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Abstract

Brucellosis, a neglected zoonotic disease remains a major public health problem
world over. It affects domesticated animals, wildlife and humans. With large pas-
toral communities, and demand for meat and livestock production to double by
2050, brucellosis poses a major threat to the public health and economic growth
of several developing nations whose economies rely heavily on agricultural exports.
Since human-to-human transmission of the disease is rare the ultimate manage-
ment of human brucellosis can be achieved through effective control of brucellosis
in animal population. Hence there is need to gain a better and more comprehen-
sive understanding of effective ways to control the disease in animal populations.
Mathematical modeling, analysis and simulation offer a useful means to understand
the transmission and spread of brucellosis so that effective disease control measures
could be designed. In this dissertation, five epidemiological models that seek to eval-
uate the role of intervention strategies on the transmission dynamics of brucellosis in
animal population have been studied. Firstly, a non-autonomous model that focuses
on evaluating the impact of animal vaccination and environmental decontamination
in a periodic environment, is introduced. Secondly, a modeling framework that seeks
to improve our quantitative understanding of the influence of chronic brucellosis and
culling control on brucellosis dynamics in periodic and non-periodic environments,
is considered. Thirdly, a deterministic brucellosis model that incorporates hetero-
geneity and seasonality is studied. Fourthly, we evaluated the effects of short-term
animal movements on the transmission dynamics of brucellosis through a two-patch
model. Finally a model that incorporates two discrete delays and culling of infected
animals displaying signs of brucellosis infection is proposed and analysed. All the
proposed models incorporate relevant biological and ecological factors as well as pos-
sible disease intervention strategies. Epidemic and endemic analysis of the models
have been performed, with a focus on the threshold dynamics characterized by the
basic reproduction numbers. In addition, numerical simulation results are presented
to demonstrate the analytical findings. A brief summary of the main results of the

thesis and an outline of some possible future research directions rounds up the thesis.



Preface and Declaration

The study described in this thesis was carried out in the Faculty of Science, Depart-
ment of Mathematics, University of Zimbabwe, during the period 1 August 2015 to
20 October 2018. This thesis was completed under the supervision of Professor S.
Mushayabasa. This study represents original work by the author and has not been
submitted in any form to another University. Where use was made of the work of

others it has been duly acknowledged in the text.

Copyright (© 2018 Paride Oresto Lolika



Acknowledgements

I would like to give thanks and appreciation to my supervisor, Professor Steady
Mushayabasa, for being a tremendous mentor for me. I thank him for guiding me,
for teaching me Mathematical Biology, for encouraging my work and for allowing
me to grow as a research scientist. I would like also to thank my late supervisor,
Professor Claver P. Bhunu, for introducing me to Biomathematics, and for being
kind and supportive. I also thank the Post Graduate Center and the Department
of Mathematics at the University of Zimbabwe, for supporting me. Finally, I would
like to thank my Colleagues, Family and Friends. Your prayers and support are

what sustained me thus far.

i



Dedication:

I dedicate this dissertation to my wife, Christine Matti, and my
children, Emmanuella, Gracia, Patricia, Cericia and Kevin who
missed me so much and sacrificed a lot for me during my long and
repeated absence when I was a PhD student. I would like also to
dedicate this work to my brother Jervasio O. Okot, for his support
during my PhD studies

il



Contents

1 Introduction 1
1.1 Background . . . .. ... ... ... 1
1.2 Brucellosis in animal population . . . . . . .. ... ... ... 2
1.3 Brucellosis in human . . . . . . ... ... ... ... ......... 2
1.4 Seasonality in brucellosis transmission . . . . .. .. ... ... ... 3
1.5 Review of mathematical models for brucellosis . . . . ... ... ... 3
1.6 Motivation . . . . . . . ... 5
1.7 Objectives of the research project . . . . . . . .. ... .. ... ... 5
1.8 Thesisoutline . . . . . . ... . 6

2 Mathematical preliminaries 7
2.1 Introduction . . . . . . . .. ... 7
2.2 Stability . . ... 7

2.2.1 Stability : Basic definition . . . . . .. ... 7
2.2.2  Dynamical properties . . . . . . ... ... L. 9
2.3 Monotone systems . . .. ..o Lo 10
2.3.1 Monotone dynamical system . . . . .. .. ... ... 11
2.3.2 Triangular system . . . . . ... ... 11
2.4 Lyapunov methods . . ... .. .. ... ... .. .. ... ..., 12
2.4.1 LaSalle invariance principle . . . . . ... ... ... 12
2.5 Matrices . . . . .. e 13
2.5.1 Lozinskii measures . . . .. .. ... ... oL 14
2.5.2  The second additive compound matrix . . . .. ... .. ... 14
2.6 Calculation of basic reproduction number . . . . . . ... ... 14

v



3 Modeling and analyzing the effects of seasonality on brucellosis

infection 18
3.1 Introduction . . . . . . . ... 18
3.2 Model with seasonal variation . . . .. .. ... ... ... .. .... 21
3.2.1 Model framework . . . .. ... oo 21
3.2.2 Feasibleregion . . ... ... o Lo 23
3.2.3 Disease-free equilibrium . . . . ... ... 24
3.2.4 The reproduction number . . . . ... ... ... 25
3.2.5 Disease extinction . . . . . .. ... Lo Lo 28
3.2.6 Disease persistence . . . . . . . . ... ... ... 30
3.3 Optimal control . . . . . . . .. ... 34
3.3.1 Existence of the optimal control set . . . . . .. ... .. ... 35
3.3.2 Characterization of the optimal control problem . . . . . . .. 36
3.3.3 Uniqueness of the optimality system . . . ... .. ... ... 40
3.4 Numerical results . . . ... ... Lo 44
3.5 Conclusion and discussion . . . . . .. .. ... Lo 51

4 On the dynamics of brucellosis infection in bison population with

vertical transmission and culling 53
4.1 Introduction . . . . . . . ..o 53
4.2 Brucellosis model without seasonal variations. . . . . . ... .. ... o7
4.2.1 Model construction . . . . .. ... oL Y
4.2.2  The reproduction number . . . . .. ... 58
4.2.3 Equilibria . . . ... 59
4.3 Brucellosis model with seasonal variations . . . .. ... .. .. ... 66
4.3.1 Model construction . . . . .. ... Lo 66
4.3.2 The reproduction number . . . . ... ... L. 66
4.3.3 Threshold dynamics . . . . . .. .. ... ... ... 67
4.4 Optimal control . . . . . . . . . ... .. 71
4.4.1 Formulation . . . . .. . ... Lo L 71
4.4.2 Numerical results . . . . . .. ... 0oL 75
4.5 Concluding remarks . . . . . . . . ... L o 81



5 Modeling the spatiotemporal variations in brucellosis transmission 83

5.1
5.2

2.3

0.4
2.5

Introduction . . . . . ..o 83
A two-patch autonomous model . . . . . ... ... 85
5.2.1 Feasibleregion . .. .. ... .. oo 86
5.2.2  Disease-free equilibrium . . . . ... ... 0oL 87
5.2.3 The reproduction number . . . ... ... ... ... ... .. 88
5.2.4  Global stability of the disease-free equilibrium . . . . . . . .. 89
5.2.5 Nontrivial equilibria . . . . . . .. ... 0oL 90
5.2.6  Local and global dynamics . . . . . . ... ... ... .. ... 92
A two-patch periodic model . . . . ... ... 99
5.3.1 The reproduction number . . . . . .. ... ... 100
5.3.2  Threshold dynamics . . . ... ... ... ... ... ... .. 101
Numerical results . . . . . . .. .. o 105
Conclusion and discussion . . . . . . .. ... ... 109

6 On the role of short-term animal movements on the persistence of

brucellosis 111
6.1 Introduction . . . . . . . . ... 111
6.2 Modeling framework . . . . .. ... L0 oo 113
6.3 Disease dynamics for a single patch . . . . . .. ... ... ... 115
6.4 The reproduction number . . . . . . ... ... oL 115
6.5 Disease invasion and persistence . . . . . . ... ... ... 118
6.6 Uniform persistence . . . . . . . ... oL 119
6.7 Optimal culling . . . . . .. ... 122
6.8 Discussion . . . . . ... 128

7 Dynamics and stability analysis of a brucellosis model with two

discrete delays 135
7.1 Introduction . . . . . . . . . L 135
7.2 Mathematical model . . . . .. . ... oo oL 137
7.3 Analytical results . . . . . ..o 138
7.3.1 Initial conditions . . . . .. ... .o Lo 138
7.3.2 The basic reproduction Number . . . . . . . . ... ... ... 138

vi



7.3.3 Stability of the disease-free equilibrium . . . . . . ... .. ..

7.3.4 Disease persistence . . . . . . ... ... o oL

7.3.5 Existence of the endemic equilibrium . . . . . ... ... ...

7.3.6  Stability of the endemic equilibrium . . . . . . ... ... ...

7.3.7 Hopf bifurcation analysis . . . . . . ... ... ... ...

7.4 Numerical results . . . . . . . . .

7.5 Conclusion

8 Conclusion and future work

Appendix: Publications arising from this thesis

Bibliography

vii

171

174

174



List of Figures

3.1
3.2

3.3
3.4
3.5
3.6
3.7

3.8

3.9

3.10

3.11

3.12

Flowchart illustrating the dynamics of brucellosis. . . . . . . . . . .. .. 22
Numerical results of the average basic reproduction number [Ry] and the

basic reproduction number Ry versus a;, (j = 1,2): (a) [Ro] and R versus

ai; (b) [Ro] and Rp versus ag. . . . . . . . .. ..o 28
Control profiles for the autonomous model (3.1). . . . . ... ... .. 44
Control profiles for the periodic model (3.2). . . . .. ... ... ... 45
The concentration of brucella for the autonomous model (3.1). . . . . 45
The concentration of brucella for the periodic model (3.2). . . . . . . 45

The numbers of exposed and infectious animals for the periodic model

(3.2): (a) exposed population; (b) infectious population. . . . ... . 46
The numbers of exposed and infectious animals for the autonomous

model (3.1): (a) exposed population; (b) infectious population. . . . . 47
Control profiles for the periodic model (3.2) with low costs. . . . . . . 47
Control profiles for the periodic model (3.2) with high costs. . . . . . 48

The concentration of brucella for the periodic model (3.2) with high

viil



4.1

4.2

4.3

4.4

4.5

Phase portrait depicting the global stability of (a) the disease-free equilib-
rium Y which exists for Ry < 1, here we set 3 = 0.28 to get R = 0.41548
(b) the endemic equilibrium point which exists whenever Ry > 1, note that
we set S = 0.8 to obtain Rg = 1.0103. The numerical results depicted in
(a) supports that analytical findings in Theorem 4.2.1 (i), that whenever
Ro < 1 then system (4.2) has a globally asymptotically stable disease-free
equilibrium. Similarly, plot (b) demonstrate the analytical predictions in
Theorem 4.2.1 (ii) that if Rg > 1, system (4.2) has a unique endemic
equilibrium £*, which is globally asymptotically stable. . . . . . . . . ..
Simulation results of the autonomous model with and without the con-
trol (a) susceptible animals (b) clinically infected animals (¢) chronically
infected animals (d) recovered animals. The dotted blue and solid red
curves in all the figures represent the total population over a 50 year pe-
riod with and without control, respectively. The time varying optimal
culling associated with these figures is shown in Figure 4.3. Note that the
basic reproduction number Rg = 1.576, 8 =0.35 and Cy = 10. . . . . . .
Simulation results showing the control profile for the autonomous model,
over a period of 50 years, with (a) Cy = 10 and (b) Cy = 100. We can
observe that in all cases the control profile admits a bang-bang solution
with one switch. . . . . . . ..o o
Simulation results of the non-autonomous model with and without the con-
trol (a) susceptible animals (b) clinically infected animals (¢) chronically
infected animals (d) recovered animals. The dotted blue and solid black
curves represent the total population, with and without control, respec-
tively. The time varying optimal culling associated with these figures is
shown in Figure 4.5. Note that the basic reproduction number Ry = 1.312
and Cy = 10. . . . . . . e
Simulation results showing the control profile for the non-autonomous
model, over a period of 50 years, with (a) C4 = 10 and (b) Cy = 100.
We can observe that in both scenarios the control profile exhibits a bang-

bang solution with more than one switch. . . . . . . . . ... ... ...

1X

79



5.1

5.2

2.3

5.4

6.1

6.2

6.3

Phase portrait illustrating the global stability of £; for system (5.1) in the
S9-Ir plane with Rq < 1, Ry > 1. Each curve in the plot corresponds to a
different initial condition, and all these curves converge to the equilibrium
&1 (where Sy = 2.39 x 107, I =3.22 x 107) over time. . . . . . ... ..
Phase portrait illustrating the global stability of & for system (5.1) in
the So-Is plane with Ry > 1. Each curve in the plot corresponds to a
different initial condition, and all these curves converge to the equilibrium
&y (where Sy =2.29 x 107, Iy =2.71 x 107) over time . . . . . . . .. ..
The infection curves for the two patches associated with system (5.27)
when Ry < 1. Both curves converge to the disease-free equilibrium &y over
time. . . . L oL
The infection curves for the two patches associated with system (5.27)
when Ry > 1. Each curve converges to a periodic oscillation with a period

w=12months. . . . . . . . .o

Phase portrait illustrating the global stability of £* for system (6.1) in the
Sp-I; plane with Ry = 2.84 (we set f1 = 82 = 1.5). Each curve in the plot
corresponds to a different initial condition, and all these curves converge
to the equilibrium £* (where S; = Sy = 1500, I; = Iy = 1000) over time
Simulation results of the proposed two patch brucellosis model for
scenario 1 under weak symmetric coupling (a) the number of infected
animals in patch 1 (b) the number of infected animals in patch 2. In
all the figures the dotted blue and solid black curves represent the
infected population, without and with control, respectively. . . . . . .
Simulation results of the proposed two patch brucellosis model for
scenario 1 under strong symmetric coupling (a) the number of infected
animals in patch 1 (b) the number of infected animals in patch 2. In
all the figures the dotted blue and solid black curves represent the

infected population, without and with control, respectively. . . . . . .

. 122



6.4

6.5

6.6
6.7

6.8

6.9

Numerical illustrations demonstrating the effects of optimal interven-
tion strategies on controlling the long-term brucellosis dynamics for
scenario 1 under weak asymmetric coupling (a) the number of in-
fected animals in patch 1 (b) the number of infected animals in patch
2. In all the figures the dotted blue and solid black curves represent
the infected population, without and with control, respectively. . . .
Numerical illustrations demonstrating the effects of optimal interven-
tion strategies on controlling the long-term brucellosis dynamics for
scenario 1 under strong asymmetric coupling (a) the number of in-
fected animals in patch 1 (b) the number of infected animals in patch
2. In all the figures the dotted blue and solid black curves represent
the infected population, without and with control, respectively. . . .
The control profile for scenario 1 (a) low costs (b) high cost of culling
Simulation results of the proposed two patch brucellosis model for
scenario 2 under weak symmetric coupling (a) the number of infected
animals in patch 1 (b) the number of infected animals in patch 2. In
all the figures the dotted blue and solid black curves represent the
infected population, without and with control, respectively. . . . . . .
Simulation results of the proposed two patch brucellosis model for
scenario 2 under strong symmetric coupling (a) the number of infected
animals in patch 1 (b) the number of infected animals in patch 2. In
all the figures the dotted blue and solid black curves represent the
infected population, without and with control, respectively. . . . . . .
Numerical illustrations demonstrating the effects of optimal interven-
tion strategies on controlling the long-term brucellosis dynamics for
scenario 2 under weak asymmetric coupling (a) the number of in-
fected animals in patch 1 (b) the number of infected animals in patch
2. In all the figures the dotted blue and solid black curves represent

the infected population, without and with control, respectively. . . .

X1

131

. 131

132

. 133



6.10

6.11

7.1

7.2

7.3

Numerical illustrations demonstrating the effects of optimal interven-
tion strategies on controlling the long-term brucellosis dynamics for
scenario 1 under strong asymmetric coupling (a) the number of in-
fected animals in patch 1 (b) the number of infected animals in patch
2. In all the figures the dotted blue and solid black curves represent
the infected population, without and with control, respectively. . . . .

The control profile for scenario 2. . . . . . . . ... ... ... ....

Stability of the infected and free-infected equilibrium of model system
(7.1) showing plots of I;(t) and I(t) with varying delay (7 = 72).
The direction of the arrow depict an increase in delay with a step size
of 2.0 starting from 2.0 to 10. The blue patterns in both (a) and (b)
highlights brucellosis dynamics when Ry < 1 while the red pattern
are for Rg > 1. Initial population levels were assumed as follows
S(0) = 1000 animals, V(0) = 500 animals, 7;(0) = 500 animals and
L(0) =0animals. . . ... ...
Numerical solutions of model system (7.1) illustrating the effects of
different time delay on brucellosis infection level in the community.
Initial population levels were assumed as follows S(0) = 1000 animals,
V(0) = 500 animals, /;(0) = 500 animals and I5(0) = 0 animals.
Numerical solutions demonstrating the stability of £° equilibrium of
model system (7.1) with Ry = 0.686281. We set 71 = 30, 1o =
5, B = 6.844 x 107% animal™! year™!, v = 0.2, a = 0.15 year™!,

I and the remainder retained the baseline

A = 16434 animals year™
values in Table 7.1. Further, we set the initial conditions as follows
S(0) = 100 animals, V(0) = 0 animals, [;(0) = 10 animals and

L(0)=0animals . . . . ... ... ..

X1l

. 164



7.4

7.5

7.6

7.7

Dynamics of model system (7.1) for different values of (71, 72), which
illustrate the stability of infection-free equilibrium £° at Ry = 0.686281.
We set 3 = 6.844 x 107¢ animal™! year™!, v = 0.2, a = 0.15 year™!,
A = 16434 animals year—! and the remainder retained the baseline
values in Table 7.1. Further, we set the initial conditions as follows
S(0) = 100 animals, V(0) = 0 animals, I;(0) = 10 animals and
L(0)=0animals . . . . ... ... ...
Stability of £* equilibrium of model system (7.1) with Ry = 3.77333.
The time delay 7 was fixed to be 60 and 75 was fixed to be 1. We
set the model parameters and variables as follows: 5 = 6.844 x 1076
animal 'year™' | v = 0.2, @ = 0.015 year™!, S(0) = 100 animals,
V(0) = 0 animals, /;(0) = 10 animals, /5(0) = 0 animals while the
other parameter values are as in Table 7.1. . . . . . ... ... ...
Numerical results of model system (7.1) for different values of (71, 7),
which demonstrate the stability of infected equilibrium £* at Ry =
3.77333. We set the model parameters and variables as follows: [ =
6.844 x 107% animal'year™! | v = 0.2, a = 0.015 year—!, S(0) = 100
animals, V(0) = 0 animals, /;(0) = 10 animals, I5(0) = 0 animals
while the other parameter values are as in Table 7.1. . . . . . . . ..
Sensitivity index for Ry with respect to model parameters that define

. e

xiil



List of Tables

3.1

4.1
4.2
4.3

4.4

5.1

6.1
6.2

6.3

6.4

7.1

Parameters and values . . . . . . . ... L. 23
Parameters and values . . . . . . . .. ... ..., 58
Additional model parameters and their values . . . .. .. ... ... 75

The total number of newly infected animals over 50 years and the total
cost J with respect to different control strategies for the autonomous
model with Ro = 1.5679. . . . . . . .. .. ... 78
The total number of newly infected animals over 50 years and the

total cost J with respect to different control strategies for the non-

autonomous model with Ro =1.312. . . . .. .. ... ... ..... 81
Parameters and their values . . . . . . . . . ... ... 105
Parameters and values . . . . . . ... 114

Association between the basic reproduction number and the residence-
time matrix . . . . . .. 117
The total number of newly infected animals over a ten-year period and
the total cost J with respect to the control strategy under scenario 1. 125
The total number of newly infected animals over a ten-year period and

the total cost J with respect to the control strategy under scenario 2. 127

Model parameters and variables and their baseline values . . . . . . . 161

Xiv



Chapter 1

Introduction

1.1 Background

Brucellosis, a highly contagious bacterial disease, is one of the world’s major zoonoses
responsible for a considerable economic and health burden. Currently there are more
than 500,000 new cases of brucellosis reported annually and the disease remains
endemic in many countries and settings, including Spain, Latin America, the Middle
East, and Africa [1, 2]. Among these, the majority of brucellosis cases are found
in sub-Sahara Africa, where Ethiopia, Chad, Tanzania, Nigeria, Uganda, Kenya,
Zimbabwe and Somalia have been reporting persistence of brucellosis in humans
attributed to the infection of domestic cattle, camels, goats and sheep [3].

Caused by various species of the bacteria Brucella [4], the disease can be trans-
mitted to animals and humans with exposure to infected animals or ingestion of
contaminated water, food, and dust, etc [2]. Brucellosis survival in the environ-
ment ranges from one to four months in the contaminated soil and water, and two
months in milk and meat [5]. However the Brucella bacteria is easily killed by direct
sunlight, high temperature and effective disinfection [6].

Historically the scientist David Bruce (1887) was the first to isolate the organ-
ism from the spleen of a British solider with Malta fever and named it Microccocus
melitensis and genus the Brucella was named after his name. Zammit (1905) identi-
fied goats as the reservoir of brucellosis. Malta fever, Mediterranean fever, Mediter-
ranean gastric fever, remittent and goats fever were often synonymously used for

undulant fever [7].



1.2 Brucellosis in animal population

Prevalence of brucellosis in both the wildlife (such as bison, buffalo, elk) and domes-
ticated animals (such as sheep, goats, camels, pigs and cattle) is well documented.
Transmission of the disease in both domesticated and wild animals occurs through
direct contact transmission-when a susceptible animal comes into contact with an
infectious animal or indirect contact transmission-when animals ingest contaminated
forages or the excrement containing large quantities of bacteria, generally discharged
by infected animals [8]. Vertical transmission of the bacteria from the mother to the
offspring has also been confirmed to be another dominant mode of transmission of
the disease in animal population [38].

In both domesticated and wild animals, the bacteria induces abortion, sterility,
vertical transmission, and poor growth of offspring [8]. Control measures available to
prevent animal infection are vaccination and culling of infected animals. Vaccination
is often regarded as the first step in the control of the disease [5]. Although the
disease is less fatal in adult animals it can lead to chronic infection [10].

In public farms where there is mixed feeding of domesticated species, cross infec-
tion has been reported [5]. Cross transmission of brucellosis from wildlife to domestic
animals has also been observed in many parts of Africa where the disease is endemic
[10]. Pastoralism and poor maintenance of game reserves have been attributed to

cross transmission of the disease between the wild and domestic animal in Africa.

1.3 Brucellosis in human

The occurrence of brucellosis in humans predominantly depends on the occurrence of
the disease in both wild and domestic species. Precisely, humans acquire the disease
through exposure to infected animals or their products such as the consumption of
raw milk [10]. Clinical signs of the disease in humans include undulant fever, tired-
ness, night sweats, headaches and chills may be present for as long as three months
before illness becomes so severe and debilitating as to require medical attention [10].

Although mortality due to infection is rare the illness can last for several years
[14]. Tetracyclines and a parenteral aminoglycoside or tetracyclines and rifampin

are the common regimens that are used to treat brucellosis infection. Since human



to human transmission of the disease is negligible, it follows that human brucellosis
is not sustainable. Hence effective prevention and control of the disease in humans
requires consistent, concurrent and long-term programs that target eradication of

the disease in animal population.

1.4 Seasonality in brucellosis transmission

Like many other infectious diseases, brucellosis is significantly influenced by seasonal
changes, and prior field studies have already demonstrated a strong correlation be-
tween brucellosis outbreaks and seasonal oscillations [27, 28, 26]. For example, a
recent analysis of brucellosis datasets in a few countries [26] reveals that there is a
marked seasonal variation in the incidence of acute brucellosis, with most cases oc-
curring in the spring and summer. Factors such as periodic changes in temperature,
seasonal precipitation which directly affects the availability of forage, environmental
fluctuations in humidity and exposure to UV light which impact the survival of Bru-
cella, and seasonal rituals in Africa which are associated with animal migration and
slaughtering, all contribute to seasonal fluctuations in the transmission and spread

of brucellosis.

1.5 Review of mathematical models for brucel-

losis

Mathematical modeling has the potential to shed light on mechanisms of transmis-
sion and the complexity of epidemiological characteristics of infectious diseases, and
can highlight new approaches to prevent and control future epidemics [33]. The first
account of mathematical modeling of spread of disease was carried out in 1766 by
Daniel [23]. Bernoulli created a mathematical model to defend the practice of inoc-
ulating against smallpox. His calculations showed that universal inoculation against
smallpox would increase the life expectancy from 26 years 7 months to 29 years 9
months [24].

Daniel Bernoulli’s research preceded our modern understanding of germ theory,

and it was not until the work of Ronald Ross into the spread of malaria, that



modern theoretical epidemiology began. This was soon followed by the work of A. G.
McKendrick and W. O. Kermack, whose paper A Contribution to the Mathematical
Theory of Epidemics was published in 1927. A simple deterministic (compartmental)
model was formulated in this paper. The paper [25] was successful in predicting the
behavior of outbreaks very similar to that observed in many recorded epidemics.

In recent years, several mathematical models have been proposed to study the
transmission dynamics of brucellosis [5, 30, 32, 33, 28, 34, 30, 35, 36, 37, 39, 38, 40,
41, 86]. Jorge and Raul [40] developed a dynamic model that comprise of suscep-
tible, aborting infectious, infectious carriers and immunized animals with a view to
investigate the transmission dynamics of brucellosis among animal population, and
their findings concluded that the dynamics of aborting infectious at the initial time
is much more rapid then the formation of infectious carriers.

Zinsstag et al. [37] studied cross transmission of brucellosis between livestock
and humans. They proposed a dynamic model which subdivided the population
of interest into the following epidemiological classes: susceptible, seropositive and
immunized, and their findings confirmed that the occurrence of brucllosis in hu-
man predominantly depends on the occurrence of brucellosis in animal population.
Alnseba et al. [41] proposed an susceptible, infected and the contaminated envi-
ronment dynamical model for brucellosis epidemic in ovine with direct and indirect
transmission, and their work indicated that environmental contamination plays an
important role in the persistence of brucellosis. Hou and co-workers [30] employed
a system of ordinary differential equations (ODEs) to model the transmission of
brucellosis and the effects of vaccination on brucellosis prevention and intervention,
their results indicated that a combination of intervention methods ( vaccination
and environmental decontamination) is an effective strategy in controlling animal
brucellosis .

Li et al. [32] proposed a model to investigate the transmission of brucellosis
among sheep and from sheep to humans, and their findings indicated that a combi-
nation of intervention methods (such as prohibiting mixed feeding, vaccination, and
detection and elimination) is useful in controlling human brucellosis.

Although these studies produced many useful results and improved the existing

knowledge on brucellosis dynamics, several challenges remain in the mathematical



modeling of brucellosis, and some of these challenges will be explored in this thesis.

1.6 Motivation

Despite having been successfully controlled or eradicated in many developed nations
the disease continues to pose a formidable challenge in many low-income countries
such as Ethiopia, Chad, Tanzania, Nigeria, Uganda, Kenya, Zimbabwe and Somalia.
Considering that agriculture is the backbone of the economy of the aforementioned
countries, it is therefore essential to gain a better and more comprehensive under-
standing of effective ways to control brucellosis. Since mathematical models can be
useful tools to provide a comprehensive guide to epidemiologist and policy-makers

on effective ways to control brucellosis, the topic become worth studying.

1.7 Objectives of the research project

The aim of this study is to formulate mathematical epidemiological models that can
be useful and important tools for studying the transmission dynamics of brucellosis
in animal population. In this study, we target animal population since human

brucellosis is not sustainable. The specific objectives of this research project are
(i) To model and analyze the effects of seasonality on brucellosis transmission.

(ii) To investigate the effects of vertical transmission as well as disease control
strategies on controlling the spread of the disease in both periodic and non-

periodic environment.

(iii) To investigate the role of spatial and temporal heterogeneities on the dynamics

of brucellosis.

(iv) To evaluate the impact of short-term animal mobility on the transmission

dynamics of brucellosis infection.

(v) To investigate the dynamics and stability of brucellosis model with two discrete

delays.



1.8 Thesis outline

The organization of this thesis is as follows: In Chapter 2, we introduce some mathe-
matical preliminaries relevant to the thesis. In Chapter 3, we present a mathematical
model for the transmission dynamics of brucellosis that incorporates the effects of
seasonality. In Chapter 4, we introduce a mathematical modeling that seeks to
improve our quantitative understanding of the influence of chronic brucellosis and
culling control in periodic and non-periodic environments. In Chapter 5, we propose
a model to investigate the transmission dynamics of brucellosis, incorporating both
the spatial and seasonal variations. In Chapter 6, we consider a dynamical model
to describe the role of short-term animal movements on the persistence of brucel-
losis. In Chapter 7, we present a new mathematical model of brucellosis infection,
with two discrete delays. Finally in Chapter 8 we conclude by presenting a general

conclusion and future remarks on brucellosis dynamics.



Chapter 2

Mathematical preliminaries

2.1 Introduction

This chapter introduces some of the key mathematical theories, methodologies and

classical results from dynamical systems theory relevant to the thesis.

2.2  Stability

A system without stability would be a poor model, so some kind of stability is
needed in modeling. There are two types of stability and these concepts are of great
importance in applications of differential equations; That is stability with respect
to perturbation of initial values for fixed equations and stability with respect to
perturbation of the equations itself. In the first case we say the system is persistent
and second case robust. The equilibrium point is locally stable if all solutions which
start near z (implying that the initial conditions are in the neighborhood of )

remain near 7 for all future time.

2.2.1 Stability : Basic definition

Consider the following definitions

Definition 1 (Autonomous system [46]). Let Q2 be a subset of R". Consider the

autonomous differential equation defined by:
z(t) = f(z), v €, (2.1)
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where the dot represents the differentiation with respect to time (%). Suppose that
f:QCR™ — R" is continuous and satisfies the conditions as a solution of (2.1), is
unique and continuously depend on the initial conditions. The stationary or equilib-
rium points of the system (2.1) are the points xo € Q satisfying f(xo) = 0. For each
x € Q, we denote by fi(x) the solution of the system (2.1) satisfying fo(x) = z. We

suppose that f satisfies the conditions that fi(x) is continuous in (t,x).

Definition 2 (Equilibrium point). A point T € R"™ is an equilibrium point of the
system (2.1) if f(z,t) = 0.

Definition 3 (Lyapunov stability [47]). Let & € w be an equilibrium point. System
(2.1) is stable or Lyapunov stable at T or T is a stable equilibrium position for (2.1),
if for each € > 0 there exists a positive real number 6 such that for each x with
|z —z| < 6, the solution f(t(x)) is defined for allt > 0 and satisfies |f(t(x))—z| < €
for allt >0, when (2.1) is not Lyapunov stable at T, we say that it is unstable at T.

Definition 4 (Attractivity). The steady state T is said to be attractive or system
(2.1) is attractive at T if there exists neighborhood U C Q of T such that for any
initial condition x belonging to U, the corresponding solution f(t(x)) of (2.1) is
defined for all t > 0 and tends to T as t tends to infinity, that is tginoof(t(x)) = I.

Definition 5 (Asymptotic stability). We say that T is stable if solutions starting
close to it at a given time, remain close to it for all future times. It is said to be
asymptotically stable if nearby solutions actually converge to T as t — +oo, that

means it s Lyapunov stable and attractive.

Definition 6 (Ezponential stability). The system (2.1) is exponentially stable, (glob-
ally stable respectively) at T, if there exits two positive constants K and \ such that
|f(x) — 7| < e < K|z — Z|eM for all x in a neighbourhood of T (respectively for all
x € Q) and all positive time t.

Definition 7 (Attractor). This refers to a compact, nonempty set K which attracts
some neighborhood N of itself. It is assumed that K is invariant, that is, it contains
the orbits of all its equilibrium points. The neighbourhood N can always be chosen to

be invariant also by simply replacing it with the union of all its points. The largest
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of such N, ie. the set of all points attracted to K is called the basin of K. An
attractor enjoys some kind of stability. Any trajectory starting near it may wonder

away, but eventually returns to approach it asymptotically

Definition 8 (Global stability). An equilibrium point T is globally asymptotically

stable if it is stable for all initial conditions xo € R™.

2.2.2 Dynamical properties

Definition 9 (Invariant set). Given the dynamical system & = h(z) and a trajec-
tory x(t, o) where zq is the initial point. Let D = {x € R"|¢ = 0} where ¢ is a real
valued function. Then the set D is said to be positively invariant if o € D implies
that x(t,zo) € D for all t > 0. This means that once a trajectory of the system

enters D, it will not leave it again.

Definition 10 (Orbit). The orbit Ot (xg) is called a positive orbit if for all xq in
the set {x(t,zo)|t > 0}, the orbit is defined by:

O (x) = {x(t,x0)|t € R}.

The set is positively invariant if OT (M) C M, and invariant if it contains the orbits

of each of its points.

Definition 11 (w-limit point). A point [ is called an w-limit point of fi(x) if there
exists a sequence t, € R such that nlj)IJPoo t, = +oo and ngrfoo fi(x) =1. The set of
all w-limit points is the w-limit set of x and is denoted by w(x). This means that
the sequence t, tends to +00 as n tends to infinity and the flow through x tends to

[ as n tends to +o0o.

Theorem 2.2.1 If the positive orbit OF (xg) is bounded then the set w(OT) of w-

limit points is non- empty, connected, compact and invariant.

Theorem 2.2.2 (Poincaré-Bendizon). Consider the equation & = h(z) in R?. Sup-
pose that OF is a bounded positive orbit and w(O1) does not contain equilibrium
points. Then w(O7) is a periodic orbit. If w(O1) # OF this periodic orbit is called

a limit cycle.



Definition 12 For the C' autonomous system @ = h(x) and an equilibrium point

Xo, the linearised system in xq is defined by

& = Dh(xo)z, where Dh(x) is the derivative of h at z.

Theorem 2.2.3 (Poincaré-Lyapunov [{7] ). Consider that a C' system i = h(x)

and an equilibrium point xg.

1. If Dh(xo) has the real parts of all its eigenvalues negative, then xy is asymp-

totically stable.

2. If Dh(xo) has at least one of its eigenvalues with real positive parts, then xg

1s unstable.

3. If Dh(xy) has one eigenvalue equal to zero and all other negative, then xq is a

critical point where the system changes its behavior from stable to unstable.

2.3 Monotone systems

Consider the system (2.1) where f is C* and 2 is an open set in R".

1. fis said to be of type K in § if for each i; fi(a) < fi(b) for any two points a
and b in 2 satisfying ay < by and a; = b;, (i # j and i,k =1,2,...,n);

2. We say that 2 is | — convex if tz + (1 —t)y € §, for all t € [0, 1] where z,y € Q
and z < y;

3. The system (2.1) is said to be cooperative system if €2 is | — convexr and

Ofi(x)
al'j

>0, 1#], 1€

4. We say that system (2.1) is competitive system if €2 is [ — convez and

dfi(z)
8SCJ'

<0, i#j, xeQ
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2.3.1 Monotone dynamical system

Consider a dynamical system with a flow 1, :  — (). This dynamical system is

said to be monotone if it is defined on an ordered metric space with the following
property;

t>0, 2 <y= Y(z) < i(y)
It is said to be strongly monotone if

t>0, z <y= (zx) <P(y)
We say the system is anti-monotone if

t>0, e <y= Df(x) > Df(y) and

It is strictly anti-monotone if

t>0, z<y= Df(x) > Df(y).

2.3.2 Triangular system

A triangular system is precisely an R™ x R™ system of the form

{ fo= @), (2.2)
o = ho(xy,29),

where h; is a map from R” to R™ and hy from R™ to R™. Suppose that the conditions
for existence and uniqueness of solutions are satisfied, for example h; and hsy are C!.
The trajectories of the system have the system projection on R™ x {0} and hence

the name triangular. Notice that the Jacobian of this system is a lower triangular

block, and it is also said to be hierarchical.

Theorem 2.3.1 (Vidyasagar). Consider the following C* system

| (2.3)
Tog = h2(1’1,5€2),

{ T = hi(r),
If the origin of R™ is globally asymptotically stable for the system &1 = hy(x1) in
R™ and the origin of R™ is globally asymptotically stable for o = h,(0,x2) on R™,
then the origin of R™ x R™ is asymptotically stable. Further if all trajectories are

bounded, then the origin is globally asymptotically stable for (2.3) on R™ x R™.
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2.4 Lyapunov methods

The Lyapunov function has a major role in the study of dynamical systems stability.

Let £:Q C R"™ — R be a continuous function.
Definition 13
We consider the following definitions

1. The function £(z) is said to be positive definite if £(x) = 0 and L(z) > 0 in
a neighborhood €2y of xy for all x # z( in the neighborhood.

2. The function £(z) is said to be negative definite if —L(x) is positive definite.

3. The function L£(z) is said to be semi-positive if L(z) = 0 and L(z) > 0 in a
neighborhood €2 of x.

Theorem 2.4.1 (Lyapunov Theorem). Let L(x) be a function

o If a function L(z) is positive definite and L(x) is negative semi-definite in €,
then the equilibrium point xq is stable for the system (2.1)

o [f the function L(x) is positive definite and L(x) is negative definite in ), then
the equilibrium point xq is asymptotically stable for the system (2.1)

In this theorem to show that an equilibrium point z, is stable, it is sufficient to find a
Lyapunov function for the point zy. Moreover, to use the original Lyapunov theorem
to show the asymptotic stability of a given system, we must find a function £(z)
whose derivative is non-negative definite and the derivative £(z) is negative definite.
In a general case, this is not straightforward. The condition on the derivative £(z)
can be relaxed by using the LaSalle Invariance principle introduced in the next

section.

2.4.1 LaSalle invariance principle

Theorem 2.4.2 (LaSalle Invariance Principle [45, 46]). Let Q C R™ be a compact
set that is positively invariant with respect to the system (2.1). Let L(z) : Q@ — R
be continuously differentiable such that ,C(x) < 0in Q. Let S be the set of all points
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in  where L(x) = 0. Let L be the largest invariant set in S. Then every solution

starting in 0 approaches L as t — oo.

This theorem is one of the important tools for systems analysis, and is different
from Lyapunov, as it does not require £(z) to be non-negative definite and £(z) to
be negative definite. However, it only provides information on the attractiveness of
the considered system at the equilibrium zy. For example, it can be used to prove
that the solutions tend toward an equilibrium point when the set L is reduced to
that equilibrium point. It does not indicate whether this equilibrium is stable or
unstable. To establish asymptotic stability of an equilibrium zy € €2, we use the

following corollary which is a consequence of the LaSalle invariance principle.

Corollary 2.4.1 (LaSalle,[}6]). Let us consider the compact set Q) € R™ with xy €
Q. Let L : U — R be a continously differentiable non-negative definite function such
that £(z) < 0 in U. Let S = {x € U|L(z) = 0}. Assume that the largest positively
invariant set contained in S is reduced to the point xo. Then xq is an asymptotically
stable equilibrium point for the system (2.1). If these conditions are satisfied for
U =€, if in addition L is in  ie. lim £ = +o0o when d(z, £Q) + ||z|| = 400 then
all trajectories are bounded fort > 0 and xy is a globally stable equilibrium point for

the system (2.1).

Corollary 2.4.2 Under the assumptions of the previous theorem, if the set L 1is
reduced to the point xo € €, then xy is a globally stable equilibrium point for the
system (2.1) defined on Q.

2.5 Matrices

Definition 14 (Stability Modulus, Spectral radius). Let P be a square matriz. We
denote by Spec(P) the set of all eigenvalues of P. The stability modulus of P is the
number defined by

a(P) = max{Re(\) : X\ € Spec(P)}

The matriz P is said to be stable if a(P) < 0. The spectral radius is the real number
p(P) defined by

P) = A
p(P) Aeg;)gg%m\ \
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We say that a matriz P is stable if its eigenvalues have strictly negative real parts.

Such a matriz is also said to be Hurwitz.

2.5.1 Lozinskii measures

Let |.| denote a vector norm in R™ and the corresponding matrix norm it induces.
The Lozinskii Measure m on matrices with respect to |.| is defined by
.| +hA -1
= ljm M
m(Q) h0+ h
for an n x n matrix A and identity matrix I,,. For properties and calculations of

Lozinskii we refer the reader to [48].

2.5.2 The second additive compound matrix

Let A be a linear operator on R™ and also denote its matrix representation with
respect to standard basis of R®. Let A%2R"™ denote the exterior product of R*. A

induces canonically a linear operator A® on A?R": for uy,us € R, define
AP (g A ug) = A(ug) Aug 4+ uy A Alus)

and extend the definition over A?R by linearity. The matrix representation of AP
with respect to canonical basis in A2R” is called the second additive compound
matrix of A. This is a (nxn) matrix and satisfies the property (A-+B)? = AR+ B2
In the special case when n = 2, we have A[;iQ = trA. In general, each entry of A
is a linear expression of those of A. For example, when n = 3, the second additive

compound matrix of

ai; Qa2 Qi3 a1 + aga 23 —a13
_ : 2] _
A= lay axn ay 18 A = asz a1 + ass a2 (2.4)
azp asz ass —asy ao1 Qo2 + Q33

For detail discussion of compound matrices and their properties see [49].

2.6 Calculation of basic reproduction number

Definition 15 (Basic Reproduction Number Ry). The basic reproduction number,

denoted by Ry, is the expected number of secondary cases produced, in a completely
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susceptible population, by a typical infected individual. If Ry < 1 then on average an
infected individual produces less than one new infected individual over the course of
its infectious period and the infection can not grow. If Ry > 1 , then each infected
individual produces, on average, more than one new infection, and the disease can

invade the population.

To calculate basic reproduction number we demonstrate here the method developed
by van den Driessche and Watmough [50]. Consider an epidemiological model with
heterogeneous population, whose individuals can be grouped into n homogeneous
compartments. Let x = (z1,...,z,)" with each ; > 0, be the number (or concen-
tration ) of individuals, in each compartment. The compartments are classified in
such a way that the first m compartments corresponds to infected individuals, while
others say i = m + 1,...,n are free of infection (susceptible). We define Xg to be

the set of all disease free states. That is
Xs={z>0|z;=0,i=1,...,m}

Let Fi(x) be the rate of appearance of new infections in compartment i, V;"(z)
be the rate of transfer of individuals into compartment i by all other means ( for
example, birth, immigration), and V, (x) be the rate of transfer of individuals out of
compartment i (for example, deaths, recovery and emigration). Thus the dynamics

of the compartments is is governed by the following ordinary differential system:

where V;(z) = V] (z) — V" (2).

For biological feasible domain we have the following assumptions:

(a) Since each function represents a directed transfer of individuals, they are all

non-negative. Thus if z > 0, then F;(x), V" (z),V; (z) > 0fori=1,...,n.

b) If a compartment is empty, then there can be no transfer of individuals, out
y
of the compartment by death, infection nor any other means. Thus if z; = 0

then V; (z) = 0. In particular, if x € Xg, then V; (z) =0fori=1,...,m.

(¢) Fi(x) =0, if i > m, that is, the incidence of infection for uninfected compart-

ment is zero.
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(d) We assume that if the population is free of disease then the the population
will remain free. That is, there is no (density independent) immigration of
infectives and the condition is stated as follows: If 2 € Xg then F;(z) = 0 and
Vi(x)=0fori=1,...,m.

(e) Consider a population near the DFE zy. If the population remains near the
DFE, that is if the introduction of a few infective individual does not result
in an epidemic then the population will return to the DFE according to the

linearized system
& = D f(xo)(x — o),

where D f(xg) is the Jacobian that is %fj_. Thus if 7 = 0, then all eigenvalues

of Df(xy) have negative real parts.
The following results is the partition matrix D f(xo)

Lemma 2.1 If xy is DFE and f;(x) satisfies (a) through (e), then the derivatives
DF(zo) and DV(xo) are partitioned in blocks as follows

F 0 V 0
DF(zg) = and DV(zy) = (2.5)
0 0 Js Jy
where F and V' are the m X m matrices defined by
F=|%iw)|  and V= || with 1<ij<m. (2.6)

F is non-negative, V' is non-singular M-matriz and all eigenvalues of J, have positive

real part
For the complete prove of this theorem see [50].

Definition 16 (Basic Reproduction Number, Rq). The basic reproduction number

Ry is the spectral radius of the next generation matriz FV =, that is
Ro = p(FV ).

The entries of FV~! has a meaningful definition of Ry. Consider the infected

individual introduced into compartment k of disease free population. The (7, k) entry
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of V=1 is the average length of time this individual spends in compartment j during
its life time, assuming that the population remain near DFE and barring reinfection.
The (7,7) entry of F' is the rate at which infected individuals in compartment j
produce new infection in compartment i. Hence, the (i, k) entry of the product
FV~1is the expected number of new infections in compartment 7 produced by the
infected individual originally introduced into compartment k. The matrix FV 1! is
called the next generation matrix for the model and set Ry = p(FV '), where p(A)

is the spectral radius of matrix A.
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Chapter 3

Modeling and analyzing the effects
of seasonality on brucellosis

infection

3.1 Introduction

Brucellosis, a highly contagious disease of humans and animals, is caused by various
species of the genus brucella [5]. It is one of the most common bacterial zoonoses
worldwide and it poses a major threat to human and animal health, and animal
production [51].

Humans are usually infected through consumption of non-pasteurized dairy prod-
ucts and close-contact manipulation of infected animals. In humans, brucellosis is life
threatening and exhibits nonspecific symptoms, including intermittent fever, weight
loss, depression, hepatomegaly, and splenomegaly [32, 52]. Arthritis, spondylitis, os-
teomyelitis, epididymitis, and orchitis, as well as more severe complications such as
neurobrucellosis, liver abscesses, and endocarditis, are also common in some patients
[52]. In animals, the transmission occurs when susceptible animals are exposed to in-
fected animals or through ingestion of contaminated water, dust, improperly treated
dairy products and so on [32]. Meanwhile, brucellosis is primarily a reproductive
disease and is associated with abortion, retained placenta, and impaired fertility in

the principal animal hosts [52].

18



Although tremendous progress has been made in controlling the disease, there
is still a number of countries/regions where the infection persists in domestic an-
imals and, consequently, transmission to the human population frequently occurs.
Recent reports on animal infections [32] demonstrate that the disease is endemic
in the Middle East, Asia, Africa, Latin America, the Mediterranean Basin, and the
Caribbean.

Recently, several mathematical models have been developed to analyze brucel-
losis outbreaks in an effort to better understand the intrinsic disease transmission
and determine the strength and weakness of current prevention and control strate-
gies [5, 30, 32, 33, 28, 34, 30, 35, 36, 37, 39, 38, 40, 41]. In particular, Hou and
co-workers [30] proposed the following system of ordinary differential equations to

model the transmission dynamics of brucellosis:

S(t) = A=PB[E() + 1(1)]S(t) — B2B()S(t) — (u+7)S(t) + kH(t),
H(t) = 78(t) =B [E(t) + I(OH () —v8H () B(t) — (u + k) H(t),

E(t) = BiSE) +vHMIEW) + 1()] + B[ S(t) +vH(OIB(1) — (0 + ) E(1),
I(t) = oB(t)— (n+ol(),

B(t) = B3(E+1)—(d+0)B

(

\

(3.1)
where S(t), H(t), E(t), and I(t) are the numbers of the susceptible, vaccinated,
exposed (latent), and infectious animals at time ¢, respectively. The total animal
population at time ¢ is N(t) = S(t) + H(t) + E(t) + I(t). Further, B(t) is the
concentration of brucella in the environment, the parameter A is the recruitment
rate, p is the natural mortality rate, c¢ is the disease-related death rate, 7 is the
vaccination rate, k is the immunity waning rate, 3; is the direct disease transmission
rate, By is the indirect disease transmission rate, v is the modification factor, o
is the incubation rate, (5 is the pathogen shedding rate, ¢ is the environmental
decontamination rate, and d represents pathogen decay rate. As highlighted in
prior studies [30, 39], exposed animals have no clinical manifestations and, without
loss of generality, they can be assumed to have the same infectivity as that of the
infectious animals.

This work and several other studies (see, for example, [5, 32]) have certainly
produced many useful results and improved the existing knowledge on brucellosis

dynamics. One of the limitations of these models, however, is that they assumed that
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the model parameters are constant in time, implying that the disease contact rates
and pathogen population growth rate, etc., all take fixed values independent of time.
In fact, like many other infectious diseases, brucellosis is significantly influenced
by seasonal variations, and prior studies have demonstrated a strong connection
between brucellosis infection and seasonal variations [26, 27, 28]. Factors such as
the seasonal availability of forage which in turn lead to nomadic animal farming, may
be attributed to seasonality of brucellosis dynamics. Further, the survival of brucella
in the environment depends critically on humidity, temperature and exposure to UV
light. For example, its survival in ideal environments is reported to last up to 135
days, while a field study in the spring in Montana, USA found that brucella abortus
survived in the environment for only 21-81 days [27, 28]. In addition, an analysis
of brucellosis datasets in countries with temperate or cold climates [26] underscores
that there is a marked seasonal variation in the incidence of acute brucellosis, with
most cases occurring in the spring and summer. Seasonal variations also lead to
periodic changes in pastures that induce animal movement and seasonal migration,
resulting in disease dynamics not captured by mathematical models with constant
model parameters.

From an applied perspective, understanding the mechanisms that link seasonal
variations to diseases dynamics may aid in forecasting the long-term human and
animal health risks, in developing an effective public health program, and in setting
objectives for utilizing limited resources more effectively [53]. So far no published
work has discussed the influence of seasonal variation on the transmission dynamics
of brucellosis. The purpose of the present chapter is to present a general brucellosis
model in a periodic environment, by extending the autonomous model proposed in
[30] to include seasonal variation in both the pathogen dynamics and the disease
transmission pathways. We will then conduct a careful analysis on this periodic
model, with a focus on its threshold dynamics characterized by the associated basic
reproduction number. In addition, we will explore optimal disease control measures
based on animal vaccination and environmental decontamination to contain bru-
cellosis outbreaks, through an optimal control study. Our results are new and, to
our knowledge, very little work has appeared so far on the optimal control study of

periodic epidemiological models.
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The remainder of this chapter is organized as follows. In Section 3.2, we present
details of our periodic brucellosis model, followed by an analysis on disease extinction
and persistence that are determined by the basic reproduction number. In Section
3.3, we perform an optimal control study on the use of animal vaccination and
environmental decontamination, through both mathematical analysis and numerical

simulation. Finally, we conclude the chapter with some discussion in Section 3.5.

3.2 Model with seasonal variation

3.2.1 Model framework

Motivated by the model (3.1), we propose the following non-autonomous dynami-
cal system to describe the transmission dynamics of brucellosis in a time-periodic
environment:

(1) = A=A@OE®)+I0)]SE) = B()B(1)S

;

t)— (u+71)S(t)+ kH(t),

.

(
)

H(t) = 75(t) =510 H@)[E() + I(t)] — vB2(1) H() B(t) — (p + k) H(t),

Et) = B)SE) +vH@[BE) + (1) + B(0)[S(8) +vH (1) B(1)
—(o+p)E(t),

[(t) = oB(t)~ (n+o)(t),

B(t) = Bt)(E+1)—dt)B(t) — §B(t).
(3.2)
All the variables and model parameters are assumed to be positive and they

retain the same definitions as in model (3.1). Model parameters and their baseline

values in Table 3.1. The model flow diagram is depicted in Figure 3.1.
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Figure 3.1: Flowchart illustrating the dynamics of brucellosis.

Further, we assume that ;(¢), (j = 1,2,3) are periodic continuous functions in ¢

with a period w > 0 (specifically, w = 12 months). Thus,

B,(t) = a {1 + b, sin (%t)] , (3.3)

where a; (j = 1,2,3) is the baseline value or the times average of ;(t), and b;

(0 < b; < 1) denotes the magnitude of seasonal fluctuations. In addition, we define

d(t) = do {1 + dy sin (%t)} , (3.4)
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Table 3.1: Parameters and values

Symbol Definition Value Units Source
Elimination rate caused by brucellosis 0.15 year~! [30]

§ Environmental decontamination rate 25 year~! [30]

ax Averaged direct transmission rate 1.48 x 1078 animal ~tyear ! [30]

as Averaged indirect transmission rate 1.7 x 10710 pathogen™'year 1 [30]

as Averaged brucella shedding rate 15 pathogen animal ~'year=! [30]

dy Averaged pathogen decay rate 3.6 year—! [30]

by Amplitude of oscillation in 34 () 0.8 - Assumed

b Amplitude of oscillation in £5(t) 0.8 - Assumed

bs Amplitude of oscillation in S5(t) 0.8 - Assumed

dy Amplitude of oscillation in d(¢) 0.8 - Assumed

L Natural elimination rate 0.22 year—! [30]

k Vaccination waning rate 0.4 year ! [30]

0% Modification factor 0.18 - [30]

A Recruitment rate 11629200 animals year™ [30]

T Vaccination rate 0.316 year—! [30]

o Incubation rate 1 year—! [30]

Uy Upper bound of () 20 - Assumed

Us Upper bound of us(t) 3 - Assumed

S(0)  Initial number of susceptible 4.341 x 107 animals [30]

H(0) Initial vaccinated animals 8.44 x 105 animals [30]

E(0) Initial exposed animals 0 animals [30]

I(0)  Initial infected animals 1.33 x 105 animals [30]

B(0) Initial number of brucella 6 x 106 pathogens [30]

Wi Cost parameter of vaccination Varied animals dollars year™' -

Wo Cost parameter of decontamination Varied animals dollars year™! -

where dy denotes the basic pathogen decay rate without seasonal forcing and d;

(0 < dy < 1) denotes the magnitude of seasonal fluctuations.

3.2.2 Feasible region

For the model (3.2), it is obvious that all solutions with non-negative initial condi-

tions remain non-negative. Let N(t) = S(t) + H(t) + E(t) + I(t). Adding the first
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four equations of (3.2) we have
N(t)=A—puS —pH —pE —pl —cl = A—puN —cl < A—puN

It implies that limsup N(t) < é Since N(t) is bounded by A — uN, a standard
comparison princifglzotheorem [55] can be use to show that N(t) < N(0)e # + %( 1—
e #"). In particular, N(0) < f = N(t) < ﬁ. Also we can show that every solution
of the system (3.2) with initial conditions in I" remains there for ¢ > 0. The w-limit
sets of the system (3.2) are contained in I'. As a consequence, the last equation of

system (3.2) gives

B(t) = &@xéflﬁ_@+d@)
< i) [+ 5] = G+
< 2(13(1 + bg)% — (do + dodl + (S)B
2a3(1 4+ b3)A

Thus, limsup B(t) <

. Hence the feasible domain,
t—o0 ~ p(do + dody +6)

A 2&3(1—|—b3>A}
I'=<(S,H,E,I,B)eR’ :S+H+E+I<=, B< 3.5
{( JER ST B S L B a0y P

is invariant for system (3.2). Thus we will study the dynamics of our model in the
closed set I'. In addition, we note that there is a constant influx (at rate A) into the
susceptible class. Hence, without loss of generality, we assume that the susceptible

population is positive at the initial time; that is,

5(0) > 0. (3.6)

3.2.3 Disease-free equilibrium

A constant solution to a system of equations is referred to as an equilibrium solution.
A disease-free equilibrium refers to the equilibrium that exists in the absence of the
disease (i.e S =5y >0, H= Hy >0, E =1 = B =0). The disease-free equilibrium
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is determined by equations:

(A= BUO[E() + 1(8)]S(t) = Ba(t) BI)S(E) — (1 + 7)S(t) + kH(2) =
TS(t) =) H(OER) + I()] = v5() H () B(t) — (1 + k) H(1) =
Pr@[S(E) +vHOIE®) + I(1)] + B2(8)[S(E) +7H ()] B(t) — (0 + ) E(t) =

oB(t) = (n+)I(t) =

Bs()(E + 1) — d(t)B(t) = 6B(1) =

No o o o o

Substituting S = Sy, H = Hy and £ = [ = B = 0 into equation (3.7) yields

{ A= (u+7)So(t) + kHo(t) = 0, (3.8)

7S0(t) — (1 + k)Ho(t) =

solving equation (3.8) for Sy and Hy implies that system (3.2) has an evident disease-
free equilibrium given by Py = (Sy, Hyp, 0,0, 0), with
A(p+ k) At A(p+k +~1)

S: 7H: Y dS+H: :
"tk T (k) T T i T k)

3.2.4 The reproduction number

Utilizing the next-generation method [50], and adopting the matrix notations therein,
the matrices for new infection terms (denoted by F'(t)) and the transfer terms (de-

noted by V(t)) at the disease—free equilibrium are given by

Bi)A(u+k+7) Bit)Alp+k+7) Ba(t) A+ k +97)

p(p+k+71) plp+k+71) plp+k+71)

F(t) = (3.9)

0 0 0

Bs(t) Bs(t) 0

and
(0+mp) 0 0
Vity=| -6 (u+¢) 0 (3.10)
0 0 d(t) +9
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It follows that the basic reproduction number of the time-averaged autonomous

system is

ar(c+p+0)(So +7H0>}
(c+p)(p+o)
\/(c—i—,u~|—a)(50+fyH0) (a%(c—l—,u—i—a) dasag )

R~ = 5

1
2

(c+p)(p+o) (c+m)(p+0o) " (do+9) (3.11)

In order to establish the basic reproduction number in periodic environments,

Wang and Zhao [55] extended the classical framework (for autonomous systems) of

van den Driessche and Watmough [50] by introducing the next infection operator

(L) (1) = /0 TVt — $) (- $)6(t — $)ds. (3.12)

where Y (t,s), t > s, is the evolution operator of the linear w-periodic system
% = —V(t)y and ¢(t), the initial distribution of infectious animals, is w-periodic
and always positive. The effective reproduction number for a periodic model is then

determined by calculating the spectral radius of the next infection operator,
Ro = p(L). (3.13)

Through direct calculation, the evolution operator Y (¢,s) for system (3.2) is

found as
e~ (o+n)(t—s) 0 0
Y(t,s) = | gole @t —emluta-0] oG- o | (3.14)
0 0 Y (t,s)
with

V(t, ) = exp {—(do 4 o)t — 5) — 2o (Cos %] - cos {%’5] ) } .

™

In addition, the next infection operator can be numerically evaluated (see, e.g.,

[56]) by
(L) (1) = /0 TVt — $)F(t — $)6(t — $)ds — /0 TG s)olt— s)ds  (3.15)
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where

G(t,s) = ZY(t,t —s—kw)F(t —s)

M
k=

0

miy Miz2 Ma3

2
M=

Ma1 Mo 1MN23

i

0
ms; mgz 0

for some positive integer M large enough, and

e = ApARAAT) o (it o) (s + Ew)
13 PEETS) Ba(t —s) ;

Mo = Mag = )

ob(t — s) (A(N‘i‘k‘i"ﬂ)) (e—(u—l—a)(s—l—kw) _6—(u+c)(s+kw))
(c—0o) \ plp+k+7)

9

i — oBa(t — s) (A(M+k+77))<€—(u+0)(s—|—kw)_6—(u—|—c)(s—|—kw)>
(c—0o) \ plp+k+7)

ms = mas = Ba(t — 5) exp {—(do L) (t — ) — S <cos %] - cos [%t} ) } .

T

Using parameter values in Table 3.1 and numerical computations, we obtained
the curves of the time averaged reproduction number [Ry] (3.11) and basic repro-
duction number Ry (3.13), with respect to a; (j = 1,2), in Fig 3.2. We note that
the average basic reproduction number [Ry] is always greater than the basic repro-
duction number Ry in all cases. The results demonstrate that the risk of infection
will be overestimated whenever the average basic reproduction number is used. The

results established here are in agreement with findings from [53].
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Figure 3.2: Numerical results of the average basic reproduction number [Rg] and the
basic reproduction number Rg versus a;, (j = 1,2): (a) [Ro] and Rg versus a1; (b) [Ro]

and Rg versus as.

3.2.5 Disease extinction

We aim to establish the condition Ry = 1, where the basic reproduction number Ry
is defined in (3.13), as a sharp threshold for the disease dynamics of our periodic
brucellosis model. The following theorem analyzes the global stability of the disease—
free equilibrium of system (3.2) and provides a criterion for the extinction of the

disease.

Theorem 3.2.1 If Ry < 1, then the disease-free equilibrium of system (3.2) is
globally asymptotically stable in T".

To prove this result, let us consider the matrix function F'(t) — V(¢) given by

AB1(t) (e + k +~7) ABL () (4 k +~7)  ABs(t)(p + k +~7)

plp+k+7) ~lota) plp+k+71) plp+k+1)
Bs(t) Bs(t) —d(t) — 6

We can easily verify that (3.16) is continuous, cooperative, irreducible and w-

periodic. Further, let ®p_v))(t) be the fundamental solution matrix of the linear
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ordinary differential system:
T =[F(t) = V(t)]z, (3.17)

and p(®(p_v).)(w)) be the spectral radius of ®p_yy)(w). From Theorem 2.2 in
[55], we have Ry > (=, <) 1 if and only if p(®p_vy(w)) > (=, <) 1. Meanwhile,
based on Lemma 2.1 in [57], we immediately have the following result which will be

used to establish Theorem 3.2.1.

Lemma 3.1 Let v = (1/w)Inp(®p_v))(w)). Then there exists a positive w-
periodic function v(t) such that e”'v(t) is a solution to (3.17).

Now we present the proof of Theorem 3.2.1.

Proof 1 From the first two equations of the system (3.2), we can easily obtain

Alp + k)
plp+ 7+ k)

AT
= d Vi) ——— 27,
0 an ()_M(/L—i_T‘i‘k) 0

S(t) <

Then from the last three equations of the system (5.2), we have

R E
Sl <FE=-V]T1] (3.18)
B B

Based on Lemma 3.1, there exists v(t) such that
x(t) = (B(t),I(t), B(t)) = €"v(t)

is a solution to equation (3.17), with v = (1/w)In p(Pp_v))(w). Since Ry < 1, we
have p(®p_vyy(w)) < 1, and thus v < 0. Hence,

(BE(),1(1), B(t)) < (E(t), I(t), B(t))
when t 1s large, which would imply that

lim E(t) =0, lim I(t) =0, and lim B(t) = 0. (3.19)

t—o0 t—o0 t—o0
Meanwhile, from the first two equations of the system (3.2), we have

d
a(S+H)—>A—,u(S+H), as t — o0,

29



which tmplies that
A
St)+ H(t) —» —, t— 0.

1
Therefore,
dH A A
T <E —H(t)) —(u+k)H(t) _rﬁ —(p+T+k)H(),
or
AT
H t pu—
2 plp+r+k) "
and clearly it leads to
A Alp+ k)
S(t) - — — H, So.
©) po 0 p(pt k)

Therefore,
lim l’(t) = (S(], Ho, 0, 0, 0)

t—o00

for every solution x(t) of system (3.2).

3.2.6 Disease persistence

Now we proceed to investigate the dynamics of the system (3.2) when Ry > 1. We

will show that when Ry > 1, the brucellosis infection persists and there exists a

positive periodic solution. Following the framework in [58, 59], we define

X=R; Xo=RIxInt(R:)*  9Xp=X\Xo.

Let P : X — X be the Poincaré map associated with our model (3.2) such that

P(zy) = u(w, zo) Vg € X , where u(t, o) denotes the unique solution of the system

with u(0,zg) = .

Definition 17 The solutions of system (3.2) are said to be uniformly persistent if

there exists some n > 0 such that

liminf S(t) > 7, liminf H(t) > 7, liminf E(t) > 7,
t—o0 t—o0 t—o0

liminf I(t) > n, liminf B(t) > n,
t—o00 t—o00

whenever S(0) >0, H(0) > 0, E(0) >0, 1(0) > 0, B(0) > 0.
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Theorem 3.2.2 If Ry > 1, then the solutions of the system (3.2) are uniformly

persistent, and the system admits at least one positive w-periodic solution.
Proof 2 Let us define

My = {(5(0), H(0), £(0), 1(0), B(0)) € 9Xo}
such that

P™(5(0), H(0), £(0),1(0),B(0)) € 0Xo, Ym > 0
and
My = {(S,H,0,0,0):S>0,H >0}
We first show that
My = M,. (3.20)

It is evident that My O Ma. Consider any initial values
(S(0),H(0), £(0),1(0), B(0)) € OXO\Ma. If E(0) = 1(0) = 0 and B(0) > 0, then
based on the assumption (3.6) we have E'(0) > 0. Similarly, if E(0) = B(0) =0
and I(0) > 0, then E'(0) > 0, and B'(0) > 0. If I(0) = B(0) = 0 and E(0) > 0,
then I'(0) > 0, and B'(0) > 0. It follows that (S(t), H(t), E(t),I(t), B(t)) ¢ 0Xy
for 0 <t < 1. The positive invariance of Xo implies that My = Ma, and hence,
equation (3.20) holds.

A k A
Now, let us consider the fixed point My = (14 ) , T ,0,0,0
plp+ 7+ k) plp+ 7+ k)

and define W9 (My) = {x¢ : P™(x¢) — My, m — oo} . From the system (3.2) it

A k
is easy to deduce that when E =1 = B =0, we have S(t) — Sy = L ;
) plp+ 7+ k)
H(t) — Hy = M(,u-l——z-l—k) ast — oo . We prove that
WS (My)N Xy = 0. (3.21)

Let ||-|| denote a norm on'R’. . Based on the continuity of solutions with respect to

the initial conditions, for any e > 0, there exists 0 > 0 small enough such that for all
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(5(0), H(0), E(0), 1(0), B(0)) € Xo with [[(S(0), H(0), E(0), 1(0), B(0)) — Mol| < 4,

we have
lu(t, (S(0), H(0), E(0),1(0), B(0))) — u(t, Mp)|| <e, Vte[0,w]. (3.22)
We claim that

lim sup || P™(S(0), H(0)

m—r0o0

7E(0)’ I(O)7 B(O)) - MOH >4,
W(S(0), H(0), E(0), 1(0), B(0)) € Xo. (3.23)

We prove this claim by contradiction. Suppose

limsup || P™(S(0), H(0), £(0),1(0), B(0)) — M|l < ¢ (3.24)

m—0o0

for some (S(0), H(0), £(0), 1(0), B(0)) € Xo. Without loss of generality, we as-

sume that
| P™(S(0), H(0), £(0),1(0), B(0)) — My|| <0, Vm >0.
Thus,

[[u(t, P™(5(0), H(0), £(0), 1(0), B(0))) — u(t, Mo)[| <€,
Vit e [0,w], m >0. (3.25)

Furthermore, for any t > 0, we can write t = t' +nw with t' € [0,w] and n being
the greatest integer less than or equal to t/w. Then we get
[[u(t, (S(0), H(0), £(0), 1(0), B(0))) — u(t, Mo)|| =
Ju(t, P™(5(0), H(0), £(0), 1(0), B(0))) — u(t’, Mo)|| <e,
foranyt > 0. Let (S(t), H(t), E(t),1(t), B(t)) = u(t, (S(0), H(0), £(0), 1(0), B(0))).
It follows that
A k A k
(p EKLT—:— l)ﬂ) —e< SW®) (u YT—:— l)c)

At < H1) < At
—_6 —_—
(u+7+k) (u+7+k)

?

+ €,

0< E(t) <e

0< I(t) <e



0< B(t) <e

Then we have

di—f) = BBSE) +YH@IE®) + L(#)] + Ba(8)[S(t) + v H ()] B(2)

—(o+nE()

A(N+k) —c L—e
[ﬁl(t)(E(t)"i_I(t))]{m +7<M(M+T+k) )}

Hapo) [ (AT )]

v

p(p+ 7+ k) p+T7+k)
—(o+p)E(t)
(s Alp+k+97)
= o+ WED + BOE + 10) + sl)] [ S
=B (E() + 1(t)) + B2(t) B(t))e(1 + 7).
Hence we obtain
E E
S| 1| 2PV —ek]| T (3.26)
B B
where F' —V is given by (3.16) and
(1 +7)6E) A +7)6i(t) (1+7)5a(t)
e-K=e€- 0 0 0 (3.27)

Bs(1) Bs(t) 0
Note that Ry > 1 if and only if p(Pr_y(w)) > 1. Thus, for e > 0 small enough

we have p(Pp_y_cx(w)) > 1. Using Lemma 3.1 and the comparison principle, we

immediately obtain

lim E(t) =oc0 ,lim I(t) =00 and lim B(t) = oo, (3.28)

t—o00 t—00 t—o00
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which is a contradiction.
Hence, My is acyclic in My, and P is uniformly persistent with respect to (X, 90Xo),

which implies the uniform persistence of the solutions to the original system [58].

Consequently, the Poincaré map P has a fired point (S(0), H(0), E(0),1(0), B(0) €

Xo with S(0), H(0) # 0. Thus, (5(0), H(0), E(0),1(0), B(0)) € Int(R4) and
(S(6), H(t), E(t), I(t), B(t)) = u(t, (5(0), H(0), E(0), 1(0), B(0)))

1S a positive w-periodic solution of the system.

3.3 Optimal control

Having analyzed the threshold dynamics, we now turn to an optimal control study of
our brucellosis model, with an aim of exploring effective prevention and intervention
strategies that could best balance the outcomes and costs of the control. To that
end, we will perform the optimal control study to both the autonomous model
(3.1) and the periodic model (3.2). We will then compare the results and highlight
the impact of seasonality on brucellosis control. Optimal control theory is used to
identify ways of producing maximum performance at a minimal cost under some
assumptions. Here we introduce two types of controls, which are represented as
functions of time and assigned reasonable upper and lower bounds. The goal of
the first control u,(t) is to strengthen the impact of vaccination, and the second
control uy(t) attempts to strengthen the effort on environmental decontamination.
Using the same variable and parameter names as in (3.1) and (3.2), the system of
differential equations describing our model with controls is

(

S(t) = A= BI[EW)+I1]S(t) = BB(1)S(t) — (u+ui(t)7)S(t) + kH(t),
H(t) = wi(t)rS(t) = yAlE() + I(t)]H(t) — vBH(8) B(t) — (u+ k)H(2),

{ E@t) = BlSE) +vHOE®) + ()] + 5o S(t) + yH(B)]B(t) — (0 + p) E(t),
[(ty = oB(t)— (n+ol(),

( B(t) = B3(E+1) = (d+uy(t)0)B,

(3.29)

The control set is defined as
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where U; and U; denote the upper bounds for the efforts of vaccination and de-
contamination, respectively. The bounds reflect practical limitation on the maxi-
mum rate of control that can be implemented in a given time period. If, however,
u1(t) = uz(t) = 1 for all ¢, then the model (3.29) is reduced to the original model
(3.1) or (3.2), with regular (i.e., minimum) controls.

Below we introduce an objective functional J to formulate the optimization
problem of interest, namely, that of identifying the most effective strategies over
the admissible set € of controls (u1(t),us(t)). The overall objective is to minimize
the numbers of exposed and infectious animals over a finite time interval [0, 7] at
minimal costs. The objective functional J is thus defined as
W
—u

5 )| dt.  (3.31)

T
Hun0,e) = [ B+ Carle) + ) +

The control efforts are assumed to be nonlinear, in order to prevent the bang-
bang solutions in the control. Moreover, a quadratic structure in the control has
mathematical advantages. We choose (as it is customary) to model the control
effects using a linear combination of quadratic terms, u?(t), and u3(¢), where the
coefficients C, Cy, Wy, Wy are weight constants. The weights, constant over the
prescribed time frame, are a measure of the relative costs of the interventions over

a finite time horizon. The optimal control problem hence becomes that we seek

optimal functions, (uj(t),u3(t)), such that
J(uy (), u3(t)) = min J (ui(t), ua(t)) (3.32)

subject to the state equations in system (3.29) with initial conditions.

3.3.1 Existence of the optimal control set

Theorem 3.3.1 Consider the control problem with system equations (3.29). There
exists an optimal control set (ui(t),us(t) € Q) such that:
S (i (t), u3(t)) = min J (ui(t), us(t))

To prove this theorem, the following conditions must be satisfied:

Proof 3 1. The class of all initial conditions must with an optimal control set
u1(t) and uq(t) in the admissible control set a long with each state equation

being satisfied is not empty.
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2. The admissible control Q) set is closed and convez.

3. The right-hand side of the state system is continuous, is bonded by a linear

function in the state and control variables.

4. The integrand of the objective functional is convex on €.

5. The integrand of the objective functional is bounded below by A; (|us ]2+\u2|2)§—

Asy, where Ay, Ay are positive constants and > 1.

In order to verify these conditions, we use a result by Lukes[60] to give the
existence of solutions of ODE’s (3.29) with bounded coefficients which gives condition
1. We note that our solutions are bounded. The control set is convex and closed
by definition, thus it satisfies condition 2. Since our state system is bilinear in
uy, ug, the right-hand side of (3.29) satisfies condition 3, using the boundedness of
the solutions. The integrand in the objective functional (3.31) C1E(t) + Col(t) +

Wrud(t) + 2u3(t) is clearly convex on Q. Moreover, there are Ay, Ay > 0 and 8 > 1
satisfying
W |44

because the state variable are bounded. We conclude that there exists an optimal

control pair.

3.3.2 Characterization of the optimal control problem

The existence of optimal control follows from standard results in optimal control
theory [61, 62]. The necessary conditions that optimal controls must satisfy are de-
rived using Pontryagin’s Maximum Principle [63]. Thus, system (3.29) is converted

into an equivalent problem, namely the problem of minimizing the Hamiltonian #(t)
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given by:

HE) = CE()+CoI(t) + %u?(t) PRLEN: T

2

+g [A — BIE®) + I(0)]S(t) — BaB(t)S() — (1 + wi (£)7)S(t) + ﬁH(t)}

+Ag

+Ag

[ (®7S(0) = BB + TOVH(E) —ABH ) BE) — (4 -+ ) H (1)

BS(E) + HOIE®) + 1(6)] + BIS() + YHOIBE) - (0 + p)E®)]

A [aE(t) — (u+ O)I(t)

+Ap

Ba(B(E) + 1(1)) = (d+ua()0) BH)|

Theorem 3.3.2 Given an optimal control pair (u3, uy) and solutions (S, H, E, I, B),

of the corresponding states system (3.29) there exist adjoint functions \g(t), Ay (t),
Ae(t), Ar(t) and Ap(t) [61] satisfying

ds(t)
dt

(1)
dt

dAg(t)

ISH

P
=
—~

~+~
N—

with transversa

As(t) (B1(E() + 1) + BB + i+ wn (07 ) = Anr(t(8)7

el (61(E(t) () + BQB(t)), (3.34)
A0 + Au(t) (VBB + 1(6)) + 8 B(E) + o+ r)
“As(t) (BB + 1) + BryB() ). (3.35)

—C1 4+ As(t)BrS(t) + Au(t)yBr H(t)
() (Bu(SW) +VH®) = (0 + ) = Ar(t)r = Ap(B),  (3.36)

—Co+ As(t)BS(1) + (DB H (1) = () (B1(S (1) + v H (1))

HAL(E) (1 +¢) = Ap(1) s, (3.37)
As(t)B25(8) + Au ()15 H (t) = Ap(t)(B2(S(1) +7H (1))
+Ap(t)(d + ua(t)d), (3.38)

lity conditions A\p(T) = 0 for P = S,H,E,I,B. Furthermore, the

optimal controls are characterized by the optimality conditions:

ui(t) =m

ax[1, min(uy(¢), U1)], us(t) = max[1, min(uy(t), Us)], (3.39)
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where

(As(t) — Au(t)7S(t) _ . Ap(t)dB(t)
5 i L pt) = T (3.40)

uy (t) =

Proof 4 The form of the adjoint equations and transversality conditions are stan-
dard results from Pontryagin’s maximum principle [63]. The adjoint principle can

be obtained as follows:

Bl — T A0 (AEO + 10) + BB + o+ 7)Aoy
() (BUE®) + 1) + BBW)), (3.41)
Dol — T~ As(tn 4 Aalt) (1B + 1(0) +25:B(6) + i+ 5)
A (0) (B (B + 1() + By B(D) ). (3.42)
Pell) _ T 0y MBS + Al AH ()
“As(t) (B(S) +1HD) = (o + 1)) = A(t)o = As(t)fh, (3.43)
A\ (1) oM
T = o = —Cat ABS) + Ar(OAH ) — Ae(t) (A (S + vH (1))
+Ar(t) (1 + ) = A(t) s (3.44)
Poll) O rg()8aS(0) + A (EyBaT(1) — AeB)((S(1) + 7H(D)
FAp(t)(d + us(t)5). (3.45)

The optimality equations were given by:

STH = Wiui(t) — As7S(t) + AgTH(t) =0 at uj
1
on = Whus(t) — ApdB(t) =0 at u}. (3.46)
(9u2
Hence,
As — A ApdB(t

By using the bounds for the control uy, we get

QsS04 < QsOAv@NTS@ <y,
1 — )

W1
up =1 1 if sl WSl < (3.48)
U1 Zf (As(t)— )%/Jl(t))TS > U
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In compact notation,

ui(t) = max[1, min(u,(¢),Uy)] (3.49)
where
Wi
By using the bounds for the control us, we get,
AB(%BU) if 1< )\B(V)V(Sz () < U,
wi=< 1 if 2P0 < (3.51)
U if % > U,
In compact notation,
us(t) = max[1, min(us(t), Us)], (3.52)
where
Ap(t)oB(t
Uy (t) = B(%/ ) (3.53)
2

Using (5.49) and (5.52), we have the following optimality system:

As(t)(t)
Ar(#)(t)

Ap(t)(t)

A~ BB(t) + I(1)]S() - B.B(1)S(1)
—(p 4 max[1, min(ay(¢), Uy)]7)S(t) + kH(t),
max][L, min(ay (t), U)]rS() — vBu[E(t) + I(#)]H(t) — 4B H()B(1)
—(u+ k)H(1).
BuS() + VHONE(®) + I(0)] + B2[S(0) + vHDO)B(E) — (0 + w)E(D),
CE(t) — (u+)I(t),
Ps(E + 1) — (d + max[1, min(us(t), Us)]d) B,
As(t) <61(E(t) + I(1)) + BoB(t) + p1 + max[1, min( (£), Ul)]f)
() max][1, min(a, (), U)]r — Ag(t) (61(E(t) () + ﬁgB(t)),
A0k + A (t) (VBB @) + 1(8)) + 82 B(E) + o+ r)
~Ap(t) (BA(E®) + 1(6) + 8y B(D) ).
—Cy + As(O)BS(E) + A (t)yBH ()
~X(t) (B1(S(8) + YH (D) = (0 + 1)) = Ai()o = As(t) s
—Co+ As(HAS () + M (DB H (L) = A() (B(S (1) +7H (1))
FAL(E) (1 + ) — Ap(t)Bs,
As(8)B2S(8) + Mg (D152 H (1) — Ap()(Ba(S(1) + vH(1))),

+Ap(t)(d + max[1, min(us(t), U2)]d),
(3.54)
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S(O) = S@,H(O) = H(),E(O) = E(),I(O) = I(),B(O) = B() G/ﬂd )\p(T) =0 fOT
P=SHE,I,B.

3.3.3 Uniqueness of the optimality system

In this section, we prove the uniqueness of the solution of the optimality system
(3.54)

Lemma 3.2 The function u*(s) = max[min(s,a), b)| is Lipschitz continuous in s,

where
a < b are some fixed positive constants.

Theorem 3.3.3 ForT sufficiently small, bounded solutions to the optimality system

are unique.

Proof 5 Suppose (S, H,E,I, B, s, A\, A\, A1, Ag) and

(S,H,E,I,B, g, \tz, A\, A1, \g) are two different solutions of an optimality system
(3.54). Let S = eMNp;, H = eMpy, E = eMps, [ = eMpy, B = eMps, Ag = e Mgy, Ay =
e Mgy, A\p = e Mgs, A\ = e Mgy, A\ = e Mgy similarly S = eNp, H = eMpy, E =
Mpg, I = eMpy, B = eMps, Ag = e M@y, Ag = e Mo, Ap = e M@, A = e My, and

g = e M5, where A > 0 is to be chosen. Further we let

ui(t) = max|[1, min(w, Uy)], ws(t) = max][l, min(p5q557 Us)]
W1 WQ
and
uy(t) = max|[1, min(w, Uy)], u5(t) = max]l, min(pSQ55, Us)]
W1 WZ
* — T — = — =
uy — U] < Wl\(]?lch —p1g2) — (M@ — P12))| (3.55)
g — Y| <~ |psds — Pl (3.56)
2 A D545 — P55 .

Substitute S = ep; into the first ODE of (5.5/), the state equation becomes

P14+ Ap1 = Ae™ — BieM(pips + pipa) — BoeMpips — upr — wiTpy + kpa (3.57)
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Also substituting A\g = e~ Mq in the equation d;‘—ts, the adjoint equation becomes

G+ A = BieM(psq + paqr) + BoeMpsqr + pqy + uiTq — uiTgo
—B1eM (p3qs + pags) — BaeMpsgs (3.58)

Now we subtract the equations for S and S, \g and \sg. Then multiplying each
equation by appropriate difference of functions (p1 — p1) and (g1 — q1) respectively

and integrating from 0 to T we obtain

T T

%(pl — 1)+ )\/0 (p1 — p1)2dt = —/31/0 M [(p1ps + pipa)](p1 — Pr1)dt
T

+51 /0 eM[(p1p3 + prpa)](pr — pr)dt

T
—@2/0 (P1ps — P1Ps)(p1 — p1)dt

T
—p / (p1 — pr)’dt
0
T
_T/ (uip1 — uip1)(p1 — pr)dt+
0

"f/o (P2 — p2)(p1 — p1)dt. (3.59)

Following the same procedure for the remaining state variables and adjoint vari-

ables, the following equations are obtained:

1 T T
5(192 — D)’ + )\/ (p2 — Po)’dt = —751/ M (paps + papa))(pa — Pa)dt
0 0
T
+7v64 / M [(Paps + Papa)](p2 — P2)dt
0

T
—’Vﬂz/ (p2ps — DaDs)(p2 — P2)dt
0

~(utr) / (92 — )2t

T
+7 / (uip1 — @ip1)(p2 — p2)dt  (3.60)
0

1 T T
5(]93 — P3)* + )\/0 (ps — p3)’dt = ﬂl/o eM[(p1 +vp2) (ps + pa)](ps — P3)dt
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T
— b1 /0 eM((pr + vP2) (D3 + Pa)](ps — P3)dt
T
+03; /0 eM[(p1ps + vpaps)](ps — Ps)dt
T
— B2 /0 eM[(p1ps + YD2ps)] (s — P3)dt

—(Uﬂb)/0 (ps — ps)dt (3.61)

1 T T
5(194 — pa) + )\/ (ps — pa)?dt = U/ (p3 — D3)(pa — pa)dt
0 0

—(n+c) /0 (ps —pa)?dt  (3.62)

%(m — Ps)* + /\/0 (ps — P5)?dt = 53/0 [(p3 + pa) — (P3 + Pa)](ps — P5)dt
_d/o (ps — Ps)?dt

T
—0 / (usps — usps) (ps — Ps )dt (3.63)
0

We illustrate one case of the estimate by using |ui — ui| estimate. They involve

separating terms that involve squares and several multiplied terms.

Lot [ < B [ e o -l
22?1 D1 ; P1— D1 = 1 ; € [\P1P3 T P1P4 P1— D1
T
8, / (155 + )| (o1 — o)l dt
0
T
+52/0 |(p1ps — p1ps)||(p1 — p1)|dt

T
o / (p1 — p)?dt
0

T
o7 [ Iutmn — aipllon - polat
0
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T
T / (2 — 72) | (p1 — )t
0
T
< Cl/ (lp1 — p1* + |p2 — P2 + |ps — D5
0
+lg — §1|2 + |q2 — Q2|2]dt
T
+02€/\t/ [lpr — p1l? + |ps — p3/”
0

+|ps — Pal?]dt, (3.64)

where the constants C and Cy depend on the coefficients and the bounds on state
and adjoint variables. This shows that the uniqueness and the integral equations are
combined, this combination produces

Son = PT) + 32 — P2 (T) + 5 (s — B(T) + 50— BT

30070+ 5= P0) + [ 100~ n =5+ (- )
+(pa = Pa) + (5 = 55)* + (@ — @) + (2 — @)

+ (a3 = @)° + (a0 — @)° + (a5 — 35)°]dt
< (A= C1 = Coe™) /OT[(pl =01+ (92 = §2)* + (93 — P3)° + (P4 — Da)?
+(ps — Ps)?]dt

+ /0 (g — @) + (2 — @)+ (a3 — @) + (@1 — @)* + (65 — )]t (3.65)

Thus from the above equation, using non-negativity of the variable expressions

we conclude that
T
< (A= Gy — CoePT) / 5y = 51 + (92— 52)? + (s — ) + (ps — Pa)? + (ps — s)?
0
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(@ — @)+ (g2 — G@)° + (a3 — @)° + (0 — @)* + (65 — 3)*Jdt <0 (3.66)

where C’l, C’g depend on the coefficients and the bounds on py, p2, P3, P4, Ps, G152, 43, G4,
gs. If we choose \ such that A\ > Cy1 +Cy and T < (%) ln[%], then p1 = p1,ps =
P2,P3 = D3,pa = DasPs = D5, 1 = Q1,42 = 2,43 = 3,94 = qu,q5s = 5. Hence the

solution is unique for small time.

3.4 Numerical results

In the formulation above, the parameters (31, 5> and 3 can be either constants, for
the autonomous model (3.1), or periodic functions in the form of equation (3.3), for
the periodic model (3.2). For each case, the state equations, adjoint equations and
optimality conditions constitute an optimal control problem, which is then solved
numerically. We use the same values of model parameters and initial conditions
from [30], listed here in Table 3.1. For simplicity, in our numerical simulation we
set €} = Cy = 1 so that the minimization of the exposed animal population has the
same importance/weight as that of the infectious animal population. As a result,
the values of Wy and W5 represent the relative costs of their respective controls. We
further assume that vaccination incurs higher costs than the cost of decontamination,
so that Wy > Ws.

For ease of comparison, we will refer to the original models (3.1) and (3.2) as
with regular control, where, essentially, both u; and us are fixed at the minimum
uy, = ug = 1 for all time. We will then compare the results from the optimal control

and the regular control in our numerical simulation.
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Figure 3.3: Control profiles for the autonomous model (3.1).
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Figure 3.4: Control profiles for the periodic model (3.2).
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Figure 3.5: The concentration of brucella for the autonomous model (3.1).
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Figure 3.6: The concentration of brucella for the periodic model (3.2).
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Figure 3.8: The numbers of exposed and infectious animals for the autonomous

model (3.1): (a) exposed population; (b) infectious population.
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Figure 3.11: The concentration of brucella for the periodic model (3.2) with high

costs.
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Figure 3.12: The number of exposed animals for the periodic model (3.2) with high

costs.

Let us first consider a case with the cost parameters W; = 1000 and Wy = 10.
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Figure 3.3 shows the optimal control profiles for u;(t) and us(t) for the autonomous
model (3.1). We clearly observe that u; starts from the maximum (U; = 20) and
stays at that level for about 2 years, before it gradually decreases to the minimum,
u; = 1. The vaccination rate would remain at the minimum for all ¢ > 22 years.
The profile of uy shows a similar pattern, except that uy stays at the maximum
(Uy = 3) for a longer period (about 25 years), due to the lower costs related to the
environmental decontamination.

Figure 3.4 shows the optimal control profiles for the time-periodic model (3.2),
with the same values for the cost parameters. As we can observe, u; also starts from
the maximum initially, but only for a very short time, followed by a decrease to some
lower level, and then it goes back to the maximum again after approximately 1 year.
This pattern continues for the second year, third year, and so on, corresponding to
the annual periodic oscillation of the contact rates (see equation 3.3). The mean of
these oscillations, however, gradually decreases, accompanied by reduced amplitudes
of the oscillations. After about 24 years, the oscillations settle at the minimum
u; = 1. The profile of uy stays at its maximum (Uy = 3) for the first 5 years.
Then the oscillations kick in and continue until ¢ = 35 years, when the oscillations
stabilize at the minimum wu, = 1.

Figures 3.5 and 3.6 show the concentration of brucella as a function of time for
the autonomous model (3.1) and the periodic model (3.2), respectively. Particularly,
from Figure 3.6 we see that with regular control (i.e., the original model 3.2), the
bacterial concentration oscillates from the beginning with the amplitude increasing
with time, and quickly approaches a steady periodic oscillation with a maximum
close to 15 x 10%. This is a demonstration of the persistence result in Theorem
3.2.2, where it is proven that there exists a positive periodic solution when Rg > 1.
(For this case, we find Ry =~ 1.93 through numerical evaluation of equation 3.13).
In contrast, with the optimal control implemented, the concentration of brucella
decreases over time, and the initial oscillation decays away, eventually approaching
a value very close to 0, at which time both controls u; and uy would stay at the
minimum (see Figure 3.4). Meanwhile, Figure 3.7 depicts the numbers of exposed
and infectious animals over time with and without the optimal control. The results

clearly show that the optimal control strategy significantly reduces the exposed and
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infectious animal populations (compared to the case with regular control), to a level
close to 0 when ¢t > 20 years. Similar patterns are observed for the autonomous
model (see Figure 3.8), but without the oscillatory behaviors of the curves in both
cases.

To explore the impact of the costs on the implementation of control strategies,
we have also varied the values of the cost parameters W; and W5. Suppose that
the vaccination and decontamination can be achieved with significantly lower costs,
say W7 = 10 and Wy = 1. Figure 3.9 shows the optimal control profiles for wu;(¢)
and uy(t) in this hypothetical case for the periodic model. We see that, again, both
u; and wuy start from their maximums, and they stay at the maximum strength
for much longer periods of time than the previous case (compare to Figure 3.4),
due to the reduced costs of the controls. Afterwards both w; and wu, oscillate with
time and eventually settle at the minimum u; = uy, = 1. In contrast, consider
that there are high costs associated with these controls, and assume that W; = 10°
and Wy = 1000. The optimal control profiles for w;(t) and wus(t) in this case are
presented in Figure 3.10. As is shown, the very high value of W; forces u; to stay
at the minimum u; = 1 for almost all the time. The profile of uy still starts from
its maximum, due to the relatively lower value of W5 . It, however, quickly evolves
into a yearly oscillation which continues for a long period (approximately 31 years),
partly to compensate the effect that the control of u; is minimum for all the time.
The profile of us finally decays to the minimal state us = 1. Figures 3.11 and 3.12
show the concentration of brucella and the number of exposed animals in this case,
where we clearly observe that even with the optimal control, both the bacterial
concentration and the exposed animal population keep oscillating (though, at much
lower levels than their regular control counterparts) all the time without approaching
a minimum value, a result different from the cases with low costs of controls. In all
these scenarios, the optimal control maintains a “best” balance between the costs
and the outcomes (i.e., reducing the exposed and infectious animal populations).
Thus, higher costs would yield a relatively weaker, and perhaps insufficient, control

strategy, as illustrated by the last case.
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3.5 Conclusion and discussion

We have conducted an analysis for the impacts of seasonality on blucellosis trans-
mission. Our mathematical model is an extension of a previous autonomous model
[30] into time-periodic environments. We analyzed the basic reproduction number,
Ry, associated with our periodic blucellosis model, and established threshold results
characterized by Ry regarding the disease dynamics: when Ry < 1, the disease-free
equilibrium is globally asymptotically stable; when Ry > 1, the system is uniformly
persistent, and there exists a positive periodic solution.

We have performed an optimal control study by examining two types of controls:
animal vaccination and environmental decontamination. We conducted analysis and
simulation for both the autonomous and periodic brucellosis models. Our optimal
control aims to minimize the numbers of the exposed and infectious animals, mean-
while minimize the associated costs. Our results show that, in all the scenarios,
the optimal control can greatly reduce the numbers of the exposed and infectious
animals and keep these populations at low levels, a significantly better outcome
compared to that with regular control (i.e., with minimal effort u; = uy = 1). We
observe that the optimal control strategies strongly depend on the cost parameters.
With low costs, both the vaccination and decontamination will be carried out at
or close to their maximum strength for a sufficiently long period of time, so as to
minimize the disease exposure and infection. With high costs, however, the controls
have to be implemented with reduced, or even minimum, strength, to achieve an
optimal balance between the costs and effects of the control.

Our analysis and results throughout the chapter highlight the difference between
the autonomous and periodic models. With constant parameters, the autonomous
model is not able to reflect the seasonal variation, which is an important factor
in brucellosis dynamics. Extending the autonomous model to time-periodic envi-
ronments makes the model more realistic, but at the same time adding significant
challenges to its mathematical analysis. We have established the uniform persis-
tence of the disease dynamics and the existence of a nontrivial periodic solution
when Ry > 1. However, whether the periodic solution is unique and what is the
stability property, remains unresolved in the present work, and we plan to pursue

these tasks in our future research. In addition, our optimal control simulation to the
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periodic model also produces quite different results from those with the autonomous
model. Particularly, the optimal control profiles for u; and us both exhibit annual
oscillations, a pattern consistent with the seasonal variation of the model param-
eters, as well as a practical means to reduce the costs of the control (in contrast
to constantly staying at the maximum strength). Finally, depending on the cost
parameters associated with the control, the optimal profiles of u; and wus exhibit
different lengths and amplitudes of oscillations, before eventually settling at their
minimum levels. Consequently, the concentration of brucella and the numbers of
exposed and infectious animals over time either approach a minimal state very close
to 0, or oscillate at a level above 0. These results could provide useful guidelines
to animal production and public health administration in designing effective control
strategies against brucellosis.

Finally, we acknowledge that modeling the transmission and spread of infectious
diseases, particularly brucellosis, would be of greater importance to public health
and agriculture with the aid of realistic infection data. Unfortunately, the scarcity
of seasonal brucellosis data at present limits our ability to calibrate some important
seasonally varied parameters in our periodic model. We expect to improve this study

in our future work with the availability of such data.

52



Chapter 4

On the dynamics of brucellosis
infection in bison population with

vertical transmission and culling

4.1 Introduction

Brucellosis is a zoonotic bacterial infection that affects domesticated animals, wildlife
and humans. Animals acquire the infection mainly through direct contact with
infected animals or indirectly from the environment containing large quantities of
bacteria discharged by infected individuals [64], whereas in human, common routes
of infection include direct inoculation through cuts and abrasions in the skin or
inhalation of infectious aerosols and ingestion of infectious unpasteurized milk or
other dairy products [38]. Human to human transmission is extremely rare [64, 38].

Although, brucellosis has been effectively controlled in many developed countries
the disease remains common in Mediterranean areas, the south and the center of
America, Africa, Asia, Arab peninsula, Indian subcontinent and the Middle East
[65]. Currently more than 500,000 new cases of the disease are reported annually
[42], with incidence as high as 200 cases per 100,000 of the population in endemic
countries [43].

Mathematical modeling, analysis and simulation for infectious diseases have

proved to be an essential guiding tool that could give a sound direction to policy
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makers and public health administration on how to effectively prevent and control
brucellosis transmission. In particular, Abatih et al. [38] proposed the following set

of differential equations to model the transmission dynamics of brucellosis:

B1S

B = (a-— )[S+R+[p(1—e)]—m5+5R—T,
a - = %%— pla — NI — (m+a+v)1, (4.1)
‘% = vl —(m+ )R,

where S(t), I(t) and R(t) are the numbers of the susceptible, infectious and
recovered bison population at time ¢, respectively. The total bison population at
time ¢ is N(t) = S(t) + I(t) + R(t). Model parameter a denotes birth rate, ¢ is
the density dependent reduction in births, m is the natural mortality rate and it is
assumed to be constant in all epidemiological classes, « is the disease-related death
rate, 0 is the rate of lost of resistance, v is the recovery rate, 5 is the transmission
rate, e is the proportion of vertical transmission rate and p is the reduction of
fecundity in infectious bison. Thus, pe is the reduced birth rate. Here, the bison
enter the susceptible class through birth from the susceptible and recovered class
at the net per capita birth rate of (a — ¢N) and from the infectious class at the
overall per capita birth rate of p(1 —e)(a — ¢ N). The susceptible population is also
augmented through lost of immunity by bison already in the recovered class at the
per capita rate of 9.

Although, the contribution of this study and several other studies (see, for exam-
ple [5, 30, 32, 31, 66, 67]) cannot be underestimated, there are some few questions

that remain unanswered. Such questions include:

(i) To what extent does animals in chronic state influence the spread and control

of disease?
(il) What is the influence of seasonal variations on brucellosis dynamics?

(iii) To what extent can optimal culling strategies be effective on minimizing disease

burden?

First, effective control of any disease depends as much on a thorough under-
standing of all the epidemiological stages an infected human /animal will go through.

In both human and animals, brucellosis ecology can be segmented as: acute (0-2
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months), sub-acute (3-12 months) and chronic (> 12 months) [68]. For animals in
sub-acute stage, a small fraction may progress to become chronic while some may
recover from the infection [68]. Further, it is worth noting that animals in chronic
state show no clinical signs of the disease and majority of these animals would be
non-pregnant animals [69]. Since chronically infected animals transmit the infection
it is therefore essential to gain a better and more comprehensive understanding of
effective ways to control the disease.

Second, like many other infectious diseases, brucellosis incidence exhibits strong
seasonal fluctuations in temperate regions world over [27, 28, 70, 71]. Seasonal
variations in environmental and climatic conditions have an influence on animal
behavior which in-turn can be attributed to seasonality in brucellosis dynamics. For
example, in Botswana incidences of brucellosis have been observed to be high during
dry seasons compared to wet seasons. The seasonality of brucellosis in Botswana has
been attributed to the fact that during the dry seasons a large population of animals
will be concentrated along river-fronts whereas during the wet seasons, animals are
often spread out across the landscape [70]. The seasonality of brucellosis in European
countries has also be reported by other researchers who observed that > 70% of
brucellosis cases occur from March to June, with the peak observed from May to
June [71]. In addition, prior studies have shown that the survival of Brucella in the
environment depends critically on humidity, temperature and exposure to UV light
and for an ideal environment the bacteria can last for 135 days [27]. Such seasonal
variations need to be incorporated in models that aim to inform animal managers
and policy makers efficiency and effective ways to control the disease.

Third, since prevalence of brucellosis is high in developing nations where re-
sources for public health are limited, it is crucial to devise control strategies that
are cost effective, i.e. that allow to minimize disease burden at minimal cost. In
practice there is need to understand trade-off between the cost (or the constraints)
of implementing the strategies and the potential or expected economic losses that
these control measures should avoid. In practice it is impractical, if not unethical
to conduct a series of control-effort experiments among animals so as to determine
a specific culling strategy that performs better, hence on can utilise epidemiological

models to describe dynamics in the framework of the optimal control theory [63].

95



The aim of the present work is to formulate a mathematical model for brucel-
losis transmission and control that suits developing countries, where the disease is
endemic and animal vaccination is an expensive intervention strategy. Our model
can also be utilized to understand brucellosis transmission dynamics among wildlife,
since prior studies suggest that vaccination of wildlife is impractical [72]. To that

end, we will extend the model for brucellosis transmission proposed in [38] to include:
(i) an additional epidemiological class that account for animals in chronic state,
(ii) seasonal variation on disease transmission pathway,

(iii) time dependent culling effort :-precisely, we will investigate the effects of
optimal control strategies when culling is the only viable control strategy.
Although brucellosis can be controlled by either vaccination or culling, in
developing nations vaccines are often expensive or unavailable [72, 73] leav-
ing culling as the only viable control strategy. In addition, the “test-and-
slaughter” method which can be used to detect animals in chronic state has
proved to be an expensive intervention strategy for brucellosis control in de-
veloping countries [73]. As a consequence, culling of clinically infected animals

remains the only viable disease intervention strategy for developing countries.

The remainder of the chapter is organized as follows. In Section 4.2, we introduce
the ODE bison-brucellosis model that incorporates chronic brucellosis. We then
conduct a thorough epidemic and endemic analysis of the model. In Section 4.3,
we present a non-autonomous bison-brucellosis model that incorporates seasonal
variations. We examine the threshold value, and study the global stability of the
disease-free periodic solution and the uniform persistence of the system. In Section
4.4, we investigate the influence of culling control on minimizing the spread of the
disease, through both mathematical analysis and numerical simulation. We conclude

the chapter in Section 4.5 with a brief discussion.
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4.2 Brucellosis model without seasonal variations

4.2.1 Model construction

Motivated by model (4.1), we propose the following autonomous dynamical system

to account for brucellosis transmission:

;

\

& = (a—¢N)[S+R+(I+A)p(1—€)]—m5+5R_5(]+—NEA)S’
a WH,O(Q_M)(HA)—(m+a+v+v)f, (4.2)

% = pvl — (m+ a)A,

i = (1—pl—(m+0)R.

All model parameters are non-negative, and they retain the same definitions as

in model (4.1). On formulating model (4.2) the following additional assumptions

were made:

Based on the ecological information about brucellosis, an animal can be re-
garded to be in chronic state if it has been infected with the disease for more
than 12 months [68], thus our model assumes that all newborn calves are either
susceptible or clinically infected, since the gestation period in animals is less

than 12 months.

Infected bison display clinical signs of the disease for v=! days after which a
fraction p move to chronic state (modelled by A(t)) and the complementary

(1 — p) recover from the infection.

We assume that animals in chronic state have less bacteria load than those
displaying clinical signs of the disease, hence parameter ¢ accounts for the
reduction of infectivity of animals in chronic state in comparison to animals

in the symptomatic class.

Since brucellosis is endemic in countries with limited resources, only animals

displaying clinical signs of the disease are culled at constant rate 7.
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Table 4.1: Parameters and values

Symbol Definition Units  Value Source

P Proportion of symptomatic animals that become chronic unit-less 0.5 Assumed
p Reduction of fecundity in infectious bison unit-less 0.5 [38]

10 Density dependent reduction in birth year—!  0.00004 [38]

e Proportion of vertical transmission unit-less 0.9 [38]

m Per capita disease free death rate year— ! 0.07 [38]

6] Disease transmission rate year—! 0.05 —10[38]

) Rate of loss of resistance year—! 0.2 [38]

a Disease related death rate year—t 0.05 [38]

€ Modification factor unitless 0.08 Assumed
a Recruitment rate year—! (.82 [38]

y Culling rate year™! 0.4 [38]

v Recovery rate year—t 0.5 [38]

S(0)  Initial number of susceptible animals 4050  [38]

I(0)  Initial infected animals animals 450 [38]

A(0)  Initial carrier animals animals 0 [38]

R(0) Initial recovered animals animals 0 [38]

It can easily be verified that the domain of biological interest
0 = {(S,R,I,A)eRi:S>O, R>0 1>0, A>0 and
S() + R(t) + I(t) + At) < 2 ;m} (4.3)

is positively invariant and attracting with respect to model (4.2).

4.2.2 The reproduction number

The corresponding disease-free equilibrium (DFE) of system (4.2) is given by

£°: (S° RO, 1°, A) = (“ — m,o,o,o> ,

¢

and it exists provided a > m. The reproduction number R is a threshold param-

eter for the infectious disease and it is essential on determining the spread of the

disease. According to the next generation matrix developed by van den Driessche

and Watmough [50], we define the basic reproduction number of system (4.2) as
epm(py +m + a) Blepr +m + )

Ro = (m+a)(m+a+fy+,/)+(m+a)(m+a+7+y), (4.4)
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eom(py +m + a) Blepy +m + a)

(m+a2(m+a+’y+z/) (m+a)(m+a+y+v)
ber of new infections generated through vertical transmission and direct contact,

where

, represents the num-

respectively.

4.2.3 Equilibria

Regarding the stability of the disease-free equilibrium £° and endemic equilibrium

E*, we have the following Theorem.

Theorem 4.2.1
(i) If Ry < 1, the DFE is globally asymptotically stable.

(i) If Ro > 1, system (4.2) has a unique endemic equilibrium E*, which is globally
asymptotically stable.

Proof of Theorem 4.2.1 (i)

Proof 6 In what follows, we will show that if Rg < 1 then system (4.2) has a
disease-free equilibrium which is globally asymptotically stable (Theorem J.2.1 (i).)

Consider the Lyapunov functional

Lit) = {(ﬁ+6pm)kz+(ﬁe+6pm)pq 1) + [M] A1)

4.5
k1 ko ko (4:5)

where ki = (m+a+v+v), ks = (m+ «). Taking the derivative of L(t) with
respect to t along the solutions of (4.2) gives

L(t) _ {(5 + GPM)k2k-|1-k(256 + epm)py} {6([ —|]—veA)S

| - s+ ea)

n {(B + epm)ky + (Be + epm)pv

s } epla—oN)(I + A) —epm(I + A),

[(5 + epm)ky + (Be +epm)pr S

o ¥ 11 B(I + €A)

n [(B + epm)ky + (Be + epm)pr (a — ¢N)
m

—1 I+ A
— ]wm(+ )

IN

{(5 + epm)ka + (Be + epm)pr

vy 1} [ﬁ([ +€eA) +epm(l + A)]
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= [Ro—1]|B(I + €A) + epm(I + A)]. (4.6)

Therefore, L < 0 as long as Ro < 1. When Ro < 1, L = 0 yields I = A = 0.
Then it can be easily observed from the system (4.2) that as t — oo, S — S° =
N = a_qu and R = 0. Hence, the only invariant set when L = 0 is the singleton
&% = (5°,0,0,0). It follows from Lasalle’s Invariance Principle [46] that every

solution of the system (4.2), with initial conditions in S, approaches E° as t — oc.

Thus, the DFE is a global attractor.

Proof of Theorem 4.2.1 (ii)

Proof 7 We will begin by demonstrating that system (4.2) admits a unique endemic
equilibrium point whenever Ry > 1. One can reduce system (/.2) into three dimen-

sional system by setting R=N —S — 1 — A to get

(45— (a—@N)[N + (p(1 —e) = 1)(I + A)] = mS + 6(N — S — [ — A)
B +€A)S

N

| Y = pul — (m+a)A

Y

(4.7)
The endemic equilibrium of the system (4.7) is determined by equations

( (a0 — ON*)N* + (p(1 — €) — 1)(I* + A*)] — mS* + §(N* — §* — I* — A¥)

I*+eA*)S*
_B( ]\;* )8 0,

BI+eA)S" 4 oo — GN*)(I* + A*) — (m+ a+ 7 + )] =0,
| pol* = (m+ a)A" =0.

(4.8)
From the last equation of (4.8) we have
Po MY e b A AT, and T4 A = MyA” (4.9)
pu
with
Ml:—m—i—a—i-pU, and MQZ—m+a+€pU- (4.10)
pu pu

It follows from the first equations in (4.8) that

(a — dN*)N* + (a — ¢N*)pM; A* + SN*

S*o= 3
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—<CL — ng*)peMlA* — (CL — ¢N*)M1A* — 6M1A*
(m+ 6 + & MyA¥)

, (4.11)

for A* £ 0, substituting equation (4.9) into the second equation in (/.8) yields

_ kikyN* —ep(a — ¢N*)MypvN*
B Mopv '

substituting (4.11) into (4.12) gives

S (4.12)

(a — dN*)N* + (a — ¢N*)pMA* — (a — ¢N*)peM; A*
(m+ 6 + 2 My A¥)
L —(a— ON")MA" + IN* — 6MA" | epla— oN)MiN”

F(A%) =

(m+ 6+ 5 My A*) BM,
k1ko N*
_ — 4.13
BMapv ( )
Direct calculation for A* > 0 shows
F,(A*) _ —ho(l — p) — [hope + hl + hg + hg]’ (414)
(m+ 6 + 2= My A*)?

with
h(): (G_(bN)(m‘i‘(;)Ml, hl :5(m+5)M1, hQ :ﬁ(a—¢N*)M2, hgzﬁ(sMg

Since p € [0,1] it implies that F'(A) < 0. Therefore the function F(A) is
monotonic decreasing for A > 0, and it follows that

epliN* klng* . N*klkz
BM; BMapv puBMy

Therefore, by monotonicity of a function F(A), there exists a unique positive root

F(0) = N*+

(Ro — 1). (4.15)

in the interval (0, %) when Ry > 1 and there is no positive root in the interval
(0, %) when Ry < 1. Thus model (4.2) has a unique endemic equilibrium E* =
(S*, I*, A").

In what follows, we prove the second part of Theorem /.2.1(ii), i.e, whenever
Ro > 1, then the unique endemic equilibrium point £* of system (}.2) is globally
asymptotically stable. To achieve this objective we will utilize the geometric approach
originally proposed by Li and Muldowney [74]. For completeness, we first present
the following result from [7]].

61



Lemma 4.1 Consider a dynamical system % = f(X), where f : D — R" is a
C! function and D C R™ is a simply connected domain. Assume that there exists a
compact absorbing set K C D and the system has a unique equilibrium point X* in

D . Then X* is globally asymptotically stable in D if ¢o < 0, where

¢o = limsup sup l/0 m(Q(X (s, Xo))) ds. (4.16)

t—oo XoeK
In equation (4.16), Q is a matriz-valued function defined as
Q=PP ' +PJAP,

where P(X) is a (3) x (3) matriz-valued C* function in D, Py is the derivative
of P (entry-wise) along the direction of f, and J? is the second additive compound
matriz of the Jacobian J(X) = Df(X). Meanwhile, m(Q) is the Lozinskii measure
of QQ with respect to a matriz norm; i.e.,
. I+hQ] -1
m(@) = tm FHIAZL
where 1 represents the identity matrix.

Now we proceed to investigate the global stability of the endemic equilibrium point

E*. It is easy to show that the Jacobian matriz of system (4.7) at E* is

di1 di2 —(a—¢N*)—|—(a—¢N*)p(1—e)—(5—%

J = ﬁ(l*JfA*) dao ﬁ;fk*—kep(a—gzﬁ]\f*) , (417)
0 pv d33
with
dll — _m_é_W’
d12 = —(a—¢N*)+(a—¢N*)P(1_6)
pS*
—6— =,
BS* .
i = i Tepla—oNT) —(m+aty+tv), dg=—(m+a)

and the associated second compound matriz is

B epla—0N) (=N = (= oN)p(1 = o) + 5+ %

JA = |p X2 —(a— ¢N*) + (a— ¢N*)p(1 —e) — 6 — &2 |,
0 /3(1;[‘*614 ) X3
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with

BS* B(I* + eAY)

X1 = _2m_a_7—5_l*v+ii(a_¢N*)+ N N+ )
X, = —2m—a—5—6(;*6>,
Xs = —2m—2a—~vy—v+ e +epla — ¢N™). (4.18)
Set, H = diag [1, %, i—} , then
I A1 A
1 g lg 2 b el
HpH —dmg[O,Fk T A

and HTEH-! js

X1 (5 tepla—o¢N*) (a+EE +5—¢N* — (1—e)pla—¢N*))

Loy X2 —a— 55 54 (1—e)pla—¢N*)+oN* | . (4.19)
0 A X3

The matric Q = HpH™' + HTBIH=Y can be written in the block form as follows:

Q= Q1 Qr2
Q21 Qa2,
in which
Qi = —(2m+a+7+5+v)+ep(a—¢N*)+6\7*—%7
o A* 665* * 665* * * N *
@ = [ (T +enta=onn)) (G + epta oN") - N + pla— o1")
A*
—a=a) 7]
I* . . *
va Xz—l—%—% —a—%—é—k(l—e)p(a—(bN*)—l-qﬁN*
Q21 = y Qo=
0 B Xs+ 74

We now define the vector norm R? as

|(y17y2ay3)| = maX{|y1|, |yQ|a |y3|}7

for any vector (y1,y2,y3) € R3. Let n denote the Lozinskii measure with respect to this norm. By

direct calculation one gets
1(Q) < sup{g1, g2}

with
g1 = m(Qu)+ Q2]
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g2 = Q|+ m(Q22),

where Q12| and |Q21| are matriz norms with respect to Ly vector norm, and 11 denotes the

Lozinskii measure with respect to the L1 norm. Specifically

BS*  BI* +eA”)

m@u) = —@m+otaty+d)+ N* N+ +epla — pN™),
I A
Mm(Qa) = —(2m+a+§)+F,E

+sup{0,p(a—¢N*)+¢N*—(a+v—|—a+'y)}.

Therefore,
S* I* +eA*
g1 = —(2m+v—|—a+fy—|—6)—|—ﬂN* —%—l—ep(a—d)N*)
* A*
+ [ﬂ;ﬁ: +epla — ng*)] i
From the second equation of (4.7) we have
BeS* LA T s .
[ o epla— oNY)| o= = B —epla— oN) + (m+ oty +0).
Thus,
I BI* +eA*) T
=2 —mto) - LD < L g g)
Similarly
I I A . .
g2 :pvﬁ—2m—a—5+ﬁ —E—l-sup{O,p(a—ng )+ ¢N —(a+v+o¢+7)},

Using the relation of the last equation in (4.7)

R S
A*_pUA* m+ ),

we have

9= 2 — (m+8) +sup{0, pla — GN*) + 6N* — (a+ v+ a4 )} < o — (m+0).

Since N* < a;m one can easily deduce that p(a— dN*)+dN* — (a+v+a+7) < 0. Therefore

WQ) < 7~ (m+9).
InI(t)—InI(0) (m+9)
t ST

Since 0 < I(t) < N(t), there exists T > 0 such that whent > T,

As a result

HRCE| Hj—mw)

which implies that go < —w < 0. This completes the proof.

. InI(t) —1InlI(0)

d t 2
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Figure 4.1: Phase portrait depicting the global stability of (a) the disease-free equilibrium
&Y which exists for Rg < 1, here we set 8 = 0.28 to get Ry = 0.41548 (b) the endemic
equilibrium point which exists whenever Ry > 1, note that we set § = 0.8 to obtain
Ro = 1.0103. The numerical results depicted in (a) supports that analytical findings in
Theorem 4.2.1 (i), that whenever Ry < 1 then system (4.2) has a globally asymptotically
stable disease-free equilibrium. Similarly, plot (b) demonstrate the analytical predictions
in Theorem 4.2.1 (ii) that if Rg > 1, system (4.2) has a unique endemic equilibrium &£*,
which is globally asymptotically stable.

Using the parameter values in Table 4.1, we conduct some numerical simulations in
order to verify Theorem 4.2.1 (see, Figure 4.1). In Figure 4.1(a) we set § = 0.28 to
obtain Ry = 0.41548 and varied the initial conditions. The simulation results clearly
show that when Ry < 1, system (4.2) has a globally stable disease-free equilibrium
with S ~ 1.85 x 10* and I = 0. This result is in agreement with the analytical
predictions in Theorem 4.2.1 (i).

In Figure 4.1 (b), we set § = 1.08 to get Ry = 1.3305 and varied the initial
conditions. The numerical results demonstrate that when Ry > 1 all solutions
for system (4.2) in the plane I vs S converge to endemic endemic equilibrium with
S =~ 8870.715 and I ~ 2211.848. This result support the analytical result of Theorem

4.2.1 (ii) which states that whenever Ry > 1, system (4.2) admits a unique endemic

equilibrium £*; which is globally asymptotically stable.
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4.3 Brucellosis model with seasonal variations

4.3.1 Model construction

As highlighted earlier, incidences of brucellosis in both developed and develop-
ing countries exhibit seasonal variations, with high incidences observed in cer-
tain months of the year. In order to incorporate seasonal variations into our ba-
sic model (4.2) we modelled the contact rate by the following periodic function

B(t) = Bo(1l + By coswt), where [y denotes the basic contact rate without seasonal

forcing, 0 < ; < 1 denotes the magnitude of seasonal fluctuations, w = % corre-

sponds to a one year period. Using the same parameter and class names as in system
(4.2), the system of differential equations describing our model with seasonal varia-

tions is:

. 8 = (a—¢N)[S+R+(I+A)p(1_e)]_m5+5R_w7

a- = B(t)(];EA)S+ep(a—gz5N)(I+A)—(m+oz+7+v)],

4 = pul — (m+ a)A,

= (1—pwl — (m+95)R.

(4.20)

4.3.2 The reproduction number

One can easily verify that the disease-free equilibrium of system (4.20) is

£0 — (SO - a;m,0,0,0>

and it is the same as the for the autonomous system (4.2). In what follows we now

introduce the basic reproduction number by applying the next-generation method.

Thus, we define matrices F(t) and V() (evaluated at the disease-free equilibrium)

and V(t) = [ i 0] .

—pv k2

as
B(t) +em B(t)e+ epm

Fi) = 0 0

In order to define the basic reproduction number of this non-autonomous model,

we follow the work of Wang and Zhao [55]. They introduced the next-infection
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operator L for a model in periodic environments by

(LY)(t) = /0 TVt )Pt — s)i(t — s)ds, (4.21)

where Y (¢,s),t > s, is the evolution operator of the linear w-periodic system
dy/dt = =V (t)y and 9(t), the initial distribution of infectious individuals, is w-
periodic and nonnegative. The basic reproduction number is then defined as the

spectral radius of the next-infection operator,
Ry = p(L). (4.22)

For our model (4.20), the evolution operator can be determined by solving the
system of differential equations dy/dt = —V (t)y with the initial condition Y'(s, s) =
I5yo; thus, we obtain

e—kl(t—s) 0

Y(t,s) = (4.23)
(’Yliv)[ —ko(t—s) __ e—kl(t—s)] e—k)g(t—s)

The basic reproduction number defined in Equation (4.22) can be numerically

evaluated by using, for example, the method described in [56].

4.3.3 Threshold dynamics

Using the basic reproduction number Ry, we aim to establish the threshold type
result, stated in the theorem below, for the periodic model (4.20). To that end, we

first note that R, is positively invariant for the following equation:

5(6) = (a— NS + Bt (1 + A)p(1 — )] —ms + o1 — DOLEAS 49

and that S° is the unique equilibrium solution which is globally attractive in R.

Theorem 4.3.1

(i) If Ry < 1, then the disease-free equilibrium &y of system (4.20) is globally asymp-
totically stable;

(ii) If Ry > 1, then system (4.20) admits at least one positive w-periodic solution,

and solutions of system (4.20) are uniformly persistent.
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Proof of Theorem 4.3.1
Proof 8 If (S(t), R(t),I(t), A(t)) is a non-negative solution of (4.20), then we have

. Bt)(I + €eA)S

Sit)<(a—¢N)[S+R+ I+ A)p(l—e)]—mS+IR— N . (4.25)

Note that any nonnegative solution S(t) of system (4.24) approaches S° ast —
oo. It then follows from the standard comparison theorem (see, e.g., [75, Theorem

A.4]) that for any € >0, there is a T > 0 such that
St) < S°+¢€, fort>T. (4.26)
Thus, fort>T, we have

i) < BT + €A)(S° + ¢)

: N tepla—¢N)(I +A) — (m+a+vy+v)l, (4.27)

A(t) < pvl — (m + a)A.
Define
P50 +e) (50 +¢)
0 0
By [55, Thorem 2.2/, we have Ry < 1 <= p(¢r_v(w)) < 1, where p(¢pp_v(w)) is

the spectral radius of ¢pp_v(w), and ¢pp_y(w) is the monodromy matriz of the linear

Fu(t) =

w-periodic system dy/dt = (F —V)y. Then we can set € sufficiently small such that
p(or,—v(w)) < 1. As a consequence, the trivial solution (0,0) of the following linear
w-periodic system , and from the last equation of system(4.20) it is straight forward

to observe that limy_,., R(t) =0

BT + €A)(S° + ¢)
N +epla—oN)(I +A) = (m+a+y+)l, (4.28)

A(t) = pvl — (m + a)A.

I(t) =

is globally asymptotically stable. Again by the comparison theorem, we know that
I(t) = 0,A(t) — 0 ast — oo . Finally, the first equation of system (4.20) imply
that S(t) — S° as t — oo . This proves the result in part (i).

Now we consider the case Ry > 1. We define X =R%, X, = R? x Int(R3), 90X, =
X\ Xy, It is easy to see that both X and X, are positively invariant. Let P : R —
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R% be the Poincaré map associated with system (4.20); that is, P(xy) = u(w, zg) for
all o € RY, where u(t, zg) is the unique solution of (4.20) with u(0,xo) = zy. Set

M, = {(S(0), R(0), 1(0), A(0)) € 8X, : P™(S(0), R(0), 1(0), A(0)) € 8Xo, ¥m > 0},

M={(S,R,I,A): S>0, R=0,1=0, A=0}

We first show that
My = M. (4.29)

Clearly, M C My. For any (S(0),R(0),1(0),A(0)) € 0Xo\M, if A0) >
0,I(0) = 0, then 1(0) > 0. if I(0) > 0,A(0) = 0, then A(0) > 0. Thus, we
have

(S(8), R(t), I(t), At)) & 90X

for 0 <t < 1. By the positive invariance of Xy, we know that

for m > 1, hence (S(0), R(0),1(0), A(0)) ¢ My, and thus (4.29) holds.

Now consider the fized point My = (S°,0,0,0) of the Poincaré map P. Define
W5 (M) = {zo : P™(x9) — My, m — oo}. From system(4.20), it is easy to observe
that when A =1 =0, we have R — 0 We show that

W3 (M) N Xy = 0. (4.30)

Based on the continuity of solutions with respect to the initial conditions, for any
¢ > 0, there exists 0 > 0 small enough such that for all (S(0), R(0),1(0), A(0)) € X,
with ||(S(0), R(0),1(0), A(0)) — Myl|| < 0, we have

[lu(t, (S(0), R(0), 1(0), A(0))) — u(t, My)|| < €', Vte[0,w]. (4.31)
To obtain (4.30), we claim that

lim sup [|P™(5(0), £(0), 1(0), A(0)) — Mo = 5, ¥(5(0), £(0), 1(0), A(0)) € Xo.
(4.32)

We prove this claim by contradiction; that is, we suppose

lim sup || P™(S(0), R(0),1(0), A(0)) — My|| < &

m—0o0
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for some (S(0), R(0),1(0), A(0)) € Xo. Without loss of generality, we assume that
[|P™(5(0), R(0), 1(0), A(0)) = Myl[ < 6, Vm > 0.
Thus,
Ilu(t, P™(S(0), R(0), 1(0, A(0))) — u(t, Mo)|| < €, Vt e [0,w] and m > 0. (4.33)

Moreover, for any t > 0, we write t = to + kw with ty € [0,w) and k = [t/w], the

greatest integer less than or equal to t/w. Then we obtain

= [[u(to, P™(5(0), R(0), 1(0), A(0))) — u(to, Mo)|| <€
"foranyt > 0. Let (S(t), R(t), I(t), A(0)) = u(t, (S(0), R(0), 1(0), A(0))). It follows
that —¢' < S(t) — S° < €,0 < I(t) < €, and 0 < A(t) < €. Again based on [55,
Thorem 2.2], Ry > 1 if and only if p(®r_yv(w)) > 1. Thus, for € small enough, we
have p(®p v (w)) > 1 which immediately yields the contradiction as

lim I(t) = oo lim A(t) = oo.

t—o00 t—o00

Let Py : Ry — R, be the Poincareé map associated with (}.24). Then S° is
globally attractive in Ry\{0} for Py. It follows that My is isolated invariant set in
X, and notice that W*(My)N Xy = 0. Hence, every orbit in My converges to My and
My is acyclic in My. By [58, Thorem 1.3.1], for a stronger repelling property of 90X,
we conclude that P is uniformly persistent with respect to (Xo,0Xy), which implies
the uniform persistence of the solutions of system (/.20) with respect to (X, 0Xo)
[58, Thorem 3.1.1]. Consequently, based on [58, Theorem 1.3.6], the Poincaré map
P has a fized point (S(0), R(0),1(0), A(0)) € Xo, and it can be easily seen that
S(0) # 0. Thus, (5(0), R(0), (0, A(0)) € Int(R%) and

(S(t), R(t). I(t), A(0)) = ul(t, (S(0), R(0), 1(0), A(0)))

1S a positive w-periodic solution of the system.
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4.4 Optimal control

Our goal here is to determine an optimal culling strategy that will minimize the
total disease burden, while minimizing the cost of implementing such a strategy.
Due to limitedness of resources in most brucellosis endemic areas, we assume that
culling of clinically infected animals is the only viable intervention strategy since it

is associated with low costs.

4.4.1 Formulation

To determine the optimal culling strategy, we modify model (4.2) by letting v = u(t)

and this results in the following system

(4 = (0 oN@)IS(1) + (1) + (1) + A®)p(1 — )] — mS(t) + SR(?)
B + Aw)S
Mise
y - A0 oo o)1) + A1)
—(m+a+u(t) +v)I(t)

A — pol(t) — (m+ a)A(L),

= (1-pl(t) — (m+0)R(t).

(4.34)

Remark: Note that in the formulation of our optimality system, parameter /3,

can be either constant, for the autonomous model (4.2), or periodic function as in
system (4.20).

We consider the following objective functional
T
LMM»:/[QHQ+@MQ—@MQ+@Mﬂdt (4.35)
0

where C; (i = 1,2,3,4) represents the appropriate positive balancing constants.
The objective is to minimize the total number of infected animals (both clinical
and chronic) and maximize the total number of susceptible population, while also
minimizing the cost of implementation. In addition, our objective functional (4.35)
assumes that there is a linear relationship between the costs and the number of

clinically infected animals to be culled. The control set is defined as
Qz{u(t)!OﬁUlgu(t)gUggl,Ogth}. (4.36)
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where U; and Uy denote the lower and upper bounds of culling efforts, respec-
tively. These bounds reflect practical limitation of resources to implement the control
in a given time horizon. By utilizing the Pontryagin’s maximum Principle [63], we

have the following Hamiltonian function H:

H( ) I(t) + CQ ( ) CgS(t) -+ C4u(t)
+Au(t) [(a —ON@)[S() + RB(t) + (L(t) + A@))p(1 — e)] = mS(t) + I R(1)

_ BU(t) + eAlt ))S(t)]
N @)

SWOIELCEELEG
—(m+a+u(t)+ v)[]
gt :pvl(t) ~ (m+ a)A(t)]

F(t)|(1 = po(®)] = (m+ O)R(1)|.

+epla — oN(1))(1(t) + A(t))

It is known that, if the Hamiltonian is linear in the control variable u(¢) then it
can be difficult to solve for the optimal solutions u* from the optimality equation
[61, 72, 76]. For mathematical convenience, in our optimal control analysis we
assume a = m + ¢N + (I + A)N~'. Thus the total population N is constant. We
can also treat the non-constant population case by these techniques, but we choose
to present the constant population case here.

Given an optimal control u*(t), there exists adjoint functions, \;(t), for i =

1,2, 3,4, corresponding to the states S, I, A, and R respectively satisfying
d\i(t)  OH dX\(t)  OH dXs(t)  OH dM\(t)  OH

i o5 a  or di oA @ ok 7
such that
T = [t ((a- on(o) - m - A
BUL) +eA(D)
+Ao(t) ( N @) ) }7
Tl = ~[ev a0 (fa-ovnpa - - )

Fuft) (ﬁ]\f (%) T epla— N (1) — (m+a+u(t) + v)) st
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)1 — p)v} ,

d)\d3t(t) = - [02 + A (1) ((CL — ¢N(t))p(l —e) — B;ig))
+Aq(t) (%(g) +epla — ¢N(t))) — A3(t)(m + oz)],
d)\;t(t) =~ M@ (@ = ON®) +8) = Ma(t)(m + )]

where \;(T') = 0 for ¢ = 1,2, 3, 4, are transversality conditions.

The Hamiltonian H is minimized with respect to the control variable at u*. Since
the Hamiltonian is linear in the control, we need to determine if the optimal control
is bang-bang (at its lower or upper bound), singular or a combination. The singular
case could occur if the slope or the switching function

OH

S = Ca=M(OI0), (4.38)

is zero on non-trivial interval of time. Note that the optimal control would be

at it its upper or lower bound according to:

OH oH

— <0 — > 0.
au<,01" au>

Since the behaviour of the control can be determined from the switching function

. . . . OH .
%—Ij, we now investigate the singular case by letting — = 0, on some non-trivial
u

interval. In this case we calculate % (%—IZ) = 0 and then we will show that the control

is not present in that equation. Thus

d (aH) _ e

dt \ du dt
=[G+ M@= oN)p(1 — ) + Agpo + Ma(1 = po] I
—BAT + e A)NTLS — \yep(a — ¢N) A. (4.39)

It is evident that the control term is not present in equation (4.39), hence we need
&2 (B_H
’ dt? \ du

if the control term now exists and if not we will keep on differentiating until the

to differentiate the switching function, that is. ) = 0, in order to determine

control term appear. After differentiating the switching function we obtained
d*> (OH
i (50 ) = miuo + w0, (1.40)
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Ui(t) = —[Ci+(a—oN)p(l—e)A +pvAs + (1 = p)oAd I — [ep(a — ¢N)As] A
—BeN ' NySA + BNTIN ST,
Uy(t) = [Cs3(a—dN)p(l —e)— Copv + Crep(a — pN) — Ci(m + a+v)| I

—[(a=6N)p(1 = e)a+ v+ pv+ (0 — ON)(1 = ep))

+(1 —p)v(a — N + 5)))\1}1— [(a — ¢N)p(2pve + BN (1 — e)I> )\Q]I

+ [pv(ep(a — ¢N) — U))\3:| I+[1—=pwd—a—v+epla—¢N))M\] I
—BN"Ya— ¢N)p(1 —e)M AL + BeN " a— ¢N)p(1 —€) [A\ — 2Xo] AT
—BNT [(a = ON +6) M) RI + BN Cy = Gyt (pue + (a — 6N)p(1 - 2¢)
—BSN'+ (m+a+ v)))\l] SI+ BN [(ﬁ]\]_ll — 2pve + ZBEN_IA) A2
+(As — Ad)pu + m] ST — BeN~"[(a — 6N + &) Ao] RA

+BN[2C1e+2 ((a — ¢N)p(e — ee — ) — BeN~'S) A SA

AN [((a — N)(ep +elep — 1)) — e(v — m) + BN (s + EA))AQ
+2ve(p(A3 — \y) + /\4)} SA+ [2016,0((1 — ¢N) +2(a — ¢N)?pe(1 — )\
tepla— oN)(ep(a = 6N) = )| A+ [BeN " (a = oN)p(1 — €) AX;
+2ep(a — ¢N)v <p(A3 — M)+ A4>} A, (4.41)

Wo(t .
singular<t> = _\I/1Et§7 if Wy(t) # 0

and U; < —5?8 < U,. To check generalized Legendre-Clebsch condition for the

singular control to be optimal, we require %% (%—IZ) = U, (t) to be negative [77].
For our minimization problem, our control characterization is as follows:

We can solve (4.40) for the singular control as u

oOH
if 0 < 0 at ¢ then wu'(t)=Us,
OH
if S0 0 at t then wu'(t)=U,
.. OH U,
if 0 < 0 at ¢ then “singular(t) =7,
o . Wy (t)
Thus, our control is optimal at ¢ provided W;(t) < 0 and U; < — T < Us.
1
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4.4.2 Numerical results

In this section, we utilize the forward-backward sweep method [61] together with
parameters values in Table 4.1 and 4.2 to determine numerical solutions of our
optimality system. We assume that the minimization of the clinically infected bison
population has the same importance/weight as that of the chronically infected bison
population., that is, C; = C5. Further, for simplicity in our numerical computations
we set C7 = Cy = (C3 =0.1.

Table 4.2: Additional model parameters and their values

Symbol Definition Value Units  Source

Bo Averaged disease transmission rate 0.75  year—! [38]

51 Amplitude of oscillation in 8(¢) 0.8  unit-less [31]

Uy Lower bound of control u(t) 0.1  unit-less Assumed
Us Upper bound of control u(t) 0.8  unit-less Assumed
a Recruitment rate year~10.255  Computed

The total number of new infections in this study are given by
T
Tg = / {B(I +eA)SN™ +epla— ¢N)(I + A)|dt, (4.42)
0

and the total cost associated with the implementation of the control is given by
objective functional J (4.35). In subsequent discussion, we will present the values
for the total number of new infections and J for both periodic and non-period

environments.
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Figure 4.2: Simulation results of the autonomous model with and without the control
(a) susceptible animals (b) clinically infected animals (¢) chronically infected animals (d)
recovered animals. The dotted blue and solid red curves in all the figures represent the
total population over a 50 year period with and without control, respectively. The time
varying optimal culling associated with these figures is shown in Figure 4.3. Note that the

basic reproduction number Rg = 1.576, 8 = 0.35 and C4 = 10.

Figure 4.2 shows the effects of optimal culling on long-term brucellosis dynam-
ics for the autonomous model, with the cost parameter Cy = 10 and the basic
reproduction number Ry = 1.5679. The results clearly demonstrate that optimal
culling can significantly reduce the populations of clinically infected, chronic and
recovered animals to a level close to zero when ¢ > 30 years. In addition, we also
note that, with the optimal control implemented, the total population of susceptible
animals increase over time and converges to the carrying capacity N = 4500 when
t > 30 years. This result demonstrates the existence of a globally stable disease-free
equilibrium as guaranteed by Theorem 4.2.1 (i). In contrast, without the imple-
mentation of optimal culling, the susceptible population decreases over time and
converges to N = 2000 when ¢ > 30 years. This result demonstrates the existence

of a globally stable endemic equilibrium for Ry > 1 as guaranteed by Theorem 4.2.1
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(ii). Furthermore, the total number of new infections over the entire time horizon
is Ts = 1.0904 x 10* and the total cost is J = 5.8260 x 10%.

Figure 4.3 (a) shows the optimal control profile for the autonomous model with
the cost parameter (a) Cy = 10, (b) Cy = 100, and the basic reproduction number
Ry = 1.5679. As we can observe, in (a) u starts from the maximum initially (v = 0.8)
and stays there for approximately 26 years, followed by a switch to its minimum
(u = 0.1) where it remains till the final time. To investigate the impact of the costs
on the implementation of optimal culling, we set Cy = 100 (implies higher costs) and
generated the simulation results presented in Figure 4.3 (b). It is evident that with
higher costs u stays at its maximum for a very short period of time (approximately
7 years) before it switches to its minimum where it remains till the final time. With
higher costs the total number of new infections generated Tp = 1.0903 x 10* and
the total cost is J = 6.4942 x 10*. In addition, the optimal control graphs for higher
costs (not included) are almost the same as in Figure 4.2. We present the values of
the total number of new infections in the presence and absence of optimal control

in Table 4.3.

RO =1.5679 R0 =1.5679

0.7 0.7
206 206}
° kS
205 505
° °
= 047 £ 04r
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Oo03; 003}

0.2 0.2

0.1 ' ' 0.1 : : : :
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Time (in years) (a) Time (in years) (b)

Figure 4.3: Simulation results showing the control profile for the autonomous model, over
a period of 50 years, with (a) C4y = 10 and (b) Cy = 100. We can observe that in all cases

the control profile admits a bang-bang solution with one switch.

Figure 4.4 shows the optimal control graphs for the time-periodic model, with
same values for the cost parameters, as the autonomous model, i.e. Cy = 10. From
these simulation results, we see that with and without control, in all cases the pop-

ulation of animals oscillates with time and this corresponds to the annual periodic
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Table 4.3: The total number of newly infected animals over 50 years and the total
cost J with respect to different control strategies for the autonomous model with
Ro = 1.5679.

Strategies T Infections averted | J

No control 1.4296 x 10*

Optimal control with Cy = 10, 8 = 0.75 | 1.0904 x 10* | 3.392 x 103 5.8260 x 10*
Optimal control with Cy = 100, 3 = 0.75 | 1.0903 x 10* | 3.393 x 103 6.4942 x 10*

oscillation of contact rate (t). We also note that the amplitude of oscillations is
more pronounced when there is no control compared to a scenario when there is a
control. With seasonality, the total number of new infections is 1.5455 x 10 and
the corresponding total cost is 5.5017 x 10%. In addition, we see that the optimal
control strategy significantly reduces the infected population to levels close to zero
over time. Also note that when seasonal variations are incorporated into the model
the total number of new infections generated over the entire period (50 years) is less
compared to when there are no seasonal variations. This results concur with earlier
findings in [31, 53], that the total disease burden is usually overestimated whenever
non-periodic models are used to explore transmission dynamics for diseases that are

influenced by seasonal variations.
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Figure 4.4: Simulation results of the non-autonomous model with and without the control

(a) susceptible animals (b) clinically infected animals (c¢) chronically infected animals (d)

recovered animals. The dotted blue and solid black curves represent the total population,

with and without control, respectively. The time varying optimal culling associated with

these figures is shown in Figure 4.5. Note that the basic reproduction number Ry = 1.312
and Cy = 10.
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Figure 4.5: Simulation results showing the control profile for the non-autonomous model,
over a period of 50 years, with (a) C4 = 10 and (b) Cy = 100. We can observe that in both

scenarios the control profile exhibits a bang-bang solution with more than one switch.

Figure 4.5 depicts the control profile for system (4.34) when seasonal variations
are incorporated. As we can note, Figure 4.5 (a) in the control profile for u starts
from the maximum initially and stays there for approximately 26 years, followed
by a switch to the minimum where it stays for a year and then it switches back
to the maximum where it stays for a year before its final switch to the minimum,
where it remains until the final time. In Figure 4.5 (b), we note that when the
costs are high Cy = 100 the control profile exhibits the same behavior as when the
costs are low Cy = 10. We note however, that with high costs, the control efforts
need to be implemented with reduced, or even minimum, strength, to achieve an
optimal balance between the costs and effects of the control. Numerical illustrations
in Figure 4.5 also demonstrated non-uniqueness (“bang-bang” form), of the optimal
control, a feature which is largely associated with problems with a linearly dependent
control function. Bang-bang solutions provides a lower bound on the cost that can
be achieved by optimal control in real problems.

We present the values of the total number of new infections in the presence and
absence of optimal control in Table 4.4 for a non-autonomous case, that is, § = [(t).

Results in Table 4.3 and 4.4 demonstrates that a periodic model is associated
with less number of new infections compared to a non-periodic one, even though the
averaged transmission rate 5y (for the periodic model) is equivalent to the transmis-
sion rate for the autonomous model, Sy = 0.75.. These findings highlights that the

risk of infection will be overestimated whenever the basic reproduction number for
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Table 4.4: The total number of newly infected animals over 50 years and the total
cost J with respect to different control strategies for the non-autonomous model
with Rg = 1.312.

Strategies Tp Infections averted | J

No control 1.9568 x 10*

Optimal control with Cy = 10, 3 = 8(¢t) | 1.5455 x 10® | 1.8022 x 10* 5.5017 x 10*
Optimal control with Cy = 100, 8 = B(t) | 1.1661 x 10* | 1.1474 x 106 7.907 x 103

the autonomous models is used to estimate the power of the disease to invade the
population in a seasonal environment. The results established here are in agreement

with findings from [31, 53].

4.5 Concluding remarks

To investigate the effects of culling on the transmission dynamics of brucellosis
among bison population, two mathematical models were developed and analyzed.
The first model, an autonomous one, accounted for brucellosis transmission in non-
periodic environments while the second model, a periodic one, models brucellosis
transmission in periodic environments. For both the periodic and non-periodic
model, we computed the basic reproduction number Ry and demonstrated that
it is a sharp threshold for brucellosis transmission dynamics in both environments.

We also investigated the impact of time dependent culling efforts on the spread
and control of brucellosis. Thus, we formulated an optimal control problem with
the goal of minimizing the total number of infected (clinical and chronic) animals
and maximize the total number of susceptible and recovered population, while also
minimizing the cost of control. Our results have shown that, in all the scenarios,
optimal culling efforts can significantly reduce the total population of infected an-
imals to a level close to zero, while the susceptible population will be maximized
to the maximum carrying capacity. After the incorporation of seasonal variations,
disease dynamics oscillated with time and this corresponds to the annual periodic
oscillations of contact rate. Further, we note that a periodic model is associated

with less number of new infections compared to a non-periodic one. This scenario
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was also observed in [53, 31]. Moreover, the control profiles for both models exhibits
a bang-bang solution, with a finite number of switches. Precisely, the control profile
for an autonomous model has one switch while the control profile for the periodic
model has three switches. In addition, we also noted that, with low costs optimal
culling efforts can be implemented at maximum strength for a long period of time.
Overall, our results have shown that optimal culling could significantly control the
spread of brucellosis in both periodic and non-periodic environments.

This work clearly demonstrated the value of optimal control theory as a tool to
determine effective ways of controlling the spread of brucellosis in both periodic and

non-periodic environments.
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Chapter 5

Modeling the spatiotemporal
variations in brucellosis

transmission

5.1 Introduction

Brucellosis, an infectious bacterial disease, is one of the world’s major zoonoses.
Caused by various species of the bacteria Brucella [4], the disease can be trans-
mitted to animals and humans with exposure to infected animals or ingestion of
contaminated water, food, and dust, etc [2]. In animals, especially among sheep
and goats, brucellosis mainly affects the reproduction process and can lead to fer-
tility problems and abortion, and reduce the survival of newborns [8]. In humans,
mortality is negligible, but the illness can last for several years [14], characterized
by such symptoms as intermittent fever, headache, fatigue, joint and bone pain,
psychosis, and disturbance [6].

Currently there are more than 500,000 new cases of brucellosis reported annu-
ally and the disease remains endemic in many areas of the world, including Spain,
Latin America, the Middle East, and Africa [1, 2]. Among these, the majority of
brucellosis cases are found in sub-Sahara Africa, where Ethiopia, Chad, Tanzania,
Nigeria, Uganda, Kenya, Zimbabwe and Somalia have been reporting persistence of

brucellosis in humans attributed to the infection of domestic cattle, camels, goats
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and sheep [3]. With large pastoral communities, and the demand for meat and
livestock products to double by 2050, brucellosis poses a major threat to the public
health and economic growth of the region and demands serious control efforts.

Mathematical modeling, analysis and simulation offer a useful means to under-
stand the transmission and spread of brucellosis so that effective disease control
measures could be designed. A few mathematical models have been published in
recent years to investigate brucellosis dynamics. For example, Hou and co-workers
[30] employed a system of ordinary differential equations (ODEs) to model the trans-
mission of brucellosis and the effects of vaccination on brucellosis prevention and in-
tervention. Lolika et al. [31] proposed a brucellosis model and conducted an optimal
control study on the use of animal vaccination and environmental decontamination
as disease control measures against brucellosis infection. Li et al. [32] proposed a
model to investigate the transmission of brucellosis among sheep and from sheep to
humans, and their findings indicated that a combination of intervention methods
(such as prohibiting mixed feeding, vaccination, and detection and elimination) is
useful in controlling human brucellosis.

Despite these efforts, however, several challenges remain in the mathematical
modeling of brucellosis. First, different places likely have different geographic, eco-
logical and environmental structures, and animals living in various locations likely
exhibit different contact and communication patterns. In particular, animals make
regular migration from one place to another, which directly contributes to the disease
spread. So far these differences of the transmission dynamics have not been taken
into account, leading to inadequate understanding of the influence of the spatial fac-
tors in the transmission and spread of brucellosis. Another limitation in brucellosis
modeling is that the impact of seasonal variation is insufficiently addressed. In fact,
like many other infectious diseases, brucellosis is significantly influenced by seasonal
changes, and prior field studies have already demonstrated a strong correlation be-
tween brucellosis outbreaks and seasonal oscillations [26, 27, 28]. For example, a
recent analysis of brucellosis datasets in a few countries [26] reveals that there is a
marked seasonal variation in the incidence of acute brucellosis, with most cases oc-
curring in the spring and summer. Factors such as periodic changes in temperature,

seasonal precipitation which directly affects the availability of forage, environmental
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fluctuations in humidity and exposure to UV light which impact the survival of Bru-
cella, and seasonal rituals in Africa which are associated with animal migration and
slaughtering, all contribute to seasonal fluctuations in the transmission and spread
of brucellosis.

Such spatial and temporal heterogeneities have strong impacts on the dynamics
of brucellosis that are not captured by homogeneous, autonomous differential equa-
tion models. In the present study, we will make a first step toward integrating the
spatial and seasonal variations into a single framework for a comprehensive modeling
of brucellosis dynamics. To that end, we propose a two-patch deterministic model,
where each patch has distinct populations and infection characteristics, to study the
transmission of brucellosis among animals. In each patch , the animal population is
subdivided into the susceptible and the infected compartments; meanwhile, another
compartment is introduced to represent the concentration of the pathogen (i.e., Bru-
cella) in the environment. Both the indirect (i.e., environment-to-host) and direct
(i.e., host-to-host) transmission routes are considered in our model, representing
the multiple pathways in the force of infection for brucellosis. Animals may move
from one patch to the other, representing their migration in space. Additionally, we
will incorporate the effects of seasonal oscillation by employing time-periodic model
parameters, which leads to a non-autonomous patchy ODE system.

We organize the remainder of this chapter as follows. In Section 5.2, we first
introduce our two-patch model in the autonomous form, where each model parame-
ter is fixed as a constant, and then conduct a thorough equilibrium analysis for this
model. In Section 5.3, we extend the autonomous model to a periodic two-patch
model and analyze the threshold dynamics. In Section 5.4, we use numerical simula-
tion results to validate our analytical predictions. Finally, we conclude the chapter

with some discussion in Section 5.5.

5.2 A two-patch autonomous model

We consider the spatial spread of brucellosis in an environment of two patches, where
brucellosis can spread from one patch to the other due to animal movement, par-

ticularly, through migration. We further assume a unidirectional form of migration;
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that is, animals move from patch 1 to patch 2. Let S; and I; (j = 1, 2) denote the
number of susceptible and infectious animals, respectively, in each patch. Mean-
while, we introduce another compartment B; that represents the population of the
free-living pathogen (i.e., Brucella) in the environment. The Brucella population
can be replenished by infectious hosts that excrete the pathogen to the environment.
In contrast, the natural decay of the pathogen and the decontamination practices
reduce the environmental persistence of the pathogen. Susceptible animals become
infected (and infectious) either by adequate contacts with infectious animals or the
contaminated environment. The following system of ordinary differential equations

(ODEs) describe the brucellosis transmission dynamics:

;

Si(t) = A —(arh + S1B1)Sh — (s + 1) Sh,
L(t) = (auly +B1B1)S1 — (01 + ¢ + pa) 14,
Bi(t) = ¢l — diB,

52(75) = Ay — (aely + (2B3)Sy — 11252 + 0554,
L(t) = (aaly+ B2Ba)Sy — (2 + c2) o + 0114,
Bo(t) = ¢oly — dyB,

(5.1)

\
where all model parameters are non-negative. The parameter A; (j = 1, 2) is the
constant recruitment rate for animals in each patch, y; is the natural animal death
rate, a; and 3; denote the host-to-host and environment-to-host disease transmission
rates, respectively. The mean infectious period for animals in each patch is denoted
by cj_l. For the pathogen population, ¢, denotes the pathogen shedding rate, and
d; is the pathogen removal rate that includes the effects of both the natural decay
and the decontamination practices. In addition, we assume that the susceptible and

infectious animals migrate from patch 1 to patch 2 at rates 65 and 6;, respectively.

5.2.1 Feasible region

Let N(t) = Si(t) 4+ I1(t) + Sa(t) + I5(t). Adding all equations for animal individuals
in (5.1)

N = A+ Ay — 1 (St + 1) — po(Se + L) — 1y — cols < Ay + Ay — min(pq, o) N
which implies that

A+ A
limsup N (t) < M
100 min (g, ft2)
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From the pathogen equation in (5.1) leads

dB; ¢ (A1 + As)
= — I —d:B, < 22N 2 dB.
dt @il = diBy = min(fe, po) 45;
giving
(A A
limsup B, < 2iA1 T 42)
t—00 mlﬂ(,uh ,UQ)dj
then the domain of biological interest
(A A
I' = {(Sl,[l,Bl,SQ,IQ,BQ) S Ri : Sj < S;), Bj < Q%(;—l;i—Q)’] = 172;
JHg
A+ A
N(t) < M}
min(py, pa)

is positively invariant and attracting all orbits with respect to the model (5.1).

5.2.2 Disease-free equilibrium

A disease-free equilibrium refers to the equilibrium that exists when there is no
disease (that is S} = S > 0, S, = 59 > 0, IV = I = BY = BY = 0). The
disease-free equilibrium is determined by equations:

(

Ay — (anly + B1B1)S1 — (0s +p1)S1 = 0
(arly + p1B1)S1 — (O +c1 + )y = 0
L —diB 0
o1 151 (5.2)
Ay — (aply + $2B3) Sy — 12y + 055 0
(qoly + B2B2) Sy — (o + co)Io +0;1; = 0
| 621> — dy B, — 0.
A disease-free equation (5.2) yields
Ay — (Os+m)SY = 0,
1 ( S Ml) 1 (5.3)
Ag — /,LQSS =+ GSS? = O

solving system (5.3) for Sy and S9 implies that system (5.1) has an evident disease-

free equilibrium (DFE) given by

A 95A + 65“‘” A
£ — (80,19, BY, 9, 1%, BY) — <es 00 sz(s +m>1) 2

,0,0) . (54)
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5.2.3 The reproduction number

The basic reproduction number, denoted Ry, measures the average number of sec-
ondary infections generated by a single infectious case in a fully susceptible popula-
tion during its average infectious period [50]. The reproduction number is commonly
regarded as a threshold quantity for the disease dynamics, essential in determining
the transmission and spread of the disease. Using the next-generation matrix nota-
tions in [50], the non-negative matrix F' that denotes the generation of new infection
and the non-singular matrix V' that denotes the disease transfer among compart-

ments, are respectively given by

[0S B 0 0]
0 0 0 0
F= ,
0 0 04258 /BQSS
0 0 0 0
and ) ) -
(01 + 9[ + Ml) 0 0 0
— d 0 0
V= #1 ' (5.5)
—91 0 (CQ + ,LLQ) 0
0 0 —¢2  dy
Let us use R; to denote the reproduction number associated with patch i (i = 1, 2),
where
(ndy + Brg) A (qady + Bap2) (05 A1 + (05 + f11) Az)
R = . (5.6)

" di(0s + ) (e + 0 + )

tively.

dapia(Os + 1) (pi2 + c2)
Biologically, R; and R, represent the disease risks for patches 1 and 2, respec-

We observe that, based on our assumption of the unidirectional animal

movement, R; does not depend on the properties of patch 2, whereas R, depends

on some characteristics of patch 1. In particular, the disease risk for patch 2 has

been increased due to the animal migration from patch 1.

From (5.5), we know that the basic reproduction number R for the entire system

is determined by the spectral radius of the next-generation matrix FV 1. It then

follows that

Ro = maX(Rl, RQ),

(5.7)

showing that the disease risk for the entire system depends on that associated with

each of the two patches.
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5.2.4 Global stability of the disease-free equilibrium

From the work in [50], we know that the DFE is locally asymptotically stable when
Ry < 1, and unstable when Ry > 1. Indeed, we can establish a stronger result

regarding the global dynamics of the DFE.

Theorem 5.2.1 If Ry < 1, the DFFE is globally asymptotically stable in I'. If

Ro > 1, the system is uniformly persistent.

Proof 9 Let Y(t) = (I1, By, I5, Bs). Since

(

Lt) = (al+/B)S — (0 + e+ m)l,
él(t) = ¢y — di By, (5.8)
L(t) = (aaly+ B2B2)Sy — (p2 + c2) Iy + 0114,

\ Bo(t) = ¢oly — dyBs,

it follows that
Y(t) < (F=V)Y,

where F' and V are defined in (5.5). Motivated by [78], we define a Lyapunov

function as follows
L=w"V'Y.
Differentiating L along solutions of (5.1), we have

L) = V1Y
< Ww'VTHF=V)Y
= (Ro—1Dw'Y <0, if Ro<1.

It can be easily verified that the largest invariant subset of T where £ = 0 is
the singleton {E°}. Therefore, by LaSalle’s invariance principle [46], E° is globally
asymptotically stable in I' when Ry < 1.

If Ry > 1, then by continuity, £ > 0 in a neighborhood of E° in I'. Solutions
in T sufficiently close to E° move away from the DFE, implying that the DFE is
unstable. Using a uniform persistence result from [79] and an argument as in the
proof of Proposition 3.3 of [80], it can be shown that when Ry > 1, the instability of
the DFE implies the uniform persistence of the model (5.1).
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The result in Theorem 5.2.1 shows that Ry = 1 is a sharp threshold for disease
dynamics: the disease will die out when Ry < 1, whereas the disease will persist
when Ry > 1 (we refer to [27, 81, 82] for more details on the persistence theory).
Next, we turn to the analysis of the nontrivial equilibria of the system and their

dynamical properties.

5.2.5 Nontrivial equilibria

Any nontrivial equilibrium (S, I, By, Se, Is, Bs) for system (5.1) satisfies the fol-

lowing algebraic equations:

Ay = (a1 + BBy + 0g + j11) 51, (5.9)
(ar Iy + B1B1)S1 = (01 + ¢1 + 1) 14, (5.10)
diBy = ¢ 11, (5.11)
Ay = (agly + B2 By + 12)Sa — 0551, (5.12)
(qaly + B2B2)Ss = (e + o)1 — 0114, (5.13)
dy By = oI, (5.14)

We have By = f;—i]l from equation (5.12), and plug it into (5.11) to obtain

(al + 6;¢1) 1131 = (0[ +c + ,ul)]l . (515)
1

If I, =0, then B =0, 5, = es‘ilm = §1, where S, = SY . Combining (5.14) and
(5.15), we obtain

aady + Bago

7 ISy = (2 + c2) 1. (5.16)

Notice that I must be positive for a nontrivial equilibrium (since I; = 0 already).

It then yields

do(p2 +c2) &
= ——:=5;. 5.17
aady + P2t ’ (5:17)
By substituting equations (5.14) and (5.17) into (5.13), we have
1 - 1 -
Bzl poop Rzl
Qads + Pago aady + B2
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Therefore, we conclude that there exists a nontrivial boundary equilibrium
€1 = (51,0,0, 5,15, By) (5.18)

for system (5.1) if and only if Ry > 1.
Next, we consider the case I; = I7 > 0. We can calculate S; = ST directly from
(5.15), which yields

. di(0r+c1+ )

= 5.19
! ardy + Si1gn (5.19)
Then substitution of equation (5.19) into (5.10) yields
dy(0
c_dlbitatm)g ) (5.20)

Y ad + Bio1

Clearly, I7 > 0 if and only if Ry > 1. Subsequently, By = B} = %[{ is uniquely
determined by I7. Meanwhile, equations (5.13), (5.14) and (5.15) can be reduced to

two equations:

aady + .
Ay = <%52¢2[2 + m) Sy — 0555, (5.21)
2
d
%62@1252 == ([1,2 + CQ)IQ — 0[]{ (522)
2

Combining (5.21) and (5.22) and canceling out Ss, we have

Qady + Bao
do

aody + Bags

7 (Ay+0sST +0,17)| I

(12 + )15 + {Mz(m +co) —

—[ngjlf = O,

which indicates that I, has a unique positive solution I > 0 since %FW(IUQ +
A2+953T
rol5+p2

c2) > 0 and pefrI > 0. Consequently, S5 = and By = ‘g—;[; are uniquely

decided by I;. Therefore, we have a positive endemic equilibrium
& = (57,17, By, S5, I3, B3) (5.23)

for system (5.1) if and only if Ry > 1.

Now we may summarize the above analysis by the following theorem.

Theorem 5.2.2
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If Ry = max{Ri,Ra} < 1, then system (5.1) only has the trivial, disease-free
equilibrium E°.
If Ry = max{R,Ra} > 1, then in addition to the DFE E°, nontrivial equilibria
ertst:
1) If Ry <1, Ry > 1, there is only a nontrivial boundary equilibrium &, in
r.
2) If Ry > 1, Ry < 1, there is only a positive endemic equilibrium Ey in T.
3) If Ry > 1, Ry > 1, both the boundary equilibrium &, and the endemic

equiltbrium &y exist in I

5.2.6 Local and global dynamics

We proceed to investigate the dynamical behavior of the nontrivial equilibria. The

following result characterizes the local dynamics of the boundary equilibrium & .

Theorem 5.2.3
(ii) If Ry <1 and Ry > 1, then & is locally asymptotically stable.

(i) If Ry > 1 and Ry > 1, then & is unstable.

Proof 10 Linearizing the system (5.1) at the boundary equilibrium &, we obtain

. , Ji 0
the Jacobian matrix J = | _ _ |, where
Jo Jo
—(0s + 1) —0615'1 _ﬁlgl
Jp = 0 arS1—Or+a+m) /S |,
0 1 —d;
—(OKQTQ + 52/35; + p2) —Oé25~'2 —5252
Jo = azly + 328 182 — (2 +c2) (252
0 02 —dy

It is easy to verify that the characteristic polynomial of J is det(A — J) = det(\ —
J1) det(\ — Jy), and

det(AI — (71) = N4+ A2+ )+ 2,
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det(A ] — jg) = X 4 222+ o\ + 29,

where
a1d1
Ty = dl‘l'Yl—i‘Xl(l— R1)>
Z
d
w = Y (d1 + X (1 — 1731)) +d X1 (1 - Ry),
1
21 = lelm(l—Rl),
B B2
Ty = dy+ poeRo + Xo,
Z
_ Baa
Yo = HaXo(Ro—1)+ p2Xo 7 + dapa R,
2
Rz = M2d2X2(R2—1)7
with

X1 = O+ +

}/1 == 05 + ,u‘17
Zy = ody + Bio,
Xo = po+ co,

Zy = ouady+ Paoa.

Clearly, if Ry > 1 and Ry > 1, then z; < 0, and there exists an eigenvalue
of J that has a positive real part. Hence & is unstable in this case. On the other
hand, x1, y1, 21, T2, Y2, 22 are all positive when Ry < 1 and Ry > 1. Furthermore,
we have x1y; > 2z and Tays > 2o, since x> Yi,y1 > diXi(l — Ry) and x5 >
do, Yo > 2 Xo(Ro—1). It follows from the Routh-Hurwitz criterion that & is locally
asymptotically stable if Ry < 1 and Ry > 1.

We already know that the disease-free equilibrium &; is unstable when there
exist nontrivial equilibria; i.e., when Ry > 1. Theorem 5.2.3 shows that when &;
is the only nontrivial equilibrium, it must be (locally) stable; and when both &
and & exist, & becomes unstable. This, consequently, implies that the endemic
equilibrium &, is stable whenever it exists. The local stability of & can be similarly
analyzed by examining its characteristic polynomial and using the Routh-Hurwitz

criterion, though the algebraic manipulation becomes extremely tedious. Instead of
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engaging the (somehow unnecessary) algebraic complications, we proceed to estab-
lish the stronger results regarding the global asymptotic stabilities of both & and
&y . To that end, we introduce two more assumptions:

(C1) sup (Sy) < &t

201

(C2) sup (S2) < £2.

These conditions provide additional regulations on the upper bounds of the suscepti-

. . . . . 0 +c

ble populations in both patches to ensure global stability. In particular, if 59 < %11
and S§ < 52 then (C1) and (C2) will be automatically satisfied.

We will follow the geometric approach originally proposed by Li and Muldowney

[74] to investigate the global asymptotic stabilities of the nontrivial equilibria. For

completeness, we first present the following result from [74].

Lemma 5.1 Consider a dynamical system % = f(X), where f : D — R" is a
C! function and D C R™ is a simply connected domain. Assume that there exists a
compact absorbing set K C D and the system has a unique equilibrium point X* in
D . Then X* is globally asymptotically stable in D if ¢o < 0, where
1 [t
G2 = limsup sup —/0 m(Q(X (s, Xp))) ds. (5.24)

t—oo XpeK
In equation (5.24), @ is a matrix-valued function defined as
Q=PPt+pPJjAP, (5.25)

where P(X) is a (3) x () matrix-valued C" function in D, P is the derivative of
P (entry-wise) along the direction of f, and J 2 is the second additive compound
matrix of the Jacobian J(X) = Df(X). Meanwhile, m(Q) is the Lozinskii measure
of () with respect to a matrix norm; i.e.,

m(Q) = lim IT+hQ[ -1

.2
h—0t h ’ (5 6)

where I represents the identity matrix.

Now we are ready to prove the following global stability result.

Theorem 5.2.4

(i) If Ry > 1, then the endemic equilibrium & ezists and is global asymptotically
stable, provided that the assumptions (C1) and (C2) hold.
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(ii) If Ry <1 and Ry > 1, then the boundary equilibrium &, is global asymptotically
stable.

Proof 11 We apply the geometric approach, summarized in Lemma 5.1, to analyse
the global stabilities.
(i). Note that patch 1 does not depend on patch 2 and that the endemic equilibrium
of patch 1 is (uniquely) represented by the first three components of & ; i.e., 52(1) =
(ST, I7, BY). This indicates that the global stability of 52(1) in patch 1 can be analyzed
independently, based on the first three equations in system (5.1). Thus we will
first prove that 82(1) 15 globally asymptotically stable in patch 1, using the geometric
approach.

By direct calculation, we find that the Jacobian matrix of the linearized subsystem

in patch 1 1s

—(oqly + /1By + Y1) —a1 51 — (1.5,
J1 = ardy + 1By oSt — X1 BiSh ;
0 D1 —d,

and the associated second additive compound matriz J1[2] 15

a1S1 — (L + 5By + Y1 + Xq) B1S1 B151
o1 —(oqly + 5B+ Y1+ dy) —a15;
0 arly + 1By ST — X —dy

Define Py :dz’ag[l, é—ll, 113—11} and let Fy denote the vector field of patch 1, then

Pip P! = diag

and P1J1[2]Pf1 s gien by

a1S1 — (a1 + 51 B + Y1 + Xq) 5151]?—11 5151%1
é—llqh —(only + 1B1 + Y1+ dy) -5,
0 arly + 1By ST — X1 —dy

The matriz QY = Pp Pt + PlJlmPfl can be written in the block form as
follows
o= (% %]
Q' Q|
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where

511) = 04151 (041]1 + 61B1 + Y1 + Xy),
512) = 5151 75151 Bl} )
- T
§o= gllﬁbl,o] ;
1 [ —(only + 51By + Y1+ dy) + i — % _QISI
o L arly + 1By o151 — —d + 81

We now define the vector norm for any (z1, 2, z3) € R3 as
(71, 29, 23)| = max (|z1], |za| + |23]).

Let m denote the Lozinskii measure with respect to this norm. By direct calculation,
we find
) @
(@) o o)

with g = my (Q1) +] @B, 8" = QW[+ (@), where | QLY | and Q4

the matrix norms induced by the Ly norm, and my denotes the Lozinskii measure

are

with respect to the Ly norm. Specifically,
g§1) = a1 — (arh + 5B + Y1 + Xq) + 5151]}3—11,

gél) =-Y + % + sup (O, 20051 — X1 + Yl)

Observing that % = (151 + /151 %) — X and using assumption (C1), we have

I I

g%l) = —1—(041]1‘1‘51314‘3/1) < —l—lil,
Il ]1
I

1 1

gé) < [—1—#1

Hence m(QW) < %— p1. In view of 0 < I (t) < N(t) < ﬁ if t is large

enough, then

In(£1(t)) —In(£1(0)) _

Consequently,




for t sufficiently large. Therefore, we obtain

t—o0

1 t
@ = lim sup ;/ m(QW)ds < —% <0,
0

which shows that 82(1) 15 globally asymptotically stable in patch 1.

Thus, to establish the global asymptotic stability of & in the entire domain, it is
sufficient to show that the endemic equilibrium of patch 2; i.e., 52(2) =(S;, I3, B3), is
globally asymptotically stable in patch 2 under the condition (S, Iy, By) = (ST, I7, BY).
This can be proved in a similar way and details are provided below.

For patch 2, the Jacobian matrix of the linearized subsystem is

—(ooly + 2By + p12)  —aSy  —[25,
Jy = asly 4 P2 Bo Sy — Xo 325 )
0 03 —dy

and the associated second additive compound matrix is JQ[Q]

2S5 — (aaly + BoBa + pig + X3) B2.52 B2.52
®2 —(agly + PaBa + 12 + da) — 1259
0 aoly 4 B2 By Sy — Xy — ds

Also define P, :diag[l, é_22’ é—i] and let Iy denote the vector field of patch 2, then

Py, Pyt = diag [o, e

and PQJQ[Q]PQ_1 s given by

a2Ss — (aoly + BBy + s + Xo) 5252%2 5252%2
é—i% —(agly + PoBa + o + da) — 0259
0 aoly + B2 By Sy — Xy — dy

The matriz Q¥ = Pyp, Py ' + PQJQMPQ’1 can be written in the block form as

follows
0 [ QY Q) ]
Qs Q%
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where

QY = Q252 — (ozzlz + BoBa + iz + Xa),

B
ngz) = 5252 aﬁ252 2]
T
2 I,
le) = Egbﬂa O:| )
Q§22) _ —(aals + BBy + po + d) + 12 — g—i —ay5,
i aply + Bo By Q2Sy — Xo — d + - 32

Then we have m (Q(z)) = sup (gg ), gg )>, where

g?) = Sy — (aely + 2By + pa + Xo) + 5252]_
2

I
[ = —U2 + — +sup (0 2@252 — CQ)
2

I

Since % = (eSy + 5252%) — X5+ 91% and the assumption (C2) holds, we have

I — 0,17 I
952) = 2 (aply + PoBa + p12) < — — pia,
I, I,
I
2 2
gé) S I_Q_,u%

Hence m(Q?) < % — p1g. Also notice that 0 < I(t) < N(t) < —21t42 - Thep

— min (p1,42)
In(/5(t)) = In(f(0)) _ po

t -2

if t is large enough. Therefore,

/m Nds < 1/(%_“2”8_1 (Iz(t))—ln(lz(())) < ,;2

for t sufficiently large. This implies ¢ = limsup - / m(Q ds < —% <0

t—o00

which establishes the global stability of 82(2) in patch 2. Consequently, the proof of
the global asymptotic stability of £ in I is complete.

(ii). If Ry < 1 and Ry > 1, there is only one nontrivial equilibrium &£, and
we may write £ = (51(1), 81(2)), where 51(1) = (51,0,0) is the disease-free equilibrium

of patch 1, and 52(2) = (§2, INQ, B;) 15 the unique positive equilibrium of patch 2
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under the condition (S1, I, B) = (S1,0,0). Similar to the proof of Theorem 5.2.1
and Theorem 5.2.4 (i), it can be easily verified that 81(1) 15 globally asymptotically
stable in patch 1, and 81(2) 15 globally asymptotically stable in patch 2 provided that
(S1, 1, By) = (571, 0,0). Hence we conclude that & is globally asymptotically.

5.3 A two-patch periodic model

Having thoroughly analyzed the dynamics of the autonomous model, we now incor-
porate the seasonal variation into our modeling framework. As mentioned before,
brucellosis exhibits a strong seasonal pattern, with concentrated mortality and mor-
bidity burden in a few months each year. These seasonal fluctuations could be
represented by periodic changes in the various contact and transmission rates in our
model.

For illustration, let us consider the temporal oscillation of the direct (i.e., host-

to-host) and indirect (i.e., environment-to-host) transmission rates. We define

Bi(t) = Bjo {1%—@1 cos (%t)} , =12
Tt

Oéj(t) = Qjo |:1+(12COS (E):|, ]:1,2

where o and 3o denote the respective time-averaged (or, basic) transmission rates.

Meanwhile, we represent the pathogen shedding rate by

¢j(t):¢j0 |:1+CL3COS (%t>:| s j:1,2

where ¢;o denotes the basic shedding rate in the absence of seasonal forcing.
Note that 0 < a, <1 (k = 1,2, 3) denote the magnitude of seasonal fluctuations for
these three parameters. For simplicity, we assume that all other model parameters

are the same as defined in system (5.1). Our new two-patch system incorporating
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both spatial and seasonal variations is thus given by

(

Si(t) = Ay — () + Bi(t)B1]Sy — [0s + ]S,
Lt) = [+ Bi()Bi)S1 — 01 + 1 + ) o,
Bl<t) = ¢u(t)[y — di By,

Sy(t) = Ay — [a(t) ]y + Ba(t)By] Sy — p12Ss + 055t
j2(75) = [ao(t)]y + 2Ba(t)]Ss — (2 + c2) 1o + 0114,
By(t) = ¢o(t)]y — dyB,.

(5.27)

\
It again can be easily verified that system (5.27) has a unique and bounded solution
with any initial value (5;(0), 7;(0), B;(0)) € I', and that the compact set I' is

positively invariant with respect to system (5.27).

5.3.1 The reproduction number

It is straightforward to see that £° = (57,0, 0, 59,0, 0) remains the disease-free equi-
librium for the model (5.27). Thus, we can similarly introduce the next-generation

matrices F'(t) and V(t) (evaluated at the disease-free equilibrium) as

w®)S) S 0 0
0 0 0 0
F(t) = oo,
0 0 ay(t)Sy  Ba(t)S
0 0 0 0
and _ o
(01 + 0[ + ,ul) 0 0 0
—¢1(t d 0 0
v | Cew
—(91 0 (CQ + ,UQ) 0
] 0 0 —pot) d |

In order to define the basic reproduction number of this non-autonomous model, we
follow the work of Wang and Zhao [55]. They introduced the next-infection operator

L for a model in periodic environments by
(Lo)(t) = / Y(t,t —s)F(t — s)p(t — s)ds, (5.28)
0

where Y(t,s),t > s, is the evolution operator of the linear w-periodic system dy/dt =

—V(t)y and ¢(t), the initial distribution of infectious individuals, is w-periodic and
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nonnegative. The basic reproduction number is then defined as the spectral radius
of the next-infection operator,

Ry = p(L). (5.29)

For our model (5.27), the evolution operator can be determined by solving the

system of differential equations dy/dt = —V (t)y with the initial condition Y (s, s) =

I4.4; thus, we obtain

yll(ta 5) 0 0
t’ ta 0
Y(t,s) = Ya1(t,s) yaolt,s) .
L Yyai(t, s) Yas(t, s) vaa(t,s) |
where
yll(t, S) = e_(cl""el'f';u)(t—s)7

T

¢

yar(t,s) = d)loe_dlt/ eh® (1 + as cos <F>> 1 (x, s)de,
¢

y31(t’ 3) — 916—(C2+M2)t/ e(c2+”2)zy11(x,s)dx,

t
— ¢206d2t/ ed2® (1 + as cos (%)) ys1(z, s)dx,

. e*dl (tfs)

)

—(catp2)(t—s) ’

t
= ¢206d2t/ ed2® (1 + as cos (%)) yss(z, s)dx,

— e*dg (tfs) )

)
)
ts) = e
)
)

The basic reproduction number defined in Equation (5.29) can be numerically eval-

uated by using, for example, the method described in [56].

5.3.2 Threshold dynamics

Using the basic reproduction number Ry, we aim to establish the threshold type
result, stated in the theorem below, for the periodic model (5.27). To that end, we

first note that R? is positively invariant for the following cooperative system:

{Sl(t) = A, — (s + 111)Sh,

: (5.31)
So(t) = Ag — ppSy + 0551,
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and that (S?, S9) is the unique equilibrium solution which is globally attractive in
2
RZ.

Theorem 5.3.1
(i) If Ro < 1, then the disease-free equilibrium &y of system (5.27) is globally asymp-
totically stable;

(ii) If Ry > 1, then system (5.27) admits at least one positive w-periodic solution,

and solutions of system (5.27) are uniformly persistent.

Proof 12 If(S:(t), I1(t), Bi(t), Sa(t), I5(t), Ba2(t)) is a nonnegative solution of (5.27),

then we have

{SﬁogAr%%+ﬂﬂ&a (5.32)

52(75) < Ay — oSy + 055 .
Note that any nonnegative solution (S1(t), Sa(t)) of system (5.31) approaches (S, S9)
as t — oo. It then follows from the standard comparison theorem (see, e.g., [75,

Theorem A.4]) that for any € > 0, there is a T > 0 such that
Si(t) <SP +e, i=1,2, fort>T. (5.33)

Thus, fort > T, we have

L(t) < [aa(O)h+ B B(S) +€) = [0r + e + ml (5.34)
Bi(t) < ¢ —diBy, (5.35)
bt) < [aa(t)Ts+ BoBa(t)] (S0 +€) — [1ts + o] Lo + 0,11, (5.36)
By(t) < ¢o(t)]y — doBs. (5.37)
Define
[l (1)(SY+€) Bu(t) (S + e) 0 0 ]
Ft) = 0 0 0 0
‘ 0 0 as(£) (S +€) Ba(t)(SY + ¢)
I 0 0 0 0 |

By [55, Thorem 2.2/, we have Ry < 1 <= p(¢r-v(w)) < 1, where p(¢pp_v(w)) is

the spectral radius of ¢pr_v(w), and ¢pp_yv(w) is the monodromy matriz of the linear
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w-periodic system dy/dt = (F —V)y. Then we can set € sufficiently small such that
p(or _v(w)) < 1. As a consequence, the trivial solution (0,0,0,0) of the following

linear w-periodic system

L(t) = [oa(®)I + Bi(t)B1)(SY + €) — [0; + c1 + ]I, (5.38)
Bi(t) = ¢ (t)I — dyBy, (5.39)
Lt) = [oa(t)]y+ BaBa(t)](SY + €) — [ja + co]Io + 6,14, (5.40)
By(t) = ¢o(t)Iy — dyBs, (5.41)

is globally asymptotically stable. Again by the comparison theorem, we know that
Li(t) = 0,B;(t) = 0 as t — oo fori =1, 2. Finally, the first and fourth equations
of system (5.27) imply that S;(t) — S? ast — oo fori =1, 2. This proves the result
in part (i).

Now we consider the case Ry > 1. We define X = Ri, Xo = ]Ri X Int(Ri), 0Xy =
X\Xo, and denote S(t) = (S1(t), 9(t)), I(t) = ([1(t), I2(t)), B(t) = (Bi(t), B2(t)).
It 1s easy to see that both X and Xy are positively invariant. Let P : Ri — Rﬂ
be the Poincaré map associated with system (5.27); that is, P(xg) = u(w, xo) for all

zo € RS, where u(t,xg) is the unique solution of (5.27) with u(0, ) = xo. Set
My = {(5(0), 1(0), B(0)) € 0Xo : P™(5(0),1(0), B(0)) € Xy, Vm > 0},

M:{(S,],B) SZO, ]:<O,]2), B = (O,BQ), IQ ZO, B2 ZO}

We first show that
My = M. (5.42)

Clearly, M C Mpy. For any (S(0),1(0), B(0)) € 0Xo\M, if 1;(0) > 0,15(0) =
0,B(0) = 0, then B1(0) = ¢1(0)I;1(0) > 0,1,(0) = 6;(0)I;(0) > 0. It follows
that I(t) > 0,By(t) > 0 for 0 < t < 1, hence By(t) > 0 for 0 < t < 1,
which implies B(t) > 0 for 0 < t < 1. If By(0) > 0,1,(0) = 0, then I,(0) =
a1(0)B1(0)S1(0) > 0, we can still obtain I(t) > 0, B(t) > 0 for 0 <t < 1. Thus, we
have (S(t),1(t), B(t)) ¢ 0Xo for 0 <t < 1. By the positive invariance of X,, we
know that P™(S(0),1(0),B(0)) ¢ 0Xo for m > 1, hence (S(0),1(0),B(0)) ¢ My,
and thus (5.42) holds.
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Now consider the fived point My = (S°,0,0) of the Poincaré map P, where
SO = (S9,89). Define W5 (My) = {x¢ : P™(x9) — My, m — oo}. We show that

WS (M) N Xy = 0. (5.43)

Based on the continuity of solutions with respect to the initial conditions, for any
e > 0, there exists 6 > 0 small enough such that for all (S(0),1(0), B(0)) € X, with
[1(5(0), 1(0), B(0)) — My|| < 4, we have

[|lu(t, (S(0),1(0), B(0)) — u(t, Mo)|| <€, Vte[0,w]. (5.44)
To obtain (5.43), we claim that

limsup ||P™(S(0), 1(0), B(0)) — My|| > 9, V(S5(0),1(0),B(0)) € Xo. (5.45)

m—ro0

We prove this claim by contradiction; that is, we suppose

limsup ||P™(S(0), 1(0), B(0)) — M| < 4§

m—r0o0

for some (S(0),1(0),B(0)) € Xo. Without loss of generality, we assume that
1P(S(0). 1(0). B(0)) — Mpl| < 6. ¥m > 0. Thus

llu(t, P™(S(0), 1(0), B(0)) — u(t, Mo)|| < e, Vte[0,w] and m>0. (5.46)

Moreover, for any t > 0, we write t = to + kw with ty € [0,w) and k = [t/w], the

greatest integer less than or equal to t/w. Then we obtain

[lu(t, (5(0), 1(0), B(0)) — u(t, Mo)|| = [[u(to, P™(5(0), 1(0), B(0)) — u(to, Mo)|| < €

(5.47)
for any t > 0. Let (S(t),1(t), B(t)) = u(t,(S(0),1(0), B(0)). It follows that —e <
S(t) — 5% < 6,0 < I(t) < € and 0 < B(t) < e. Again based on [55, Thorem
2.2], Ry > 1 if and only if p(Pp_v(w)) > 1. Thus, for € small enough, we have
p(Pr _v(w)) > 1 which immediately yields the contradiction as

lim [;(t) = oo, lim B;(t) =00, i=1,2.
t—o0 t—o0

Let P, : RY — R3 be the Poincareé map associated with (5.31). Then S° is

globally attractive in RZ\{0} for Pi. It follows that My is isolated invariant set in
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X, and notice that WS(MO)HXO = (). Hence, every orbit in My converges to My and
My is acyclic in My. By [58, Thorem 1.3.1], for a stronger repelling property of 0Xo,
we conclude that P is uniformly persistent with respect to (Xo,0Xy), which implies
the uniform persistence of the solutions of system (5.27) with respect to (Xo,9Xo)
[58, Thorem 3.1.1]. Consequently, based on [58, Theorem 1.3.6], the Poincaré map
P has a fived point (S(0), 1(0), B(0)) € Xy, and it can be easily seen that S(0) # 0.
Thus, (S(0),1(0), B(0)) € Int(R%) and (5(t), I(t), B(t)) = u(t, (5(0),1(0), B(0))) is

a positive w-periodic solution of the system.

5.4 Numerical results

In this section, we conduct some numerical simulation in order to verify our ana-

lytical findings. We list the model parameters and their numerical values in Table

=

5.1.

Table 5.1: Parameters and their values

Symbol Definition Value Unit Source

¢; Elimination rate due to brucellosis, (j = 1,2) 0.15 year~! [30]

ajo Averaged direct transmission rate, (j = 1,2) 1.48 x 10~% animal ~year=!  [30]

Bjo Averaged indirect transmission rate, (j = 1,2) 1.7 x 1071° pathogen™'year—! [30]

®jo Averaged brucella shedding rate, (j = 1, 2) 15 pathogen animal =1 [30]
year‘1

Os Averaged susceptible animals migration rate Varied year~1 -

0r Averaged infectious animals migration rate ~ Varied year™! -

ay Amplitude of oscillation in 3;(¢), ( =1,2) 0.8 - Assumed

as Amplitude of oscillation in «;(t), (j =1,2) 0.8 - Assumed

as Amplitude of oscillation in ¢;(t), (j =1,2) 0.8 - Assumed

a4 Amplitude of oscillation in g(t) 0.8 - Assumed

as Amplitude of oscillation in 6;(¢) 0.8 - Assumed

I Natural elimination rate, (j = 1, 2) 0.22 year—! [30]

A; Recruitment rate, (j = 1,2) 11629200  animals year—'  [30]

d; Pathogen decay rate, (j = 1,2) 3.6 year~1 [30]

S;(0) Initial number of susceptible, (j = 1,2) 5.185 x 107 animals [30]

I;(0) Initial infected animals, (j = 1,2) 1.33 x 10%  animals [30]

B;(0) Initial load of brucella, (j =1,2) 6 x 10° pathogens [30]
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Using the parameter values in Table 5.1, we first perform a numerical study on
the autonomous model (5.1). Our main analytical result, Theorem 5.2.4, states the
global asymptotic stability of the two nontrivial equilibria, & and & . Numerically,
we vary the animal migration rates s and 6; so as to generate different values of
R1 and Rs. For each of these scenarios, we pick a number of initial conditions and
conduct separate simulations to system (5.1). Figure 5.1 illustrates a case where
we set g = 07 = 0.2 which results in Ry = 0.75 < 1, Ry = 3.27 > 1, and all
solution curves converge to the equilibrium &£, = (2.77 x 107, 0, 0, 2.39 x 107, 3.22 x
107, 1.34 x 108) over time. The same convergence pattern is observed throughout
the regime Ry < 1, Ry > 1, though & changes as 0 and #; vary. In contrast,
Figure 5.2 illustrates that when we set g = 6; = 0.1 which results in R; = 1.2 > 1,
all solution curves converge to the equilibrium & = (3.03 x 107, 4.11 x 10°, 1.71 x
107, 2.29 x 107, 2.71 x 107, 1.13 x 10%). As g and 0 vary, &, also changes but the
same type of convergence to & is numerically observed for all R; > 1. These results
demonstrate the analytical predictions in Theorem 5.2.4.

Next, we turn to the periodic model (5.27) and numerically demonstrate the
threshold dynamics result in Theorem 5.3.1. Figure 5.3 plots the time evolution
of two infection curves, I; for patch 1 and I, for patch 2, when Ry < 1. We
clearly observe that both curves approaches the disease-free equilibrium &, (where
I, = I, = 0) over time. Though not shown here, the same pattern is observed when
we vary the initial conditions for I; and I, an evidence for the global asymptotic
stability of & when Ry < 1. Figure 5.4, on the other hand, illustrates the case with
Ry > 1. We observe that each infection curve converges to a periodic solution with
a period w = 12 months, highlighting the persistence of the infection when Ry > 1.
Particularly, we note that the infection curve I stays at a much higher level and
exhibits a much stronger oscillation than those with the curve /;, showing a higher
disease prevalence and risk associated with patch 2 due to the animal migration.
This result indicates that in a (simple) population system of two patches where
animals migrate from patch 1 to patch 2, with otherwise identical characteristics
between the two patches, more prevention and intervention efforts should be devoted
to patch 2 in order to control brucellosis outbreaks. Furthermore, such disease

control strategies should take into account the seasonal fluctuations of brucellosis so
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as to make best use of available resources.

<107 R,=0.75, R2=3.2?

Figure 5.1: Phase portrait illustrating the global stability of & for system (5.1) in the
So-15 plane with Ry < 1, Ro > 1. Each curve in the plot corresponds to a different initial
condition, and all these curves converge to the equilibrium & (where So = 2.39 x 107, I, =

3.22 x 107) over time.
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82 x107
Figure 5.2: Phase portrait illustrating the global stability of & for system (5.1) in the Sa-
I plane with R; > 1. Each curve in the plot corresponds to a different initial condition,

and all these curves converge to the equilibrium & (where Sy = 2.29 x 107, I =2.71x 107)

over time
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Figure 5.3: The infection curves for the two patches associated with system (5.27) when

Ry < 1. Both curves converge to the disease-free equilibrium & over time.
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Figure 5.4: The infection curves for the two patches associated with system (5.27) when

Ry > 1. Each curve converges to a periodic oscillation with a period w = 12 months.

5.5 Conclusion and discussion

We have proposed a new mathematical modeling framework for the dynamics of
brucellosis, incorporating multiple transmission pathways and both spatial and tem-
poral heterogeneities. As a demonstration of this framework, we have focused on a
two-patch model throughout this chapter. We started our analysis on the two-patch
model with fixed coefficients (an autonomous system) where detailed results were
obtained, showing the rich dynamics of brucellosis transmission due to the spatial
variation. In particular, we have thoroughly characterized the multiple equilibria
of the system and their stabilities, using the reproduction numbers associated with
the model. In the second part of this study, we extended our model to a time-
periodic environment that represents seasonal oscillation. We then calculated the
basic reproduction number, Ry, for this periodic two-patch model and established
the threshold result: when Ry < 1, the disease-free equilibrium is globally stable;
when Ry > 1, the disease is uniformly persistent.

For our autonomous model, we were able to completely determine its local and

global dynamics. Particularly, we applied the geometric approach to prove the global
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asymptotic stability of the nontrivial equilibria. For the periodic two-patch model,
however, the dynamics are more complex. Although we were able to establish the
uniform persistence result, we have not resolved the stabilities of the nontrivial
periodic orbits when Ry > 1 and that remains an interesting topic for our future
research. Nevertheless, our current study demonstrates that the incorporation of
spatial and temporal variations leads to rich and complex dynamics that are distinct
from those observed from prior models based on homogeneous environments. Our
results also indicate that the prevention and intervention strategies need to take
into account the spatial and temporal heterogeneities in order to effectively control
brucellosis while optimize the use of available resources.

Our current study on the spatial modeling of brucellosis is based on the patch
structure, and we plan to extend this work to a more general setting with an ar-
bitrary number of patches. We expect that many results presented in this chapter
can be similarly established for the general spatial setting. On the other hand,
a different approach to model spatial heterogeneity is to utilize partial differential
equations (PDEs), for example, by adding diffusion terms to an ODE model so as
to represent the movement and dispersal of the animals and the pathogen, and by
adding convection terms to represent the migration of animals. Seasonal variation
can be similarly incorporated by considering periodic model parameters, resulting in
a periodic PDE system. Such a periodic PDE model can be possibly analyzed using
techniques recently proposed by Zhao and co-workers [83, 84, 85]. In particular,
the basic reproduction number can still be defined which can be used to investigate
the threshold properties of the model. It will be very interesting to compare the

threshold dynamics from these two modeling approaches: one based on multi-patch
periodic ODEs and the other based on Periodic PDEs.
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Chapter 6

On the role of short-term animal
movements on the persistence of

brucellosis

6.1 Introduction

Brucellosis, a highly contagious zoonotic disease, remains a significant public health
threat worldwide. It is estimated that more than 500,000 new cases of the disease are
reported annually [42], with incidence as high as 200 cases per 100,000 of the popu-
lation in most endemic countries [43]. Majority of brucellosis infections occur in: the
sub-Sahara Africa in countries such as Ethiopia, Chad, Tanzania, Nigeria, Uganda,
Kenya, Zimbabwe and Somalia due to high level of pastoralism; the Middle East,
Spain, Latin America and Asia-in particular South-east Asia where factors such as
pastoral farming practices, beliefs and lack of bio-security have been attributed to
persistence of the disease [44]. Since human transmission of brucellosis is considered
to be negligible [3], measures to effectively control brucellosis in humans ultimately
require a thorough control of the disease among domestic cattle, camels, goats and
sheep.

Transmission and control of brucellosis in both human and animal population
remains a complex phenomena that possibly involve the type of farming practised

in the area, economic, geographic and environmental structures, as well as the in-
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trinsic disease biology and ecology. In particular, animal movement plays crucial
role on transmission and control of the disease. For example, in communal farming
zones animal movements are highly uncontrolled compared to private farming. Prior
studies have demonstrated that, on a daily basis, a single cattle herd in a commu-
nal farming zone has the potential to mix with at least five heterogeneous herds
at both the communal grazing and watering points. Since livestock management
varies from one farmer to another, it is evident that understanding the volume of
these movements and the risks associated with them is fundamental in elucidating
the epidemiology and control of animal diseases.

Mathematical models have proved to be important tools that can aid our under-
standing as well as provide solutions to phenomena which are complex to measure in
the field. Recently a number of mathematical models have been proposed to explore
brucellosis transmission and control, see for instance [31, 32, 38, 66, 86, 87, 67]. For
example, Dobson and Meagherin [86] used nonlinear ordinary differential equations
to describe brucellosis transmission among the bison population in the Yellowstone
National Park (YNP). Abatih et al. [38] mathematically analyzed the brucellosis
model proposed in [86]. Lolika et al. [31] applied a non-autonomous model to discuss
the effects of optimal vaccination and environmental decontamination on long-term
brucellosis dynamics among cattle in periodic environments. Yang et al. [66] de-
veloped a two-patch model with risk heterogeneity in which animals immigrated
between two different risk environments. Their work utilized a Eulerian approach
for mobility. However, the Eulerian approach has some limitations, for instance it
neither incorporates the concept of residence times nor the effective population size.
Here the term residence times refers to the average proportion of daily time an an-
imal spends in a given patch. Therefore to gain a better and more comprehensive
understanding of effects of animals movements on brucellosis dynamics, a model
should incorporate a Lagrangian approach- which is capable of accounting for the
effects of residence times and the effective population size per patch.

In this chapter, we consider a dynamical model to describe the role of short-
term animal movements on the persistence of brucellosis. The proposed two-patch
model incorporates all the relevant biological and ecological factors as well as short-

term animal movements which are modeled using the Lagrangian approach. For the
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purpose of distinction between the hosts, we assumed that patch 1 is a high risk
environment, that is, brucellosis control measures in this patch are poorly managed.
The reverse is assumed for patch 2. Thus, disease transmission in patch 1 is assumed
to be higher relative to patch 2. Further, disease transmission is assumed to occur
through direct contact and vertical transmission. In addition, since vaccines are
often unavailable or expensive to farmers in communal farming zones we assumed
that a more sensible approach to control the spread of the disease is culling of

infected animals.

6.2 Modeling framework

We developed a mathematical model to study the transmission and control of bru-
cellosis within an environment defined by two-patches of heterogeneous risk. Our
model is a modification of the one developed in [38]. Precisely, the model in [38] is
a single-patch framework.

Let N;(t) represent the total population of animals in patch i at time ¢, i = 1,2.
We assume that animals of Patch ¢ spend p;; € [0, 1] time in Patch j, with 2321 Dij =
1, for each . Thus, animals of Patch 1 spends, on the average, the proportion pi;
of their time in residency in patch 1 and the proportion pis of their time in patch 2
such that p;; + p12 = 1.

Similarly, animals of patch 2 spend the proportion pys of their time in patch 2
and pa; = 1—pag in patch 1. Therefore, at time ¢, the effective population in patch 1
is p11 N1 + p21 Ny while the effective population of patch 2, at time ¢ is p1o N1 + paa No.
Susceptible animals of patch 1 (S7) could be infected contagiously, in patch 1 (if
currently in patch 1, that is., p1151) or in patch 2 (if currently in patch 2, that is.,
p1251). It follows from the above discussion that the effective proportion of infectious

individual in patch 1 is

puli + parls
p11N1 + par No

Consequently the effective proportion of infectious individual in patch 2 is

pi2di + paols
p12N1 + paa Ny
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The following system of ordinary differential equations (ODES) account for the

brucellosis dynamics in two patches:

4 = Nz‘(Nz‘ —ez'fz‘) _Zg 1@%5 zk 2Py L — piSi + 0i R;,

dt 1 Prs Nk
% = pieil; + ZJ 1@1%5 Ek 15:2{;2 (i + ou)1;, (6.1)
% = oy — (i + i) Ry

Where the variables S;(t), I;(t) and R;(f) represents the susceptible, infectious
and recovered population, p; is recruitment rate of animals and it is assumed to be
equal to natural death rate of animals, thus, p; ! represents the animal’s commercial
lifespan, e; (0 < e; < 1) denotes a proportion of new recruits that are infected with
brucellosis and the complementary proportion (1 — e;) represents those that are
susceptible to infection, §; denotes the disease transmission, «; is the recovery rate,
0; denotes immunity waning rate. Disease related mortality is considered negligible.

Thus, the total population is constant and is given by N;(t) = S;(t) + Li(t) + R;(t).

Table 6.1: Parameters and values

Symbol Definition Units  Value Source
Dij Proportion of time that animals of patch 7 spend in patch j unit-less varies

B1 Susceptibility to brucellosis invasion in patch 1 year—! 1.63 [38]
5o Susceptibility to brucellosis invasion in patch 2 year ' 0.75 [38]
e Proportion of vertical transmission in patch 1 unit-less 0.9 [3§]
€9 Proportion of vertical transmission in patch 2 unit-less 0.4 [38]
L Recruitment rate in patch i (i = 1,2) year—! 0.04 [38]
0; Rate of loss of resistance in patch i (i = 1,2) year ! 0.2 [3§]
a; Recovery rate in patch i (i = 1,2) year—t 0.5 [38]
S;(0) Initial number of susceptible in patch i (i = 1,2) animals 4050 [38]
I;(0)  Initial infected animals in patch i (i = 1,2) animals 450 [38]
R;(0) Initial recovered animals in patch ¢ (i = 1,2) animals 0 [38]

It can easily be verified that the domain of biological interest

is positively invariant and attracting with respect to model (6.1).
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6.3 Disease dynamics for a single patch

If only a single patch, that is, ¢ = 1, is considered then system (6.1) reduces to

dd% = Nl(Nl_elll) _/81]{7—1151—/11514—51R1,
= B8 eyn]h — (m+ on), (6.3)
% = O4111 - (,Ul + (51)R1.

System (6.3) is isomorphic to the model proposed by Dobson and Meagherin
[86] and analysed by Abatih et al. [38]. As highlighted in [38], model (6.1) is well
defined supporting a sharp threshold property, namely, the disease dies out if the

basic reproduction number Ry; is less than unity, persisting whenever Ry, > 1 where
Rt — (B + erpir)

="

(a1 + 1)

6.4 The reproduction number
The disease-free equilibrium EY of system (6.1) is
E%: (8,83, I, Iy, RY, R3) = (N, N, 0,0,0,0).

The basic reproduction number, denoted by R is an integral quantity in epidemio-
logical model. It accounts for the average number of secondary infections generated
by a single infectious animal introduced in a fully susceptible population during its
average infectious period [50]. We utilized the next generation matrix approach [50]
to determine Ry. We begin with those equations of model (6.1) that account for the

production of new infections. We term this system (6.4) the infected subsystem:

dh, p11l1+po1ls pi2litpoals

{ L _ ekt B1p1151p11N1+p21N2 + 62p12slp12N1+P22N2 (Ml + 061)]17 (6 4)
dly  __ p11l1+po1ls pi2li+poals '
dt paealy + 61p2152P11N1+P21N2 T /82p2252p12N1+P22N2 (H2 + a2)l.

Using the next-generation matrix notations in [50], the non-negative matrix F
that represents the generation of new infection and the non-singular matrix V that

denotes the disease transfer among compartments, are respectively given by

1 + P31 B1 N1 p35B2N1 p11p2181 N1 p12p2282 N1
F = p11N1+p21 N2 p12N1+p22 N2 p11N1+p221N2 P12N1+p222N2
p11p21B81 N2 p12p22B2 N2 e + P31 81 N2 D592 N2
P11 N1+p21 N2 p12N1+p22 N2 22 P11 N1+p21 N2 p12N1+p22 N2
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and,
(1 + o) 0
0 (2 + )

V:

hy 0
) -

Then Ry, which corresponds to the dominant eigenvalue of the matrix FV =1, is

given by

maiha + mashy + \/(marhe — mashy)? + 4myamor hiy by
2k ko ’

Ro = p(FV ) =

after some algebraic manipulations, we have the following results

1 mip Moo miy ma )\ Amigma
Ro = = |+ +-2 —n Ty e 6.6
° 2(hl+h2+ ) T e | 69
with
2 BN 2 By N
My = el + p1151 1 plzﬁZ 1 ,
puilNVi +pailNo  pi1alNi + paa Ny
m o P11p2181 N1 P12p2282 N1
12 — )
puulNi +palNa  pialNi + paalNo
- p11p21 81 N2 P12P2282 N2
mo1 = + ,
pulVi +palNo  pi1alNy + paalNy
2 N 2 N
May = eapiy + p2151 2 X p2262 2

p11lN1 +parNo  p1alNy + paaNo’

b = (m+ar),  he=(u2+as).

We can write (6.6) as follows

1 > dmyom
Ro = 5 [(Ro+Rax) +1/ (Rt —Roz ) +——>—
2 hihs

where Ro; (i = 1,2) represents the disease risks for patches 1 and 2 in the absence

of animal mobility. From (6.6) we can observe that the basic reproduction number
is influenced by short-term animal dispersal.
To investigate the effects of short-term animal dispersal on the generation of

new infections, we compute the values of the basic reproduction number using a
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residence-time matrix in Table 6.2. More precisely, the residence-time matrix con-
figuration incorporates the coupling intensity and mobility patterns. For instance,
weak coupling implies that most animals stay in their own patch while strong cou-
pling implies that certain proportions of animals move to the other patch. Mobility
patterns represents the symmetry of animal movement between the two patches. For
example, symmetric mobility represents a scenario when an equal ratio of animals
move from patch 1 to patch 2 and vice-versa. However, if the ratio of animals that
move between the two patches is not equal then the mobility pattern is asymmetric.
Note that the total population of animals in the two patches is assumed to be the

same.

Table 6.2: Association between the basic reproduction number and the residence-

time matrix

Description Ro

Weak symmetric coupling p11 = 0.99, p12 = 0.01, ps; = 0.01, pao = 0.99 3.03
Strong symmetric coupling p1; = 0.7, p12 = 0.3, p2; = 0.3, pag = 0.7 2.31
Weak asymmetric coupling p1; = 0.9, p12 = 0.1, pa; = 0.001, ps = 0.999 | 2.80

- W NN =

Strong asymmetric coupling p1; = 0.7, p12 = 0.3, p2; = 0.001, poo = 0.999 | 2.36

Results in Table 6.2 demonstrate that the basic reproduction number will be
always high when coupling intensity is weak, that is, when most animal stay in
their patch. Further, the highest value of the basic reproduction number occurs
when the mobility pattern is symmetric. Using parameters values in Table 6.1, we
calculated the reproduction numbers for patch 1 and 2 in the absence of animal
dispersal and we obtained Ry, = 1.4 and Rg2 = 0.05. We can observe that, based
on our assumption that patch 1 is high risk, the highest reproduction number came
from this patch. In addition, we can observe that whenever there is animal mobility
the disease transmission risk increases globally than locally, for instance, in the
absence of animal mobility we expect brucellosis to die off in patch 2. It is worth
noting that results in Table 6.2 shows that when animal mobility increases the basic
reproduction number decreases, however, for all the cases demonstrated in Table
6.2 it will never drop below 1. Hence under our assumption we can conclude that

effective brucellosis control will always be difficult to attain whenever there is animal
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mobility.

6.5 Disease invasion and persistence

From the work in [50], we know that the DFE is locally asymptotically stable when
Ry < 1, and unstable when Ry > 1. Indeed, we can establish a stronger result

regarding the global dynamics of the DFE.

Theorem 6.5.1 If Ry < 1, the DFE 1is globally asymptotically stable in Q. If

Ro > 1, the system is uniformly persistent.

Proof 13 Let Y(t) = (11, I3). Since

al;  __ pr1li+po1la pi2li+poals

{ i et Gipn s, P11 N1+p21 N2 + Bap1251 p12N1+p22 N2 (,U1 + 0[1)[1’ (6 7)
dls pi1li+p2ila pi2li+poals )
e /1,262[2 + ﬁ1p2152p11N1+p21N2 + 62p2252p12N1+P22N2 (M2 + 062)[2,

it follows that

Uit) < (F-V)J,

where F and V are defined in (6.5). Motivated by [78], we define a Lyapunov

function as follows
U=uw"v1y.
Differentiating U along solutions of (6.1), we have

wTV_ly
< W'VHF-V)Y
= (Ro— 1wy <0, if Ro<1.

U(t)

It can be easily verified that the largest invariant subset of Q where U = 0 is
the singleton {E°}. Therefore, by LaSalle’s invariance principle [46], E° is globally
asymptotically stable in ) when Ry < 1.

If Ry > 1, then by continuity, U > 0 in a neighbourhood of E° in Q. Solutions
in sufficiently close to £° move away from the DFE, implying that the DFE is
unstable. In what follows we demonstrate that if Rg > 1, then the disease persists

and a unique endemic equilibrium point exists.
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6.6 Uniform persistence

System (6.1) is said to be uniformly persistent in the interior ) if there exists a

constant 19 > 0 such that
lim inf S;(t) > o, lim inf I;(t) > o, liminf R;(t) > no
t—o0 t—00 t—o00

provided that (S1(0), S2(0), I;(0), I5(0), Ry (0), R2(0)) € €. Biologically, a uniform
persistent system indicates that the infection persists for a long period of time.

Thus we have the following result.

Theorem 6.6.1 If Ry > 1, then the DFE is unstable and system (6.1) is uniformly

persistent in Q.

Proof 14 Let X = Q, z = (51,52, 1,2, R, R2) and Xog = {x € X|I + I, > 0}.
Hence, 0Xo = X\Xo = {z € X|I, = I, = 0}. Let ¢y be semi-flow induced by
the solutions of (6.1) and My = {x € 0Xo|tyx € 0Xo,t > 0}. By (6.2), we have
Vi Xy C Xo and 9y is bounded in X,. Therefore a global attractor for i, exists.
The disease- free equilibrium is the unique equilibrium on the manifold 0Xy and is
globally asymptotically stable on 0X,. Moreover Ugep,w(x) = {E°} and no subset
of M forms a cycle in 0Xy. Finally since the disease- free equilibrium is unstable on
Xo if Ro > 1, we deduce that System (6.1) is uniformly persistent by using a result
from [58] (Theorem 1.53.1 and Remark 1.3.1). This completes the proof of Theorem
0.6.1.

Theorem 6.6.2 If Ry > 1 System (6.1) has a unique equilibrium E*, which is
globally asymptotically stable.

Proof 15 We can reduce system (6.1) into four dimensional system by setting R; =
N; — S; — I; to get

i I
B = (N —edy) = 35 IBJpZJSZ“—;”“Nk 1:9; + 6;(N; — S; — I),
o= el +Z 15Jpw5 zk 1;:6{2 (i + ay) 1,
(6.8)
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We will use a result by Hethcote and Thieme in [88] to prove the uniqueness of the

endemic equilibrium. An endemic equilibrium (S}, 1) satisfies:

Ny — e [) = S Bypyy Sr Sl on 4 SN = Sp—IF) = 0,

3 i1 PR Nk
il + Zg 1 BJPZJS*&I—;J:JM (i + i) I} = 0,
(6.9)
The first equation of (6.9) gives
o = i (N; — eZI*)—I—é( —I7)

Ry ey o

Hence from the last equation of (6.9) we deduce that
P SRR AV SRR VT L0 > wrrv AN

i Z] 15]]91]2;@1_%“ i+ 50) pi(l —e;) + ay

Let

. . 22 B; ,Eizlpkﬂk
pi (N1 — ey I7) + 01(Ny — I7) y =1 PPy N

H _ Z?:l B]p1]%+(ﬂ1+51) M1(1_€1)+Oél
<x> - Zk 1pk31

,U2<N2—€2[*)+52(N2—I;) Z] 163]‘)23W

Zy 1 ijzjz’“—’m + (o + 52) po(l — es) + as

where © = (I}, 15). The function H(x) is continuous, bounded, differentiable and
H(Og2) = Ogz. The function H is monotone if the corresponding Jacobian matriz is
Metzler, that is all off-diagonal entries are nonnegative. We have the derivative of
H(z)

VACIRVAC)
Where

1 *

Ji(x) = S [(Ml(Nl—elll)
(pa(1 —e1) + an) (ZJ | 5;191]—’“ By (O 51)>

(Pn) B (P12) B2 (1
S Ny a 1pk2Nk

Zk 1 DIy Zi 1 Prgly
—E Bip; (61 + expin) § ﬁpl— (6.12)
’ ]Zk 1P kJNk) ’ jZk 1pk] ]

+61 (N1 = I7)) (
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Zi 1 PN Zi:l Pra Ny

(Nl(Nl—ellik)—i-(Sl(]\ﬁ—[f))( Pupafh + P12P22/52 )

Jo(z) =
(i (1= e1) + ) (3, Bipyy SELAE o+ (g + 1))
Zi:1 kJIk
R EL sy .
(2, Aoy S22 (i +-6y))
prip21 B P12P2232
Ny —egl2) + 6 — I +
j(x) (NZ( 2 2 ) 2( )) (Zz 1pk1Nk Zi 1pk2Nk> [
3 =
<N2<1 - 62) + OQ) (E] 1 ﬁjp2j Zk 1Ps! k + (M2 + 62))
L 16]132]2“—% ] (6.14)
(ZJ 1 BJPQJZICI—M + (2 + 52))
1 *
Ju(z) = , - [(M(Nz —el3)
(/11’2(1 — 62) + 062) <2j 1 ﬁ]pzyzk 1pkj]\;ck + (,U/Q + (52))

o (p21)*f (p22)* 2
+05(Ny — I3)) (Zi TS lpme> (1

Zk 1 Prily, Zi 1 Priy;
5]}92] > (52 + Eall2 /8]p2]—:| (615)
Z Ek 1 Pri N, Z Zk 1 Pri N,

Since, Jo(x) > 0 and J5(x) > 0, hence all off-diagonal entries of the Jacobian matriz
are nonnegative and so, the function H(x) is monotone. Therefore by monoticity of
a matriz H(x) implies that model (6.1) has a unique positive fized point if and only
if Ro > 1. This completes the first part of the proof for Theorem 6.6.2 and due to
less traceability of our model we will utilizing numerical simulations to demonstrate

the global stability of the endemic equilibrium (see Figure 6.1).
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Figure 6.1: Phase portrait illustrating the global stability of £* for system (6.1) in the
S1-I; plane with Ry = 2.84 (we set 81 = 52 = 1.5). Each curve in the plot corresponds
to a different initial condition, and all these curves converge to the equilibrium £* (where

S1 = S9 = 1500, I} = Iz = 1000) over time

6.7 Optimal culling

Vaccination and culling of infected animals are the only feasible ways to control
brucellosis transmission. Vaccinating animals prevents susceptibility to the disease
and culling of infectious animals reduces the density of infected animals thereby
reducing the contact between susceptible and infected animals. However, in many
brucellosis endemic countries farmers cannot afford the cost of vaccines, and this
leaves culling as the only disease intervention strategy. In this section, we wish to
explore the impact of culling on controlling the spread of the disease. Thus, we will
modify model (6.1) to include culling control w;(t), i = 1,2. The controls, u;(t) are
represented as functions of time and assigned reasonable upper and lower bounds.

The modified model is given by

% = MZ<N1 ) Zg 16]19135 Zk 1 Pig 1 _MiSi+5iRi7

1 Pkj Nk
CZlItZ = pieil; + Z] 1 B]pljs Zk 15:2{;; (s + ui(t) + ay) 1, (6.16)
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The control set is defined as
O={u|0<w(t)<U,}, i=12,

where U; denotes the upper bound for the culling effort in patch .

In what follows we introduce an objective functional J to formulate the optimiza-
tion problem of interest, namely, that of identifying the most effective strategies over
the admissible set of (u1(t), ua(t)). The overall objective is to minimize the numbers
of infectious animals over a finite time interval [0, 7] at minimal costs. The objective

functional J is thus defined as
J(ul, UQ) = Jl(ul) + J2<u2)
= A1[1 + Blulfl + 7’&1 dt + AQIQ + BQUQIQ + 7u2 dt
0 0

T
C C
= / |iA1[1 -+ AQIQ + Blulll -+ BQUQIQ + éu% + 72U3‘| dt, (617)
0

where .J; and J; represents objective functions for patch 1 and 2 respectively, A;, B;
and C; are positive balancing coefficients transferring the integrals into monetary
quantity over a finite period of T" years. Precisely, A; represents the cost (due to the
loss of animals) associated with the number of infected animals in patch i and B;
represent the cost associated with the number of infected animals culled in patch <.
The objective functional in (6.17) also includes quadratic terms with coefficients C;,
to indicate potential non-linearities in the costs.

The existence and uniqueness of optimal control can be proven by applying a
standard results in optimal control theory [61, 62]. The necessary conditions that
optimal controls must satisfy are derived using Pontryagin’s Maximum Principle [63].
Thus, system (6.16) is converted into an equivalent problem, namely the problem of

minimizing the Hamiltonian H given by:

2
C; ds; dl; dR;
H(t) = AL + Baw L, + —u? + Ag,— + A\, — 4+ Ap.— | ,
®) Zl( TR e As g ’dt+R’dt>

where A, (t), g = S,1, R, i = 1,2, are the adjoint functions to be determined. Thus,
given an optimal control pair (u}, u}) and corresponding states (S;, I;, R;), there
exist adjoint functions [61] satisfying

dys,(t)  OH  d\i(t)  OH D (t)  OH
7 - ? — d L = — . . ]_
dt 85, dt o, " dt OR, (6.18)
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From (6.18) we have

(D5 = ds (s~ M) T By Bl =19
T= Os M) (v e
+H0hs, = n) (FEREG + EERRE ) — Av— B i~ An)
< Fper(As, — An) 4 (u1 +u)Ap
T = Qs =) (GRReur o e )
P11iN1Tp214V2 P12iN11TP22IN2
+(As, = An) <pn?\lff)fza§?1v2 T plz%ﬁizzvz) — Az = Byus + as(Ar, = Ar,)
+poea(As, — Ar,) + (p2 + u2)Ap,
| B = pidr, 0 —As), i=12,

(6.19)
with transversality conditions Ay, (7") = 0. Furthermore, the optimal controls are
characterized by the optimality conditions:

wi(t) = min{Ui,max(%ﬁ)}, i=1,2 (6.20)

In what follows we will utilize the forward-backward sweep method [61] together
with parameter values in Table 6.1 and the residence-matrix defined in Table 6.2 to
determine numerical solutions of our optimality system. Our main goal will be to
explore the effects of optimal culling on the transmission and control of brucellosis

under the following cases:
(a) Scenario 1: No culling in high risk population (patch 1), that is, u; = 0.
(b) Scenario 2: Low intensity culling in high risk population, u; = 0.45.

In all the above scenarios we assumed that culling intensity in low risk population
is always above average and we fixed it at uys = 0.8. Scenario 1 is assumed to apply
to farmers who rear livestock near game reserves. Prior studies highlighted that
livestocks reared in proximity to game reserves mix with wildlife on almost daily
basis [89], despite the fact that in many countries where brucellosis is endemic,
intervention measures to control the spread of zoonotic infections among wildlife
are not available. Scenario 2 represents heterogeneity on culling intensity. This
scenario may exist in communal farming zones where one farmer say X may have

resources (knowledge and financial capacity) to perform culling at the high intensity
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while another farmer say Y does not have enough resources to perform culling at an
intensity that does not exceed the average.

In all the simulation results presented in this section we used parameter and
initial values from Table 6.1 as well as the residence matrix in Table 6.2. For sim-
plicity, in our numerical simulation we set A; = A = 1 so that the minimization of
the infectious animal population has the same importance/weight in all the patches.
Further, we set B; = By = 0.2 and C; = Cy = 2 x 107°. The values of the weight
constants B; and C; were determined through numerical simulations, precisely for
these values the cost are low and the control efforts can be applied at maximum
intensity in all scenarios suggested above.

For each strategy and coupling intensity described in Table 6.2, we find the total

number of new infections given by the following formula

' = I+1%

T 2 22
_1 Prjl
= prerdy + Bip1jS1 E=2== 2 dt
/0 [ 2 P > et Pii Nk
T
+
0

2
Zk_lpkj]k] gt
where I'; represent the total number of new infections for path ¢ and the total cost

(6.21)

j=1

2
paeals + Z Bp2jSa

J=1

S r 1 P N

associated with infected animals and the controls .J, which is given by (6.17). In
what follows we determine the effects of optimal culling under different coupling

intensity and mobility patterns (see Table 6.2).

Table 6.3: The total number of newly infected animals over a ten-year period and

the total cost J with respect to the control strategy under scenario 1.

Iy Iy r Ji | J2 J Ro
1] 7.12x10% | 950.321 8.06 x 103 | 0 | 162.15 | 162.15 | 3.03
2| 5.81x10% | 3.95%x10% | 9.76 x 103 | 0 | 499.38 | 499.38 | 2.31
3] 6.835 x 10% | 1.665 x 10° | 8.5x 103 | 0 | 239.95 | 239.95 | 2.80
4 16.13x10% | 250 x10% | 8.63x10% | 0 | 331.68 | 331.68 | 2.36

In Table 6.3 we present the values of the total number of new infections and

J for scenario 1.
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infections recorded in patch 1 over a ten-year period under all possible coupling
cases is I'; = 7.12 x 103 and this occurs when the coupling intensity is weak and the
mobility pattern is symmetric. Moreover, when the coupling intensity is weak and
the mobility pattern is symmetric patch 2 records the lowest total number of new
infections is 'y = 950.321 under all possible coupling cases over the same period.
However, this coupling case (weak and symmetric) is associated with the lowest total
number of new infections I' = 8.06 x 10 as well as the total cost J = 162.15. We
surmise that due to weak animal mobility the spread of the disease will be highly
confined in independent patches, with more infections being observed in the risk
patch (patch 1).

In Table 6.3 we can also observe that strong symmetric coupling gives the lowest
total number of new infections for patch 1 only I' = 5.81 x 103, while patch 2 will
record the highest total of new infections I'y = 3.95 x 10® and overall this will yield
the highest total of new infections I' = 9.76 x 10 in the community. This clearly
demonstrate that increased short-term dispersal of animals strongly influence the
transmission and control of brucellosis.

Next, we compare the impact of presence and absence of time dependent culling
on brucellosis transmission dynamics under scenario 1 (Figure 6.2-6.5) over a ten-
year period. Figure 6.2-6.5 shows the number of infected animals per patch, with and
without optimal culling under weak symmetric coupling, strong symmetric coupling,
weak asymmetric coupling and strong asymmetric coupling, respectively. As we can
observe, whenever the coupling is weak despite its skewness, then the optimal control
policy will not have a significant impact in patch 1 compared to patch 2 where the
number of infections decrease with time. However, whenever the coupling is strong
the number of infected animals in both patches decrease with time but with more
effect being noticed in patch 2 where there is disease control.

Figure 6.6 shows the optimal control profile for uy(t): (a) when the costs of
culling are low and (b) when the costs of culling are high (we set By = Cy = 2),
recall that due to the absence of control in patch 1, u1(¢) = 0. As is shown, when the
costs of culling are either low or high, the control profile starts from the maximum
initially and stays there for more than half of the entire period before it switches to

its minimum. Precisely, when the costs of culling are low the control profile stays
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at its maximum for a longer period of time compared to when the costs are high.
This clearly demonstrates that the control is highly sensitive cost parameters, thus
under low costs optimal culling can be implemented at maximum intensity for a

long period of time.

Table 6.4: The total number of newly infected animals over a ten-year period and

the total cost J with respect to the control strategy under scenario 2.

I I'y r Ji Jo J Ro

4.98 x 103 | 747.20 5.73 x 103 | 5.74 x 10® | 1.02 x 10® | 6.76 x 10% | 3.03
3.32 x 10% | 247 x 10% | 5.79 x 103 | 3.94 x 103 | 2.44 x 103 | 6.38 x 103 | 2.31
4.70 x 10% | 1.02 x 10% | 5.72 x 10% | 5.42 x 10% | 1.25 x 103 | 6.67 x 10% | 2.80
3.74 x 10° | 1.38 x 10° | 5.12 x 10% | 4.38 x 10% | 1.53 x 10% | 5.91 x 10% | 2.36

=~ W NN

We further investigate the impact of low intensity optimal culling in the risk
patch (patch 1), we set u; = 0.45 while us remains fixed at 0.8. Results for this
scenario are depicted in Table 6.4 and Figure 6.7-6.11. As we have observed earlier
(Table 6.3) the highest total number of new infections occurs when the coupling
intensity is weak and symmetric. We also observe that the presence of control in
patch 1 leads to a reduction in the total number of new infections by 30.1%, 21.4%
and 28.9% in patch 1 only, patch 2 only and overall (patch 1 and patch 2 combined),
respectively. From Table 6.4 it is also evident that the lowest total number of new
infections occurs when we have strong asymmetric coupling, I' = 5.12 x 103. As
observed in Table 6.3, the highest total number of new infections in the community
will occur under strong symmetric coupling, I' = 5.79 x 103.

Figure 6.7-6.10 demonstrates the impact of optimal culling under all possible
coupling cases. As shown, in Figure 6.7-6.10 the total number of infected animals
per patch decreases as a result of the optimal policy. Figure 6.11 shows the optimal
control profiles for controls u;(t) and wus(t) with low cost parameters. As we can
observe, both u; and wy starts from the maximum initially, and stays there for a

long time before they switch to the minimum just before the final time horizon.

127



6.8 Discussion

We have provided a mathematical framework to investigate the role of short-term
animal dispersal on transmission and control of brucellosis in a heterogeneous popu-
lation. The proposed model comprises of two patches and animal dispersal has been
modeled using a Lagrangian approach. Our study is applicable in communal lands
where animal mobility is highly uncontrolled. Hence it is well known that a single
herd of livestock in these communities can be exposed to a high variable number of
contacts with others herds of livestock for a short time frame. This heterogeneity
in animal contacts may contribute significantly to the transmission and control of
brucellosis.

The basic reproduction number Ry of the proposed model was computed and
analyzed. We observed that it is a function of several factors such as the trans-
mission rates, natural mortality rate, proportions of vertical transmission and the
proportion of time that animals of each patch spend in their patch and the other
patch. Precisely, we found that R depends on the characteristics of both patches.
However, in the absence of animal mobility we observed that each patch has its own
reproduction number Ry; ¢ = 1,2, which depends entirely on the characteristics of
that patch. With the aid of model parameter values and initial population levels
in [38], we demonstrated numerically that whenever there is no animal mobility
Ro1 = 1.4 and Rgpo = 0.04, which implies that the disease dies out in low risk patch
(patch 2) and persists in high risk patch (patch 1). However, with animal mobility
incorporated we noted that Ry will always be greater than 2 demonstrating that
animal mobility will increase the spread of the disease in the community. In partic-
ular, we observed that Rq will be highest when the coupling intensity is weak and
the mobility pattern is symmetric, Rg = 3.03. Analytical methods were also used to
demonstrate that whenever Ry < 1 then the brucellosis dies out in the community
and when Ry > 1 a unique endemic equilibrium exists and the disease is uniformly
persistent.

Meanwhile, we applied optimal control theory to the proposed model to identify
optimal culling strategies that can lead to effective control of brucellosis in the
community. Two controls representing culling of infectious animals in each patch

were incorporated into the original model. Two possible scenario that characterize
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disease control in developing nations were evaluated. Scenario 1 entails no control
(we set u; = 0) in high risk patch while control is above average (we set ug = 0.8)
among the low risk population. We hypothesized that this scenario mirror livestock
farming in areas that are in proximity to wildlife. Due to the unavailability of
resources in most developing nations, it follows that control of brucellosis among
wildlife is less prioritized. In scenario 2, we set u; = 0.45 and us = 0.8. We also
suggested that this scenario may represent two herds of livestock that belong to
two different farmers who share grazing lands. One farmer may have some financial
resources to maintain culling at an intensity above average while the other does not
have enough financial capacity to do so.

Under scenario 1 we observed that the lowest and highest total number of new
infections will be recorded in the community under weak symmetric coupling and
strong symmetric coupling, respectively. Meanwhile we observed that by introducing
a control in high risk patch, the total number of new infections decreases by 30.1%,
21.4% and 28.9% in patch 1 only, patch 2 only and overall (patch 1 and patch 2
combined), respectively. The numerical results provided evidence that, as expected,
controlling the two patches gives the best reduction in brucellosis prevalence. Our
result show that animal mobility plays an important role in shaping the long term
dynamics of brucellosis, which subsequently impact the design of its optimal control
strategies.

Several avenues for future research arise from this work. First, future research
should asses the role of seasonal variations and short-term animal mobility on the
persistence of brucellosis. Seasonal availability of water and pastures have a signifi-
cant influence on pastoral farming, hence there is need to investigate its impact on
the persistence of brucellosis. Second, although we were able to establish the unique-
ness and uniform persistence result for the endemic equilibrium, we did not resolve
the stability of this equilibrium point analytically and that remains an interesting

topic for our future research.
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Figure 6.2: Simulation results of the proposed two patch brucellosis model for sce-
nario 1 under weak symmetric coupling (a) the number of infected animals in patch
1 (b) the number of infected animals in patch 2. In all the figures the dotted blue

and solid black curves represent the infected population, without and with control,

respectively.
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Figure 6.3: Simulation results of the proposed two patch brucellosis model for sce-
nario 1 under strong symmetric coupling (a) the number of infected animals in patch
1 (b) the number of infected animals in patch 2. In all the figures the dotted blue
and solid black curves represent the infected population, without and with control,

respectively.
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Figure 6.4: Numerical illustrations demonstrating the effects of optimal interven-
tion strategies on controlling the long-term brucellosis dynamics for scenario 1 under
weak asymmetric coupling (a) the number of infected animals in patch 1 (b) the num-
ber of infected animals in patch 2. In all the figures the dotted blue and solid black

curves represent the infected population, without and with control, respectively.
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Figure 6.5: Numerical illustrations demonstrating the effects of optimal interven-
tion strategies on controlling the long-term brucellosis dynamics for scenario 1 under
strong asymmetric coupling (a) the number of infected animals in patch 1 (b) the
number of infected animals in patch 2. In all the figures the dotted blue and solid
black curves represent the infected population, without and with control, respec-

tively.
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Figure 6.6: The control profile for scenario 1 (a) low costs (b) high cost of culling
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Figure 6.7: Simulation results of the proposed two patch brucellosis model for sce-
nario 2 under weak symmetric coupling (a) the number of infected animals in patch
1 (b) the number of infected animals in patch 2. In all the figures the dotted blue
and solid black curves represent the infected population, without and with control,

respectively.
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Figure 6.8: Simulation results of the proposed two patch brucellosis model for sce-
nario 2 under strong symmetric coupling (a) the number of infected animals in patch
1 (b) the number of infected animals in patch 2. In all the figures the dotted blue
and solid black curves represent the infected population, without and with control,

respectively.
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Figure 6.9: Numerical illustrations demonstrating the effects of optimal interven-
tion strategies on controlling the long-term brucellosis dynamics for scenario 2 under
weak asymmetric coupling (a) the number of infected animals in patch 1 (b) the num-
ber of infected animals in patch 2. In all the figures the dotted blue and solid black

curves represent the infected population, without and with control, respectively.
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Figure 6.10: Numerical illustrations demonstrating the effects of optimal interven-

tion strategies on controlling the long-term brucellosis dynamics for scenario 1 under

strong asymmetric coupling (a) the number of infected animals in patch 1 (b) the

number of infected animals in patch 2. In all the figures the dotted blue and solid

black curves represent the infected population, without and with control, respec-
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Chapter 7

Dynamics and stability analysis of
a brucellosis model with two

discrete delays

7.1 Introduction

Brucellosis is one of the neglected zoonotic diseases that remains a major public
health problem world over, especially in Middle Eastern countries, southern Europe
and North Africa, countries in South and Central Asia, sub-Saharan Africa, Mexico,
the Caribbean, and countries in South and Central America [90], with an annual
occurrence of more than 500 000 cases [43].

In animals, brucellosis is usually transmitted through direct contact between a
susceptible and an infectious animal or indirectly, i.e. when a susceptible animal
ingest contaminated forages or the excrement containing large quantities of bacteria,
generally discharged by infected animals [39]. In humans, however, majority of the
infections result from direct or indirect exposure to infected animals or consumption
of raw animal products such as unpasteurized milk or cheese [91]. Since human-to-
human transmission of the disease is extremely rare [64], the ultimate management
of human brucellosis can be achieved through effective control of brucellosis in live-
stock. Some researchers postulates that eradication of brucellosis in animals can be

attained by combining vaccination with test-and-slaughter programs [90].
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Mathematical models have proved to be essential guiding tools for epidemiolo-
gists, biologists as well as policy makers. Models can provide solutions to phenom-
ena which are difficult to measure practically. Recently, a number of mathematical
models have been proposed to study the spread and control of brucellosis (see, for
example [5, 30, 31, 39, 66, 44, 92, 93, 94, 95, 33], and references therein). A limita-
tion of these previous studies however, is the non-inclusion of the time taken before
an infectious animal is detected and culled, despite the fact that in many countries
where the disease is endemic lack of financial and human resources often results on
delay in detection and culling of infectious animals. The size of this delay may play
an important role on minimizing the spread of the disease in the community.

It is therefore essential to gain a better and more comprehensive understanding of
the effects of time delay on brucellosis transmission and control. Prior studies have
shown that epidemic models with time delay often exhibit periodic solutions and as a
consequence understanding the nature of these periodic outbreaks plays a crucial role
on designing policies that can successful control the disease. In fact, a recent analysis
of brucellosis dataset in countries where the disease is endemic have shown that the
disease incidences exhibit a strong periodic behavior with mortality and morbidity
of the disease concentrated in a few months each year [27, 28]. Understanding the
impact of such seasonal variations is crucial on managing the spread of the disease
in the community.

Our main goal in this chapter is to explore the dynamics and stability analysis
of a brucellosis model with two discrete delays. Hence we formulated a mathe-
matical model, that incorporates two discrete delays. The first delay represents the
incubation period while the second accounts for the time taken to detect and cull in-
fectious animals. In addition, we subdivide the total animal population into classes
of susceptible, vaccinated, infectious undetected and infectious detected animals. In
certain situations immediate slaughter of detected animals may not be feasible and
more often these animals are isolated from the rest. However, due to lack of finan-
cial and human resources, in addition to lack of knowledge and attitude of farmers,
isolation of detected animals has not been a successful practice in most developing
nations where animal infections are rampant. Thus in our modelling process we

assume that a proportion of detected animals that are not immediately culled are
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also responsible for disease transmission. Utilizing both analytical and numerical
results we have demonstrated that the two delays can destabilize the system and
lead to Hopf bifurcation.

The chapter is organised as follows. The model description is given in Section
7.2. Analytical and numerical results are given in Section 7.3 and 7.4, respectively.

We end with Section 7.5 of conclusions.

7.2 Mathematical model

We subdivide the total animal population N(t) into compartments of: susceptible
S(t), vaccinated V (t), undetected infectious animals [;(¢) and infectious detected
and unculled I5(¢). Although, brucellosis can be transmitted indirectly (environ-
mental transmission), prior studies [92, 30] suggest that indirect transmission plays
a relatively small role on the spread of brucellosis, and as such we have ignored this
aspect in our study. Brucellosis dynamics in this study are governed by the following

autonomous system:

(B0 = A-BIL() + (1 —p)L)SE) — (u+0)S(E) + KV (2),
VO = 55(t) — B + (1 — P LE)]V(E) — (n+ KV (),
WO — B —7) + (1= p) Lt —m)][SE—7) +V(E—m)]  (T.1)
—(a+ p+d)L(t),
RO = ali(t— 1) — (u+c+d)hL(t),

where A is the recruitment rate through birth, p is the natural death rate, j is
the disease direct transmission rate, p is the fraction of detected animals that have
been culled, o is the vaccination rate,  is the vaccination waning rate, 7, represents
the latency delay, 7 is the delay in detection, ~ is the modification factor, « is the
rate at which animals are detected and quarantined, c is the culling rate of detected

animals, d disease induced death.
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7.3 Analytical results

7.3.1 Initial conditions

The appropriate space for system (7.1) is X = C([—7,0],R}) the Banach space of
continuous functions mapping the interval [—7, 0] into R equipped with sub-norm
where 7 = max{, 72 }. From the standard results of functional differential equations
[96] it follows that, given any initial conditions xy € X there exists a unique solution
o(t, x0) = (S(t,z0), V(t,x0), [1(t, x0), I2(t, 20)) of system (7.1), which satisfies ¢y =

Xp, the initial conditions are given by
S(0) = zg(0), V(0) =x3(0), L(0) =x5(0), L(0) =xp(0), 0€[-7,0, (7.2)

where 2o = (23,23, 23, 3) € X, with z§(0) > 0, (6 € [-7,0],4 = 1,2...,4) and
23(0), 75(0) > 0.

7.3.2 The basic reproduction Number

By direct calculation, we find that system (7.1) when 7 = 75 = 0, has a disease-free

equilibrium &9, given by £° = (S°,V*,0,0), with

Alp+ Kk +0)
plp+o+K)

so= AWER) e AT g g0 0=
plp+o+ k)’ plp+ o+ k)’

By utilizing the next generation matrix method [50], one can deduce that the
basic reproduction number of model (7.1) is

B(S* + V) (a(l = p) + ka)

RO = kl k’g )

with ky = (u + a+d), and ks = (1 + ¢+ d).

7.3.3 Stability of the disease-free equilibrium

In this section, we study the local and global stability of the disease-free equilibrium.

Theorem 7.3.1 The disease-free equilibrium E° of model (7.1) is locally asymptot-
ically stable when Ro < 1 and unstable when Ry > 1.
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Proof 16 To study the local stability of the disease-free equilibrium E°, we linearized
system (7.1) about this point and obtained the characteristic equation, given by the

following determinant:

~(u+ o)A . e —B(1 - p)8"
o —(utr)=A —yBV? 81 —p)V° 0
0 (SO + AV Be A — Ky — X B(SO +AVO) (1 — ple ™ ’
ae A2 —kog — A
(7.3)
where \ is the eigenvalue.
From (7.3) the characteristic equation is
{)\ + u}{(A +o+ K+ u)}{P\ + ko] [A + Ky — B(S° + V%) e ]
—(1=p)aB(8° + Ve XL g, (7.4)

Clearly, —p and —(o+rK+pu) are eigenvalues and the other two can be determined

from the following equation
(A4 ko)A + ky — BS® +4V0)e™™) — (1 = p)aB(S° 4+ 4 VO)eXmt™) =, (7.5)
Let
g\, 71, ) = Ak ) A+ —B(SP 44V ) e ) = (1—p)aB(SP 44V 0)e M mF72) - (7.6)

Through direct calculation one can easily verify that g(\, 71, 7T2) is an analytic

function and it follows that

9(077—17 7—2) - k1k2<1 - R0)7
9(A,0,0) = (A + k) (A + k1 = B(S® + V7)) = (1 = p)aB(S° + V7).
Now we proceed to investigate the distribution of the solutions of (7.5) in the

following cases.

(a) If Ry < 1, then g(0,71,72) > 0. Since the derivative g) (A, 71, 72) > 0 for A >0
, 1 >0 and 5 > 0, (7.5) has no zero root and positive real roots for all
positive 1 and . Now we assume that the solution of (7.5) does not have
any purely imaginary roots A = iw, (w > 0) for some 71 > 0, 75 = 0. Then by

computation, w must be positive real root of
wh+ {k] + k3 — [B(S° + VO w® + (kiks)?
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— [B(S" +9V°) [z + a(1 = p)]]* = 0. (7.7)

If Ry < 1 the equation (7.7) has no positive roots. Hence (7.5) does not have
any purely imaginary roots. We can easily see that the roots of g(A,0,0) =0
all have negative real parts when Ry < 1. By the implicit function theorem
and the continuity of g(\, 71, T2), we know that all roots of (7.5) have negative

real parts for positive T, and 1o = 0 which implies that £° is stable.

(b) If Ry =1 then g(0,71,72) > 0. Since the derivative g'(\, 71, 72) >0 for A >0,
71 >0 and 75 > 0, (7.5) has a simple zero and no positive root for all positive
71 and To. By the same argument in case (a), we can obtain that all roots of
(7.5) have negative real parts for positive 71 and 15 = 0 except a zero root.
Thus E° is a degenerate equilibrium of codimension and is stable except in one
direction.

(c) If Ry > 1, then g(0,7,72) < 0. Since we have )\h_{go (A, 71,72) = o0 and
g (A T1,72) >0 for X\ >0, 7 >0 and 7o > 0, (7.5) has a unique positive real

root for all positive 7, and 5 = 0 and E° is unstable.

Theorem 7.3.2 The disease-free equilibrium of model (7.1) is globally asymptoti-
cally stable when Ry < 1 and unstable when Ry > 1.

Proof 17 We denote by x; the translation of the solution of the system (7.1), that
is, vy = (S(t+0),V(t+0), [(t+6), I,(t+0)) where 6 € [—7,0] and T = max{7, 72 }.

We consider the following Lyapunov functional

) = HDE R B g 22028 oy an
SEECEDER [ 110+ (- @50 + VO] .

Taking the derivative of U along the solutions of (7.1) gives
dU(zy) Bla(l —p) + ko

BlL(t — 1)+ (1 —p)la(t —1)]|[S(t — 1)

dt B k1ks
+V(t —1)]
el gy PP g ) - 1 - p) )
4B [oz(lk—ll:;) + k2]ﬁ[h(t) + (1= p)LOSE) + 4V (1)]
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_6[06(1 —p) +k2]6[11(t_7—1) + (1 _p)]2(t—71)][5(t—7'1)

k1ko
+V(t —71)]
+§géiﬁah@)—§gé}@ah@-4w
_ p [Ol(lk—lkp;) + kz]ﬁ [S(t) + V()] [I1(t) + (1 — p)Ix(t)]

—BL(t) + (1 = p) (1]

< p |Zell=t ISV ] )+ 0 - piac
= BIR— 1RO+ (1 - D)) 79

Therefore, U < 0 holds if Ry < 1. Furthermore, U = 0 if Ro = 1. Therefore,
the largest invariant set of U is a singleton {E°} such that S(t) = S°, V(t) = V°,
I,(t) = Iy(t) = 0. It follows from the LaSalle’s invariance principle [46] that the
disease-free equilibrium of system (7.1) denoted by E° is globally asymptotically stable
whenever Ro < 1. This completes the proof of Theorem 7.3.2.

7.3.4 Disease persistence

System (7.1) is said to be uniformly persistent if there exists a constant 79 > 0 such
that any solution (S(¢), V(t), I1(t), Io(t)) of (7.1) satisfies

lim inf S(t) > no, lim inf V' (t) > no, liminf ;(t) > no, liminf I5(t) > no.
t—o0 t—r00 t—o00 t—

Now we give a result on the uniform persistence of system (7.1). To proceed we
introduce the following notation and terminology. Denote by P(t),t > 0 the family
of solution operators corresponding to (7.1). The w-limit set w(z) of = consists of
y € X such that there exists a sequence t,, — 00 as n — oo with P(t,)r — y

as n —r Q.

Theorem 7.3.3 System (7.1) is uniformly persistent, if it satisfies Ro > 1.

Proof 18 Let
X0 ={zg € X : 23(0) > 0,235(0) > 0}, 09X = X\X° = {zp € X : 23(0) =
0 or x3(0) =0} which is relatively closed in X.

In what follows we demonstrate that X° is positively invariant for P(t). From
the third and fourth equations of (7.1) we have

Q%QZ—W+M+®L@,Q%Qz—m+c+@g@. (7.9)
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Since I,(0,z¢) = x3(0) > 0, we have I5(0,z0) = x4(0) > 0 it follows from (7.9)
that

L(t,20) > x3(0).e” @Dt (¢ 20) > xp(0).e” Wttt > 0.

Thus X° is positively invariant for P(t).
We set
My ={xo € X : ¢(t)zo satisfies (7.1) and ¢(t)zo € 0X, VYt > 0}.

We claim that

Assuming ¢(t) € My, Yt >0, it suffices to show that I,(t) = Ir(t) =0, Vt > 0.
If it is not true, then there exists to > 0 such that either (a) I1(ty) > 0, I»(ty) =0;
or (b) Ii(to) = 0, Ix(ty) > 0. For case (a), from the fourth equation of (7.1) we
have

|:d[2

— :Ozll(tO—Tg) > 0.
dt :|tt0

Hence there is an €y > 0 such that I5(t) > 0, Vt € (to,to+€0). On the other hand,
from I,(t) > 0 there exists €; (0 < €1 < €y) such that I (t) > 0, Vt € (to,to + €1).
Thus we have 11 (t) > 0, Is(t) > 0, YVt € (to, to+€1) which contradicts the assumption
that (S(t),V (t), 1(t), Is(t)) € My, ¥Vt > 0. Similarly, we can obtain a contradiction
for case (b). This proves the claim (7.10).

Let F = Nzepw(x), where Fy is the global attractor of P(t) restricted to 0X.
We show that F = {E°}. In fact, from F C My and the first and second equation of
(7.1), we have lim;_,, S(t) = S° and limy_,o, V(t) = V°. Thus, {E°} is the isolated
invariant set i X.

Next we show that W5 (E%) N Xy = 0. If this is not true, then there exists a
solution (S*, V' It IL) € X° such that

A A
lim S(t) = _Awts) Vit)= —=2 lim L,(t) = 0,
t—oo N(N + o+ K,) t—o0 N(U + o+ ,‘1) t—o0
lim Io(t) = 0,.
—00
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For any sufficiently small constant € > 0, there exists a positive constant Ty =
To(€) such that S(t) > S° —e >0, V(t) > V® —¢e >0, Vt > Ty. For the constant ¢
given above, it follows from the third and fourth equations of (7.1) that

d[;;t) > BIL(t—1)+ (1 —p)L(t —m)][(S° —€) +7(V° — )]
—(a+ p+d) (1),
d[;it) = ali(t—n)—(u+tc+d)L(t), t>Ty+T1 (7.11)

If I1(t), Is(t) — oo, then by a standard comparison argument and the nonneg-
ativity, the solution

(I,(t), I1(t)) of the following monotone system

d];it) = ﬁm(t—ﬁ)*(l_p)f2(f—71)][(80—e)+7(v0_€)]
i —(a+p+d)L(t),
d];iﬂ — Oéfl(t - 7'2) - (M +c+ d)[;(t)’ t>Ty+71 (7.12)

with initial condition Iy(t) = I, (t), L(t ) I(t), Vt € [Ty, To+ 7| converges to (0,0)
as well. Thus lim;_, o /VV( t) =0, where W ( ) > 0 is defined by

Wiy - ZE R PP 2202 [ (o] dc
+ﬁ2[a(1—p)+k2]l[€(i0—e)+’7(‘/ 6)] /t [1,(¢) + (1 — p)L(¢)]dC.

Differentiating W(t) with respect to time t yields

[.dm)_] B [52[a<1—p>+k2} [<S°—e>+v<V°—€”—5}
dt (7.12) bk

SACERCESAIAGHE

B [a(1 —p) + ko] [(S° — €) + (V" — )]
. k1 ko
sufficiently small €. Therefore W (t) goes to either infinity or a positive number as

Since Ry > 1, we have — B >0 for a

t — 00, which leads to a contradiction with lim, ﬁ/\(t) = 0. Thus we have
WS(EYY N Xo = 0. Definem : X — Ry by m(zy) = min{x3(0),23(0)}, Voo € X. It
is clear that X° = m™(0,00) and 0X = m=(0). Thus by [97] theorem 3 we have
liminf, oo (L1(t), I2(t) > (m,m) for some constant ny > 0. Let ny = min{n, €}

143



where € is the constant such that liminf, . S(t) > € >0, liminf, ,, V(t) > € > 0.
We showed that liminf, .., S(t) > no, liminf, .o V(t) > no, liminf, . I,(t) >
no, liminf, o I5(t) > no. This completes the proof of Theorem 7.3.3.

7.3.5 Existence of the endemic equilibrium

Theorem 7.3.4 If Ro > 1, model (7.1) admits a unique endemic equilibrium.

Proof 19 The endemic equilibrium E* = (S*,V*, I, 1) of model (7.1) is determine

by equations

(A= B0+ (1= DBMOISE) — (1+0)SE) +rV(E) = 0
oS0 =80+ (1= DBEOVO = (et V) = 0
PILE) + (1 =p)L@]SE) + V()] = ki Li(2) = 0,
L Oé]l(t) - kQIQ(t) = 0.
From the last equation in (7.13) we have
_al,
L=t (7.14)
The first two equations in (7.13) gives
. ApyB(1 + = ”)>Il+u+m]
B L o)A+ Lt kK] — ko
Py (7.15)
vV o=
B+ 2N+ i+ o)[yB1+ ) + i+ K] — ko
For I # 0, substituting (7.14) into the third equation in (7.13) gives
 kik
SHAV = g (7.16)
Substituting (7.15) into (7.16) yields
F() = AWBA+ 2N+ pu+ K+ 0] B k1 ks
YU B0+ N+ o+ o] yBA+ LN+ p k] — ko Bla(l —p) + k]
(7.17)

Direct calculations shows
2
AB? (142G [9281201 + S0 4 29(y0 + o+ K)D | + M
8L+ 1+ i+ o)[yB(1+ 2522 I + o+ K] — ko)

F/<Il) - — < 0,

(7.18)
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where

M = AB [1 + O‘(lk—;p)} [vo (26 4+ p) + Yo(u+0) + (n+ k)]

then the function F(I;) is monotonic decreasing for Iy > 0, then we can define

the function

k1 ko
Blo(l = p) + ko]
Therefore, by monotonicity of a function F(Iy) there exists a unique endemic
equilibrium £ = (S*, V* I}, 13)

7.3.6 Stability of the endemic equilibrium

In this section, we will investigate the local and global stability of the endemic

equilibrium point.

Theorem 7.3.5 The endemic equilibrium E* of the system (7.1) is locally asymp-
totically stable if Ro > 1 and conditions (7.21) are satisfied.

Proof 20 The characteristics equation of system (7.1) on the infected equilibrium

E* is given by the following determinant

—(p+o)—A K -pS* —pB(1—p)sS*
- — X =BV Bl —p)V*
o (1 + r) B 7B(1 = p) 0, (7.19)
731 32 733 T34
0 0 ae™2 —(u4c+d) — A
with
ra = B} + (1 —p)l5le ™™, rap = YA + (1= p)l3le ™,

rs3 = (STHAV)Be M — (a+p+d) — A ray = B(S* + V) (1 = ple .

After some algebraic manipulations one can show that the characteristic equation
has the form
Myt a X +a)+as +a,=0 (7.20)

with
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a1

a2

as

Q4

dp+rt+at+o+2d+c+ By + DI+ (1 —p)I) — (S +V)Be ™,

BHS + VI + (1= p)I)e ™ + ulp+ K+ o) +v84IF + (1 — p)I3)?
+8(yu+vo + K+ p) (I + (1 —p)Iy) — af(l —p)(S*+4V")e —A(r1472)
Hpt ot d = (S +V)Be ) 2+ ki + 0+ By + V(I + (1= p)I3))
Futetrd)ButrtotatdtBy+ 1)+ 1 -p))

—B(S* +AV*)e ™),

(B + V) (8 + 7o) + B2y(S* + V)T + (1= p) )] [I}

+(1 = p) 5] B

+ [W(S*+ V][I + A —p) ;] BPe ™ + pp+ K+ o] [,u—l—oz—l—d
—(S* + V) Be” An]

B2 I+ (L= p) B [n 4 a+d — (5™ +4V")fe "]
tulp4c+dp+ K+ o]

+8 v+ + p+ Rl I+ (1 =p) 5] [p+a+d— (S +~V*) e
8% [+ e+ d 1T + (1= p) BT + B2 [u+ ¢+ d] (5" +4°V7)

AL+ (L=p)5]e ™

B+ e+ d yp+yo+ k4 gl [+ (1=p) L]+ af?(1 = p)(S* +9°V7)
A+ (1 =p) ] e )
tote+rd2p+r+o+B0y+ 1)U+ —p)L)|p+a+d

(" +9V")e ]

—aB(1=p)(S* +V") 2u+ k40 + B(y + 1)(I; + (1 — p)I3)] e ™),

[t et d [B(S" + V) (5 +90) +98°(S™ + V(I + (1= p)13)]
I+ A= p) ) Be ™™ + [u+ e+ dl u(S*+ A2V [I] + (1 — p)I3] fre
tulptctd s+ p+o] [pta+d— (S +yV")Be ]

Bt e+ d I+ 0 —p) B [+ a+d— (S +4V)se ]
+olp+e+dhyptyo+r+pl [+ 1 =p) L] [p+a+d

_(S’* _|_fyv*)ﬂef)«rl]

+ayB2(1 = p)(S*o + KV*) I} + (1 — p)I3] e NT1+7)

+a(YB)2 (1 —p)V* [+ o+ B+ (1 — p)I)][IF + (1 — p)I;] e Nt
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I+ +~v8I5 + (1 —p) L) [T+ (1 —p)5]e” A(r1472)

+af*(1—p)S
(S*+AVI)|ulk +p+ o) + Blyp +yo + K+ p)(I7
]
(S

—af(1 - p)
+(1=p)3)
—afB(1—p

e~ A(T1+72)

+AV) [v82 (I} + (1 — p)I3)?] e Mt

By the Routh-Hurwitz criterion, all roots of the characteristics equation (7.20)
have negative real parts and the endemic equilibrium E* of system (7.1) is locally
asymptotically stable if 71 = 19 = 0, if and only if:

a; >0 (1=1,2,3,4), My = a; > 0,

ap as as
ap as
]\j2 = > O, M3 =11 ay au > Oa
1 a9
0 a; as

and

a; as 0 0

1 0
My=| M s (7.21)
0 a; as 0

0 1 Ao Ay

Now, we wish to explore if there is a possibility of having complex roots with
positive real part for (a) 7 > 0, 72 =0 and (b) 7 =0, 72 > 0. We now proceed to

explore the above cases as follows:

(a) If 1 >0, 5 = 0, then the characteristics equation (7.20) becomes
)\4 + a11>\3 + agl)\2 + agl)\ + a4 = 67)\71 (mu)\g -+ m21)\2 + mgl)\ + m41), (722)
with

ann = dpt+rtato+2d+c+B(y+ 1)U+ (1-p)),
azn = plp+r+o)+y8I5F + (1—p)3)?
+B(yu + yo 4+ K+ p) (U7 + (1 —p)l3)

+p+ta+d)u+r+o+By+ 1) +(1—p)I)))
+pte+d)Bp+r+o+a+d+p(y+ D)7+ (1 —p)l3)),
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azy =

Q41 =

mo1 =

ms3; =

mgy =

plp+r+ollu+at+d+82 [+ (1 -p)LP [p+a+d
tplpt+e+dp+r+ol+Bhyp+yo+p+ k[ +(1—p)L)
A+ a+d

+8% [+ e+ d I} + (1= p) 5]
+B[p+c+d [yp+vyo + k4 p] [I7 + (1 —p)5]
+p+te+d2u+r+o+BH+D)IT+ A —=p) )] [n+a+d],
plp+c+dk+p+olp+a+d

+18° [u+ e+ d I} + (1= p) L) [n+a +d|
+Bu+cet+dyp+yo+r+pl [l + (1 —pLlp+a+d,

2

(5" +V7)B,

—B*(S* +VI(UIT + (1= p)I3) + aB(l = p)(S* + V)
+(S* +VIBRu+ Kk + o+ By + DI} + (1 —p)3))
+(p+c+d)B(S* + V™),

— [B(S* + V) (5 +70) + B29(S* + V) (I} + (1 — p)I3)]

x[I7 + (1 —p)5] B

— (S + VI + (L =p) ] B2 + p [+ 5 + o] [(S™ + V)5
+B2 I+ (1= p) B [(S™ + V)]

+B [y +yo +p+ sl [T+ (1= p) ] [(S™+V7)]

—B [+ c+d (8" + V) [I} + (1 = p)1;)]

—af*(1=p)(S*" + V) [} + (1 = p)L5]
+lpte+d2utr+o+ B+ 1)U+ (1 —p L) [BS"+~V7)]
+aB(1=p)(S*+V") 2u+k+ 0o+ By + (5 + (1 —p)5)],

— [+ e+ [BS" +V7)(k +0)

B8 + AV + (A =p) )] I+ (1 —p) 5] 5
—[u+c+dp(S*+*VH)[IF + (1 —p) 5] 52

+plp+c+d [k +p+ ol [(ST+4V)3]

+98% [u+c+d [T + (1= p) I [(S™ + V") 0]

B+ cet+dyp+vyo+r+pl[I7+ (1 —p)L][(S"+~V")B]
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—ay2(1 = p)(S*o + V) [I} + (1 — p)I5]

—a(YB)P (1= p)V* [u+ o+ B} + (1 — p)I3)] I} + (1 — p)I5]
—af*(1=p)S*[p+k+8(I + (1= p) )] [I} + (1 = p) 5]
+aB(1 = p)(S" + V") [l + p + o)

B0+ 0+ k+ )0+ (1= p)I3)|

+aB(1—p)(S* +4V*) [vB2(UI5 + (1 = p)I3)?] .

Now we need to show that all roots of (7.22) have negative real parts for all
71 € (0,7%). To do so, we show that (7.22) does not have any purely imaginary
roots for all 7 € (0,7%) . We assume that X = iw with w > 0 is a root of

(7.22). Then w must satisfy the following system:

as1w — apw’ = (mziw — myw?) cos(wr) — (Mg — Mo1w?) sin(wry).

(7.23)

{ wh—anw? +ay = (ma — mow?) cos(wr) + (Ma1w — myw?) sin(wr),

Now, we square both sides of each equation above and add the resulting equa-

tions, thus w, must be a positive root of

CL)S + b1w6 + bgw4 + b3(JJ2 + b4 = 0, (724)
where
.
b1 = a%l — 2@21 — m%l,
by = a%1 + 2(ag — arraz +maymsy) — m%p (7.25)
by = Cl;2>,1 + 2(ma1ma; — ag1G41) — m%p
by = a3, —m?,.

\

Let z = w?, then (7.24) becomes

F(Z) = 24 + b123 + b222 + ng + b4 =0. (726)

One can observe that, if b; > 0, (i = 1,2,3,4), then (7.20) has no positive
roots. Therefore (7.22) does not have any purely imaginary roots for all T €
(0,7*) so that all roots of the characteristic equation (7.22) have negative real

parts and the endemic equilibrium E* of (7.1) is stable for all 7 € (0,7%).
(b) If 79 > 0, 7 = 0 then the characteristics equation (7.20) becomes
)\4 + 0611)\3 + 0421/\2 + 0531)\ + oy = €_>\T2 (n11>\3 + n21/\2 + ngl)\ + n41) (727)
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aq1

Qa1

31

Q41

ni

n3i1

dp+rk+ato+2d+c+ By + 1)+ (1—p) ) — (S*+4V*)B,

B2S™ + V) (I} + (1 = p)I3) + plp + & + o)

82+ (L= p)5)* + By +v0 + £+ p) (I} + (1 — p)I3)
Hp+ta+d—=(S"+V)B)2u+ K+ o+ By + 1)U + (1 —p)l3))
+pu+ce+d)Bu+r+o+a+d+By+ 1)+ (1—p)3)

—B(S* +~V7)),

[B(S* + V) (K +70) + B2y (S* + V)T + (1 = p) )] [I}
+(1 = p) 13 + [u(S™ + V)] I + (1 = p)I5] 52
—I—u[ﬂ—l—%&—i—a][#—l—a—i—d— (S*+7V*)6}

B [+ (1 =p) B [p+ a+d— (S +4V")8]
+ulp+ce+dp+ K+ o]

+B8 v+ +p+ sl [T+ (1 =p) L] [p+a+d— (S +V")S]
+y8 [+ e+ d [I7 + (1= p)I3]°

+02 [u+ e+ d| (8" + V) I} + (1 = p) 3]

+B [+ c+d[yu+vyo+k+p] 17+ (1= p)I5]
+ute+rd2p+r+o+ B0y + 1)U+ (1-p)3)]
Ap+a+d—p(S*+~V7)],

[+ e+ [BS™ + V) (K +70) + B2 (S* + V) (I} + (1 = p)I3)]
A7+ 1 -p)5]B

+p+ e+ d p(S*+ V)L + (1 —p)] 52
+ulp+ce+dk+p+o]p+a+d— (S +4V*)E]

+8° [u+ e+ d I} + (1= p) L [p+ a+d — (S +4V")f]
+Bu+c+dyp+yo+r+pl[lf +(1—-p)L]p+a+d

—(S* +~V")B,

0, nau=ap(l-p)(S"+V7)
—a*(1=p)(S* + ¥V [If + (1 — p)15]
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aB(1=p)(S"+V" ) 2u+k+o+B(y+ 1)U +(1—-p)3)],

ng = —ayf(1—p)(S*o +wV*) I} + (1 = p)I;]
—a(yB)*(L = p)V* [+ o+ BT + (1 = p) )] [IT + (1 = p)1;]
—af*(1=p)S* [p+ K+ 817 + (1= p) I 17 + (1 = p) 5]
+af(l—p)(S*+V") [M(H +u+o)+Byp+y0+ K+ p)
(I + (1 =p)I3)]
+aB(1 = p)(S*+V*) 827 + (1 = p)I3)°] .

Using the same discussion as in the above case then (7.27) can be written as

h(z) =2"+c12° + ez’ + 3z + 1 =0 (7.28)
with .
a1 = ai — 2y,
o = ai +2(aq — anaz;) —n3y, (7.29)
c3 = a3 +2(nging — azom) — Ny,
[ G4 = afy — ni;.

It follows that all roots of (7.27) have negative real parts for (0, 75) when
c; > 0,5 =1,2,3,4 and this implies that endemic equilibrium s locally asymp-

totically stable for 7 € (0,75) . This completes the proof.
We now explore the global stability of the endemic equilibrium.
Theorem 7.3.6 If Ry > 1, then £* is globally asymptotically stable.

Proof 21 Let us consider the Lyapunov function

W(t) = Wi(t) + Wa(t) + Ws. (7.30)
Here,
Wi(t) = {S(t) - 8" = 5"In (%)} + {V(t) —V*=V*In (@)}

+ {Il(t) — I} —I;In (%?) }

B pr;; WV {w) —I; - I;In (121(;)) } ’
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Wa(t) = BS*H/OH{W_“)S(““)—1—1n<11(t_“)5(t_“)>}dw

51 S+l
BV /Oﬁ{[l(t - &‘I/f(t —w) g ln(Il(t - ;)*‘]/;t - “’)) }dw
+B(1 — p)S*L /OTI{IQ(t - szg(t —w)
—m([?(t_gzzk(t_“))}dw
+By(1 —p)V*I /On{ut — C‘;)*‘[/;t —@)
(e,

Wi(t) = B(1—p)(S"+ V) /0{@ _ 1—1n(11<t]1: w)>}dw. (7.31)

The derivatives of Wi (t) are given by

AW (t) S* N dS VENdV I \dI
i (“%)541 m)a*(l Va
BU=p)(S" + VI (I \dby
* ol; (1 a [z(t)>ﬁ'
Substituting the appropriate differentials from (7.1) we have
DA = 1o g A Al + 0 - OISO - G+ 0)so +rv ()
{1 5 Hos® =800 + (1 =BV 0) = (u+ v (o)}
I
H1- g A =)+ (= p)b = n)l[s¢ - n)
FAV(t =7l = ku(0) }
AP VG ()
OéIik Ig(t)

L(t)

(7.32)

_|_

){OJI (t— 1) — kQIQ(t)}. (7.33)

At endemic equilibrium, we have

¢

A = BT+ =p ]S+ (p+0)S" = kV7,

(L+r)V* = oS =Bl + (1 —p) 5]V, (7.34)
koIt = BT+ (1 =p) L[S+ V7,

koI5 = olf.

\
Using the above constants we have

dV\;(t) _ g (2_%_%)+W* (2_5@. v .V<j§>>




(3= 5 = - 5o

e (Q_tﬁ?@g)_:§;>

s (S )

LBV (3_ SS(; [}(;)'Vv(? sty VV@))
O S S

+B(1 = p)La(t — 1) S(t — 1) <1 - i)
+M%@—ﬁWﬁ—ﬁ)O_I£Q

+6v(1 —p)ls(t — 1)V (t — ) (1 _ [1[(1;))

I Ix Ix
1=V (t—7)8% [ 22 — 2222
+B(1 = p) i (t — 1) ( ];I* IQ(?* If)*
— _ * _2 o 2 2
+67(1 = p)L(t — )V (ff [2@)'[;)_

The derivatives of Wy are given by

dWs(t)

dt

— 65]1d/ {Il(t—w)S(t—w)_1_1n<[1(t_

dt S+Tr

+ByV* 1525/ {]I(t_ )V(t— W)

E <“‘ >}

m I
SI2E 2 )—1

o <f“‘ >}
+Bv(1—p V12£ 0 {Izt—VI* .

_ln<I2<t - vz‘[/;(t = )) }dw’

o

S}

w)S(t —w)

e [T d (L(E—w)S(t—w) L(t—
BSAA W7 —_—

1 Il(t—w)V(t—w)
+B7V*I*/ — ;
Yo dt{ VI3

—ln(Il<t - c‘;)*‘[/f(t — w)> }dw

-1
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w)S(t — w)> }dw
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™ d Ig(t—w)S(t_w)
M S*]*/ dt : ~1
( ) 2 0 dt{ S*[Q

_ln(b(t —w)S(t — w)> }dw

S*I;
) IQ(t — w)V(t o w)
1— *Ix ad .

(MM,

o5y [T (P e w (PR

o d Il(t—w)V(t_w)

_1n<h(t —w)V(t - w>) }dw

VeI
—5(1 —p)s*[ék/o %{b(t — c;zik(t —w)
Lt — w)S(t — w)
—ln( S*I; >}dw
(1 - PV /0 %{ It — 5)*1[/;(75 W)
Lt —w)V(t —w)
LOSH  Lt—m)S(t—7) (Lt —7)S{t—7)
S Iy ST + 1n( O )]
+ByV*IT [Il g)*‘;f(t) ~ hLt- 22@ — 1)
Il(t - Tl)V(t — Tl))}
LV ()
L(t)S(t) L(t—mn)S(t—m)

+68(1—p)S 12[ T -

-1

—1

pS Iy [

-Hn(

S VI

(
Eb(t)V(t) Lt —m)V(t—1)
(
(

S L) V(t) L(t)
cie V() ()
By = p) BV

_BI(t—m)S(t — 1) — ByL(t — T)V(E —71)
—B(1 = p)Io(t —1)S(t —71)

+B(1-p LS —
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it Vi s (B S )

)S(t)
i (M)
——
+8v(1 — p)V*IZ ln( 2 = (gggt) )>. (7.36)

The derivatives of Ws(t) are given by

DU~ pa-ps vy [{HE (B )}
_ 5(1—p><5*+7v*>f;/07262{% N
~w)

= —6(1—p)(5*+vv*)1*/072%{Il(tllj )—1—1( (
— B = p)(S* + AV {11() [1(t—72)+1n<[1(t—72)>}

)i

I; I; L)
= 51 -ps A s - v B - 50 S BRG - w).
BV n). g+ 8- st (102
+ By(1—p)V*I;In (Il(;lgz)). (7.37)

Combining the derivatives of W;(t), for j = 1,2,3, we have

AV(t) . Si) S . SOV SV (1)
@ = M {2‘?‘%}”” 2‘5*V(t>‘S<t)V*}
St V(@) StV
5(2*_ VS*(t_ S*%(E?} ) L(t—m)S(t—7)
S 7 S O] ““( L(6)S() >}

e o - SR -
o (LTS IB ) )

v (s o - SOV Vot )

+1In (Il(t ;ﬁ;%; 71)) }



S* S(t)V* _ V(t—Tl)[ikIQ(t—Tl)

+6y(1 - p)V*1§{3 -

Sty S*V(¢t) VI ()
[1<t—7'2)[; [2(t-T1)V<t—Tl)[1(t—TQ)
T hnn " < LOVOL() )}‘
Note that
s s SOV SV s V) SHV
2S5 3w Ssve Tsove CSsm v Teve T

for all S(t) > 0 and V(t) > 0, because the arithmetic mean is greater than or
equal to the geometric mean. Further, note that G(t) = 1 — g(t) + Ing(t) is always
nonpositive for any function g(t) > 0 , and g(t) = 0 if and only if g(t) = 1.
Hence, it follows that W(t) < 0 and consequently, W(t) < 0. Moreover, the largest
invariant set of W(t) = 0 is a singleton where S(t) = S*, V(t) = V*, I,(t) = I7,
and Iy(t) = I5. Using the LaSalle’s invariance principle [46], we conclude that the
endemic equilibrium point £* is globally asymptotically stable if Ry > 1.

7.3.7 Hopf bifurcation analysis

In this section we determine criteria for Hopf bifurcation to occur using the time
delay 71 and 7 as the bifurcation parameters to find the interval in which the infected
equilibria is stable and unstable out of the same margins. Now to consider Hopf
bifurcation we consider the cases (a) 71 = 19 > 0, 75 = 0 and (b) 7o = 799 > 0 and
71 = 0. Our analysis is as follows:

dRe) (Tl())

T1

(a) When 71 = 119 > 0 and 7 = 0 we need to show that > ( differenti-

ating (7.22) with respect to 71 we get

d\
(4X% + 3a11 A% + 2a A + ag)——
dTl
= [—Tle_’\“ (mn)\g + mgl)\2 + m31>\ -+ m41) + €_>\T1 (3m11)\2

d\
+2mo A + m31)} i )\e/\n(mn)\?’ + mo A2 + mg N + my1).
1
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This gives

dA -1 4)\3 + 3&11)\2 + 2&21)\ + asy
dm — e A1t (mn)\3 + m21)\2 + mgi A+ m41)

3m11)\2 + 2m21)\ + maq 1

A(myi A3 4+ mag A2 + mai A + muyy) A

3)\4 + 2&11)\3 + CL21)\2 — Q41
—)\2(>\4 + CL11>\3 + a21>\2 + &31)\ + a41)

n 2m11)\3 + m21)\2 — My 71
)\2(77111)\3 +m21)\2 +m31)\+m41) A '

(i) ]

|: 3)\4 + 20,11)\3 + azl)\2 — Q41 :| ]
Re
A=iwo

Thus,

= sign

A=iwo

= sign
& —/\2()\4 + an)\?’ + a,gl)\Q + 6L31)\ + a41)
. 2mi A + mot A2 — muyy
+sign | Re
_)\2(m11)\3 + mgl)\Z + m31/\ + m41) A=iwo

, 3wy — 2a11Wit — agwd — ag
= sign |Re |——; T 5 :
I wh (wy — anwyi — agwj + az1woi + aqy)

B 3, 2
—|—Sign Re —2m11w01 — Ma1Wy — My

—w%(—mnwg’i — m21w§i + mglei + m41)
3&)8 + 2(@%1 — 2@21)&.}8 :|
| wil(ws — azwg + aa1)? + (aziwo — anwy)?]
(a3, + 2(aa — anag))wy — a3y }
:wg[(wé - azlwg + &41)2 + (CL310)0 - allwg’)?]
mi; — 2mj Wi — (m3; — 2muma)wg }

_W(Q)[(mu — m21w§)2 + (mg1wo — m11w8)2]

= sign

+sign

—+sign

3 8 2 2 2 -9 6
— sign wp + 2(aj; — mi; — 2a91)wp }

_w%[(wé — aglwg + (141)2 + (aglwo — allwg’)?]

[(a3, = m3; + 2(aa + miymg; — anaz))wy — aj, +mj,
+s1gn T > : - =
Lgo[(u’o 5 a21w02+ asn)? + ga31w0 ajwy)?
4 3 - -2
= sign wp + 3(ai; —mf a1 )Wp

| [(wg — 1w + aa1)? + (az1wo — annw;)?]
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2(a3; —m3; 4 2(as + mums — arrasy))wg + ko
[(wé — CLQlw% -+ CL41)2 -+ (a31w0 — anwg’)Z]

+sign
with
k’o = agl — m?,,l + 2(m21m41 — a21a41).

Lemma 7.1

Suppose that z;, i = 1,2, 3,4, are the roots of equation g(z) = z* + 9123 +
Yoz? + V3 + 194 =0 (V3 < 0) and z4 is the largest positive root, then

In our case considering F(2) = z* +b;23 4+ by2® + b3z + by = 0 defined in (7.26),

and assuming b3 < 0 and w? as the largest positive root we have

dF(z)
dRe) B dz -0
d7'1 [(wé — a21UJ(2) + a41)2 + (aglcU() — anwg’)?] '

The above analysis can be summarized into the following theorem:

Theorem 7.3.7 Suppose that (a) Ro > 1. If either (b) by < 0 or (c) by >0
and by < 0 is satisfied, and wy is the largest positive simple root of (7.26) then
the infected equilibrium E* of model (7.1) is locally asymptotically stable when

71 < T19 and unstable when T > 19 where

1
0 = — arccos[
wWo (

(m41 — mglwg)(wé — a21w§ -+ a41)
_ 212 _ 3\2
My — Maiwp)? + (Ma1wy — M wy)
(m31w0 - mnwé’;)(amwo - aan’) ]
)2

n (7.39)

(M1 — m21w8)2 + (ma1wo — man’

when T = 19, a Hopf bifurcation occurs, that is a family of periodic solutions

bifurcates from £* as 11 passes through the critical value Tyg.
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(b) When 75 = 159 > 0 and 74 = 0 we also need to show that

dTQ
differentiating (7.27) with respect to 7, we get
3 ) d\
(AN + Ba1 A% + 2001 A + 0631);
2
d\
— [—7‘26_>\T2 (7121)\2 + TL31)\ + 7'L41) + 6_)\7—2(277,21)\ =+ 77,31)} E
2

=2 2 (ngi A + ngy).

This gives

( d > -1 4)\3 + 30411)\2 + 20421)\ + Q31

d_Tz —\e A2 (nzl)\2 + nz A + 7141)

27121)\ + n31 D)

)\(ngl)\Q + TL31/\ + ’I’L41) X

3)\4 + 2@11)\3 + 0421)\2 — Oy
—XN2(M 4+ ap A+ an A2 + azi A + aq)

2
N1 A — Ny T2

)\2(7121)\2 + 7131)\ + 7141) X

v () ]

3N 4 201\ + agr N2 — agg
—)\2()\4 -+ 0611)\3 + 0521)\2 + 0531)\ + a41) A=iwg

Thus,

A=iwo

= sign [Re [

2
. R N1 A” — Ny
+sign | Re 2 2 3
(P21 A% + na A + nyq) A—iwo
r 4 3; 2
— sign | Re [ 3wy — 2011wt — Qo wh — Qg H
- 2(, A 3; 2 :
| [wilwp — anwpi — amwg + aziwgi + )
r 2
. —N21Wy — N1
+sign | Re {_ 22 2 4 )
L Wy No1Wyt Nn31Wot Ny
ra 8 2 6 2 4 2
s 3wy + 2(af; — 2091 )wy + (g + 2(a — anias))wy — oy
- wWi(wi — anwd + aq1)? + (aziwo — a1wd)?]
A 21W¢ 41 31Wo 11Wy
. nj, — ”%1“3
+s1gn

| wi[(na1 — n1w§)? + n3wg

dRe)\(Tgo)

|

> 0



. sign |: 3&)3 + 2(@%1 20621)&]8 :|
w — a21w0 + @41) + (Oégle — a11w8)2]
(a3, —n3 + 2(aqy — aras))wg
+sign 2]( 2 32
wE(wg — anwd + a41) +2(a31wo — aqwy)?
tsign [ ~ CY41 ‘2*’”41 —
w — Qra1Wy + a41) + (0431&)0 — Oénwo) ]

4wl + 3(a?; — 291w
= sign 1 2 2 32
[(wo — agwh + au1)? + (aziwo — awp) ]
2(a3; — n3; + 2(au — oqyom1))wp }
[(wé — Oéglwg -+ Oé41)2 + (a31w0 — Oélle’)Q]
o3 — n3; + 2(naina — az1aur) ]
wé — 06210.}8 + 0441)2 + (Oégle — anwg’)?]

+sign [

oien [[(

Lemma 7.2 Suppose that x;, 1 = 1,2,3,4, are the roots of equation g(x) =
ot 4+ o12° + 0o + 31 + 4 = 0 (3 < 0) and x4 is the largest positive root,

then
dg(x)
e 0.
{ dx }x:x4 g

In our case considering h(z) = z*+c¢12° + co2? + c32+ ¢4 = 0 defined in (7.28),

and assuming c3 < 0 and w? as the largest positive root we have

dh(z)
dRe\ B dz 50
dro [(wé‘ — a21w§ + ay1)? + (az1wp — 0411008’)2] '

The above analysis can be summarized into the following theorem:

Theorem 7.3.8 Suppose that (a) Ro > 1. If either (b) ¢4 <0 or (c) ¢4 >0
and c3 < 0 is satisfied, and wy is the largest positive simple root of (7.28) then
the infected equilibrium E* of model (7.1) is locally asymptotically stable when

Ty < Too and unstable when o > o9 where

1 (
Togg = — arccos
Wo

N4 — 7”021w§)(u)61 0421003 + 1)

(TL41 — nglwo) + nglwg
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nziwo(aziwe — Oéllwg) ] (7.40)

2 2 9
(na1 — ng1wg)? + N3y wh
when T = o9, a Hopf bifurcation occurs, that is a family of periodic solutions

bifurcates from £* as T passes through the critical value To.

From the analysis above, we can deduce that Hopf bifurcations may arise if
conditions in Theorem 7.3.7 and 7.3.8 are satisfied. Thus, the introduction of

time delay in system (7.1) can destabilize the system.

7.4 Numerical results

In order to explore the behavior of system (7.1) and illustrate the stability of the
equilibria solutions, we numerically solve system (7.1) using MATLAB and param-
eter values adopted from Table 7.1.

Table 7.1: Model parameters and variables and their baseline values

Symbol Definition Value Unit Source
d Elimination rate due to brucellosis, 0.15 year—! [30]
P Fraction of infectious animals culled upon detection 0.5 - [98]
B Direct transmission rate 3.844 x 1075 animal ~lyear—! [92]
K Vaccination waning rate 0.4 year—! [30]
] Natural elimination rate 0.25 year ™! [92]
~y Modification factor 0.18 - [30]
A Recruitment rate 76434 animals year—! [92]
o Vaccination rate 0.316 year—! [30]
« Detection rate Varied year—! -

c Culling rate 0.15 year ! [30]

In Fig. 7.1 we illustrate the effects of varying the delay (71 = 75) on the dynamics
of system (7.1). Figure 7.1(a) and (b) demonstrate that the system approaches the
stable disease-free or endemic equilibrium for Ry < 1 and Ry > 1, respectively.
One should note that according to Theorem 7.3.2 and 7.3.6, the stability of the
model steady states does not depend on the value of the time delays, but rather on
the basic reproduction number Ry, only. In addition, we observe that the range of

values for the two time delays does not lead to periodic solutions but an increase in
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both delays translate to an increase in the infectious population, both detected and
undetected.

Fig. 7.2 depicts the numbers of infectious undetected and infectious detected
animals over time with varying delays. The results clearly show that the incubation
related delay (71) has more influence on shaping the dynamics of brucellosis com-
pared to the culling related delay (72). More precisely, the incubation period delay
significantly increases the infectious population (both detected and undetected) for
0 <t < 20 and there after its impact will be the same as that of detection (7).

In Fig. 7.3 we illustrate the stability of the disease-free equilibrium £° with
71 = 30 and 75 = 5 (note that Ry = 0.686281). As we can observe, for certain
parameter values and initial population levels, system (7.1) exhibits some periodic
oscillation. Precisely, we note that the infected population (/;(¢) and I5(t)) oscillates
with a reduced amplitude from the start till when ¢ is approximately 400, thereafter
the oscillations dies off the solutions converges to the disease-free equilibrium. These
simulation results demonstrate the occurrence of periodic solutions through Hopf
bifurcation for delay values 7, = 30 and 75 = 5. In contrast, we can observe that
there are no periodic oscillations for the uninfected populations S(¢) and V (¢).

In Fig. 7.4, we demonstrate the dynamic for model system (7.1) with respect
to the stability of infection-free equilibrium for different pair of delay values (11, 72)
and from the simulation results we can conclude that both delays do not have a
huge influence on the stability of disease-free equilibrium.

In Fig. 7.5 we observe that for certain parameter values and initial popula-
tion levels, system (7.1) may admit periodic oscillations when Ry > 1. As we can
observes, when Ry = 3.77333 both the solutions of the infected and uninfected pop-
ulations exhibits periodic oscillation for a certain period, before stability at endemic
point is attained.

In Fig. 7.6, we illustrate the dynamics for model system (7.1) with respect to
the stability of endemic equilibrium for several pair of delay values (71,72). The
results confirm that the incubation related delay 7 has more influence on shaping
the dynamic of brucellosis compared to the culling related delay 7.

To explore influence of model parameters on the reproduction number Rg, we

perform a local sensitivity analysis of the basic reproduction number following the
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approach in [99]. The local sensitivity analysis will be useful on identifying param-
eters with greatest influence to change Ry. To this end, denoting by ® the generic
parameter of system (7.1), we evaluate the normalised sensitivity index

o IRy

Sp = — 0
TR, 0D

(7.41)

which indicates how sensitive Ry is to a change of parameter ®. Model parameters
with positive index increase the value of Ry whenever they are increased while those
with a negative index decrease the value of Ry whenever they are increased. We
consider the parameter values in Table 1, and we set a = 0.015 in order to evaluate
the normalized sensitivity index and the results are depicted in Figure 7.7. Here, we
observe that parameters A, (3, k, 7, have a positive correlation with Rg, such that
increasing these parameters will increase Ro. However, it is the increase of A and
that has the greatest influence to change Rg. Precisely, increasing either A or 5 by
50% will increase Ry by 50%. We also note, that increasing parameters ¢, u, o, d,

p, and «, will lower the reproduction number.

T T T T 1000 T T T T T T

800

B00F

dop

pill &

Figure 7.1: Stability of the infected and free-infected equilibrium of model system
(7.1) showing plots of I1(t) and I(t) with varying delay (13 = 73). The direction
of the arrow depict an increase in delay with a step size of 2.0 starting from 2.0
to 10. The blue patterns in both (a) and (b) highlights brucellosis dynamics when
Ro < 1 while the red pattern are for Rg > 1. Initial population levels were assumed
as follows S(0) = 1000 animals, V(0) = 500 animals, [;(0) = 500 animals and
I5(0) = 0 animals.
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Figure 7.2: Numerical solutions of model system (7.1) illustrating the effects of
different time delay on brucellosis infection level in the community. Initial popu-
lation levels were assumed as follows S(0) = 1000 animals, V(0) = 500 animals,

I,(0) = 500 animals and I5(0) = 0 animals.

164



Infetious undected animals, Il(l)

"
0 T

fime

%104 Vaccinated animals, V(t)

15

V()

05F

0 500
time

1500

Infetious detected animds, \2[1)

fne m i

fime

Susceptible animals, S(t)

500 1000
time

1500

()

Figure 7.3: Numerical solutions demonstrating the stability of £° equilibrium of
model system (7.1) with Ry = 0.686281. We set 7, = 30, 75 = 5, 8 = 6.844 x 1076
0.15 year™!, A = 16434 animals year~! and the

animal ™! year™!, v = 0.2, «

remainder retained the baseline values in Table 7.1.

Further, we set the initial

conditions as follows S(0) = 100 animals, V(0) = 0 animals, [;(0) = 10 animals and

I,(0) = 0 animals
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Figure 7.4: Dynamics of model system (7.1) for different values of (7, 7), which
illustrate the stability of infection-free equilibrium £° at Ry = 0.686281. We set
B = 6.844 x 107% animal™! year™!, v = 0.2, a = 0.15 year !, A = 16434 animals
year~! and the remainder retained the baseline values in Table 7.1. Further, we set
the initial conditions as follows S(0) = 100 animals, V' (0) = 0 animals, I;(0) = 10

animals and /5(0) = 0 animals
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Figure 7.5: Stability of £* equilibrium of model system (7.1) with Ry = 3.77333.
The time delay 7 was fixed to be 60 and 75 was fixed to be 1. We set the model
parameters and variables as follows: 3 = 6.844 x 107% animal~!year™' , v = 0.2,
a = 0.015 year™!, S(0) = 100 animals, V(0) = 0 animals, [;(0) = 10 animals,

I5(0) = 0 animals while the other parameter values are as in Table 7.1.
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Figure 7.6: Numerical results of model system (7.1) for different values of (71, 7),
which demonstrate the stability of infected equilibrium £* at Rg = 3.77333. We set
the model parameters and variables as follows: 3 = 6.844 x 107® animal!year—!
, v = 0.2, a = 0.015 year™!, S(0) = 100 animals, V(0) = 0 animals, ,(0) = 10

animals, I5(0) = 0 animals while the other parameter values are as in Table 7.1.
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Figure 7.7: Sensitivity index for Ry with respect to model parameters that define

it.

7.5 Conclusion

Zoonotic brucellosis remains a major public health problem in many developing
nations. This is mainly attributed to several challenges associated with effective
disease control in these nations. The challenges for effective control of brucellosis in
developing nations range from inadequate veterinary personnel and vaccines as well
the failure by farmers to adhere to some of the aforementioned brucellosis control
and eradication program activities. Furthermore, these challenges often lead to
delay in detection and culling of infectious animals. In this chapter, we developed
and analysed a mathematical model for brucellosis infection that incorporates two
discrete delays. The first delay accounts for the latent period and the second delay
represents the time taken to detect infectious animals. We computed the basic
reproduction number and demonstrated that it is an important threshold quantity
for stability of equilibria. By constructing suitable Lyapunov functionals, it has been
shown that the model has a globally asymptotically stable infection-free equilibrium
whenever the reproduction is less than unity. Further, it has been demonstrated
that whenever the model reproduction number is greater than unity then the model
has a unique endemic equilibrium point which is globally asymptotically stable.
Numerical simulations are carried out to illustrate the main results.

Although culling of symptomatic animals is a relatively easy strategy to imple-

169



ment, it is worth noting that some studies suggests that culling of both infected
and susceptible animal may be more effective [72, 100]. The rationale being that by
decreasing the host density, the number of contacts per unit time between animals
is low thereby reducing disease transmission. In [100] it was demonstrated that
culling of both susceptible and symptomatic animals only can be effective whenever
the number of infected host is above a certain critical level [100]. We expect to
improve this study in our future work by developing brucellosis model(s) with time

delay that will enable us to compare aforementioned aspects.
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Chapter 8
Conclusion and future work

In this dissertation we developed, analysed and simulated five mathematical models
for brucellosis infection. On the first objective, we developed a non-autonomous
brucellosis model in order to explore the effects seasonality and control strategies on
brucellosis transmission. Optimal vaccination and environmental decontamination
has been performed with the goal to minimize the numbers of the exposed and
infectious animals and the associated costs. The results demonstrated that the
optimal control can greatly reduce the numbers of the exposed and infectious animals
and keep these populations at low levels, a significantly better outcome compared to
that with regular control. It has been observed that the optimal control strategies
strongly depend on the cost parameters. Further, results throughout the chapter
highlight the difference between the autonomous and periodic models.

On the second objective, a modeling framework that aims to investigate effects
of vertical transmission, chronic brucellosis and culling on the transmission dynam-
ics of brucellosis, is studied. The dynamics of the disease were explored for both
periodic and non-periodic environments. Further, the impact of time dependent
culling control on the spread and control of brucellosis for in both environments was
investigated. The results demonstrated that the percentage of symptomatic animals
that become carriers/chronic has a strong influence on the impact of culling control
to minimize the spread of brucellosis in the community.

On the third objective, we proposed a two-patch model with the aim to study
the effects of animal movement and seasonality on brucellosis transmission. We

started our analysis on model with fixed coefficients where detailed results were
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obtained, showing the rich dynamics of brucellosis transmission due to the spatial
variation. We extended our model to a time-periodic environment that represents
seasonal oscillation. The study demonstrates that the incorporation of spatial and
temporal variations leads to rich and complex dynamics that are distinct from those
observed from prior models based on homogeneous environments. Our results also
indicate that the prevention and intervention strategies need to take into account
the spatial and temporal heterogeneities in order to effectively control brucellosis
while optimize the use of available resources.

On the fourth objective, we developed a brucellosis model with a view to explore
the role of short-term animal dispersal on transmission and control of brucellosis
in a heterogeneous population. The proposed model comprised of two patches and
animal dispersal was modeled using a Lagrangian approach. Our study is applicable
in communal lands/ public farms where animal mobility is highly uncontrolled. Prior
studies have shown that in public farms a single herd of livestock can be exposed
to a high variable number of contacts with other herds of livestock for a short time
frame. This heterogeneity in animal contacts may contribute significantly to the
transmission and control of brucellosis. Optimal culling of infectious animals in
each patch has been utilized for effective control of brucellosis in the community.
Our results show that short-term animal movements plays an integral role in the
transmission and control of brucellosis.

On the final objective, we studied the dynamics and stability of a brucellosis
model with two discrete delays. The first delay accounts for the latent period and
the second delay represents the time taken to detect infectious animals. The results
suggest that the two delays can destabilize the system and periodic solutions can
arise through Hopf bifurcation.

Our work has managed to provide significant improvement to the existing knowl-
edge regarding the transmission dynamics of bucellosis in animal populations. Our

study can be improved by considering the following aspects:

e The aid of realistic data is a crucial step in the modeling process. Our challenge
is that, the scarcity of brucellosis data at present limits our ability to calibrate

some important results in our models.
e Further understanding of the spatial dynamics of brucellosis would be en-
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hanced if reaction-diffusion modeling is carried out, but our current study on

the spatial modeling of brucellosis is based on the patch structure.

Culling of both infected and susceptible animals as disease control strategy
was not considered in the models developed in this thesis. Culling both in-
fected and susceptible decreases the host density which will reduce the disease

transmission.

The effects of short-term animal mobility in a periodic environment mainly

due to pastoral can also be investigated.

Although both autonomous and non-autonomous models were used, stochastic
epidemic models were never used to investigate the transmission and control
of brucellosis in this dissertation. In future we hope to utilize these models
to understand the transmission and control of the brucellosis in both periodic

and non-periodic environments.
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Appendix: Publications arising from this thesis

1). Paride O. Lolika, Steady Mushayabasa, Claver P. Bhunu, Chairat Mod-
nak, Jin Wang., (2017). Modeling and analyzing the effects of seasonality on

brucellosis infection. Chaos, Solitons & Fractals., 104:338-349.

2). Paride O. Lolika, Chairat Modnak, Steady Mushayabasa., (2018). On the

dynamics of brucellosis infection in bison population with vertical transmission

and culling., Mathematical Biosciences, 305, 42-54.

3). Chayu Yang, Paride O. Lolika, Steady Mushayabasa, Jin Wang., (2017).

Modeling the spatiotemporal variations in brucellosis transmission. Nonlinear

Analysis: Real World Applications: vol. 38, 49-67.

4). Paride O. Lolika and Steady Mushayabasa. On the role of short-term an-

imal movements on the persistence of brucellosis, Mathematics 2018, 6, 154;

doi:10.3390/math6090154.

5). Paride O. Lolika and Steady Mushayabasa, Dynamics and Stability Analysis

of a Brucellosis Model with Two Discrete Delays, Discrete Dynamics in Nature

and Society, vol. 2018, Article ID 6456107, 20 pages, 2018. https://doi.org/10

.1155/2018/6456107.
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