − 2 and δ ≤ 3, a contradiction. So, in
all cases Claim 2 holds.

Lemma 1. Let δ ≥ 5. Then n ≤ 3δ − 1.

Proof of Lemma 1. For δ = 5 we have L(G) ≤ 9. This in conjunction with Theorem 5 implies that n ≤ 14 as desired. Assume
that δ ≥ 6. By Theorem 2, n ≤ 3δ. We show that n ̸= 3δ and we are done. To show this assume on contrary that n = 3δ.
Pick a vertex y such that deg(y) = δ. Let N(y) = {y1, y2, y3, . . . , yδ}. Then N[y] forms a K1,δ subgraph of G. Fix this K1,δ to be
the specific graph, say, K ∗

1,δ . By our assumption that n = 3δ,
⏐⏐V (K ∗

1,δ)
⏐⏐ = 2δ − 1. We claim that each vertex not in K ∗

1,δ has at
least two neighbours in K ∗

1,δ . To prove this assume there is a vertex, x say, in V (K ∗

1,δ) that has exactly one neighbour in K ∗

1,δ .
Let y1 be the only neighbour of x in K ∗

1,δ . Then, x has at least δ − 1 neighbours in V (K ∗

1,δ). Let x1, x2, . . . , xδ−1 be neighbours
of x, apart from, y1. Then the tree K ∗

1,δ ∪ {y1x, xxi : 1 ≤ i ≤ δ − 1} of G has 2δ + 1 vertices and 2δ − 2 leaves. Hence, outside
that tree there are δ − 1 > 4 vertices, since n = 3δ. This is a contradiction to Claim 2, so the claim holds. Following this,
each vertex in V (K ∗

1,δ) has a neighbour in N(y)− {yδ}. This implies that
⏐⏐V (K ∗

1,δ)
⏐⏐ ≤ 2δ − 2, otherwise, {yδ} ∪ V (K ∗

1,δ) forms at
least 2δ leaves of a tree in G, which is obtained by joining each vertex of V (K ∗

1,δ) to only one of its neighbours in K ∗

1,δ − {yδ}.
So n ≤ 3δ − 1 as desired.

Claim 3. G is traceable.

Proof of Claim 3. Assume first that δ = 3. By Theorem 2, n ≤ 9. Let Ck = v1, v2, v3, . . . , vk, v1 be a longest cycle in G. By
Corollary 1 and Theorem 3, k ≥ 6. We assume there is at least a vertex not on Ck, otherwise, we are done. Since V (Ck) has at
most 3 vertices, there is a vertex in V (Ck) such that all its neighbours are on Ck, otherwise, there is a path not on Ck containing
all the at most 3 three vertices not on Ck and G would be traceable as desired. Let v be a vertex such that all its neighbours
are on Ck. Let vt1 , vt2 , vt3 ∈ NCk (v) and A =

{
vt1+1, vt2+1, vt3+1

}
. Then A is an independent set, otherwise, we obtain a cycle

longer than Ck, which is prohibited. If v is the only vertex not on Ck then we are done. Assume there is at least one vertex not
on Ck, apart from, v.

Since diam(G) = 2, it implies that ecc(v) ≤ 2. It is enough to consider the cases n = 8 and n = 9, since k ≥ 6 and n ≤ 9.
Consider first n = 8 and assume that

⏐⏐V (Ck)
⏐⏐ = 2, otherwise, we are done. Then k = 6. Let u be a vertex not on Ck, apart

from v. If u has a neighbour, say vti+1 in A then we have a spanning path v, vti , vti−1, . . . , vti+1, u. So, assume that u has no
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neighbour in A. Then u is adjacent to all neighbours of v, since deg(u) ≥ 3 (notice that u cannot be adjacent to v, since all
neighbours of v are on Ck). By similar arguments, vt3 is adjacent to all neighbours of v. Thus, in particular, u and vt3+1 are
adjacent to vt2 . Hence u, vt1 , vt1+1, vt2+1, vt3 and vt3+1 forms 2δ = 6 leaves of a tree whose interior vertices are v and vt2 , a
contradiction to Corollary 2.

Assume that n = 9. Notice here that if deg(v) ≥ 4 then k ≥ 8 and we are done. So assume that deg(v) = 3. Let u1, u2 be
vertices in V (G) − (N[v] ∪ A) and assume that at least one of them is not on Ck. Since ecc(v) ≤ 2, we can assume that each
ui, i = 1,2 has a neighbour in N[v]− {vt3}. We now look at possible neighbours of vt3+1, apart from vt3 . If vt3+1 is adjacent to
either vt1 or vt2 then the set {vt1+1, vt2+1, vt3+1, u1, u2, vt3} forms 6 leaves of a tree whose interior vertices are v, vt1 and vt2 ,
a contradiction to Corollary 2. So assume that vt3+1 is neither adjacent to vt1 nor vt2 . Then vt3+1 is adjacent to u1 and u2, since
deg(vt3+1) ≥ 3 and vt3+1 has no neighbour in A. In this case, at least one of u1, u2, say u2 is on Ck and u2 = vt1−1 = vt3+2.
Hence the path u1, vt3+1, u2, vt1 , vt1+1, vt2 , vt2+1, vt3 , v spans G. So G is traceable for δ = 3.

Assume that δ ≥ 4. We consider two main cases

Case 1. Assume first that diff (G) ≥ 2. Then, by Corollary 1 and Theorem 4, p(G) ≥ 3δ − 1. Thus, for all δ ≥ 5, G is traceable,
since n ≤ 3δ − 1.

Assume that δ = 4. Then p(G) ≥ 11. If n ≤ 11 then we are done. Assume that n = 12 (notice that n ≤ 12 by Theorem 2).
Then p(G) = 11, otherwise, we are done. So, c(G) ≤ 9. Let P = w1, w2, w3, . . . , w11 be a longest path and x be a vertex not
on P . Then all neighbours of x are on P . Further, x is neither adjacent to w1 nor w11, otherwise, we contradict our choice of
P . In addition, neighbours of x are non-consecutive on P . Let ws1 , ws2 , ws3 , ws4 , s1 < s2 < s3 < s4 be neighbours of x on
P . Then dP (ws1 , ws4 ) ≥ 6, since no neighbours of x are consecutive on P . Further, dP (ws1 , ws4 ) ≤ 7, otherwise, Pws1ws4

⊂ P
together with edges xws1 and xws4 forms a cycle of length at least 10, a contradiction to c(G) ≤ 9. Thus there exist two
pairs of neighbours of x of the form wsi , wsi+1 , such that for each of those pairs, there is a exactly one vertex, wsi+1, on P
between wsi and wsi+1 . Further, there is no pair wsi , wsi+1 that has at least 3 vertices on P between wsi and wsi+1 . We can
assume that ws1+1 is the only vertex on P between ws1 and ws2 and that ws2+1 is the only vertex between ws2 and ws3 ,
other cases are treated similarly. If either ws1+1 or ws2+1 has a neighbour outside the set {ws1 , ws2 , ws3 , ws4} then either G
is traceable and we are done or we get a cycle of length at least 10, a contradiction. So, assume that all neighbours for ws1+1
and ws2+1 are in the set {ws1 , ws2 , ws3 , ws4}. Then, in particular both ws1+1 and ws2+1 are adjacent to ws4 , since δ = 4. So
the tree {xwsi , ws4ws1+1, ws4ws2+1, ws4ws4−1, ws4ws4+1 : i = 1, 2, 3, 4} has 9 vertices and 7 leaves. So by Claim 1, n ≤ 11, a
contradiction to n = 12. Thus in all sub-cases Gmust be traceable.

Case 2. Assume that diff (G) ≤ 1. Let Ck = v1, v2, v3, . . . , vk, v1 be a longest cycle in G. Then Ck is a dominating cycle.
Notice by Corollary 1 and Theorem 3 that k ≥ 2δ. If all vertices of G are on Ck then G is Hamiltonian and hence traceable as
desired. So we assume that some vertices of G are not on Ck. Let v ∈ V (G) be a vertex not on Ck. Then all its neighbours are
on Ck. We denote its neighbours by vt1 , vt2 , vt3 , . . . , vtd , where d = deg(v) = p + δ for some integer p : p ≥ 0. Throughout
this paper, we let A =

{
vt1+1, vt2+1, vt3+1, . . . , vtd+1

}
, B = V (G) − (N[v] ∪ A) and l = |B|. It follows that A is an independent

set, otherwise, we obtain a cycle longer than Ck, which is prohibited. We show that v is the only vertex not on Ck and we
are done. To do this, assume that there are some vertices not on Ck, apart from, v. Let u be a vertex not on Ck, apart from v.
Clearly, u is neither adjacent to vti−1 nor vti+1, otherwise, we have a path v, vti , vti+1, . . . , vti−1, u or v, vti , vti−1, . . . , vti+1, u,
a contradiction to p(G) − c(G) ≤ 1.

Since diam(G) = 2, we have ecc(v) ≤ 2. So, each of the l elements in B has a neighbour in N(v). Recall that u has no
neighbour in A. So, each element in A has at most l − 1 neighbours in B, since u cannot be a possible neighbour. Notice here
that l ≤ δ − 1, otherwise, A ∪ B forms at least 2δ leaves of a tree in G, which is obtained by joining each element of A ∪ B
to only one of its neighbours in the star graph formed by N[v]. Now, we construct a tree with at least 2δ leaves to get a
contradiction.

Take v and join to it p+l of its neighbourswhich are such that each element in B has at least a neighbour amongst these. To
each of the aforementioned neighbours, vti of v, add an edge vtivti+1 and join each element of B to only one of its neighbours
amongst the aforementioned p+ l neighbours of v. This gives a tree, T1 say, with p+ 2l leaves. Since A is an independent set,
the minimum degree is δ and each element of A is adjacent to at most l− 1 leaves in T1, it follows that each of the remaining
2(δ − l) vertices in N(v) and A, which are not in T1 is adjacent to some interior neighbours of T1. Joining each of these to only
one of its neighbours, which is an interior vertex of T1, yields a tree with p + 2δ ≥ 2δ leaves, which is not allowed. Hence G
must be traceable.

Thus in all cases G contains a spanning path as needed. □

To see that our main result is best possible, let us show that for every δ and every L such that L ≥ 2δ, there exists a graph
G of minimum degree δ and leaf number Lwhich is not traceable. It is easy to see that the complete bipartite graph Kδ,δ+2+p,
where p ≥ 0, is a non-traceable graph of minimum degree δ. The leaf number of Kδ,δ+2+p is L = 2δ +p if δ ≥ 2 and L = p+3
if δ = 1.
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