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Glossary
Coppicing Cutting trees close to the ground level to
produce regrowth from the remaining stump.
Deep capture The extraction of nutrients by tree roots
from soil depths beyond the reach of crop roots.
Pollarding Cutting back the crown of a tree but leaving
the main trunk with the objective of harvesting wood and
Encyclopedia of Agricult2
browse, producing regrowth beyond the reach of animals,
or reducing the shade cast by the crown.
Protein (fodder) bank Stands of trees or shrubs
established within a farm or pasture area to serve as a
supplementary source of protein-rich fodder for livestock.
Silvopastoral Land use system in which trees are integral
part of pasture land.
Introduction

Much of the world’s agricultural land is degrading rapidly, and
losing its productivity due to soil erosion and nutrient mining
associated with continuous cropping without nutrient inputs
and soil conservation. An estimated 24% of the world’s land
area has been degrading over the past 25 years, directly af-
fecting the livelihoods of 1.5 billion people (Bai et al., 2008).
Approximately 19% of the degraded land is cropland (Bai
et al., 2008). According to the Global Assessment of Human-
induced Soil Degradation, soil erosion affects 83% of the
global degraded area (Bai et al., 2008). Soil degradation by
erosion alone affects 1966 million hectares worldwide (Lal,
2007). In Africa, the annual average nutrient (NPK) loss is
estimated at 9–58 kg ha−1 year−1 in 28 countries and 61–
88 kg ha−1 year−1 in the remaining 21 (Chianu et al., 2012).
Recent global analyses show that N limitation is particularly
widespread in all ecosystems (LeBauer and Treseder, 2008; Liu
et al., 2010). The global average N recovery rate is 59%, indi-
cating that nearly 41% of N inputs are lost in ecosystems (Liu
et al., 2010). Almost 80% of African countries experience N
deficit or N stress problems, which, along with poverty, cause
food insecurity and malnutrition (Liu et al., 2010). In total,
29% of the global cropland area experiences P deficits (Mac-
Donald et al., 2011).

Conventionally in modern agriculture, increased product-
ivity has been achieved mainly through application of syn-
thetic inorganic fertilizers. However, the increasing price of
synthetic fertilizers and the inability of poor farmers to gain
access to them pose severe constraints on their widespread use.
Although organic matter may be an alternative source of nu-
trients, neither animal manure nor green biomass is usually
found in adequate quantities to meet the high application
rates (10–40 Mg ha–1 year−1) required to meet the nutrient
requirements of crops (Mafongoya et al., 2006). Some authors
have therefore argued that improving fertilizer use efficiency
by a combination of organic and inorganic nutrients is vital to
the long-term sustainability of global agriculture. Within this
important goal there is great potential for the more effective
utilization of biological N-fixation (BNF), which is virtually
without cost. BNF accounts for 60% of N production (Zahran,
1999) and 16% of the current global N input (Liu et al., 2010).
However, in Africa and South America, BNF is the single
largest N source, accounting for 32–34% of the N input (Liu
et al., 2010). In this respect its further use would, at the least,
ease the pressure for land through the rehabilitation of de-
graded areas (Herridge et al., 2008). However, BNF can also
play a greater role in sustainable agriculture as it increases N
recovery rates in addition to reducing the need for synthetic
fertilizers. In this article, the authors present a review of op-
tions for more efficiently harnessing BNF for improved food
security within the important debate about the future of global
agriculture. They specifically explore the potential role that
N-fixing trees can play in land rehabilitation for food crops
and pastures and the improved productivity of saline and
impoverished soils. In this context it is interesting that with the
advent of high-yielding crop varieties requiring full sunlight,
the tendency has been to remove trees including N-fixers from
many food and cash cropping systems.
Fertilizer Trees: Definition

The term ‘fertilizer trees’ is commonly used to refer to the
utilization of N-fixing leguminous trees in cereal production
systems to improve the availability of N to crops (Ajayi et al.,
2011; Akinnifesi et al., 2010; Mafongoya et al., 2006), but this
usage has generally excluded the use of such trees in pastures
ure and Food Systems, Volume 1 doi:10.1016/B978-0-444-52512-3.00022-X

dx.doi.org/10.1016/B978-0-444-52512-3.00022-X


Table 1 Cereal yield response to fertilizer trees summarized from studies across sub-Saharan Africa

Cereal crop Species Number of studies (N) Mean yield (Mg ha−17SE) Yield increase (Mg ha−17SE) Increasef (%7SE)

Maize Pigeon peaa,b 24 (69) 2.170.2 0.770.1 89.8713.2
Tephrosiaa,b 28 (177) 2.170.1 0.970.1 206.3742.6
Leucaenab,c 6 (78) 2.570.2 1.070.1 94.5712.2
Sesbaniaa,b 42 (262) 3.070.1 1.770.1 318.1782.5
Gliricidiad 15 (127) 3.270.1 2.270.1 295.9727.8
Faidherbiae 12 (88) 4.570.2 2.570.2 184.6733.9
Synthetic fertilizer 72 (384) 3.870.1 2.270.1 383.8740.5

Sorghum Gliricidiad 4 (10) 1.570.1 −0.170.1 93.875.3
Faidherbiae 5 (14) 1.070.2 0.370.1 144.4722.8
Sesbaniaa,b 2 (24) 1.870.1 0.670.1 180.44719.1

Millet Vachelliae 3 (11) 0.770.1 −0.0470.1 107.8714.4
Faidherbiae 5 (13) 1.270.1 0.470.1 149.3714.4

aRelay cropping.
bImproved fallow.
cAlley cropping.
dIntercropping.
eParkland.
fIncrease over the no-input control.
Abbreviation: N¼number of data points representing either sites or years within a study.
Note: The yield increase is the difference between the treatment and the control (no input) on the same site. The percent increase is increase in yield over the control in percentage
terms, and this was calculated as 100*(yield increase)/control yield.
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and for the rehabilitation of degraded land. The so-called
‘N-fixing tree’ is a tripartite symbiotic system involving an as-
sociation between the plant, N-fixing bacteria, and mycor-
rhizae-forming fungi (Nygren et al., 2012). Atmospheric
N-fixation by symbiotic, single-celled bacteria (Rhizobium) in
root nodules is common in 340 species of the family Legu-
minosae. N-fixation also occurs in over 200 nonleguminous
plants species in 25 genera of 8 families associated with
Frankia (Actinomycetes), which are filamentous bacteria
(Franche et al., 2009; Russo, 2005). The broader definition of
‘fertilizer’ trees used here includes the legume−Rhizobium as
well as nonlegume−Frankia symbioses.

There are a large number of agroforestry practices that
capitalize on BNF from fertilizer trees for the supply of N and
organic matter to annual and perennial crops. These include
alley cropping, improved fallows, cereal-tree legume inter-
cropping, relay cropping, biomass transfer, fodder banks,
multistrata agroforestry, parklands, and silvopastoral systems.
Among the widely used fertilizer trees are acacia (Acacia spp.),
acaciella (Acaciella spp.), albizia (Albizia spp.), alder (Alnus
spp.), calliandra (Calliandra calothyrsus), casuarina (Casuarina
equisetifolia), erythrina (Erythrina spp.), faidherbia (Faidherbia
albida), flemingia (Flemingia spp.), gliricidia (Gliricidia sepium),
inga (Inga edulis), leucaena (Leucaena spp.), sesbania (Sesbania
spp.), parkia (Parkia biglobosa), tagasaste (Chamaecytisus pal-
mensis), tephrosia (Tephrosia spp.), tamarind (Tamarindus
indica), and vachellia (Vachellia spp.). Hereafter reference will
be limited to these common names.
Benefits of Fertilizer Trees

Increased Crop Productivity

Several studies have reported the beneficial effects of fertilizer
trees on yields of food crops. According to a meta-analysis
of 94 peer-reviewed publications across sub-Saharan Africa
(Sileshi et al., 2008a), maize yields increased by 0.7–
2.5 Mg ha−1 over the no-input control, which translates to an
89–318% increase (Table 1). Under similar conditions, the
recommended rate of synthetic fertilizer led to 384% increases
over the control (Table 1). Robust estimates indicate that the
95% confidence intervals of maize yield increased by faid-
herbia (2.0–2.7 Mg ha−1), gliricidia (1.8–2.4 Mg ha−1), and
synthetic fertilizer (1.9–2.3 Mg ha−1) overlap completely. Re-
cent analyses (Sileshi et al., 2011, 2012) also showed that
maize yields are more stable in maize intercropped with leu-
caena and gliricidia than in fully fertilized sole maize at sites in
Malawi, Zambia, and Nigeria. In terms of increased crop
yields, synergistic effects of synthetic fertilizer and fertilizer
trees were noted. Yield increases from fertilizer trees were
substantial even when associated with 25–50% of the rec-
ommended dosages of synthetic fertilizer (Sileshi et al., 2011,
2012).

Although fewer data are available for millet and sorghum
(mostly short term in nature), increases in yields relative to the
control have been substantial with fertilizer trees (Table 1). An
important gain that is usually under-reported is the stover yield.
Stover is a critical fodder in cereal-livestock mixed farming
systems in Africa. Using empirical distributions of stover to
grain fresh weight ratios of 0.8:1.0 the authors estimate that an
additional 0.2–2.0 Mg ha−1 year−1 of stover can be produced by
the use of fertilizer trees (Table 1), an important contribution to
livestock feed when grass is in short supply. These yield in-
creases are also associated with large variability attributable to
tree species, site conditions (soils, rainfall, elevation), and
management factors (Bayala et al., 2012; Sileshi et al., 2008a,
2010). Although in the short term crop yields may be reduced
due to tree competition, in the long term favorable soil con-
ditions are expected to improve crop productivity.

Through biomass transfer, fertilizer trees can also be used
to increase vegetable productivity. Biomass transfer is



Table 2 Vegetable yielda response to biomass transfer using fertilizer tree prunings from sub-Saharan Africa

Crop Tree species (biomass) Country Mean yield
(Mg ha−1)

Yield increaseb

(Mg ha−1)
(%) References

Cabbagec Gliricidia (8 ton ha−1) Zambia 43.1 26.1 154 Kuntashula et al. (2004)
Gliricidia (12 ton ha−1) 53.6 36.6 215 Kuntashula et al. (2004)
Leucaena (12 ton ha−1) 32.6 15.6 92 Kuntashula et al. (2004)
Fertilizer (800 kg ha−1 NPK) 57.6 40.6 239 Kuntashula et al. (2004)

Oniond Gliricidia (8 ton ha−1) 68.3 40.2 143 Kuntashula et al. (2004)
Gliricidia (12 ton ha−1) 79.8 51.7 184 Kuntashula et al. (2004)
Fertilizer (800 kg ha−1 NPK) 57.1 29 103 Kuntashula et al. (2004)

Cabbage Gliricidia (8 ton ha−1) 51.1 28.4 125 Kuntashula et al. (2006)
Fertilizer (800 kg ha−1 NPK) 55.0 32.3 142 Kuntashula et al. (2006)

Onion Gliricidia (8 ton ha−1) 49.7 26.7 116 Kuntashula et al. (2006)
Fertilizer (800 kg ha−1 NPK) 40.8 17.8 78 Kuntashula et al. (2006)

Cabbage Gliricidia (8 ton ha−1) Zambia 59.7 27.9 88 Kuntashula et al. (2006)
Synthetic fertilizer 80.8 48.9 153 Kuntashula et al. (2006)

Rape Leucaena South Africa 7.6 6.7 784 Muchecheti et al. (2012)
Vachellia 5.0 4.1 481 Muchecheti et al. (2012)
Calliandra 3.0 2.1 249 Muchecheti et al. (2012)
Fertilizer (150 kg N ha−1) 10.0 9.1 106 Muchecheti et al. (2012)

Paprika Gliricidia (8 ton ha−1) Malawi 0.32 0.10 43.1 Sileshi et al. (2011)
Gliricidia+50% Synth fertilizer 0.41 0.19 84.2 Sileshi et al. (2011)
Synthetic fertilizer (100% recom.) 0.24 0.02 9.4 Sileshi et al. (2011)

aThis represents fresh weight in the case of cabbage, rape, and onion, whereas dry weight in the case of paprika.
bIncrease over the no-input control.
cAverage of 31 farmers' fields.
dAverage of 12 farmers' fields.
Note: The yield increase is the difference between the treatment and the control (no input) on the same site. The percent increase is increase in yield over the control in percentage
terms, and this was calculated as 100*(yield increase)/control yield.
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essentially moving tree biomass (prunings) produced in one
part of the farm (e.g., in protein banks, fallows, etc.) to another
(e.g., a vegetable garden). Usually 4–12 Mg ha−1 of the leafy
biomass (on dry matter basis) is applied to crops, and this has
been shown to increase yields of cabbage, rape, onion, tomato,
and garlic in trials on research stations as well as farmers’ fields
in Africa (Table 2).

Increases in productivity have been demonstrated in cash
crops associated with fertilizer trees. For example, shade trees
reduce the stress on crops such as coffee and cacao by ameli-
orating adverse climatic conditions and nutritional im-
balances, thus increasing overall system productivity in
multistrata agroforestry (Beer et al., 1998). In Western Ghana,
Isaac et al. (2007) found higher above ground cocoa biomass
(39.6 Mg ha−1) under albizia canopies compared to
22.8 Mg ha−1 for sole cocoa. Above-ground dry matter of
cocoa also declined along a spatial gradient away from albizia
trees (Isaac et al., 2007). In India, the agronomic yield of large
cardamom doubled under 5–15-year-old alder stands and
peaked between 15 and 20 years of age (Russo, 2005).
Soil Rehabilitation Services

To understand how the above yield benefits are achieved one
needs to examine how adding fertilizer trees into the agri-
cultural landscape restores soil fertility and promotes the
biological processes and ecological functions that together
rehabilitate degraded land. These are the critical processes
that benefit the farmer in particular and society in general.
Among these important services are nutrient cycling, increased
availability of macronutrients (extractable N, P, and K), cat-
ions and improvement in soil pH, increased organic matter
(SOM), enhanced biological activity, improved soil physical
properties, and better water relations.

Improvement in soil nutrient cycling
Fertilizer trees have potential to provide N in quantities suf-
ficient to support moderate crop yields through (1) N inputs
from biological N2 fixation and retrieval of nitrate from deep
soil layers and (2) cycling of N from plant residues and ma-
nures (Buresh and Tian, 1998). However, fertilizer trees cannot
produce new resources of other nutrients, although they can
increase their availability and uptake by crop plants through
different mechanisms. The cycling of P from organic materials
is also normally insufficient to meet the P requirements of
crops (Buresh and Tian, 1998). As they access deep water re-
serves beyond reach of annual crops, tree roots act as a safety
net to capture nutrients leached from the topsoil and return
these to the soil surface as litter. The presence of trees improves
nutrient use efficiency by providing a safety net to recover
nutrients leached from the topsoil during intense rainfall and
return them to the surface horizons on which crop roots pri-
marily depend, in a manner analogous to the hydraulic lift of
water.

N availability and uptake
The percentage of N derived from the atmosphere (NDFA) is
more than 59% according to a recent analysis of 38 cases
using N isotopic analyses (Nygren et al., 2012). Under humid
and sub-humid conditions, on average NDFA was 69% in
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young trees and 63% in periodically pruned trees compared
to 54% in free-growing (nonpruned) trees (Nygren et al.,
2012). The average N-fixation for 16 variable fertilizer tree
species was found to be 246 kg N ha−1 year−1, but much
higher (300–650 kg N ha−1 year−1) in improved fallows and
protein banks where trees are managed by pruning or cop-
picing (Nygren et al., 2012). These values are much higher
than the global estimates (23–176 kg N ha−1 year−1) for food
legumes and herbaceous pasture and fodder legumes
(Herridge et al., 2008). Among the nonlegume−Frankia as-
sociations, N-fixation has been estimated at 40–320 kg N
ha−1 year−1 for alder (Russo, 2005) and casuarina 73 kg
N ha−1 year−1 (Nygren et al., 2012). Although the annual N
inputs vary widely between species and even among prov-
enances of the same species across different locations and
stand age, the amounts reported are enough to fulfill crop N
needs for sustained yield (Nygren et al., 2012).

In Latin American coffee and cacao agroforestry, pruning
residues and litter fall from shade trees have been shown
to contribute 60–340 kg N ha–1 year–1 (Beer et al., 1998). In
coffee plantations in Costa Rica, erythrina contributed over
300 kg N ha−1 year−1 (Kass et al., 1997). Various studies
across the globe have documented significant increases in N
stocks under fertilizer trees compared to crop monocultures
(Table 3). According to a study on cacao agroforestry in Ghana
the ammonium sulphate fertilizer equivalence of albizia
leaves is 21–72 kg N ha−1; thus, the leaves could substitute
29–63% of fertilizer when applied to soil at 2.5 Mg ha−1

(Anim-Kwapong, 2006). In a silvopastoral system with king
Table 3 Increase (%) in N and P stocks due to fertilizer and nutrient up
influence

Agroforestry (crop) Tree species

N stocks Cacao Albizia
Parkland Faidherbia

Tephrosia
N uptake Parkland (millet) Faidherbia

Alley cropping (maize) Albizia
Gliricidia
Leucaena
Leucaena

Alley cropping (sorghum) Albizia
Intercropping (maize) Gliricidia
Improved fallow (maize) Sesbania

Tephrosia
Gliricidia
Leucaena

P stocks Cacao Albizia
Parkland Faidherbia

Intercropping Gliricidia
P uptake Intercropping Gliricidia

Leucaena
Gliricidia
grass in Costa Rica, erythrina contributed 266 kg N ha−1 year−1

(Kass et al., 1997). Direct below-ground transfer of N fixed by
legume trees to associated non-N-fixing crops and forage grass
has been widely documented (Nygren et al., 2012; Sierra and
Nygren, 2006). This can take place via root exudates or com-
mon mycorrhizal networks (Nygren et al., 2012). In coffee
agroforestry approximately 30% of the N effectively fixed by
leucaena, calliandra, and erythrina was transferred to the as-
sociated coffee trees (Snoeck et al., 2000). In Sri Lanka, up to
21% of N in grass was derived from transfer of N fixed by
gliricidia and leucaena (Jayasundara et al., 1997).

A review of studies in parklands across Africa shows that N
availability is higher under faidherbia than in the open field
(Table 3). N availability can also be increased significantly
under improved fallows and alley cropping of fertilizer trees
compared to control plots without trees (Table 3). In glir-
icidia-maize-pigeon pea intercropping in southern Malawi
191–302 kg N ha−1 could be realized from gliricidia prunings
(Akinnifesi et al., 2010).

Although N inputs from fertilizer trees may be high, the N
recovery by crops is usually 10–30% of the N applied as
prunings per season, depending on the quality of residues.
Much of the N from organic inputs (50–80%) is not used by the
crop. Low N recovery is partly caused by a lack of synchrony
between the N release and demand by the associated crop.
Nevertheless, N use efficiency by cereals is higher from fertilizer
trees than from synthetic fertilizer. For example, in alley crop-
ping in Nigeria, N use efficiency of synthetic fertilizer was
10–22% compared to 49% in gliricidia and 59% in albizia
take by crop relative to crop monoculture or areas outside tree

Increase (%) Country Reference

5–10 Ghana Isaac et al. (2007)
15–156 Sahel Boffa (1999)
200 Niger Kho et al. (2001)
50–90 Sudan Rhoades (1995)
100–150 Ethiopia Kamara and Haque (1992)
5–29 Malawi Rhoades (1995)
20 Viet Nam Fagerström et al. (2002)
139.2 Niger Kho et al. (2001)
126.6 Nigeria Okogun et al. (2000)
159.6 Nigeria Okogun et al. (2000)
170.4 Nigeria Okogun et al. (2000)
50–114 Nigeria Akinnifesi et al. (1997)
100–300 USA Rhoades et al. (1997)
156 Malawi Mweta et al. (2007)
299 Zambia Mafongoya (unpublished)
76 Zambia Mafongoya (unpublished)
160 Zambia Mafongoya (unpublished)
99 Zambia Mafongoya (unpublished)
2.3–4.5 Ghana Isaac et al. (2007)
18–134 Sahel Boffa (1999)
30 Niger Kho et al. (2001)
44–125 Ethiopia Kamara and Haque (1992)
5–29 Malawi Rhoades (1995)
160.7 Malawi Mweta et al. (2007)
92 Zambia Mafongoya (unpublished)
110 Zambia Mafongoya (unpublished)
121 Malawi Mweta et al. (2007)
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(Okogun et al., 2000). N uptake by crops is usually improved
when cereals are associated with fertilizer trees (Table 3). Soil
amendment with small dosages of inorganic fertilizer (25–50%
of recommended rate) further increases N uptake. For example,
N uptake increased by over 245% when the maize crop in the
alleys between these trees was amended with 40–80 kg N ha−1

of synthetic fertilizers in Nigeria (Okogun et al., 2000). Simi-
larly, N uptake significantly increased when gliricidia plots were
amended with synthetic N and P fertilizers (Mweta et al., 2007).

The question arising from all of the above is: To what ex-
tent can fertilizer trees substitute for inorganic N fertilizers?
The answer it seems depends on the desired crop yield. Typi-
cally, smallholder farmers in SSA have maize yields of
1–2 Mg ha−1. 1 Mg ha−1 maize crop requires 20 kg N ha−1.
Tree pruning applied at 5 Mg ha−1 provides N input of 60–
150 kg ha−1 (Palm, 1997), and this can support maize yields
of up to 4 Mg ha−1 without any added synthetic fertilizer. In
gliricidia-maize intercropping in Malawi, it is possible to re-
duce synthetic fertilizer use by 48 kg N ha−1 year−1 (Dong-Gill,
2012) while still maintaining yields of up to 4 Mg ha−1

(Akinnifesi et al., 2010). For higher yields, although BNF may
supply adequate N, supplementation with inorganic fertilizers
may be required to provide sufficient P and K.

P availability and uptake
Fertilizer trees can contribute to P availability, either directly
by releasing tissue P during decomposition and mineralization
or indirectly by acting on chemical processes that regulate P
adsorption–desorption reactions. Compared to annual crops,
tree root systems are more extensive. This increases the ex-
ploration of larger soil volumes, resulting in enhanced uptake
of P and other nutrients. Trees may also access soil P from
relatively recalcitrant pools not utilized by crops (Buresh and
Tian, 1998). The symbiotic association between fertilizer trees
and mycorrhizal fungi can also improve the capacity of the
plant to take up P. A number of empirical studies have
documented higher soil P concentrations and uptake by crops
in the presence of fertilizer trees (Table 3). However, it is
important to note that fertilizer tree innovations will not
eliminate the need for P inputs in P deficient soils. Plant
materials, even when added in large amounts, may provide
less P than that required to obtain adequate crop yields. This
inadequacy is due to a low concentration of P (o3 g kg−1) in
plant residues. For example, 418 kg P ha−1 is required to
produce maize yield of 2 Mg ha−1. However, application of
even high-quality residues at 5 ton ha−1 adds only 15 kg P
ha−1 crop (Palm et al., 1997). Therefore, soil amendment with
soluble mineral P fertilizers or phosphate rocks is required to
obtain adequate crop yields in P-limited soils (Buresh and
Tian, 1998). The added P can be recycled through fertilizer
trees in their leaf litter and root turnover.

Cation concentrations and improvement in soil pH
Increases in cations and soil pH and decrease in aluminium
saturation and improvement in the conditions for plant
growth in acid soils have been associated with application
of tree prunings (Mafongoya et al., 2006). Increases in soil
cation concentrations usually results from recycling through
the biomass fertilizer trees. Several studies in parklands in
the Sahel indicate that exchangeable K in the 0–10 cm soil is
43–133% higher under faidherbia than in the open (Boffa,
1999). Similarly, Ca was 2–270% higher, while Mg was
0–78% higher under faidherbia than in the open. In Ethiopia,
Kamara and Haque (1992) found that K concentrations were
higher by 150–178% beneath faidherbia than in the open.
Fertilizer trees could minimize nitrate leaching and soil acid-
ification both by decreasing drainage and recycling leached
nutrients. Thus, in acid soils fertilizer tree prunings could be
used as a ‘liming’ material, thus providing resource-poor
farmers with an inexpensive biological means for alleviating
soil acidity.

Increased soil organic matter
Fertilizer trees enhance soil organic matter (SOM) both
through production of SOM and reducing losses due to ero-
sion. A compilation of studies in parklands of West Africa
(Boffa, 1999) indicates 11–100% higher SOM under faidher-
bia trees than in open areas. In Ethiopia, SOM under faid-
herbia was 69–107% higher than in the open (Kamara and
Haque, 1992). Increased soil organic carbon (SOC) content,
particularly in the light fraction, is known to improve aggre-
gate stability, porosity, hydraulic conductivity, and soil struc-
tures that resist erosion.

Improvement in soil biological properties
The impact of fertilizer trees on soil biological properties may
be assessed by changes in abundance, diversity, and com-
munity structure of soil fauna and flora, microbial biomass,
enzyme activity (e.g., respiration), and soil pests and weeds.
Soil fauna play a key part in litter decomposition through their
interactions with plants and soil microbial communities.
During decomposition, the organic forms of nutrients in the
litter are converted to inorganic forms that can be absorbed by
the growing plants. In addition, the activities of soil fauna
improve soil water infiltration and storage, which is becoming
increasingly important in agricultural sustainability in arid
climates (Sileshi and Mafongoya, 2006; Tian et al., 2001).

Even in highly degraded soils, fertilizer tree species have
been shown to restore soil fauna in a relatively short time
(Sileshi and Mafongoya, 2006; Sileshi et al., 2008b; Tian et al.,
2001). At two sites in eastern Zambia, earthworm densities
were found to be significantly higher in maize intercropped
with vachellia, calliandra, gliricidia, and leucaena compared
with fully fertilized sole maize (Sileshi and Mafongoya, 2006).
In another study in eastern Zambia, earthworm abundance
was 2–3 times higher in maize planted after sesbania
+tephrosia and pure pigeon pea fallows compared with sole
maize (Sileshi et al., 2008b).

N-fixing trees have been shown to modify populations of
microflora, microbial biomass, and enzyme activity (Mafongoya
et al., 1997; Tian et al., 2001; Wick et al., 1998). For example,
at Domboshawa in Zimbabwe, fungal and actinomycetes
populations differed with the quality and quantity of fertilizer
tree biomass as well as the method of application. Actino-
mycetes populations were six to nine times higher where
vachellia and calliandra biomass was surface-applied than
when incorporated in the soil (Mafongoya et al., 1997).

The microbial biomass is also part of the active SOM pool,
and has been proposed as an indicator of state and change of
total SOM. Enzyme activity in the soil is an indicator of soil
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biological status. For example, phosphatases are important in
the P cycle because they provide P for plant uptake by releasing
PO4, and acid phosphatase can provide a potential index for a
soil to mineralize organic P. β-glucosidase catalyzes the con-
version of cellulose to glucose, and as such important energy
sources for micro organisms. In long-term experiments carried
out at three sites in southern Nigeria (Wick et al., 1998),
β-glucosidase increased by 41–119% with leucaena relative to
continuous cropping of maize/cassava (Wick et al., 1998).
Alkaline phosphatase increased by 24–149% with leucaena
relative to the control (Wick et al., 1998).

Fertilizer trees in certain agroforestry practices can also re-
duce soil insect pests and weeds (Sileshi et al., 2008c). For
example, termite damage to maize was reduced by improved
fallows involving fertilizer trees in Zambia (Sileshi et al.,
2005). One of the most important aspects is the control of
problematic weeds such as spear grass (Imperata cylindrical). In
Nigeria, hedgerows of leucaena and gliricidia reduced the
population of spear grass by 51−67%, above-ground biomass
by 78−81%, and below-ground rhizomes by 90−96% com-
pared to a bush fallow (Anoka et al., 1991). In a study at
Pucallpa in the Peruvian Amazon, weed biomass was 40–63%
less in inga fallows compared to natural fallows (Lojka et al.,
2012). In alley cropping, albizia and gliricidia have been
shown to reduce weed in Nigeria (Okogun et al., 2000).

Fertilizer tree fallows have also been shown to reduce the
parasitic witch weeds (Striga spp.) problem, which is usually
associated with low soil fertility in Africa (Gacheru and Rao,
2001; Sileshi et al., 2008c). Sesbania was better than many
other species in reducing Striga asiatica infestation in maize in
eastern Zambia (Sileshi et al., 2008c). The reduction in in-
festation was significantly influenced by the quantity of bio-
mass from fertilizer trees (Sileshi et al., 2008c). In East Africa,
reduction of Striga hermontica infestation by legume fallows
depended on the rate of decomposition and nitrogen min-
eralization of organic residues (Gacheru and Rao, 2001). Re-
duction in weed problems is due to shading and smothering
of the weeds by trees and the thick mulch layer formed by
the leaf litter from the trees subsequently depleting the weed
seed-bank. Many legume species release a wide range of
allelochemical compounds, which can inhibit weed seed ger-
mination or reduce weed vigor (Sileshi et al., 2008c).

Improvement in soil physical properties
Among the commonly used indicators of soil physical prop-
erties are soil depth, bulk density, aggregate stability, infil-
tration rates, water-holding capacity, and penetration
resistance. Soil bulk density is a direct measure of soil com-
paction. Soils with low bulk density, although open-textured
and porous, are susceptible to erosion, poor water retention,
and oxidation of SOM and loss of SOC. In contrast, soils with
high bulk density have lower porosity. Various studies indicate
improvement in bulk density, aggregate stability, and porosity
due to fertilizer trees. In sandy loam soil in the pre-Amazon
region of Brazil, bulk density, total porosity, and soil aeration
were substantially improved in alley cropping with leucaena,
pigeon pea, acacia, and their mixtures over a period of three
years (Aguiar et al., 2010). In gliricidia, leucaena, Vachellia,
and sesbania rotational fallows in Zimbabwe and Zambia soil
bulk density was up to 12% lower and aggregate stability was
higher by 18–36% compared to sole maize crops (Table 4).
Pore density was also significantly higher in vachellia and
sesbania fallows (285–443 m–2) compared to continuous
maize (256 m–2). The pore density was significantly higher in
Vachellia and sesbania fallows (4521–8911 m–2) compared to
continuous maize (2689–3938 m–2). The mean pore sizes
were lower in continuous maize and higher in the fertilizer tree
fallows (Nyamadzawo et al., 2008a). The mean pore sizes at
5 cm tension were 0.07–0.12 mm in fallows relative to con-
tinuous maize, which were 0.03 mm.

The improvement in soil structure was also associated with
increased drainage, especially during wet periods. In eastern
Zambia and Zimbabwe, steady-state infiltration rates were
42–600% higher when maize was rotated with gliricidia, leu-
caena, vachellia, sesbania, and tephrosia compared to con-
tinuously grown sole maize (Table 4). Time to water runoff
was also longer by 40–133% and drainage was improved by
88–900% compared to continuous sole maize. The soil in
maize planted following improved fallows had lower pene-
tration resistance compared with monoculture maize at vari-
ous sites in eastern Zambia (Table 4).

Reduced penetrometer resistance and increased water in-
filtration imply reduced water runoff and soil erosion. The
improvement under fertilizer trees was evident from the longer
time to runoff measured in maize fertilizer tree rotations
compared to sole maize in Zambia and Zimbabwe (Table 4).
Land under fertilizer trees has been shown to be less suscep-
tible to runoff and erosion than continuous maize. According
to Fagerström et al. (2002), in an upland rice cropping system
in northern Vietnam, tephrosia fallows and hedgerows effect-
ively prevented nutrient losses by erosion. Runoff and soil
losses were also lower in maize grown with fertilizer trees
compared to continuous maize in Zimbabwe (Table 4). Soil
loss was 30–100% higher under continuous maize than under
fertilizer tree fallows (Nyamadzawo et al., 2006; Nyamadzawo
et al., 2012).

As they increase hydraulic conductivity and reduce runoff
losses, fertilizer trees improve water retention, storage, and
availability to associated crops. At Domboshawa in Zimbabwe
75–80% of the total available water was retained at suction
o33 kPa in the top 0–15 cm depth under vachellia fallows
(Nyamadzawo et al., 2012). Soil water stored in 2-year ses-
bania-improved fallows was greater than in continuously
cropped fertilized or unfertilized maize in eastern Zambia
(Phiri et al., 2003). In parklands in Ethiopia, the amount of
available water under faidherbia was twice that outside the tree
canopy (Kamara and Haque, 1992). Similarly, in Malawi, soil
moisture in the 0–15 cm soil was 4–53% higher under faid-
herbia than outside the tree canopy (Rhoades, 1995). The trees
canopy also intercepts water and channels it down to the soil,
thus contributing soil water recharge through macropores
created by roots and increased microbial activities. Phiri
(2002) recorded greater rainfall interception by sesbania tree
canopies indicated by increased moisture storage and sub-soil
moisture recharge.

The role of fertilizer trees in improving water use efficiency
(WUE) has recently been demonstrated with long-term field
studies in Africa (Sileshi et al., 2011). In rain-fed agriculture,
rain use efficiency (RUE) defined as the ratio of above-
ground net primary production to annual rainfall provides



Table 4 Changes in soil physical properties (0–20 cm) due to fertilizer trees (FT) in improved fallow and the control (sole maize) and the
% change (%D) at Msekera, Kagoro, and Kalunga sites in Zambia and Domboshawa in Zimbabwe

Variable Tree species Site FT Control (%D) Reference

Bulk density Gliricidia Msekera 1.39 1.53 −9.2 Sileshi and Mafongoya (2006)
(Mg m−3) 1.40 1.42 −1.4 Mafongoya et al. (2006)

Leucaena 1.35 1.53 −11.8 Sileshi and Mafongoya (2006)
Vachelia Domboshawa 1.33 1.41 −5.7 Nyamdzawo et al. (2008)
Sesbania Msekera 1.35 1.42 −4.9 Mafongoya et al. (2006)

1.59 1.66 −4.2 Phiri (2002)
Domboshawa 1.36 1.41 −3.5 Nyamdzawo et al. (2008)

Aggregate stability Sesbania Msekera 83.3 61.2 36.1 Chirwa et al. (2004)
(mm) 65.0 55.0 18.2 Phiri (2002)

38.0 32.0 18.8 Phiri (2002)
Pigeon pea 80.0 61.2 30.7 Chirwa et al. (2004)

Infiltration rate Gliricidia Kagoro 4.4 2.9 51.7 Chirwa et al. (2003)
(mm hr−1) Msekera 16 4.0 300.0 Mafongoya et al. (2006)

Leucaena Kagoro 3.7 2.9 27.6 Chirwa et al. (2003)
Vachelia Kagoro 5.5 2.9 89.7 Chirwa et al. (2003)

Domboshawa 435 5.0 600.0 Nyamdzawo et al. (2007)
Sesbania Msekera 20.0 4.0 400.0 Mafongoya et al. (2006)

0.13 0.08 62.5 Phiri (2002)
4.4 2.1 109.5 Chirwa et al. (2004)

Kagoro 9.5 2.9 227.6 Chirwa et al. (2003)
Sesbania Kalunga 21.0 7.0 200.0 Nyamadzawo et al. (2006)

Msekera 8.0 5.0 60.0 Nyamadzawo et al. (2006)
Domboshawa 12 5.0 140.0 Nyamadzawo et al. (2007)

Pigeon pea Msekera 5.2 2.1 147.6 Chirwa et al. (2004)
Tephrosia Kalunga 16.0 7.0 128.6 Nyamadzawo et al. (2006)

Msekera 7.1 5.0 42.0 Nyamadzawo et al. (2006)
Time to runoff Vachelia Domboshawa 30.0 15.0 76.5 Nyamadzawo et al. (2006)
(min) Sesbania Kalunga 21.0 9.0 133.3 Nyamadzawo et al. (2006)

Msekera 7.0 3.0 133.3 Nyamadzawo et al. (2006)
Domboshawa 21.0 15.0 40.0 Nyamadzawo et al. (2006)

Tephrosia Kalunga 14.0 9.0 55.6 Nyamadzawo et al. (2006)
Tephrosia Msekera 7.0 3.0 133.3 Nyamadzawo et al. (2006)

Drainage Sesbania Msekera-1a 56.4 15.8 257.0 Phiri (2002)
(mm) Msekera-1b 10.9 1.0 990.0 Phiri (2002)

Msekera-2a 61.1 7.6 703.9 Phiri (2002)
Msekera-2b 10.7 5.7 87.7 Phiri (2002)

Penetrometer resist Gliricidia Kagoro 0.6 1.2 −50.0 Chirwa et al. (2003)
(Mpa) Leucaena Kagoro 0.8 1.2 −33.3 Chirwa et al. (2003)

Vachelia Kagoro 1.0 1.2 −16.7 Chirwa et al. (2003)
Sesbania Kagoro 0.9 1.2 −25.0 Chirwa et al. (2003)

Msekera 2.2 3.2 −31.3 Chirwa et al. (2004)
Pigeon pea Msekera 2.9 3.2 −9.4 Chirwa et al. (2004)

Runoff loss (%) Vachelia Domboshawa 0 57.0 −100.0 Nyamadzawo et al. (2006)
Sesbania Domboshawa 21.0 57.0 −63.2 Nyamadzawo et al. (2006)
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information similar to WUE. Sileshi et al. (2011) analyzed
variations in RUE with leucaena in three long-term experi-
ments conducted in Zambia and Nigeria. At the two sites in
Zambia, maize intercropped with leucaena achieved 191–
197% higher RUE compared to sole maize continuously
cropped without nutrient inputs. At the Nigerian site, RUE was
139–202% higher in maize planted between leucaena hedge-
rows compared to the control (Sileshi et al., 2011). According
to another study at Makoka (Chirwa et al., 2007), WUE was
higher in maize intercropped with gliricidia than in the sole
maize and maize+pigeon pea intercropping. At another site in
eastern Zambia, WUE was 202% higher in sesbania fallows
compared to continuous sole maize (Phiri, 2002).
Carbon Sequestration and Greenhouse Gas Mitigation
Potential

A growing number of studies have also demonstrated that
fertilizer trees can sequester significant amounts of C both in
the soil and in their woody biomass and mitigate greenhouse
gas (GHG) emissions. In Mali, Takimoto et al. (2008) esti-
mated 70.8 Mg C ha−1 in the top 40 cm of the soil in park-
lands dominated by faidherbia. SOC increases of 3–70%
under faidherbia canopy have also been reported in the Sudan
(Rhoades, 1995). At several sites in Malawi, SOC was 3–30%
higher under faidherbia canopy than in the open (Rhoades,
1995). According to Sierra and Nygren (2006), gliricidia trees
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in pastures contributed 16–18 Mg C ha−1 to soil over 12 years.
In a 19-year-old gliricidia alley cropping in Costa Rica, the
SOC pool was 16–23% higher than the sole crop (Oelber-
mann et al., 2004). In the 19th year of alley cropping, SOC
was significantly higher in the alley crop (3.2%) compared to
the sole crop (2.4%) (Oelbermann et al., 2004). Similarly, in a
19-year-old alley cropping with erythrina in Costa Rica, C
inputs from tree prunings were 4.01 Mg C ha−1 year−1

(Oelbermann et al., 2006). The input from crop residues was
significantly greater in the erythrina alley crop for maize
(1.34 Mg ha−1 year−1) and beans (0.35 Mg ha−1 year−1) com-
pared to the sole crop (Oelbermann et al., 2006). Nygren
(1995) showed that C input from prunings of erythrina in
Costa Rica ranged from 2.3 to 5.2 Mg ha−1 year−1 at a tree
density of 625 trees ha−1. In alley cropping with leucaena in
Nigeria, SOC increased by 108% in the 0–15 cm soil as com-
pared to the control without a hedgerow (Kang et al., 1999).
In Zimbabwe, SOC was 1.7 times higher in Vachellia fallows
than continuous sole maize (Nyamadzawo et al., 2008b). SOC
stocks within 0–30 cm depth under 5-year-old rotational
woodlots (15.8–25.6 Mg ha−1) were higher than in soils that
had been continuously cropped for the same time period
(13 Mg ha−1) in Tanzania (Kimaro et al., 2011). According to
Kaonga and Coleman (2008) SOC stocks under tephrosia,
sesbania, and pigeon pea were higher (27.3–31.2 Mg ha−1)
than under fully fertilized sole maize (26.2 Mg ha−1) and
unfertilized sole maize (22.2 Mg ha−1) in eastern Zambia. The
above-ground plant C input was estimated at 2.8 Mg C ha−1

year−1 for tephrosia, 2.7 Mg ha−1 year−1 for sesbania, and
2.5 Mg ha−1 year−1 for pigeon pea, which was comparable
to 2.7 Mg ha−1 year−1 recorded for fully fertilized sole maize
(Kaonga and Coleman, 2008). In Malawi, Makumba et al.
(2007) found that soil C in a gliricidia–maize intercropping
roughly doubled after 7 and 10 years compared to sole maize.
A more recent reanalysis of the data from Makumba et al.
(2007) found an annual net gain of 3.5 Mg C ha−1 year−1 in
the soil (Dong-Gill, 2012). With the potential for N2O miti-
gation of 0.12–1.97 kg N2O–N ha−1 year−1) the gliricidia–
maize intercropping was estimated to mitigate 3.5–4.1 Mg CO2

eq. ha−1 year−1 (Dong-Gill, 2012).
Estimates of above-ground C storage are also substantial. In

cacao agroforestry in Indonesia, C stock in biomass was esti-
mated at 31.4 Mg C ha−1 in 15-year-old gliricidia (Simley and
Kroschel, 2008). Similarly, in Costa Rican cacao agroforestry,
erythrina stored 40 Mg C ha−1 (Oelbermann et al., 2006). In
5-year rotational woodlots in Tanzania, carbon sequestered in
wood of fertilizer trees ranged from 11.6 to 25.5 Mg ha−1

(Kimaro et al., 2011). Wood C accumulation rates ranged from
2.3 to 5.1 Mg C ha−1 year−1 in acacia species (Kimaro et al.,
2011). A 6-year stand of faidherbia in Tanzania accumulated
9.4 Mg ha−1 of wood C at a 5 m by 5 m spacing (Okorio and
Maghembe, 1994). In parkland in Mali, faidherbia accumu-
lated 20.3 Mg ha−1 (Takimoto et al., 2008). This can play a
critical role in mitigation of climate changes as they favor
nutrient recycling and C sequestration in crop and pasture
land. However, the potential for accumulation of ecosystem C
by fertilizer trees depends on site characteristics and planting
densities. Therefore, accurate methods are required to deter-
mine change in C with the inclusion of fertilizer tree innov-
ations in the various farming systems.
Provision of Products

Most N-fixing trees provide various products including wood,
fruits, edible seeds, and fodder that are rich in protein and
increase pasture productivity.
Wood and Wood Products

Several studies have indicated production of substantial
amounts of firewood and timber from fertilizer trees planted
on farmland (Table 5). In acid soils in Peru, inga produced up
to 8–12 Mg ha−1 year−1 of wood (Lojka et al., 2012). Russo
(2005) reported wood production of 15–20 m3 ha−1 year−1

in alder. A stand of 30-year-old trees with a density of 35 trees
ha−1 yielded 70 m3 ha−1 of timber, 18.3 Mg ha−1 of dry fuel-
wood (Russo, 2005). Several studies have also indicated
production of substantial amounts of firewood in Africa
(Table 5). Assuming per capita dried firewood consumption of
486 kg (0.67 m3) year−1 (Ndayambaje and Mohren, 2011),
wood yields of the various species would be sufficient to meet
the household fuelwood demands for 1–17 families of 6
people (Table 5). Such high wood yields exemplify the po-
tential of fertilizer trees in meeting local firewood demands,
especially in Africa where the population depends on ex-
traction of wood from forests due to lack of alternatives in
energy supply. As forest resources continue to degrade, access
to firewood declines, and rural women have to walk increas-
ingly longer distances in search of firewood. Planting of fer-
tilizer trees on farmland can increase access to firewood by
women, and thus the time and labor spent in search of fire-
wood can be reallocated to food production and childcare.
Fruits and Edible Seeds

Some fertilizer trees (e.g., tamarind, parkia, pigeon pea, Tet-
rapleura tetraptera, etc.) produced edible seeds or kernels. For
example, pigeon pea seeds are a rich source of protein,
carbohydrates, minerals, and vitamins, making it an ideal
supplement to the traditional starch-based diets of Africa and
Asia, which are generally protein-deficient (Odeny, 2007). The
edible pulp of tamarind is consumed fresh or used to make
syrup, juice concentrates, and exotic food specialities such
as chutney, curries, pickles, and meat sauces. In the Sahel,
parkia seeds are a valuable source of condiment locally
called ‘soumbala,’ which is an important source of protein
(Kalinganire et al., 2008).
Fodder and Pasture

Scarcity of forage and lack of access to high-quality feed are
major constraints to livestock productivity, especially in the
semiarid areas. Silvopastoral management including protein
(fodder) banks and grazing systems involving fertilizer trees
may partly overcome these problems. Protein banks allow
animals to be stall-fed with fodder from trees such as gliricidia,
calliandra, or various species of leucaena, pterocarpus, and
others grown in blocks on farmland. Alternatively, grazing
systems allow livestock to graze on pasture under widely



Table 5 Potential annual harvestable fuelwood produced from fertilizer trees planted in contour strips, woodlots, or rotational fallows

Tree species Age (years) Quantity
(Mg ha�1 yr� 1)

Sufficient for N
families of 6

Country References

Calliandra 4.5 3.2 1.1 Tanzania Mwihomeke and Chamshama (2004)
Casuarina 4.5 1.8 0.6 Mwihomeke and Chamshama (2004)
Acacia crassicarpa 5 22.4 7.7 Otsyina (1999)
A. crassicarpa 4 19–24.0 8.2 Otsyina (1999)
Vachellia nilotica 7 1.2 0.4 Tanzania Nyadzi et al. (2003)
Senegalia (Acacia) polycantha 7 10.1 3.5 Nyadzi et al. (2003)
Leucaena 7 12.7 4.4 Nyadzi et al. (2003)
Acacia crassicarpa 5 51.0 17.5 Tanzania Kimaro et al. (2007)
A. mangium 5 40.0 13.7 Kimaro et al. (2007)
Senegalia (Acacia) polycantha 5 39.0 13.4 Kimaro et al. (2007)
Vachellia nilotica 5 27.0 9.3 Kimaro et al. (2007)
Gliricidia 5 30.0 10.3 Kimaro et al. (2007)
Leucaena 3 9.7 3.3 Zambia Ngugi (2002)
Sesbania 3 8.0 2.7 Ngugi (2002)
Gliricidia 3 7.0 2.4 Ngugi (2002)
Sesbania 1–3 7.3 2.5 Kwesiga and Coe (1994)
Sesbania Na 2.0 0.7 Rwanda Ndayambaje and Mohren (2011)
Alder Na 7.0 2.4 Ndayambaje and Mohren (2011)
Casuarina Na 11.0 3.8 Ndayambaje and Mohren (2011)
Leucaena Na 10.0 3.4 Ndayambaje and Mohren (2011)
Tagasaste Na 11.0 3.8 Ndayambaje and Mohren (2011)
Leucaena single row 2.7 21.2 7.3 Kenya Jama and Getahun (1991)
Leucaena double row 2.7 18.2 6.2 Jama and Getahun (1991)
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spaced trees (e.g., alley farming) or scattered trees (e.g.,
parklands).

In the more extensive grazing areas of South America, Asia,
Australia, and Africa, fertilizer trees are increasingly being
planted in association with improved grasses to increase
carrying capacity and/or enhance the productivity of grazing
cattle. In high-elevation areas of Centra1 America and the
Andean region, alders are prominent components of such
systems. For example, in Costa Rica, alder stands in pasture
grasses cover over 50 000 ha (Kass et al., 1997), whereas the
drier espinales of Chile (2 million ha), Bolivia, and Argentina
are dominated by Vachellia (Acacia) caven (Muñoz et al., 2007).
Similarly, in the over grazed, semi arid chaco of Argentina,
Bolivia, and Paraguay (more than 1.2 million km2) fertilizer
trees in the legume genera Vachellia and Acaciella (formerly
Acacia), Leucaena, Mimosa, Prosopis, Pithecellobium, and Sesbania
provide N for grass growth and browse (Abril and Bucher,
2001; Muñoz et al., 2007). In the more intensively managed
areas in Brazil, Venezuela, Colombia, Mexico, parts of Central
America, and the Caribbean, trees such as leucaena are planted
in pasture or protein banks (Argel et al., 1998). In Southeast
Asia, leucaena and gliricidia are widely used in silvopastures.
In Indonesia alone leucaena occurs in 479 000 ha of pasture
land (Shelton et al., 2005). In Queensland in Australia
4100 000 ha of leucaena in pastures provides valuable forage
for large-scale beef production (Shelton et al., 2005). In
Western Australia, 450 000 ha of tagasaste is grown in wide-
spaced alleys or dense plantations to both provide fodder and
reduce salinity by lowering the water table (Lefroy et al., 1992).
These are used as the sole source of feed during seasonal
periods of nutritional shortage even on commercial farms.

In the parklands and in African savannahs, trees act as
‘islands of fertility,’ and grass growing under the canopy has
better quality and yield than in the open areas (Treydte et al.,
2007). For example, grass productivity under faidherbia and
parkia canopies was two to six times higher than in open areas
in West African parklands (Boffa, 1999). Similarly, in Kenya
grass productivity under acacia (now Vachellia tortilis) canopies
was 1.5–2.3 times higher than outside the tree canopies
(Weltzin and Coughenour, 1990). At Pakchong in Thailand,
dry matter yield over 840 days was 30–41.5 Mg ha−1 in a
mixture of grass and leucaena compared to 25–36.8 Mg ha−1

in grass alone (Tudsri et al., 2002). Similarly, at Turrialba in
Costa Rica, production of star grass was 16.9 Mg ha−1 year−1

with Erythrina compared to 11.7 Mg ha−1 year−1 in grass
monoculture (Kass et al., 1997).

In the parklands in the Sahel, pods of faidherbia provide a
valuable source of dry season fodder. Parkia, locally called
Néré, is also a valuable source of fodder in the Sahel, where its
branches are lopped by farmers and fed to livestock in the dry
season when grass is scarce. Supply of protein, which is the
most important nutrient for cattle production on rangelands,
can also be improved through fodder supplements from the
legume genera Acacia, Vachellia (Acacia), Leucaena, etc. (Lefroy
et al., 1992; Mapiye et al., 2011). As a result, meat and milk
production is significantly improved. An analysis of results
from experiments in Latin America and Australia indicated
470% increase in live weight gain and beef production using
leucaena pastures (Jones, 1994).
Trade-offs

Under certain circumstances, the benefits of fertilizer trees
could be offset by tree-crop competition for light, nutrients
and other resources, soil acidification, or gaseous emissions
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(Dick et al., 2006). For example, root competition between
trees and crops is a major problem, especially where fast-
growing tree species are used without knowledge of optimum
planting densities and management requirements. In a study
on root development in a cassava-based cropping system in
southern Bénin, Lose et al. (2003) compared annually planted
pigeon pea alleys, perennial alleys, and blocks of gliricidia,
flemingia, parkia, and millettia mixture. Annual alleys of
pigeon pea had less interference with cassava, whereas block
arrangement of the tree mixtures had detrimental effects on
the cassava growth in the adjacent rows (Lose et al., 2003).
Even with intimate mixtures, competition may not be a
problem under optimum tree densities and appropriate
management such as pruning, lopping, and coppicing. Prun-
ing offers one of the most direct and adaptable methods of
controlling competition. Pruning intervals and intensities can
be modified to regulate above- and below-ground competition
and to match various production goals. For example, dele-
teriously competition for water did not exist in gliricidia-
maize-pigeon pea intercropping when gliricidia was pruned
before and during the cropping season in southern Malawi
(Chirwa et al., 2007). Water use studies in southern Africa also
show minimal or no competition for moisture between the
tree and crops. However, these studies have mostly been re-
stricted to areas with relatively high rainfall (4900 mm) in
normal years. In drier areas, competition may be severe.

Agroforestry has great potential for optimizing nutrient
cycling and managing soil acidity under appropriate man-
agement. However, continuous removal of plant biomass
(depending on ash alkalinity) may result in soil acidification.
The amount of acidity generated by product removal is
equal to the ash alkalinity carried by the product. If the
bulk of the leguminous plant biomass is allowed to
decompose on site after harvest, then the ash alkalinity is
released and soil acidification minimized (Wong et al., 2002).
Management of soil acidification under legumes in low-input
agroecosystems should therefore minimize the removal of
biomass from the site of production and nitrate leaching.
Localized acidification may be beneficial in circumstances
where alkalinity accumulates down in the soil profile or in
localized parts of the landscape. In these circumstances, the
use of acidifying legume allows the alkalinity to be accessed
and made available in the form of biomass with high ash
alkalinity. The acid-ameliorating effect of this biomass can
then be used in more acid parts of the landscape or in the
more acid top soil. Using low-acidifying fertilizer tree species
(provenances) may also reduce the risk of acidification. High
genotypic variability within tropical legumes allows selection
of genotypes.

Some of the N from legume biomass not taken up by
plants and microbes in the soil can contribute to N2O emis-
sions (Chikowo et al., 2004; Hall et al., 2006), especially after
rainfall events. As N addition rates progressively increase be-
yond the capacity of soil microbes to utilize N, the rate of N2O
production would slow down and finally reach steady state;
under this stage, soil C availability would presumably control
N2O production and emission (Dong-Gill et al., 2012). In a
semi arid condition in Mali, Hall et al. (2006) found six times
more N2O emission from gliricidia plots than from continu-
ous cultivation of sorghum without fertilizer. In a wet tropical
soil, Seneviratne and Van Holm (1998) found over 5900 times
more N2O emission from soil without mulch than from plots
that received gliricidia mulch. In the same experiment, N2O
emission from urea fertilizer was over 25 000 times higher
than from plots that received gliricidia mulch (Seneviratne and
Van Holm, 1998).
Conclusions

This review suggests that diversification of agro-ecosystems
with fertilizer trees can optimize indigenous soil N supply and
increase productivity of the land. Fertilizer trees have an added
advantage: ensuring a multifunctional agriculture that pro-
vides timber, fodder, shade, soil improvement, and watershed
management. Unlike synthetic N sources, fertilizer trees ensure
greater internal nutrient recycling and water availability, thus
contributing to greater nutrient use efficiency. Therefore, they
can make a major contribution to sustainable agriculture by
minimizing external inputs, particularly N fertilizers, increas-
ing resource and land use efficiency, and slowing down
erosion. The savings on synthetic fertilizer costs and GHG
mitigation potential could also be substantial. Unlike syn-
thetic fertilizers, fertilizer trees may play a significant role in
reducing N leaching, which is particularly important during
periods of reduced ground cover by herbaceous plants, such as
between cropping seasons. The advantage of organic inputs
over synthetic fertilizers is that much of the N from organic
inputs not used by the crop is usually incorporated into vari-
ous SOM pools, or assimilated by the associated trees, thus
remaining in the system for other uses. N from inorganic pools
not taken by the crop is subjected to higher levels of leaching
and denitrification. Thus, the accumulation of N in SOM pools
over time is more sustainable compared to synthetic N fertil-
izer, which releases nutrients rapidly. The potential of in-
organic fertilizers to ameliorate the physical and biological
degradation of poorly buffered soils is limited. Synthetic fer-
tilizers, however, will remain a necessary input to agriculture
to feed the increasing human population. Therefore, the focus
of this article is not just whether fertilizer trees are better or
worse than mineral fertilizers, because both play an important
(and complementary) role in food production. The authors
strongly believe that smallholder farmers would benefit if
development planners were to emphasize the merits of dif-
ferent fertility replenishment approaches and take advantage
of the synergy between fertilizer trees and mineral fertilizers
rather than focusing on the ‘organic versus inorganic’ debate.

Although the rate of adoption of fertilizer trees has been
lower than anticipated in many regions of the world, there have
been notable successes in other parts. In the traditional pro-
duction systems, the adoption of fertilizer trees has been driven
by local tradition, economic factors, and land ownership. These
traditional systems are being degraded and losing their prod-
uctivity, but they may be a source of inspiration in the design of
new land management practices where fertilizer trees can play a
greater role in increasing food, forage, and fibre production.
However, a longer-term vision and significant investment in
research and development are needed. Screening of candidate
tree species and development of innovations appropriate to
specific conditions are important where these do not exist.
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Where appropriate innovations already exist, barriers to adop-
tion and risks that the adoption presents need to be identified.
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