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ABSTRACT 
 

Plants are crucial in the ecosystem: they enable life by providing oxygen, they have medicinal 

properties, among many other uses, and hence their classification is vital. Automating plant 

identification has remained a challenging task. Machine learning does not automate feature 

engineering, making its application to the problem an arduous task. Deep learning automates 

featuring engineering, but requires large datasets, presenting another challenge. This research 

proposes an improved and fast plant classification model for plants using deep learning on 

small datasets. The objectives of this research are to explore techniques that are state-of-the-

art in the classification of plants using leaves, to improve the classification accuracy scores, 

and to model a framework for the classification.  A convolutional neural network was designed 

and applied on a small leaf dataset with fine-tuning. An accuracy score of 94.99% was 

achieved. High overfitting was noted since the dataset was small. Data augmentation was 

applied to the dataset with the images augmented before being input into the model, differing 

from the many cases where augmentation is applied on-the-fly. This increased the success rate 

to 99.99% with reduced overfitting. This showed that augmentation applied in this way 

improves the performance of the model. Transfer learning with the same augmentation 

method was applied, resulting in a 100% test accuracy and stable results with low overfitting. 

The proposed methodology provided good results on the Flavia leaf data set used in the 

experiments. Finally, a deep learning framework for improved plant classification using 

leaves is outlined.  
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CHAPTER 1: GENERAL INTRODUCTION 
 

1.1. Introduction 

Plants serve crucial roles in the ecosystem. All life is anchored on plants, and without them 

there would be no sustenance of life on earth (Chaki & Parekh, 2011). It is a true statement 

that many types of plants are at the danger of disappearance moving into the future (Chaki & 

Parekh, 2011).  Plant recognition is important as it helps us to preserve the endangered plant 

species, however it remains a challenging task. We need to recognize plants to manufacture 

medicines and, also, plants provide alternative sources of energy, for example bio-fuel. Plant 

classification is also pivotal for environmental protection, agriculture, remote sensing, 

geographic information system, education and museum catalogues. Work has been done to 

develop systems that help in plant recognition through the use of leaf images (Kumar1 et al, 

n.d.).  Computer vision and pattern recognition techniques have been applied by researchers 

in the recent past to try to automate plant recognition.  

 

Classification of plants based on images of leaves supersedes other methods like cell and 

molecule biology, hence efforts in automating this classification has mainly focused on leaf 

recognition. It is noticeable that taking leaf samples and imaging them for classification are 

both convenient and comes at a lower cost (Ehsanirad, 2010). Singh et al (2010) noted that 

automating plant classification through computer vision remains a very challenging task due 

to lack of proper architectures and frameworks for such tasks. In 2012 convolutional neural 

networks or CNNs came to the lime light, as they were used to a great success, improving 

dramatically over the previous state-of-the-arts in the ImageNet computer vision competition 

(Krizhevsky, et al., 2012). From that time, there has been an upsurge in the number of 

researchers using convolutional neural networks in trying to classify plants. 

 

1.2. Motivation 

Plant identification requires in-depth knowledge; it is very complex that even professional 

botanists need a lot of time to be subject matter experts in this respect. Linnaeus identified 
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and categorized over 300000 plant species by applying the systematic plant classification he 

designed (Linnaeus, 1967). Although his work has been outstanding, it still demands a lot to 

a trained botanist to use Linnaeus classification model because of the number of rules and the 

fact that these rules require strong observation capabilities from the botanists. Here comes 

computer image processing techniques to help in the recognition process of plant species, by 

automating the analysis of plant parts such as leaves and stem, to improve the success rates 

on image recognition and also to economize on the processing time (Kumar et al, 2012). 

Hence, there is need for a proper model of acquiring images, pre-processing images, extracting 

image features, selecting features and finally leaf classification, during which the features 

extracted are combined into a single vector for classification. Therefore, an appropriate 

methodology with feature extraction and the classification algorithm(s) is required. 

Fundamental to this automation is the requirement that the features be generic and simple 

enough, so that they can be computed with relative easiness, and be applied to a variety leaf 

images. Applications of the automated process of image processing and recognition range 

from weeds identification, plant taxonomy, species discovery up to natural reserve park 

management to mention but a few. (Silva et al, 2013).  

 

1.3. Problem Statement 

Although many efforts employing complex leaf feature extraction techniques , computer 

vision and machine learning algorithms have been made, for example as in research papers by 

Beghin et al (2010), Kadir et al (2010) , Charters et al (2014) and Kalyoncu and Toygar (n.d.), 

automated plant identification is unarguably still an open and challenging problem. A major 

challenge is because plants in nature have very similar characteristics that is, shape and color 

representations, among others. Plant recognition using leaf images has been a challenging task 

and problem owing to the wide-ranging diversity of plant types coupled by the limitation of 

the leaf image two-dimension (2D) used to represent a plant leaf which is a three-dimension 

(3D) structure by nature (Wilkin et al, 2012). Hence, although different approaches have been 

applied in trying to automate the recognition of plant species and progress noted, this area 

remains an ongoing research topic as there is need for further improvements. This research 

focuses on the application of deep learning in plant classification using leaf recognition, in a 
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quest to improve and achieve higher accuracy rates in plant classification. This research also 

attempts to address the problem of using deep learning with small leaf datasets, as deep 

learning requires large datasets.  

 

1.4. Dissertation Objectives 

This research aims to propose a more accurate and fast plant classification model using leaf 

images by using Convolutional Neural Networks. This research has the following objectives: 

1. To explore state-of-the-art or advanced methods for classification of plants based on leaf 

recognition.  

2. To improve the classification of plants through recognition of their leaves using 

Convolutional Neural Networks. 

3. To model a framework for accurate classification of plants based on leaf recognition 

 

1.5. Dissertation Contributions   

This dissertation explores the use of deep learning, specifically the Convolutional Neural 

Network, in plant classification using image recognition. The deep learning model has been 

fine tuned to produce higher accuracy scores and to minimise the cost or loss function.  

Deep learning, in this case, has been applied on small datasets, achieving high results. Use of 

small datasets is a known problem with deep learning. This has been achieved by varying the 

methodology of using data augmentation, where this has been applied in a pre-cast form, 

differing with the many cases where it has been applied on-the-fly. 

Data augmentation has also been tailored to be usable with transfer learning on the VGG16 

pre-trained model for feature extraction, which resulted in higher and more stable 

classification accuracies. Normally, using this pre-trained model would require high 

computational power, but the methodology used allows its effective use with lower computing 

resources. 
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Modern techniques aimed at the classification of plants through leaf recognition by means of 

machine learning have been explored in this research. The conclusion drawn is that deep 

learning produces higher and more accurate results as compared to these contemporary 

methods. 

Finally, an outline of a framework for accurate plant classification using leaf recognition is 

presented in this dissertation. The deep learning framework has been developed with Python, 

Open CV, and Anaconda with Jupyter Notebook and Keras Deep learning model 

implementing Tensorflow in the backend.  

 

1.6. Outline of the Dissertation 

This dissertation is then arranged in the following order: In Chapter 2 there is discussion of 

the work of other researchers, focusing mainly on the state-of-the-art approaches being 

applied for plant classification using leaf recognition. It starts by briefly describing the 

anatomy and taxonomy of plant leaves. Different methods in literature for automating plant 

classification using leaf recognition are then explored. Chapter 3 explores the background of 

deep learning itself in the context of application to this research, with focus on Convolutional 

Neural Networks. Chapter 4 explores how data augmentation and transfer learning have been 

modelled and how these have been applied in this research to achieve higher classification 

results. Chapter 5 discusses results obtained in the previous chapter. Chapter 6 presents the 

conclusion and some recommendations for future work.  

 

 

 

 

 

 



 
 

5 
 

CHAPTER 2: LITERATURE REVIEW 
 

2.1. Introduction 

This chapter first briefly describes the anatomy and taxonomy of leaves as these are the 

fundamentals used for plant classification in this dissertation. It then explores state-of-the-art 

techniques in literature for leaf analysis to automate plant classification. A number of 

researchers employed various techniques in trying to automate plant classification using plant 

leaves in the past.  The most common plant leaf features that have been used are shape, texture, 

vein structure and color. Various scientific methodologies have been applied in trying to 

extract these features, including complicated procedures and calculations, after which the 

features would be fed into some classification algorithm like support vector machines (SVMs) 

for final classification. Kulkarni et al (2013) suggested an outline which identified and 

recognized plants by means of their texture, venation, shape and color, and these descriptors 

were joined with Zernike movements. Employing the radial-basis-probabilistic-neural-

network (RBPNN) as the classifier, the proposed technique achieved a test accuracy score of 

93.82% on the Flavia leaf dataset. In a comparable research, Kadir et al (2013) combined leaf 

texture features, leaf shape, color and venation to classify leaf images. They employed the use 

of a Probabilistic Neural Network (PNN) as a classifier and scored a 93.75% test accurate rate 

using the Flavia dataset.  

 

2.2. The Anatomy of a Leaf 

The leaf has a blade, which is flat, and the petiole holds that blade to the plant. Occasionally 

leaves can be separated into sections or leaflets, which may be more than two. If the blade is 

unbroken, it is referred to as simple while those with separated blades are termed compound. 

The cuticle is a tinny waxy layering the exterior surface of a leaf. The essential function of 

cuticle is to inhibit loss of water in the leaf meaning that plants that exist submerged in water 

do not have this layer. Right beneath the cuticle, there is a layer of cells named the epidermis. 

There are two nerve tissues that are located inside the leaf veins, and these are phloem and the 

xylem. Veins are structures that keep running from leaves to tips of the roots as far as possible 

up to the edges of the leaves. The external layer of the vein is made of cells called package 
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sheath cells, and they make a hover around the xylem and the phloem. Figure 1 below shows 

the leaf internal structure, xylem is marked in blue color while phloem is in red. Food or sugar 

is carried around through phloem while xylem is responsible for moving water around 

(Muskopf, 2018).  

 

Figure 1: Leaf internal structure. Adopted from Vogel (2018) 

 

The mesophyll is a layer found inside the leaf structure. There are two divisions of this layer, 

which are the palisade and spongy layers. Palisade cells are more segment like, and lie simply 

under the epidermis, while the supple cells are all the more approximately stuffed and lie 

between the palisade layer and the lower epidermis. There are spaces of air existing between 

the spongy cells, which are necessary for exchanging gas. Mesophyll cells are pressed with 

chloroplasts, and this is the place photosynthesis really happens. Epidermis additionally lines 

the lower region of the leaf (as does the fingernail skin). The leaf additionally includes small 

openings inside the epidermis called stomata. Specific cells, that are called guard cells 

encompass the stoma and are molded like two measured hands. Changes inside water weight 

cause the stoma to open or close. Figure 2 below shows the external structure of the leaf:  
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Figure 2: Leaf external structure. Adopted from Vogel (2018) 

 

2.3. Leaf Taxonomy 

Leaves vary from plant to plant. Figure 3 below shows common types of leaves: 

 

Figure 3: Common leaf types. Adopted from E. M. Armstrong 2002 

 

Although there are variations, leaves can be classified into certain groupings by noting certain 

traits inherent in them. The Botanical website (Botanical-Online, 2018)  categorizes leaves 

according to the: petiole, blade, edge, shape of the blade, veins, arrangement along the stem. 
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We shall discuss below some leaf features which are commonly used in literature to classify 

plants.  

 

Classification using petiole 

Petiolated leaves have a petiole, whose lengths differ from plant to plant. Figure 4 below 

shows how leaves can be classified according to their petiole:  

 

Figure 4: Classification by petiole. Picture adopted from Botanical-Online (2018) 

 

According to the blade 

Simple leaves have an unbroken blade. In the few cases where they may have partitions, these 

will not stretch to the midrib. On the other hand, compound leaves will show a separated 

blade, with partitions going as far as the midrib. Occasionally, one more of these partitions 

will be alike a single leaf. These are named leaflets. Figure 5 shows the classification 

according to the blade: 
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Figure 5: Classification according to blade. Picture adopted from (Botanical-Online, 2018) 

 

Classification using the edge 

In this case, the whole leaf will show a margin that is smooth. Those that will show some 

small curvatures which will be like waves are called sinuate leaves. Those that have bends 

similar to a saw are called serrate leaves. Those that have partitions that do not reach mid of 

half blade are called lobed leaves as in the Figure 6 below. 

 

Figure 6: Classification by edge. Picture adopted from (Botanical-Online, 2018) 
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Classifying using the shape of the blade 

Leaves that are strip-shaped are called linear. Those that have the shape of a heart are called 

cordate leaves. There are some that have the shape of the egg – ovate leaves. Their base is 

wider than their ovate counterparts. There are those that show three - partition style. There are 

also wider at the base and these partitions or leaflets are sharp at their edges. These are called 

hastate leaves. These have their length a number of times the size of their width. There are 

leaves that are shaped like a spear. These are called lanceolate leaves. The base gradually 

extends while it goes thinner at the apex. Acicular leaves have the shape of a needle, they are 

long than they are wide, and are sharp at the top end. Botanical-online (2018). Figure 7 below 

shows classification according to the blade shape: 

 

Figure 7: Classification according to blade shape. Picture adopted from (Botanical-Online, 

2018) 

 

According to the veins 

Classification according to veins take into consideration the structure of the venation, where 

some have parallel veins, others have main nerve in the middle with branches extending from 

these main nerve, while others have diverging nerves. Those with parallel veins are referred 

to as parallel-veined. Those with a mid-main nerve are pinnate leaves, while the last ones are 

called palmate leaves. Figure 8 shows classification according to the veins: 
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Figure 8: Classification according to veins. Picture adopted from (Botanical-Online, 2018) 

 

2.4. Leaf Analysis Methods 

A number of state-of-art methods have been applied in the recent past to classify plants 

according to their leaves. Much of the time, plants are recognized through their leaves. There 

are many species of plants in flora, and their value vary from being cash crops to being used 

for medicines in the medical industry. Therefore, the task of identifying plants is paramount 

for human beings. A variety of techniques and methodologies have been applied in the past to 

the subject of identifying plants.  Features ranging from morphological to genetic have been 

used in the classification of a variety of leaves. The variedness of these characteristics across 

plants has presented major challenges and made the classification tasks an arduous exercise. 

Hence scientific methods have been employed to automate plant classification based on their 

leaves.  

 

Waldchen and Mader (2016) did a systematic literature review of 120 peer reviewed papers 

selected from 2005 – 2015 that were done to automate plant classification. The result of the 

research showed that the most important feature in the classification of plants is shape. More 

than 50% of the studies conducted classification through shape. The shape of the flower was 

used by another 13 of the studies. Twenty-four (24) researchers applied the texture of the 

leaves in their research, whilst in another five (5) of the researches, flowers were investigated. 

Associated with color classification was flower analysis, counting to nine (9) of the 

researches. In five (5) studies, researches attempted to using color on classification of leaves 

themselves. Others went ahead to use some particular plant organs, for example venation, in 
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sixteen (16) of the studies. Lastly, the margin of the leaves were also used in another eight (8) 

of the works.  

 

Identification using leaf shape 

Human vision uses shape much of the time to recognize objects in the real world. Hence shape 

is a paramount feature as well in computer vision. Shape measurement follow the edges of an 

object, and determines structure of an object. In the real world, there are factors that may 

change around an object, such as translation, reflection, rotation or scaling. So the appropriate 

shape feature should remain constant to these variations. A research by Chaki and Parekh 

suggested an automatic technique for the classification and recognition of leaves using their 

shape. Two approaches were utilized here: one was using a prototypical called invariant-

moments while the other one applied one centroid-radii. Appraisals between the two were 

made in relation to their classification scores. This methodology proved to be very suitable in 

the fast and effective classification of plants using leaf images. When compared with similar 

works in the research area, the accuracy of the method was within their range. Notably, this 

method has a clear advantage as it used the low-complexity data modeling scheme whereby 

feature vectors dimensionality were typically below 40. (Chaki & Parekh, 2011). 

In another paper, the researchers exhibited three strategies of plants arrangement in view of 

their leaf shape; three models were employed in resolving many class issues – the Fourier 

Moment Technique, Support Vector Machine with Binary Decision Tree and Probabilistic 

Neural Network. A dataset of 1600 shapes of leaves taken from 32 various classes was used, 

and there were classes made of 50 samples of leaves of a like type. After a number of 

experiments with different algorithms, it was concluded that amongst the three models 

mentioned above, the Support Vector Machine with Binary Decision Tree scored higher than 

the two other methods. (Krishna , et al., 2010). 

 

Although analyzing a leaf via shape is so popular, it does not come without its limitations. 

One of the challenges of using leaf shape as a feature emanates from the fact that some leaves 
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may have like margin traits but different shape or the opposite would be true. There normally 

exists high morphological variety crosswise over various species' leaves, and not just that - 

there is additionally frequently significant change among leaves of similar species. Results of 

the studies reveal that Simple and Morphological Shape Descriptors are excessively 

rearranged to separate leaves past those with vast contrasts, adequately and accordingly these 

are typically joined with different descriptors like texture and venation to produce better 

results. (Aakif & Khan , 2015) (Caballero & Aranda, 2010). Moreover, numerous single-value 

feature descriptions are exceptionally related with each other, making the exercise of picking 

adequately autonomous characteristics to recognize classifications of value particularly 

challenging. (Cope, et al., 2012). 

 

Identification using Color of leaves   

Color is a vital element of pictures. Color properties are characterized inside a specific shading 

space. There are a variety of color spaces that were used by different researchers for example 

hue-max-min-diff (HMMD) and hue-saturation-intensity (HSI). Others include hue-

saturation-value (HSV) and red-green-blue (RGB). A variety of common color descriptions 

were suggested in the area of computer vision for classification of images according to Zhang 

et al (2012). These include color correlogram, color moments and color histograms.  These 

are used as soon as the color space is defined where extraction of the features from the pictures 

happens. In a certain research, Kulkarni et al (2013) used color moments for classification of 

leaves.  Principally, color moments are methods which can be successfully applied to separate 

pictures in light of their highlights of color. These are very useful to differentiate picture 

examination methods which use color according to Stricker and Orengo (1995). In the study, 

a score of 93.82% was achieved, when these color features were used with others like texture 

and venation. According to Waldchen and Mader (2016), the most researched was the Color 

Moments (CM) and this yielded results with high and reliable scores.  

 

There are some disadvantages that come with color as a classification feature. A noteworthy 

test for color investigation is light varieties because of varied concentration and gloom of the 
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brightness coming from various edges. The adjustments in enlightenment may lead to 

shadowing impacts and light concentration changes. Pictures are taken under various 

conditions, and the variety in enlightenment can enormously influence the conclusion which 

come about. (Seeland, et al., 2016). In a certain research, it was realised that CM produced 

better results, when Yanikoglu et al (2014) examined the value of these color descriptions as 

features. Under the study, red-blue-green and CM won. The researchers additionally realised 

that color data did not add to the characterisation precision when joined with shape and surface 

descriptors. In another investigation too, utilising color data exclusively, without considering 

other features, demonstrated that color solely cannot be used to adequately classify flowers. 

(Nilsback & Zisserman, 2006). Drawing from the above notions, color as a feature is not 

strong enough, and needs to be augmented with other features.  

 

Identification by the Texture of leaves 

The word texture is used to designate the outward part of an object and is without doubt a 

primary component utilized in the field of image analysis. (Wechsler , 1980). The fundamental 

point of texture analysis is to computationally speak to an instinctive impression of texture 

and furthermore to empower the programmed handling of the texture data for models 

identified with computer vision. After having done this process, we get features related to leaf 

texture. There are broadly four classifications of the methods used for analysis of texture: 

those based on models, statistical methods, signal processing methods and structural methods. 

Some of the examples falling in the four categories include Fourier Descriptors and Gabor 

Filters. Similar to shape analysis, the computational process for getting these texture features 

is called feature extraction. There are a number of texture analysis methods that have been 

used by researchers.  

 

In one study, Ehsanirad employed image analysis methods so that he could classify plants 

using recognition of their leaves.  He chose the algorithms:  Gray-Level Co-occurrence matrix 

(GLCM) and also Principal Component Analysis (PCA) in the process.  These algorithms 

were trained using 390 leaves, and were to be used to classify plants falling in three categories, 

and the dataset about 65 new or distorted leaves for testing purposes. The PCA method 
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outperformed the GLCM method, with the former hitting a 98% accuracy compared to 78% 

of the later approach. (Ehsanirad, 2010). This showed the effectiveness of texture as a 

classification feature. 

 

Although leaf texture has been exploited as a feature for the automated classification of leaves, 

it needs to be combined with other features to achieve better results. It will not consistently 

produce effective results on itself. One of the weaknesses of this method stems from the fact 

that texture is more closely determined by the sense of touch, however for the purposes of 

computer vision, the texture has to be derived from the image analysis. Although a number of 

description features for texture for the analysis of leaves such as Gabor filter (GF) (Casanova, 

et al., 2009), fractal dimensions (FracDim) (Backes & Bruno, 2009) and the gray level co-

occurrence -matrix (GLCM) (Chaki et al 2015) have been used by researchers, there are still 

gaps as normal surfaces like leaf surfaces do not demonstrate perceptible semi -occasional 

structures yet rather have arbitrary relentless examples. 

 

Identification by Leaf Vein Structure 

Veins furnish leaves with structure and a vehicle instrument for supplies of different 

substances such as water and food. There are various types of leaf veins, be they parallel, some 

are palmate or could be pinnate as we noted before on leaf taxonomy. The structure of the 

vein of a leaf is distinctive to types of plants, so settling on vein structure for the purpose of 

leaf characterisation becomes an attractive idea. Because of a high complexity contrasted with 

whatever is left of the leaf sharp edge, veins are frequently plainly obvious. The analysis of 

leaf vein structure was suggested in 16 studies reviewed by examining leaf vein structure. 

These papers were looked into by Waldchen and Mader (2016).  Of these, four of them 

exclusively examined venation and did not consider other features of leaves for example 

texture. Another twelve researches examined the veins structure together with leaf shape, and 

two of the works examined veins structure together with the three: color, shape and leaf 

texture.  Kulkarni et al (2013) explored venation features, with others as well. They used 

morphological processes executed on the gray-scale-image of the leaves to extract the 

structure of the veins (Kulkarni, et al., 2013). The features of veins can be computed in three 

(3) varying ways, as is illustrated below:  
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  F1=P1/P                                              (Khalil & Bayoumi, n.d.) 

              F2=P2/P                                              (Yuan, 2009) 

  F3=P3/P                                              (Xiaoyi Song & Li, 2008) 

Where: 

• F1, F2, and F3 characterize the features of the vein and  

• P1, P2, and P3 signify the total pixels of the vein, and  

• P denotes total pixels present on the leaf. 

 

As with other features mentioned above, venation also presents its challenges. Wang et al 

(2011) used Simple Canny Edge Detection (SCED) and Scale Invariant Feature Transform 

(SIFT) extricated from shape and vein test focuses. Their realization was that the pattern of 

veins are not at all times very useful for classification using SCED. Their conclusion came to 

be because of the distortions on outputs when they did their experiments using SCED on vein 

extraction: the use of these venation patterns in the perspective of shape led to a performance 

scoring that was not stable. To consolidate their findings, Bruno et al (2008) contends that the 

dissection of the veins structure of leaves is a difficult exercise. This, according to him, is 

caused by the low disparity between the veins structure of a leaf and the structure of the blade 

of leaves.  

 

Identification by Leaf Contours     

GWO and WEI (2013) proposed a component extraction technique for leaf shapes or contours, 

which portrays the lines between the centroid and each form point on a picture. A long 

histogram is made to speak to the circulation of separations in the leaf shape or contour. From 

there on, a classifier is connected from a measurable model to figure the coordinating score 

of the layout and question leaf. Success scores of at least 92.7% were achieved. This has 

limitations, as shown by the success rate achieved of only 92.7%.  

There are other features that were employed by researchers like leaf margin. As noted with 

the other ones which have been studied above, there are also various weaknesses that are 

inherent in these features.  
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2.5. Conclusion 

From the discussions above, it shows that feature extraction, and the corresponding decision 

to select the most suitable features to use for a particular automated leaf classification task is 

not straight forward. Could there be possibility of actually automating these two pre-processes 

that is, feature extraction and feature selection, and of course ultimately, the classification task 

based on these features? Deep learning has emerged to try to answer this question. A number 

of researches have gone into automating the plant classification through deep learning models. 

These models try to act like how the human brain processes vision. Such deep learning 

software try to learn and build the intelligence that humans possess. Data is passed from layer 

to layer as the features are extracted by such deep learning networks. The important fact to be 

noted is that the network learns features from the images that are presented to it. The next 

chapter talks about deep learning and how it has been adapted for use in this study. 
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CHAPTER 3: BACKGROUND AND METHODOLOGY 

 

3.1. Introduction 

This chapter talks about deep learning and how it has been adapted for use in this research. 

Deep learning is a sort of machine learning in which a model figures out how to accomplish 

classification tasks in a direct way from pictures, content, or sound. Deep learning is generally 

executed utilising a neural network framework. The expression "deep" alludes to the number 

of layers in the architecture - the more the layers, the deeper the architecture. Conventional 

neural networks contain just a few layers, while deep architectures can have many. 

Goodfellow et al. (2016) concur that machine learning is the main suitable way to deal with 

building Artificial Intelligence frameworks that can work in complex situations. Deep learning 

is a type of machine learning that achieves remarkable power and adaptability by approaching 

world problems as stacked ideas, with every idea described in connection to less complex 

ones, hence being able to simplify complex situations. 

 

Advanced tools and techniques have dramatically improved deep learning algorithms - to the 

point where they can outperform humans in some tasks (MathWorks, n.d.). Goodfellow, et al 

(2016) noted that researchers have since a long time ago longed for making machines that 

think as people do. For example, a botanist can be able to classify leaves into their various 

categories with very high accuracy. A man's regular daily existence requires a gigantic 

measure of learning about the world. A bigger part of this learning is subjective and 

instinctive, and therefore hard to express formally. Computers need to acquire this same 

knowledge with a specific end goal to act in an aptitude way. One of the key difficulties in 

artificial intelligence is the way to get this casual information into a machine. 

 

3.2. Deep learning vs. Machine Learning 

Deep learning can be viewed as the investigation of models that include a more prominent 

measure of organisation of either learned capacities or educated ideas than conventional 

machine learning does. (Goodfellow et al, 2016). If we draw a diagram demonstrating how 
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these ideas are based over each other, the chart is deep, with numerous layers. Hence this 

approach to Artificial Intelligence (AI) is called deep learning. In particular, it is a sort of 

machine learning, a method that empowers machines to improve with information or data. 

There are various inspirations for deep learning, and these come from the weaknesses postured 

by machine learning. Deep Architectures can be authentically effective. They have less 

computational units for the same purpose. Deep learning models are good for vision, sound 

and normal dialect handling, to mention but a few situations. Machine learning work well on 

a wide variety of issues. That mentioned, they have not been forthcoming with regards to 

taking care of focal issues in AI, for example, perceiving speech or perceiving objects. The 

rise of deep learning was fueled to a lesser extent by the failure of conventional algorithms to 

perform well on such AI assignments. Table 1 below compares machine learning with deep 

learning: 

Table 1: Comparison of machine learning vs. deep learning. Adopted from Mathworks (n.d.) 

Machine Learning Deep Learning 

+  Good results with small              

data sets 
- Requires very large data sets 

+ Quick to train a model - Computationally intensive 

- Must try unlike features and 

classifiers to realise higher 

performance 

+     Learns features and 

classifiers automatically 

- Accuracy plateaus +     Accuracy is unlimited 

 

3.3.  Image pre-processing 

This section provides details on the pre-processing techniques used during the 

experimentations in this research. Building an effective deep learning framework demands 

cautious thoughtfulness of the network model as well as the format of the images to be 

processed. The architecture will be discussed later in this dissertation. The widely used traits 

of the images employed as input parameters are the total number of images, the height of 

images, their breadth, the count of channels, and levels for each pixel. Typically we have three 

(3) channels of data corresponding to the colors that is Red, Green, and Blue (RGB). Pixel 

levels are usually [0,255].  
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Uniform aspect ratio 

The first step was to make sure that the leaf images have the same size and aspect ratio. Most 

of the neural network models assume a square shape input image, meaning each image must 

be checked whether it is a square or not, and then cropped appropriately. The pictures can then 

be cropped so that we remain with square images, as shown below in Figure 10. The input 

images chosen from the Flavia dataset were reshaped to squares.  

 

 

Figure 9: Image cropping into square images 

 

Image Scaling 

Deep learning models require images of certain dimensions to achieve better results. For 

example, a convolutional neural network may take as input tensors of shape (28, 28, and 3) 

representing image height, image width and image channels respectively. Once we have 

ensured that all images are square or have some predetermined aspect ratio, each image is then 

scaled appropriately. For the purposes of the experiments, images were transformed to 

dimensions of (150, 150, 3). Data-set images were converted into the described format before 

being fed to the deep learning model. There are a wide variety of up-scaling and down-scaling 

techniques and we usually use a library function to do this for us. OpenCV was also used for 

image scaling.  
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Normalizing image inputs 

Data normalisation is a crucial procedure which makes sure that that every parameter input 

(or pixel, in the case of images) has a similar data distribution. This makes convergence faster 

while training the network. Data normalization is achieved by finding the difference of the 

mean from every pixel, and after that separating the outcome by the standard deviation. The 

distribution of this raw information would look like a Gaussian function aligned at zero. For 

image inputs we need the pixel numbers to be positive, so we choose to scale the normalized 

data in the range [0, 1] or [0, 255]. The [0, 1] was chosen as this is accepted by neural 

networks. 

 

3.4. Feature Extraction 

This section provides some details on how deep learning has automated feature extraction for 

leaf images classification. Deep learning enable machines to learn from experience and 

understand the world as a progressive system of ideas, with every idea characterized through 

its connection to less complex ideas (Stanford, 2017). Deep learning learns components and 

classifiers naturally not like machine learning, where there is requirement for feature 

engineering. Usually, it is impossible to realise what features ought to be taken, leading to the 

ineffectiveness of machine learning in such situations. With deep learning, accuracy is 

unlimited according to Bengio et al (2010). By gathering knowledge from experience, the 

methodology maintains a strategic distance from the requirement for people to formally 

determine all the learning that the computer requires. The chain of command of ideas 

empowers the computer to learn complex ideas by building them out of less complex ones. 

Figure 11 below shows that the lower levels of a convolutional neural network are responsible 

for feature extraction.  
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Figure 10: Feature detection layers of a CNN model (MathWorks, n.d.) 

 

3.5. Convolutional Neural Networks 

Convolutional neural networks (CNNs) are the quintessential deep learning models in 

computer vision and these models have been used in this research. Similar to neural networks, 

these have an input layer, an output layer, and also a number of hidden layers. Convolution 

networks are networks with linear operators, that is, confined convolution operatives 

employing certain core grid geometry.  For example, consider the network whose k-th layer 

can be represented by the m×m grid:  

Table 2: Grid representation of convolutional neural networks. Adopted from Goodfellow et 

al, (2016) 

ℎ1,1
(𝑘)

 ℎ1,2
(𝑘)

 . . . ℎ1,𝑚
(𝑘)

 

ℎ2,1
(𝑘)

 . . .   

. . .  . . .  

ℎ𝑚,1
(𝑘)

   ℎ𝑚,𝑚
(𝑘)
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We then define the function: ℎ𝑖,𝑗
(𝑘+1)

 in layer 𝑘 + 1 by convolving over a 2×2 square in the 

layer below, and then applying the non-linear function g: 

ℎ𝑖,𝑗
(𝑘+1)

= 𝑔 (𝑎(𝑘)ℎ𝑖,𝑗
(𝑘)

+  𝑏(𝑘)ℎ𝑖+1,𝑗
(𝑘)

+  𝑐(𝑘)ℎ𝑖,𝑗+1
(𝑘)

+  𝑑(𝑘)ℎ𝑖+1,𝑗+1
(𝑘)

) 

The parameters 𝑎𝑘, 𝑏𝑘 , 𝑐𝑘, 𝑑𝑘 depend only on the layer, not on the particular square i, j. After 

convolving and applying g to obtain the grid-indexed functions,ℎ𝑖,𝑗
(𝑘+1)

, we replace these 

functions with the average or maximum of the functions in a neighborhood, which is called 

pooling. For example, setting: 

ℎ𝑖,𝑗
−(𝑘+1)

=  
1

4
(ℎ𝑖,𝑗

(𝑘+1)
+ ℎ𝑖+1,𝑗

(𝑘+1)
+ ℎ𝑖,𝑗+1

(𝑘+1)
+ ℎ𝑖+1,𝑗+1

(𝑘+1)
)  (Goodfellow , et al., 

2016) 

CNNs are a particular sort of neural network for preparing information that has a known lattice 

like topology (LeCun, 1989). In general, these are neural networks that use the concept of 

convolution, replacing general matrix products in one or more layers. The neurons receive 

inputs, computes dot products and may follow it with an activation function. The network has 

one differentiable score function: image data is fed on one end and class scores are output. 

They have the objective function which needs to be minimised and all other elements of neural 

networks. The major variance is that these model explicitly assume that the inputs data are 

pictures. This enables practitioners and researchers to specify certain elements into the 

models. These then make the forward capacity more productive to actualize and limitlessly 

lessen the quantity of parameters in the network. 

The layers of CNNs are particularly therefore organised in three (3) dimensions of width, 

height and depth.  Each layer converts a three dimensional (3D) image volume to an output 

3D image volume using some mathematical formula. There are basically three (3) main types 

of layers for CNNs, which are Convolutional, Pooling, and Fully-Connected Layer (Stanford, 

2017).  
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3.4.1.   Convolution 

The convolution layer is the central component of a Convolutional Network as it does most 

of the computational hard work. Convolution moves the data through an arrangement of 

convolutional channels, every one of which enacts certain features from the depiction. The 

parameters at this layer comprise of an arrangement of learnable channels. Each channel 

stretches out through the full input volume. Each passage in the 3D yield could likewise be 

deciphered as a yield of a neuron that takes a gander at just a little area in the data and offers 

parameters with all neurons to one side and right.  

 

There is Local Connectivity meaning every neuron is associated just to nearby area of the 

image volume, as opposed to being associated with all neurons in the past volume. The spatial 

degree of this availability is a hyper parameter called the open field of the neuron. The degree 

of the availability along the depth pivot is constantly equivalent to the depth of the input 

volume. Spatial course of action implies that three hyper parameters control the span of the 

yield volume i.e. the depth, stride, and zero-padding. The depth compares to the quantity of 

filters we might want to utilize, each learning to search for something else in the input. At the 

point when the stride is 1, we move the filters one pixel at any given moment. Figure 12 below 

shows the convolutional layers feeding into the fully connected layer of the CNN: 

 

Figure 11: Convolutional layers (As, Bs) feeding to F – Fully connected layer.  X is the 

input values 
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3.4.2.   Pooling 

Pooling streamlines the yield by performing nonlinear down examining, decreasing the 

quantity of parameters that the network needs to find out about. It is not uncommon to 

occasionally implant a Pooling layer amid progressive Convolutional layers in a CNN design. 

The goal is to dynamically reduce the spatial size of the portrayal to lessen the measure of 

parameters and calculation in the network, and consequently to likewise control over-fitting. 

The pooling layer works autonomously on each depth cut of the input and resizes it spatially, 

utilising the MAX task. The most widely recognized shape is a pooling layer with filters of 

size 2X2 connected with a stride of 2 down examples each depth cut in the input by 2 along 

both width and height, disposing of 75% of the actuations. Other than max pooling, there is 

additionally broad pooling, which can be normal pooling or even L2-standard pooling. 

 

Rectified Linear Unit Layer (ReLu): This takes into consideration quicker and more efficient 

training by mapping negative outcomes to zero and keeping up positive outcomes.  

 

3.4.3.   Flattening 

Flattening is a method for lessening the measurements of the input data with the goal that it 

can fit to pass through the last layer, which acknowledges one-dimensional vectors only. The 

flattening step is required with the goal that one can make utilisation of fully connected layers 

after some convolutional layers. Fully-connected layers do not have a neighborhood 

restriction like convolutional layers. This implies one can consolidate all the discovered local 

features of the past convolutional layers. This makes sure that each component outline in the 

yield of a CNN layer is a "straightened" two-dimensional (2D) cluster made by including the 

summation of numerous 2D pieces (one for each direct in the input layer). This implies it 

needs an element vector. So the outcome of the convolutional part must be changed into a 

one-dimensional (1D) vector, to be utilized by the fully connected layer. It gets the output 

from the previous layers, levels all its structure to make a solitary long component vector to 

be utilized by the dense layer for the last layer.  
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3.4.4.   Full Connection 

The layer just before the classification layer is a fully connected layer that yields a vector of 

K measurements where K is the count of classes that the system will have the capacity to 

classify. The vector will have the probabilities for each one of the class of any picture being 

presented. Neurons layer have full links with all actuations in the past layer, as found in neural 

network architectures. Their actuations can therefore be calculated through a matrix product 

after which a bias is applied.  The last layer of this deep learning model usually utilizes a 

Softmax function to give the classifications. Figure 13 shows the classification layer which 

comprises of flattening, full connection and a classifier function: 

 

Figure 12: Classification layers (MathWorks, n.d.) 

 

3.6.  Conclusion 

Deep learning has provided accuracy and reliability as an extension of machine learning. It 

has revolutionarised how machine learning is benefitting research and industry. One of the 

areas where deep learning clearly surpasses conventional machine learning is in the processing 

of unstructured data. The main headway of deep learning over all previous methods is its 

ability to automate the feature engineering step. In summary, it is an approach to machine 

learning that has benefitted insurmountably to our understanding of how the human brain 

operates, statistics and other knowledge bases. The years ahead are loaded with difficulties 

and chances to enhance profound adapting to deep learning and its furtherance. The next 

chapter is going to detail how deep learning has been applied specifically in the research.  
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CHAPTER 4: DATA AUGMENTATION AND TRANSFER 

LEARNING 

 

4.1.   Introduction 

Convolutional neural networks were discussed in the previous chapter and that most 

commonly applied to analysing visual imagery. This chapter describes how they have been 

utilized in the identification of plants through leaf recognition. The challenge with deep 

learning is that it requires large amounts of data. A fundamental characteristic of deep learning 

is the models determine important features from the training data autonomously, so effectively 

eliminating hand-crafted feature engineering. This will only be achieved if there are lots of 

training examples, especially considering images, which are so much high dimensional. It is 

not possible to train a convolutional neural network to solve a complex problem with just a 

few tens of samples, but a few hundred can potentially suffice for a smaller architecture, and 

if the job at hand is easier. We are going to address the challenge of having too few samples 

and how to approach the problem with convolutional neural networks to achieve high 

performance rates in classifying leaf images.   

 

4.2.   Data Augmentation 

In this research, one of the solutions that has been verified for improvement of plant 

recognition using plant leaves, in the context case of small datasets, is working on tweaking 

how data augmentation can be employed to improve test score. Data augmentation is a way 

of countering the challenge of having insufficient data on a convolutional neural network 

model. It is basically a way of synthetically modifying image data for example along 

orientation, width, length, color and other parameters. It is proved that the method can 

sufficiently overcome overfitting, verifying its usefulness in our context. The Flavia leaf 

dataset has got few examples per each category of images hence it becomes a perfect use case 

for this research on applicability of deep learning on small datasets. Even if one has a large 

dataset, augmentation still helps to increase the amount of relevant data in the dataset. This is 

related to the way in which neural networks learn and therefore applies to convolutional neural 
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networks. Figure 14 below shows how augmentation has been used in this research to produce 

six different copies from one leaf image: 

 

 

Figure 13: A leaf image augmented into its six (6) variations. 

 

Insufficient data on deep learning causes overfitting. Overfitting is a phenomenon which 

happens when a model is too firmly fit to a restricted arrangement of input points. Overfitting 

the model for the most part appears as making an excessively complex model to clarify 

peculiarities in the information under investigation. In real world scenarios, the data under 

study will have some random distortions in it. Subsequently, trying to influence the model to 

adjust too nearly to somewhat off base information can contaminate the model with generous 

errors and diminish its discerning power. Overfitting is caused by having excessively few 

examples, making it impossible to gain from, rendering one unfit to prepare a framework that 

can derive important information from new data. If the data was unlimited, a framework would 

see every other aspect of the data, and overfitting would be impossible. During data 

augmentation, some transformations are systematically applied to training data to produce 

more of these samples. The target would be that the framework would not see an image more 

than once. This helps expose the model to more aspects of the data and generalize better. 

 

To learn some real-world phenomenon means taking some examples of the phenomenon and 

selecting a model that describes them well. When such a model can also be used to describe 
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instances of the same phenomenon that it was not trained on we say that it generalises well or 

that it has a small generalisation error. The task of a learning algorithm is to minimize this 

generalization error. Figure 15 below shows how augmentation can be implemented in Keras: 

 

Figure 14: A Keras implementation used for data augmentation. 

 

4.2.1   Pre-cast Augmentation 

In a number of literature, augmentation has mostly been applied on-the-fly.  In this research, 

we have explored the use of augmentation offline, which we can refer to as pre-cast 

augmentation. The first method involves an image being passed through a model, with 

augmentation happening at the same time. This method makes augmentation not usable in the 

case where we want to utilize the convolutional base of a pre-trained model (as we shall 

explain) for feature extraction only, where the model has to be run on the whole dataset once 

only, hence seeing each image exactly once. The methodology in this research first augments 

images to a directory via a Python script, after which the model will be run for the samples in 

the same directory. This differentiated methodology gives state-of-art performance results 

with a very low computational cost, being able to be run on a cheaper computer.  The Figure 

16 below shows a folder containing an image augmented into six forms. 

 

Figure 15:  Showing implementation of pre-cast augmentation. The original image is named 

catB2. 
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As pointed out, this type of augmentation allows us to use an inexpensive form of deep 

learning with convolutional neural networks, where we can extract features by using a pre-

trained model’s base-layers, and use the base layers to extract features, which can be fed into 

a densely connected classifier to categorize the images.  On-the-fly augmentation would not 

be applicable in this case, as the base model must see an image once only as highlighted above. 

Using this approach has allowed us to get state-of-art performance using a small capacity 

CPU. Normally, deep learning is capital intensive in terms of computing resources, requiring 

Graphical Processing Units.  

 

4.3.   Transfer learning with pre-cast augmentation 

In this research, transfer learning is also verified, with particular reference to small data sets 

which are quite different from those with which the models, like VGG16, would have been 

initially trained on. Transfer learning is an exploration issue in machine learning that 

spotlights on putting away information picked up while taking care of one issue and applying 

it to an alternate however related issue. For instance, information picked up while learning to 

perceive cars could apply when endeavoring to perceive trucks. While most machine learning 

algorithms are intended to address single issues, the advancement of algorithms that 

encourage transfer learning is a theme of continuous research for the machine-learning 

network.  

 

Transfer learning may enhance learning in three ways. First: is the underlying performance 

achievable in the objective mission utilising just the exchanged knowledge, before any further 

learning is done, contrasted with the underlying performance of an oblivious agent.  Second: 

is the measure of time it takes to completely take in the objective mission given the exchanged 

knowledge contrasted with the measure of time to take in it sans preparation. Third: is the last 

performance level achievable in the objective mission contrasted with the last level without 

transfer. Use of a pre-trained model is wide and effective across researchers and practitioners 

in the case of small datasets. Pre-trained networks are those trained on bigger datasets. Given 
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the dataset used for this pre-trained network was large and broad, it means such type of 

network can be applied on similar small datasets. These can be used as well even for different 

datasets. There are two ways in literature to use a pre-trained network: either we use it for 

feature extraction or we do fine-tuning.  

 

4.3.1   Feature extraction using a pre-trained network 

Feature extraction was used in this research, focusing on the small Flavia dataset, employing 

pre-cast image data augmentation. The primary reason deep learning took off so quickly is 

that it offered better performance on many problems. Deep learning simplifies the task by 

automating the extraction or engineering of features which would be fed in machine learning 

models.  Previous machine-learning techniques, which we could refer as shallow learning, 

only involved transforming the input data into one or two successive representation spaces, 

by using modest conversions through the use of for example Support Vector Machines or 

other algorithms. But the refined representations required by complex problems generally 

cannot be attained by such techniques. In that capacity, people needed to put everything on 

the line to make the underlying input data more manageable to handling by these techniques: 

they needed to physically engineer great layers of portrayals for their data. This is called 

feature engineering. Deep learning, then again, totally computerizes this progression: with 

deep learning, you take in all features in a single pass instead of engineering them. This has 

incredibly improved machine-learning work processes, regularly supplanting complex 

multistage pipelines with a solitary, straightforward, end-to-end deep-learning model. 

 

Feature extraction comprises of utilising the representations learned by a past system to 

separate fascinating features from new examples. These features are then run through a new 

classifier, which is trained from scratch. Convolutional Neural Network start with a series of 

pooling and convolution layers, and they end with a densely connected classifier. The lowest 

layer referred to as the convolutional base of the framework. In the case of convolutional 

neural networks, feature extraction consists of taking the convolutional base of a previously 

trained network, running the new data through it, and training a new classifier on top of the 
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output. Figure 17 shows the employment of a pre-trained for feature extraction. Only the 

classifier is change, whilst base is frozen.  

 

Figure 16: Swapping classifiers while keeping the same convolutional base. Adopted from 

(Chollet, 2018) 

 

This is because the representations acquired this lower base will be more general and hence 

can be re-used: these maps taken from the features of a convolutional neural network are 

presence maps of generic concepts over a picture, which in most case, will be valuable for 

other computer vision problems encountered. Yet, the representations learned by the classifier 

will fundamentally be particular to the arrangement of classes on which the model was 

trained—they will just contain data about the nearness likelihood of either class in the whole 

picture. 
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The level of generality (and therefore reusability) of the representations extracted by specific 

convolution layers has direct relation with level of the layers. Layers that come earlier in the 

model extract local, highly generic feature maps (such as visual edges, colors, and textures), 

whereas layers that are higher up extract more-abstract concepts (such as “leaf venation”). So, 

if the new dataset differs a lot from the dataset on which the original model was trained, it will 

be better using only the first few layers of the model to do feature extraction, rather than using 

the entire convolutional base. 

 

To re-use a pre-trained network which is computationally intensive, it was decided to run the 

convolutional base over the augmented dataset, recording its output, and then using this data 

as input to a standalone, densely connected classifier. This solution is fast and cheap to run, 

because it only requires running the convolutional base once for every input image, and the 

convolutional base is by far the most expensive part of the pipeline. Since this solution would 

run past one image once, hence the proposal to use pre-augmentation.  

 

4.4   Conclusion 

In this chapter, image data augmentation was reviewed, and an improvement to the way it is 

applied was verified. Transfer learning based on feature extraction was also discussed with a 

view to application on very small datasets, and its use with pre-cast augmentation was verified 

to be a methodology that can make deep learning work on small datasets, and on cheaper 

computers with Central Processing Units only. Deep learning for computer vision usually 

requires computers with Graphical Processing Units. The next chapter will describe how the 

experiments were conducted and will also discuss the results.  
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CHAPTER 5: RESULTS AND DISCUSSION 
 

5.1.   Introduction 

The setting up and carrying out of the experiments, the results obtained and discussions are 

presented in this chapter. A Convolutional Neural Network is trained with selected data from 

the Flavia dataset. Succeeding experiments are done on the same dataset using data 

augmentation on the dataset. A method of using data augmentation first then using the 

convolutional base of a pre-trained network is then conducted, and is shown to yield higher, 

and more stable results overall. 

 

5.2.   Leaf Datasets for experimentation 

Three leaf datasets, that is, the Flavia dataset, the UCI dataset and the LeafSnap dataset were 

investigated for use in the experiments. The Flavia and LeafSnap datasets were finally picked 

as they have a bigger number of samples per leaf category than the other two. Deep learning 

requires bigger datasets, so it was more appropriate to select Flavia and LeafSnap datasets 

with a view to augment it. LeafSnap has some categories which have above 100 samples per 

category. The experiments were also designed to have three separate classes for the data i.e. 

training, validation and test. Although validation and tests set appear to be similar, it is 

important to have a validation set in order to choose among different models. Below is the 

description of the datasets: 

 

1. Flavia Database: 

FLAVIA dataset contains more than 1600 leaf images from more than 32 different species of 

plants. This amounts to an average of 50 images per category. Each leaf image was captured 

with a high-resolution camera on a uniform white background. The plants used to create 

FLAVIA dataset are from the Nanjin University and the Yat-Sent arboretum. These plant 

species are common in the Yangtze Delta.  
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2. UCI Database: 

UCI contains more than 400 leaf images from more than 32 different species of plants. This 

gives an average of 12 leaves per category, which number is very small for deep learning as 

we needed to test a Convolutional Neural Network from scratch.  Each leaf image was 

captured with an IPad2 camera on a uniform background with one color. The 24-bit Red-

Green-Blue images have a resolution of 720*920 pixels.  

 

3. LeafSnap Database: 

The LeafSnap dataset contains 185 species from the North-Eastern United States. LeafSnap 

is composed of 23147 Lab images and 7719 _eld images. The Lab images are pressed leaves, 

are of high quality, and they were obtained from the Smithsonian collection on controlled 

backlight. The _eld images are low quality images taken using mobile phones and are 

characterized by a varying amount of blur, noise, shadow and illumination which further 

complicates manual feature extraction process. 

 

5.3.   Experimental setup 

5.3.1   System development environment 

The deep learning system was implemented using Python Version 3.6.3 running on Anaconda 

Navigator implementing Jupyter Notebook. OpenCV image processing was also used to make 

some changes to the images.  The computer had the following specifications: 

 The processor: AMD E2-1800 APU with Radeon™ HD Graphics 1.70GHz 

 The  installed memory (RAM): 6.00 GB 

 The system type: 64-bit Operating System, x64-based processor 

 

The specification of the computer is of very limited use with deep learning models, as they 

are computationally intensive as to require Graphical Processing Units. Jupyter notebooks are 

a great way to run deep-learning experiments. They are extensively used in the data-science 

and machine-learning communities. A notebook is a file generated by the Jupyter Notebook 

application (https://jupyter.org), which can be edited in a browser. It mixes the ability to 

execute Python code with rich text-editing capabilities for annotating what one will be doing. 



 
 

36 
 

A notebook also allows to break up long experiments into smaller pieces that can be executed 

independently, which makes development interactive and means one does not have to re-run 

all of the previous code if something goes wrong late in an experiment. 

 

5.3.2   Performance evaluation 

Training accuracy, validation accuracy and test accuracies were used. Training accuracy is 

not relevant on its own but using it with validation accuracy will make it useful. The 

combination of the two can be used to detect overfitting, which has been fully described in 

the previous chapter.  

 

The quintessential performance evaluation metric for deep learning models is the test 

accuracy.  This is the percentage of the number of correctly classified units out of all 

classifications done, and usually this is given as a probability or percentage, and the highest 

score for an algorithm will be 100%. The common approach in measuring performance of 

artificial neural networks is splitting data into the training set and the test set and then training 

a neural network on the training set and using the test set for prediction.  

 

5.3.3   Performance Assessment 

For performance assessment, usually a record is done taking into account the false-positives 

and also the true-positives for each class predicted. The error rates are very important as they 

show how much our system can be trusted. The probabilities are useful to interpret the results 

if predicting one class is more vital than predicting another. First, one makes a prediction 

using the CNN and obtain the predicted class multinomial distribution: 

∑ 𝑝𝑐𝑙𝑎𝑠𝑠 = 1 

 

If it is a top-1 score, then a check is made if the top class (the one having the highest score) is 

the same as the required label. If it is a top-5 score, a check is done if the anticipated value is 

one of the top 5 outcomes (the 5 ones with the highest scores). In all instances, the top score 
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is calculated computed at the times a predicted label matched the target label, divided by the 

number of data-points evaluated. Finally, when for example, 5-CNNs are used, we first 

average their predictions and follow the same procedure for calculating the top-1 and top-5 

scores. 

 

So, the classifier gives a probability for each class. For example, say we had leaf categories 

"category1", "category2", " category3", " category4" as classes (in this order). Then the 

classifier gives something like: 0.1; 0.2; 0.0; 0.7 as a result. The Top-1 class is “category 4". 

The top-2 classes are {category4, category2}. If the correct class was “category 2", it would 

be counted as "correct" for the Top-2 accuracy, but as wrong for the Top-1 accuracy. Hence, 

in a classification problem with k possible classes, every classifier has 100% top-k accuracy. 

The "normal" accuracy is top-1. 

For the experiments done in this research, classification was limited to two categories per 

dataset.  

 

5.3.4   Model choices 

Although convolutional neural networks are so far the best models for classifying and 

recognizing images, one needs to be careful when selecting the parameters to use in a 

particular project. One has to carefully select the model to use, the loss function, the 

optimization function, the activation function, the classification functions to mention but a 

few.  The below selections were made pertaining to the experiment at hand: 

Deep learning model: Convolutional Neural Network using the Sequential Model.  

Pre-trained network for transfer learning: VGG16 trained on Imagenet dataset 

Loss function: Binary Cross Entropy was selected as two categories were chosen per dataset. 

This function describes the mechanism by which the model will be measuring its performance 

on the training data, and therefore how it will gravitate towards the right direction in terms of 

accuracy rates. The whole process takes the form of back propagation, where errors are 

propagated back to the network and weights are adjusted according using this loss function. 
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In information theory, the cross-entropy amid two probability distributions a and b over the 

same primary set of events measures the mean number of bits required to identify an event 

drawn from the set, if a coding scheme is used that is optimised for an "unnatural" probability 

distribution b, rather than the "true" distribution  a. 

This is defined as: 

𝐻(𝑎, 𝑏) = 𝐸𝑎[− log 𝑏] = 𝐻(𝑎) + 𝐷𝐾𝐿(𝑎||𝑏) 

Where  𝐻(𝑎) is the entropy of 𝑎, and 𝐷𝐾𝐿(𝑎||𝑏) is the Kullback-Leibler divergence of b 

from a. 

 

Optimiser: The mechanism by which the network updates itself based on the data it sees and 

its loss function. It specifies the exact way in which the gradient of the loss will be used to 

update parameters: for instance, it could be the RMSProp optimizer, SGD with momentum, 

and so on. The optimizer determines how the network will be updated based on the loss 

function. It implements a specific variant of stochastic gradient descent (SGD). RMSProp was 

chosen. RMSProp (for Root Mean Square Propagation) is a mechanism by which the learning 

rate is adjusted via the gradient descent, for the parameters. The notion is to partition the 

learning rate for a weight by a running normal of the extents of late gradients for that weight. 

Thus, first the running normal is computed as far as means square, 

𝑣(𝑤, 𝑡) ≔ 𝛾𝑣(𝑤, 𝑡 − 1) + (1 − 𝛾)(∇𝑄𝑖(𝑤))
2
   

where, 𝛾 is the forgetting factor. The parameters are updated as: 

𝑤 ≔ 𝑤 −
𝑛

√𝑣(𝑤, 𝑡)
∇𝑄𝑖(𝑤) 

RMSProp has demonstrated great adjustment of learning rate in various applications. 

RMSProp can be viewed as a speculation of RMSProp and is skilled to work with scaled down 

groups too restricted to just full-batches. 
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Activation functions:  ReLu and Sigmoid functions were used. These are shown in Figure 18 

and Figure 19 below. In artificial neural networks, the rectifier is an activation function 

defined as the positive part of its argument:         𝑓(𝑥) = 𝑥+ = max(0, 𝑥)   where x is the input 

to a neuron. 

 

Figure 17: The ReLU Function 

A sigmoid function is a mathematical function having a characteristic "S"-shaped curve or 

sigmoid curve. It is defined as below:             𝑆(𝑥) =
1

1+𝑒−𝑥 =
𝑒^𝑥

𝑒𝑥+1
 

 

Figure 18: The Sigmoid function 
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5.4   Experimental Results 

The experiments were all done on personal computer. 

 

First experiments: Training the convolutional neural network from scratch 

Two categories of leaf images from the Flavia Dataset of leaves were selected and were saved 

in a single base directory. A script was then used to split the data into Training, Validation, 

and Test directories, creating these directories, and then transferring the images to the 

directories. Each of these directories had two sub-directories for the two categories. Figure 20 

below shows the directory structure of the input images: 

 

Figure 19: Directory structure of input images 
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Category A images – Figure 20 below shows the training set for category A leaves: 

 

Figure 20: Training set for the first category of images from Flavia dataset 

 

Category B images – Figure 21 below shows the training set for category B leaves 

 

Figure 21: Training set for the second category of images from Flavia dataset 

 

Below is the summary of the model that was used. It had four (4) convolutional layers, 

responsible for learning features from images samples, and a corresponding four (4) pooling 

layers. After that, since the fully connected layers accept one-dimensional units, the result 

from these layers will need to be flattened. The model has two fully connected layers, 

responsible for putting up the features back into full images for final classification. The 

number of parameters were above three million as shown below, which means it would take 
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some time to train on the laptop. Figure 23 below shows the shape of the convolutional neural 

network model that was trained from scratch. It has four (4) convolutional layers with a 

corresponding pooling layer after each convolutional layer. It has a flattening layer and then 

two dense layers: 

 

Figure 22: Shape of the CNN model for training from the scratch 

 

Training the network took just short of eight (8) hours as shown below. Fifteen epochs (the 

number of times the algorithm is run over the data) were chosen.  
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Figure 23: Training the network 

. 

Metrics for the model 

Since the training dataset was small, the first iteration had managed to learn almost all the 

required features. The dataset was almost homogeneous as well. Comparing the training and 

the validation accuracy, we note that there was over-fitting, and the scores were high. The test 

accuracy would then validate if learning was generalized. Figure 24 below shows the training 

and validation accuracy. Figure 25 show the training and validation loss.  
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Figure 24: Training and validation accuracy 

 

Figure 25:  Training and validation loss 

 

Test Accuracy 

The most important metric, test accuracy, was 94.99%, which was way below the training and 

validation accuracy. The score is not bad but shows that our model was not exposed to as 

many training samples as optimal for its learning requirements. It also shows that although 

overfitting may seem not to have been detected, it actually might have happened but could not 

be detected given that a few samples were passed through the model. This gives rise to the 
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need to have bigger datasets for deep learning purpose. We will see how data augmentation 

will try to close this gap. Figure 26 below shows the average test score which was obtained: 

 

Figure 26: Test accuracy using augmentation 

 

Second experiments: Using data augmentation to mitigate overfitting 

Category A augmented images – training set (transformed to 634 images):  Figure 27 below 

shows that the training samples have been increased from about 30 images to 634 images. The 

snapshot shows some the augmented images.  

 

Figure 27:  Category A augmented images 
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Figure 28 below also shows that we now have 633 category B images transformed via 

augmentation. It shows part of the augmented category B images.  

 

Figure 28: Category B augmented images 

 

To verify the actual number of images, we count them via a Python function as shown in 

Figure 29 below: 

 

Figure 29: Count of images after data augmentation 
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Training using the augmented images took nearly five (5) hours as shown below in Figure 30: 

 

Figure 30: Training time for augmented images 

 

Since we have more training samples, we see the shape of the training accuracy curving as 

expected, because learning usually is not as sharp as reflected in the previous experiments. 

Such is also the shape of the training loss curve. It now took the model upto five(5) epochs to 

learn the important features for the dataset, unlike in the previous experiments where it would 

take about one epoch. Figure 31 below shows this: 

 

Figure 31: Training and validation accuracy for augmented images 
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As expected, the training and validation losses also reveal a similar gentle curving, reflecting that the 

model was exposed to a larger number of images, as shown in Figure 32 below: 

 

Figure 32: Training and validation losses 

From Figure 33 below, it is shown that the test accuracy goes up to 100% because the model has 

learned enough as to generalize if given a new dataset.  

 

Figure 33: Test accuracy using augmentation 

Test accuracy hits 100% because all the features have been learnt. However, the testing set 

has fewer samples, which is, of course not much of a worry, but a very big sample would 

probably make the score to just less than 100%. The next experiment is going to show that 

using transfer learning with data augmentation will yield better and more stable results, and 

that the feature extraction option will also take less computational power and therefore will 
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have less training time. Coupling this with the precast- augmentation methodology will make 

sure that the score is perfectly 100%! 

 

Third experiments: Using a pre-trained model for feature extraction, with precast-

augmentation 

Here we use the VGG16 pre-trained from Imagenet. The first part of the model is called the 

convolutional base of the model. In the case of convolutional neural networks, feature 

extraction consists of taking the convolutional base of a previously trained network, running 

the new data through it, and training a new classifier on top of the output.  

Figure 34 is an example of Keras implementation of the convolutional base: 

 

Figure 34:  Showing selection of the base of the CNN feature extraction 

 

The reason we select the lower layers is because the representations learned by the 

convolutional base are likely to be more generic and therefore more reusable: the feature maps 

of a convolutional neural network are presence maps of generic concepts over a picture, which 

is likely to be useful regardless of the computer-vision problem at hand. Since our data is 

novel from the one used for Imagenet, it is only good for us to use the lower levels of the 

VGG16.  

Figure 35 below is a summary of the convolutional base used for feature extraction with a 

whooping fourteen million plus parameters! 
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Figure 35: Shape of the model 
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Using transfer learning, it only took less than five (minutes) to use the base to extract features. 

This is reflected in Figure 36 below. Data preparation, of course, took some bit of time.  

 

Figure 36: Training only took less than 5 minutes using extracted features. 

 

Transfer learning performance metrics: 

The metrics hit 100% as a pre-trained model was used. As can be seen below in Figure 39, it 

shows that transfer learning with data augmentation can be the way to go for various 

circumstances, when datasets are small. Figure 37 and 38 show the other metrics for the 

experiments that, training and validation loss and test accuracy and test loss.  

 

Figure 37: Training and validation accuracy with transfer learning 



 
 

52 
 

 

Figure 38: Training and validation loss with transfer learning 

 

Figure 39: Test accuracy with transfer learning 

 

It is interesting to note that using a pre-trained model managed to learn all important features 

for recognizing leaves in just less two (2) epochs. This is because the model has been trained 

with other datasets, and that knowledge has been transferred to the new dataset. Although the 

new dataset is novel from the one it was trained on, it has an upper hand as it has learnt the 

abstract concepts on feature extraction which can be applied to diverse datasets.  
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 5.4.1 Summary of results  
 

Table 3 and Figure 40 below shows the average percentages that were obtained from the 

experiments: 

Table 3: Summary of experimental results 

CNN Model Pre-cast 

Augmentation 

Training 

Score 

(%) 

Validation 

Score (%) 

Test Score 

(%) 

Overfitting  

Training from 

scratch 

No 100 99.98 94.99 High 

Training from 

scratch 

Yes 100 100 99.99 Medium 

Using 

Transfer 

Learning 

Yes 100 100 100 Low 

 

 

Figure 40: Summary of results 

 

Comparison with similar past work 

Table 5 below compares the results obtained in this research with previous results obtained 

by state-of-art methods of plant identification using machine learning and deep learning. A 

total of fourteen (14) researches have been examined. Although the circumstances may differ, 

the results from deep learning scored higher accuracy rates. On average, use of manual feature 
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extraction scored 89.86%. Using deep learning scored 97.93% on average, including those 

that were obtained in this research.  It is to be noted that in some of these researches, the 

unavailability of large datasets would limit the accuracy rate for deep learning. 

Table 4: Comparison of results with similar researches 

Researcher Use/Determination of leaf features  Category Accuracy 

(Chaki, et 

al., 2015a) 

a) Using individual moment invariant(MI) on leaf 

features 

Machine 

learning 

88.90% 

b) Using joint 2-dimensional moment invariant(MI) on 

leaf features 

Machine 

learning 

95.50% 

c) Using joint 3-dimensional moment invariant(MI) on 

leaf features 

Machine 

learning 

93.30% 

(Ehsanirad, 

2010) 

a) Using Grey Level Co-occurrence Matrix on leaf 

texture features 

Machine 

learning 

78.46% 

b) Using Principal Component Analysis (PCA) on 

texture features 

Machine 

learning 

98.46% 

(Ehsanirad, 

2010) 

a) Using  Geometric and morphological features: 

Probabilistic Neural Network with PCA 

Machine 

learning 

91.00% 

b) Using Geometric and morphological features: 

Support Vector Machine with  Binary Decision Trees 

Machine 

learning 

96.00% 

c) Using Geometric and morphological features: 

Support Vector Machine with Fourier moments 

Machine 

learning 

62.00% 

(Kulkarni, 

et al., 2013) 

Using shape,  vein, colour, texture, these combined with 

Zernike Moments 

Machine 

learning 

93.82% 

(Kadir, et 

al., 2013) 

Using shape, venation, colour, texture features with 

Probabilistic Neural Network 

Machine 

learning 

93.75% 

(GWO 2 & 

WEI, 2013) 

Using leaf contours Machine 

learning 

97.30% 

(Lee & 

Chen, 

2006) 

Convolutional Neural Network with different classifiers Deep 

Learning 

99.60% 

(Sladojevic, 

et al., 2016) 

Deep Convolutional Neural Network for plant disease 

recognition 

Deep 

Learning 

96.30% 

(Jeon & 

Rhee, 

2017) 

Convolutional Neural Network  Deep 

Learning 

96.70% 

This 

research 

a) Convolutional Neural Network trained from scratch 

on a small dataset 

Deep 

Learning 

94.99% 

b) Convolutional Neural Network trained from scratch 

with augmentation applied to the small dataset 

Deep 

Learning 

99.99% 

c) Convolutional Neural Network with transfer learning 

and augmentation on the small dataset 

Deep 

Learning 

100.00% 
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Figure 41 below shows that results from deep learning are high and stable. It shows how 

precise the Convolutional Neural Network models are to determine the most important 

features to use for a particular scenario. The last three points denote the averages that were 

obtained in this research. The model reached a stable accuracy rate of 100% after tweaking 

the model and applying data augmentation.  

 

Figure 41: Comparison of results with other researches 

 

5.6 Conclusion 

The results of this research showed a performance improvement as augmentation and transfer 

learning were brought into perspective. Training the Convolutional Neural Network from 

scratch yielded just below 95% accuracy level. This shot up to 100% accuracy after employing 

pre-cast augmentation on the dataset. Results stabilized even more after employing transfer 

learning using the VGG16 pre-trained network, which was trained on Imagenet. The next 

chapter is going to draw on conclusion and future works.   
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CHAPTER 6: CONCLUSION AND FUTURE WORKS 

This chapter provides a summary of the chapters in this dissertation, outlines briefly the 

contributions made by this research with reflections from the researcher and then proposes 

future work for researchers on the subject matter.  

6.1   Summary of chapters 

Chapter 1 introduces the dissertation, details the motivation behind the study, articulates the 

problem statement and the objectives of the study and finally outlines how the rest of the 

dissertation flows. Chapter 2 first briefly discusses leaf anatomy and leaf taxonomy, which 

knowledge is crucial for understanding classification by leaf identification. It then reviews the 

literature on the state-of-the-art techniques being used for plant classification, showing that 

the contemporary methods have a limitation, hence the need for deep learning.  Chapter 3 

outlines the background and methodology, discussing deep learning and its application in the 

research. Chapter 4 is dedicated to experiments with data augmentation and transfer learning 

showing that feature extraction is automated by using deep learning. Chapter 5 discusses the 

results obtained. Finally Chapter 6 outlines conclusion and future works.   

6.2 Achievement of the research objectives  

The research objectives were: 

 To explore state-of-the-art methods for classification of plants based on leaf recognition.  

 To improve the classification of plants via identification of leaves using CNNs. 

 To model a framework for accurate classification of plants based on leaf recognition 

State-of-the-art methods for automating plant classification via leaf identification were 

explored. Deep learning through convolutional neural networks was then inquired for possible 

higher performance, with data augmentation and transfer learning being systematically 

applied to the research, leading to improvements in accuracy scores.  A step by step framework 

was then outlined for the model. The objectives of the research were met.   



 
 

57 
 

6.3 Reflections 

Deep learning with convolutional neural network has the capacity to continue excelling in its 

application to computer vision problems. It will continue to surpass other contemporary 

methods in use for same tasks, especially because it automates the image feature extraction 

step for classification.   

6.4 Contributions 

Modern techniques aimed at the classification of plants through leaf recognition by means of 

machine learning have been explored in this research. The conclusion drawn is that deep 

learning produces higher and more accurate results as compared to these contemporary 

methods. 

Deep learning was applied on the leaf image dataset, achieving high results. This has been 

achieved by fine tuning and varying the methodology of using data augmentation, applying it 

in a pre-cast form, differing with the many cases where it has been applied on-the-fly. 

Data augmentation has also been used with transfer learning on the VGG16 pre-trained model 

for feature extraction, which resulted in higher and more stable classification accuracies. 

Normally, using this pre-trained model would require high computational power, but the 

methodology used allows its effective use with lower computing resources. 

Finally, an outline of a framework for accurate plant classification using leaf recognition is 

presented in this dissertation. The deep learning framework has been developed with Python, 

Open CV, and Anaconda with Jupyter Notebook and Keras Deep learning model 

implementing Tensorflow in the backend. 

 

6.5 Future works  

The future works of this dissertation are based on the improvement of the proposed model, by 

finding other variants to data augmentation, followed by the conception of an ontology for 

plant classification. This will involve applying the same model to different datasets.  



 
 

58 
 

APPENDIX A 

Flavia Leaf Dataset 

 

Figure 42: Samples from the Flavia leaf dataset 

APPENDIX B 

UCI Dataset 

 

Figure 43: UCI leaf dataset samples 
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APPENDIX C 

Leafsnap Database 
 

 

Figure 44: Samples from the leaf snap dataset 
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APPENDIX D 

Python Codes 
1. Used to augment images 
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2. Rename image filenames taken from the Flavia Dataset 

 

 
 

3. The model 
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