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Abstract

Brucellosis, a neglected zoonotic disease remains a major public health problem

world over. It affects domesticated animals, wildlife and humans. With large pas-

toral communities, and demand for meat and livestock production to double by

2050, brucellosis poses a major threat to the public health and economic growth

of several developing nations whose economies rely heavily on agricultural exports.

Since human-to-human transmission of the disease is rare the ultimate manage-

ment of human brucellosis can be achieved through effective control of brucellosis

in animal population. Hence there is need to gain a better and more comprehen-

sive understanding of effective ways to control the disease in animal populations.

Mathematical modeling, analysis and simulation offer a useful means to understand

the transmission and spread of brucellosis so that effective disease control measures

could be designed. In this dissertation, five epidemiological models that seek to eval-

uate the role of intervention strategies on the transmission dynamics of brucellosis in

animal population have been studied. Firstly, a non-autonomous model that focuses

on evaluating the impact of animal vaccination and environmental decontamination

in a periodic environment, is introduced. Secondly, a modeling framework that seeks

to improve our quantitative understanding of the influence of chronic brucellosis and

culling control on brucellosis dynamics in periodic and non-periodic environments,

is considered. Thirdly, a deterministic brucellosis model that incorporates hetero-

geneity and seasonality is studied. Fourthly, we evaluated the effects of short-term

animal movements on the transmission dynamics of brucellosis through a two-patch

model. Finally a model that incorporates two discrete delays and culling of infected

animals displaying signs of brucellosis infection is proposed and analysed. All the

proposed models incorporate relevant biological and ecological factors as well as pos-

sible disease intervention strategies. Epidemic and endemic analysis of the models

have been performed, with a focus on the threshold dynamics characterized by the

basic reproduction numbers. In addition, numerical simulation results are presented

to demonstrate the analytical findings. A brief summary of the main results of the

thesis and an outline of some possible future research directions rounds up the thesis.
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Chapter 1

Introduction

1.1 Background

Brucellosis, a highly contagious bacterial disease, is one of the world’s major zoonoses

responsible for a considerable economic and health burden. Currently there are more

than 500,000 new cases of brucellosis reported annually and the disease remains

endemic in many countries and settings, including Spain, Latin America, the Middle

East, and Africa [1, 2]. Among these, the majority of brucellosis cases are found

in sub-Sahara Africa, where Ethiopia, Chad, Tanzania, Nigeria, Uganda, Kenya,

Zimbabwe and Somalia have been reporting persistence of brucellosis in humans

attributed to the infection of domestic cattle, camels, goats and sheep [3].

Caused by various species of the bacteria Brucella [4], the disease can be trans-

mitted to animals and humans with exposure to infected animals or ingestion of

contaminated water, food, and dust, etc [2]. Brucellosis survival in the environ-

ment ranges from one to four months in the contaminated soil and water, and two

months in milk and meat [5]. However the Brucella bacteria is easily killed by direct

sunlight, high temperature and effective disinfection [6].

Historically the scientist David Bruce (1887) was the first to isolate the organ-

ism from the spleen of a British solider with Malta fever and named it Microccocus

melitensis and genus the Brucella was named after his name. Zammit (1905) identi-

fied goats as the reservoir of brucellosis. Malta fever, Mediterranean fever, Mediter-

ranean gastric fever, remittent and goats fever were often synonymously used for

undulant fever [7].
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1.2 Brucellosis in animal population

Prevalence of brucellosis in both the wildlife (such as bison, buffalo, elk) and domes-

ticated animals (such as sheep, goats, camels, pigs and cattle) is well documented.

Transmission of the disease in both domesticated and wild animals occurs through

direct contact transmission-when a susceptible animal comes into contact with an

infectious animal or indirect contact transmission-when animals ingest contaminated

forages or the excrement containing large quantities of bacteria, generally discharged

by infected animals [8]. Vertical transmission of the bacteria from the mother to the

offspring has also been confirmed to be another dominant mode of transmission of

the disease in animal population [38].

In both domesticated and wild animals, the bacteria induces abortion, sterility,

vertical transmission, and poor growth of offspring [8]. Control measures available to

prevent animal infection are vaccination and culling of infected animals. Vaccination

is often regarded as the first step in the control of the disease [5]. Although the

disease is less fatal in adult animals it can lead to chronic infection [10].

In public farms where there is mixed feeding of domesticated species, cross infec-

tion has been reported [5]. Cross transmission of brucellosis from wildlife to domestic

animals has also been observed in many parts of Africa where the disease is endemic

[10]. Pastoralism and poor maintenance of game reserves have been attributed to

cross transmission of the disease between the wild and domestic animal in Africa.

1.3 Brucellosis in human

The occurrence of brucellosis in humans predominantly depends on the occurrence of

the disease in both wild and domestic species. Precisely, humans acquire the disease

through exposure to infected animals or their products such as the consumption of

raw milk [10]. Clinical signs of the disease in humans include undulant fever, tired-

ness, night sweats, headaches and chills may be present for as long as three months

before illness becomes so severe and debilitating as to require medical attention [10].

Although mortality due to infection is rare the illness can last for several years

[14]. Tetracyclines and a parenteral aminoglycoside or tetracyclines and rifampin

are the common regimens that are used to treat brucellosis infection. Since human
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to human transmission of the disease is negligible, it follows that human brucellosis

is not sustainable. Hence effective prevention and control of the disease in humans

requires consistent, concurrent and long-term programs that target eradication of

the disease in animal population.

1.4 Seasonality in brucellosis transmission

Like many other infectious diseases, brucellosis is significantly influenced by seasonal

changes, and prior field studies have already demonstrated a strong correlation be-

tween brucellosis outbreaks and seasonal oscillations [27, 28, 26]. For example, a

recent analysis of brucellosis datasets in a few countries [26] reveals that there is a

marked seasonal variation in the incidence of acute brucellosis, with most cases oc-

curring in the spring and summer. Factors such as periodic changes in temperature,

seasonal precipitation which directly affects the availability of forage, environmental

fluctuations in humidity and exposure to UV light which impact the survival of Bru-

cella, and seasonal rituals in Africa which are associated with animal migration and

slaughtering, all contribute to seasonal fluctuations in the transmission and spread

of brucellosis.

1.5 Review of mathematical models for brucel-

losis

Mathematical modeling has the potential to shed light on mechanisms of transmis-

sion and the complexity of epidemiological characteristics of infectious diseases, and

can highlight new approaches to prevent and control future epidemics [33]. The first

account of mathematical modeling of spread of disease was carried out in 1766 by

Daniel [23]. Bernoulli created a mathematical model to defend the practice of inoc-

ulating against smallpox. His calculations showed that universal inoculation against

smallpox would increase the life expectancy from 26 years 7 months to 29 years 9

months [24].

Daniel Bernoulli’s research preceded our modern understanding of germ theory,

and it was not until the work of Ronald Ross into the spread of malaria, that

3



modern theoretical epidemiology began. This was soon followed by the work of A. G.

McKendrick and W. O. Kermack, whose paper A Contribution to the Mathematical

Theory of Epidemics was published in 1927. A simple deterministic (compartmental)

model was formulated in this paper. The paper [25] was successful in predicting the

behavior of outbreaks very similar to that observed in many recorded epidemics.

In recent years, several mathematical models have been proposed to study the

transmission dynamics of brucellosis [5, 30, 32, 33, 28, 34, 30, 35, 36, 37, 39, 38, 40,

41, 86]. Jorge and Raul [40] developed a dynamic model that comprise of suscep-

tible, aborting infectious, infectious carriers and immunized animals with a view to

investigate the transmission dynamics of brucellosis among animal population, and

their findings concluded that the dynamics of aborting infectious at the initial time

is much more rapid then the formation of infectious carriers.

Zinsstag et al. [37] studied cross transmission of brucellosis between livestock

and humans. They proposed a dynamic model which subdivided the population

of interest into the following epidemiological classes: susceptible, seropositive and

immunized, and their findings confirmed that the occurrence of brucllosis in hu-

man predominantly depends on the occurrence of brucellosis in animal population.

Alnseba et al. [41] proposed an susceptible, infected and the contaminated envi-

ronment dynamical model for brucellosis epidemic in ovine with direct and indirect

transmission, and their work indicated that environmental contamination plays an

important role in the persistence of brucellosis. Hou and co-workers [30] employed

a system of ordinary differential equations (ODEs) to model the transmission of

brucellosis and the effects of vaccination on brucellosis prevention and intervention,

their results indicated that a combination of intervention methods ( vaccination

and environmental decontamination) is an effective strategy in controlling animal

brucellosis .

Li et al. [32] proposed a model to investigate the transmission of brucellosis

among sheep and from sheep to humans, and their findings indicated that a combi-

nation of intervention methods (such as prohibiting mixed feeding, vaccination, and

detection and elimination) is useful in controlling human brucellosis.

Although these studies produced many useful results and improved the existing

knowledge on brucellosis dynamics, several challenges remain in the mathematical
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modeling of brucellosis, and some of these challenges will be explored in this thesis.

1.6 Motivation

Despite having been successfully controlled or eradicated in many developed nations

the disease continues to pose a formidable challenge in many low-income countries

such as Ethiopia, Chad, Tanzania, Nigeria, Uganda, Kenya, Zimbabwe and Somalia.

Considering that agriculture is the backbone of the economy of the aforementioned

countries, it is therefore essential to gain a better and more comprehensive under-

standing of effective ways to control brucellosis. Since mathematical models can be

useful tools to provide a comprehensive guide to epidemiologist and policy-makers

on effective ways to control brucellosis, the topic become worth studying.

1.7 Objectives of the research project

The aim of this study is to formulate mathematical epidemiological models that can

be useful and important tools for studying the transmission dynamics of brucellosis

in animal population. In this study, we target animal population since human

brucellosis is not sustainable. The specific objectives of this research project are

(i) To model and analyze the effects of seasonality on brucellosis transmission.

(ii) To investigate the effects of vertical transmission as well as disease control

strategies on controlling the spread of the disease in both periodic and non-

periodic environment.

(iii) To investigate the role of spatial and temporal heterogeneities on the dynamics

of brucellosis.

(iv) To evaluate the impact of short-term animal mobility on the transmission

dynamics of brucellosis infection.

(v) To investigate the dynamics and stability of brucellosis model with two discrete

delays.
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1.8 Thesis outline

The organization of this thesis is as follows: In Chapter 2, we introduce some mathe-

matical preliminaries relevant to the thesis. In Chapter 3, we present a mathematical

model for the transmission dynamics of brucellosis that incorporates the effects of

seasonality. In Chapter 4, we introduce a mathematical modeling that seeks to

improve our quantitative understanding of the influence of chronic brucellosis and

culling control in periodic and non-periodic environments. In Chapter 5, we propose

a model to investigate the transmission dynamics of brucellosis, incorporating both

the spatial and seasonal variations. In Chapter 6, we consider a dynamical model

to describe the role of short-term animal movements on the persistence of brucel-

losis. In Chapter 7, we present a new mathematical model of brucellosis infection,

with two discrete delays. Finally in Chapter 8 we conclude by presenting a general

conclusion and future remarks on brucellosis dynamics.
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Chapter 2

Mathematical preliminaries

2.1 Introduction

This chapter introduces some of the key mathematical theories, methodologies and

classical results from dynamical systems theory relevant to the thesis.

2.2 Stability

A system without stability would be a poor model, so some kind of stability is

needed in modeling. There are two types of stability and these concepts are of great

importance in applications of differential equations; That is stability with respect

to perturbation of initial values for fixed equations and stability with respect to

perturbation of the equations itself. In the first case we say the system is persistent

and second case robust. The equilibrium point is locally stable if all solutions which

start near x̄ (implying that the initial conditions are in the neighborhood of x̄)

remain near x̄ for all future time.

2.2.1 Stability : Basic definition

Consider the following definitions

Definition 1 (Autonomous system [46]). Let Ω be a subset of Rn. Consider the

autonomous differential equation defined by:

ẋ(t) = f(x), x ∈ Ω, (2.1)
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where the dot represents the differentiation with respect to time ( d
dt

). Suppose that

f : Ω ⊂ Rn → Rn is continuous and satisfies the conditions as a solution of (2.1), is

unique and continuously depend on the initial conditions. The stationary or equilib-

rium points of the system (2.1) are the points x0 ∈ Ω satisfying f(x0) = 0. For each

x ∈ Ω, we denote by ft(x) the solution of the system (2.1) satisfying f0(x) = x. We

suppose that f satisfies the conditions that ft(x) is continuous in (t, x).

Definition 2 (Equilibrium point). A point x̄ ∈ Rn is an equilibrium point of the

system (2.1) if f(x̄, t) = 0.

Definition 3 (Lyapunov stability [47]). Let x̄ ∈ ω be an equilibrium point. System

(2.1) is stable or Lyapunov stable at x̄ or x̄ is a stable equilibrium position for (2.1),

if for each ε > 0 there exists a positive real number δ such that for each x with

|x− x̄| < δ, the solution f(t(x)) is defined for all t ≥ 0 and satisfies |f(t(x))− x̄| < ε

for all t > 0, when (2.1) is not Lyapunov stable at x̄, we say that it is unstable at x̄.

Definition 4 (Attractivity). The steady state x̄ is said to be attractive or system

(2.1) is attractive at x̄ if there exists neighborhood U ⊂ Ω of x̄ such that for any

initial condition x belonging to U, the corresponding solution f(t(x)) of (2.1) is

defined for all t ≥ 0 and tends to x̄ as t tends to infinity, that is lim
t→+∞

f(t(x)) = x̄.

Definition 5 (Asymptotic stability). We say that x̄ is stable if solutions starting

close to it at a given time, remain close to it for all future times. It is said to be

asymptotically stable if nearby solutions actually converge to x̄ as t → +∞, that

means it is Lyapunov stable and attractive.

Definition 6 (Exponential stability). The system (2.1) is exponentially stable, (glob-

ally stable respectively) at x̄, if there exits two positive constants K and λ such that

|f(x) − x̄| < ε < K|x − x̄|eλt for all x in a neighbourhood of x̄ (respectively for all

x ∈ Ω) and all positive time t.

Definition 7 (Attractor). This refers to a compact, nonempty set K which attracts

some neighborhood N of itself. It is assumed that K is invariant, that is, it contains

the orbits of all its equilibrium points. The neighbourhood N can always be chosen to

be invariant also by simply replacing it with the union of all its points. The largest
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of such N , ie. the set of all points attracted to K is called the basin of K. An

attractor enjoys some kind of stability. Any trajectory starting near it may wonder

away, but eventually returns to approach it asymptotically

Definition 8 (Global stability). An equilibrium point x̄ is globally asymptotically

stable if it is stable for all initial conditions x0 ∈ Rn.

2.2.2 Dynamical properties

Definition 9 (Invariant set). Given the dynamical system ẋ = h(x) and a trajec-

tory x(t, x0) where x0 is the initial point. Let D , {x ∈ Rn|φ = 0} where φ is a real

valued function. Then the set D is said to be positively invariant if x0 ∈ D implies

that x(t, x0) ∈ D for all t ≥ 0. This means that once a trajectory of the system

enters D, it will not leave it again.

Definition 10 (Orbit). The orbit O+(x0) is called a positive orbit if for all x0 in

the set {x(t, x0)|t ≥ 0}, the orbit is defined by:

O+(x0) = {x(t, x0)|t ∈ R}.

The set is positively invariant if O+(M) ⊂M , and invariant if it contains the orbits

of each of its points.

Definition 11 (ω-limit point). A point l is called an ω-limit point of ft(x) if there

exists a sequence tn ∈ R such that lim
n→+∞

tn = +∞ and lim
n→+∞

ftn(x) = l. The set of

all ω-limit points is the ω-limit set of x and is denoted by ω(x). This means that

the sequence tn tends to +∞ as n tends to infinity and the flow through x tends to

l as n tends to +∞.

Theorem 2.2.1 If the positive orbit O+(x0) is bounded then the set ω(O+) of ω-

limit points is non- empty, connected, compact and invariant.

Theorem 2.2.2 (Poincaré-Bendixon). Consider the equation ẋ = h(x) in R2. Sup-

pose that O+ is a bounded positive orbit and ω(O+) does not contain equilibrium

points. Then ω(O+) is a periodic orbit. If ω(O+) 6= O+ this periodic orbit is called

a limit cycle.
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Definition 12 For the C1 autonomous system ẋ = h(x) and an equilibrium point

x0, the linearised system in x0 is defined by

ẋ = Dh(x0)x, where Dh(x0) is the derivative of h at x0.

Theorem 2.2.3 (Poincaré-Lyapunov [47] ). Consider that a C1 system ẋ = h(x)

and an equilibrium point x0.

1. If Dh(x0) has the real parts of all its eigenvalues negative, then x0 is asymp-

totically stable.

2. If Dh(x0) has at least one of its eigenvalues with real positive parts, then x0

is unstable.

3. If Dh(x0) has one eigenvalue equal to zero and all other negative, then x0 is a

critical point where the system changes its behavior from stable to unstable.

2.3 Monotone systems

Consider the system (2.1) where f is C1 and Ω is an open set in Rn.

1. f is said to be of type K in Ω if for each i; fi(a) ≤ fi(b) for any two points a

and b in Ω satisfying ak ≤ bk and ai = bi, (i 6= j and i, k = 1, 2, . . . , n);

2. We say that Ω is l− convex if tx+(1− t)y ∈ Ω, for all t ∈ [0, 1] where x, y ∈ Ω

and x ≤ y;

3. The system (2.1) is said to be cooperative system if Ω is l − convex and

∂fi(x)

∂xj
≥ 0, i 6= j, x ∈ Ω

4. We say that system (2.1) is competitive system if Ω is l − convex and

∂fi(x)

∂xj
≤ 0, i 6= j, x ∈ Ω
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2.3.1 Monotone dynamical system

Consider a dynamical system with a flow ψt : x→ ψt(x). This dynamical system is

said to be monotone if it is defined on an ordered metric space with the following

property;

t ≥ 0, x ≤ y =⇒ ψt(x) ≤ ψt(y)

It is said to be strongly monotone if

t ≥ 0, x < y =⇒ ψt(x)� ψt(y)

We say the system is anti-monotone if

t ≥ 0, x ≤ y =⇒ Df(x) > Df(y) and

It is strictly anti-monotone if

t ≥ 0, x < y =⇒ Df(x) > Df(y).

2.3.2 Triangular system

A triangular system is precisely an Rn × Rm system of the form{
ẋ1 = h1(x1),

ẋ2 = h2(x1, x2),
(2.2)

where h1 is a map from Rn to Rn and h2 from Rn to Rm. Suppose that the conditions

for existence and uniqueness of solutions are satisfied, for example h1 and h2 are C1.

The trajectories of the system have the system projection on Rn × {0} and hence

the name triangular. Notice that the Jacobian of this system is a lower triangular

block, and it is also said to be hierarchical.

Theorem 2.3.1 (Vidyasagar). Consider the following C1 system

{
ẋ1 = h1(x1),

ẋ2 = h2(x1, x2),
(2.3)

If the origin of Rn is globally asymptotically stable for the system ẋ1 = h1(x1) in

Rn and the origin of Rm is globally asymptotically stable for ẋ2 = hx(0, x2) on Rn,

then the origin of Rn × Rm is asymptotically stable. Further if all trajectories are

bounded, then the origin is globally asymptotically stable for (2.3) on Rn × Rm.
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2.4 Lyapunov methods

The Lyapunov function has a major role in the study of dynamical systems stability.

Let L : Ω ⊂ Rn → R be a continuous function.

Definition 13

We consider the following definitions

1. The function L(x) is said to be positive definite if L(x) = 0 and L(x) > 0 in

a neighborhood Ω0 of x0 for all x 6= x0 in the neighborhood.

2. The function L(x) is said to be negative definite if −L(x) is positive definite.

3. The function L(x) is said to be semi-positive if L(x) = 0 and L(x) ≥ 0 in a

neighborhood Ω of x0.

Theorem 2.4.1 (Lyapunov Theorem). Let L(x) be a function

• If a function L(x) is positive definite and L̇(x) is negative semi-definite in Ω,

then the equilibrium point x0 is stable for the system (2.1)

• If the function L(x) is positive definite and ˙L(x) is negative definite in Ω, then

the equilibrium point x0 is asymptotically stable for the system (2.1)

In this theorem to show that an equilibrium point x0 is stable, it is sufficient to find a

Lyapunov function for the point x0. Moreover, to use the original Lyapunov theorem

to show the asymptotic stability of a given system, we must find a function L(x)

whose derivative is non-negative definite and the derivative L̇(x) is negative definite.

In a general case, this is not straightforward. The condition on the derivative L̇(x)

can be relaxed by using the LaSalle Invariance principle introduced in the next

section.

2.4.1 LaSalle invariance principle

Theorem 2.4.2 (LaSalle Invariance Principle [45, 46]). Let Ω ⊂ Rn be a compact

set that is positively invariant with respect to the system (2.1). Let L(x) : Ω → R
be continuously differentiable such that L̇(x) ≤ 0 in Ω. Let S be the set of all points
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in Ω where ˙L(x) = 0. Let L be the largest invariant set in S. Then every solution

starting in Ω approaches L as t→∞.

This theorem is one of the important tools for systems analysis, and is different

from Lyapunov, as it does not require L(x) to be non-negative definite and L̇(x) to

be negative definite. However, it only provides information on the attractiveness of

the considered system at the equilibrium x0. For example, it can be used to prove

that the solutions tend toward an equilibrium point when the set L is reduced to

that equilibrium point. It does not indicate whether this equilibrium is stable or

unstable. To establish asymptotic stability of an equilibrium x0 ∈ Ω, we use the

following corollary which is a consequence of the LaSalle invariance principle.

Corollary 2.4.1 (LaSalle,[46]). Let us consider the compact set Ω ∈ Rn with x0 ∈
Ω. Let L : U→ R be a continously differentiable non-negative definite function such

that ˙L(x) ≤ 0 in U. Let S = {x ∈ U|L̇(x) = 0}. Assume that the largest positively

invariant set contained in S is reduced to the point x0. Then x0 is an asymptotically

stable equilibrium point for the system (2.1). If these conditions are satisfied for

U = Ω, if in addition L is in Ω ie. limL = +∞ when d(x, ∂
∂x

Ω) + ‖x‖ → +∞ then

all trajectories are bounded for t ≥ 0 and x0 is a globally stable equilibrium point for

the system (2.1).

Corollary 2.4.2 Under the assumptions of the previous theorem, if the set L is

reduced to the point x0 ∈ Ω, then x0 is a globally stable equilibrium point for the

system (2.1) defined on Ω.

2.5 Matrices

Definition 14 (Stability Modulus, Spectral radius). Let P be a square matrix. We

denote by Spec(P ) the set of all eigenvalues of P . The stability modulus of P is the

number defined by

α(P ) = max{Re(λ) : λ ∈ Spec(P )}

The matrix P is said to be stable if α(P ) < 0. The spectral radius is the real number

ρ(P ) defined by

ρ(P ) = max
λ∈Spec(P )

| λ | .
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We say that a matrix P is stable if its eigenvalues have strictly negative real parts.

Such a matrix is also said to be Hurwitz.

2.5.1 Lozinskii measures

Let |.| denote a vector norm in Rn and the corresponding matrix norm it induces.

The Lozinskii Measure m on matrices with respect to |.| is defined by

m(Q) = lim
h→0+

|In + hA| − 1

h

for an n × n matrix A and identity matrix In. For properties and calculations of

Lozinskii we refer the reader to [48].

2.5.2 The second additive compound matrix

Let A be a linear operator on Rn and also denote its matrix representation with

respect to standard basis of Rn. Let ∧2Rn denote the exterior product of Rn. A
induces canonically a linear operator A[2] on ∧2Rn: for u1, u2 ∈ R, define

A[2](u1 ∧ u2) = A(u1) ∧ u2 + u1 ∧ A(u2)

and extend the definition over ∧2R by linearity. The matrix representation of A[2]

with respect to canonical basis in ∧2Rn is called the second additive compound

matrix ofA. This is a (n×n) matrix and satisfies the property (A+B)[2] = A[2]+B[2].

In the special case when n = 2, we have A[2]
2×2 = trA. In general, each entry of A[2]

is a linear expression of those of A. For example, when n = 3, the second additive

compound matrix of

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 is A[2] =


a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

 (2.4)

For detail discussion of compound matrices and their properties see [49].

2.6 Calculation of basic reproduction number

Definition 15 (Basic Reproduction Number R0). The basic reproduction number,

denoted by R0, is the expected number of secondary cases produced, in a completely

14



susceptible population, by a typical infected individual. If R0 < 1 then on average an

infected individual produces less than one new infected individual over the course of

its infectious period and the infection can not grow. If R0 > 1 , then each infected

individual produces, on average, more than one new infection, and the disease can

invade the population.

To calculate basic reproduction number we demonstrate here the method developed

by van den Driessche and Watmough [50]. Consider an epidemiological model with

heterogeneous population, whose individuals can be grouped into n homogeneous

compartments. Let x = (x1, . . . , xn)t with each xi ≥ 0, be the number (or concen-

tration ) of individuals, in each compartment. The compartments are classified in

such a way that the first m compartments corresponds to infected individuals, while

others say i = m + 1, . . . , n are free of infection (susceptible). We define XS to be

the set of all disease free states. That is

XS = {x ≥ 0|xi = 0, i = 1, . . . ,m}

Let Fi(x) be the rate of appearance of new infections in compartment i, V+
i (x)

be the rate of transfer of individuals into compartment i by all other means ( for

example, birth, immigration), and V−i (x) be the rate of transfer of individuals out of

compartment i (for example, deaths, recovery and emigration). Thus the dynamics

of the compartments is is governed by the following ordinary differential system:

ẋi = fi(x) = Fi(x)− Vi(x), i = 1, . . . , n,

where Vi(x) = V−i (x)− V+
i (x).

For biological feasible domain we have the following assumptions:

(a) Since each function represents a directed transfer of individuals, they are all

non-negative. Thus if x ≥ 0, then Fi(x),V+
i (x),V−i (x) ≥ 0 for i = 1, . . . , n.

(b) If a compartment is empty, then there can be no transfer of individuals, out

of the compartment by death, infection nor any other means. Thus if xi = 0

then V−i (x) = 0. In particular, if x ∈ XS, then V−i (x) = 0 for i = 1, . . . ,m.

(c) Fi(x) = 0, if i > m, that is, the incidence of infection for uninfected compart-

ment is zero.
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(d) We assume that if the population is free of disease then the the population

will remain free. That is, there is no (density independent) immigration of

infectives and the condition is stated as follows: If x ∈ XS then Fi(x) = 0 and

V+
i (x) = 0 for i = 1, . . . ,m.

(e) Consider a population near the DFE x0. If the population remains near the

DFE, that is if the introduction of a few infective individual does not result

in an epidemic then the population will return to the DFE according to the

linearized system

ẋ = Df(x0)(x− x0),

where Df(x0) is the Jacobian that is ∂fi
∂xj

. Thus if F = 0, then all eigenvalues

of Df(x0) have negative real parts.

The following results is the partition matrix Df(x0)

Lemma 2.1 If x0 is DFE and fi(x) satisfies (a) through (e), then the derivatives

DF(x0) and DV(x0) are partitioned in blocks as follows

DF(x0) =

[
F 0

0 0

]
and DV(x0) =

[
V 0

J3 J4

]
(2.5)

where F and V are the m×m matrices defined by

F =
[
∂Fi
∂xj

(x0)
]

and V =
[
∂Vi
∂xj

(x0)
]

with 1 ≤ i, j ≤ m. (2.6)

F is non-negative, V is non-singular M-matrix and all eigenvalues of J4 have positive

real part

For the complete prove of this theorem see [50].

Definition 16 (Basic Reproduction Number, R0). The basic reproduction number

R0 is the spectral radius of the next generation matrix FV −1, that is

R0 = ρ(FV −1).

The entries of FV −1 has a meaningful definition of R0. Consider the infected

individual introduced into compartment k of disease free population. The (j, k) entry
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of V −1 is the average length of time this individual spends in compartment j during

its life time, assuming that the population remain near DFE and barring reinfection.

The (i, j) entry of F is the rate at which infected individuals in compartment j

produce new infection in compartment i. Hence, the (i, k) entry of the product

FV −1 is the expected number of new infections in compartment i produced by the

infected individual originally introduced into compartment k. The matrix FV −1 is

called the next generation matrix for the model and set R0 = ρ(FV −1), where ρ(A)

is the spectral radius of matrix A.
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Chapter 3

Modeling and analyzing the effects

of seasonality on brucellosis

infection

3.1 Introduction

Brucellosis, a highly contagious disease of humans and animals, is caused by various

species of the genus brucella [5]. It is one of the most common bacterial zoonoses

worldwide and it poses a major threat to human and animal health, and animal

production [51].

Humans are usually infected through consumption of non-pasteurized dairy prod-

ucts and close-contact manipulation of infected animals. In humans, brucellosis is life

threatening and exhibits nonspecific symptoms, including intermittent fever, weight

loss, depression, hepatomegaly, and splenomegaly [32, 52]. Arthritis, spondylitis, os-

teomyelitis, epididymitis, and orchitis, as well as more severe complications such as

neurobrucellosis, liver abscesses, and endocarditis, are also common in some patients

[52]. In animals, the transmission occurs when susceptible animals are exposed to in-

fected animals or through ingestion of contaminated water, dust, improperly treated

dairy products and so on [32]. Meanwhile, brucellosis is primarily a reproductive

disease and is associated with abortion, retained placenta, and impaired fertility in

the principal animal hosts [52].
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Although tremendous progress has been made in controlling the disease, there

is still a number of countries/regions where the infection persists in domestic an-

imals and, consequently, transmission to the human population frequently occurs.

Recent reports on animal infections [32] demonstrate that the disease is endemic

in the Middle East, Asia, Africa, Latin America, the Mediterranean Basin, and the

Caribbean.

Recently, several mathematical models have been developed to analyze brucel-

losis outbreaks in an effort to better understand the intrinsic disease transmission

and determine the strength and weakness of current prevention and control strate-

gies [5, 30, 32, 33, 28, 34, 30, 35, 36, 37, 39, 38, 40, 41]. In particular, Hou and

co-workers [30] proposed the following system of ordinary differential equations to

model the transmission dynamics of brucellosis:

Ṡ(t) = A− β1[E(t) + I(t)]S(t)− β2B(t)S(t)− (µ+ τ)S(t) + kH(t),

Ḣ(t) = τS(t)− γβ1[E(t) + I(t)]H(t)− γβ2H(t)B(t)− (µ+ k)H(t),

Ė(t) = β1[S(t) + γH(t)][E(t) + I(t)] + β2[S(t) + γH(t)]B(t)− (σ + µ)E(t),

İ(t) = σE(t)− (µ+ c)I(t),

Ḃ(t) = β3(E + I)− (d+ δ)B,

(3.1)

where S(t), H(t), E(t), and I(t) are the numbers of the susceptible, vaccinated,

exposed (latent), and infectious animals at time t, respectively. The total animal

population at time t is N(t) = S(t) + H(t) + E(t) + I(t). Further, B(t) is the

concentration of brucella in the environment, the parameter A is the recruitment

rate, µ is the natural mortality rate, c is the disease-related death rate, τ is the

vaccination rate, k is the immunity waning rate, β1 is the direct disease transmission

rate, β2 is the indirect disease transmission rate, γ is the modification factor, σ

is the incubation rate, β3 is the pathogen shedding rate, δ is the environmental

decontamination rate, and d represents pathogen decay rate. As highlighted in

prior studies [30, 39], exposed animals have no clinical manifestations and, without

loss of generality, they can be assumed to have the same infectivity as that of the

infectious animals.

This work and several other studies (see, for example, [5, 32]) have certainly

produced many useful results and improved the existing knowledge on brucellosis

dynamics. One of the limitations of these models, however, is that they assumed that
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the model parameters are constant in time, implying that the disease contact rates

and pathogen population growth rate, etc., all take fixed values independent of time.

In fact, like many other infectious diseases, brucellosis is significantly influenced

by seasonal variations, and prior studies have demonstrated a strong connection

between brucellosis infection and seasonal variations [26, 27, 28]. Factors such as

the seasonal availability of forage which in turn lead to nomadic animal farming, may

be attributed to seasonality of brucellosis dynamics. Further, the survival of brucella

in the environment depends critically on humidity, temperature and exposure to UV

light. For example, its survival in ideal environments is reported to last up to 135

days, while a field study in the spring in Montana, USA found that brucella abortus

survived in the environment for only 21–81 days [27, 28]. In addition, an analysis

of brucellosis datasets in countries with temperate or cold climates [26] underscores

that there is a marked seasonal variation in the incidence of acute brucellosis, with

most cases occurring in the spring and summer. Seasonal variations also lead to

periodic changes in pastures that induce animal movement and seasonal migration,

resulting in disease dynamics not captured by mathematical models with constant

model parameters.

From an applied perspective, understanding the mechanisms that link seasonal

variations to diseases dynamics may aid in forecasting the long-term human and

animal health risks, in developing an effective public health program, and in setting

objectives for utilizing limited resources more effectively [53]. So far no published

work has discussed the influence of seasonal variation on the transmission dynamics

of brucellosis. The purpose of the present chapter is to present a general brucellosis

model in a periodic environment, by extending the autonomous model proposed in

[30] to include seasonal variation in both the pathogen dynamics and the disease

transmission pathways. We will then conduct a careful analysis on this periodic

model, with a focus on its threshold dynamics characterized by the associated basic

reproduction number. In addition, we will explore optimal disease control measures

based on animal vaccination and environmental decontamination to contain bru-

cellosis outbreaks, through an optimal control study. Our results are new and, to

our knowledge, very little work has appeared so far on the optimal control study of

periodic epidemiological models.
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The remainder of this chapter is organized as follows. In Section 3.2, we present

details of our periodic brucellosis model, followed by an analysis on disease extinction

and persistence that are determined by the basic reproduction number. In Section

3.3, we perform an optimal control study on the use of animal vaccination and

environmental decontamination, through both mathematical analysis and numerical

simulation. Finally, we conclude the chapter with some discussion in Section 3.5.

3.2 Model with seasonal variation

3.2.1 Model framework

Motivated by the model (3.1), we propose the following non-autonomous dynami-

cal system to describe the transmission dynamics of brucellosis in a time-periodic

environment:

Ṡ(t) = A− β1(t)[E(t) + I(t)]S(t)− β2(t)B(t)S(t)− (µ+ τ)S(t) + kH(t),

Ḣ(t) = τS(t)− γβ1(t)H(t)[E(t) + I(t)]− γβ2(t)H(t)B(t)− (µ+ k)H(t),

Ė(t) = β1(t)[S(t) + γH(t)][E(t) + I(t)] + β2(t)[S(t) + γH(t)]B(t)

−(σ + µ)E(t),

İ(t) = σE(t)− (µ+ c)I(t),

Ḃ(t) = β3(t)(E + I)− d(t)B(t)− δB(t).

(3.2)

All the variables and model parameters are assumed to be positive and they

retain the same definitions as in model (3.1). Model parameters and their baseline

values in Table 3.1. The model flow diagram is depicted in Figure 3.1.
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Figure 3.1: Flowchart illustrating the dynamics of brucellosis.

Further, we assume that βj(t), (j = 1, 2, 3) are periodic continuous functions in t

with a period ω > 0 (specifically, ω = 12 months). Thus,

βj(t) = aj

[
1 + bj sin

(
πt

6

)]
, (3.3)

where aj (j = 1, 2, 3) is the baseline value or the times average of βj(t), and bj

(0 < bj < 1) denotes the magnitude of seasonal fluctuations. In addition, we define

d(t) = d0

[
1 + d1 sin

(
πt

6

)]
, (3.4)
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Table 3.1: Parameters and values

Symbol Definition Value Units Source

c Elimination rate caused by brucellosis 0.15 year−1 [30]

δ Environmental decontamination rate 25 year−1 [30]

a1 Averaged direct transmission rate 1.48× 10−8 animal−1year−1 [30]

a2 Averaged indirect transmission rate 1.7× 10−10 pathogen−1year−1 [30]

a3 Averaged brucella shedding rate 15 pathogen animal−1year−1 [30]

d0 Averaged pathogen decay rate 3.6 year−1 [30]

b1 Amplitude of oscillation in β1(t) 0.8 - Assumed

b2 Amplitude of oscillation in β2(t) 0.8 - Assumed

b3 Amplitude of oscillation in β3(t) 0.8 - Assumed

d1 Amplitude of oscillation in d(t) 0.8 - Assumed

µ Natural elimination rate 0.22 year−1 [30]

k Vaccination waning rate 0.4 year−1 [30]

γ Modification factor 0.18 - [30]

A Recruitment rate 11629200 animals year−1 [30]

τ Vaccination rate 0.316 year−1 [30]

σ Incubation rate 1 year−1 [30]

U1 Upper bound of u1(t) 20 - Assumed

U2 Upper bound of u2(t) 3 - Assumed

S(0) Initial number of susceptible 4.341× 107 animals [30]

H(0) Initial vaccinated animals 8.44× 106 animals [30]

E(0) Initial exposed animals 0 animals [30]

I(0) Initial infected animals 1.33× 106 animals [30]

B(0) Initial number of brucella 6× 106 pathogens [30]

W1 Cost parameter of vaccination Varied animals dollars year−1 -

W2 Cost parameter of decontamination Varied animals dollars year−1 -

where d0 denotes the basic pathogen decay rate without seasonal forcing and d1

(0 < d1 < 1) denotes the magnitude of seasonal fluctuations.

3.2.2 Feasible region

For the model (3.2), it is obvious that all solutions with non-negative initial condi-

tions remain non-negative. Let N(t) = S(t) + H(t) + E(t) + I(t). Adding the first
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four equations of (3.2) we have

Ṅ(t) = A− µS − µH − µE − µI − cI = A− µN − cI ≤ A− µN

It implies that lim sup
t→∞

N(t) ≤ A

µ
. Since Ṅ(t) is bounded by A − µN , a standard

comparison principle theorem [54] can be use to show that N(t) ≤ N(0)e−µt+ A
µ

(1−
e−µt). In particular, N(0) ≤ A

µ
⇒ N(t) ≤ A

µ
. Also we can show that every solution

of the system (3.2) with initial conditions in Γ remains there for t > 0. The ω-limit

sets of the system (3.2) are contained in Γ. As a consequence, the last equation of

system (3.2) gives

Ḃ(t) = β3(t)(E + I)− (δ + d(t))

≤ β3(t)

[
A

µ
+
A

µ

]
− (δ + d(t))

≤ 2a3(1 + b3)
A

µ
− (d0 + d0d1 + δ)B.

Thus, lim sup
t→∞

B(t) ≤ 2a3(1 + b3)A

µ(d0 + d0d1 + δ)
. Hence the feasible domain,

Γ =

{
(S,H,E, I, B) ∈ R5

+ : S +H + E + I ≤ A

µ
, B ≤ 2a3(1 + b3)A

µ(d0 + d0d1 + δ)

}
(3.5)

is invariant for system (3.2). Thus we will study the dynamics of our model in the

closed set Γ. In addition, we note that there is a constant influx (at rate A) into the

susceptible class. Hence, without loss of generality, we assume that the susceptible

population is positive at the initial time; that is,

S(0) > 0 . (3.6)

3.2.3 Disease-free equilibrium

A constant solution to a system of equations is referred to as an equilibrium solution.

A disease-free equilibrium refers to the equilibrium that exists in the absence of the

disease (i.e S = S0 > 0, H = H0 > 0, E = I = B = 0). The disease-free equilibrium
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is determined by equations:

A− β1(t)[E(t) + I(t)]S(t)− β2(t)B(t)S(t)− (µ+ τ)S(t) + kH(t) = 0,

τS(t)− γβ1(t)H(t)[E(t) + I(t)]− γβ2(t)H(t)B(t)− (µ+ k)H(t) = 0,

β1(t)[S(t) + γH(t)][E(t) + I(t)] + β2(t)[S(t) + γH(t)]B(t)− (σ + µ)E(t) = 0,

σE(t)− (µ+ c)I(t) = 0,

β3(t)(E + I)− d(t)B(t)− δB(t) = 0.

(3.7)

Substituting S = S0, H = H0 and E = I = B = 0 into equation (3.7) yields{
A− (µ+ τ)S0(t) + kH0(t) = 0,

τS0(t)− (µ+ k)H0(t) = 0.
(3.8)

solving equation (3.8) for S0 and H0 implies that system (3.2) has an evident disease-

free equilibrium given by P0 = (S0, H0, 0, 0, 0), with

S0 =
A(µ+ k)

µ(µ+ τ + k)
, H0 =

Aτ

µ(µ+ τ + k)
, and S0 + γH0 =

A(µ+ k + γτ)

µ(µ+ τ + k)
.

3.2.4 The reproduction number

Utilizing the next-generation method [50], and adopting the matrix notations therein,

the matrices for new infection terms (denoted by F (t)) and the transfer terms (de-

noted by V (t)) at the disease–free equilibrium are given by

F (t) =



β1(t)A(µ+ k + γτ)

µ(µ+ k + τ)

β1(t)A(µ+ k + γτ)

µ(µ+ k + τ)

β2(t)A(µ+ k + γτ)

µ(µ+ k + τ)

0 0 0

β3(t) β3(t) 0

 (3.9)

and

V (t) =



(σ + µ) 0 0

−σ (µ+ c) 0

0 0 d(t) + δ


(3.10)

25



It follows that the basic reproduction number of the time-averaged autonomous

system is

[R0] =
1

2

[
a1(c+ µ+ σ)(S0 + γH0)

(c+ µ)(µ+ σ)

]
+

1

2

[√
(c+ µ+ σ)(S0 + γH0)

(c+ µ)(µ+ σ)

(
a2

1(c+ µ+ σ)

(c+ µ)(µ+ σ)
+

4a2a3

(d0 + δ)

)]
.(3.11)

In order to establish the basic reproduction number in periodic environments,

Wang and Zhao [55] extended the classical framework (for autonomous systems) of

van den Driessche and Watmough [50] by introducing the next infection operator

(Lφ)(t) =

∫ ∞
0

Y (t, t− s)F (t− s)φ(t− s)ds , (3.12)

where Y (t, s), t ≥ s, is the evolution operator of the linear ω-periodic system
dy
dt

= −V (t)y and φ(t), the initial distribution of infectious animals, is ω-periodic

and always positive. The effective reproduction number for a periodic model is then

determined by calculating the spectral radius of the next infection operator,

R0 = ρ(L). (3.13)

Through direct calculation, the evolution operator Y (t, s) for system (3.2) is

found as

Y (t, s) =



e−(σ+µ)(t−s) 0 0

σ
(c−σ)

[e−(σ+µ)(t−s) − e−(µ+c)(t−s)] e−(µ+c)(t−s) 0

0 0 Ỹ (t, s)


, (3.14)

with

Ỹ (t, s) = exp

{
−(d0 + δ)(t− s)− 6d0d1

π

(
cos
[πs

6

]
− cos

[
πt

6

])}
.

In addition, the next infection operator can be numerically evaluated (see, e.g.,

[56]) by

(Lφ)(t) =

∫ ∞
0

Y (t, t− s)F (t− s)φ(t− s)ds =

∫ ω

0

G(t, s)φ(t− s)ds (3.15)
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where

G(t, s) ≈
M∑
k=0

Y (t, t− s− kω)F (t− s)

≈
M∑
k=0


m11 m12 m13

m21 m22 m23

m31 m32 0


for some positive integer M large enough, and

m11 = m12 =
A(µ+ k + γτ)

µ(µ+ k + τ)
β1(t− s)e−(µ+ σ)(s+ kω),

m13 =
A(µ+ k + γτ)

µ(µ+ k + τ)
β2(t− s)e−(µ+ σ)(s+ kω),

m21 = m22 =
σβ1(t− s)

(c− σ)

(
A(µ+ k + γτ)

µ(µ+ k + τ)

)(
e−(µ+ σ)(s+ kω) − e−(µ+ c)(s+ kω)

)
,

m23 =
σβ2(t− s)

(c− σ)

(
A(µ+ k + γτ)

µ(µ+ k + τ)

)(
e−(µ+ σ)(s+ kω) − e−(µ+ c)(s+ kω)

)
,

m31 = m32 = β3(t− s) exp

{
−(d0 + δ)(t− s)− 6d0d1

π

(
cos
[πs

6

]
− cos

[
πt

6

])}
.

Using parameter values in Table 3.1 and numerical computations, we obtained

the curves of the time averaged reproduction number [R0] (3.11) and basic repro-

duction number R0 (3.13), with respect to aj (j = 1, 2), in Fig 3.2. We note that

the average basic reproduction number [R0] is always greater than the basic repro-

duction number R0 in all cases. The results demonstrate that the risk of infection

will be overestimated whenever the average basic reproduction number is used. The

results established here are in agreement with findings from [53].
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Figure 3.2: Numerical results of the average basic reproduction number [R0] and the

basic reproduction number R0 versus aj , (j = 1, 2): (a) [R0] and R0 versus a1; (b) [R0]

and R0 versus a2.

3.2.5 Disease extinction

We aim to establish the condition R0 = 1, where the basic reproduction number R0

is defined in (3.13), as a sharp threshold for the disease dynamics of our periodic

brucellosis model. The following theorem analyzes the global stability of the disease–

free equilibrium of system (3.2) and provides a criterion for the extinction of the

disease.

Theorem 3.2.1 If R0 < 1, then the disease-free equilibrium of system (3.2) is

globally asymptotically stable in Γ .

To prove this result, let us consider the matrix function F (t)− V (t) given by



Aβ1(t)(µ+ k + γτ)

µ(µ+ k + τ)
− (σ + µ)

Aβ1(t)(µ+ k + γτ)

µ(µ+ k + τ)

Aβ2(t)(µ+ k + γτ)

µ(µ+ k + τ)

σ −(µ+ c) 0

β3(t) β3(t) −d(t)− δ


.(3.16)

We can easily verify that (3.16) is continuous, cooperative, irreducible and ω-

periodic. Further, let Φ(F−V )(·)(t) be the fundamental solution matrix of the linear
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ordinary differential system:

ẋ = [F (t)− V (t)]x, (3.17)

and ρ(Φ(F−V )(·)(ω)) be the spectral radius of Φ(F−V )(·)(ω). From Theorem 2.2 in

[55], we have R0 > (=, <) 1 if and only if ρ(Φ(F−V )(ω)) > (=, <) 1. Meanwhile,

based on Lemma 2.1 in [57], we immediately have the following result which will be

used to establish Theorem 3.2.1.

Lemma 3.1 Let ν = (1/ω) ln ρ
(
Φ(F−V )(·)(ω)

)
. Then there exists a positive ω-

periodic function v(t) such that eνtv(t) is a solution to (3.17).

Now we present the proof of Theorem 3.2.1.

Proof 1 From the first two equations of the system (3.2), we can easily obtain

S(t) ≤ A(µ+ k)

µ(µ+ τ + k)
, S0, and V (t) ≤ Aτ

µ(µ+ τ + k)
, V0.

Then from the last three equations of the system (3.2), we have

d

dt


E

I

B

 ≤ (F − V )


E

I

B

 . (3.18)

Based on Lemma 3.1, there exists v(t) such that

x(t) = (Ẽ(t), Ĩ(t), B̃(t)) = eνtv(t)

is a solution to equation (3.17), with ν = (1/ω) ln ρ(Φ(F−V )(·)(ω). Since R0 < 1, we

have ρ(Φ(F−V )(·)(ω)) < 1, and thus ν < 0. Hence,

(E(t), I(t), B(t)) ≤ (Ẽ(t), Ĩ(t), B̃(t))

when t is large, which would imply that

lim
t→∞

E(t) = 0, lim
t→∞

I(t) = 0, and lim
t→∞

B(t) = 0. (3.19)

Meanwhile, from the first two equations of the system (3.2), we have

d

dt
(S +H)→ A− µ(S +H), as t→∞,
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which implies that

S(t) +H(t)→ A

µ
, t→∞.

Therefore,

dH

dt
→ τ

(
A

µ
−H(t)

)
− (µ+ k)H(t) = τ

A

µ
− (µ+ τ + k)H(t),

or

H(t)→ Aτ

µ(µ+ τ + k)
= H0,

and clearly it leads to

S(t)→ A

µ
−H0 =

A(µ+ k)

µ(µ+ τ + k)
= S0.

Therefore,

lim
t→∞

x(t) = (S0, H0, 0, 0, 0)

for every solution x(t) of system (3.2).

3.2.6 Disease persistence

Now we proceed to investigate the dynamics of the system (3.2) when R0 > 1. We

will show that when R0 > 1, the brucellosis infection persists and there exists a

positive periodic solution. Following the framework in [58, 59], we define

X = R5
+; X0 = R2

+ × Int(R+)3; ∂X0 = X\X0.

Let P : X −→ X be the Poincaré map associated with our model (3.2) such that

P (x0) = u(ω, x0) ∀x0 ∈ X , where u(t, x0) denotes the unique solution of the system

with u(0, x0) = x0.

Definition 17 The solutions of system (3.2) are said to be uniformly persistent if

there exists some η > 0 such that

lim inf
t→∞

S(t) ≥ η, lim inf
t→∞

H(t) ≥ η, lim inf
t→∞

E(t) ≥ η,

lim inf
t→∞

I(t) ≥ η, lim inf
t→∞

B(t) ≥ η,

whenever S(0) > 0, H(0) > 0, E(0) > 0, I(0) > 0, B(0) > 0.
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Theorem 3.2.2 If R0 > 1, then the solutions of the system (3.2) are uniformly

persistent, and the system admits at least one positive ω-periodic solution.

Proof 2 Let us define

M∂ = {(S(0), H(0), E(0), I(0), B(0)) ∈ ∂X0}

such that

Pm(S(0), H(0), E(0), I(0), B(0)) ∈ ∂X0, ∀m ≥ 0

and

M̃∂ = {(S,H, 0, 0, 0) : S ≥ 0, H ≥ 0}.

We first show that

M∂ = M̃∂. (3.20)

It is evident that M∂ ⊇ M̃∂. Consider any initial values

(S(0), H(0), E(0), I(0), B(0)) ∈ ∂X0\M̃∂. If E(0) = I(0) = 0 and B(0) > 0, then

based on the assumption (3.6) we have E ′(0) > 0. Similarly, if E(0) = B(0) = 0

and I(0) > 0, then E ′(0) > 0, and B′(0) > 0. If I(0) = B(0) = 0 and E(0) > 0,

then I ′(0) > 0, and B′(0) > 0. It follows that (S(t), H(t), E(t), I(t), B(t)) /∈ ∂X0

for 0 < t � 1. The positive invariance of X0 implies that M∂ = M̃∂ , and hence,

equation (3.20) holds.

Now, let us consider the fixed point M0 =

(
A(µ+ k)

µ(µ+ τ + k)
,

Aτ

µ(µ+ τ + k)
, 0, 0, 0

)
and define W S(M0) = {x0 : Pm(x0) → M0,m → ∞} . From the system (3.2) it

is easy to deduce that when E = I = B = 0, we have S(t) → S0 =
A(µ+ k)

µ(µ+ τ + k)
,

H(t)→ H0 =
Aτ

µ(µ+ τ + k)
as t→∞ . We prove that

W S(M0) ∩X0 = ∅. (3.21)

Let ‖·‖ denote a norm on R5
+ . Based on the continuity of solutions with respect to

the initial conditions, for any ε > 0, there exists δ > 0 small enough such that for all
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(S(0), H(0), E(0), I(0), B(0)) ∈ X0 with ‖(S(0), H(0), E(0), I(0), B(0)) −M0‖ ≤ δ,

we have

‖u(t, (S(0), H(0), E(0), I(0), B(0)))− u(t,M0)‖ < ε, ∀t ∈ [0, ω]. (3.22)

We claim that

lim sup
m→∞

‖Pm(S(0), H(0), E(0), I(0), B(0))−M0‖ ≥ δ,
∀(S(0), H(0), E(0), I(0), B(0)) ∈ X0. (3.23)

We prove this claim by contradiction. Suppose

lim sup
m→∞

‖Pm(S(0), H(0), E(0), I(0), B(0))−M0‖ < δ (3.24)

for some (S(0), H(0), E(0), I(0), B(0)) ∈ X0. Without loss of generality, we as-

sume that

‖Pm(S(0), H(0), E(0), I(0), B(0))−M0‖ < δ, ∀m ≥ 0.

Thus,

‖u(t, Pm(S(0), H(0), E(0), I(0), B(0)))− u(t,M0)‖ < ε,

∀t ∈ [0, ω], m ≥ 0. (3.25)

Furthermore, for any t ≥ 0, we can write t = t′+ nω with t′ ∈ [0, ω] and n being

the greatest integer less than or equal to t/ω. Then we get

‖u(t, (S(0), H(0), E(0), I(0), B(0)))− u(t,M0)‖ =

‖u(t′, Pm(S(0), H(0), E(0), I(0), B(0)))− u(t′,M0)‖ < ε,

for any t ≥ 0. Let (S(t), H(t), E(t), I(t), B(t)) = u(t, (S(0), H(0), E(0), I(0), B(0))).

It follows that

A(µ+ k)

(µ+ τ + k)
− ε < S(t) <

A(µ+ k)

(µ+ τ + k)
+ ε,

Aτ

(µ+ τ + k)
− ε < H(t) <

Aτ

(µ+ τ + k)
+ ε,

0 < E(t) < ε,

0 < I(t) < ε,
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0 < B(t) < ε.

Then we have

dE(t)

dt
= β1(t)[S(t) + γH(t)][E(t) + I(t)] + β2(t)[S(t) + γH(t)]B(t)

−(σ + µ)E(t)

≥ [β1(t)(E(t) + I(t))]

[
A(µ+ k)

µ(µ+ τ + k)
− ε+ γ

(
Aτ

µ(µ+ τ + k)
− ε
)]

+[β2(t)B(t)]

[
A(µ+ k)

µ(µ+ τ + k)
− ε+ γ

(
Aτ

µ(µ+ τ + k)
− ε
)]

−(σ + µ)E(t)

= −(σ + µ)E(t) + [β1(t)(E(t) + I(t)) + β2(t)B(t)]

[
A(µ+ k + γτ)

µ(µ+ τ + k)

]

−[β1(t)(E(t) + I(t)) + β2(t)B(t)]ε(1 + γ).

Hence we obtain

d

dt


E

I

B

 ≥ [F − V − εK]


E

I

B

 , (3.26)

where F − V is given by (3.16) and

ε ·K = ε ·



(1 + γ)β1(t) (1 + γ)β1(t) (1 + γ)β2(t)

0 0 0

β3(t) β3(t) 0


(3.27)

Note that R0 > 1 if and only if ρ(ΦF−V (ω)) > 1. Thus, for ε > 0 small enough

we have ρ(ΦF−V−ε·K(ω)) > 1. Using Lemma 3.1 and the comparison principle, we

immediately obtain

lim
t→∞

E(t) =∞ , lim
t→∞

I(t) =∞ and lim
t→∞

B(t) =∞, (3.28)
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which is a contradiction.

Hence, M0 is acyclic in M∂, and P is uniformly persistent with respect to (X0, ∂X0),

which implies the uniform persistence of the solutions to the original system [58].

Consequently, the Poincaré map P has a fixed point (S̃(0), H̃(0), Ẽ(0), Ĩ(0), B̃(0) ∈
X0 with S̃(0), H̃(0) 6= 0. Thus, (S̃(0), H̃(0), Ẽ(0), Ĩ(0), B̃(0)) ∈ Int(R+)5 and

(S̃(t), H̃(t), Ẽ(t), Ĩ(t), B̃(t)) = u(t, (S̃(0), H̃(0), Ẽ(0), Ĩ(0), B̃(0)))

is a positive ω-periodic solution of the system.

3.3 Optimal control

Having analyzed the threshold dynamics, we now turn to an optimal control study of

our brucellosis model, with an aim of exploring effective prevention and intervention

strategies that could best balance the outcomes and costs of the control. To that

end, we will perform the optimal control study to both the autonomous model

(3.1) and the periodic model (3.2). We will then compare the results and highlight

the impact of seasonality on brucellosis control. Optimal control theory is used to

identify ways of producing maximum performance at a minimal cost under some

assumptions. Here we introduce two types of controls, which are represented as

functions of time and assigned reasonable upper and lower bounds. The goal of

the first control u1(t) is to strengthen the impact of vaccination, and the second

control u2(t) attempts to strengthen the effort on environmental decontamination.

Using the same variable and parameter names as in (3.1) and (3.2), the system of

differential equations describing our model with controls is

Ṡ(t) = A− β1[E(t) + I(t)]S(t)− β2B(t)S(t)− (µ+ u1(t)τ)S(t) + kH(t),

Ḣ(t) = u1(t)τS(t)− γβ1[E(t) + I(t)]H(t)− γβ2H(t)B(t)− (µ+ k)H(t),

Ė(t) = β1[S(t) + γH(t)][E(t) + I(t)] + β2[S(t) + γH(t)]B(t)− (σ + µ)E(t),

İ(t) = σE(t)− (µ+ c)I(t),

Ḃ(t) = β3(E + I)− (d+ u2(t)δ)B,

(3.29)

The control set is defined as

Ω = {(u1(t), u2(t))
∣∣ 1 ≤ u1(t) ≤ U1, 1 ≤ u2(t) ≤ U2}, (3.30)
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where U1 and U2 denote the upper bounds for the efforts of vaccination and de-

contamination, respectively. The bounds reflect practical limitation on the maxi-

mum rate of control that can be implemented in a given time period. If, however,

u1(t) = u2(t) = 1 for all t, then the model (3.29) is reduced to the original model

(3.1) or (3.2), with regular (i.e., minimum) controls.

Below we introduce an objective functional J to formulate the optimization

problem of interest, namely, that of identifying the most effective strategies over

the admissible set Ω of controls (u1(t), u2(t)). The overall objective is to minimize

the numbers of exposed and infectious animals over a finite time interval [0, T ] at

minimal costs. The objective functional J is thus defined as

J(u1(t), u2(t)) =

∫ T

0

[
C1E(t) + C2I(t) +

W1

2
u2

1(t) +
W2

2
u2

2(t)

]
dt . (3.31)

The control efforts are assumed to be nonlinear, in order to prevent the bang-

bang solutions in the control. Moreover, a quadratic structure in the control has

mathematical advantages. We choose (as it is customary) to model the control

effects using a linear combination of quadratic terms, u2
1(t), and u2

2(t), where the

coefficients C1, C2, W1, W2 are weight constants. The weights, constant over the

prescribed time frame, are a measure of the relative costs of the interventions over

a finite time horizon. The optimal control problem hence becomes that we seek

optimal functions, (u∗1(t), u∗2(t)), such that

J(u∗1(t), u∗2(t)) = min
Ω
J(u1(t), u2(t)) (3.32)

subject to the state equations in system (3.29) with initial conditions.

3.3.1 Existence of the optimal control set

Theorem 3.3.1 Consider the control problem with system equations (3.29). There

exists an optimal control set (u∗1(t), u∗2(t) ∈ Ω) such that:

J(u∗1(t), u∗2(t)) = min
Ω
J(u1(t), u2(t))

To prove this theorem, the following conditions must be satisfied:

Proof 3 1. The class of all initial conditions must with an optimal control set

u1(t) and u2(t) in the admissible control set a long with each state equation

being satisfied is not empty.
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2. The admissible control Ω set is closed and convex.

3. The right-hand side of the state system is continuous, is bonded by a linear

function in the state and control variables.

4. The integrand of the objective functional is convex on Ω.

5. The integrand of the objective functional is bounded below by A1(|u1|2+|u2|2)
β
2−

A2, where A1, A2 are positive constants and β > 1.

In order to verify these conditions, we use a result by Lukes[60] to give the

existence of solutions of ODE’s (3.29) with bounded coefficients which gives condition

1. We note that our solutions are bounded. The control set is convex and closed

by definition, thus it satisfies condition 2. Since our state system is bilinear in

u1, u2, the right-hand side of (3.29) satisfies condition 3, using the boundedness of

the solutions. The integrand in the objective functional (3.31) C1E(t) + C2I(t) +
W1

2
u2

1(t)+ W2

2
u2

2(t) is clearly convex on Ω. Moreover, there are A1, A2 > 0 and β > 1

satisfying

C1E(t) + C2I(t) +
W1

2
u2

1(t) +
W2

2
u2

2(t) ≥ A1(|u1|2 + |u2|2)
β
2 − A2 (3.33)

because the state variable are bounded. We conclude that there exists an optimal

control pair.

3.3.2 Characterization of the optimal control problem

The existence of optimal control follows from standard results in optimal control

theory [61, 62]. The necessary conditions that optimal controls must satisfy are de-

rived using Pontryagin’s Maximum Principle [63]. Thus, system (3.29) is converted

into an equivalent problem, namely the problem of minimizing the HamiltonianH(t)
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given by:

H(t) = C1E(t) + C2I(t) +
W1

2
u2

1(t) +
W2

2
u2

2(t)

+λS

[
A− β1[E(t) + I(t)]S(t)− β2B(t)S(t)− (µ+ u1(t)τ)S(t) + κH(t)

]
+λH

[
u1(t)τS(t)− γβ1[E(t) + I(t)]H(t)− γβ2H(t)B(t)− (µ+ κ)H(t)

]
+λE

[
β1[S(t) + γH(t)][E(t) + I(t)] + β2[S(t) + γH(t)]B(t)− (σ + µ)E(t)

]
+λI

[
σE(t)− (µ+ c)I(t)

]
+λB

[
β3(E(t) + I(t))− (d+ u2(t)δ)B(t)

]
,

Theorem 3.3.2 Given an optimal control pair (u∗1, u
∗
2) and solutions (S,H,E, I, B),

of the corresponding states system (3.29) there exist adjoint functions λS(t), λH(t),

λE(t), λI(t) and λB(t) [61] satisfying

dλS(t)

dt
= λS(t)

(
β1(E(t) + I(t)) + β2B(t) + µ+ u1(t)τ

)
− λH(t)u1(t)τ

−λE(t)
(
β1(E(t) + I(t)) + β2B(t)

)
, (3.34)

dλH(t)

dt
= −λS(t)κ+ λH(t)

(
γβ1(E(t) + I(t)) + γβ2B(t) + µ+ κ

)
−λE(t)

(
β1γ(E(t) + I(t)) + β2γB(t)

)
, (3.35)

dλE(t)

dt
= −C1 + λS(t)β1S(t) + λH(t)γβ1H(t)

−λE(t)
(
β1(S(t) + γH(t))− (σ + µ)

)
− λI(t)σ − λB(t)β3, (3.36)

dλI(t)

dt
= −C2 + λS(t)β1S(t) + λH(t)γβ1H(t)− λE(t)

(
β1(S(t) + γH(t))

)
+λI(t)(µ+ c)− λB(t)β3, (3.37)

dλB(t)

dt
= λS(t)β2S(t) + λH(t)γβ2H(t)− λE(t)(β2(S(t) + γH(t)))

+λB(t)(d+ u2(t)δ), (3.38)

with transversality conditions λP (T ) = 0 for P = S,H,E, I, B. Furthermore, the

optimal controls are characterized by the optimality conditions:

u∗1(t) = max[1, min(ū1(t), U1)], u∗2(t) = max[1, min(ū2(t), U2)], (3.39)
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where

ū1(t) =
(λS(t)− λH(t))τS(t)

W1

, ū2(t) =
λB(t)δB(t)

W2

. (3.40)

Proof 4 The form of the adjoint equations and transversality conditions are stan-

dard results from Pontryagin’s maximum principle [63]. The adjoint principle can

be obtained as follows:

dλS(t)

dt
= −∂H

∂S
= λS(t)

(
β1(E(t) + I(t)) + β2B(t) + µ+ u1(t)τ

)
− λH(t)u1(t)τ

−λE(t)
(
β1(E(t) + I(t)) + β2B(t)

)
, (3.41)

dλH(t)

dt
= −∂H

∂H
= −λS(t)κ+ λH(t)

(
γβ1(E(t) + I(t)) + γβ2B(t) + µ+ κ

)
−λE(t)

(
β1γ(E(t) + I(t)) + β2γB(t)

)
, (3.42)

dλE(t)

dt
= −∂H

∂E
= −C1 + λS(t)β1S(t) + λH(t)γβ1H(t)

−λE(t)
(
β1(S(t) + γH(t))− (σ + µ)

)
− λI(t)σ − λB(t)β3, (3.43)

dλI(t)

dt
= −∂H

∂I
= −C2 + λS(t)β1S(t) + λH(t)γβ1H(t)− λE(t)

(
β1(S(t) + γH(t))

)
+λI(t)(µ+ c)− λB(t)β3, (3.44)

dλB(t)

dt
= −∂H

∂B
= λS(t)β2S(t) + λH(t)γβ2H(t)− λE(t)(β2(S(t) + γH(t)))

+λB(t)(d+ u2(t)δ). (3.45)

The optimality equations were given by:

∂H
∂u1

= W1u
∗
1(t)− λSτS(t) + λHτH(t) = 0 at u∗1

∂H
∂u2

= W2u
∗
2(t)− λBδB(t) = 0 at u∗2. (3.46)

Hence,

u∗1 =
(λS − λH)τS

W1

, u∗1 =
λBδB(t)

W2

. (3.47)

By using the bounds for the control u1, we get

u∗1 =


(λS(t)−λH(t))τS(t)

W1
if 1 ≤ (λS(t)−λV (t))τS(t)

W1
≤ U1,

1 if (λS(t)−λH(t))τS(t)
W1

≤ 1,

U1 if (λS(t)−λH(t))τS(t)
W1

≥ U1.

(3.48)
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In compact notation,

u∗1(t) = max[1, min(ū1(t), U1)] (3.49)

where

ū1(t) =
(λS(t)− λH(t))τS(t)

W1

. (3.50)

By using the bounds for the control u2, we get,

u∗1 =


λB(t)δB(t)

W2
if 1 ≤ λB(t)δB(t)

W2
≤ U2

1 if λB(t)δB(t)
W2

≤ 1

U2 if λB(t)δB(t)
W2

≥ U2

(3.51)

In compact notation,

u∗2(t) = max[1, min(ū2(t), U2)], (3.52)

where

ū2(t) =
λB(t)δB(t)

W2

. (3.53)

Using (3.49) and (3.52), we have the following optimality system:

Ṡ(t) = A− β1[E(t) + I(t)]S(t)− β2B(t)S(t)

−(µ+ max[1, min(ū1(t), U1)]τ)S(t) + kH(t),

Ḣ(t) = max[1, min(ū1(t), U1)]τS(t)− γβ1[E(t) + I(t)]H(t)− γβ2H(t)B(t)

−(µ+ k)H(t),

Ė(t) = β1[S(t) + γH(t)][E(t) + I(t)] + β2[S(t) + γH(t)]B(t)− (σ + µ)E(t),

İ(t) = σE(t)− (µ+ c)I(t),

Ḃ(t) = β3(E + I)− (d+ max[1, min(ū2(t), U2)]δ)B,

˙λS(t)(t) = λS(t)
(
β1(E(t) + I(t)) + β2B(t) + µ+ max[1, min(ū1(t), U1)]τ

)
−λH(t) max[1, min(ū1(t), U1)]τ − λE(t)

(
β1(E(t) + I(t)) + β2B(t)

)
,

˙λH(t)(t) = −λS(t)κ+ λH(t)
(
γβ1(E(t) + I(t)) + γβ2B(t) + µ+ κ

)
−λE(t)

(
β1γ(E(t) + I(t)) + β2γB(t)

)
,

˙λE(t)(t) = −C1 + λS(t)β1S(t) + λH(t)γβ1H(t)

−λE(t)
(
β1(S(t) + γH(t))− (σ + µ)

)
− λI(t)σ − λB(t)β3,

˙λI(t)(t) = −C2 + λS(t)β1S(t) + λH(t)γβ1H(t)− λE(t)
(
β1(S(t) + γH(t))

)
+λI(t)(µ+ c)− λB(t)β3,

˙λB(t)(t) = λS(t)β2S(t) + λH(t)γβ2H(t)− λE(t)(β2(S(t) + γH(t))),

+λB(t)(d+ max[1, min(ū2(t), U2)]δ),

(3.54)
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S(0) = S0, H(0) = H0, E(0) = E0, I(0) = I0, B(0) = B0 and λP (T ) = 0 for

P = S,H,E, I, B.

3.3.3 Uniqueness of the optimality system

In this section, we prove the uniqueness of the solution of the optimality system

(3.54)

Lemma 3.2 The function u∗(s) = max[min(s, a), b)] is Lipschitz continuous in s,

where

a < b are some fixed positive constants.

Theorem 3.3.3 For T sufficiently small, bounded solutions to the optimality system

are unique.

Proof 5 Suppose (S,H,E, I, B, λS, λH , λE, λI , λB) and

(S̄, H̄, Ē, Ī, B̄, λ̄S, λ̄H , λ̄E, λ̄I , λ̄B) are two different solutions of an optimality system

(3.54). Let S = eλtp1, H = eλtp2, E = eλtp3, I = eλtp4, B = eλtp5, λS = e−λtq1, λH =

e−λtq2, λE = e−λtq3, λI = e−λtq4, λB = e−λtq5 similarly S̄ = eλtp̄1, H̄ = eλtp̄2, Ē =

eλtp̄3, Ī = eλtp̄4, B̄ = eλtp̄5, λ̄S = e−λtq̄1, λ̄H = e−λtq̄2, λ̄E = e−λtq̄3, λ̄I = e−λtq̄4, and

λ̄B = e−λtq̄5, where λ > 0 is to be chosen. Further we let

u∗1(t) = max[1, min(
(p1q1 − p1q2)τ

W1

, U1)], u∗2(t) = max[1, min(
p5q5δ

W2

, U2)]

and

ū∗1(t) = max[1, min(
(p̄1q̄1 − p̄1q̄2)

W1

, U1)], ū∗2(t) = max[1, min(
p̄5q̄5δ

W2

, U2)]

|u∗1 − ū∗1| ≤
τ

W1

|(p1q1 − p1q2)− (p̄1q̄1 − p̄1q̄2)| (3.55)

|u∗2 − ū∗2| ≤
δ

W2

|p5q5 − p̄5q̄5| (3.56)

Substitute S = eλtp1 into the first ODE of (3.54), the state equation becomes

ṗ1 + λp1 = Ae−λt − β1e
λt(p1p3 + p1p4)− β2e

λtp1p5 − µp1 − u∗1τp1 + κp2 (3.57)
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Also substituting λS = e−λtq1 in the equation dλS
dt

, the adjoint equation becomes

q̇1 + λq1 = β1e
λt(p3q1 + p4q1) + β2e

λtp5q1 + µq1 + u∗1τq1 − u∗1τq2

−β1e
λt(p3q3 + p4q3)− β2e

λtp5q3 (3.58)

Now we subtract the equations for S and S̄, λS and λ̄S. Then multiplying each

equation by appropriate difference of functions (p1 − p̄1) and (q1 − q̄1) respectively

and integrating from 0 to T we obtain

1

2
(p1 − p̄1)2 + λ

∫ T

0

(p1 − p̄1)2dt = −β1

∫ T

0

eλt[(p1p3 + p1p4)](p1 − p̄1)dt

+β1

∫ T

0

eλt[(p̄1p̄3 + p̄1p̄4)](p1 − p̄1)dt

−β2

∫ T

0

(p1p5 − p̄1p̄5)(p1 − p̄1)dt

−µ
∫ T

0

(p1 − p̄1)2dt

−τ
∫ T

0

(u∗1p1 − ū∗1p̄1)(p1 − p̄1)dt+

κ

∫ T

0

(p2 − p̄2)(p1 − p̄1)dt. (3.59)

Following the same procedure for the remaining state variables and adjoint vari-

ables, the following equations are obtained:

1

2
(p2 − p̄2)2 + λ

∫ T

0

(p2 − p̄2)2dt = −γβ1

∫ T

0

eλt[(p2p3 + p2p4)](p2 − p̄2)dt

+γβ1

∫ T

0

eλt[(p̄2p̄3 + p̄2p̄4)](p2 − p̄2)dt

−γβ2

∫ T

0

(p2p5 − p̄2p̄5)(p2 − p̄2)dt

−(µ+ κ)

∫ T

0

(p2 − p̄2)2dt

+τ

∫ T

0

(u∗1p1 − ū∗1p̄1)(p2 − p̄2)dt (3.60)

1

2
(p3 − p̄3)2 + λ

∫ T

0

(p3 − p̄3)2dt = β1

∫ T

0

eλt[(p1 + γp2)(p3 + p4)](p3 − p̄3)dt
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−β1

∫ T

0

eλt[(p̄1 + γp̄2)(p̄3 + p̄4)](p3 − p̄3)dt

+β2

∫ T

0

eλt[(p1p5 + γp2p5)](p3 − p̄3)dt

−β2

∫ T

0

eλt[(p̄1p̄5 + γp̄2p̄5)](p3 − p̄3)dt

−(σ + µ)

∫ T

0

(p3 − p̄3)dt (3.61)

1

2
(p4 − p̄4)2 + λ

∫ T

0

(p4 − p̄4)2dt = σ

∫ T

0

(p3 − p̄3)(p4 − p̄4)dt

−(µ+ c)

∫ T

0

(p4 − p̄4)2dt (3.62)

1

2
(p5 − p̄5)2 + λ

∫ T

0

(p5 − p̄5)2dt = β3

∫ T

0

[(p3 + p4)− (p̄3 + p̄4)](p5 − p̄5)dt

−d
∫ T

0

(p5 − p̄5)2dt

−δ
∫ T

0

(u∗2p5 − ū∗2p̄5)(p5 − p̄5)dt (3.63)

We illustrate one case of the estimate by using |u∗1 − ū∗1| estimate. They involve

separating terms that involve squares and several multiplied terms.

1

2
(p1 − p̄1)2 + λ

∫ T

0

(p1 − p̄1)2dt ≤ β1

∫ T

0

|eλt[(p1p3 + p1p4)]||(p1 − p̄1)|dt

−β1

∫ T

0

|eλt[(p̄1p̄3 + p̄1p̄4)]||(p1 − p̄1)|dt

+β2

∫ T

0

|(p1p5 − p̄1p̄5)||(p1 − p̄1)|dt

+µ

∫ T

0

|(p1 − p̄1)2|dt

+τ

∫ T

0

|(u∗1p1 − ū∗1p̄1)||(p1 − p̄1)|dt
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+κ

∫ T

0

|(p2 − p̄2)||(p1 − p̄1)|dt

≤ C1

∫ T

0

[|p1 − p̄1|2 + |p2 − p̄2|2 + |p5 − p̄5|2

+|q1 − q̄1|2 + |q2 − q̄2|2]dt

+C2e
λt

∫ T

0

[|p1 − p̄1|2 + |p3 − p̄3|2

+|p4 − p̄4|2]dt, (3.64)

where the constants C1 and C2 depend on the coefficients and the bounds on state

and adjoint variables. This shows that the uniqueness and the integral equations are

combined, this combination produces

1

2
(p1 − p̄1)2(T ) +

1

2
(p2 − p̄2)2(T ) +

1

2
(p3 − p̄3)2(T ) +

1

2
(p4 − p̄4)2(T )+

1

2
(p5 − p̄5)2(T ) +

1

2
(q1 − q̄1)2(0) +

1

2
(q2 − q̄2)2(0) +

1

2
(q3 − q̄3)2(0)+

1

2
(q4 − q̄4)2(0) +

1

2
(q5 − q̄5)2(0) + λ

∫ T

0

[(p1 − p̄1)2 + (p2 − p̄2)2 + (p3 − p̄3)2

+(p4 − p̄4)2 + (p5 − p̄5)2 + (q1 − q̄1)2 + (q2 − q̄2)2

+ (q3 − q̄3)2 + (q4 − q̄4)2 + (q5 − q̄5)2]dt

≤ (λ− C̃1 − C̃2e
3λT )

∫ T

0

[(p1 − p̄1)2 + (p2 − p̄2)2 + (p3 − p̄3)2 + (p4 − p̄4)2

+(p5 − p̄5)2]dt

+

∫ T

0

[(q1 − q̄1)2 + (q2 − q̄2)2 + (q3 − q̄3)2 + (q4 − q̄4)2 + (q5 − q̄5)2]dt (3.65)

Thus from the above equation, using non-negativity of the variable expressions

we conclude that

≤ (λ− C̃1 − C̃2e
3λT )

∫ T

0

[(p1 − p̄1)2 + (p2 − p̄2)2 + (p3 − p̄3)2 + (p4 − p̄4)2 + (p5 − p̄5)2
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(q1 − q̄1)2 + (q2 − q̄2)2 + (q3 − q̄3)2 + (q4 − q̄4)2 + (q5 − q̄5)2]dt ≤ 0 (3.66)

where C̃1, C̃2 depend on the coefficients and the bounds on p1, p2, p3, p4, p5, q1, q2, q3, q4,

q5. If we choose λ such that λ > C̃1 + C̃2 and T < ( 1
3λ

) ln[ (λ−C̃1)

C̃2
], then p1 = p̄1, p2 =

p̄2, p3 = p̄3, p4 = p̄4, p5 = p̄5, q1 = q̄1, q2 = q̄2, q3 = q̄3, q4 = q̄4, q5 = q̄5. Hence the

solution is unique for small time.

3.4 Numerical results

In the formulation above, the parameters β1, β2 and β3 can be either constants, for

the autonomous model (3.1), or periodic functions in the form of equation (3.3), for

the periodic model (3.2). For each case, the state equations, adjoint equations and

optimality conditions constitute an optimal control problem, which is then solved

numerically. We use the same values of model parameters and initial conditions

from [30], listed here in Table 3.1. For simplicity, in our numerical simulation we

set C1 = C2 = 1 so that the minimization of the exposed animal population has the

same importance/weight as that of the infectious animal population. As a result,

the values of W1 and W2 represent the relative costs of their respective controls. We

further assume that vaccination incurs higher costs than the cost of decontamination,

so that W1 > W2 .

For ease of comparison, we will refer to the original models (3.1) and (3.2) as

with regular control, where, essentially, both u1 and u2 are fixed at the minimum

u1 = u2 = 1 for all time. We will then compare the results from the optimal control

and the regular control in our numerical simulation.
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Figure 3.3: Control profiles for the autonomous model (3.1).
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Figure 3.4: Control profiles for the periodic model (3.2).
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Figure 3.5: The concentration of brucella for the autonomous model (3.1).
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Figure 3.6: The concentration of brucella for the periodic model (3.2).
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Figure 3.7: The numbers of exposed and infectious animals for the periodic model

(3.2): (a) exposed population; (b) infectious population.
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Figure 3.8: The numbers of exposed and infectious animals for the autonomous

model (3.1): (a) exposed population; (b) infectious population.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

20

Op
tim

al 
co

ntr
ol 

rat
es

Time(years)

 

 

u
1
(t)

u
2
(t)

Figure 3.9: Control profiles for the periodic model (3.2) with low costs.
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Figure 3.10: Control profiles for the periodic model (3.2) with high costs.
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Figure 3.11: The concentration of brucella for the periodic model (3.2) with high

costs.
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Figure 3.12: The number of exposed animals for the periodic model (3.2) with high

costs.

Let us first consider a case with the cost parameters W1 = 1000 and W2 = 10.

48



Figure 3.3 shows the optimal control profiles for u1(t) and u2(t) for the autonomous

model (3.1). We clearly observe that u1 starts from the maximum (U1 = 20) and

stays at that level for about 2 years, before it gradually decreases to the minimum,

u1 = 1. The vaccination rate would remain at the minimum for all t ≥ 22 years.

The profile of u2 shows a similar pattern, except that u2 stays at the maximum

(U2 = 3) for a longer period (about 25 years), due to the lower costs related to the

environmental decontamination.

Figure 3.4 shows the optimal control profiles for the time-periodic model (3.2),

with the same values for the cost parameters. As we can observe, u1 also starts from

the maximum initially, but only for a very short time, followed by a decrease to some

lower level, and then it goes back to the maximum again after approximately 1 year.

This pattern continues for the second year, third year, and so on, corresponding to

the annual periodic oscillation of the contact rates (see equation 3.3). The mean of

these oscillations, however, gradually decreases, accompanied by reduced amplitudes

of the oscillations. After about 24 years, the oscillations settle at the minimum

u1 = 1. The profile of u2 stays at its maximum (U2 = 3) for the first 5 years.

Then the oscillations kick in and continue until t = 35 years, when the oscillations

stabilize at the minimum u2 = 1.

Figures 3.5 and 3.6 show the concentration of brucella as a function of time for

the autonomous model (3.1) and the periodic model (3.2), respectively. Particularly,

from Figure 3.6 we see that with regular control (i.e., the original model 3.2), the

bacterial concentration oscillates from the beginning with the amplitude increasing

with time, and quickly approaches a steady periodic oscillation with a maximum

close to 15 × 106. This is a demonstration of the persistence result in Theorem

3.2.2, where it is proven that there exists a positive periodic solution when R0 > 1.

(For this case, we find R0 ≈ 1.93 through numerical evaluation of equation 3.13).

In contrast, with the optimal control implemented, the concentration of brucella

decreases over time, and the initial oscillation decays away, eventually approaching

a value very close to 0, at which time both controls u1 and u2 would stay at the

minimum (see Figure 3.4). Meanwhile, Figure 3.7 depicts the numbers of exposed

and infectious animals over time with and without the optimal control. The results

clearly show that the optimal control strategy significantly reduces the exposed and
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infectious animal populations (compared to the case with regular control), to a level

close to 0 when t > 20 years. Similar patterns are observed for the autonomous

model (see Figure 3.8), but without the oscillatory behaviors of the curves in both

cases.

To explore the impact of the costs on the implementation of control strategies,

we have also varied the values of the cost parameters W1 and W2. Suppose that

the vaccination and decontamination can be achieved with significantly lower costs,

say W1 = 10 and W2 = 1. Figure 3.9 shows the optimal control profiles for u1(t)

and u2(t) in this hypothetical case for the periodic model. We see that, again, both

u1 and u2 start from their maximums, and they stay at the maximum strength

for much longer periods of time than the previous case (compare to Figure 3.4),

due to the reduced costs of the controls. Afterwards both u1 and u2 oscillate with

time and eventually settle at the minimum u1 = u2 = 1. In contrast, consider

that there are high costs associated with these controls, and assume that W1 = 106

and W2 = 1000. The optimal control profiles for u1(t) and u2(t) in this case are

presented in Figure 3.10. As is shown, the very high value of W1 forces u1 to stay

at the minimum u1 = 1 for almost all the time. The profile of u2 still starts from

its maximum, due to the relatively lower value of W2 . It, however, quickly evolves

into a yearly oscillation which continues for a long period (approximately 31 years),

partly to compensate the effect that the control of u1 is minimum for all the time.

The profile of u2 finally decays to the minimal state u2 = 1. Figures 3.11 and 3.12

show the concentration of brucella and the number of exposed animals in this case,

where we clearly observe that even with the optimal control, both the bacterial

concentration and the exposed animal population keep oscillating (though, at much

lower levels than their regular control counterparts) all the time without approaching

a minimum value, a result different from the cases with low costs of controls. In all

these scenarios, the optimal control maintains a “best” balance between the costs

and the outcomes (i.e., reducing the exposed and infectious animal populations).

Thus, higher costs would yield a relatively weaker, and perhaps insufficient, control

strategy, as illustrated by the last case.
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3.5 Conclusion and discussion

We have conducted an analysis for the impacts of seasonality on blucellosis trans-

mission. Our mathematical model is an extension of a previous autonomous model

[30] into time-periodic environments. We analyzed the basic reproduction number,

R0 , associated with our periodic blucellosis model, and established threshold results

characterized by R0 regarding the disease dynamics: when R0 < 1, the disease-free

equilibrium is globally asymptotically stable; when R0 > 1, the system is uniformly

persistent, and there exists a positive periodic solution.

We have performed an optimal control study by examining two types of controls:

animal vaccination and environmental decontamination. We conducted analysis and

simulation for both the autonomous and periodic brucellosis models. Our optimal

control aims to minimize the numbers of the exposed and infectious animals, mean-

while minimize the associated costs. Our results show that, in all the scenarios,

the optimal control can greatly reduce the numbers of the exposed and infectious

animals and keep these populations at low levels, a significantly better outcome

compared to that with regular control (i.e., with minimal effort u1 = u2 = 1). We

observe that the optimal control strategies strongly depend on the cost parameters.

With low costs, both the vaccination and decontamination will be carried out at

or close to their maximum strength for a sufficiently long period of time, so as to

minimize the disease exposure and infection. With high costs, however, the controls

have to be implemented with reduced, or even minimum, strength, to achieve an

optimal balance between the costs and effects of the control.

Our analysis and results throughout the chapter highlight the difference between

the autonomous and periodic models. With constant parameters, the autonomous

model is not able to reflect the seasonal variation, which is an important factor

in brucellosis dynamics. Extending the autonomous model to time-periodic envi-

ronments makes the model more realistic, but at the same time adding significant

challenges to its mathematical analysis. We have established the uniform persis-

tence of the disease dynamics and the existence of a nontrivial periodic solution

when R0 > 1. However, whether the periodic solution is unique and what is the

stability property, remains unresolved in the present work, and we plan to pursue

these tasks in our future research. In addition, our optimal control simulation to the
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periodic model also produces quite different results from those with the autonomous

model. Particularly, the optimal control profiles for u1 and u2 both exhibit annual

oscillations, a pattern consistent with the seasonal variation of the model param-

eters, as well as a practical means to reduce the costs of the control (in contrast

to constantly staying at the maximum strength). Finally, depending on the cost

parameters associated with the control, the optimal profiles of u1 and u2 exhibit

different lengths and amplitudes of oscillations, before eventually settling at their

minimum levels. Consequently, the concentration of brucella and the numbers of

exposed and infectious animals over time either approach a minimal state very close

to 0, or oscillate at a level above 0. These results could provide useful guidelines

to animal production and public health administration in designing effective control

strategies against brucellosis.

Finally, we acknowledge that modeling the transmission and spread of infectious

diseases, particularly brucellosis, would be of greater importance to public health

and agriculture with the aid of realistic infection data. Unfortunately, the scarcity

of seasonal brucellosis data at present limits our ability to calibrate some important

seasonally varied parameters in our periodic model. We expect to improve this study

in our future work with the availability of such data.
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Chapter 4

On the dynamics of brucellosis

infection in bison population with

vertical transmission and culling

4.1 Introduction

Brucellosis is a zoonotic bacterial infection that affects domesticated animals, wildlife

and humans. Animals acquire the infection mainly through direct contact with

infected animals or indirectly from the environment containing large quantities of

bacteria discharged by infected individuals [64], whereas in human, common routes

of infection include direct inoculation through cuts and abrasions in the skin or

inhalation of infectious aerosols and ingestion of infectious unpasteurized milk or

other dairy products [38]. Human to human transmission is extremely rare [64, 38].

Although, brucellosis has been effectively controlled in many developed countries

the disease remains common in Mediterranean areas, the south and the center of

America, Africa, Asia, Arab peninsula, Indian subcontinent and the Middle East

[65]. Currently more than 500,000 new cases of the disease are reported annually

[42], with incidence as high as 200 cases per 100,000 of the population in endemic

countries [43].

Mathematical modeling, analysis and simulation for infectious diseases have

proved to be an essential guiding tool that could give a sound direction to policy

53



makers and public health administration on how to effectively prevent and control

brucellosis transmission. In particular, Abatih et al. [38] proposed the following set

of differential equations to model the transmission dynamics of brucellosis:
dS
dt

= (a− φN)[S +R + Iρ(1− e)]−mS + δR− βIS

N
,

dI
dt

=
βIS

N
+ eρ(a− φN)I − (m+ α + v)I,

dR
dt

= vI − (m+ δ)R,

(4.1)

where S(t), I(t) and R(t) are the numbers of the susceptible, infectious and

recovered bison population at time t, respectively. The total bison population at

time t is N(t) = S(t) + I(t) + R(t). Model parameter a denotes birth rate, φ is

the density dependent reduction in births, m is the natural mortality rate and it is

assumed to be constant in all epidemiological classes, α is the disease-related death

rate, δ is the rate of lost of resistance, v is the recovery rate, β is the transmission

rate, e is the proportion of vertical transmission rate and ρ is the reduction of

fecundity in infectious bison. Thus, ρe is the reduced birth rate. Here, the bison

enter the susceptible class through birth from the susceptible and recovered class

at the net per capita birth rate of (a − φN) and from the infectious class at the

overall per capita birth rate of ρ(1− e)(a− φN). The susceptible population is also

augmented through lost of immunity by bison already in the recovered class at the

per capita rate of δ.

Although, the contribution of this study and several other studies (see, for exam-

ple [5, 30, 32, 31, 66, 67]) cannot be underestimated, there are some few questions

that remain unanswered. Such questions include:

(i) To what extent does animals in chronic state influence the spread and control

of disease?

(ii) What is the influence of seasonal variations on brucellosis dynamics?

(iii) To what extent can optimal culling strategies be effective on minimizing disease

burden?

First, effective control of any disease depends as much on a thorough under-

standing of all the epidemiological stages an infected human/animal will go through.

In both human and animals, brucellosis ecology can be segmented as: acute (0-2
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months), sub-acute (3-12 months) and chronic (> 12 months) [68]. For animals in

sub-acute stage, a small fraction may progress to become chronic while some may

recover from the infection [68]. Further, it is worth noting that animals in chronic

state show no clinical signs of the disease and majority of these animals would be

non-pregnant animals [69]. Since chronically infected animals transmit the infection

it is therefore essential to gain a better and more comprehensive understanding of

effective ways to control the disease.

Second, like many other infectious diseases, brucellosis incidence exhibits strong

seasonal fluctuations in temperate regions world over [27, 28, 70, 71]. Seasonal

variations in environmental and climatic conditions have an influence on animal

behavior which in-turn can be attributed to seasonality in brucellosis dynamics. For

example, in Botswana incidences of brucellosis have been observed to be high during

dry seasons compared to wet seasons. The seasonality of brucellosis in Botswana has

been attributed to the fact that during the dry seasons a large population of animals

will be concentrated along river-fronts whereas during the wet seasons, animals are

often spread out across the landscape [70]. The seasonality of brucellosis in European

countries has also be reported by other researchers who observed that > 70% of

brucellosis cases occur from March to June, with the peak observed from May to

June [71]. In addition, prior studies have shown that the survival of Brucella in the

environment depends critically on humidity, temperature and exposure to UV light

and for an ideal environment the bacteria can last for 135 days [27]. Such seasonal

variations need to be incorporated in models that aim to inform animal managers

and policy makers efficiency and effective ways to control the disease.

Third, since prevalence of brucellosis is high in developing nations where re-

sources for public health are limited, it is crucial to devise control strategies that

are cost effective, i.e. that allow to minimize disease burden at minimal cost. In

practice there is need to understand trade-off between the cost (or the constraints)

of implementing the strategies and the potential or expected economic losses that

these control measures should avoid. In practice it is impractical, if not unethical

to conduct a series of control-effort experiments among animals so as to determine

a specific culling strategy that performs better, hence on can utilise epidemiological

models to describe dynamics in the framework of the optimal control theory [63].
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The aim of the present work is to formulate a mathematical model for brucel-

losis transmission and control that suits developing countries, where the disease is

endemic and animal vaccination is an expensive intervention strategy. Our model

can also be utilized to understand brucellosis transmission dynamics among wildlife,

since prior studies suggest that vaccination of wildlife is impractical [72]. To that

end, we will extend the model for brucellosis transmission proposed in [38] to include:

(i) an additional epidemiological class that account for animals in chronic state,

(ii) seasonal variation on disease transmission pathway,

(iii) time dependent culling effort :-precisely, we will investigate the effects of

optimal control strategies when culling is the only viable control strategy.

Although brucellosis can be controlled by either vaccination or culling, in

developing nations vaccines are often expensive or unavailable [72, 73] leav-

ing culling as the only viable control strategy. In addition, the “test-and-

slaughter” method which can be used to detect animals in chronic state has

proved to be an expensive intervention strategy for brucellosis control in de-

veloping countries [73]. As a consequence, culling of clinically infected animals

remains the only viable disease intervention strategy for developing countries.

The remainder of the chapter is organized as follows. In Section 4.2, we introduce

the ODE bison-brucellosis model that incorporates chronic brucellosis. We then

conduct a thorough epidemic and endemic analysis of the model. In Section 4.3,

we present a non-autonomous bison-brucellosis model that incorporates seasonal

variations. We examine the threshold value, and study the global stability of the

disease-free periodic solution and the uniform persistence of the system. In Section

4.4, we investigate the influence of culling control on minimizing the spread of the

disease, through both mathematical analysis and numerical simulation. We conclude

the chapter in Section 4.5 with a brief discussion.
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4.2 Brucellosis model without seasonal variations

4.2.1 Model construction

Motivated by model (4.1), we propose the following autonomous dynamical system

to account for brucellosis transmission:

dS
dt

= (a− φN)[S +R + (I + A)ρ(1− e)]−mS + δR− β(I + εA)S

N
,

dI
dt

=
β(I + εA)S

N
+ eρ(a− φN)(I + A)− (m+ α + γ + v)I,

dA
dt

= pvI − (m+ α)A,
dR
dt

= (1− p)vI − (m+ δ)R.

(4.2)

All model parameters are non-negative, and they retain the same definitions as

in model (4.1). On formulating model (4.2) the following additional assumptions

were made:

• Based on the ecological information about brucellosis, an animal can be re-

garded to be in chronic state if it has been infected with the disease for more

than 12 months [68], thus our model assumes that all newborn calves are either

susceptible or clinically infected, since the gestation period in animals is less

than 12 months.

• Infected bison display clinical signs of the disease for v−1 days after which a

fraction p move to chronic state (modelled by A(t)) and the complementary

(1− p) recover from the infection.

• We assume that animals in chronic state have less bacteria load than those

displaying clinical signs of the disease, hence parameter ε accounts for the

reduction of infectivity of animals in chronic state in comparison to animals

in the symptomatic class.

• Since brucellosis is endemic in countries with limited resources, only animals

displaying clinical signs of the disease are culled at constant rate γ.
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Table 4.1: Parameters and values

Symbol Definition Units Value Source

p Proportion of symptomatic animals that become chronic unit-less 0.5 Assumed

ρ Reduction of fecundity in infectious bison unit-less 0.5 [38]

φ Density dependent reduction in birth year−1 0.00004 [38]

e Proportion of vertical transmission unit-less 0.9 [38]

m Per capita disease free death rate year−1 0.07 [38]

β Disease transmission rate year−1 0.05 –10 [38]

δ Rate of loss of resistance year−1 0.2 [38]

α Disease related death rate year−1 0.05 [38]

ε Modification factor unitless 0.08 Assumed

a Recruitment rate year−1 0.82 [38]

γ Culling rate year−1 0.4 [38]

v Recovery rate year−1 0.5 [38]

S(0) Initial number of susceptible animals 4050 [38]

I(0) Initial infected animals animals 450 [38]

A(0) Initial carrier animals animals 0 [38]

R(0) Initial recovered animals animals 0 [38]

It can easily be verified that the domain of biological interest

Ω =
{

(S,R, I, A) ∈ R4
+ : S > 0, R ≥ 0, I ≥ 0, A ≥ 0 and

S(t) +R(t) + I(t) + A(t) ≤ a−m
φ

}
, (4.3)

is positively invariant and attracting with respect to model (4.2).

4.2.2 The reproduction number

The corresponding disease-free equilibrium (DFE) of system (4.2) is given by

E0 :
(
S0, R0, I0, A0

)
=

(
a−m
φ

, 0, 0, 0

)
,

and it exists provided a > m. The reproduction number R0 is a threshold param-

eter for the infectious disease and it is essential on determining the spread of the

disease. According to the next generation matrix developed by van den Driessche

and Watmough [50], we define the basic reproduction number of system (4.2) as

R0 =
eρm(pν +m+ α)

(m+ α)(m+ α + γ + ν)
+

β(εpν +m+ α)

(m+ α)(m+ α + γ + ν)
, (4.4)
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where
eρm(pν +m+ α)

(m+ α)(m+ α + γ + ν)
and

β(εpν +m+ α)

(m+ α)(m+ α + γ + ν)
, represents the num-

ber of new infections generated through vertical transmission and direct contact,

respectively.

4.2.3 Equilibria

Regarding the stability of the disease-free equilibrium E0 and endemic equilibrium

E∗, we have the following Theorem.

Theorem 4.2.1

(i) If R0 ≤ 1, the DFE is globally asymptotically stable.

(ii) If R0 > 1, system (4.2) has a unique endemic equilibrium E∗, which is globally

asymptotically stable.

Proof of Theorem 4.2.1 (i)

Proof 6 In what follows, we will show that if R0 ≤ 1 then system (4.2) has a

disease-free equilibrium which is globally asymptotically stable (Theorem 4.2.1 (i).)

Consider the Lyapunov functional

L(t) =

[
(β + eρm)k2 + (βε+ eρm)pν

k1k2

]
I(t) +

[
βε+ eρm

k2

]
A(t) (4.5)

where k1 = (m + α + γ + ν), k2 = (m + α). Taking the derivative of L(t) with

respect to t along the solutions of (4.2) gives

L̇(t) =

[
(β + eρm)k2 + (βε+ eρm)pν

k1k2

] [
β(I + εA)S

N

]
− β(I + εA)

+

[
(β + eρm)k2 + (βε+ eρm)pν

k1k2

]
eρ(a− φN)(I + A)− eρm(I + A),

=

[
(β + eρm)k2 + (βε+ eρm)pν

k1k2

S

N
− 1

]
β(I + εA)

+

[
(β + eρm)k2 + (βε+ eρm)pν

k1k2

(a− φN)

m
− 1

]
eρm(I + A)

≤
[

(β + eρm)k2 + (βε+ eρm)pν

k1k2

− 1

] [
β(I + εA) + eρm(I + A)

]
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= [R0 − 1]
[
β(I + εA) + eρm(I + A)

]
. (4.6)

Therefore, L̇ ≤ 0 as long as R0 ≤ 1. When R0 < 1, L̇ = 0 yields I = A = 0.

Then it can be easily observed from the system (4.2) that as t → ∞, S → S0 =

N = a−m
φ

and R = 0. Hence, the only invariant set when L̇ = 0 is the singleton

E0 = (S0, 0, 0, 0). It follows from Lasalle’s Invariance Principle [46] that every

solution of the system (4.2), with initial conditions in Ω, approaches E0 as t→∞.

Thus, the DFE is a global attractor.

Proof of Theorem 4.2.1 (ii)

Proof 7 We will begin by demonstrating that system (4.2) admits a unique endemic

equilibrium point whenever R0 > 1. One can reduce system (4.2) into three dimen-

sional system by setting R = N − S − I − A to get

dS
dt

= (a− φN)[N + (ρ(1− e)− 1)(I + A)]−mS + δ(N − S − I − A)

−β(I + εA)S

N
,

dI
dt

=
β(I + εA)S

N
+ eρ(a− φN)(I + A)− (m+ α + γ + v)I,

dA
dt

= pvI − (m+ α)A.

(4.7)

The endemic equilibrium of the system (4.7) is determined by equations
(a− φN∗)[N∗ + (ρ(1− e)− 1)(I∗ + A∗)]−mS∗ + δ(N∗ − S∗ − I∗ − A∗)
−β(I∗+εA∗)S∗

N∗
= 0,

β(I∗+εA∗)S∗

N∗
+ eρ(a− φN∗)(I∗ + A∗)− (m+ α + γ + v)I∗ = 0,

pvI∗ − (m+ α)A∗ = 0.

(4.8)

From the last equation of (4.8) we have

I∗ =
(m+ α)

pv
A∗, I∗ + A∗ = M1A

∗, and I∗ + εA∗ = M2A
∗. (4.9)

with

M1 =
m+ α + pv

pv
, and M2 =

m+ α + εpv

pv
. (4.10)

It follows from the first equations in (4.8) that

S∗ =
(a− φN∗)N∗ + (a− φN∗)ρM1A

∗ + δN∗

(m+ δ + β
N∗
M2A∗)
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+
−(a− φN∗)ρeM1A

∗ − (a− φN∗)M1A
∗ − δM1A

∗

(m+ δ + β
N∗
M2A∗)

, (4.11)

for A∗ 6= 0, substituting equation (4.9) into the second equation in (4.8) yields

S∗ =
k1k2N

∗ − eρ(a− φN∗)M1pvN
∗

βM2pv
. (4.12)

substituting (4.11) into (4.12) gives

F (A∗) =
(a− φN∗)N∗ + (a− φN∗)ρM1A

∗ − (a− φN∗)ρeM1A
∗

(m+ δ + β
N
M2A∗)

+
−(a− φN∗)M1A

∗ + δN∗ − δM1A
∗

(m+ δ + β
N
M2A∗)

+
eρ(a− φN∗)M1N

∗

βM2

−k1k2N
∗

βM2pv
= 0. (4.13)

Direct calculation for A∗ ≥ 0 shows

F ′(A∗) =
−~0(1− ρ)− [~0ρe+ ~1 + ~2 + ~3]

(m+ δ + β
N∗
M2A∗)2

, (4.14)

with

~0 = (a− φN)(m+ δ)M1, ~1 = δ(m+ δ)M1, ~2 = β(a− φN∗)M2, ~3 = βδM2.

Since ρ ∈ [0, 1] it implies that F ′(A) < 0. Therefore the function F (A) is

monotonic decreasing for A > 0, and it follows that

F (0) = N∗ +
eρmM1N

∗

βM2

− k1k2N
∗

βM2pv
=
N∗k1k2

pvβM2

(R0 − 1). (4.15)

Therefore, by monotonicity of a function F (A), there exists a unique positive root

in the interval (0, a−m
φ

) when R0 > 1 and there is no positive root in the interval

(0, a−m
φ

) when R0 < 1. Thus model (4.2) has a unique endemic equilibrium E∗ =

(S∗, I∗, A∗).

In what follows, we prove the second part of Theorem 4.2.1(ii), i.e, whenever

R0 > 1, then the unique endemic equilibrium point E∗ of system (4.2) is globally

asymptotically stable. To achieve this objective we will utilize the geometric approach

originally proposed by Li and Muldowney [74]. For completeness, we first present

the following result from [74].
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Lemma 4.1 Consider a dynamical system dX
dt

= f(X), where f : D 7→ Rn is a

C1 function and D ⊂ Rn is a simply connected domain. Assume that there exists a

compact absorbing set K ⊂ D and the system has a unique equilibrium point X∗ in

D . Then X∗ is globally asymptotically stable in D if q̄2 < 0, where

q̄2 = lim sup
t→∞

sup
X0∈K

1

t

∫ t

0

m
(
Q(X(s, X0))

)
ds . (4.16)

In equation (4.16), Q is a matrix-valued function defined as

Q = PfP
−1 + PJ [2]P−1 ,

where P (X) is a
(
n
2

)
×
(
n
2

)
matrix-valued C1 function in D, Pf is the derivative

of P (entry-wise) along the direction of f , and J [2] is the second additive compound

matrix of the Jacobian J(X) = Df(X) . Meanwhile, m(Q) is the Lozinskǐi measure

of Q with respect to a matrix norm; i.e.,

m(Q) = lim
h→0+

|I + hQ| − 1

h
,

where I represents the identity matrix.

Now we proceed to investigate the global stability of the endemic equilibrium point

E∗. It is easy to show that the Jacobian matrix of system (4.7) at E∗ is

J =


d11 d12 −(a− φN∗) + (a− φN∗)ρ(1− e)− δ − βεS∗

N∗

β(I∗+εA∗)
N∗

d22
βεS∗

N∗
+ eρ(a− φN∗)

0 pv d33

 , (4.17)

with

d11 = −m− δ − β(I∗ + εA∗)

N∗
,

d12 = −(a− φN∗) + (a− φN∗)ρ(1− e)
−δ − βS∗

N∗
,

d22 =
βS∗

N∗
+ eρ(a− φN∗)− (m+ α + γ + v), d33 = −(m+ α),

and the associated second compound matrix is

J [2] =


χ1

βεS∗

N∗
+ eρ(a− φN∗) (a− φN∗)− (a− φN∗)ρ(1− e) + δ + βεS∗

N∗

pv χ2 −(a− φN∗) + (a− φN∗)ρ(1− e)− δ − βS∗

N∗

0 β(I∗+εA∗)
N∗

χ3

 ,
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with

χ1 = −2m− α− γ − δ − v + eρ(a− φN∗) +
βS∗

N∗
− β(I∗ + εA∗)

N∗
,

χ2 = −2m− α− δ − β(I∗ + εA∗)

N∗
,

χ3 = −2m− 2α− γ − v +
βS∗

N∗
+ eρ(a− φN∗). (4.18)

Set, H = diag
[
1, I

∗

A∗
, I
∗

A∗

]
, then

HFH
−1 = diag

[
0,
İ

I∗
− Ȧ

A∗
,
İ

I∗
− Ȧ

A∗

]
,

and HJ [2]H−1 is
χ1

A∗

I∗ (βεS
∗

N∗ + eρ(a− φN∗)) A∗

I∗ (a+ βεS∗

N∗ + δ − φN∗ − (1− e)ρ(a− φN∗))
I∗pv
A∗ χ2 −a− βS∗

N∗ − δ + (1− e)ρ(a− φN∗) + φN∗

0 β(I∗+εA∗)
N∗ χ3

 . (4.19)

The matrix Q = HFH
−1 +HJ [2]H−1 can be written in the block form as follows:

Q =

[
Q11 Q12

Q21 Q22,

]

in which

Q11 = −(2m+ α+ γ + δ + v) + eρ(a− φN∗) +
βS∗

N∗ −
β(I∗ + εA∗)

N∗ ,

Q12 =
[A∗

I∗

(
βεS∗

N∗ + eρ(a− φN∗)

)(βεS∗

N∗ + eρ(a− φN∗)− [φN∗ + ρ(a− φN∗)

−a− δ]
)A∗

I∗

]
,

Q21 =


pv
I∗

A∗

0

 , Q22 =


χ2 + İ

I −
Ȧ
A −a− βS∗

N∗ − δ + (1− e)ρ(a− φN∗) + φN∗

β(I∗+εA∗)
N∗ χ3 + İ

I −
Ȧ
A

 .
We now define the vector norm R3 as

|(y1, y2, y3)| = max{|y1|, |y2|, |y3|},

for any vector (y1, y2, y3) ∈ R3. Let η denote the Lozinskǐi measure with respect to this norm. By

direct calculation one gets

η(Q) ≤ sup{g1, g2}

with

g1 = η1(Q11) + |Q12|,
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g2 = |Q21|+ η1(Q22),

where |Q12| and |Q21| are matrix norms with respect to L1 vector norm, and η1 denotes the

Lozinskii measure with respect to the L1 norm. Specifically

η1(Q11) = −(2m+ v + α+ γ + δ) +
βS∗

N∗ −
β(I∗ + εA∗)

N∗ + eρ(a− φN∗),

η1(Q22) = −(2m+ α+ δ) +
İ

I∗
− Ȧ

A∗

+ sup
{

0, ρ(a− φN∗) + φN∗ − (a+ v + α+ γ)
}
.

Therefore,

g1 = −(2m+ v + α+ γ + δ) +
βS∗

N∗ −
β(I∗ + εA∗)

N∗ + eρ(a− φN∗)

+

[
βεS∗

N∗ + eρ(a− φN∗)

]
A∗

I∗
.

From the second equation of (4.7) we have[
βεS∗

N∗ + eρ(a− φN∗)

]
A∗

I∗
=

İ

I∗
− βS∗

N∗ − eρ(a− φN∗) + (m+ α+ γ + v).

Thus,

g1 =
İ

I∗
− (m+ δ)− β(I∗ + εA∗)

N∗ ≤ İ

I∗
− (m+ δ).

Similarly

g2 = pv
I∗

A∗ − 2m− α− δ +
İ

I∗
− Ȧ

A∗ + sup
{

0, ρ(a− φN∗) + φN∗ − (a+ v + α+ γ)
}
,

Using the relation of the last equation in (4.7)

Ȧ

A∗ = pv
I∗

A∗ − (m+ α),

we have

g2 =
İ

I∗
− (m+ δ) + sup

{
0, ρ(a− φN∗) + φN∗ − (a+ v + α+ γ)

}
≤ İ

I∗
− (m+ δ).

Since N∗ ≤ a−m
φ one can easily deduce that ρ(a−φN∗)+φN∗− (a+v+α+γ) ≤ 0. Therefore

η(Q) ≤ İ

I∗
− (m+ δ).

Since 0 ≤ I(t) ≤ N(t), there exists T > 0 such that when t > T ,
ln I(t)− ln I(0)

t
<

(m+ δ)

2
.

As a result

1

t

∫ t

0

η(s)dt ≤ 1

t

∫ t

0

[
İ(s)

I(s)
− (m+ δ)

]
ds =

ln I(t)− ln I(0)

t
− (m+ δ) ≤ − (m+ δ)

2
.

which implies that q̄2 ≤ − (m+δ)
2 < 0. This completes the proof.
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Figure 4.1: Phase portrait depicting the global stability of (a) the disease-free equilibrium

E0 which exists for R0 ≤ 1, here we set β = 0.28 to get R0 = 0.41548 (b) the endemic

equilibrium point which exists whenever R0 > 1, note that we set β = 0.8 to obtain

R0 = 1.0103. The numerical results depicted in (a) supports that analytical findings in

Theorem 4.2.1 (i), that whenever R0 < 1 then system (4.2) has a globally asymptotically

stable disease-free equilibrium. Similarly, plot (b) demonstrate the analytical predictions

in Theorem 4.2.1 (ii) that if R0 > 1, system (4.2) has a unique endemic equilibrium E∗,
which is globally asymptotically stable.

Using the parameter values in Table 4.1, we conduct some numerical simulations in

order to verify Theorem 4.2.1 (see, Figure 4.1). In Figure 4.1(a) we set β = 0.28 to

obtain R0 = 0.41548 and varied the initial conditions. The simulation results clearly

show that when R0 < 1, system (4.2) has a globally stable disease-free equilibrium

with S ≈ 1.85 × 104 and I = 0. This result is in agreement with the analytical

predictions in Theorem 4.2.1 (i).

In Figure 4.1 (b), we set β = 1.08 to get R0 = 1.3305 and varied the initial

conditions. The numerical results demonstrate that when R0 > 1 all solutions

for system (4.2) in the plane I vs S converge to endemic endemic equilibrium with

S ≈ 8870.715 and I ≈ 2211.848. This result support the analytical result of Theorem

4.2.1 (ii) which states that whenever R0 > 1, system (4.2) admits a unique endemic

equilibrium E∗, which is globally asymptotically stable.
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4.3 Brucellosis model with seasonal variations

4.3.1 Model construction

As highlighted earlier, incidences of brucellosis in both developed and develop-

ing countries exhibit seasonal variations, with high incidences observed in cer-

tain months of the year. In order to incorporate seasonal variations into our ba-

sic model (4.2) we modelled the contact rate by the following periodic function

β(t) = β0(1 + β1 cosωt), where β0 denotes the basic contact rate without seasonal

forcing, 0 ≤ β1 ≤ 1 denotes the magnitude of seasonal fluctuations, ω = 2π
12

corre-

sponds to a one year period. Using the same parameter and class names as in system

(4.2), the system of differential equations describing our model with seasonal varia-

tions is:

dS
dt

= (a− φN)[S +R + (I + A)ρ(1− e)]−mS + δR− β(t)(I + εA)S

N
,

dI
dt

=
β(t)(I + εA)S

N
+ eρ(a− φN)(I + A)− (m+ α + γ + v)I,

dA
dt

= pvI − (m+ α)A,
dR
dt

= (1− p)vI − (m+ δ)R.

(4.20)

4.3.2 The reproduction number

One can easily verify that the disease-free equilibrium of system (4.20) is

E0 =

(
S0 =

a−m
φ

, 0, 0, 0

)
and it is the same as the for the autonomous system (4.2). In what follows we now

introduce the basic reproduction number by applying the next-generation method.

Thus, we define matrices F (t) and V (t) (evaluated at the disease-free equilibrium)

as

F (t) =

[
β(t) + em β(t)ε+ eρm

0 0

]
and V (t) =

[
k1 0

−pv k2

]
.

In order to define the basic reproduction number of this non-autonomous model,

we follow the work of Wang and Zhao [55]. They introduced the next-infection
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operator L for a model in periodic environments by

(Lψ)(t) =

∫ ∞
0

Y (t, t− s)F (t− s)ψ(t− s)ds, (4.21)

where Y (t, s), t ≥ s, is the evolution operator of the linear ω-periodic system

dy/dt = −V (t)y and ψ(t), the initial distribution of infectious individuals, is ω-

periodic and nonnegative. The basic reproduction number is then defined as the

spectral radius of the next-infection operator,

R0 = ρ(L). (4.22)

For our model (4.20), the evolution operator can be determined by solving the

system of differential equations dy/dt = −V (t)y with the initial condition Y (s, s) =

I2×2; thus, we obtain

Y (t, s) =

[
e−k1(t−s) 0

pv
(γ+v)

[e−k2(t−s) − e−k1(t−s)] e−k2(t−s)

]
(4.23)

The basic reproduction number defined in Equation (4.22) can be numerically

evaluated by using, for example, the method described in [56].

4.3.3 Threshold dynamics

Using the basic reproduction number R0 , we aim to establish the threshold type

result, stated in the theorem below, for the periodic model (4.20). To that end, we

first note that R+ is positively invariant for the following equation:

Ṡ(t) = (a− φN)[S +R + (I + A)ρ(1− e)]−mS + δR− β(t)(I + εA)S

N
, (4.24)

and that S0 is the unique equilibrium solution which is globally attractive in R+.

Theorem 4.3.1

(i) If R0 < 1, then the disease-free equilibrium E0 of system (4.20) is globally asymp-

totically stable;

(ii) If R0 > 1, then system (4.20) admits at least one positive ω-periodic solution,

and solutions of system (4.20) are uniformly persistent.
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Proof of Theorem 4.3.1

Proof 8 If (S(t), R(t), I(t), A(t)) is a non-negative solution of (4.20), then we have

Ṡ(t) ≤ (a− φN)[S +R + (I + A)ρ(1− e)]−mS + δR− β(t)(I + εA)S

N
, (4.25)

Note that any nonnegative solution S(t) of system (4.24) approaches S0 as t→
∞. It then follows from the standard comparison theorem (see, e.g., [75, Theorem

A.4]) that for any ε′ > 0, there is a T > 0 such that

S(t) < S0 + ε′, for t > T. (4.26)

Thus, for t > T , we have

İ(t) ≤ β(t)(I + εA)(S0 + ε′)

N
+ eρ(a− φN)(I + A)− (m+ α + γ + v)I,

Ȧ(t) ≤ pvI − (m+ α)A.

(4.27)

Define

Fε′(t) =

[
β(t)
N

(S0 + ε′) β(t)ε
N

(S0 + ε′)

0 0

]
.

By [55, Thorem 2.2], we have R0 < 1⇐⇒ ρ(φF−V (ω)) < 1, where ρ(φF−V (ω)) is

the spectral radius of φF−V (ω), and φF−V (ω) is the monodromy matrix of the linear

ω-periodic system dy/dt = (F −V )y. Then we can set ε′ sufficiently small such that

ρ(φFε′−V (ω)) < 1. As a consequence, the trivial solution (0, 0) of the following linear

ω-periodic system , and from the last equation of system(4.20) it is straight forward

to observe that limt→∞R(t) = 0

İ(t) =
β(t)(I + εA)(S0 + ε′)

N
+ eρ(a− φN)(I + A)− (m+ α + γ + v)I,

Ȧ(t) = pvI − (m+ α)A.

(4.28)

is globally asymptotically stable. Again by the comparison theorem, we know that

I(t) → 0, A(t) → 0 as t → ∞ . Finally, the first equation of system (4.20) imply

that S(t)→ S0 as t→∞ . This proves the result in part (i).

Now we consider the case R0 > 1. We define X = R4
+, X0 = R2

+×Int(R2
+), ∂X0 =

X\X0, It is easy to see that both X and X0 are positively invariant. Let P : R4
+ →
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R4
+ be the Poincaré map associated with system (4.20); that is, P (x0) = u(ω, x0) for

all x0 ∈ R4
+, where u(t, x0) is the unique solution of (4.20) with u(0, x0) = x0. Set

M∂ = {(S(0), R(0), I(0), A(0)) ∈ ∂X0 : Pm(S(0), R(0), I(0), A(0)) ∈ ∂X0, ∀m ≥ 0},

M = {(S,R, I, A) : S ≥ 0, R = 0, I = 0, A = 0}.

We first show that

M∂ = M. (4.29)

Clearly, M ⊆ M∂. For any (S(0), R(0), I(0), A(0)) ∈ ∂X0\M , if A(0) >

0, I(0) = 0, then İ(0) > 0. if I(0) > 0, A(0) = 0, then Ȧ(0) > 0. Thus, we

have

(S(t), R(t), I(t), A(t)) /∈ ∂X0

for 0 < t� 1. By the positive invariance of X0, we know that

Pm(S(0), R(0), I(0), A(0)) /∈ ∂X0

for m ≥ 1, hence (S(0), R(0), I(0), A(0)) /∈M∂, and thus (4.29) holds.

Now consider the fixed point M0 = (S0, 0, 0, 0) of the Poincaré map P . Define

W S(M0) = {x0 : Pm(x0)→M0,m→∞}. From system(4.20), it is easy to observe

that when A = I = 0, we have R→ 0 We show that

W S(M0) ∩X0 = ∅. (4.30)

Based on the continuity of solutions with respect to the initial conditions, for any

ε′ > 0, there exists δ > 0 small enough such that for all (S(0), R(0), I(0), A(0)) ∈ X0

with ||(S(0), R(0), I(0), A(0))−M0|| ≤ δ, we have

||u(t, (S(0), R(0), I(0), A(0)))− u(t,M0)|| < ε′ , ∀t ∈ [0, ω]. (4.31)

To obtain (4.30), we claim that

lim sup
m→∞

||Pm(S(0), R(0), I(0), A(0))−M0|| ≥ δ, ∀(S(0), R(0), I(0), A(0)) ∈ X0.

(4.32)

We prove this claim by contradiction; that is, we suppose

lim sup
m→∞

||Pm(S(0), R(0), I(0), A(0))−M0|| < δ
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for some (S(0), R(0), I(0), A(0)) ∈ X0. Without loss of generality, we assume that

||Pm(S(0), R(0), I(0), A(0))−M0|| < δ, ∀m ≥ 0.

Thus,

||u(t, Pm(S(0), R(0), I(0, A(0)))− u(t,M0)|| < ε′, ∀t ∈ [0, ω] and m ≥ 0. (4.33)

Moreover, for any t ≥ 0, we write t = t0 + kω with t0 ∈ [0, ω) and k = [t/ω], the

greatest integer less than or equal to t/ω. Then we obtain

||u(t, (S(0), R(0), I(0), A(0)))− u(t,M0)||

= ||u(t0, P
m(S(0), R(0), I(0), A(0)))− u(t0,M0)|| < ε

’ for any t ≥ 0. Let (S(t), R(t), I(t), A(0)) = u(t, (S(0), R(0), I(0), A(0))). It follows

that −ε′ < S(t) − S0 < ε′, 0 < I(t) < ε′, and 0 < A(t) < ε′. Again based on [55,

Thorem 2.2], R0 > 1 if and only if ρ(ΦF−V (ω)) > 1. Thus, for ε′ small enough, we

have ρ(ΦF ′ε−V (ω)) > 1 which immediately yields the contradiction as

lim
t→∞

I(t) =∞ lim
t→∞

A(t) =∞.

Let P1 : R+ −→ R+ be the Poincareé map associated with (4.24). Then S0 is

globally attractive in R+\{0} for P1. It follows that M0 is isolated invariant set in

X, and notice that W S(M0)∩X0 = ∅. Hence, every orbit in M∂ converges to M0 and

M0 is acyclic in M∂. By [58, Thorem 1.3.1], for a stronger repelling property of ∂X0,

we conclude that P is uniformly persistent with respect to (X0, ∂X0), which implies

the uniform persistence of the solutions of system (4.20) with respect to (X0, ∂X0)

[58, Thorem 3.1.1]. Consequently, based on [58, Theorem 1.3.6], the Poincaré map

P has a fixed point (S̄(0), R̄(0), Ī(0), Ā(0)) ∈ X0, and it can be easily seen that

S̄(0) 6= 0. Thus, (S̄(0), R̄(0), Ī(0, Ā(0)) ∈ Int(R4
+) and

(S̄(t), R̄(t), Ī(t), Ā(0)) = u(t, (S̄(0), R̄(0), Ī(0), Ā(0)))

is a positive ω-periodic solution of the system.
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4.4 Optimal control

Our goal here is to determine an optimal culling strategy that will minimize the

total disease burden, while minimizing the cost of implementing such a strategy.

Due to limitedness of resources in most brucellosis endemic areas, we assume that

culling of clinically infected animals is the only viable intervention strategy since it

is associated with low costs.

4.4.1 Formulation

To determine the optimal culling strategy, we modify model (4.2) by letting γ = u(t)

and this results in the following system

dS
dt

= (a− φN(t))[S(t) +R(t) + (I(t) + A(t))ρ(1− e)]−mS(t) + δR(t)

−β(I(t) + εA(t))S(t)

N(t)
,

dI
dt

=
β[I(t) + εA(t)]S(t)

N(t)
+ eρ(a− φN(t))(I(t) + A(t))

−(m+ α + u(t) + v)I(t)
dA
dt

= pvI(t)− (m+ α)A(t),
dR
dt

= (1− p)vI(t)− (m+ δ)R(t).

(4.34)

Remark: Note that in the formulation of our optimality system, parameter β,

can be either constant, for the autonomous model (4.2), or periodic function as in

system (4.20).

We consider the following objective functional

J(u(t)) =

∫ T

0

[
C1I(t) + C2A(t)− C3S(t) + C4u(t)

]
dt . (4.35)

where Ci (i = 1, 2, 3, 4) represents the appropriate positive balancing constants.

The objective is to minimize the total number of infected animals (both clinical

and chronic) and maximize the total number of susceptible population, while also

minimizing the cost of implementation. In addition, our objective functional (4.35)

assumes that there is a linear relationship between the costs and the number of

clinically infected animals to be culled. The control set is defined as

Q =
{
u(t)

∣∣ 0 ≤ U1 ≤ u(t) ≤ U2 ≤ 1, 0 ≤ t ≤ T
}
. (4.36)
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where U1 and U2 denote the lower and upper bounds of culling efforts, respec-

tively. These bounds reflect practical limitation of resources to implement the control

in a given time horizon. By utilizing the Pontryagin’s maximum Principle [63], we

have the following Hamiltonian function H:

H(t) = C1I(t) + C2A(t)− C3S(t) + C4u(t)

+λ1(t)
[
(a− φN(t))[S(t) +R(t) + (I(t) + A(t))ρ(1− e)]−mS(t) + δR(t)

−β(I(t) + εA(t))S(t)

N(t)

]
+λ2(t)

[β(I(t) + εA(t))S(t)

N(t)
+ eρ(a− φN(t))(I(t) + A(t))

−(m+ α + u(t) + v)I
]

+λ3(t)
[
pvI(t)− (m+ α)A(t)

]
+λ4(t)

[
(1− p)v(t)I − (m+ δ)R(t)

]
.

It is known that, if the Hamiltonian is linear in the control variable u(t) then it

can be difficult to solve for the optimal solutions u∗ from the optimality equation

[61, 72, 76]. For mathematical convenience, in our optimal control analysis we

assume a = m+ φN + α(I +A)N−1. Thus the total population N is constant. We

can also treat the non-constant population case by these techniques, but we choose

to present the constant population case here.

Given an optimal control u∗(t), there exists adjoint functions, λi(t), for i =

1, 2, 3, 4, corresponding to the states S, I, A, and R respectively satisfying

dλ1(t)

dt
= −∂H

∂S
,
dλ2(t)

dt
= −∂H

∂I
,
dλ3(t)

dt
= −∂H

∂A
,
dλ4(t)

dt
= −∂H

∂R
, (4.37)

such that

dλ1(t)

dt
= −

[
− C3 + λ1(t)

(
(a− φN(t))−m− β(I(t) + εA(t))

N(t)

)
+λ2(t)

(
β(I(t) + εA(t))

N(t)

)]
,

dλ2(t)

dt
= −

[
C1 + λ1(t)

(
(a− φN(t))ρ(1− e)− βS(t)

N(t)

)
+λ2(t)

(
βS(t)

N(t)
+ eρ(a− φN(t))− (m+ α + u(t) + v)

)
+ λ3(t)pv
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+λ4(t)(1− p)v
]
,

dλ3(t)

dt
= −

[
C2 + λ1(t)

(
(a− φN(t))ρ(1− e)− βεS(t)

N(t)

)
+λ2(t)

(
βεS(t)

N(t)
+ eρ(a− φN(t))

)
− λ3(t)(m+ α)

]
,

dλ4(t)

dt
= −

[
λ1(t) ((a− φN(t)) + δ)− λ4(t)(m+ δ)

]
,

where λi(T ) = 0 for i = 1, 2, 3, 4, are transversality conditions.

The Hamiltonian H is minimized with respect to the control variable at u∗. Since

the Hamiltonian is linear in the control, we need to determine if the optimal control

is bang-bang (at its lower or upper bound), singular or a combination. The singular

case could occur if the slope or the switching function

∂H

∂u
= C4 − λ2(t)I(t), (4.38)

is zero on non-trivial interval of time. Note that the optimal control would be

at it its upper or lower bound according to:

∂H

∂u
< 0, or

∂H

∂u
> 0.

Since the behaviour of the control can be determined from the switching function
∂H
∂u

, we now investigate the singular case by letting
∂H

∂u
= 0, on some non-trivial

interval. In this case we calculate d
dt

(
∂H
∂u

)
= 0 and then we will show that the control

is not present in that equation. Thus

d

dt

(
∂H

∂u

)
=

d

dt
[C4 − λ2I]

=
[
C1 + λ1(a− φN)ρ(1− e) + λ3pv + λ4(1− p)v

]
I

−β(λ1I + ελ2A)N−1S − λ2eρ(a− φN)A. (4.39)

It is evident that the control term is not present in equation (4.39), hence we need

to differentiate the switching function, that is., d2

dt2

(
∂H
∂u

)
= 0, in order to determine

if the control term now exists and if not we will keep on differentiating until the

control term appear. After differentiating the switching function we obtained

d2

dt2

(
∂H

∂u

)
= Ψ1(t)u(t) + Ψ2(t), (4.40)
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where,

Ψ1(t) = − [C1 + (a− φN)ρ(1− e)λ1 + pvλ3 + (1− p)vλ4] I − [eρ(a− φN)λ2]A

−βεN−1λ2SA+ βN−1λ1SI,

Ψ2(t) = [C3(a− φN)ρ(1− e)− C2pv + C1eρ(a− φN)− C1(m+ α + v)] I

−
[(
a− φN)ρ(1− e)(α + v + pv + (a− φN)(1− eρ))λ1

+(1− p)v(a− φN + δ)
)
λ1

]
I−
[(
a− φN)ρ(2pve+ βN−1(1− e)I

)
λ2

]
I

+
[
pv(eρ(a− φN)− v)λ3

]
I + [(1− p)v(δ − α− v + eρ(a− φN))λ4] I

−βN−1(a− φN)ρ(1− e)λ1AI + βεN−1(a− φN)ρ(1− e) [λ1 − 2λ2]AI

−βN−1 [(a− φN + δ)λ1]RI + βN−1
[
C1 − C3+

(
pvε+ (a− φN)ρ(1− 2e)

−βSN−1 + (m+ α + v)
)
λ1

]
SI + βN−1

[(
βN−1I − 2pvε+ 2βεN−1A

)
λ2

+(λ3 − λ4)pv + vλ4

]
SI − βεN−1 [(a− φN + δ)λ2]RA

+βN−1
[
2C1ε+ 2

(
(a− φN)ρ(ε− eε− e)− βεN−1S

)
λ1

]
SA

+βN−1
[(

(a− φN)(eρ+ ε(eρ− 1))− ε(v −m) + εβN−1
(
S + εA

))
λ2

+2vε(p(λ3 − λ4) + λ4)
]
SA+

[
2C1eρ(a− φN) + 2(a− φN)2ρ2e(1− e)λ1

+eρ(a− φN)(eρ(a− φN)− v)λ2

]
A+
[
βεN−1(a− φN)ρ(1− e)Aλ2

+2eρ(a− φN)v
(
p(λ3 − λ4) + λ4

)]
A. (4.41)

We can solve (4.40) for the singular control as usingular(t) = −Ψ2(t)
Ψ1(t)

, if Ψ1(t) 6= 0

and U1 ≤ −Ψ2(t)
Ψ1(t)

≤ U2. To check generalized Legendre-Clebsch condition for the

singular control to be optimal, we require d
du

d2

dt2

(
∂H
∂u

)
= Ψ1(t) to be negative [77].

For our minimization problem, our control characterization is as follows:

if
∂H

∂u
< 0 at t then u∗(t) = U2,

if
∂H

∂u
> 0 at t then u∗(t) = U1,

if
∂H

∂u
< 0 at t then usingular(t) = −Ψ2

Ψ1

Thus, our control is optimal at t provided Ψ1(t) < 0 and U1 ≤ −
Ψ2(t)

Ψ1

≤ U2.
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4.4.2 Numerical results

In this section, we utilize the forward-backward sweep method [61] together with

parameters values in Table 4.1 and 4.2 to determine numerical solutions of our

optimality system. We assume that the minimization of the clinically infected bison

population has the same importance/weight as that of the chronically infected bison

population., that is, C1 = C2. Further, for simplicity in our numerical computations

we set C1 = C2 = C3 = 0.1.

Table 4.2: Additional model parameters and their values

Symbol Definition Value Units Source

β0 Averaged disease transmission rate 0.75 year−1 [38]

β1 Amplitude of oscillation in β(t) 0.8 unit-less [31]

U1 Lower bound of control u(t) 0.1 unit-less Assumed

U2 Upper bound of control u(t) 0.8 unit-less Assumed

a Recruitment rate year−1 0.255 Computed

The total number of new infections in this study are given by

TB =

∫ T

0

[
β(I + εA)SN−1 + eρ(a− φN)(I + A)

]
dt, (4.42)

and the total cost associated with the implementation of the control is given by

objective functional J (4.35). In subsequent discussion, we will present the values

for the total number of new infections and J for both periodic and non-period

environments.
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Figure 4.2: Simulation results of the autonomous model with and without the control

(a) susceptible animals (b) clinically infected animals (c) chronically infected animals (d)

recovered animals. The dotted blue and solid red curves in all the figures represent the

total population over a 50 year period with and without control, respectively. The time

varying optimal culling associated with these figures is shown in Figure 4.3. Note that the

basic reproduction number R0 = 1.576, β = 0.35 and C4 = 10.

Figure 4.2 shows the effects of optimal culling on long-term brucellosis dynam-

ics for the autonomous model, with the cost parameter C4 = 10 and the basic

reproduction number R0 = 1.5679. The results clearly demonstrate that optimal

culling can significantly reduce the populations of clinically infected, chronic and

recovered animals to a level close to zero when t > 30 years. In addition, we also

note that, with the optimal control implemented, the total population of susceptible

animals increase over time and converges to the carrying capacity N = 4500 when

t ≥ 30 years. This result demonstrates the existence of a globally stable disease-free

equilibrium as guaranteed by Theorem 4.2.1 (i). In contrast, without the imple-

mentation of optimal culling, the susceptible population decreases over time and

converges to N = 2000 when t > 30 years. This result demonstrates the existence

of a globally stable endemic equilibrium for R0 > 1 as guaranteed by Theorem 4.2.1
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(ii). Furthermore, the total number of new infections over the entire time horizon

is TB = 1.0904× 104 and the total cost is J = 5.8260× 104.

Figure 4.3 (a) shows the optimal control profile for the autonomous model with

the cost parameter (a) C4 = 10, (b) C4 = 100, and the basic reproduction number

R0 = 1.5679. As we can observe, in (a) u starts from the maximum initially (u = 0.8)

and stays there for approximately 26 years, followed by a switch to its minimum

(u = 0.1) where it remains till the final time. To investigate the impact of the costs

on the implementation of optimal culling, we set C4 = 100 (implies higher costs) and

generated the simulation results presented in Figure 4.3 (b). It is evident that with

higher costs u stays at its maximum for a very short period of time (approximately

7 years) before it switches to its minimum where it remains till the final time. With

higher costs the total number of new infections generated TB = 1.0903 × 104 and

the total cost is J = 6.4942× 104. In addition, the optimal control graphs for higher

costs (not included) are almost the same as in Figure 4.2. We present the values of

the total number of new infections in the presence and absence of optimal control

in Table 4.3.
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Figure 4.3: Simulation results showing the control profile for the autonomous model, over

a period of 50 years, with (a) C4 = 10 and (b) C4 = 100. We can observe that in all cases

the control profile admits a bang-bang solution with one switch.

Figure 4.4 shows the optimal control graphs for the time-periodic model, with

same values for the cost parameters, as the autonomous model, i.e. C4 = 10. From

these simulation results, we see that with and without control, in all cases the pop-

ulation of animals oscillates with time and this corresponds to the annual periodic
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Table 4.3: The total number of newly infected animals over 50 years and the total

cost J with respect to different control strategies for the autonomous model with

R0 = 1.5679.

Strategies TB Infections averted J

No control 1.4296× 104

Optimal control with C4 = 10, β = 0.75 1.0904× 104 3.392× 103 5.8260× 104

Optimal control with C4 = 100, β = 0.75 1.0903× 104 3.393× 103 6.4942× 104

oscillation of contact rate β(t). We also note that the amplitude of oscillations is

more pronounced when there is no control compared to a scenario when there is a

control. With seasonality, the total number of new infections is 1.5455 × 103 and

the corresponding total cost is 5.5017 × 104. In addition, we see that the optimal

control strategy significantly reduces the infected population to levels close to zero

over time. Also note that when seasonal variations are incorporated into the model

the total number of new infections generated over the entire period (50 years) is less

compared to when there are no seasonal variations. This results concur with earlier

findings in [31, 53], that the total disease burden is usually overestimated whenever

non-periodic models are used to explore transmission dynamics for diseases that are

influenced by seasonal variations.
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Figure 4.4: Simulation results of the non-autonomous model with and without the control

(a) susceptible animals (b) clinically infected animals (c) chronically infected animals (d)

recovered animals. The dotted blue and solid black curves represent the total population,

with and without control, respectively. The time varying optimal culling associated with

these figures is shown in Figure 4.5. Note that the basic reproduction number R0 = 1.312

and C4 = 10.
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Figure 4.5: Simulation results showing the control profile for the non-autonomous model,

over a period of 50 years, with (a) C4 = 10 and (b) C4 = 100. We can observe that in both

scenarios the control profile exhibits a bang-bang solution with more than one switch.

Figure 4.5 depicts the control profile for system (4.34) when seasonal variations

are incorporated. As we can note, Figure 4.5 (a) in the control profile for u starts

from the maximum initially and stays there for approximately 26 years, followed

by a switch to the minimum where it stays for a year and then it switches back

to the maximum where it stays for a year before its final switch to the minimum,

where it remains until the final time. In Figure 4.5 (b), we note that when the

costs are high C4 = 100 the control profile exhibits the same behavior as when the

costs are low C4 = 10. We note however, that with high costs, the control efforts

need to be implemented with reduced, or even minimum, strength, to achieve an

optimal balance between the costs and effects of the control. Numerical illustrations

in Figure 4.5 also demonstrated non-uniqueness (“bang-bang” form), of the optimal

control, a feature which is largely associated with problems with a linearly dependent

control function. Bang-bang solutions provides a lower bound on the cost that can

be achieved by optimal control in real problems.

We present the values of the total number of new infections in the presence and

absence of optimal control in Table 4.4 for a non-autonomous case, that is, β = β(t).

Results in Table 4.3 and 4.4 demonstrates that a periodic model is associated

with less number of new infections compared to a non-periodic one, even though the

averaged transmission rate β0 (for the periodic model) is equivalent to the transmis-

sion rate for the autonomous model, β0 = 0.75.. These findings highlights that the

risk of infection will be overestimated whenever the basic reproduction number for
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Table 4.4: The total number of newly infected animals over 50 years and the total

cost J with respect to different control strategies for the non-autonomous model

with R0 = 1.312.

Strategies TB Infections averted J

No control 1.9568× 104

Optimal control with C4 = 10, β = β(t) 1.5455× 103 1.8022× 104 5.5017× 104

Optimal control with C4 = 100, β = β(t) 1.1661× 104 1.1474× 106 7.907× 103

the autonomous models is used to estimate the power of the disease to invade the

population in a seasonal environment. The results established here are in agreement

with findings from [31, 53].

4.5 Concluding remarks

To investigate the effects of culling on the transmission dynamics of brucellosis

among bison population, two mathematical models were developed and analyzed.

The first model, an autonomous one, accounted for brucellosis transmission in non-

periodic environments while the second model, a periodic one, models brucellosis

transmission in periodic environments. For both the periodic and non-periodic

model, we computed the basic reproduction number R0 and demonstrated that

it is a sharp threshold for brucellosis transmission dynamics in both environments.

We also investigated the impact of time dependent culling efforts on the spread

and control of brucellosis. Thus, we formulated an optimal control problem with

the goal of minimizing the total number of infected (clinical and chronic) animals

and maximize the total number of susceptible and recovered population, while also

minimizing the cost of control. Our results have shown that, in all the scenarios,

optimal culling efforts can significantly reduce the total population of infected an-

imals to a level close to zero, while the susceptible population will be maximized

to the maximum carrying capacity. After the incorporation of seasonal variations,

disease dynamics oscillated with time and this corresponds to the annual periodic

oscillations of contact rate. Further, we note that a periodic model is associated

with less number of new infections compared to a non-periodic one. This scenario
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was also observed in [53, 31]. Moreover, the control profiles for both models exhibits

a bang-bang solution, with a finite number of switches. Precisely, the control profile

for an autonomous model has one switch while the control profile for the periodic

model has three switches. In addition, we also noted that, with low costs optimal

culling efforts can be implemented at maximum strength for a long period of time.

Overall, our results have shown that optimal culling could significantly control the

spread of brucellosis in both periodic and non-periodic environments.

This work clearly demonstrated the value of optimal control theory as a tool to

determine effective ways of controlling the spread of brucellosis in both periodic and

non-periodic environments.
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Chapter 5

Modeling the spatiotemporal

variations in brucellosis

transmission

5.1 Introduction

Brucellosis, an infectious bacterial disease, is one of the world’s major zoonoses.

Caused by various species of the bacteria Brucella [4], the disease can be trans-

mitted to animals and humans with exposure to infected animals or ingestion of

contaminated water, food, and dust, etc [2]. In animals, especially among sheep

and goats, brucellosis mainly affects the reproduction process and can lead to fer-

tility problems and abortion, and reduce the survival of newborns [8]. In humans,

mortality is negligible, but the illness can last for several years [14], characterized

by such symptoms as intermittent fever, headache, fatigue, joint and bone pain,

psychosis, and disturbance [6].

Currently there are more than 500,000 new cases of brucellosis reported annu-

ally and the disease remains endemic in many areas of the world, including Spain,

Latin America, the Middle East, and Africa [1, 2]. Among these, the majority of

brucellosis cases are found in sub-Sahara Africa, where Ethiopia, Chad, Tanzania,

Nigeria, Uganda, Kenya, Zimbabwe and Somalia have been reporting persistence of

brucellosis in humans attributed to the infection of domestic cattle, camels, goats
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and sheep [3]. With large pastoral communities, and the demand for meat and

livestock products to double by 2050, brucellosis poses a major threat to the public

health and economic growth of the region and demands serious control efforts.

Mathematical modeling, analysis and simulation offer a useful means to under-

stand the transmission and spread of brucellosis so that effective disease control

measures could be designed. A few mathematical models have been published in

recent years to investigate brucellosis dynamics. For example, Hou and co-workers

[30] employed a system of ordinary differential equations (ODEs) to model the trans-

mission of brucellosis and the effects of vaccination on brucellosis prevention and in-

tervention. Lolika et al. [31] proposed a brucellosis model and conducted an optimal

control study on the use of animal vaccination and environmental decontamination

as disease control measures against brucellosis infection. Li et al. [32] proposed a

model to investigate the transmission of brucellosis among sheep and from sheep to

humans, and their findings indicated that a combination of intervention methods

(such as prohibiting mixed feeding, vaccination, and detection and elimination) is

useful in controlling human brucellosis.

Despite these efforts, however, several challenges remain in the mathematical

modeling of brucellosis. First, different places likely have different geographic, eco-

logical and environmental structures, and animals living in various locations likely

exhibit different contact and communication patterns. In particular, animals make

regular migration from one place to another, which directly contributes to the disease

spread. So far these differences of the transmission dynamics have not been taken

into account, leading to inadequate understanding of the influence of the spatial fac-

tors in the transmission and spread of brucellosis. Another limitation in brucellosis

modeling is that the impact of seasonal variation is insufficiently addressed. In fact,

like many other infectious diseases, brucellosis is significantly influenced by seasonal

changes, and prior field studies have already demonstrated a strong correlation be-

tween brucellosis outbreaks and seasonal oscillations [26, 27, 28]. For example, a

recent analysis of brucellosis datasets in a few countries [26] reveals that there is a

marked seasonal variation in the incidence of acute brucellosis, with most cases oc-

curring in the spring and summer. Factors such as periodic changes in temperature,

seasonal precipitation which directly affects the availability of forage, environmental
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fluctuations in humidity and exposure to UV light which impact the survival of Bru-

cella, and seasonal rituals in Africa which are associated with animal migration and

slaughtering, all contribute to seasonal fluctuations in the transmission and spread

of brucellosis.

Such spatial and temporal heterogeneities have strong impacts on the dynamics

of brucellosis that are not captured by homogeneous, autonomous differential equa-

tion models. In the present study, we will make a first step toward integrating the

spatial and seasonal variations into a single framework for a comprehensive modeling

of brucellosis dynamics. To that end, we propose a two-patch deterministic model,

where each patch has distinct populations and infection characteristics, to study the

transmission of brucellosis among animals. In each patch , the animal population is

subdivided into the susceptible and the infected compartments; meanwhile, another

compartment is introduced to represent the concentration of the pathogen (i.e., Bru-

cella) in the environment. Both the indirect (i.e., environment-to-host) and direct

(i.e., host-to-host) transmission routes are considered in our model, representing

the multiple pathways in the force of infection for brucellosis. Animals may move

from one patch to the other, representing their migration in space. Additionally, we

will incorporate the effects of seasonal oscillation by employing time-periodic model

parameters, which leads to a non-autonomous patchy ODE system.

We organize the remainder of this chapter as follows. In Section 5.2, we first

introduce our two-patch model in the autonomous form, where each model parame-

ter is fixed as a constant, and then conduct a thorough equilibrium analysis for this

model. In Section 5.3, we extend the autonomous model to a periodic two-patch

model and analyze the threshold dynamics. In Section 5.4, we use numerical simula-

tion results to validate our analytical predictions. Finally, we conclude the chapter

with some discussion in Section 5.5.

5.2 A two-patch autonomous model

We consider the spatial spread of brucellosis in an environment of two patches, where

brucellosis can spread from one patch to the other due to animal movement, par-

ticularly, through migration. We further assume a unidirectional form of migration;
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that is, animals move from patch 1 to patch 2. Let Sj and Ij (j = 1, 2) denote the

number of susceptible and infectious animals, respectively, in each patch. Mean-

while, we introduce another compartment Bj that represents the population of the

free-living pathogen (i.e., Brucella) in the environment. The Brucella population

can be replenished by infectious hosts that excrete the pathogen to the environment.

In contrast, the natural decay of the pathogen and the decontamination practices

reduce the environmental persistence of the pathogen. Susceptible animals become

infected (and infectious) either by adequate contacts with infectious animals or the

contaminated environment. The following system of ordinary differential equations

(ODEs) describe the brucellosis transmission dynamics:

Ṡ1(t) = A1 − (α1I1 + β1B1)S1 − (θS + µ1)S1,

İ1(t) = (α1I1 + β1B1)S1 − (θI + c1 + µ1)I1,

Ḃ1(t) = φ1I1 − d1B1,

Ṡ2(t) = A2 − (α2I2 + β2B2)S2 − µ2S2 + θSS1,

İ2(t) = (α2I2 + β2B2)S2 − (µ2 + c2)I2 + θII1,

Ḃ2(t) = φ2I2 − d2B2,

(5.1)

where all model parameters are non-negative. The parameter Aj (j = 1, 2) is the

constant recruitment rate for animals in each patch, µj is the natural animal death

rate, αj and βj denote the host-to-host and environment-to-host disease transmission

rates, respectively. The mean infectious period for animals in each patch is denoted

by c−1
j . For the pathogen population, φj denotes the pathogen shedding rate, and

dj is the pathogen removal rate that includes the effects of both the natural decay

and the decontamination practices. In addition, we assume that the susceptible and

infectious animals migrate from patch 1 to patch 2 at rates θS and θI , respectively.

5.2.1 Feasible region

Let N(t) = S1(t) + I1(t) +S2(t) + I2(t). Adding all equations for animal individuals

in (5.1)

Ṅ = A1 + A2 − µ1(S1 + I1)− µ2(S2 + I2)− c1I1 − c2I2 ≤ A1 + A2 −min(µ1, µ2)N

which implies that

lim sup
t→∞

N(t) ≤ (A1 + A2)

min(µ1, µ2)
.
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From the pathogen equation in (5.1) leads

dBj

dt
= φjIj − djBj ≤

φj(A1 + A2)

min(µ1, µ2)
− djBj

giving

lim sup
t→∞

Bj ≤
φj(A1 + A2)

min(µ1, µ2)dj

then the domain of biological interest

Γ =
{

(S1, I1, B1, S2, I2, B2) ∈ R6
+ : Sj ≤ S0

j , Bj ≤
φj(A1 + A2)

djµj
, j = 1, 2;

N(t) ≤ (A1 + A2)

min(µ1, µ2)

}
is positively invariant and attracting all orbits with respect to the model (5.1).

5.2.2 Disease-free equilibrium

A disease-free equilibrium refers to the equilibrium that exists when there is no

disease (that is S1 = S0
1 > 0, S2 = S0

2 > 0, I0
1 = I0

2 = B0
1 = B0

2 = 0). The

disease-free equilibrium is determined by equations:

A1 − (α1I1 + β1B1)S1 − (θS + µ1)S1 = 0

(α1I1 + β1B1)S1 − (θI + c1 + µ1)I1 = 0

φ1I1 − d1B1 = 0

A2 − (α2I2 + β2B2)S2 − µ2S2 + θSS1 = 0

(α2I2 + β2B2)S2 − (µ2 + c2)I2 + θII1 = 0

φ2I2 − d2B2 = 0.

(5.2)

A disease-free equation (5.2) yields{
A1 − (θS + µ1)S0

1 = 0,

A2 − µ2S
0
2 + θSS

0
1 = 0.

(5.3)

solving system (5.3) for S0
1 and S0

2 implies that system (5.1) has an evident disease-

free equilibrium (DFE) given by

E0 =
(
S0

1 , I
0
1 , B

0
1 , S

0
2 , I

0
2 , B

0
2

)
=

(
A1

θS + µ1

, 0, 0,
θSA1 + (θS + µ1)A2

µ2(θS + µ1)
, 0, 0

)
. (5.4)
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5.2.3 The reproduction number

The basic reproduction number, denoted R0, measures the average number of sec-

ondary infections generated by a single infectious case in a fully susceptible popula-

tion during its average infectious period [50]. The reproduction number is commonly

regarded as a threshold quantity for the disease dynamics, essential in determining

the transmission and spread of the disease. Using the next-generation matrix nota-

tions in [50], the non-negative matrix F that denotes the generation of new infection

and the non-singular matrix V that denotes the disease transfer among compart-

ments, are respectively given by

F =


α1S

0
1 β1S

0
1 0 0

0 0 0 0

0 0 α2S
0
2 β2S

0
2

0 0 0 0

 ,
and

V =


(c1 + θI + µ1) 0 0 0

−φ1 d1 0 0

−θI 0 (c2 + µ2) 0

0 0 −φ2 d2

 . (5.5)

Let us use Ri to denote the reproduction number associated with patch i (i = 1, 2),

where

R1 =
(α1d1 + β1φ1)A1

d1(θS + µ1)(c1 + θI + µ1)
, R2 =

(α2d2 + β2φ2)(θSA1 + (θS + µ1)A2)

d2µ2(θS + µ1)(µ2 + c2)
. (5.6)

Biologically, R1 and R2 represent the disease risks for patches 1 and 2, respec-

tively. We observe that, based on our assumption of the unidirectional animal

movement, R1 does not depend on the properties of patch 2, whereas R2 depends

on some characteristics of patch 1. In particular, the disease risk for patch 2 has

been increased due to the animal migration from patch 1.

From (5.5), we know that the basic reproduction numberR0 for the entire system

is determined by the spectral radius of the next-generation matrix FV −1. It then

follows that

R0 = max(R1, R2), (5.7)

showing that the disease risk for the entire system depends on that associated with

each of the two patches.
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5.2.4 Global stability of the disease-free equilibrium

From the work in [50], we know that the DFE is locally asymptotically stable when

R0 < 1, and unstable when R0 > 1. Indeed, we can establish a stronger result

regarding the global dynamics of the DFE.

Theorem 5.2.1 If R0 ≤ 1, the DFE is globally asymptotically stable in Γ. If

R0 > 1, the system is uniformly persistent.

Proof 9 Let Y(t) = (I1, B1, I2, B2). Since
İ1(t) = (α1I1 + β1B1)S1 − (θI + c1 + µ1)I1,

Ḃ1(t) = φ1I1 − d1B1,

İ2(t) = (α2I2 + β2B2)S2 − (µ2 + c2)I1 + θII1,

Ḃ2(t) = φ2I2 − d2B2,

(5.8)

it follows that

Ẏ(t) ≤ (F − V )Y ,

where F and V are defined in (5.5). Motivated by [78], we define a Lyapunov

function as follows

L = wTV −1Y .

Differentiating L along solutions of (5.1), we have

L̇(t) = wTV −1Ẏ
≤ wTV −1(F − V )Y
= (R0 − 1)wTY ≤ 0, if R0 ≤ 1.

It can be easily verified that the largest invariant subset of Γ where L̇ = 0 is

the singleton {E0}. Therefore, by LaSalle’s invariance principle [46], E0 is globally

asymptotically stable in Γ when R0 ≤ 1.

If R0 > 1, then by continuity, L̇ > 0 in a neighborhood of E0 in Γ̊. Solutions

in Γ̊ sufficiently close to E0 move away from the DFE, implying that the DFE is

unstable. Using a uniform persistence result from [79] and an argument as in the

proof of Proposition 3.3 of [80], it can be shown that when R0 > 1, the instability of

the DFE implies the uniform persistence of the model (5.1).

89



The result in Theorem 5.2.1 shows that R0 = 1 is a sharp threshold for disease

dynamics: the disease will die out when R0 ≤ 1, whereas the disease will persist

when R0 > 1 (we refer to [27, 81, 82] for more details on the persistence theory).

Next, we turn to the analysis of the nontrivial equilibria of the system and their

dynamical properties.

5.2.5 Nontrivial equilibria

Any nontrivial equilibrium (S1, I1, B1, S2, I2, B2) for system (5.1) satisfies the fol-

lowing algebraic equations:

A1 = (α1I1 + β1B1 + θS + µ1)S1, (5.9)

(α1I1 + β1B1)S1 = (θI + c1 + µ1)I1, (5.10)

d1B1 = φ1I1, (5.11)

A2 = (α2I2 + β2B2 + µ2)S2 − θSS1, (5.12)

(α2I2 + β2B2)S2 = (µ2 + c2)I2 − θII1, (5.13)

d2B2 = φ2I2. (5.14)

We have B1 = φ1
d1
I1 from equation (5.12), and plug it into (5.11) to obtain(
α1 +

β1φ1

d1

)
I1S1 = (θI + c1 + µ1)I1 . (5.15)

If I1 = 0, then B1 = 0, S1 = A1

θS+µ1
:= S̃1, where S̃1 = S0

1 . Combining (5.14) and

(5.15), we obtain

α2d2 + β2φ2

d2

I2S2 = (µ2 + c2)I2 . (5.16)

Notice that I2 must be positive for a nontrivial equilibrium (since I1 = 0 already).

It then yields

S2 =
d2(µ2 + c2)

α2d2 + β2φ2

:= S̃2 . (5.17)

By substituting equations (5.14) and (5.17) into (5.13), we have

I2 =
d2µ2(R2 − 1)

α2d2 + β2φ2

:= Ĩ2, B2 =
φ2µ2(R2 − 1)

α2d2 + β2φ2

:= B̃2.
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Therefore, we conclude that there exists a nontrivial boundary equilibrium

E1 = (S̃1, 0, 0, S̃2, Ĩ2, B̃2) (5.18)

for system (5.1) if and only if R2 > 1.

Next, we consider the case I1 = I∗1 > 0. We can calculate S1 = S∗1 directly from

(5.15), which yields

S∗1 =
d1(θI + c1 + µ1)

α1d1 + β1φ1

. (5.19)

Then substitution of equation (5.19) into (5.10) yields

I∗1 =
d1(θI + c1 + µ1)

α1d1 + β1φ1

(R1 − 1). (5.20)

Clearly, I∗1 > 0 if and only if R1 > 1. Subsequently, B1 = B∗1 = φ1
d1
I∗1 is uniquely

determined by I∗1 . Meanwhile, equations (5.13), (5.14) and (5.15) can be reduced to

two equations:

A2 =

(
α2d2 + β2φ2

d2

I2 + µ2

)
S2 − θSS∗1 , (5.21)

α2d2 + β2φ2

d2

I2S2 = (µ2 + c2)I2 − θII∗1 . (5.22)

Combining (5.21) and (5.22) and canceling out S2, we have

α2d2 + β2φ2

d2

(µ2 + c2)I2
2 +

[
µ2(µ2 + c2)− α2d2 + β2φ2

d2

(A2 + θSS
∗
1 + θII

∗
1 )

]
I2

−µ2θII
∗
1 = 0,

which indicates that I2 has a unique positive solution I∗2 > 0 since α2d2+β2φ2
d2

(µ2 +

c2) > 0 and µ2θII
∗
1 > 0. Consequently, S∗2 =

A2+θSS
∗
1

r2I∗2+µ2
and B∗2 = φ2

d2
I∗2 are uniquely

decided by I∗2 . Therefore, we have a positive endemic equilibrium

E2 = (S∗1 , I
∗
1 , B

∗
1 , S

∗
2 , I
∗
2 , B

∗
2) (5.23)

for system (5.1) if and only if R1 > 1.

Now we may summarize the above analysis by the following theorem.

Theorem 5.2.2
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If R0 = max{R1,R2} ≤ 1, then system (5.1) only has the trivial, disease-free

equilibrium E0.

If R0 = max{R1,R2} > 1, then in addition to the DFE E0, nontrivial equilibria

exist:

1) If R1 ≤ 1, R2 > 1, there is only a nontrivial boundary equilibrium E1 in

Γ.

2) If R1 > 1, R2 ≤ 1, there is only a positive endemic equilibrium E2 in Γ.

3) If R1 > 1, R2 > 1, both the boundary equilibrium E1 and the endemic

equilibrium E2 exist in Γ.

5.2.6 Local and global dynamics

We proceed to investigate the dynamical behavior of the nontrivial equilibria. The

following result characterizes the local dynamics of the boundary equilibrium E1 .

Theorem 5.2.3

(ii) If R1 < 1 and R2 > 1, then E1 is locally asymptotically stable.

(i) If R1 > 1 and R2 > 1, then E1 is unstable.

Proof 10 Linearizing the system (5.1) at the boundary equilibrium E1, we obtain

the Jacobian matrix J =

[
J̃1 0

J̃∗ J̃2

]
, where

J̃1 =


−(θS + µ1) −α1S̃1 −β1S̃1

0 α1S̃1 − (θI + c1 + µ1) β1S̃1

0 φ1 −d1

 ,

J̃2 =


−(α2Ĩ2 + β2B̃2 + µ2) −α2S̃2 −β2S̃2

α2Ĩ2 + β2B̃2 α1S̃2 − (µ2 + c2) β2S̃2

0 φ2 −d2

 .
It is easy to verify that the characteristic polynomial of J is det(λI−J) = det(λI−
J̃1) det(λI − J̃2), and

det(λI − J̃1) = λ3 + x1λ
2 + y1λ+ z1,
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det(λI − J̃2) = λ3 + x2λ
2 + y2λ+ z2,

where

x1 = d1 + Y1 +X1

(
1− α1d1

Z1

R1

)
,

y1 = Y1

(
d1 +X1

(
1− α1d1

Z1

R1

))
+ d1X1(1−R1),

z1 = d1X1Y1(1−R1),

x2 = d2 + µ2R2 +
β2φ2

Z2

X2,

y2 = µ2X2(R2 − 1) + µ2X2
β2φ2

Z2

+ d2µ2R2,

z2 = µ2d2X2(R2 − 1),

with

X1 = θI + c1 + µ1,

Y1 = θS + µ1,

Z1 = α1d1 + β1φ1,

X2 = µ2 + c2,

Z2 = α2d2 + β2φ2.

Clearly, if R1 > 1 and R2 > 1, then z1 < 0, and there exists an eigenvalue

of J that has a positive real part. Hence E1 is unstable in this case. On the other

hand, x1, y1, z1, x2, y2, z2 are all positive when R1 < 1 and R2 > 1. Furthermore,

we have x1y1 > z1 and x2y2 > z2, since x1 > Y1, y1 > d1X1(1 − R1) and x2 >

d2, y2 > µ2X2(R2− 1). It follows from the Routh-Hurwitz criterion that E1 is locally

asymptotically stable if R1 < 1 and R2 > 1.

We already know that the disease-free equilibrium E0 is unstable when there

exist nontrivial equilibria; i.e., when R0 > 1. Theorem 5.2.3 shows that when E1

is the only nontrivial equilibrium, it must be (locally) stable; and when both E1

and E2 exist, E1 becomes unstable. This, consequently, implies that the endemic

equilibrium E2 is stable whenever it exists. The local stability of E2 can be similarly

analyzed by examining its characteristic polynomial and using the Routh-Hurwitz

criterion, though the algebraic manipulation becomes extremely tedious. Instead of
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engaging the (somehow unnecessary) algebraic complications, we proceed to estab-

lish the stronger results regarding the global asymptotic stabilities of both E1 and

E2 . To that end, we introduce two more assumptions:

(C1) sup (S1) ≤ θI+c1
2α1

.

(C2) sup (S2) ≤ c2
2α2

.

These conditions provide additional regulations on the upper bounds of the suscepti-

ble populations in both patches to ensure global stability. In particular, if S0
1 ≤ θI+c1

2α1

and S0
2 ≤ c2

2α2
, then (C1) and (C2) will be automatically satisfied.

We will follow the geometric approach originally proposed by Li and Muldowney

[74] to investigate the global asymptotic stabilities of the nontrivial equilibria. For

completeness, we first present the following result from [74].

Lemma 5.1 Consider a dynamical system dX
dt

= f(X), where f : D 7→ Rn is a

C1 function and D ⊂ Rn is a simply connected domain. Assume that there exists a

compact absorbing set K ⊂ D and the system has a unique equilibrium point X∗ in

D . Then X∗ is globally asymptotically stable in D if q̄2 < 0, where

q̄2 = lim sup
t→∞

sup
X0∈K

1

t

∫ t

0

m
(
Q(X(s, X0))

)
ds . (5.24)

In equation (5.24), Q is a matrix-valued function defined as

Q = PfP
−1 + PJ [2]P−1 , (5.25)

where P (X) is a
(
n
2

)
×
(
n
2

)
matrix-valued C1 function in D, Pf is the derivative of

P (entry-wise) along the direction of f , and J [2] is the second additive compound

matrix of the Jacobian J(X) = Df(X) . Meanwhile, m(Q) is the Lozinskǐi measure

of Q with respect to a matrix norm; i.e.,

m(Q) = lim
h→0+

|I + hQ| − 1

h
, (5.26)

where I represents the identity matrix.

Now we are ready to prove the following global stability result.

Theorem 5.2.4

(i) If R1 > 1, then the endemic equilibrium E2 exists and is global asymptotically

stable, provided that the assumptions (C1) and (C2) hold.
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(ii) If R1 < 1 and R2 > 1, then the boundary equilibrium E1 is global asymptotically

stable.

Proof 11 We apply the geometric approach, summarized in Lemma 5.1, to analyse

the global stabilities.

(i). Note that patch 1 does not depend on patch 2 and that the endemic equilibrium

of patch 1 is (uniquely) represented by the first three components of E2 ; i.e., E (1)
2 =

(S∗1 , I
∗
1 , B

∗
1). This indicates that the global stability of E (1)

2 in patch 1 can be analyzed

independently, based on the first three equations in system (5.1). Thus we will

first prove that E (1)
2 is globally asymptotically stable in patch 1, using the geometric

approach.

By direct calculation, we find that the Jacobian matrix of the linearized subsystem

in patch 1 is

J1 =


−(α1I1 + β1B1 + Y1) −α1S1 −β1S1

α1I1 + β1B1 α1S1 −X1 β1S1

0 φ1 −d1

 ,
and the associated second additive compound matrix J

[2]
1 is

α1S1 − (α1I1 + β1B1 + Y1 +X1) β1S1 β1S1

φ1 −(α1I1 + β1B1 + Y1 + d1) −α1S1

0 α1I1 + β1B1 α1S1 −X1 − d1

 .
Define P1 =diag

[
1, I1

B1
, I1
B1

]
and let F1 denote the vector field of patch 1, then

P1F1
P−1

1 = diag

[
0,
İ1

I1

− Ḃ1

B1

,
İ1

I1

− Ḃ1

B1

]
,

and P1J
[2]
1 P−1

1 is given by
α1S1 − (α1I1 + β1B1 + Y1 +X1) β1S1

B1

I1
β1S1

B1

I1
I1
B1
φ1 −(α1I1 + β1B1 + Y1 + d1) −α1S1

0 α1I1 + β1B1 α1S1 −X1 − d1

 .
The matrix Q(1) := P1F1

P−1
1 + P1J

[2]
1 P−1

1 can be written in the block form as

follows

Q(1) =

[
Q

(1)
11 Q

(1)
12

Q
(1)
21 Q

(1)
22

]
,
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where

Q
(1)
11 = α1S1 − (α1I1 + β1B1 + Y1 +X1),

Q
(1)
12 =

[
β1S1

B1

I1

, β1S1
B1

I1

]
,

Q
(1)
21 =

[
I1

B1

φ1, 0

]T
,

Q
(1)
22 =

[
−(α1I1 + β1B1 + Y1 + d1) + İ1

I1
− Ḃ1

B1
−α1S1

α1I1 + β1B1 α1S1 −X1 − d1 + İ1
I1
− Ḃ1

B1

]
.

We now define the vector norm for any (x1, x2, x3) ∈ R3 as

|(x1, x2, x3)| = max (|x1|, |x2|+ |x3|).

Let m denote the Lozinskĭi measure with respect to this norm. By direct calculation,

we find

m
(
Q(1)

)
= sup

(
g

(1)
1 , g

(1)
2

)
with g

(1)
1 = m1

(
Q

(1)
11

)
+
∣∣∣Q(1)

12

∣∣∣, g(1)
2 =

∣∣∣Q(1)
21

∣∣∣+m1

(
Q

(1)
22

)
, where

∣∣∣Q(1)
12

∣∣∣ and
∣∣∣Q(1)

21

∣∣∣ are

the matrix norms induced by the L1 norm, and m1 denotes the Lozinskĭi measure

with respect to the L1 norm. Specifically,

g
(1)
1 = α1S1 − (α1I1 + β1B1 + Y1 +X1) + β1S1

B1

I1
,

g
(1)
2 = −Y1 + İ1

I1
+ sup (0, 2α1S1 −X1 + Y1).

Observing that İ1
I1

= (α1S1 + β1S1
B1

I1
)−X1 and using assumption (C1), we have

g
(1)
1 =

İ1

I1

− (α1I1 + β1B1 + Y1) ≤ İ1

I1

− µ1,

g
(1)
2 ≤ İ1

I1

− µ1.

Hence m(Q(1)) ≤ İ1
I1
− µ1. In view of 0 ≤ I1(t) ≤ N(t) ≤ A1+A2

min (µ1,µ2)
, if t is large

enough, then
ln(I1(t))− ln(I1(0))

t
≤ µ1

2
.

Consequently,

1

t

∫ t

0

m(Q(1))ds ≤ 1

t

∫ t

0

(
İ1

I1

− µ1)ds =
ln(I1(t))− ln(I1(0))

t
− µ1 ≤ −

µ1

2
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for t sufficiently large. Therefore, we obtain

q̄2
(1) := lim sup

t→∞

1

t

∫ t

0

m(Q(1))ds ≤ −µ1

2
< 0,

which shows that E (1)
2 is globally asymptotically stable in patch 1.

Thus, to establish the global asymptotic stability of E2 in the entire domain, it is

sufficient to show that the endemic equilibrium of patch 2; i.e., E (2)
2 = (S∗2 , I

∗
2 , B

∗
2), is

globally asymptotically stable in patch 2 under the condition (S1, I1, B1) = (S∗1 , I
∗
1 , B

∗
1).

This can be proved in a similar way and details are provided below.

For patch 2, the Jacobian matrix of the linearized subsystem is

J2 =


−(α2I2 + β2B2 + µ2) −α2S2 −β2S2

α2I2 + β2B2 α2S2 −X2 β2S2

0 φ2 −d2

 ,
and the associated second additive compound matrix is J

[2]
2

α2S2 − (α2I2 + β2B2 + µ2 +X2) β2S2 β2S2

φ2 −(α2I2 + β2B2 + µ2 + d2) −α2S2

0 α2I2 + β2B2 α2S2 −X2 − d2

 .
Also define P2 =diag

[
1, I2

B2
, I2
B2

]
and let F2 denote the vector field of patch 2, then

P2F2
P−1

2 = diag

[
0,
İ2

I2

− Ḃ2

B2

,
İ2

I2

− Ḃ2

B2

]
,

and P2J
[2]
2 P−1

2 is given by
α2S2 − (α2I2 + β2B2 + µ2 +X2) β2S2

B2

I2
β2S2

B2

I2
I2
B2
φ2 −(α2I2 + β2B2 + µ2 + d2) −α2S2

0 α2I2 + β2B2 α2S2 −X2 − d2

 .
The matrix Q(2) := P2F2

P−1
2 + P2J

[2]
2 P−1

2 can be written in the block form as

follows

Q(2) =

[
Q

(2)
11 Q

(2)
12

Q
(2)
21 Q

(2)
22

]
,
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where

Q
(2)
11 = α2S2 − (α2I2 + β2B2 + µ2 +X2),

Q
(2)
12 =

[
β2S2

B2

I2

, β2S2
B2

I2

]
,

Q
(2)
21 =

[
I2

B2

φ2, 0

]T
,

Q
(2)
22 =

[
−(α2I2 + β2B2 + µ2 + d2) + İ2

I2
− Ḃ2

B2
−α2S2

α2I2 + β2B2 α2S2 −X2 − d2 + İ2
I2
− Ḃ2

B2

]
.

Then we have m
(
Q(2)

)
= sup

(
g

(2)
1 , g

(2)
2

)
, where

g
(2)
1 = α2S2 − (α2I2 + β2B2 + µ2 +X2) + β2S2

B2

I2

,

g
(2)
2 = −µ2 +

İ2

I2

+ sup (0, 2α2S2 − c2).

Since İ2
I2

= (α2S2 + β2S2
B2

I2
)−X2 + θI

I∗1
I2

and the assumption (C2) holds, we have

g
(2)
1 =

İ2 − θII∗1
I2

− (α2I2 + β2B2 + µ2) ≤ İ2

I2

− µ2,

g
(2)
2 ≤ İ2

I2

− µ2,

Hence m(Q(2)) ≤ İ2
I2
− µ2. Also notice that 0 ≤ I2(t) ≤ N(t) ≤ A1+A2

min (µ1,µ2)
. Then

ln(I2(t))− ln(I2(0))

t
≤ µ2

2

if t is large enough. Therefore,

1

t

∫ t

0

m(Q(2))ds ≤ 1

t

∫ t

0

(
İ2

I2

− µ2)ds =
ln(I2(t))− ln(I2(0))

t
− µ2 ≤ −

µ2

2

for t sufficiently large. This implies q̄2
(2) := lim sup

t→∞

1

t

∫ t

0

m(Q(2))ds ≤ −µ2

2
< 0

which establishes the global stability of E (2)
2 in patch 2. Consequently, the proof of

the global asymptotic stability of E2 in Γ is complete.

(ii). If R1 < 1 and R2 > 1, there is only one nontrivial equilibrium E1 and

we may write E1 = (E (1)
1 , E (2)

1 ), where E (1)
1 = (S̃1, 0, 0) is the disease-free equilibrium

of patch 1, and E (2)
2 = (S̃2, Ĩ2, B̃2) is the unique positive equilibrium of patch 2
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under the condition (S1, I1, B1) = (S̃1, 0, 0). Similar to the proof of Theorem 5.2.1

and Theorem 5.2.4 (i), it can be easily verified that E (1)
1 is globally asymptotically

stable in patch 1, and E (2)
1 is globally asymptotically stable in patch 2 provided that

(S1, I1, B1) = (S̃1, 0, 0). Hence we conclude that E1 is globally asymptotically.

5.3 A two-patch periodic model

Having thoroughly analyzed the dynamics of the autonomous model, we now incor-

porate the seasonal variation into our modeling framework. As mentioned before,

brucellosis exhibits a strong seasonal pattern, with concentrated mortality and mor-

bidity burden in a few months each year. These seasonal fluctuations could be

represented by periodic changes in the various contact and transmission rates in our

model.

For illustration, let us consider the temporal oscillation of the direct (i.e., host-

to-host) and indirect (i.e., environment-to-host) transmission rates. We define

βj(t) = βj0

[
1 + a1 cos

(
πt

6

)]
, j = 1, 2

αj(t) = αj0

[
1 + a2 cos

(
πt

6

)]
, j = 1, 2

where αj0 and βj0 denote the respective time-averaged (or, basic) transmission rates.

Meanwhile, we represent the pathogen shedding rate by

φj(t) = φj0

[
1 + a3 cos

(
πt

6

)]
, j = 1, 2

where φj0 denotes the basic shedding rate in the absence of seasonal forcing.

Note that 0 ≤ ak ≤ 1 (k = 1, 2, 3) denote the magnitude of seasonal fluctuations for

these three parameters. For simplicity, we assume that all other model parameters

are the same as defined in system (5.1). Our new two-patch system incorporating
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both spatial and seasonal variations is thus given by

Ṡ1(t) = A1 − [α1(t)I1 + β1(t)B1]S1 − [θS + µ1]S1,

İ1(t) = [α1(t)I1 + β1(t)B1]S1 − [θI + c1 + µ1]I1,

Ḃ1(t) = φ1(t)I1 − d1B1,

Ṡ2(t) = A2 − [α2(t)I2 + β2(t)B2]S2 − µ2S2 + θSS1,

İ2(t) = [α2(t)I2 + β2B2(t)]S2 − (µ2 + c2)I2 + θII1,

Ḃ2(t) = φ2(t)I2 − d2B2 .

(5.27)

It again can be easily verified that system (5.27) has a unique and bounded solution

with any initial value (Sj(0), Ij(0), Bj(0)) ∈ Γ, and that the compact set Γ is

positively invariant with respect to system (5.27).

5.3.1 The reproduction number

It is straightforward to see that E0 = (S0
1 , 0, 0, S

0
2 , 0, 0) remains the disease-free equi-

librium for the model (5.27). Thus, we can similarly introduce the next-generation

matrices F (t) and V (t) (evaluated at the disease-free equilibrium) as

F (t) =


α1(t)S0

1 β1(t)S0
1 0 0

0 0 0 0

0 0 α2(t)S0
2 β2(t)S0

2

0 0 0 0

 ,
and

V (t) =


(c1 + θI + µ1) 0 0 0

−φ1(t) d1 0 0

−θI 0 (c2 + µ2) 0

0 0 −φ2(t) d2


In order to define the basic reproduction number of this non-autonomous model, we

follow the work of Wang and Zhao [55]. They introduced the next-infection operator

L for a model in periodic environments by

(Lφ)(t) =

∫ ∞
0

Y (t, t− s)F (t− s)φ(t− s)ds, (5.28)

where Y (t, s), t ≥ s, is the evolution operator of the linear ω-periodic system dy/dt =

−V (t)y and φ(t), the initial distribution of infectious individuals, is ω-periodic and
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nonnegative. The basic reproduction number is then defined as the spectral radius

of the next-infection operator,

R0 = ρ(L). (5.29)

For our model (5.27), the evolution operator can be determined by solving the

system of differential equations dy/dt = −V (t)y with the initial condition Y (s, s) =

I4×4; thus, we obtain

Y (t, s) =


y11(t, s) 0 0 0

y21(t, s) y22(t, s) 0 0

y31(t, s) 0 y33(t, s) 0

y41(t, s) 0 y43(t, s) y44(t, s)

 (5.30)

where

y11(t, s) = e−(c1+θI+µ1)(t−s),

y21(t, s) = φ10e
−d1t

∫ t

s

ed1x
(

1 + a3 cos
(πx

6

))
y11(x, s)dx,

y31(t, s) = θIe
−(c2+µ2)t

∫ t

s

e(c2+µ2)xy11(x, s)dx,

y41(t, s) = φ20e
−d2t

∫ t

s

ed2x
(

1 + a3 cos
(πx

6

))
y31(x, s)dx,

y22(t, s) = e−d1(t−s),

y33(t, s) = e−(c2+µ2)(t−s),

y43(t, s) = φ20e
−d2t

∫ t

s

ed2x
(

1 + a3 cos
(πx

6

))
y33(x, s)dx,

y44(t, s) = e−d2(t−s).

The basic reproduction number defined in Equation (5.29) can be numerically eval-

uated by using, for example, the method described in [56].

5.3.2 Threshold dynamics

Using the basic reproduction number R0 , we aim to establish the threshold type

result, stated in the theorem below, for the periodic model (5.27). To that end, we

first note that R2
+ is positively invariant for the following cooperative system:{

Ṡ1(t) = A1 − (θS + µ1)S1,

Ṡ2(t) = A2 − µ2S2 + θSS1,
(5.31)
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and that (S0
1 , S

0
2) is the unique equilibrium solution which is globally attractive in

R2
+.

Theorem 5.3.1

(i) If R0 < 1, then the disease-free equilibrium E0 of system (5.27) is globally asymp-

totically stable;

(ii) If R0 > 1, then system (5.27) admits at least one positive ω-periodic solution,

and solutions of system (5.27) are uniformly persistent.

Proof 12 If (S1(t), I1(t), B1(t), S2(t), I2(t), B2(t)) is a nonnegative solution of (5.27),

then we have {
Ṡ1(t) ≤ A1 − (θS + µ1)S1,

Ṡ2(t) ≤ A2 − µ2S2 + θSS1 .
(5.32)

Note that any nonnegative solution (S1(t), S2(t)) of system (5.31) approaches (S0
1 , S

0
2)

as t → ∞. It then follows from the standard comparison theorem (see, e.g., [75,

Theorem A.4]) that for any ε > 0, there is a T > 0 such that

Si(t) < S0
i + ε, i = 1, 2, for t > T. (5.33)

Thus, for t > T , we have

İ1(t) ≤ [α1(t)I1 + β1(t)B1](S0
1 + ε)− [θI + c1 + µ1]I1, (5.34)

Ḃ1(t) ≤ φ1(t)I1 − d1B1, (5.35)

İ2(t) ≤ [α2(t)I2 + β2B2(t)](S0
2 + ε)− [µ2 + c2]I2 + θII1, (5.36)

Ḃ2(t) ≤ φ2(t)I2 − d2B2. (5.37)

Define

Fε(t) =


α1(t)(S0

1 + ε) β1(t)(S0
1 + ε) 0 0

0 0 0 0

0 0 α2(t)(S0
2 + ε) β2(t)(S0

2 + ε)

0 0 0 0

 .

By [55, Thorem 2.2], we have R0 < 1 ⇐⇒ ρ(φF−V (ω)) < 1, where ρ(φF−V (ω)) is

the spectral radius of φF−V (ω), and φF−V (ω) is the monodromy matrix of the linear
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ω-periodic system dy/dt = (F − V )y. Then we can set ε sufficiently small such that

ρ(φFε−V (ω)) < 1. As a consequence, the trivial solution (0, 0, 0, 0) of the following

linear ω-periodic system

İ1(t) = [α1(t)I1 + β1(t)B1](S0
1 + ε)− [θI + c1 + µ1]I1, (5.38)

Ḃ1(t) = φ1(t)I1 − d1B1, (5.39)

İ2(t) = [α2(t)I2 + β2B2(t)](S0
2 + ε)− [µ2 + c2]I2 + θII1, (5.40)

Ḃ2(t) = φ2(t)I2 − d2B2, (5.41)

is globally asymptotically stable. Again by the comparison theorem, we know that

Ii(t) → 0, Bi(t) → 0 as t → ∞ for i = 1, 2. Finally, the first and fourth equations

of system (5.27) imply that Si(t)→ S0
i as t→∞ for i = 1, 2. This proves the result

in part (i).

Now we consider the case R0 > 1. We define X = R6
+, X0 = R2

+× Int(R4
+), ∂X0 =

X\X0, and denote S(t) = (S1(t), S2(t)), I(t) = (I1(t), I2(t)), B(t) = (B1(t), B2(t)).

It is easy to see that both X and X0 are positively invariant. Let P : R6
+ → R6

+

be the Poincaré map associated with system (5.27); that is, P (x0) = u(ω, x0) for all

x0 ∈ R6
+, where u(t, x0) is the unique solution of (5.27) with u(0, x0) = x0. Set

M∂ = {(S(0), I(0), B(0)) ∈ ∂X0 : Pm(S(0), I(0), B(0)) ∈ ∂X0, ∀m ≥ 0},

M = {(S, I, B) : S ≥ 0, I = (0, I2), B = (0, B2), I2 ≥ 0, B2 ≥ 0}.

We first show that

M∂ = M. (5.42)

Clearly, M ⊆ M∂. For any (S(0), I(0), B(0)) ∈ ∂X0\M , if I1(0) > 0, I2(0) =

0, B(0) = 0, then Ḃ1(0) = φ1(0)I1(0) > 0, İ2(0) = θI(0)I1(0) > 0. It follows

that I(t) > 0, B1(t) > 0 for 0 < t � 1, hence Ḃ2(t) > 0 for 0 < t � 1,

which implies B(t) > 0 for 0 < t � 1. If B1(0) > 0, I1(0) = 0, then İ1(0) =

α1(0)B1(0)S1(0) > 0, we can still obtain I(t) > 0, B(t) > 0 for 0 < t� 1. Thus, we

have (S(t), I(t), B(t)) /∈ ∂X0 for 0 < t � 1. By the positive invariance of X0, we

know that Pm(S(0), I(0), B(0)) /∈ ∂X0 for m ≥ 1, hence (S(0), I(0), B(0)) /∈ M∂,

and thus (5.42) holds.
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Now consider the fixed point M0 = (S0, 0, 0) of the Poincaré map P , where

S0 = (S0
1 , S

0
2). Define W S(M0) = {x0 : Pm(x0)→M0,m→∞}. We show that

W S(M0) ∩X0 = ∅. (5.43)

Based on the continuity of solutions with respect to the initial conditions, for any

ε > 0, there exists δ > 0 small enough such that for all (S(0), I(0), B(0)) ∈ X0 with

||(S(0), I(0), B(0))−M0|| ≤ δ, we have

||u(t, (S(0), I(0), B(0))− u(t,M0)|| < ε , ∀t ∈ [0, ω]. (5.44)

To obtain (5.43), we claim that

lim sup
m→∞

||Pm(S(0), I(0), B(0))−M0|| ≥ δ, ∀(S(0), I(0), B(0)) ∈ X0. (5.45)

We prove this claim by contradiction; that is, we suppose

lim sup
m→∞

||Pm(S(0), I(0), B(0))−M0|| < δ

for some (S(0), I(0), B(0)) ∈ X0. Without loss of generality, we assume that

||Pm(S(0), I(0), B(0))−M0|| < δ, ∀m ≥ 0. Thus,

||u(t, Pm(S(0), I(0), B(0))− u(t,M0)|| < ε, ∀t ∈ [0, ω] and m ≥ 0. (5.46)

Moreover, for any t ≥ 0, we write t = t0 + kω with t0 ∈ [0, ω) and k = [t/ω], the

greatest integer less than or equal to t/ω. Then we obtain

||u(t, (S(0), I(0), B(0))− u(t,M0)|| = ||u(t0, P
m(S(0), I(0), B(0))− u(t0,M0)|| < ε

(5.47)

for any t ≥ 0. Let (S(t), I(t), B(t)) = u(t, (S(0), I(0), B(0)). It follows that −ε <
S(t) − S0 < ε, 0 < I(t) < ε and 0 < B(t) < ε. Again based on [55, Thorem

2.2], R0 > 1 if and only if ρ(ΦF−V (ω)) > 1. Thus, for ε small enough, we have

ρ(ΦFε−V (ω)) > 1 which immediately yields the contradiction as

lim
t→∞

Ii(t) =∞, lim
t→∞

Bi(t) =∞, i = 1, 2.

Let P1 : R2
+ −→ R2

+ be the Poincareé map associated with (5.31). Then S0 is

globally attractive in R2
+\{0} for P1. It follows that M0 is isolated invariant set in
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X, and notice that W S(M0)∩X0 = ∅. Hence, every orbit in M∂ converges to M0 and

M0 is acyclic in M∂. By [58, Thorem 1.3.1], for a stronger repelling property of ∂X0,

we conclude that P is uniformly persistent with respect to (X0, ∂X0), which implies

the uniform persistence of the solutions of system (5.27) with respect to (X0, ∂X0)

[58, Thorem 3.1.1]. Consequently, based on [58, Theorem 1.3.6], the Poincaré map

P has a fixed point (S̄(0), Ī(0), B̄(0)) ∈ X0, and it can be easily seen that S̄(0) 6= 0.

Thus, (S̄(0), Ī(0), B̄(0)) ∈ Int(R6
+) and (S̄(t), Ī(t), B̄(t)) = u(t, (S̄(0), Ī(0), B̄(0))) is

a positive ω-periodic solution of the system.

5.4 Numerical results

In this section, we conduct some numerical simulation in order to verify our ana-

lytical findings. We list the model parameters and their numerical values in Table

5.1.

Table 5.1: Parameters and their values

Symbol Definition Value Unit Source

cj Elimination rate due to brucellosis, (j = 1, 2) 0.15 year−1 [30]

αj0 Averaged direct transmission rate, (j = 1, 2) 1.48× 10−8 animal−1year−1 [30]

βj0 Averaged indirect transmission rate, (j = 1, 2) 1.7× 10−10 pathogen−1year−1 [30]

φj0 Averaged brucella shedding rate, (j = 1, 2) 15 pathogen animal−1 [30]

year−1

θS Averaged susceptible animals migration rate Varied year−1 -

θI Averaged infectious animals migration rate Varied year−1 -

a1 Amplitude of oscillation in βj(t), (j = 1, 2) 0.8 - Assumed

a2 Amplitude of oscillation in αj(t), (j = 1, 2) 0.8 - Assumed

a3 Amplitude of oscillation in φj(t), (j = 1, 2) 0.8 - Assumed

a4 Amplitude of oscillation in θS(t) 0.8 - Assumed

a5 Amplitude of oscillation in θI(t) 0.8 - Assumed

µj Natural elimination rate, (j = 1, 2) 0.22 year−1 [30]

Aj Recruitment rate, (j = 1, 2) 11629200 animals year−1 [30]

dj Pathogen decay rate, (j = 1, 2) 3.6 year−1 [30]

Sj(0) Initial number of susceptible, (j = 1, 2) 5.185× 107 animals [30]

Ij(0) Initial infected animals, (j = 1, 2) 1.33× 106 animals [30]

Bj(0) Initial load of brucella, (j = 1, 2) 6× 106 pathogens [30]
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Using the parameter values in Table 5.1, we first perform a numerical study on

the autonomous model (5.1). Our main analytical result, Theorem 5.2.4, states the

global asymptotic stability of the two nontrivial equilibria, E1 and E2 . Numerically,

we vary the animal migration rates θS and θI so as to generate different values of

R1 and R2. For each of these scenarios, we pick a number of initial conditions and

conduct separate simulations to system (5.1). Figure 5.1 illustrates a case where

we set θS = θI = 0.2 which results in R1
.
= 0.75 < 1, R2

.
= 3.27 > 1, and all

solution curves converge to the equilibrium E1
.
= (2.77×107, 0, 0, 2.39×107, 3.22×

107, 1.34 × 108) over time. The same convergence pattern is observed throughout

the regime R1 < 1, R2 > 1, though E1 changes as θS and θI vary. In contrast,

Figure 5.2 illustrates that when we set θS = θI = 0.1 which results in R1
.
= 1.2 > 1,

all solution curves converge to the equilibrium E2
.
= (3.03× 107, 4.11× 106, 1.71×

107, 2.29× 107, 2.71× 107, 1.13× 108) . As θS and θI vary, E2 also changes but the

same type of convergence to E2 is numerically observed for all R1 > 1. These results

demonstrate the analytical predictions in Theorem 5.2.4.

Next, we turn to the periodic model (5.27) and numerically demonstrate the

threshold dynamics result in Theorem 5.3.1. Figure 5.3 plots the time evolution

of two infection curves, I1 for patch 1 and I2 for patch 2, when R0 < 1. We

clearly observe that both curves approaches the disease-free equilibrium E0 (where

I1 = I2 = 0) over time. Though not shown here, the same pattern is observed when

we vary the initial conditions for I1 and I2, an evidence for the global asymptotic

stability of E0 when R0 < 1. Figure 5.4, on the other hand, illustrates the case with

R0 > 1. We observe that each infection curve converges to a periodic solution with

a period ω = 12 months, highlighting the persistence of the infection when R0 > 1.

Particularly, we note that the infection curve I2 stays at a much higher level and

exhibits a much stronger oscillation than those with the curve I1, showing a higher

disease prevalence and risk associated with patch 2 due to the animal migration.

This result indicates that in a (simple) population system of two patches where

animals migrate from patch 1 to patch 2, with otherwise identical characteristics

between the two patches, more prevention and intervention efforts should be devoted

to patch 2 in order to control brucellosis outbreaks. Furthermore, such disease

control strategies should take into account the seasonal fluctuations of brucellosis so
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as to make best use of available resources.

Figure 5.1: Phase portrait illustrating the global stability of E1 for system (5.1) in the

S2-I2 plane with R1 < 1, R2 > 1. Each curve in the plot corresponds to a different initial

condition, and all these curves converge to the equilibrium E1 (where S2
.
= 2.39×107, I2

.
=

3.22× 107) over time.
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Figure 5.2: Phase portrait illustrating the global stability of E2 for system (5.1) in the S2-

I2 plane with R1 > 1. Each curve in the plot corresponds to a different initial condition,

and all these curves converge to the equilibrium E2 (where S2
.
= 2.29×107, I2

.
= 2.71×107)

over time

Figure 5.3: The infection curves for the two patches associated with system (5.27) when

R0 < 1. Both curves converge to the disease-free equilibrium E0 over time.
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Figure 5.4: The infection curves for the two patches associated with system (5.27) when

R0 > 1. Each curve converges to a periodic oscillation with a period ω = 12 months.

5.5 Conclusion and discussion

We have proposed a new mathematical modeling framework for the dynamics of

brucellosis, incorporating multiple transmission pathways and both spatial and tem-

poral heterogeneities. As a demonstration of this framework, we have focused on a

two-patch model throughout this chapter. We started our analysis on the two-patch

model with fixed coefficients (an autonomous system) where detailed results were

obtained, showing the rich dynamics of brucellosis transmission due to the spatial

variation. In particular, we have thoroughly characterized the multiple equilibria

of the system and their stabilities, using the reproduction numbers associated with

the model. In the second part of this study, we extended our model to a time-

periodic environment that represents seasonal oscillation. We then calculated the

basic reproduction number, R0, for this periodic two-patch model and established

the threshold result: when R0 < 1, the disease-free equilibrium is globally stable;

when R0 > 1, the disease is uniformly persistent.

For our autonomous model, we were able to completely determine its local and

global dynamics. Particularly, we applied the geometric approach to prove the global
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asymptotic stability of the nontrivial equilibria. For the periodic two-patch model,

however, the dynamics are more complex. Although we were able to establish the

uniform persistence result, we have not resolved the stabilities of the nontrivial

periodic orbits when R0 > 1 and that remains an interesting topic for our future

research. Nevertheless, our current study demonstrates that the incorporation of

spatial and temporal variations leads to rich and complex dynamics that are distinct

from those observed from prior models based on homogeneous environments. Our

results also indicate that the prevention and intervention strategies need to take

into account the spatial and temporal heterogeneities in order to effectively control

brucellosis while optimize the use of available resources.

Our current study on the spatial modeling of brucellosis is based on the patch

structure, and we plan to extend this work to a more general setting with an ar-

bitrary number of patches. We expect that many results presented in this chapter

can be similarly established for the general spatial setting. On the other hand,

a different approach to model spatial heterogeneity is to utilize partial differential

equations (PDEs), for example, by adding diffusion terms to an ODE model so as

to represent the movement and dispersal of the animals and the pathogen, and by

adding convection terms to represent the migration of animals. Seasonal variation

can be similarly incorporated by considering periodic model parameters, resulting in

a periodic PDE system. Such a periodic PDE model can be possibly analyzed using

techniques recently proposed by Zhao and co-workers [83, 84, 85]. In particular,

the basic reproduction number can still be defined which can be used to investigate

the threshold properties of the model. It will be very interesting to compare the

threshold dynamics from these two modeling approaches: one based on multi-patch

periodic ODEs and the other based on Periodic PDEs.
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Chapter 6

On the role of short-term animal

movements on the persistence of

brucellosis

6.1 Introduction

Brucellosis, a highly contagious zoonotic disease, remains a significant public health

threat worldwide. It is estimated that more than 500,000 new cases of the disease are

reported annually [42], with incidence as high as 200 cases per 100,000 of the popu-

lation in most endemic countries [43]. Majority of brucellosis infections occur in: the

sub-Sahara Africa in countries such as Ethiopia, Chad, Tanzania, Nigeria, Uganda,

Kenya, Zimbabwe and Somalia due to high level of pastoralism; the Middle East,

Spain, Latin America and Asia-in particular South-east Asia where factors such as

pastoral farming practices, beliefs and lack of bio-security have been attributed to

persistence of the disease [44]. Since human transmission of brucellosis is considered

to be negligible [3], measures to effectively control brucellosis in humans ultimately

require a thorough control of the disease among domestic cattle, camels, goats and

sheep.

Transmission and control of brucellosis in both human and animal population

remains a complex phenomena that possibly involve the type of farming practised

in the area, economic, geographic and environmental structures, as well as the in-
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trinsic disease biology and ecology. In particular, animal movement plays crucial

role on transmission and control of the disease. For example, in communal farming

zones animal movements are highly uncontrolled compared to private farming. Prior

studies have demonstrated that, on a daily basis, a single cattle herd in a commu-

nal farming zone has the potential to mix with at least five heterogeneous herds

at both the communal grazing and watering points. Since livestock management

varies from one farmer to another, it is evident that understanding the volume of

these movements and the risks associated with them is fundamental in elucidating

the epidemiology and control of animal diseases.

Mathematical models have proved to be important tools that can aid our under-

standing as well as provide solutions to phenomena which are complex to measure in

the field. Recently a number of mathematical models have been proposed to explore

brucellosis transmission and control, see for instance [31, 32, 38, 66, 86, 87, 67]. For

example, Dobson and Meagherin [86] used nonlinear ordinary differential equations

to describe brucellosis transmission among the bison population in the Yellowstone

National Park (YNP). Abatih et al. [38] mathematically analyzed the brucellosis

model proposed in [86]. Lolika et al. [31] applied a non-autonomous model to discuss

the effects of optimal vaccination and environmental decontamination on long-term

brucellosis dynamics among cattle in periodic environments. Yang et al. [66] de-

veloped a two-patch model with risk heterogeneity in which animals immigrated

between two different risk environments. Their work utilized a Eulerian approach

for mobility. However, the Eulerian approach has some limitations, for instance it

neither incorporates the concept of residence times nor the effective population size.

Here the term residence times refers to the average proportion of daily time an an-

imal spends in a given patch. Therefore to gain a better and more comprehensive

understanding of effects of animals movements on brucellosis dynamics, a model

should incorporate a Lagrangian approach- which is capable of accounting for the

effects of residence times and the effective population size per patch.

In this chapter, we consider a dynamical model to describe the role of short-

term animal movements on the persistence of brucellosis. The proposed two-patch

model incorporates all the relevant biological and ecological factors as well as short-

term animal movements which are modeled using the Lagrangian approach. For the
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purpose of distinction between the hosts, we assumed that patch 1 is a high risk

environment, that is, brucellosis control measures in this patch are poorly managed.

The reverse is assumed for patch 2. Thus, disease transmission in patch 1 is assumed

to be higher relative to patch 2. Further, disease transmission is assumed to occur

through direct contact and vertical transmission. In addition, since vaccines are

often unavailable or expensive to farmers in communal farming zones we assumed

that a more sensible approach to control the spread of the disease is culling of

infected animals.

6.2 Modeling framework

We developed a mathematical model to study the transmission and control of bru-

cellosis within an environment defined by two-patches of heterogeneous risk. Our

model is a modification of the one developed in [38]. Precisely, the model in [38] is

a single-patch framework.

Let Ni(t) represent the total population of animals in patch i at time t, i = 1, 2.

We assume that animals of Patch i spend pij ∈ [0, 1] time in Patch j, with
∑2

j=1 pij =

1, for each i. Thus, animals of Patch 1 spends, on the average, the proportion p11

of their time in residency in patch 1 and the proportion p12 of their time in patch 2

such that p11 + p12 = 1.

Similarly, animals of patch 2 spend the proportion p22 of their time in patch 2

and p21 = 1−p22 in patch 1. Therefore, at time t, the effective population in patch 1

is p11N1 +p21N2 while the effective population of patch 2, at time t is p12N1 +p22N2.

Susceptible animals of patch 1 (S1) could be infected contagiously, in patch 1 (if

currently in patch 1, that is., p11S1) or in patch 2 (if currently in patch 2, that is.,

p12S1). It follows from the above discussion that the effective proportion of infectious

individual in patch 1 is

p11I1 + p21I2

p11N1 + p21N2

.

Consequently the effective proportion of infectious individual in patch 2 is

p12I1 + p22I2

p12N1 + p22N2

.

113



The following system of ordinary differential equations (ODES) account for the

brucellosis dynamics in two patches:
dSi
dt

= µi(Ni − eiIi)−
∑2

j=1 βjpijSi
∑2
k=1 pkjIk∑2
k=1 pkjNk

− µiSi + δiRi,

dIi
dt

= µieiIi +
∑2

j=1 βjpijSi
∑2
k=1 pkjIk∑2
k=1 pkjNk

− (µi + αi)Ii,

dRi
dt

= αiIi − (µi + δi)Ri.

(6.1)

Where the variables Si(t), Ii(t) and Ri(t) represents the susceptible, infectious

and recovered population, µi is recruitment rate of animals and it is assumed to be

equal to natural death rate of animals, thus, µ−1
i represents the animal’s commercial

lifespan, ei (0 ≤ ei ≤ 1) denotes a proportion of new recruits that are infected with

brucellosis and the complementary proportion (1 − ei) represents those that are

susceptible to infection, βi denotes the disease transmission, αi is the recovery rate,

δi denotes immunity waning rate. Disease related mortality is considered negligible.

Thus, the total population is constant and is given by Ni(t) = Si(t) + Ii(t) +Ri(t).

Table 6.1: Parameters and values

Symbol Definition Units Value Source

pij Proportion of time that animals of patch i spend in patch j unit-less varies

β1 Susceptibility to brucellosis invasion in patch 1 year−1 1.63 [38]

β2 Susceptibility to brucellosis invasion in patch 2 year−1 0.75 [38]

e1 Proportion of vertical transmission in patch 1 unit-less 0.9 [38]

e2 Proportion of vertical transmission in patch 2 unit-less 0.4 [38]

µi Recruitment rate in patch i (i = 1, 2) year−1 0.04 [38]

δi Rate of loss of resistance in patch i (i = 1, 2) year−1 0.2 [38]

αi Recovery rate in patch i (i = 1, 2) year−1 0.5 [38]

Si(0) Initial number of susceptible in patch i (i = 1, 2) animals 4050 [38]

Ii(0) Initial infected animals in patch i (i = 1, 2) animals 450 [38]

Ri(0) Initial recovered animals in patch i (i = 1, 2) animals 0 [38]

It can easily be verified that the domain of biological interest

Ω =

{
(Si, Ii, Ri) ∈ R6

+|Si + Ii +Ri ≤ Ni

}
(6.2)

is positively invariant and attracting with respect to model (6.1).

114



6.3 Disease dynamics for a single patch

If only a single patch, that is, i = 1, is considered then system (6.1) reduces to
dS1

dt
= µ1(N1 − e1I1)− β1I1S1

N1
− µ1S1 + δ1R1,

dI1
dt

= β1I1S1

N1
+ e1µ1I1 − (µ1 + α1)I1,

dR1

dt
= α1I1 − (µ1 + δ1)R1.

(6.3)

System (6.3) is isomorphic to the model proposed by Dobson and Meagherin

[86] and analysed by Abatih et al. [38]. As highlighted in [38], model (6.1) is well

defined supporting a sharp threshold property, namely, the disease dies out if the

basic reproduction numberR01 is less than unity, persisting wheneverR01 > 1 where

R01 =
(β1 + e1µ1)

(α1 + µ1)
.

6.4 The reproduction number

The disease-free equilibrium E0 of system (6.1) is

E0 : (S0
1 , S

0
2 , I

0
1 , I

0
2 , R

0
1, R

0
2) = (N1, N2, 0, 0, 0, 0).

The basic reproduction number, denoted by R0 is an integral quantity in epidemio-

logical model. It accounts for the average number of secondary infections generated

by a single infectious animal introduced in a fully susceptible population during its

average infectious period [50]. We utilized the next generation matrix approach [50]

to determine R0. We begin with those equations of model (6.1) that account for the

production of new infections. We term this system (6.4) the infected subsystem:{
dI1
dt

= µ1e1I1 + β1p11S1
p11I1+p21I2
p11N1+p21N2

+ β2p12S1
p12I1+p22I2
p12N1+p22N2

− (µ1 + α1)I1,
dI2
dt

= µ2e2I2 + β1p21S2
p11I1+p21I2
p11N1+p21N2

+ β2p22S2
p12I1+p22I2
p12N1+p22N2

− (µ2 + α2)I2.
(6.4)

Using the next-generation matrix notations in [50], the non-negative matrix F
that represents the generation of new infection and the non-singular matrix V that

denotes the disease transfer among compartments, are respectively given by

F =

[
e1µ1 +

p211β1N1

p11N1+p21N2
+

p212β2N1

p12N1+p22N2

p11p21β1N1

p11N1+p21N2
+ p12p22β2N1

p12N1+p22N2

p11p21β1N2

p11N1+p21N2
+ p12p22β2N2

p12N1+p22N2
e2µ2 +

p221β1N2

p11N1+p21N2
+

p222β2N2

p12N1+p22N2

]
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=

[
m11 m12

m21 m22

]
,

and,

V =

[
(µ1 + α1) 0

0 (µ2 + α2)

]
=

[
~1 0

0 ~2

]
. (6.5)

Then R0, which corresponds to the dominant eigenvalue of the matrix FV−1, is

given by

R0 = ρ(FV−1) =
m11~2 +m22~1 +

√
(m11~2 −m22~1)2 + 4m12m21~1~2

2~1~2

,

after some algebraic manipulations, we have the following results

R0 =
1

2

(m11

~1

+
m22

~2

)
+

√(
m11

~1

+
m22

~2

)2

+
4m12m21

~1~2

 , (6.6)

with

m11 = e1µ1 +
p2

11β1N1

p11N1 + p21N2

+
p2

12β2N1

p12N1 + p22N2

,

m12 =
p11p21β1N1

p11N1 + p21N2

+
p12p22β2N1

p12N1 + p22N2

,

m21 =
p11p21β1N2

p11N1 + p21N2

+
p12p22β2N2

p12N1 + p22N2

,

m22 = e2µ2 +
p2

21β1N2

p11N1 + p21N2

+
p2

22β2N2

p12N1 + p22N2

,

~1 = (µ1 + α1), ~2 = (µ2 + α2).

We can write (6.6) as follows

R0 =
1

2

(R01 +R02

)
+

√(
R01 −R02

)2

+
4m12m21

~1~2


whereR0i (i = 1, 2) represents the disease risks for patches 1 and 2 in the absence

of animal mobility. From (6.6) we can observe that the basic reproduction number

is influenced by short-term animal dispersal.

To investigate the effects of short-term animal dispersal on the generation of

new infections, we compute the values of the basic reproduction number using a
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residence-time matrix in Table 6.2. More precisely, the residence-time matrix con-

figuration incorporates the coupling intensity and mobility patterns. For instance,

weak coupling implies that most animals stay in their own patch while strong cou-

pling implies that certain proportions of animals move to the other patch. Mobility

patterns represents the symmetry of animal movement between the two patches. For

example, symmetric mobility represents a scenario when an equal ratio of animals

move from patch 1 to patch 2 and vice-versa. However, if the ratio of animals that

move between the two patches is not equal then the mobility pattern is asymmetric.

Note that the total population of animals in the two patches is assumed to be the

same.

Table 6.2: Association between the basic reproduction number and the residence-

time matrix

Description R0

1 Weak symmetric coupling p11 = 0.99, p12 = 0.01, p21 = 0.01, p22 = 0.99 3.03

2 Strong symmetric coupling p11 = 0.7, p12 = 0.3, p21 = 0.3, p22 = 0.7 2.31

3 Weak asymmetric coupling p11 = 0.9, p12 = 0.1, p21 = 0.001, p22 = 0.999 2.80

4 Strong asymmetric coupling p11 = 0.7, p12 = 0.3, p21 = 0.001, p22 = 0.999 2.36

Results in Table 6.2 demonstrate that the basic reproduction number will be

always high when coupling intensity is weak, that is, when most animal stay in

their patch. Further, the highest value of the basic reproduction number occurs

when the mobility pattern is symmetric. Using parameters values in Table 6.1, we

calculated the reproduction numbers for patch 1 and 2 in the absence of animal

dispersal and we obtained R01 = 1.4 and R02 = 0.05. We can observe that, based

on our assumption that patch 1 is high risk, the highest reproduction number came

from this patch. In addition, we can observe that whenever there is animal mobility

the disease transmission risk increases globally than locally, for instance, in the

absence of animal mobility we expect brucellosis to die off in patch 2. It is worth

noting that results in Table 6.2 shows that when animal mobility increases the basic

reproduction number decreases, however, for all the cases demonstrated in Table

6.2 it will never drop below 1. Hence under our assumption we can conclude that

effective brucellosis control will always be difficult to attain whenever there is animal
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mobility.

6.5 Disease invasion and persistence

From the work in [50], we know that the DFE is locally asymptotically stable when

R0 < 1, and unstable when R0 > 1. Indeed, we can establish a stronger result

regarding the global dynamics of the DFE.

Theorem 6.5.1 If R0 ≤ 1, the DFE is globally asymptotically stable in Ω. If

R0 > 1, the system is uniformly persistent.

Proof 13 Let Y(t) = (I1, I2). Since{
dI1
dt

= µ1e1I1 + β1p11S1
p11I1+p21I2
p11N1+p21N2

+ β2p12S1
p12I1+p22I2
p12N1+p22N2

− (µ1 + α1)I1,
dI2
dt

= µ2e2I2 + β1p21S2
p11I1+p21I2
p11N1+p21N2

+ β2p22S2
p12I1+p22I2
p12N1+p22N2

− (µ2 + α2)I2,
(6.7)

it follows that

U̇(t) ≤ (F − V)Y ,

where F and V are defined in (6.5). Motivated by [78], we define a Lyapunov

function as follows

U = wTV−1Y .

Differentiating U along solutions of (6.1), we have

U̇(t) = wTV−1Ẏ
≤ wTV −1(F − V)Y
= (R0 − 1)wTY ≤ 0, if R0 ≤ 1.

It can be easily verified that the largest invariant subset of Ω where U̇ = 0 is

the singleton {E0}. Therefore, by LaSalle’s invariance principle [46], E0 is globally

asymptotically stable in Ω when R0 ≤ 1.

If R0 > 1, then by continuity, U̇ > 0 in a neighbourhood of E0 in Ω̊. Solutions

in Ω̊ sufficiently close to E0 move away from the DFE, implying that the DFE is

unstable. In what follows we demonstrate that if R0 > 1, then the disease persists

and a unique endemic equilibrium point exists.
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6.6 Uniform persistence

System (6.1) is said to be uniformly persistent in the interior Ω̊ if there exists a

constant η0 > 0 such that

lim inf
t→∞

Si(t) ≥ η0, lim inf
t→∞

Ii(t) ≥ η0, lim inf
t→∞

Ri(t) ≥ η0

provided that (S1(0), S2(0), I1(0), I2(0), R1(0), R2(0)) ∈ Ω̊. Biologically, a uniform

persistent system indicates that the infection persists for a long period of time.

Thus we have the following result.

Theorem 6.6.1 If R0 > 1, then the DFE is unstable and system (6.1) is uniformly

persistent in Ω̊.

Proof 14 Let X = Ω, x = (S1, S2, I1, I2, R1, R2) and X0 = {x ∈ X|I1 + I2 > 0}.
Hence, ∂X0 = X\X0 = {x ∈ X|I1 = I2 = 0}. Let ψt be semi-flow induced by

the solutions of (6.1) and M∂ = {x ∈ ∂X0|ψtx ∈ ∂X0, t ≥ 0}. By (6.2), we have

ψtX0 ⊂ X0 and ψt is bounded in X0. Therefore a global attractor for ψt exists.

The disease- free equilibrium is the unique equilibrium on the manifold ∂X0 and is

globally asymptotically stable on ∂X0. Moreover ∪x∈M∂
ω(x) = {E0} and no subset

of M forms a cycle in ∂X0. Finally since the disease- free equilibrium is unstable on

X0 if R0 > 1, we deduce that System (6.1) is uniformly persistent by using a result

from [58] (Theorem 1.3.1 and Remark 1.3.1). This completes the proof of Theorem

6.6.1.

Theorem 6.6.2 If R0 > 1 System (6.1) has a unique equilibrium E∗, which is

globally asymptotically stable.

Proof 15 We can reduce system (6.1) into four dimensional system by setting Ri =

Ni − Si − Ii to get
dSi
dt

= µi(Ni − eiIi)−
∑2

j=1 βjpijSi
∑2
k=1 pkjIk∑2
k=1 pkjNk

− µiSi + δi(Ni − Si − Ii),
dIi
dt

= µieiIi +
∑2

j=1 βjpijSi
∑2
k=1 pkjIk∑2
k=1 pkjNk

− (µi + αi)Ii,

(6.8)
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We will use a result by Hethcote and Thieme in [88] to prove the uniqueness of the

endemic equilibrium. An endemic equilibrium (S∗i , I
∗
i ) satisfies: µi(Ni − eiI∗i )−

∑2
j=1 βjpijS

∗
i

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk
− µiS∗i + δi(Ni − S∗i − I∗i ) = 0,

µieiI
∗
i +

∑2
j=1 βjpijS

∗
i

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk
− (µi + αi)I

∗
i = 0,

(6.9)

The first equation of (6.9) gives{
S∗i =

µi(Ni − eiI∗i ) + δi(Ni − I∗i )∑2
j=1 βjpij

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk
+ (µi + δi)

(6.10)

Hence from the last equation of (6.9) we deduce that I∗i =
µi(Ni − eiI∗i ) + δi(Ni − I∗i )∑2
j=1 βjpij

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk
+ (µi + δi)

×

∑2
j=1 βjpij

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk

µi(1− ei) + αi
(6.11)

Let

H(x) =


µ1(N1 − e1I

∗
1 ) + δ1(N1 − I∗1 )∑2

j=1 βjp1j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk
+ (µ1 + δ1)

×

∑2
j=1 βjp1j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk

µ1(1− e1) + α1

µ2(N2 − e2I
∗
2 ) + δ2(N2 − I∗2 )∑2

j=1 βjp2j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk
+ (µ2 + δ2)

×

∑2
j=1 βjp2j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk

µ2(1− e2) + α2


where x = (I∗1 , I

∗
2 ). The function H(x) is continuous, bounded, differentiable and

H(0R2) = 0R2. The function H is monotone if the corresponding Jacobian matrix is

Metzler, that is all off-diagonal entries are nonnegative. We have the derivative of

H(x)

Ḣ(x) =

[
J1(x) J2(x)

J3(x) J4(x)

]
Where

J1(x) =
1

(µ1(1− e1) + α1)
(∑2

j=1 βjp1j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk
+ (µ1 + δ1)

)[(µ1(N1 − e1I
∗
1 )

+δ1(N1 − I∗1 ))

(
(p11)2β1∑2
k=1 pk1Nk

+
(p12)2β2∑2
k=1 pk2Nk

)(
1

−
2∑
j=1

βjp1j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk

)
− (δ1 + e1µ1)

2∑
j=1

βjp1j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk

]
(6.12)
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J2(x) =

(µ1(N1 − e1I
∗
1 ) + δ1(N1 − I∗1 ))

(
p11p21β1∑2
k=1 pk1Nk

+
p12p22β2∑2
k=1 pk2Nk

)
(µ1(1− e1) + α1)

(∑2
j=1 βjp1j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk
+ (µ1 + δ1)

) [
1

−

∑2
j=1 βjp1j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk(∑2
j=1 βjp1j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk
+ (µ1 + δ1)

)] (6.13)

J3(x) =

(µ2(N2 − e2I
∗
2 ) + δ2(N2 − I∗2 ))

(
p11p21β1∑2
k=1 pk1Nk

+
p12p22β2∑2
k=1 pk2Nk

)
(µ2(1− e2) + α2)

(∑2
j=1 βjp2j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk
+ (µ2 + δ2)

) [
1

−

∑2
j=1 βjp2j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk(∑2
j=1 βjp2j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk
+ (µ2 + δ2)

)] (6.14)

J4(x) =
1

(µ2(1− e2) + α2)
(∑2

j=1 βjp2j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk
+ (µ2 + δ2)

)[(µ2(N2 − e2I
∗
2 )

+δ2(N2 − I∗2 ))

(
(p21)2β1∑2
k=1 pk1Nk

+
(p22)2β2∑2
k=1 pk2Nk

)(
1

−
2∑
j=1

βjp2j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk

)
− (δ2 + e2µ2)

2∑
j=1

βjp2j

∑2
k=1 pkjI

∗
k∑2

k=1 pkjNk

]
(6.15)

Since, J2(x) ≥ 0 and J3(x) ≥ 0, hence all off-diagonal entries of the Jacobian matrix

are nonnegative and so, the function H(x) is monotone. Therefore by monoticity of

a matrix H(x) implies that model (6.1) has a unique positive fixed point if and only

if R0 > 1. This completes the first part of the proof for Theorem 6.6.2 and due to

less traceability of our model we will utilizing numerical simulations to demonstrate

the global stability of the endemic equilibrium (see Figure 6.1).
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Figure 6.1: Phase portrait illustrating the global stability of E∗ for system (6.1) in the

S1-I1 plane with R0 = 2.84 (we set β1 = β2 = 1.5). Each curve in the plot corresponds

to a different initial condition, and all these curves converge to the equilibrium E∗ (where

S1 = S2
.
= 1500, I1 = I2

.
= 1000) over time

6.7 Optimal culling

Vaccination and culling of infected animals are the only feasible ways to control

brucellosis transmission. Vaccinating animals prevents susceptibility to the disease

and culling of infectious animals reduces the density of infected animals thereby

reducing the contact between susceptible and infected animals. However, in many

brucellosis endemic countries farmers cannot afford the cost of vaccines, and this

leaves culling as the only disease intervention strategy. In this section, we wish to

explore the impact of culling on controlling the spread of the disease. Thus, we will

modify model (6.1) to include culling control ui(t), i = 1, 2. The controls, ui(t) are

represented as functions of time and assigned reasonable upper and lower bounds.

The modified model is given by
dSi
dt

= µi(Ni − eiIi)−
∑2

j=1 βjpijSi
∑2
k=1 pkjIk∑2
k=1 pkjNk

− µiSi + δiRi,

dIi
dt

= µieiIi +
∑2

j=1 βjpijSi
∑2
k=1 pkjIk∑2
k=1 pkjNk

− (µi + ui(t) + αi)Ii,

dRi
dt

= αiIi − (µi + δi)Ri.

(6.16)
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The control set is defined as

Θ = {ui
∣∣ 0 ≤ ui(t) ≤ Ui, }, i = 1, 2,

where Ui denotes the upper bound for the culling effort in patch i.

In what follows we introduce an objective functional J to formulate the optimiza-

tion problem of interest, namely, that of identifying the most effective strategies over

the admissible set of (u1(t), u2(t)). The overall objective is to minimize the numbers

of infectious animals over a finite time interval [0, T ] at minimal costs. The objective

functional J is thus defined as

J(u1, u2) = J1(u1) + J2(u2)

=

∫ T

0

[
A1I1 +B1u1I1 +

C1

2
u2

1

]
dt+

∫ T

0

[
A2I2 +B2u2I2 +

C2

2
u2

2

]
dt

=

∫ T

0

[
A1I1 + A2I2 +B1u1I1 +B2u2I2 +

C1

2
u2

1 +
C2

2
u2

2

]
dt, (6.17)

where J1 and J2 represents objective functions for patch 1 and 2 respectively, Ai, Bi

and Ci are positive balancing coefficients transferring the integrals into monetary

quantity over a finite period of T years. Precisely, Ai represents the cost (due to the

loss of animals) associated with the number of infected animals in patch i and Bi

represent the cost associated with the number of infected animals culled in patch i.

The objective functional in (6.17) also includes quadratic terms with coefficients Ci,

to indicate potential non-linearities in the costs.

The existence and uniqueness of optimal control can be proven by applying a

standard results in optimal control theory [61, 62]. The necessary conditions that

optimal controls must satisfy are derived using Pontryagin’s Maximum Principle [63].

Thus, system (6.16) is converted into an equivalent problem, namely the problem of

minimizing the Hamiltonian H given by:

H(t) =
2∑
i=1

(
AiIi +BiuiIi +

Ci
2
u2
i + λSi

dSi
dt

+ λIi
dIi
dt

+ λRi
dRi

dt

)
,

where λgi(t), g = S, I, R, i = 1, 2, are the adjoint functions to be determined. Thus,

given an optimal control pair (u∗1, u
∗
2) and corresponding states (Si, Ii, Ri), there

exist adjoint functions [61] satisfying

dλSi(t)

dt
= −∂H

∂Si
,

dλIi(t)

dt
= −∂H

∂Ii
, and

dλRi(t)

dt
= − ∂H

∂Ri

. (6.18)

123



From (6.18) we have

dλSi
dt

= µiλSi + (λSi − λIi)
∑2

j=1 βjpij
∑2
k=1 pkjIk∑2
k=1 pkjNk

, i = 1, 2,
dλI1
dt

= (λS1 − λI1)
(

β1p211S1

p11N1+p21N2
+

β2p212S1

p12N1+p22N2

)
+(λS2 − λI2)

(
β1S2p11p21
p11N1+p21N2

+ β2S2p12p22
p12N1+p22N2

)
− A1 −B1u1 + α1(λI1 − λR1)

+µ1e1(λS1 − λI1) + (µ1 + u1)λI1
dλI2
dt

= (λS1 − λI1)
(

β1S1p11p21
p11N1+p21N2

+ β2S1p12p22
p12N1+p22N2

)
+(λS2 − λI2)

(
β1p221S2

p11N1+p21N2
+

β2p222S2

p12N1+p22N2

)
− A2 −B2u2 + α2(λI2 − λR2)

+µ2e2(λS2 − λI2) + (µ2 + u2)λI2
dλRi
dt

= µiλRi + δi(λRi − λSi), i = 1, 2,

(6.19)

with transversality conditions λgi(T ) = 0. Furthermore, the optimal controls are

characterized by the optimality conditions:

u∗i (t) = min

{
Ui,max

(
(λIi −Bi)Ii

Ci
, 0

)}
, i = 1, 2 (6.20)

In what follows we will utilize the forward-backward sweep method [61] together

with parameter values in Table 6.1 and the residence-matrix defined in Table 6.2 to

determine numerical solutions of our optimality system. Our main goal will be to

explore the effects of optimal culling on the transmission and control of brucellosis

under the following cases:

(a) Scenario 1: No culling in high risk population (patch 1), that is, u1 = 0.

(b) Scenario 2: Low intensity culling in high risk population, u1 = 0.45.

In all the above scenarios we assumed that culling intensity in low risk population

is always above average and we fixed it at u2 = 0.8. Scenario 1 is assumed to apply

to farmers who rear livestock near game reserves. Prior studies highlighted that

livestocks reared in proximity to game reserves mix with wildlife on almost daily

basis [89], despite the fact that in many countries where brucellosis is endemic,

intervention measures to control the spread of zoonotic infections among wildlife

are not available. Scenario 2 represents heterogeneity on culling intensity. This

scenario may exist in communal farming zones where one farmer say X may have

resources (knowledge and financial capacity) to perform culling at the high intensity

124



while another farmer say Y does not have enough resources to perform culling at an

intensity that does not exceed the average.

In all the simulation results presented in this section we used parameter and

initial values from Table 6.1 as well as the residence matrix in Table 6.2. For sim-

plicity, in our numerical simulation we set A1 = A2 = 1 so that the minimization of

the infectious animal population has the same importance/weight in all the patches.

Further, we set B1 = B2 = 0.2 and C1 = C2 = 2 × 10−5. The values of the weight

constants Bi and Ci were determined through numerical simulations, precisely for

these values the cost are low and the control efforts can be applied at maximum

intensity in all scenarios suggested above.

For each strategy and coupling intensity described in Table 6.2, we find the total

number of new infections given by the following formula

Γ = Γ1 + Γ2

=

∫ T

0

[
µ1e1I1 +

2∑
j=1

βjp1jS1

∑2
k=1 pkjIk∑2
k=1 pkjNk

]
dt

+

∫ T

0

[
µ2e2I2 +

2∑
j=1

βjp2jS2

∑2
k=1 pkjIk∑2
k=1 pkjNk

]
dt,

(6.21)

where Γi represent the total number of new infections for path i and the total cost

associated with infected animals and the controls J , which is given by (6.17). In

what follows we determine the effects of optimal culling under different coupling

intensity and mobility patterns (see Table 6.2).

Table 6.3: The total number of newly infected animals over a ten-year period and

the total cost J with respect to the control strategy under scenario 1.

Γ1 Γ2 Γ J1 J2 J R0

1 7.12× 103 950.321 8.06× 103 0 162.15 162.15 3.03

2 5.81× 103 3.95× 103 9.76× 103 0 499.38 499.38 2.31

3 6.835× 103 1.665× 103 8.5× 103 0 239.95 239.95 2.80

4 6.13× 103 2.50× 103 8.63× 103 0 331.68 331.68 2.36

In Table 6.3 we present the values of the total number of new infections and

J for scenario 1. We can clearly observe that the highest total number of new
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infections recorded in patch 1 over a ten-year period under all possible coupling

cases is Γ1 = 7.12× 103 and this occurs when the coupling intensity is weak and the

mobility pattern is symmetric. Moreover, when the coupling intensity is weak and

the mobility pattern is symmetric patch 2 records the lowest total number of new

infections is Γ2 = 950.321 under all possible coupling cases over the same period.

However, this coupling case (weak and symmetric) is associated with the lowest total

number of new infections Γ = 8.06 × 103 as well as the total cost J = 162.15. We

surmise that due to weak animal mobility the spread of the disease will be highly

confined in independent patches, with more infections being observed in the risk

patch (patch 1).

In Table 6.3 we can also observe that strong symmetric coupling gives the lowest

total number of new infections for patch 1 only Γ = 5.81 × 103, while patch 2 will

record the highest total of new infections Γ2 = 3.95× 103 and overall this will yield

the highest total of new infections Γ = 9.76 × 103 in the community. This clearly

demonstrate that increased short-term dispersal of animals strongly influence the

transmission and control of brucellosis.

Next, we compare the impact of presence and absence of time dependent culling

on brucellosis transmission dynamics under scenario 1 (Figure 6.2-6.5) over a ten-

year period. Figure 6.2-6.5 shows the number of infected animals per patch, with and

without optimal culling under weak symmetric coupling, strong symmetric coupling,

weak asymmetric coupling and strong asymmetric coupling, respectively. As we can

observe, whenever the coupling is weak despite its skewness, then the optimal control

policy will not have a significant impact in patch 1 compared to patch 2 where the

number of infections decrease with time. However, whenever the coupling is strong

the number of infected animals in both patches decrease with time but with more

effect being noticed in patch 2 where there is disease control.

Figure 6.6 shows the optimal control profile for u2(t): (a) when the costs of

culling are low and (b) when the costs of culling are high (we set B2 = C2 = 2),

recall that due to the absence of control in patch 1, u1(t) = 0. As is shown, when the

costs of culling are either low or high, the control profile starts from the maximum

initially and stays there for more than half of the entire period before it switches to

its minimum. Precisely, when the costs of culling are low the control profile stays
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at its maximum for a longer period of time compared to when the costs are high.

This clearly demonstrates that the control is highly sensitive cost parameters, thus

under low costs optimal culling can be implemented at maximum intensity for a

long period of time.

Table 6.4: The total number of newly infected animals over a ten-year period and

the total cost J with respect to the control strategy under scenario 2.

Γ1 Γ2 Γ J1 J2 J R0

1 4.98× 103 747.20 5.73× 103 5.74× 103 1.02× 103 6.76× 103 3.03

2 3.32× 103 2.47× 103 5.79× 103 3.94× 103 2.44× 103 6.38× 103 2.31

3 4.70× 103 1.02× 103 5.72× 103 5.42× 103 1.25× 103 6.67× 103 2.80

4 3.74× 103 1.38× 103 5.12× 103 4.38× 103 1.53× 103 5.91× 103 2.36

We further investigate the impact of low intensity optimal culling in the risk

patch (patch 1), we set u1 = 0.45 while u2 remains fixed at 0.8. Results for this

scenario are depicted in Table 6.4 and Figure 6.7-6.11. As we have observed earlier

(Table 6.3) the highest total number of new infections occurs when the coupling

intensity is weak and symmetric. We also observe that the presence of control in

patch 1 leads to a reduction in the total number of new infections by 30.1%, 21.4%

and 28.9% in patch 1 only, patch 2 only and overall (patch 1 and patch 2 combined),

respectively. From Table 6.4 it is also evident that the lowest total number of new

infections occurs when we have strong asymmetric coupling, Γ = 5.12 × 103. As

observed in Table 6.3, the highest total number of new infections in the community

will occur under strong symmetric coupling, Γ = 5.79× 103.

Figure 6.7-6.10 demonstrates the impact of optimal culling under all possible

coupling cases. As shown, in Figure 6.7-6.10 the total number of infected animals

per patch decreases as a result of the optimal policy. Figure 6.11 shows the optimal

control profiles for controls u1(t) and u2(t) with low cost parameters. As we can

observe, both u1 and u2 starts from the maximum initially, and stays there for a

long time before they switch to the minimum just before the final time horizon.
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6.8 Discussion

We have provided a mathematical framework to investigate the role of short-term

animal dispersal on transmission and control of brucellosis in a heterogeneous popu-

lation. The proposed model comprises of two patches and animal dispersal has been

modeled using a Lagrangian approach. Our study is applicable in communal lands

where animal mobility is highly uncontrolled. Hence it is well known that a single

herd of livestock in these communities can be exposed to a high variable number of

contacts with others herds of livestock for a short time frame. This heterogeneity

in animal contacts may contribute significantly to the transmission and control of

brucellosis.

The basic reproduction number R0 of the proposed model was computed and

analyzed. We observed that it is a function of several factors such as the trans-

mission rates, natural mortality rate, proportions of vertical transmission and the

proportion of time that animals of each patch spend in their patch and the other

patch. Precisely, we found that R0 depends on the characteristics of both patches.

However, in the absence of animal mobility we observed that each patch has its own

reproduction number R0i i = 1, 2, which depends entirely on the characteristics of

that patch. With the aid of model parameter values and initial population levels

in [38], we demonstrated numerically that whenever there is no animal mobility

R01 = 1.4 and R02 = 0.04, which implies that the disease dies out in low risk patch

(patch 2) and persists in high risk patch (patch 1). However, with animal mobility

incorporated we noted that R0 will always be greater than 2 demonstrating that

animal mobility will increase the spread of the disease in the community. In partic-

ular, we observed that R0 will be highest when the coupling intensity is weak and

the mobility pattern is symmetric, R0 = 3.03. Analytical methods were also used to

demonstrate that whenever R0 ≤ 1 then the brucellosis dies out in the community

and when R0 > 1 a unique endemic equilibrium exists and the disease is uniformly

persistent.

Meanwhile, we applied optimal control theory to the proposed model to identify

optimal culling strategies that can lead to effective control of brucellosis in the

community. Two controls representing culling of infectious animals in each patch

were incorporated into the original model. Two possible scenario that characterize
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disease control in developing nations were evaluated. Scenario 1 entails no control

(we set u1 = 0) in high risk patch while control is above average (we set u2 = 0.8)

among the low risk population. We hypothesized that this scenario mirror livestock

farming in areas that are in proximity to wildlife. Due to the unavailability of

resources in most developing nations, it follows that control of brucellosis among

wildlife is less prioritized. In scenario 2, we set u1 = 0.45 and u2 = 0.8. We also

suggested that this scenario may represent two herds of livestock that belong to

two different farmers who share grazing lands. One farmer may have some financial

resources to maintain culling at an intensity above average while the other does not

have enough financial capacity to do so.

Under scenario 1 we observed that the lowest and highest total number of new

infections will be recorded in the community under weak symmetric coupling and

strong symmetric coupling, respectively. Meanwhile we observed that by introducing

a control in high risk patch, the total number of new infections decreases by 30.1%,

21.4% and 28.9% in patch 1 only, patch 2 only and overall (patch 1 and patch 2

combined), respectively. The numerical results provided evidence that, as expected,

controlling the two patches gives the best reduction in brucellosis prevalence. Our

result show that animal mobility plays an important role in shaping the long term

dynamics of brucellosis, which subsequently impact the design of its optimal control

strategies.

Several avenues for future research arise from this work. First, future research

should asses the role of seasonal variations and short-term animal mobility on the

persistence of brucellosis. Seasonal availability of water and pastures have a signifi-

cant influence on pastoral farming, hence there is need to investigate its impact on

the persistence of brucellosis. Second, although we were able to establish the unique-

ness and uniform persistence result for the endemic equilibrium, we did not resolve

the stability of this equilibrium point analytically and that remains an interesting

topic for our future research.
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Figure 6.2: Simulation results of the proposed two patch brucellosis model for sce-

nario 1 under weak symmetric coupling (a) the number of infected animals in patch

1 (b) the number of infected animals in patch 2. In all the figures the dotted blue

and solid black curves represent the infected population, without and with control,

respectively.
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Figure 6.3: Simulation results of the proposed two patch brucellosis model for sce-

nario 1 under strong symmetric coupling (a) the number of infected animals in patch

1 (b) the number of infected animals in patch 2. In all the figures the dotted blue

and solid black curves represent the infected population, without and with control,

respectively.
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Figure 6.4: Numerical illustrations demonstrating the effects of optimal interven-

tion strategies on controlling the long-term brucellosis dynamics for scenario 1 under

weak asymmetric coupling (a) the number of infected animals in patch 1 (b) the num-

ber of infected animals in patch 2. In all the figures the dotted blue and solid black

curves represent the infected population, without and with control, respectively.
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Figure 6.5: Numerical illustrations demonstrating the effects of optimal interven-

tion strategies on controlling the long-term brucellosis dynamics for scenario 1 under

strong asymmetric coupling (a) the number of infected animals in patch 1 (b) the

number of infected animals in patch 2. In all the figures the dotted blue and solid

black curves represent the infected population, without and with control, respec-

tively.
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Figure 6.6: The control profile for scenario 1 (a) low costs (b) high cost of culling

0 2 4 6 8 10

Time(years)

0

500

1000

1500

2000

I 1

Without control
With  control

(a)
0 2 4 6 8 10

Time(years)

0

100

200

300

400

500

600

700

I 2

Without control
With optimal control

(b)

Figure 6.7: Simulation results of the proposed two patch brucellosis model for sce-

nario 2 under weak symmetric coupling (a) the number of infected animals in patch

1 (b) the number of infected animals in patch 2. In all the figures the dotted blue

and solid black curves represent the infected population, without and with control,

respectively.
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Figure 6.8: Simulation results of the proposed two patch brucellosis model for sce-

nario 2 under strong symmetric coupling (a) the number of infected animals in patch

1 (b) the number of infected animals in patch 2. In all the figures the dotted blue

and solid black curves represent the infected population, without and with control,

respectively.

0 2 4 6 8 10

Time(years)

0

500

1000

1500

2000

I 1

Without control
With  control

(a)
0 2 4 6 8 10

Time(years)

0

200

400

600

800

I 2

Without control
With optimal control

(b)

Figure 6.9: Numerical illustrations demonstrating the effects of optimal interven-

tion strategies on controlling the long-term brucellosis dynamics for scenario 2 under

weak asymmetric coupling (a) the number of infected animals in patch 1 (b) the num-

ber of infected animals in patch 2. In all the figures the dotted blue and solid black

curves represent the infected population, without and with control, respectively.
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Figure 6.10: Numerical illustrations demonstrating the effects of optimal interven-

tion strategies on controlling the long-term brucellosis dynamics for scenario 1 under

strong asymmetric coupling (a) the number of infected animals in patch 1 (b) the

number of infected animals in patch 2. In all the figures the dotted blue and solid

black curves represent the infected population, without and with control, respec-

tively.
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Figure 6.11: The control profile for scenario 2.
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Chapter 7

Dynamics and stability analysis of

a brucellosis model with two

discrete delays

7.1 Introduction

Brucellosis is one of the neglected zoonotic diseases that remains a major public

health problem world over, especially in Middle Eastern countries, southern Europe

and North Africa, countries in South and Central Asia, sub-Saharan Africa, Mexico,

the Caribbean, and countries in South and Central America [90], with an annual

occurrence of more than 500 000 cases [43].

In animals, brucellosis is usually transmitted through direct contact between a

susceptible and an infectious animal or indirectly, i.e. when a susceptible animal

ingest contaminated forages or the excrement containing large quantities of bacteria,

generally discharged by infected animals [39]. In humans, however, majority of the

infections result from direct or indirect exposure to infected animals or consumption

of raw animal products such as unpasteurized milk or cheese [91]. Since human-to-

human transmission of the disease is extremely rare [64], the ultimate management

of human brucellosis can be achieved through effective control of brucellosis in live-

stock. Some researchers postulates that eradication of brucellosis in animals can be

attained by combining vaccination with test-and-slaughter programs [90].
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Mathematical models have proved to be essential guiding tools for epidemiolo-

gists, biologists as well as policy makers. Models can provide solutions to phenom-

ena which are difficult to measure practically. Recently, a number of mathematical

models have been proposed to study the spread and control of brucellosis (see, for

example [5, 30, 31, 39, 66, 44, 92, 93, 94, 95, 33], and references therein). A limita-

tion of these previous studies however, is the non-inclusion of the time taken before

an infectious animal is detected and culled, despite the fact that in many countries

where the disease is endemic lack of financial and human resources often results on

delay in detection and culling of infectious animals. The size of this delay may play

an important role on minimizing the spread of the disease in the community.

It is therefore essential to gain a better and more comprehensive understanding of

the effects of time delay on brucellosis transmission and control. Prior studies have

shown that epidemic models with time delay often exhibit periodic solutions and as a

consequence understanding the nature of these periodic outbreaks plays a crucial role

on designing policies that can successful control the disease. In fact, a recent analysis

of brucellosis dataset in countries where the disease is endemic have shown that the

disease incidences exhibit a strong periodic behavior with mortality and morbidity

of the disease concentrated in a few months each year [27, 28]. Understanding the

impact of such seasonal variations is crucial on managing the spread of the disease

in the community.

Our main goal in this chapter is to explore the dynamics and stability analysis

of a brucellosis model with two discrete delays. Hence we formulated a mathe-

matical model, that incorporates two discrete delays. The first delay represents the

incubation period while the second accounts for the time taken to detect and cull in-

fectious animals. In addition, we subdivide the total animal population into classes

of susceptible, vaccinated, infectious undetected and infectious detected animals. In

certain situations immediate slaughter of detected animals may not be feasible and

more often these animals are isolated from the rest. However, due to lack of finan-

cial and human resources, in addition to lack of knowledge and attitude of farmers,

isolation of detected animals has not been a successful practice in most developing

nations where animal infections are rampant. Thus in our modelling process we

assume that a proportion of detected animals that are not immediately culled are
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also responsible for disease transmission. Utilizing both analytical and numerical

results we have demonstrated that the two delays can destabilize the system and

lead to Hopf bifurcation.

The chapter is organised as follows. The model description is given in Section

7.2. Analytical and numerical results are given in Section 7.3 and 7.4, respectively.

We end with Section 7.5 of conclusions.

7.2 Mathematical model

We subdivide the total animal population N(t) into compartments of: susceptible

S(t), vaccinated V (t), undetected infectious animals I1(t) and infectious detected

and unculled I2(t). Although, brucellosis can be transmitted indirectly (environ-

mental transmission), prior studies [92, 30] suggest that indirect transmission plays

a relatively small role on the spread of brucellosis, and as such we have ignored this

aspect in our study. Brucellosis dynamics in this study are governed by the following

autonomous system:

dS(t)
dt

= A− β[I1(t) + (1− p)I2(t)]S(t)− (µ+ σ)S(t) + κV (t),
dV (t)
dt

= σS(t)− γβ[I1(t) + (1− p)I2(t)]V (t)− (µ+ κ)V (t),
dI1(t)
dt

= β[I1(t− τ1) + (1− p)I2(t− τ1)][S(t− τ1) + γV (t− τ1)]

−(α + µ+ d)I1(t),
dI2(t)
dt

= αI1(t− τ2)− (µ+ c+ d)I2(t),

(7.1)

where A is the recruitment rate through birth, µ is the natural death rate, β is

the disease direct transmission rate, p is the fraction of detected animals that have

been culled, σ is the vaccination rate, κ is the vaccination waning rate, τ1 represents

the latency delay, τ2 is the delay in detection, γ is the modification factor, α is the

rate at which animals are detected and quarantined, c is the culling rate of detected

animals, d disease induced death.
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7.3 Analytical results

7.3.1 Initial conditions

The appropriate space for system (7.1) is X = C([−τ, 0],R4
+) the Banach space of

continuous functions mapping the interval [−τ, 0] into R4
+ equipped with sub-norm

where τ = max{τ1, τ2}. From the standard results of functional differential equations

[96] it follows that, given any initial conditions x0 ∈ X there exists a unique solution

φ(t, x0) = (S(t, x0), V (t, x0), I1(t, x0), I2(t, x0)) of system (7.1), which satisfies φ0 =

x0, the initial conditions are given by

S(θ) = x1
0(θ), V (θ) = x2

0(θ), I1(θ) = x3
0(θ), I2(θ) = x4

0(θ), θ ∈ [−τ, 0], (7.2)

where x0 = (x1
0, x

2
0, x

3
0, x

4
0) ∈ X, with xi0(θ) ≥ 0, (θ ∈ [−τ, 0], i = 1, 2 . . . , 4) and

x3
0(0), x4

0(0) > 0.

7.3.2 The basic reproduction Number

By direct calculation, we find that system (7.1) when τ1 = τ2 = 0, has a disease-free

equilibrium E0, given by E0 = (S0, V 0, 0, 0), with

S0 =
A(µ+ κ)

µ(µ+ σ + κ)
, V 0 =

Aσ

µ(µ+ σ + κ)
, and S0 + γV 0 =

A(µ+ κ+ γσ)

µ(µ+ σ + κ)
.

By utilizing the next generation matrix method [50], one can deduce that the

basic reproduction number of model (7.1) is

R0 =
β(S0 + γV 0)(α(1− p) + k2)

k1k2

,

with k1 = (µ+ α + d), and k2 = (µ+ c+ d).

7.3.3 Stability of the disease-free equilibrium

In this section, we study the local and global stability of the disease-free equilibrium.

Theorem 7.3.1 The disease-free equilibrium E0 of model (7.1) is locally asymptot-

ically stable when R0 < 1 and unstable when R0 > 1.
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Proof 16 To study the local stability of the disease-free equilibrium E0, we linearized

system (7.1) about this point and obtained the characteristic equation, given by the

following determinant:∣∣∣∣∣∣∣∣∣
−(µ+ σ)− λ κ −βS0 −β(1− p)S0

σ −(µ+ κ)− λ −γβV 0 −γβ(1− p)V 0

0 0 (S0 + γV 0)βe−λτ1 − k1 − λ β(S0 + γV 0)(1− p)e−λτ1

0 0 αe−λτ2 −k2 − λ

∣∣∣∣∣∣∣∣∣ = 0,

(7.3)

where λ is the eigenvalue.

From (7.3) the characteristic equation is{
λ+ µ

}{
(λ+ σ + κ+ µ)

}{
[λ+ k2][λ+ k1 − β(S0 + γV 0)e−λτ1 ]

−(1− p)αβ(S0 + γV 0)e−λ(τ1+τ2)
}

= 0. (7.4)

Clearly, −µ and −(σ+κ+µ) are eigenvalues and the other two can be determined

from the following equation

(λ+ k2)(λ+ k1 − β(S0 + γV 0)e−λτ1)− (1− p)αβ(S0 + γV 0)e−λ(τ1+τ2) = 0. (7.5)

Let

g(λ, τ1, τ2) = (λ+k2)(λ+k1−β(S0+γV 0)e−λτ1)−(1−p)αβ(S0+γV 0)e−λ(τ1+τ2). (7.6)

Through direct calculation one can easily verify that g(λ, τ1, τ2) is an analytic

function and it follows thatg(0, τ1, τ2) = k1k2(1−R0),

g(λ, 0, 0) = (λ+ k2)(λ+ k1 − β(S0 + γV 0))− (1− p)αβ(S0 + γV 0).

Now we proceed to investigate the distribution of the solutions of (7.5) in the

following cases.

(a) If R0 < 1, then g(0, τ1, τ2) > 0. Since the derivative g′λ(λ, τ1, τ2) > 0 for λ ≥ 0

, τ1 > 0 and τ2 > 0, (7.5) has no zero root and positive real roots for all

positive τ1 and τ2. Now we assume that the solution of (7.5) does not have

any purely imaginary roots λ = iω, (ω > 0) for some τ1 > 0, τ2 = 0. Then by

computation, ω must be positive real root of

ω4 +
{
k2

1 + k2
2 − [β(S0 + γV 0)]2

}
ω2 + (k1k2)2
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−
[
β(S0 + γV 0) [k2 + α(1− p)]

]2
= 0. (7.7)

If R0 < 1 the equation (7.7) has no positive roots. Hence (7.5) does not have

any purely imaginary roots. We can easily see that the roots of g(λ, 0, 0) = 0

all have negative real parts when R0 < 1. By the implicit function theorem

and the continuity of g(λ, τ1, τ2), we know that all roots of (7.5) have negative

real parts for positive τ1 and τ2 = 0 which implies that E0 is stable.

(b) If R0 = 1 then g(0, τ1, τ2) > 0. Since the derivative g′(λ, τ1, τ2) > 0 for λ ≥ 0 ,

τ1 > 0 and τ2 > 0, (7.5) has a simple zero and no positive root for all positive

τ1 and τ2. By the same argument in case (a), we can obtain that all roots of

(7.5) have negative real parts for positive τ1 and τ2 = 0 except a zero root.

Thus E0 is a degenerate equilibrium of codimension and is stable except in one

direction.

(c) If R0 > 1, then g(0, τ1, τ2) < 0. Since we have lim
λ→∞

g(λ, τ1, τ2) = ∞ and

g′(λ, τ1, τ2) > 0 for λ ≥ 0, τ1 > 0 and τ2 > 0, (7.5) has a unique positive real

root for all positive τ1 and τ2 = 0 and E0 is unstable.

Theorem 7.3.2 The disease-free equilibrium of model (7.1) is globally asymptoti-

cally stable when R0 ≤ 1 and unstable when R0 > 1.

Proof 17 We denote by xt the translation of the solution of the system (7.1), that

is, xt = (S(t+θ), V (t+θ), I1(t+θ), I2(t+θ)) where θ ∈ [−τ, 0] and τ = max{τ1, τ2}.
We consider the following Lyapunov functional

U(xt) =
β [α(1− p) + k2]

k1k2

I1(t) +
β(1− p)

k2

I2(t) +
βα(1− p)

k2

∫ t

t−τ2
[I1(θ)] dθ

+
β2 [α(1− p) + k2]

k1k2

∫ t

t−τ1
{[I1(θ) + (1− p)I2(θ)][S(θ) + γV (θ)]} dθ.

Taking the derivative of U along the solutions of (7.1) gives

dU(xt)

dt
=

β [α(1− p) + k2]

k1k2

β[I1(t− τ1) + (1− p)I2(t− τ1)][S(t− τ1)

+γV (t− τ1)]

−β [α(1− p) + k2]

k2

I1(t) +
β(1− p)

k2

αI1(t− τ2)− β(1− p)I2(t)

+
β [α(1− p) + k2]

k1k2

β[I1(t) + (1− p)I2(t)][S(t) + γV (t)]
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−β [α(1− p) + k2]

k1k2

β[I1(t− τ1) + (1− p)I2(t− τ1)][S(t− τ1)

+γV (t− τ1)]

+
β(1− p)

k2

αI1(t)− β(1− p)
k2

αI1(t− τ2)

=
β [α(1− p) + k2]

k1k2

β [S(t) + γV (t)] [I1(t) + (1− p)I2(t)]

−β [I1(t) + (1− p)I2(t)]

≤ β

[
β [α(1− p) + k2] [S0 + γV 0]

k1k2

− 1

]
[I1(t) + (1− p)I2(t)]

= β [R0 − 1] [I1(t) + (1− p)I2(t)] . (7.8)

Therefore, U̇ < 0 holds if R0 < 1. Furthermore, U̇ = 0 if R0 = 1. Therefore,

the largest invariant set of U̇ is a singleton {E0} such that S(t) = S0, V (t) = V 0,

I1(t) = I2(t) = 0. It follows from the LaSalle’s invariance principle [46] that the

disease-free equilibrium of system (7.1) denoted by E0 is globally asymptotically stable

whenever R0 ≤ 1. This completes the proof of Theorem 7.3.2.

7.3.4 Disease persistence

System (7.1) is said to be uniformly persistent if there exists a constant η0 > 0 such

that any solution (S(t), V (t), I1(t), I2(t)) of (7.1) satisfies

lim inf
t→∞

S(t) ≥ η0, lim inf
t→∞

V (t) ≥ η0, lim inf
t→∞

I1(t) ≥ η0, lim inf
t→∞

I2(t) ≥ η0.

Now we give a result on the uniform persistence of system (7.1). To proceed we

introduce the following notation and terminology. Denote by P (t), t ≥ 0 the family

of solution operators corresponding to (7.1). The ω-limit set ω(x) of x consists of

y ∈ X such that there exists a sequence tn −→ ∞ as n −→ ∞ with P (tn)x −→ y

as n −→∞.

Theorem 7.3.3 System (7.1) is uniformly persistent, if it satisfies R0 > 1.

Proof 18 Let

X0 = {x0 ∈ X : x3
0(0) > 0, x4

0(0) > 0}, ∂X = X\X0 = {x0 ∈ X : x3
0(0) =

0 or x4
0(0) = 0} which is relatively closed in X.

In what follows we demonstrate that X0 is positively invariant for P (t). From

the third and fourth equations of (7.1) we have

dI1(t)

dt
≥ −(α + µ+ d)I1(t),

dI2(t)

dt
≥ −(µ+ c+ d)I2(t). (7.9)
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Since I1(0, x0) = x3
0(0) > 0, we have I2(0, x0) = x4

0(0) > 0 it follows from (7.9)

that

I1(t, x0) ≥ x3
0(0).e−(α+µ+d)t, I2(t, x0) ≥ x4

0(0).e−(µ+c+d)t, ∀t ≥ 0.

Thus X0 is positively invariant for P (t).

We set

M∂ = {x0 ∈ X : φ(t)x0 satisfies (7.1) and φ(t)x0 ∈ ∂X, ∀t ≥ 0}.

We claim that

M∂ = {(S, V, 0, 0)}. (7.10)

Assuming φ(t) ∈M∂, ∀t ≥ 0, it suffices to show that I1(t) = I2(t) = 0, ∀t ≥ 0.

If it is not true, then there exists t0 > 0 such that either (a) I1(t0) > 0, I2(t0) = 0;

or (b) I1(t0) = 0, I2(t0) > 0. For case (a), from the fourth equation of (7.1) we

have [
dI2

dt

]
t=t0

= αI1(t0 − τ2) > 0.

Hence there is an ε0 > 0 such that I2(t) > 0, ∀t ∈ (t0, t0 +ε0). On the other hand,

from I1(t) > 0 there exists ε1 (0 < ε1 < ε0) such that I1(t) > 0, ∀t ∈ (t0, t0 + ε1).

Thus we have I1(t) > 0, I2(t) > 0, ∀t ∈ (t0, t0 +ε1) which contradicts the assumption

that (S(t), V (t), I1(t), I2(t)) ∈M∂, ∀t ≥ 0. Similarly, we can obtain a contradiction

for case (b). This proves the claim (7.10).

Let F = ∩x∈Fbω(x), where Fb is the global attractor of P (t) restricted to ∂X.

We show that F = {E0}. In fact, from F ⊆M∂ and the first and second equation of

(7.1), we have limt→∞ S(t) = S0 and limt→∞ V (t) = V 0. Thus, {E0} is the isolated

invariant set in X.

Next we show that W S(E0) ∩ X0 = ∅. If this is not true, then there exists a

solution (St, V t, I t1, I
t
2) ∈ X0 such that

lim
t→∞

S(t) =
A(µ+ κ)

µ(µ+ σ + κ)
, lim

t→∞
V (t) =

Aσ

µ(µ+ σ + κ)
, lim

t→∞
I1(t) = 0,

lim
t→∞

I2(t) = 0, .
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For any sufficiently small constant ε > 0, there exists a positive constant T0 =

T0(ε) such that S(t) > S0 − ε > 0, V (t) > V 0 − ε > 0, ∀t > T0. For the constant ε

given above, it follows from the third and fourth equations of (7.1) that

dI1(t)

dt
≥ β[I1(t− τ1) + (1− p)I2(t− τ1)][(S0 − ε) + γ(V 0 − ε)]
−(α + µ+ d)I1(t),

dI2(t)

dt
= αI1(t− τ2)− (µ+ c+ d)I2(t), t ≥ T0 + τ (7.11)

If I1(t), I2(t) −→∞, then by a standard comparison argument and the nonneg-

ativity, the solution

(Ĩ1(t), Ĩ2(t)) of the following monotone system

dĨ1(t)

dt
= β[Ĩ1(t− τ1) + (1− p)Ĩ2(t− τ1)][(S0 − ε) + γ(V 0 − ε)]
−(α + µ+ d)Ĩ1(t),

dĨ2(t)

dt
= αĨ1(t− τ2)− (µ+ c+ d)Ĩ2(t), t ≥ T0 + τ (7.12)

with initial condition Ĩ1(t) = I1(t), Ĩ2(t) = I2(t), ∀t ∈ [T0, T0 +τ ] converges to (0, 0)

as well. Thus limt→∞ Ŵ (t) = 0, where Ŵ (t) > 0 is defined by

Ŵ (t) =
β [α(1− p) + k2]

k1k2

Ĩ1(t) +
β(1− p)

k2

Ĩ2(t) +
βα(1− p)

k2

∫ t

t−τ2

[
Ĩ1(ζ)

]
dζ

+
β2 [α(1− p) + k2] [(S0 − ε) + γ(V 0 − ε)]

k1k2

∫ t

t−τ1
[Ĩ1(ζ) + (1− p)Ĩ2(ζ)]dζ.

Differentiating Ŵ (t) with respect to time t yields[
dŴ (t)

dt

]
(7.12)

=

[
β2 [α(1− p) + k2] [(S0 − ε) + γ(V 0 − ε)]

k1k2

− β
]

.
[
Ĩ1(t) + (1− p)Ĩ2(t)

]
.

Since R0 > 1, we have
β2 [α(1− p) + k2] [(S0 − ε) + γ(V 0 − ε)]

k1k2

− β > 0 for a

sufficiently small ε. Therefore Ŵ (t) goes to either infinity or a positive number as

t −→ ∞, which leads to a contradiction with limt−→∞ Ŵ (t) = 0. Thus we have

W S(E0) ∩X0 = ∅. Define m : X → R+ by m(x0) = min{x3
0(0), x4

0(0)}, ∀x0 ∈ X. It

is clear that X0 = m−1(0,∞) and ∂X = m−1(0). Thus by [97] theorem 3 we have

lim inft−→∞(I1(t), I2(t) ≥ (η1, η1) for some constant η1 > 0. Let η0 = min{η1, ε}
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where ε is the constant such that lim inft→∞ S(t) ≥ ε > 0, lim inft→∞ V (t) ≥ ε > 0.

We showed that lim inft→∞ S(t) ≥ η0, lim inft→∞ V (t) ≥ η0, lim inft→∞ I1(t) ≥
η0, lim inft→∞ I2(t) ≥ η0. This completes the proof of Theorem 7.3.3.

7.3.5 Existence of the endemic equilibrium

Theorem 7.3.4 If R0 > 1, model (7.1) admits a unique endemic equilibrium.

Proof 19 The endemic equilibrium E∗ = (S∗, V ∗, I∗1 , I
∗
2 ) of model (7.1) is determine

by equations
A− β[I1(t) + (1− p)I2(t)]S(t)− (µ+ σ)S(t) + κV (t) = 0,

σS(t)− γβ[I1(t) + (1− p)I2(t)]V (t)− (µ+ κ)V (t) = 0,

β[I1(t) + (1− p)I2(t)][S(t) + γV (t)]− k1I1(t) = 0,

αI1(t)− k2I2(t) = 0.

(7.13)

From the last equation in (7.13) we have

I2 =
αI1

k2

. (7.14)

The first two equations in (7.13) gives
S =

A[γβ(1 + α(1−p)
k2

)I1 + µ+ κ]

[β(1 + α(1−p)
k2

)I1 + µ+ σ][γβ(1 + α(1−p)
k2

)I1 + µ+ κ]− κσ
,

V =
Aσ

[β(1 + α(1−p)
k2

)I1 + µ+ σ][γβ(1 + α(1−p)
k2

)I1 + µ+ κ]− κσ
.

(7.15)

For I1 6= 0, substituting (7.14) into the third equation in (7.13) gives

S + γV =
k1k2

β[α(1− p) + k2]
. (7.16)

Substituting (7.15) into (7.16) yields

F (I1) =
A[γβ(1 + α(1−p)

k2
)I1 + µ+ κ+ γσ]

[β(1 + α(1−p)
k2

)I1 + µ+ σ][γβ(1 + α(1−p)
k2

)I1 + µ+ κ]− κσ
− k1k2

β[α(1− p) + k2]
.

(7.17)

Direct calculations shows

F ′(I1) = −
Aβ2

[
1 + α(1−p)

k2

]2 [
γ2βI2

1 [1 + α(1−p)
k2

] + 2γ(γσ + µ+ κ)I1

]
+M

[[β(1 + α(1−p)
k2

)I1 + µ+ σ][γβ(1 + α(1−p)
k2

)I1 + µ+ κ]− κσ]2
< 0,

(7.18)
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where

M = Aβ

[
1 +

α(1− p)
k2

] [
γσ(2κ+ µ) + γ2σ(µ+ σ) + (µ+ κ)2

]
.

then the function F (I1) is monotonic decreasing for I1 > 0, then we can define

the function

F (0) =
k1k2

β[α(1− p) + k2]
[R0 − 1] .

Therefore, by monotonicity of a function F (I1) there exists a unique endemic

equilibrium E∗ = (S∗, V ∗, I∗1 , I
∗
2 )

7.3.6 Stability of the endemic equilibrium

In this section, we will investigate the local and global stability of the endemic

equilibrium point.

Theorem 7.3.5 The endemic equilibrium E∗ of the system (7.1) is locally asymp-

totically stable if R0 > 1 and conditions (7.21) are satisfied.

Proof 20 The characteristics equation of system (7.1) on the infected equilibrium

E∗ is given by the following determinant∣∣∣∣∣∣∣∣∣∣∣

−(µ+ σ)− λ κ −βS∗ −β(1− p)S∗

σ −(µ+ κ)− λ −γβV ∗ −γβ(1− p)V ∗

r31 r32 r33 r34

0 0 αe−λτ2 −(µ+ c+ d)− λ

∣∣∣∣∣∣∣∣∣∣∣
= 0, (7.19)

with

r31 = β[I∗1 + (1− p)I∗2 ]e−λτ1 , r32 = γβ[I∗1 + (1− p)I∗2 ]e−λτ1 ,

r33 = (S∗ + γV ∗)βe−λτ1 − (α + µ+ d)− λ, r34 = β(S∗ + γV ∗)(1− p)e−λτ1 .

After some algebraic manipulations one can show that the characteristic equation

has the form

λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0 (7.20)

with

145



a1 = 4µ+ κ+ α + σ + 2d+ c+ β(γ + 1)(I∗1 + (1− p)I∗2 )− (S∗ + γV ∗)βe−λτ1 ,

a2 = β2(S∗ + γ2V ∗)(I∗1 + (1− p)I∗2 )e−λτ1 + µ(µ+ κ+ σ) + γβ2(I∗1 + (1− p)I∗2 )2

+β(γµ+ γσ + κ+ µ)(I∗1 + (1− p)I∗2 )− αβ(1− p)(S∗ + γV ∗)e−λ(τ1+τ2)

+(µ+ α + d− (S∗ + γV ∗)βe−λτ1)(2µ+ κ+ σ + β(γ + 1)(I∗1 + (1− p)I∗2 ))

+(µ+ c+ d)(3µ+ κ+ σ + α + d+ β(γ + 1)(I∗1 + (1− p)I∗2 )

−β(S∗ + γV ∗)e−λτ1),

a3 =
[
β(S∗ + γV ∗)(κ+ γσ) + β2γ(S∗ + γV ∗)(I∗1 + (1− p)I∗2 )

]
[I∗1

+(1− p)I∗2 ]βe−λτ1

+
[
µ(S∗ + γ2V ∗)

]
[I∗1 + (1− p)I∗2 ] β2e−λτ1 + µ [µ+ κ+ σ]

[
µ+ α + d

−(S∗ + γV ∗)βe−λτ1
]

+γβ2 [I∗1 + (1− p)I∗2 ]2
[
µ+ α + d− (S∗ + γV ∗)βe−λτ1

]
+µ [µ+ c+ d] [µ+ κ+ σ]

+β [γµ+ γσ + µ+ κ] [I∗1 + (1− p)I∗2 ]
[
µ+ α + d− (S∗ + γV ∗)βe−λτ1

]
+γβ2 [µ+ c+ d] [I∗1 + (1− p)I∗2 ]2 + β2 [µ+ c+ d] (S∗ + γ2V ∗)

. [I∗1 + (1− p)I∗2 ] e−λτ1

+β [µ+ c+ d] [γµ+ γσ + κ+ µ] [I∗1 + (1− p)I∗2 ] + αβ2(1− p)(S∗ + γ2V ∗)

. [I∗1 + (1− p)I∗2 ] e−λ(τ1+τ2)

+ [µ+ c+ d] [2µ+ κ+ σ + β(γ + 1)(I∗1 + (1− p)I∗2 )]
[
µ+ α + d

−β(S∗ + γV ∗)e−λτ1
]

−αβ(1− p)(S∗ + γV ∗) [2µ+ κ+ σ + β(γ + 1)(I∗1 + (1− p)I∗2 )] e−λ(τ1+τ2),

a4 = [µ+ c+ d]
[
β(S∗ + γV ∗)(κ+ γσ) + γβ2(S∗ + γV ∗)(I∗1 + (1− p)I∗2 )

]
. [I∗1 + (1− p)I∗2 ] βe−λτ1 + [µ+ c+ d]µ(S∗ + γ2V ∗) [I∗1 + (1− p)I∗2 ] β2e−λτ1

+µ [µ+ c+ d] [κ+ µ+ σ]
[
µ+ α + d− (S∗ + γV ∗)βe−λτ1

]
+γβ2 [µ+ c+ d] [I∗1 + (1− p)I∗2 ]2

[
µ+ α + d− (S∗ + γV ∗)βe−λτ1

]
+β [µ+ c+ d] [γµ+ γσ + κ+ µ] [I∗1 + (1− p)I∗2 ] [µ+ α + d

−(S∗ + γV ∗)βe−λτ1 ]

+αγβ2(1− p)(S∗σ + κV ∗) [I∗1 + (1− p)I∗2 ] e−λ(τ1+τ2)

+α(γβ)2(1− p)V ∗ [µ+ σ + β(I∗1 + (1− p)I∗2 )] [I∗1 + (1− p)I∗2 ] e−λ(τ1+τ2)
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+αβ2(1− p)S∗ [µ+ κ+ γβ(I∗1 + (1− p)I∗2 )] [I∗1 + (1− p)I∗2 ] e−λ(τ1+τ2)

−αβ(1− p)(S∗ + γV ∗)[µ(κ+ µ+ σ) + β(γµ+ γσ + κ+ µ)(I∗1

+(1− p)I∗2 )]e−λ(τ1+τ2)

−αβ(1− p)(S∗ + γV ∗)
[
γβ2(I∗1 + (1− p)I∗2 )2

]
e−λ(τ1+τ2).

By the Routh-Hurwitz criterion, all roots of the characteristics equation (7.20)

have negative real parts and the endemic equilibrium E∗ of system (7.1) is locally

asymptotically stable if τ1 = τ2 = 0, if and only if:

ai > 0 (i = 1, 2, 3, 4), M1 = a1 > 0,

M2 =

[
a1 a3

1 a2

]
> 0, M3 =


a1 a3 a5

1 a2 a4

0 a1 a3

 > 0,

and

M4 =


a1 a3 0 0

1 a2 a4 0

0 a1 a3 0

0 1 a2 a4

 > 0. (7.21)

Now, we wish to explore if there is a possibility of having complex roots with

positive real part for (a) τ1 > 0, τ2 = 0 and (b) τ1 = 0, τ2 > 0. We now proceed to

explore the above cases as follows:

(a) If τ1 > 0, τ2 = 0, then the characteristics equation (7.20) becomes

λ4 + a11λ
3 + a21λ

2 + a31λ+ a41 = e−λτ1(m11λ
3 +m21λ

2 +m31λ+m41), (7.22)

with

a11 = 4µ+ κ+ α + σ + 2d+ c+ β(γ + 1)(I∗1 + (1− p)I∗2 ),

a21 = µ(µ+ κ+ σ) + γβ2(I∗1 + (1− p)I∗2 )2

+β(γµ+ γσ + κ+ µ)(I∗1 + (1− p)I∗2 )

+(µ+ α + d)(2µ+ κ+ σ + β(γ + 1)(I∗1 + (1− p)I∗2 ))

+(µ+ c+ d)(3µ+ κ+ σ + α + d+ β(γ + 1)(I∗1 + (1− p)I∗2 )),
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a31 = µ [µ+ κ+ σ] [µ+ α + d] + γβ2 [I∗1 + (1− p)I∗2 ]2 [µ+ α + d]

+µ [µ+ c+ d] [µ+ κ+ σ] + β [γµ+ γσ + µ+ κ] [I∗1 + (1− p)I∗2 ]

. [µ+ α + d]

+γβ2 [µ+ c+ d] [I∗1 + (1− p)I∗2 ]2

+β [µ+ c+ d] [γµ+ γσ + κ+ µ] [I∗1 + (1− p)I∗2 ]

+ [µ+ c+ d] [2µ+ κ+ σ + β(γ + 1)(I∗1 + (1− p)I∗2 )] [µ+ α + d] ,

a41 = µ [µ+ c+ d] [κ+ µ+ σ] [µ+ α + d]

+γβ2 [µ+ c+ d] [I∗1 + (1− p)I∗2 ]2 [µ+ α + d]

+β [µ+ c+ d] [γµ+ γσ + κ+ µ] [I∗1 + (1− p)I∗2 ] [µ+ α + d] ,

m11 = (S∗ + γV ∗)β,

m21 = −β2(S∗ + γ2V ∗)(I∗1 + (1− p)I∗2 ) + αβ(1− p)(S∗ + γV ∗)

+(S∗ + γV ∗)β(2µ+ κ+ σ + β(γ + 1)(I∗1 + (1− p)I∗2 ))

+(µ+ c+ d)β(S∗ + γV ∗),

m31 = −
[
β(S∗ + γV ∗)(κ+ γσ) + β2γ(S∗ + γV ∗)(I∗1 + (1− p)I∗2 )

]
× [I∗1 + (1− p)I∗2 ] β

−
[
µ(S∗ + γ2V ∗)

]
[I∗1 + (1− p)I∗2 ] β2 + µ [µ+ κ+ σ] [(S∗ + γV ∗)β]

+γβ2 [I∗1 + (1− p)I∗2 ]2 [(S∗ + γV ∗)]

+β [γµ+ γσ + µ+ κ] [I∗1 + (1− p)I∗2 ] [(S∗ + γV ∗)β]

−β2 [µ+ c+ d] (S∗ + γ2V ∗) [I∗1 + (1− p)I∗2 ]

−αβ2(1− p)(S∗ + γ2V ∗) [I∗1 + (1− p)I∗2 ]

+ [µ+ c+ d] [2µ+ κ+ σ + β(γ + 1)(I∗1 + (1− p)I∗2 )] [β(S∗ + γV ∗)]

+αβ(1− p)(S∗ + γV ∗) [2µ+ κ+ σ + β(γ + 1)(I∗1 + (1− p)I∗2 )] ,

m41 = − [µ+ c+ c] [β(S∗ + γV ∗)(κ+ γσ)

+γβ2(S∗ + γV ∗)(I∗1 + (1− p)I∗2 )] [I∗1 + (1− p)I∗2 ] β

− [µ+ c+ d]µ(S∗ + γ2V ∗) [I∗1 + (1− p)I∗2 ] β2

+µ [µ+ c+ d] [κ+ µ+ σ] [(S∗ + γV ∗)β]

+γβ2 [µ+ c+ d] [I∗1 + (1− p)I∗2 ]2 [(S∗ + γV ∗)β]

+β [µ+ c+ d] [γµ+ γσ + κ+ µ] [I∗1 + (1− p)I∗2 ] [(S∗ + γV ∗)β]
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−αγβ2(1− p)(S∗σ + κV ∗) [I∗1 + (1− p)I∗2 ]

−α(γβ)2(1− p)V ∗ [µ+ σ + β(I∗1 + (1− p)I∗2 )] [I∗1 + (1− p)I∗2 ]

−αβ2(1− p)S∗ [µ+ κ+ γβ(I∗1 + (1− p)I∗2 )] [I∗1 + (1− p)I∗2 ]

+αβ(1− p)(S∗ + γV ∗)
[
µ(κ+ µ+ σ)

+β(γµ+ γσ + κ+ µ)(I∗1 + (1− p)I∗2 )
]

+αβ(1− p)(S∗ + γV ∗)
[
γβ2(I∗1 + (1− p)I∗2 )2

]
.

Now we need to show that all roots of (7.22) have negative real parts for all

τ1 ∈ (0, τ ∗). To do so, we show that (7.22) does not have any purely imaginary

roots for all τ1 ∈ (0, τ ∗) . We assume that λ = iω with ω > 0 is a root of

(7.22). Then ω must satisfy the following system:{
ω4 − a21ω

2 + a41 = (m41 −m21ω
2) cos(ωτ1) + (m31ω −m11ω

3) sin(ωτ1),

a31ω − a11ω
3 = (m31ω −m11ω

3) cos(ωτ1)− (m41 −m21ω
2) sin(ωτ1).

(7.23)

Now, we square both sides of each equation above and add the resulting equa-

tions, thus ω, must be a positive root of

ω8 + b1ω
6 + b2ω

4 + b3ω
2 + b4 = 0, (7.24)

where 
b1 = a2

11 − 2a21 −m2
11,

b2 = a2
21 + 2(a41 − a11a31 +m11m31)−m2

21,

b3 = a2
31 + 2(m21m41 − a21a41)−m2

31,

b4 = a2
41 −m2

41.

(7.25)

Let z = ω2, then (7.24) becomes

F (z) = z4 + b1z
3 + b2z

2 + b3z + b4 = 0. (7.26)

One can observe that, if bi ≥ 0, (i = 1, 2, 3, 4), then (7.26) has no positive

roots. Therefore (7.22) does not have any purely imaginary roots for all τ1 ∈
(0, τ ∗) so that all roots of the characteristic equation (7.22) have negative real

parts and the endemic equilibrium E∗ of (7.1) is stable for all τ1 ∈ (0, τ ∗).

(b) If τ2 > 0, τ1 = 0 then the characteristics equation (7.20) becomes

λ4 + α11λ
3 + α21λ

2 + α31λ+ α41 = e−λτ2(n11λ
3 + n21λ

2 + n31λ+ n41) (7.27)
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α11 = 4µ+ κ+ α + σ + 2d+ c+ β(γ + 1)(I∗1 + (1− p)I∗2 )− (S∗ + γV ∗)β,

α21 = β2(S∗ + γ2V ∗)(I∗1 + (1− p)I∗2 ) + µ(µ+ κ+ σ)

+γβ2(I∗1 + (1− p)I∗2 )2 + β(γµ+ γσ + κ+ µ)(I∗1 + (1− p)I∗2 )

+(µ+ α + d− (S∗ + γV ∗)β)(2µ+ κ+ σ + β(γ + 1)(I∗1 + (1− p)I∗2 ))

+(µ+ c+ d)(3µ+ κ+ σ + α + d+ β(γ + 1)(I∗1 + (1− p)I∗2 )

−β(S∗ + γV ∗)),

α31 =
[
β(S∗ + γV ∗)(κ+ γσ) + β2γ(S∗ + γV ∗)(I∗1 + (1− p)I2)

]
[I∗1

+(1− p)I∗2 ]β +
[
µ(S∗ + γ2V ∗)

]
[I∗1 + (1− p)I∗2 ] β2

+µ [µ+ κ+ σ]
[
µ+ α + d− (S∗ + γV ∗)β

]
+γβ2 [I∗1 + (1− p)I∗2 ]2 [µ+ α + d− (S∗ + γV ∗)β]

+µ [µ+ c+ d] [µ+ κ+ σ]

+β [γµ+ γσ + µ+ κ] [I∗1 + (1− p)I∗2 ] [µ+ α + d− (S∗ + γV ∗)β]

+γβ2 [µ+ c+ d] [I∗1 + (1− p)I∗2 ]2

+β2 [µ+ c+ d] (S∗ + γ2V ∗) [I∗1 + (1− p)I∗2 ]

+β [µ+ c+ d] [γµ+ γσ + κ+ µ] [I∗1 + (1− p)I∗2 ]

+ [µ+ c+ d] [2µ+ κ+ σ + β(γ + 1)(I∗1 + (1− p)I∗2 )]

. [µ+ α + d− β(S∗ + γV ∗)] ,

α41 = [µ+ c+ c]
[
β(S∗ + γV ∗)(κ+ γσ) + γβ2(S∗ + γV ∗)(I∗1 + (1− p)I∗2 )

]
. [I∗1 + (1− p)I∗2 ] β

+ [µ+ c+ d]µ(S∗ + γ2V ∗) [I∗1 + (1− p)I∗2 ] β2

+µ [µ+ c+ d] [κ+ µ+ σ] [µ+ α + d− (S∗ + γV ∗)β]

+γβ2 [µ+ c+ d] [I∗1 + (1− p)I∗2 ]2 [µ+ α + d− (S∗ + γV ∗)β]

+β [µ+ c+ d] [γµ+ γσ + κ+ µ] [I∗1 + (1− p)I∗2 ] [µ+ α + d

−(S∗ + γV ∗)β],

n11 = 0, n21 = αβ(1− p)(S∗ + γV ∗)

n31 = −αβ2(1− p)(S∗ + γ2V ∗) [I∗1 + (1− p)I∗2 ]
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αβ(1− p)(S∗ + γV ∗) [2µ+ κ+ σ + β(γ + 1)(I∗1 + (1− p)I∗2 )] ,

n41 = −αγβ2(1− p)(S∗σ + κV ∗) [I∗1 + (1− p)I∗2 ]

−α(γβ)2(1− p)V ∗ [µ+ σ + β(I∗1 + (1− p)I∗2 )] [I∗1 + (1− p)I∗2 ]

−αβ2(1− p)S∗ [µ+ κ+ γβ(I∗1 + (1− p)I∗2 )] [I∗1 + (1− p)I∗2 ]

+αβ(1− p)(S∗ + γV ∗)
[
µ(κ+ µ+ σ) + β(γµ+ γσ + κ+ µ)

.(I∗1 + (1− p)I∗2 )
]

+αβ(1− p)(S∗ + γV ∗)
[
γβ2(I∗1 + (1− p)I∗2 )2

]
.

Using the same discussion as in the above case then (7.27) can be written as

h(z) = z4 + c1z
3 + c2z

2 + c3z + c4 = 0 (7.28)

with 
c1 = α2

11 − 2α21,

c2 = α2
21 + 2(α41 − α11α31)− n2

21,

c3 = α2
31 + 2(n21n41 − α21α41)− n2

31,

c4 = α2
41 − n2

41.

(7.29)

It follows that all roots of (7.27) have negative real parts for τ2(0, τ ∗2 ) when

cj ≥ 0, j = 1, 2, 3, 4 and this implies that endemic equilibrium is locally asymp-

totically stable for τ2 ∈ (0, τ ∗2 ) . This completes the proof.

We now explore the global stability of the endemic equilibrium.

Theorem 7.3.6 If R0 > 1, then E∗ is globally asymptotically stable.

Proof 21 Let us consider the Lyapunov function

W(t) =W1(t) +W2(t) +W3. (7.30)

Here,

W1(t) =

{
S(t)− S∗ − S∗ ln

(
S(t)

S∗

)}
+

{
V (t)− V ∗ − V ∗ ln

(
V (t)

V ∗

)}
+

{
I1(t)− I∗1 − I∗1 ln

(
I1(t)

I∗1

)}
+
β(1− p)(S∗ + γV ∗)I∗2

αI∗1

{
I2(t)− I∗2 − I∗2 ln

(
I2(t)

I∗2

)}
,
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W2(t) = βS∗I∗1

∫ τ1

0

{I1(t− ω)S(t− ω)

S∗I∗1
− 1− ln

(I1(t− ω)S(t− ω)

S∗I∗1

)}
dω

+βγV ∗I∗1

∫ τ1

0

{I1(t− ω)V (t− ω)

V ∗I∗1
− 1− ln

(I1(t− ω)V (t− ω)

V ∗I∗1

)}
dω

+β(1− p)S∗I∗2
∫ τ1

0

{I2(t− ω)S(t− ω)

S∗I∗2
− 1

− ln
(I2(t− ω)S(t− ω)

S∗I∗2

)}
dω

+βγ(1− p)V ∗I∗2
∫ τ1

0

{I2(t− ω)V (t− ω)

V ∗I∗2
− 1

− ln
(I2(t− ω)V (t− ω)

V ∗I∗2

)}
dω,

W3(t) = β(1− p)(S∗ + γV ∗)I∗2

∫ τ2

0

{I1(t− ω)

I∗1
− 1− ln

(I1(t− ω)

I∗1

)}
dω. (7.31)

The derivatives of W1(t) are given by

dW1(t)

dt
=

(
1− S∗

S(t)

)dS
dt

+
(

1− V ∗

V (t)

)dV
dt

+
(

1− I∗1
I1(t)

)dI1

dt

+
β(1− p)(S∗ + γV ∗)I∗2

αI∗1

(
1− I∗2

I2(t)

)dI2

dt
. (7.32)

Substituting the appropriate differentials from (7.1) we have

dW1(t)

dt
=

{
1− S∗

S(t)

}{
A− β[I1(t) + (1− p)I2(t)]S(t)− (µ+ σ)S(t) + κV (t)

}
+
{

1− V ∗

V (t)

}{
σS(t)− γβ[I1(t) + (1− p)I2(t)]V (t)− (µ+ κ)V (t)

}
+
{

1− I∗1
I1(t)

}{
β[I1(t− τ1) + (1− p)I2(t− τ1)][S(t− τ1)

+γV (t− τ1)]− k1I1(t)
}

+
β(1− p)(S∗ + γV ∗)I∗2

αI∗1

{
1− I∗2

I2(t)

){
αI1(t− τ2)− k2I2(t)

}
. (7.33)

At endemic equilibrium, we have
A = β[I∗1 + (1− p)I∗2 ]S∗ + (µ+ σ)S∗ − κV ∗,
(µ+ κ)V ∗ = σS∗ − γβ[I∗1 + (1− p)I∗2 ]V ∗,

k1I
∗
1 = β[I∗1 + (1− p)I∗2 ][S∗ + γV ∗],

k2I
∗
2 = αI∗1 .

(7.34)

Using the above constants we have

dW1(t)

dt
= µS∗

(
2− S(t)

S∗
− S∗

S(t)

)
+ κV ∗

(
2− S(t)

S∗
.
V ∗

V (t)
− S∗

S(t)
.
V (t)

V ∗

)
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+µV ∗
(

3− S∗

S(t)
− V (t)

V ∗
− S(t)

S∗
.
V ∗

V (t)

)
+βI∗1S

∗
(

2− S(t)

S∗
.
I1(t)

I∗1
− S∗

S(t)

)
+β(1− p)S∗I∗2

(
2− S(t)

S∗
.
I2(t)

I∗2
− S∗

S(t)
− I1(t)

I∗1

)
+βγV ∗I∗1

(
3− S∗

S(t)
− I1(t)

I∗1
.
V (t)

V ∗
− S(t)

S∗
.
V ∗

V (t)

)
+βγ(1− p)V ∗I∗2

(
3− S∗

S(t)
− S(t)

S∗
.
V ∗

V (t)
− I2(t)

I∗2
.
V (t)

V ∗
− I1(t)

I∗1

)
+βI1(t− τ1)S(t− τ1)

(
1− I∗1

I1(t)

)
+β(1− p)I2(t− τ1)S(t− τ1)

(
1− I∗1

I1(t)

)
+βγI1(t− τ1)V (t− τ1)

(
1− I∗1

I1(t)

)
+βγ(1− p)I2(t− τ1)V (t− τ1)

(
1− I∗1

I1(t)

)
+β(1− p)I1(t− τ2)S∗

(
I∗2
I∗1
− I∗2
I2(t)

.
I∗2
I∗1

)
+βγ(1− p)I1(t− τ2)V ∗

(
I∗2
I∗1
− I∗2
I2(t)

.
I∗2
I∗1

)
. (7.35)

The derivatives of W2 are given by

dW2(t)

dt
= βS∗I∗1

d

dt

∫ τ1

0

{I1(t− ω)S(t− ω)

S∗I∗1
− 1− ln

(I1(t− ω)S(t− ω)

S∗I∗1

)}
dω

+βγV ∗I∗1
d

dt

∫ τ1

0

{I1(t− ω)V (t− ω)

V ∗I∗1
− 1

− ln
(I1(t− ω)V (t− ω)

V ∗I∗1

)}
dω

+β(1− p)S∗I∗2
d

dt

∫ τ1

0

{I2(t− ω)S(t− ω)

S∗I∗2
− 1

− ln
(I2(t− ω)S(t− ω)

S∗I∗2

)}
dω

+βγ(1− p)V ∗I∗2
d

dt

∫ τ1

0

{I2(t− ω)V (t− ω)

V ∗I∗2
− 1

− ln
(I2(t− ω)V (t− ω)

V ∗I∗2

)}
dω,

= βS∗I∗1

∫ τ1

0

d

dt

{I1(t− ω)S(t− ω)

S∗I∗1
− 1− ln

(I1(t− ω)S(t− ω)

S∗I∗1

)}
dω

+βγV ∗I∗1

∫ τ1

0

d

dt

{I1(t− ω)V (t− ω)

V ∗I∗1
− 1

− ln
(I1(t− ω)V (t− ω)

V ∗I∗1

)}
dω
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+β(1− p)S∗I∗2
∫ τ1

0

d

dt

{I2(t− ω)S(t− ω)

S∗I∗2
− 1

− ln
(I2(t− ω)S(t− ω)

S∗I∗2

)}
dω

+βγ(1− p)V ∗I∗2
∫ τ1

0

d

dt

{I2(t− ω)V (t− ω)

V ∗I∗2
− 1

− ln
(I2(t− ω)V (t− ω)

V ∗I∗2

)}
dω,

= −βS∗I∗1
∫ τ1

0

d

dω

{I1(t− ω)S(t− ω)

S∗I∗1
− 1− ln

(I1(t− ω)S(t− ω)

S∗I∗1

)}
dω

−βγV ∗I∗1
∫ τ1

0

d

dω

{I1(t− ω)V (t− ω)

V ∗I∗1
− 1

− ln
(I1(t− ω)V (t− ω)

V ∗I∗1

)}
dω

−β(1− p)S∗I∗2
∫ τ1

0

d

dω

{I2(t− ω)S(t− ω)

S∗I∗2
− 1

− ln
(I2(t− ω)S(t− ω)

S∗I∗2

)}
dω

−βγ(1− p)V ∗I∗2
∫ τ1

0

d

dω

{I2(t− ω)V (t− ω)

V ∗I∗2
− 1

− ln
(I2(t− ω)V (t− ω)

V ∗I∗2

)}
dω

= βS∗I∗1

[
I1(t)S(t)

S∗I∗1
− I1(t− τ1)S(t− τ1)

S∗I∗1
+ ln

(I1(t− τ1)S(t− τ1)

I1(t)S(t)

)]
+βγV ∗I∗1

[I1(t)V (t)

V ∗I∗1
− I1(t− τ1)V (t− τ1)

V ∗I∗1

+ ln
(I1(t− τ1)V (t− τ1)

I1(t)V (t)

)]
+β(1− p)S∗I∗2

[I2(t)S(t)

S∗I∗2
− I2(t− τ1)S(t− τ1)

S∗I∗2

+ ln
(I2(t− τ1)S(t− τ1)

I2(t)S(t)

)]
+βγ(1− p)V ∗I∗2

[I2(t)V (t)

S∗I∗2
− I2(t− τ1)V (t− τ1)

V ∗I∗2

+ ln
(I2(t− τ1)S(t− τ1)

I2(t)V (t)

)]
= βI∗1S

∗.
S(t)

S∗
.
I1(t)

I∗1
+ βγI∗1V

∗.
V (t)

V ∗
.
I1(t)

I∗1
+ β(1− p)I∗2S∗.

S(t)

S∗
.
I2(t)

I∗2

+βγ(1− p)I∗2V ∗.
V (t)

V ∗
.
I2(t)

I∗2
−βI1(t− τ1)S(t− τ1)− βγI1(t− τ1)V (t− τ1)

−β(1− p)I2(t− τ1)S(t− τ1)
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−βγ(1− p)I2(t− τ1)V (t− τ1) + βS∗I∗1 ln

(
I1(t− τ1)S(t− τ1)

I1(t)S(t)

)
+βγV ∗I∗1 ln

(
I1(t− τ1)V (t− τ1)

I1(t)V (t)

)
+β(1− p)S∗I∗2 ln

(
I2(t− τ1)S(t− τ1)

I2(t)S(t)

)

+βγ(1− p)V ∗I∗2 ln

(
I2(t− τ1)V (t− τ1)

I2(t)V (t)

)
. (7.36)

The derivatives of W3(t) are given by

dW3(t)

dt
= β(1− p)(S∗ + γV ∗)I∗2

d

dt

∫ τ2

0

{I1(t− ω)

I∗1
− 1− ln

(I1(t− ω)

I∗1

)}
dω

= β(1− p)(S∗ + γV ∗)I∗2

∫ τ2

0

d

dt

{I1(t− ω)

I∗1
− 1− ln

(I1(t− ω)

I∗1

)}
dω

= −β(1− p)(S∗ + γV ∗)I∗2

∫ τ2

0

d

dω

{I1(t− ω)

I∗1
− 1− ln

(I1(t− ω)

I∗1

)}
dω

= β(1− p)(S∗ + γV ∗)I∗2

{I1(t)

I∗1
− I1(t− τ2)

I∗1
+ ln

(I1(t− τ2)

I1(t)

)}
= β(1− p)S∗I∗2 .

I1(t)

I∗1
+ βγ(1− p)V ∗I∗2 .

I1(t)

I∗1
− β(1− p)S∗I∗2I1(t− τ2).

1

I∗1

− βγ(1− p)V ∗I∗2I1(t− τ2).
1

I∗1
+ β(1− p)S∗I∗2 ln

(
I1(t− τ2)

I1(t)

)
+ βγ(1− p)V ∗I∗2 ln

(
I1(t− τ2)

I1(t)

)
. (7.37)

Combining the derivatives of Wj(t), for j = 1, 2, 3, we have

dW(t)

dt
= µS∗

{
2− S(t)

S∗
− S∗

S(t)

}
+ κV ∗

{
2− S(t)V ∗

S∗V (t)
− S∗V (t)

S(t)V ∗

}
+µV ∗

{
3− S∗

S(t)
− V (t)

V ∗
− S(t)V ∗

S∗V (t)

}
+βI∗1S

∗
{

2− S∗

S(t)
− S(t− τ1)I1(t− τ1)

S∗I1(t)
+ ln

(
I1(t− τ1)S(t− τ1)

I1(t)S(t)

)}
+β(1− p)S∗I∗2

{
2− S∗

S(t)
− S(t− τ1)I2(t− τ1)I∗1

S∗I∗2I1(t)
− I1(t− τ2)I∗2

I∗1I2(t)

+ ln

(
I2(t− τ1)S(t− τ1)I1(t− τ2)

I2(t)S(t)I1(t)

)}
+βγV ∗I∗1

{
3− S∗

S(t)
− S(t)V ∗

S∗V
− V (t− τ1)I1(t− τ1)

V ∗I1(t)

+ ln

(
I1(t− τ1)V (t− τ1)

I1(t)V (t)

)}
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+βγ(1− p)V ∗I∗2
{

3− S∗

S(t)
− S(t)V ∗

S∗V (t)
− V (t− τ1)I∗1I2(t− τ1)

V ∗I1(t)I∗2

−I1(t− τ2)I∗2
I∗1I2(t)

+ ln

(
I2(t− τ1)V (t− τ1)I1(t− τ2)

I2(t)V (t)I1(t)

)}
.

Note that

2 ≤ S(t)

S∗
+

S∗

S(t)
, 2 ≤ S(t)V ∗

S∗V (t)
+
S∗V (t)

S(t)V ∗
, 3 ≤ S∗

S(t)
+
V (t)

V ∗
+
S(t)V ∗

S∗V (t)
(7.38)

for all S(t) > 0 and V (t) > 0, because the arithmetic mean is greater than or

equal to the geometric mean. Further, note that G(t) = 1 − g(t) + ln g(t) is always

nonpositive for any function g(t) > 0 , and g(t) = 0 if and only if g(t) = 1.

Hence, it follows that W(t) ≤ 0 and consequently, Ẇ(t) ≤ 0. Moreover, the largest

invariant set of Ẇ(t) = 0 is a singleton where S(t) ≡ S∗, V (t) ≡ V ∗, I1(t) ≡ I∗1 ,

and I2(t) ≡ I∗2 . Using the LaSalle’s invariance principle [46], we conclude that the

endemic equilibrium point E∗ is globally asymptotically stable if R0 > 1.

7.3.7 Hopf bifurcation analysis

In this section we determine criteria for Hopf bifurcation to occur using the time

delay τ1 and τ2 as the bifurcation parameters to find the interval in which the infected

equilibria is stable and unstable out of the same margins. Now to consider Hopf

bifurcation we consider the cases (a) τ1 = τ10 > 0, τ2 = 0 and (b) τ2 = τ20 > 0 and

τ1 = 0. Our analysis is as follows:

(a) When τ1 = τ10 > 0 and τ2 = 0 we need to show that
dReλ(τ10)

dτ1

> 0 differenti-

ating (7.22) with respect to τ1 we get
(4λ3 + 3a11λ

2 + 2a21λ+ a31)
dλ

dτ1

=
[
−τ1e

−λτ1(m11λ
3 +m21λ

2 +m31λ+m41) + e−λτ1(3m11λ
2

+2m21λ+m31)
] dλ
dτ1

− λeλτ1(m11λ
3 +m21λ

2 +m31λ+m41).
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This gives(
dλ

dτ1

)−1

=
4λ3 + 3a11λ

2 + 2a21λ+ a31

−λe−λτ1(m11λ3 +m21λ2 +m31λ+m41)

+
3m11λ

2 + 2m21λ+m31

λ(m11λ3 +m21λ2 +m31λ+m41)
− τ1

λ

=
3λ4 + 2a11λ

3 + a21λ
2 − a41

−λ2(λ4 + a11λ3 + a21λ2 + a31λ+ a41)

+
2m11λ

3 +m21λ
2 −m41

λ2(m11λ3 +m21λ2 +m31λ+m41)
− τ1

λ
.

Thus,

sign

[
d(Reλ)

dτ1

]
λ=iω0

= sign

[
Re

(
dλ

dτ1

)−1
]
λ=iω0

= sign

[
Re

[
3λ4 + 2a11λ

3 + a21λ
2 − a41

−λ2(λ4 + a11λ3 + a21λ2 + a31λ+ a41)

]
λ=iω0

]

+sign

[
Re

[
2m11λ

3 +m21λ
2 −m41

λ2(m11λ3 +m21λ2 +m31λ+m41)

]
λ=iω0

]
= sign

[
Re

[
3ω4

0 − 2a11ω
3
0i− a21ω

2
0 − a41

ω2
0(ω4

0 − a11ω3
0i− a21ω2

0 + a31ω0i+ a41)

]]
+sign

[
Re

[
−2m11ω

3
0i−m21ω

2
0 −m41

−ω2
0(−m11ω3

0i−m21ω2
0i+m31ω0i+m41)

]]
= sign

[
3ω8

0 + 2(a2
11 − 2a21)ω6

0

ω2
0[(ω4

0 − a21ω2
0 + a41)2 + (a31ω0 − a11ω3

0)2]

]
+sign

[
(a2

21 + 2(a41 − a11a31))ω4
0 − a2

41

ω2
0[(ω4

0 − a21ω2
0 + a41)2 + (a31ω0 − a11ω3

0)2]

]
+sign

[
m2

41 − 2m2
11ω

6
0 − (m2

21 − 2m11m11)ω4
0

ω2
0[(m41 −m21ω2

0)2 + (m31ω0 −m11ω3
0)2]

]

= sign

[
3ω8

0 + 2(a2
11 −m2

11 − 2a21)ω6
0

ω2
0[(ω4

0 − a21ω2
0 + a41)2 + (a31ω0 − a11ω3

0)2]

]
+sign

[
(a2

21 −m2
21 + 2(a41 +m11m31 − a11a31))ω4

0 − a2
41 +m2

41

ω2
0[(ω4

0 − a21ω2
0 + a41)2 + (a31ω0 − a11ω3

0)2]

]
= sign

[
4ω6

0 + 3(a2
11 −m2

11 − 2a21)ω4
0

[(ω4
0 − a21ω2

0 + a41)2 + (a31ω0 − a11ω3
0)2]

]
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+sign

[
2(a2

21 −m2
21 + 2(a41 +m11m31 − a11a31))ω2

0 + k0

[(ω4
0 − a21ω2

0 + a41)2 + (a31ω0 − a11ω3
0)2]

]
.

with

k0 = a2
31 −m2

31 + 2(m21m41 − a21a41).

Lemma 7.1

Suppose that xi, i = 1, 2, 3, 4, are the roots of equation g(x) = x4 + ϑ1x
3 +

ϑ2x
2 + ϑ3x+ ϑ4 = 0 (ϑ3 < 0) and x4 is the largest positive root, then

{
dg(x)

dx

}
x=x4

> 0.

In our case considering F (z) = z4 + b1z
3 + b2z

2 + b3z+ b4 = 0 defined in (7.26),

and assuming b3 < 0 and ω2
0 as the largest positive root we have

dReλ

dτ1

=

dF (z)

dz
[(ω4

0 − a21ω2
0 + a41)2 + (a31ω0 − a11ω3

0)2]
> 0.

The above analysis can be summarized into the following theorem:

Theorem 7.3.7 Suppose that (a) R0 > 1. If either (b) b4 < 0 or (c) b4 ≥ 0

and b3 < 0 is satisfied, and ω0 is the largest positive simple root of (7.26) then

the infected equilibrium E∗ of model (7.1) is locally asymptotically stable when

τ1 < τ10 and unstable when τ1 > τ10 where

τ10 =
1

ω0

arccos
[ (m41 −m21ω

2
0)(ω4

0 − a21ω
2
0 + a41)

(m41 −m21ω2
0)2 + (m31ω0 −m11ω3

0)2

+
(m31ω0 −m11ω

3
0)(a31ω0 − a11ω

3
0)

(m41 −m21ω2
0)2 + (m31ω0 −m11ω3

0)2

]
, (7.39)

when τ1 = τ10, a Hopf bifurcation occurs, that is a family of periodic solutions

bifurcates from E∗ as τ1 passes through the critical value τ10.
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(b) When τ2 = τ20 > 0 and τ1 = 0 we also need to show that
dReλ(τ20)

dτ2

> 0

differentiating (7.27) with respect to τ2 we get
(4λ3 + 3α11λ

2 + 2α21λ+ α31)
dλ

dτ2

=
[
−τ2e

−λτ2(n21λ
2 + n31λ+ n41) + e−λτ2(2n21λ+ n31)

] dλ
dτ2

−λeλτ2(n31λ+ n41).

This gives (
dλ

dτ2

)−1

=
4λ3 + 3α11λ

2 + 2α21λ+ α31

−λe−λτ2(n21λ2 + n31λ+ n41)

+
2n21λ+ n31

λ(n21λ2 + n31λ+ n41)
− τ2

λ

=
3λ4 + 2α11λ

3 + α21λ
2 − α41

−λ2(λ4 + α11λ3 + α21λ2 + α31λ+ α41)

+
n21λ

2 − n41

λ2(n21λ2 + n31λ+ n41)
− τ2

λ
.

Thus,

sign

[
d(Reλ)

dτ2

]
λ=iω0

= sign

[
Re

(
dλ

dτ2

)−1
]
λ=iω0

= sign

[
Re

[
3λ4 + 2α11λ

3 + α21λ
2 − α41

−λ2(λ4 + α11λ3 + α21λ2 + α31λ+ α41)

]
λ=iω0

]

+sign

[
Re

[
n21λ

2 − n41

λ2(n21λ2 + n31λ+ n41)

]
λ=iω0

]

= sign

[
Re

[
3ω4

0 − 2α11ω
3
0i− α21ω

2
0 − α41

ω2
0(ω4

0 − α11ω3
0i− α21ω2

0 + α31ω0i+ α41)

]]
+sign

[
Re

[
−n21ω

2
0 − n41

−ω2
0(−n21ω2

0i+ n31ω0i+ n41)

]]
= sign

[
3ω8

0 + 2(α2
11 − 2α21)ω6

0 + (α2
21 + 2(α41 − α11α31))ω4

0 − α2
41

ω2
0[(ω4

0 − α21ω2
0 + α41)2 + (α31ω0 − α11ω3

0)2]

]
+sign

[
n2

41 − n2
21ω

4
0

ω2
0[(n41 − n21ω2

0)2 + n2
31ω

2
0]

]
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= sign

[
3ω8

0 + 2(α2
11 − 2α21)ω6

0

ω2
0[(ω4

0 − α21ω2
0 + α41)2 + (α31ω0 − α11ω3

0)2]

]
+sign

[
(α2

21 − n2
21 + 2(α41 − α11α31))ω4

0

ω2
0[(ω4

0 − α21ω2
0 + α41)2 + (α31ω0 − α11ω3

0)2]

]
+sign

[
−α2

41 + n2
41

ω2
0[(ω4

0 − α21ω2
0 + α41)2 + (α31ω0 − α11ω3

0)2]

]

= sign

[
4ω6

0 + 3(α2
11 − 2α21)ω4

0

[(ω4
0 − α21ω2

0 + α41)2 + (α31ω0 − α11ω3
0)2]

]
+sign

[
2(α2

21 − n2
21 + 2(α41 − α11α31))ω2

0

[(ω4
0 − α21ω2

0 + α41)2 + (α31ω0 − α11ω3
0)2]

]
+sign

[
α2

31 − n2
31 + 2(n21n41 − α21α41)

[(ω4
0 − α21ω2

0 + α41)2 + (α31ω0 − α11ω3
0)2]

]
.

Lemma 7.2 Suppose that xi, i = 1, 2, 3, 4, are the roots of equation g(x) =

x4 + ϕ1x
3 + ϕ2x

2 + ϕ3x + ϕ4 = 0 (ϕ3 < 0) and x4 is the largest positive root,

then {
dg(x)

dx

}
x=x4

> 0.

In our case considering h(z) = z4 +c1z
3 +c2z

2 +c3z+c4 = 0 defined in (7.28),

and assuming c3 < 0 and ω2
0 as the largest positive root we have

dReλ

dτ2

=

dh(z)

dz
[(ω4

0 − α21ω2
0 + α41)2 + (α31ω0 − α11ω3

0)2]
> 0.

The above analysis can be summarized into the following theorem:

Theorem 7.3.8 Suppose that (a) R0 > 1. If either (b) c4 < 0 or (c) c4 ≥ 0

and c3 < 0 is satisfied, and ω0 is the largest positive simple root of (7.28) then

the infected equilibrium E∗ of model (7.1) is locally asymptotically stable when

τ2 < τ20 and unstable when τ2 > τ20 where

τ20 =
1

ω0

arccos
[(n41 − n21ω

2
0)(ω4

0 − α21ω
2
0 + α41)

(n41 − n21ω2
0)2 + n2

31ω
2
0
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+
n31ω0(α31ω0 − α11ω

3
0)

(n41 − n21ω2
0)2 + n2

31ω
2
0

]
, (7.40)

when τ2 = τ20, a Hopf bifurcation occurs, that is a family of periodic solutions

bifurcates from E∗ as τ2 passes through the critical value τ20.

From the analysis above, we can deduce that Hopf bifurcations may arise if

conditions in Theorem 7.3.7 and 7.3.8 are satisfied. Thus, the introduction of

time delay in system (7.1) can destabilize the system.

7.4 Numerical results
In order to explore the behavior of system (7.1) and illustrate the stability of the
equilibria solutions, we numerically solve system (7.1) using MATLAB and param-
eter values adopted from Table 7.1.

Table 7.1: Model parameters and variables and their baseline values

Symbol Definition Value Unit Source

d Elimination rate due to brucellosis, 0.15 year−1 [30]

p Fraction of infectious animals culled upon detection 0.5 - [98]

β Direct transmission rate 3.844× 10−6 animal−1year−1 [92]

κ Vaccination waning rate 0.4 year−1 [30]

µ Natural elimination rate 0.25 year−1 [92]

γ Modification factor 0.18 - [30]

A Recruitment rate 76434 animals year−1 [92]

σ Vaccination rate 0.316 year−1 [30]

α Detection rate Varied year−1 -

c Culling rate 0.15 year−1 [30]

In Fig. 7.1 we illustrate the effects of varying the delay (τ1 = τ2) on the dynamics

of system (7.1). Figure 7.1(a) and (b) demonstrate that the system approaches the

stable disease-free or endemic equilibrium for R0 < 1 and R0 > 1, respectively.

One should note that according to Theorem 7.3.2 and 7.3.6, the stability of the

model steady states does not depend on the value of the time delays, but rather on

the basic reproduction number R0, only. In addition, we observe that the range of

values for the two time delays does not lead to periodic solutions but an increase in
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both delays translate to an increase in the infectious population, both detected and

undetected.

Fig. 7.2 depicts the numbers of infectious undetected and infectious detected

animals over time with varying delays. The results clearly show that the incubation

related delay (τ1) has more influence on shaping the dynamics of brucellosis com-

pared to the culling related delay (τ2). More precisely, the incubation period delay

significantly increases the infectious population (both detected and undetected) for

0 < t < 20 and there after its impact will be the same as that of detection (τ2).

In Fig. 7.3 we illustrate the stability of the disease-free equilibrium E0 with

τ1 = 30 and τ2 = 5 (note that R0 = 0.686281). As we can observe, for certain

parameter values and initial population levels, system (7.1) exhibits some periodic

oscillation. Precisely, we note that the infected population (I1(t) and I2(t)) oscillates

with a reduced amplitude from the start till when t is approximately 400, thereafter

the oscillations dies off the solutions converges to the disease-free equilibrium. These

simulation results demonstrate the occurrence of periodic solutions through Hopf

bifurcation for delay values τ1 = 30 and τ2 = 5. In contrast, we can observe that

there are no periodic oscillations for the uninfected populations S(t) and V (t).

In Fig. 7.4, we demonstrate the dynamic for model system (7.1) with respect

to the stability of infection-free equilibrium for different pair of delay values (τ1, τ2)

and from the simulation results we can conclude that both delays do not have a

huge influence on the stability of disease-free equilibrium.

In Fig. 7.5 we observe that for certain parameter values and initial popula-

tion levels, system (7.1) may admit periodic oscillations when R0 > 1. As we can

observes, when R0 = 3.77333 both the solutions of the infected and uninfected pop-

ulations exhibits periodic oscillation for a certain period, before stability at endemic

point is attained.

In Fig. 7.6, we illustrate the dynamics for model system (7.1) with respect to

the stability of endemic equilibrium for several pair of delay values (τ1, τ2). The

results confirm that the incubation related delay τ1 has more influence on shaping

the dynamic of brucellosis compared to the culling related delay τ2.

To explore influence of model parameters on the reproduction number R0, we

perform a local sensitivity analysis of the basic reproduction number following the
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approach in [99]. The local sensitivity analysis will be useful on identifying param-

eters with greatest influence to change R0. To this end, denoting by Φ the generic

parameter of system (7.1), we evaluate the normalised sensitivity index

SΦ =
Φ

R0

∂R0

∂Φ
, (7.41)

which indicates how sensitiveR0 is to a change of parameter Φ.Model parameters

with positive index increase the value of R0 whenever they are increased while those

with a negative index decrease the value of R0 whenever they are increased. We

consider the parameter values in Table 1, and we set α = 0.015 in order to evaluate

the normalized sensitivity index and the results are depicted in Figure 7.7. Here, we

observe that parameters A, β, κ, γ, have a positive correlation with R0, such that

increasing these parameters will increase R0. However, it is the increase of A and β

that has the greatest influence to change R0. Precisely, increasing either A or β by

50% will increase R0 by 50%. We also note, that increasing parameters c, µ, σ, d,

p, and α, will lower the reproduction number.

0 10 20 30 40 50 60 70
time

0

1000

2000

3000

4000

5000

6000

I
1
(
t)

(a)
0 10 20 30 40 50 60 70

time

0

200

400

600

800

1000

I
2
(
t)

(b)

Figure 7.1: Stability of the infected and free-infected equilibrium of model system

(7.1) showing plots of I1(t) and I2(t) with varying delay (τ1 = τ2). The direction

of the arrow depict an increase in delay with a step size of 2.0 starting from 2.0

to 10. The blue patterns in both (a) and (b) highlights brucellosis dynamics when

R0 < 1 while the red pattern are for R0 > 1. Initial population levels were assumed

as follows S(0) = 1000 animals, V (0) = 500 animals, I1(0) = 500 animals and

I2(0) = 0 animals.
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Figure 7.2: Numerical solutions of model system (7.1) illustrating the effects of

different time delay on brucellosis infection level in the community. Initial popu-

lation levels were assumed as follows S(0) = 1000 animals, V (0) = 500 animals,

I1(0) = 500 animals and I2(0) = 0 animals.
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Figure 7.3: Numerical solutions demonstrating the stability of E0 equilibrium of

model system (7.1) with R0 = 0.686281. We set τ1 = 30, τ2 = 5, β = 6.844× 10−6

animal−1 year−1, γ = 0.2, α = 0.15 year−1, A = 16434 animals year−1 and the

remainder retained the baseline values in Table 7.1. Further, we set the initial

conditions as follows S(0) = 100 animals, V (0) = 0 animals, I1(0) = 10 animals and

I2(0) = 0 animals
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Figure 7.4: Dynamics of model system (7.1) for different values of (τ1, τ2), which

illustrate the stability of infection-free equilibrium E0 at R0 = 0.686281. We set

β = 6.844 × 10−6 animal−1 year−1, γ = 0.2, α = 0.15 year−1, A = 16434 animals

year−1 and the remainder retained the baseline values in Table 7.1. Further, we set

the initial conditions as follows S(0) = 100 animals, V (0) = 0 animals, I1(0) = 10

animals and I2(0) = 0 animals
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Figure 7.5: Stability of E∗ equilibrium of model system (7.1) with R0 = 3.77333.

The time delay τ1 was fixed to be 60 and τ2 was fixed to be 1. We set the model

parameters and variables as follows: β = 6.844 × 10−6 animal−1year−1 , γ = 0.2,

α = 0.015 year−1, S(0) = 100 animals, V (0) = 0 animals, I1(0) = 10 animals,

I2(0) = 0 animals while the other parameter values are as in Table 7.1.
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Figure 7.6: Numerical results of model system (7.1) for different values of (τ1, τ2),

which demonstrate the stability of infected equilibrium E∗ at R0 = 3.77333. We set

the model parameters and variables as follows: β = 6.844 × 10−6 animal−1year−1

, γ = 0.2, α = 0.015 year−1, S(0) = 100 animals, V (0) = 0 animals, I1(0) = 10

animals, I2(0) = 0 animals while the other parameter values are as in Table 7.1.
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7.5 Conclusion

Zoonotic brucellosis remains a major public health problem in many developing

nations. This is mainly attributed to several challenges associated with effective

disease control in these nations. The challenges for effective control of brucellosis in

developing nations range from inadequate veterinary personnel and vaccines as well

the failure by farmers to adhere to some of the aforementioned brucellosis control

and eradication program activities. Furthermore, these challenges often lead to

delay in detection and culling of infectious animals. In this chapter, we developed

and analysed a mathematical model for brucellosis infection that incorporates two

discrete delays. The first delay accounts for the latent period and the second delay

represents the time taken to detect infectious animals. We computed the basic

reproduction number and demonstrated that it is an important threshold quantity

for stability of equilibria. By constructing suitable Lyapunov functionals, it has been

shown that the model has a globally asymptotically stable infection-free equilibrium

whenever the reproduction is less than unity. Further, it has been demonstrated

that whenever the model reproduction number is greater than unity then the model

has a unique endemic equilibrium point which is globally asymptotically stable.

Numerical simulations are carried out to illustrate the main results.

Although culling of symptomatic animals is a relatively easy strategy to imple-
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ment, it is worth noting that some studies suggests that culling of both infected

and susceptible animal may be more effective [72, 100]. The rationale being that by

decreasing the host density, the number of contacts per unit time between animals

is low thereby reducing disease transmission. In [100] it was demonstrated that

culling of both susceptible and symptomatic animals only can be effective whenever

the number of infected host is above a certain critical level [100]. We expect to

improve this study in our future work by developing brucellosis model(s) with time

delay that will enable us to compare aforementioned aspects.
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Chapter 8

Conclusion and future work

In this dissertation we developed, analysed and simulated five mathematical models

for brucellosis infection. On the first objective, we developed a non-autonomous

brucellosis model in order to explore the effects seasonality and control strategies on

brucellosis transmission. Optimal vaccination and environmental decontamination

has been performed with the goal to minimize the numbers of the exposed and

infectious animals and the associated costs. The results demonstrated that the

optimal control can greatly reduce the numbers of the exposed and infectious animals

and keep these populations at low levels, a significantly better outcome compared to

that with regular control. It has been observed that the optimal control strategies

strongly depend on the cost parameters. Further, results throughout the chapter

highlight the difference between the autonomous and periodic models.

On the second objective, a modeling framework that aims to investigate effects

of vertical transmission, chronic brucellosis and culling on the transmission dynam-

ics of brucellosis, is studied. The dynamics of the disease were explored for both

periodic and non-periodic environments. Further, the impact of time dependent

culling control on the spread and control of brucellosis for in both environments was

investigated. The results demonstrated that the percentage of symptomatic animals

that become carriers/chronic has a strong influence on the impact of culling control

to minimize the spread of brucellosis in the community.

On the third objective, we proposed a two-patch model with the aim to study

the effects of animal movement and seasonality on brucellosis transmission. We

started our analysis on model with fixed coefficients where detailed results were
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obtained, showing the rich dynamics of brucellosis transmission due to the spatial

variation. We extended our model to a time-periodic environment that represents

seasonal oscillation. The study demonstrates that the incorporation of spatial and

temporal variations leads to rich and complex dynamics that are distinct from those

observed from prior models based on homogeneous environments. Our results also

indicate that the prevention and intervention strategies need to take into account

the spatial and temporal heterogeneities in order to effectively control brucellosis

while optimize the use of available resources.

On the fourth objective, we developed a brucellosis model with a view to explore

the role of short-term animal dispersal on transmission and control of brucellosis

in a heterogeneous population. The proposed model comprised of two patches and

animal dispersal was modeled using a Lagrangian approach. Our study is applicable

in communal lands/ public farms where animal mobility is highly uncontrolled. Prior

studies have shown that in public farms a single herd of livestock can be exposed

to a high variable number of contacts with other herds of livestock for a short time

frame. This heterogeneity in animal contacts may contribute significantly to the

transmission and control of brucellosis. Optimal culling of infectious animals in

each patch has been utilized for effective control of brucellosis in the community.

Our results show that short-term animal movements plays an integral role in the

transmission and control of brucellosis.

On the final objective, we studied the dynamics and stability of a brucellosis

model with two discrete delays. The first delay accounts for the latent period and

the second delay represents the time taken to detect infectious animals. The results

suggest that the two delays can destabilize the system and periodic solutions can

arise through Hopf bifurcation.

Our work has managed to provide significant improvement to the existing knowl-

edge regarding the transmission dynamics of bucellosis in animal populations. Our

study can be improved by considering the following aspects:

• The aid of realistic data is a crucial step in the modeling process. Our challenge

is that, the scarcity of brucellosis data at present limits our ability to calibrate

some important results in our models.

• Further understanding of the spatial dynamics of brucellosis would be en-
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hanced if reaction-diffusion modeling is carried out, but our current study on

the spatial modeling of brucellosis is based on the patch structure.

• Culling of both infected and susceptible animals as disease control strategy

was not considered in the models developed in this thesis. Culling both in-

fected and susceptible decreases the host density which will reduce the disease

transmission.

• The effects of short-term animal mobility in a periodic environment mainly

due to pastoral can also be investigated.

• Although both autonomous and non-autonomous models were used, stochastic

epidemic models were never used to investigate the transmission and control

of brucellosis in this dissertation. In future we hope to utilize these models

to understand the transmission and control of the brucellosis in both periodic

and non-periodic environments.
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Appendix: Publications arising from this thesis

1). Paride O. Lolika, Steady Mushayabasa, Claver P. Bhunu, Chairat Mod-

nak, Jin Wang., (2017). Modeling and analyzing the effects of seasonality on

brucellosis infection. Chaos, Solitons & Fractals., 104:338–349.

2). Paride O. Lolika, Chairat Modnak, Steady Mushayabasa., (2018). On the

dynamics of brucellosis infection in bison population with vertical transmission

and culling., Mathematical Biosciences, 305, 42-54.

3). Chayu Yang, Paride O. Lolika, Steady Mushayabasa, Jin Wang., (2017).

Modeling the spatiotemporal variations in brucellosis transmission. Nonlinear

Analysis: Real World Applications: vol. 38, 49–67.

4). Paride O. Lolika and Steady Mushayabasa. On the role of short-term an-

imal movements on the persistence of brucellosis, Mathematics 2018, 6, 154;

doi:10.3390/math6090154.

5). Paride O. Lolika and Steady Mushayabasa, Dynamics and Stability Analysis

of a Brucellosis Model with Two Discrete Delays, Discrete Dynamics in Nature

and Society, vol. 2018, Article ID 6456107, 20 pages, 2018. https://doi.org/10

.1155/2018/6456107.
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