## UNIVERSITY OF ZIMBABWE



# AVOCADO SEED STARCH AND CARBOXYMETHYL CELLULOSE SUPERABSORBENT POLYMER: SYNTHESIS AND CHARACTERISATION

### **KETIWE SIYADUBA**

### **REGISTRATION NUMBER: R 073944L**

# A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE MASTER OF SCIENCE DEGREE IN CHEMISTRY

2016

## FACULTY OF SCIENCE

### CHEMISTRY DEPARTMENT

### SUPERVISORS: DR. L. NHAMO, DR. S. BEBE, PROF. R. MAFOTI

#### DECLARATION

I, KETIWE SIYADUBA, do hereby declare that this dissertation is a result of my own investigation and research, except to the extent indicated in the Acknowledgements, References and comments included in the body of the report, and that it has not been submitted in part or in full for any other degree to any other university.

••••••

**Student Signature** 

••••••

Supervisor Signature

.....

Date

Date

#### ACKNOWLEDGEMENTS

Firstly I would like to thank God for granting me the knowledge and the capacity to learn throughout the Master of Science in Chemistry Degree programme at the University of Zimbabwe. I would like to extend my gratitude to my family and friends who were patient and assisted me as I undertook my studies.

I wish to thank Dr Nhamo, Dr Bebe and Professor Mafoti for the scientific guidance and constructive advice that steered this research project to completion.

I would like to thank the Scientific and Industrial Research and Development Centre staff particularly the Food and Biomedical Technology Institute Scientists and Interns for their support and assistance in carrying out the experimental work.

#### Abstract

Superabsorbent polymers (SAPs) of crosslinked avocado seed starch and carboxymethyl cellulose were synthesized and their performance as fluid absorption materials was assessed by comparing them with those made from analytical grade starch. The SAPs were characterized by water absorption capacity (WAC) tests, Fourier transform infrared spectroscopy analyses, solubility fraction tests, effects of crosslinker quantity and swelling rate were investigated to determine the suitability of avocado starch in the synthesis of SAPs.

Avocado seed starch was used in the superabsorbent polymer framework because of its biodegradability, abundance and limited use as a source of food for human consumption. The results of the research showed that the SAPs produced with avocado seed starch and those made from pure starch have comparable properties. The WAC for the avocado seed starch blend was 39g/g (3900% of the original weight) when the ratio of the avocado starch, carboxymethyl cellulose and aluminium sulphate was 88: 9.7: 2.3 respectively. The pure starch blend with a similar weight ratio had a WAC of 46.5g/g. As the amount of either starch was increased the differences between the WAC of the SAPs were less than 3.0g/g. FTIR spectra of the SAPs showed no significant differences between avocado starch and pure starch SAPs. The soluble fraction results showed that avocado SAPs had good gel formation. Analysis of experimental data by GraphPad Prism 6.0, one way Anova showed that there was no significant difference between the two types of SAPs for all the tests conducted.

Avocado seed starch can therefore be used in the synthesis of superabsorbent polymers. It can be used as a substitute for starch extracted from agricultural plants that have already been studied in detail.

**Key words:** Carboxymethyl cellulose, starch, superabsorbent polymer, water absorption capacity, biodegradable

# **TABLE OF CONTENTS**

| Declaration      | .ii |
|------------------|-----|
| Acknowledgements | iii |
| Abstract         | iv  |
| ist of tables    | X   |
| ist of figures   | xi  |

| СНАР    | TER 1                                                   | 1  |
|---------|---------------------------------------------------------|----|
| 1.0 IN' | TRODUCTION                                              | 1  |
| 1.1 Ba  | ckground of study                                       | 1  |
| 1.2 Pro | blem statement                                          | 5  |
| 1.3 Air | n                                                       | 5  |
| 1.4 Spe | ecific objectives                                       | 6  |
| 1.5 Res | search questions                                        | 6  |
| 1.6 Res | search proposition                                      | 7  |
| 1.7 De  | limitation of study                                     | 7  |
| 1.8 Lin | nitations                                               | 7  |
| 1.9 Jus | tification of the research                              | 8  |
| 1.10    | Literature review                                       | .9 |
| 1.10.1  | Definitions                                             | 9  |
| 1.10.2  | History of superabsorbent polymers                      | 10 |
| 1.10.3  | Synthesis of biodegradable superabsorbent polymers      | 11 |
| 1.10.4  | Chemistry of CMC, avocado starch and aluminium sulphate | 13 |
| 1.10.5  | Starch                                                  | 14 |

| 1.10.6 Avocado seed starch                            | 16  |
|-------------------------------------------------------|-----|
| 1.10.7 Carboxymethyl cellulose                        | 17  |
| 1.10.8 Aluminium sulphate octadeccahydrate            | 20  |
| 1.10.9 Crosslinking in SAPs                           | 20  |
| 1.10.10 Classification of SAPs                        | 23  |
| 1.10.11 Characterisation of superabsorbent polymers   | .25 |
| 1.10.12 Water absorption capacity                     | 27  |
| 1.10.13 Effects of salinity                           | 29  |
| 1.10.14 Absorbency under load (AUL)                   | 30  |
| 1.10.15 Wicking capacity and rate                     | .30 |
| 1.10.16 Swelling rate                                 | 31  |
| 1.10.17 Soluble fraction                              | .31 |
| 1.10.18 Ionic sensitivity                             | .32 |
| 1.10.19 Other properties of super-absorbing materials | .32 |
| 1.10.20 Proposed crosslinking model                   | 33  |
| 1.10.21 Applications of SAPs                          | 36  |

| СНАР    | TER 2                                          | 38 |
|---------|------------------------------------------------|----|
| 2.0 RE  | SEARCH METHODOLOGY                             | 38 |
| 2.1 Int | roduction                                      | 38 |
| 2.2 Ma  | terials and procedures                         | 38 |
| 2.2.1   | Materials                                      | 38 |
| 2.2.2   | Equipment                                      | 38 |
| 2.2.3   | Statistical evaluation of experimental results | 39 |

| 2.3 Sy  | nthesis of the avocado starch based superabsorbent polymer           | 39 |
|---------|----------------------------------------------------------------------|----|
| 2.4 Iso | lation of starch from avocado seeds                                  | 39 |
| 2.4.1   | Determination of starch content in the extracted avocado seed starch | 41 |
| 2.4.2   | Elemental analysis of the avocado seed powder and the starch         | 42 |
| 2.4.3   | Determination of the ratio of seed to fruit                          | 42 |
| 2.5 Sy  | nthesis of the avocado seed superabsorbent polymer (SAP)             | 42 |
| 2.6 Inv | vestigation of optimal crosslinking of avocado starch and CMC        | 45 |
| 2.7 Ch  | aracterisation of the superabsorbent polymers                        | 46 |
| 2.7.1   | Structural analysis                                                  | 46 |
| 2.7.2   | Water absorption capacity (WAC)                                      | 47 |
| 2.7.3   | Soluble fraction                                                     | 48 |
| 2.7.4   | Ability to rehydrate                                                 | 49 |

| CHAPTER 3                                                                  | 0 |
|----------------------------------------------------------------------------|---|
| 3.0 RESULTS AND DISCUSSION                                                 | 0 |
| 3.1 Introduction                                                           | 0 |
| 3.2 Extraction of starch from the avocado seed                             | 0 |
| 3.2.1 Results for the analysis of starch content of avocado seed starch    | 1 |
| 3.3 Results of mineral analysis of avocado starch and dried avocado powder | 7 |
| 3.4 Synthesized avocado seed starch superabsorbent polymer                 | 8 |
| 3.5 Results for tests of the synthesized superabsorbent polymers           | 9 |
| 3.5.1 Fourier transform infrared spectroscopy analysis results5            | 9 |

| 3.5.2 Water absorption capacity                     | 63 |
|-----------------------------------------------------|----|
| 3.5.3 Soluble fraction                              | 69 |
| 3.5.4 Ability to rehydrate                          |    |
| 3.5.5 Statistical analysis                          | 70 |
| 3.6 Discussion summary                              | 72 |
| 3.6.1 Starting materials                            | 73 |
| 3.6.2 Synthesis of the superabsorbent polymer       |    |
| 3.6.3 Water absorption capacity of synthesized SAPs | 74 |
| 3.6.4 Soluble fraction                              |    |

| CHAPTER 4                            | .76 |
|--------------------------------------|-----|
| 4.0 Conclusion                       | 76  |
| 4.1 Introduction                     | 76  |
| 4.2 Conclusions                      | 76  |
| 4.3 Test of the research proposition | 77  |
| 4.4 Recommendations                  | 78  |

| REFERENCES | 79 |
|------------|----|
|            |    |

Appendix 1 A comparison of pure starch SAPs against avocado seed starch SAPs..... 88

| Appendix 2 Comparison of WAC of starch SAP acocado starch SAP with varying aluminium |    |
|--------------------------------------------------------------------------------------|----|
| sulphate                                                                             | 89 |
| Appendix 3 Soluble fraction of SAPs                                                  | 90 |

| LIST OF TABLES               | PAGE |
|------------------------------|------|
| Table 2.0: Glucose standards | 41   |

| Table 2.1: Material compositions for SAF | synthesis | 44 |
|------------------------------------------|-----------|----|
| 1                                        |           |    |

| Table 2.2: Investigation of optimal crosslinking for high water absorpt | ion capacity |
|-------------------------------------------------------------------------|--------------|
| (WAC)                                                                   | 45           |
| Table 3.1: Concentration of avocado starch                              | 56           |
| Table 3.2: Analysis of mineral content                                  | 57           |
| <b>Table 3.3:</b> Compositions of SAP analysed by FTIR                  | 61           |
| Table 3.4: GraphPad Prism 6.0 statistical output                        | 71           |

## LIST OF FIGURES

| Figure1.0: Applications of SAP2                                                            |  |
|--------------------------------------------------------------------------------------------|--|
| Figure 1.1: Hydrophilic functional groups for the polymer backbone                         |  |
| Figure 1.2: Molecular structure of starch (Lu et al., 2009)15                              |  |
| Figure 1.3: FTIR spectrum of native starch16                                               |  |
| Figure 1.4: Chemical structure of CMC                                                      |  |
| Figure 1.5:FTIR spectrum of CMC 19                                                         |  |
| Figure 1.6: Optimisation of water retention of potato starch hydrogel at various levels of |  |
| crosslinking23                                                                             |  |
| Figure 1.7: Typical AUL testing apparatus                                                  |  |
| Figure 1.8: Proposed crosslinking model for Al ion and CMC                                 |  |
| Figure 1.9: Proposed crosslinking model for Al ion /CMC/starch blend                       |  |
| Figure 1.10: FTIR spectrum for CMC, starch and CMC/starch blend                            |  |
| Figure 2.0: Procedure for the extraction of starch                                         |  |
| Figure 3.0: The extraction of starch from avocado seeds                                    |  |
| Figure 3.1: Calibration curve for glucose standards                                        |  |
| Figure 3.2: Starch FTIR spectrum                                                           |  |
| Figure 3.3: FTIR spectrum for avocado seed starch 55                                       |  |
| Figure 3.4: Starch and Avocado seed starch FTIR spectra                                    |  |
| Figure 3.5: Synthesized starch and avocado seed starch SAP                                 |  |

| Figure 3.6: Superimposed | spectra of CMC, star | rch, avocado starch, a | aluminium sulphate and |
|--------------------------|----------------------|------------------------|------------------------|
|                          |                      |                        |                        |

| synthesized SAPs                                                               | 60   |        |
|--------------------------------------------------------------------------------|------|--------|
| Figure 3.7: A comparison of CMC SAP, starch/CMC composites and avocado         |      |        |
| starch/CMC                                                                     | 62   |        |
| Figure 3.8: Water absorption of avocado starch and starch SAP                  | 65   |        |
| Figure 3.9: A comparison of pure starch SAPs against avocado seed starch SAPs. | 66   |        |
| Figure 3.10: A comparison of the WAC of pure starch SAPs against avocado       | seed | starch |
| SAPs                                                                           | 67   |        |
| Figure 3.11: The effect of aluminium sulphate concentration on WAC of SAPs     | 68   |        |
| Figure 3.12: Soluble fraction of avocado and starch SAPs                       | 69   |        |