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Abstract

This thesis details the results of an investigation of bounds on four distances mea-

sures, namely, radius, diameter, the Gutman index and the edge-Wiener index, in

terms of other graph parameters, namely, order, irregularity index and the three

classical connectivity measures, minimum degree, vertex-connectivity and edge-

connectivity.

The thesis has six chapters. In Chapter 1, we define the most important terms used

throughout the thesis and we also give a motivation for our research and provide

background for relevant results. In this chapter we include the importance of the

distance measures to be studied.

Chapter 2 focuses on the radius, diameter and the degree sequence of a graph. We

give asymptotically sharp upper bounds on the radius and diameter of

(i) a connected graph,

(ii) a connected triangle-free graph,

(iii) a connected C4-free graph of given order, minimum degree, and given number

of distinct terms in the degree sequence of the graph.

We also give better bounds for graphs with a given order, minimum degree and

maximum degree. Our results improve on old classical theorems by Erdös, Pach,

Pollack and Tuza [24] on radius, diameter and minimum degree.

In Chapter 3, we deal with the Gutman index and minimum degree. We show
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that for finite connected graphs of order n and minimum degree δ, where δ is a

constant, Gut(G) ≤ 24·3
55(δ+1)

n5 +O(n4). Our bound is asymptotically sharp for every

δ ≥ 2 and it extends results of Dankelmann, Gutman, Mukwembi and Swart [18]

and Mukwembi [43], whose bound is sharp only for graphs of minimum degree 2.

In Chapter 4, we develop the concept of the Gutman index and edge-Wiener index in

graphs given order and vertex-connectivity. We show that Gut(G) ≤ 24

55κ
n5 +O(n4)

for graphs of order n and vertex-connectivity κ, where κ is a constant. Our bound

is asymptotically sharp for every κ ≥ 1 and it substantially generalizes the bound

of Mukwembi [43]. As a corollary, we obtain a similar result for the edge-Wiener

index of graphs of given order and vertex-connectivity.

Chapter 5 completes our study of the Gutman index, the edge-Wiener index and

edge-connectivity. We study the Gutman index Gut(G) and the Edge-Wiener index

We(G) of graphs G of given order n and edge-connectivity λ. We show that the

bound Gut(G) ≤ 24·3
55(λ+1)

n5 + O(n4) is asymptotically sharp for λ ≥ 8. We improve

this result considerably for λ ≤ 7 by presenting asymptotically sharp upper bounds

on Gut(G) and We(G) for 2 ≤ λ ≤ 7.

We complete our study in Chapter 6 in which we use techniques introduced in

Chapter 5 to solve new problems on size. We give asymptotically sharp upper

bounds on the size, m of

(i) a connected triangle-free graph in terms of order, diameter and minimum

degree,

vii



(ii) a connected graph in terms of order, diameter and edge-connectivity,

(iii) a connected triangle-free graph in terms of edge-connectivity, order and diam-

eter.

The result is a strengthening of an old classical theorem of Ore [49] if edge-connectivity

is prescribed and constant.
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0.1 Index for notation

G = (V,E) graph G with vertex set V and edge set E.

degG(v) degree of a vertex v ∈ V .

dG(u, v) distance between u, v ∈ V in G.

dG(f, g) distance between f, g ∈ E in G.

rad(G) radius of G.

diam(G) diameter of G.

ecG(v) eccentricity of vertex v ∈ V .

N [v] (closed) neighbourhood of vertex v ∈ V .

Nk[v] closed kth−neighbourhood of a vertex u of G.

N(v) open neighbourhood of vertex v ∈ V .

NS(v) set of neighbours of v in S or N(v) ∩ S, S ⊂ V .

Ni(v) i-th distance layer of v.

ki(v) cardinality of the i-th distance layer of v.

N≤i(v) i-th neighbourhood of v, namely ∪0≤j≤iNj.

N≥i(v) ∪i≤j≤ecG(v)Nj(v).

N [S] closed neighbourhood of subset S ⊆ V .

N(S) open neighbourhood of subset S ⊆ V .

E(V1, V2) {xy ∈ E(G) | x ∈ V1, y ∈ V2}, V1, V2 ⊂ V .

t(G) number of distinct terms in a degree sequence of G.

δ(G) minimum degree of G.

∆(G) maximum degree of G.

λ(G) edge-connectivity of G.

κ(G) vertex-connectivity of G.

G[S] subgraph induced by S in G, S ⊆ V.

G1 ∪G2 union of graphs G1 and G2.

G1 +G2 join of graphs G1, G2.

G1 +G2 + · · ·+Gk sequential join of graphs G1, G2, · · · , Gk.

dbe the smallest integer greater than or equal to b.

bbc the biggest integer less than or equal to b.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

The purpose of this chapter is to present motivation as well as to provide relevant

background to the study. We define the most important terms that will be used in

this thesis. Terms not defined in this chapter will be defined in subsequent chapters,

as the need arises.

1.2 Graph Theory Terminology

A graph G = (V,E) consists of a finite non-empty set V of elements called vertices,

and a (possibly empty) set E of edges. The order of G is defined as the number of

elements in V, denoted by |V (G)| = n and the number of elements m in E is called

the size of G.

The neighbourhood NG(v) of a vertex v ∈ V is the set of all vertices adjacent to

v in G and the closed neighbourhood NG[v] is the union of {v} and its neighbour-
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hood, that is, NG[v] = {v} ∪ NG(v). If S ⊆ V (G), then NG(S) = ∪v∈SNG(v) and

NG[S] = S ∪ NG(S). The closed kth-neighbourhood of a vertex u of G is the set

{x ∈ V : dG(x, u) ≤ k} and is denoted by Nk
G[u]. We simply write NG[u] instead of

N1
G[u]. The closed neighbourhood, NG[S], of S is the set ∪u∈SNG[u]. Where there

is no danger of confusion, we will drop the subscript G.

The degree degG (v) of a vertex v of G is the number of edges incident with v, i.e.,

degG(v) = |N(v)|.

The degree sequence of a graph is the sequence of all vertex degrees of G. In other

words, the degree sequence of G is a vector (degG(v1); degG(v2); . . . ; degG(vn)) with

degG(v1) ≥ degG(v2) ≥ . . . ≥ degG(vn) and |V (G)| = n. The irregularity index of a

graph G is the number of distinct terms in its degree sequence.

The minimum degree, denoted by δ(G) = δ, of G is the smallest of the degrees of

the vertices in G. We denote the maximum degree of G by ∆.

A walk W in a graph G is a sequence of vertices v0v1v2 · · · vr and edges such that

ei = vi−1vi ∈ E(G) for i = 1, 2, . . . , r. We call r the length of W and say that W

begins at v0 and ends at vr. If all the vertices of W are different, then the walk

is called a path. A path v0v1v2 · · · vr that begins at v0 and ends at vr is called a

v0 − vr path. Let P1 and P2 be two v0 − vr paths. Then P1 and P2 are edge-disjoint

if P1 and P2 have no edges in common, whereas P1 and P2 are internally disjoint

if V (P1) ∩ V (P2) = {v0, vr}. A closed walk in G is a walk of the form v0v1v2 · · · vr

where v0 = vr. If all the vertices except v0 of a closed walk v0v1v2 · · · vr are different
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and r ≥ 3, then the closed walk is called a cycle of length r.

A graph G is said to be connected if every pair of distinct vertices of G are joined

by a path.

The distance, dG(u, v), between two vertices u, v of G is the length of a shortest u-v

path in G.

The eccentricity, ecG(v), of a vertex v ∈ V is the maximum distance between v and

any other vertex in G.

Every vertex of G of minimum eccentricity is a centre vertex of G and the eccentric-

ity of a centre vertex is called the radius of G, denoted by rad(G). G is a self-centred

graph if every vertex of G is a centre vertex.

The diameter, diam(G), of G is defined as the maximum distance dG(u, v) over all

pairs of vertices u and v in G, i.e., diam(G) = max
u∈V

ecG(u).

The ith distance layer Ni(v) of a vertex v ∈ V (G) is the set of vertices at distance

i from v, that is, Ni(v) = {x ∈ V (G) | dG(x, v) = i}. We simply write Ni if v is

understood. We denote the cardinality of Ni by ki.

A connected graph with no cycles is called a tree.

A graph G is complete if every pair of distinct vertices of G are adjacent in G.

A graph H is called a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). If H is a

subgraph of G, we write H ≤ G. A spanning subgraph of G is a subgraph H of G

with V (H) = V (G). An induced subgraph denoted by G[S] is a subgraph of G with
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vertex set S and any two vertices of S are adjacent in G[S] if and only if they are

adjacent in G.

A bipartite graph is a graph whose vertex set V (G) can be partitioned into two

non-empty subsets A and B such that each edge of G has one end in A and the

other end in B.

A complete bipartite graph, denoted by Kp,q, is a bipartite graph G with bipartition

A,B such that A∪B = V (G), A∩B = ∅ with |A| = p, |B| = q and every vertex in

A is adjacent to every vertex in B.

The vertex-connectivity κ = κ(G) of G is the minimum number of vertices whose

deletion from G results in a trivial or disconnected graph. We say G is k-vertex-

connected or simply k-connected if G is connected and κ ≥ k.

The edge-connectivity λ = λ(G) of G is the minimum number of edges whose dele-

tion from G results in a trivial or disconnected graph. We say G is k-edge-connected

if G is connected and λ ≥ k.

Let G1 and G2 be two vertex disjoint graphs. The join G1 + G2 of G1 and G2 is

the graph with vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2) ∪ {uv|u ∈

V (G1), v ∈ V (G2)}. The union, G1 ∪G2, of G1 and G2 is the graph with vertex set

V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). Also for t ≥ 3 given vertex disjoint

graphs G1, G2, . . . , Gt, the sequential join, G1 + G2 + G3 + . . . + Gt, is the graph
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(G1 +G2) ∪ (G2 + ∪G3) ∪ . . . ∪ (Gt−1 +Gt).

1.3 Distance Concepts and Topological indices

All graphs considered here are finite, simple, connected, undirected and non-trivial,

unless otherwise specified. Throughout the study of graphs, distance concepts have

played a central role. Investigations of distance concepts in graphs was enhanced by

their wide applicability to facility location problems, network design in operations

research and also prediction of properties of chemical compounds in chemistry.

The Wiener index, W (G), of a graph G is defined as the sum of distances between

all unordered pairs of vertices, that is,

W (G) =
∑

{u,v}⊆V (G)

dG(u, v).

We may define the Wiener index also in a slightly different approach. First we define

the distance, dG(v), of a vertex v as the sum of all distances between v and all other

vertices of G. Thus,

W (G) =
1

2

∑
v∈V (G)

dG(v).

The distance between two edges of a connected graph G is, by definition, the distance

between the corresponding vertices of the line graph of G. The edge-Wiener index of
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a connected graph G is defined as the sum of distances between all unordered pairs

of edges of the graph G. That is,

We(G) =
∑

{f,g}⊆E(G)

dG(f, g).

We may also say that the edge-Wiener index of a graph G is equal to the Wiener

index of the line graph of G.

The Gutman index of a connected graph G is defined as

Gut(G) =
∑

{x,y}⊆V (G)

deg(x)deg(y)d(x, y).

1.4 Literature Review

1.4.1 Motivation and Background

The purpose of this subsection is to give some motivation for our study and to

provide background for relevant results. We give proofs of some of the results in the

next subsection. For a given graph, the invariance, radius, diameter, Gutman index

and the edge-Wiener index may be computed in polynomial time using for instance

algorithms which determine the distance, d(v) from a vertex v of the graph to every

other vertex in the graph. Problems arise if the graph is not given. However if we

are given some properties like order, minimum degree, irregularity index, maximum

degree, vertex-connectivity, or edge-connectivity, say, then we may be interested in

knowing upper bounds on parameters like radius and diameter in terms of some of

the given properties of the graph.
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The Diameter

The diameter is one of the most common of the classical distance parameters in

graph theory, and much of the research on distances is in fact on the diameter.

Apart from being an interesting graph-theoretical parameter, it plays a significant

role in analysing communication networks, Chung [9]. In such networks, the time

delay or signal degradation for sending a message from one point to another is often

proportional to the distance between the two points. The diameter can be used to

indicate the worst-case performance.

Let G be a connected graph of order n. Clearly, 1 ≤ diam(G) ≤ n−1. The diameter

equals 1 or n − 1 if and only if G is a complete graph or a path, respectively. If

we consider the size and order of a graph, then we can give an upper bound on the

diameter which is significantly stronger. Thus,

diam(G) ≤ n+
1

2
−
√

2m− 2n+
17

4
.

This result is an immediate consequence of the classical result by Ore [49] which

characterises diameter-maximal graphs.

It is natural to ask if graphs with larger maximum degree or larger minimum degree

can give stronger bounds. Bosak, Rosa and Snam [4] first proved that the diameter

was at most n+1−∆. Upper bounds on the diameter in terms of order and minimum

degree are far more interesting. They have been considered and rediscovered by

several authors some of which are, Moon [41], Goldsmith, Manvel and Farber [27].

The most general result was proved by Erdős , Pach, Pollack and Tuza [24]. They
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proved that

Theorem 1.1 [24] Let G be a connected graph of order n and minimum degree

δ ≥ 2. Then

diam(G) ≤
[ 3n

δ + 1

]
− 1.

Moreover the bound is tight apart from the exact value of the additive constant.

If G is triangle-free, then

diam(G) ≤ 4
⌈n− δ − 1

2δ

⌉
.

Moreover the bound is tight apart from the exact value of the additive constant.

If G is C4-free and δ ≥ 2 is a fixed integer, then

diam(G) ≤ 5n

δ2 − 2[ δ
2
] + 1

.

Furthermore, if δ is large, then this bound is almost tight.

Dankelmann, Dlamini and Swart [10, 11] used different methods to extend Theorem

1.1 to K2,t-free graphs and to K3,3-free graphs.

Particularly interesting is the fact that extremal graphs for the above bounds are

close to being regular, i.e., with all vertices having the same degrees. A parameter

of the degree sequence which gives an indication of how far or near a graph is from

being regular, i.e., an indication of how unequal the vertex degrees of a given graph

are, was seemingly discussed for the first time in the 105th conjecture of Graffiti

according to which for every tree T, the irregularity of the degree sequence is not

8



more than the irregularity of the transmission of distance. Precisely, the irregularity

index, t(G), of a graph G is the number of distinct terms in its degree sequence.

Extremal graphs for the above bounds have irregularity index at most 2. In that

spirit, the bound, in Theorem 1.1, was recently improved by Mukwembi [43] if the

irregularity index, t, of the graph G is given:

diam(G) ≤ 3(n− t)
δ + 1

+O(1).

The Radius

The radius is (after the diameter) the second most important classical distance pa-

rameter in graph theory. It is a convenient measure of centrality in a model of a

network. In terms of planning and organisation, central vertices are of particular in-

terest in most networks. In such networks, decisions involving the optimal selection

of a facility or two is only possible if central vertices are considered. For instance if a

city council committee wishes to locate an emergency facility like a fire station, then

the time or distance from the fire station to the furthest point in that city should

be as short as possible. The radius is therefore a very good measure that indicates

the furthest distance or the time in question from the central or emergency facility

to a location furthest away.

Networks occur in different areas, for example in metabolic and gene regulation net-

works in each cell (see, [56] ), transportation networks, food

webs in ecology, the organization of the internet and economic interactions. Struc-
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turally different classes of networks are identified by different useful parameters such

as the irregularity index, minimum degree, maximum degree, vertex-connectivity

and edge-connectivity just to mention but a few.

We begin by considering the relationship between the radius and the diameter. A

useful and basic inequality which follows directly from the triangle inequality, the

definition of the radius and diameter is that:

rad(G) ≤ diam(G) ≤ 2rad(G).

Laskar and Shier [38] showed that, if a graph with no induced cycle of length greater

than three, (chordal graph) has radius r and diameter d, then

d

2
≤ r ≤

⌊d
2

⌋
+ 1.

We now bound the radius in terms of order and the maximum degree. It is folklore

(see for instance [16]) that

rad(G) ≤ n−∆ + 2

2
.

Harant and Walther [31] proved the following upper bound on the radius.

Theorem 1.2 [31] Let G be a 3-vertex-connected graph with n vertices. Then

rad(G) <
n

4
+O(log n).

Egawa and Inoue [23] generalized the above result and obtained the following for all

odd κ.
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Theorem 1.3 [23] Let κ be an odd integer, and let G be a κ-connected graph of

order n. Then

rad(G) ≤ n+ κ+ 10

κ+ 1
.

This bound is best possible, up to an additive constant.

The upper bound on the radius in terms of order and minimum degree remained

open for almost three decades. It was in 1989 when Erdös, Pach, Pollack and Tuza

[24] proved the following result.

Theorem 1.4 [24] Let G be a connected graph of order n and minimum degree

δ ≥ 2. Then

rad(G) ≤ 3(n− 3)

2(δ + 1)
+ 5.

Moreover the bound is tight apart from the exact value of the additive constant.

If G is triangle-free, then

rad(G) ≤ n− 2

δ
+ 12.

Moreover the bound is tight apart from the exact value of the additive constant.

If G is C4 − free, then

rad(G) ≤ 5n

2(δ2 − 2[δ] + 1)
.

Furthermore, if δ is large, then this bound is almost tight.

These bounds on the radius for connected graphs have been rediscovered by several

authors, for instance Dankelmann, Dlamini and Swart [10, 11, 19], using different
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techniques, proved the following slightly stronger bound:

rad(G) ≤ 3n

2(δ + 1)
+ 1.

Results presented above in this subsection are known bounds on diameter in terms

of order, size, minimum degree and irregularity index. We also presented known

bounds on the radius in terms of order, maximum degree, vertex-connectivity, edge-

connectivity and minimum degree. No bounds on these distance measures in terms

of order and irregularity index seem to have been known to date. In chapters that

follow, we prove upper bounds whose orders of magnitude are best possible, on the

diameter in terms of order and the irregularity index of triangle-free graphs and C4-

free graphs. We also prove upper bounds on the radius in terms of order, minimum

degree and the irregularity index. For the radius, we also consider the upper bounds

for triangle-free graphs and C4-free graphs.

The Gutman index and the edge-Wiener index

Graph indices have been studied for decades because of their extensive applications

in chemistry. Several variants of the Wiener index have been proposed and studied.

The Wiener index was used to describe molecular branching and cyclicity. It was

also used to establish correlations with various physiochemical and thermodynamic

parameters of chemical compounds. Among them are the boiling point, density, crit-

ical pressure, refractive indices, heats of isomerization and vaporization of various

hydrocarbon species. The Wiener index found interesting applications in polymer

chemistry, in studies of crystals and in drug design.
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In this subsection we consider a variant of the well known and much studied Wiener

index, a quantity put forward in [28] by Gutman and called there the Schultz index

of the second kind, but for which the name Gutman index seems to be commonly

used in [51]. The Gutman index has been studied for example in [2, 26, 25, 28]. Like

Wiener’s original index, Gutman index is also based on distances between vertices

of graphs. We define the Gutman index of a connected graph G as

Gut(G) =
∑

{x,y}⊆V (G)

deg(x)deg(y)d(x, y).

Gutman in [28], presented that for acyclic structures, the Gutman index reflects

exactly the same structural features as the Wiener index. The question, whether

theoretical investigations on the Gutman index focusing on the more difficult poly-

cyclic molecules can be done, was posed. Feng [25] studied the Gutman index for

unicyclic graphs, and Feng and Liu in [26] considered bicyclic graphs in their re-

search. Dankelmann, Gutman, Mukwembi and Swart in [18] showed that if G is a

connected graph of order n, then

Gut(G) ≤ 24n5

55
+O(n

9
2 ).

Mukwembi in [43] improved this upper bound and presented the result

Gut(G) ≤ 24n5

55
+O(n4),

13



which shows that O(n
9
2 ) can be replaced by O(n4).

Recall that the edge-Wiener index We(G) of a connected graph G is equal to the

sum of distances between all pairs of edges in G. This index was introduced by

Iranmanesh, Gutman, Khormali and Mahmiani, in [32] and by Khalifeh, Yousefi-

Azari, Ashrafi and Wagner in [34]. Azari and Iranmanesh in [3] studied the edge-

Wiener index of the sum of graphs. Relations between the edge-Wiener index and

other indices were studied in [8, 37, 48].

In this thesis, we provide upper bounds on the Gutman index in terms of order,

minimum degree, δ ≥ 2, vertex-connectivity, κ ≥ 2, and edge-connectivity, λ ≥ 2.

In particular, Chapter 2 is devoted to proving the following. Let G be a connected

graph of order n and minimum degree δ, where δ is a constant. Then

Gut(G) ≤ 24 · 3
55(δ + 1)

n5 +O(n4).

Moreover, we demonstrate that apart from an additive constant, the given bound is

best possible.

In Chapter 3, we prove that if κ ≥ 2, and G is a κ−connected graph of order n with

diameter d, then

Gut(G) ≤ 1

16
d(n− κd)4 +O(n4).

Further, we also demonstrate that, apart from the additive constant, the value

1
16
d(n− κd)4 of the bound is best possible.

Chapter 4, is devoted to proving the following. Let G be a λ-edge-connected graph

14



of order n. Then

Gut(G) ≤



25 · n5

3 · 55
+O(n4) if λ = 2,

23·n5

55
+O(n4) if λ = 3, 4,

25·n5

56
+O(n4) if λ = 5, 6,

24·n5

3·55 +O(n4) if λ = 7,

24·3
55(λ+1)

n5 +O(n4) if λ ≥ 8.

Moreover, we demonstrate, in each case that apart from the additive constant, the

given bound is best possible. Further, we include the upper bounds on the edge-

Wiener index applying a relationship between the Gutman index and the edge-

Wiener index.

Size of a graph

An upper bound on the size in terms of order and diameter was determined by Ore

[49] as early as 1968 who showed that

m ≤ 1

2
(n− d− 1)(n− d+ 4) + d.

Several bounds on the size of a graph in terms of other graph parameters, for exam-

ple, order and radius [15, 50, 54], order and degree set [52], and order and domination

number [12] have been investigated. Several authors [50, 52] have presented simple

and short proofs to Ore’s theorem. Recently Mukwembi [45] reported on an asymp-

totically sharp upper bound on the size in terms of order, diameter and minimum

degree. Mukwembi obtained the following result:

Theorem 1.5 [45] Let G be a connected graph of order n, minimum degree δ, di-
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ameter d and size m. Then

m ≤ 1

2

[
n− 1

3
d(δ + 1)

]2

+ (2δ + 1)
(
n− 1

6
d(δ + 2)

)
=

1

2

[
n− 1

3
d(δ + 1)

]2

+O(n), (1.1)

and the bound, for fixed δ, is asymptotically tight.

Again Mukwembi in [46] obtained an upper bound on the size in terms of order,

radius and minimum degree. The following result was obtained

Theorem 1.6 [46] Let G be a connected graph of order n, radius r ≥ 9, minimum

degree δ ≥ 2 and size m. Then

m ≤ 1

2

[
n− 2r

3
d(δ + 1)

]2

+ (δ + 1)
[
13n− 22r

3
(δ + 1) +O(δ2)

]
.

Moreover this bound is asymptotically tight.

In [47], an asymptotically sharp upper bound on the size in terms of order, diameter

and vertex-connectivity was presented.

Theorem 1.7 [47] Let G be a κ-connected graph of order n, diameter d and size

m. Then

m ≤ 1

2
(n− κd)2 +O(n),

and the bound, for fixed κ, is asymptotically tight.

In this thesis, we prove an upper bound on size of a triangle-free graph in terms of

order, diameter and minimum degree. Further we provide upper bounds on the size
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in terms of order, diameter and edge-connectivity, λ ≥ 2. In particular, Chapter 5

is devoted to proving upper bounds on size for connected graphs and triangle-free

graphs. We prove the following. Let G be a connected triangle-free graph of order

n, diameter d, minimum degree δ ≥ 2 and size m. Then

m ≤
(n− δd

2
)2

4
+O(n).

Moreover, we demonstrate that apart from an additive constant, the given bound is

best possible.

In Chapter 5 we also prove the following. Let G be a λ-edge-connected triangle-free

graph of order n and diameter d. Then

m ≤



1
4

(
n− 3d

2

)2

+O(n) if λ = 2,

1
4
(n− 2d)2 +O(n) if λ = 3, 4,

1
4
(n− 5d

2
)2 +O(n) if λ = 5, 6,

1
4
(n− 3d)2 +O(n) if λ = 7,

(n−λd
2

)2

4
+O(n) if λ ≥ 8.

Moreover, we demonstrate in each case that apart from the additive constant, the

given bound is best possible.

In this thesis attention is restricted to (un-weighted) graphs in which all edges have

length one. For example weighted graphs are discussed in [5]. Note that graphs pre-

sented in this thesis generally consider a collection of n locations or nodes. These

locations are interconnected for purposes of communicating data or messages. In-

stead of speaking of locations or nodes, we speak of vertices and interconnections
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are represented by edges. In addition, instead of speaking of the minimum num-

ber of interconnections, we speak of edge-connectivity while a minimum number of

locations represents vertex-connectivity instead of speaking of port constraints, we

refer to degree conditions.

1.4.2 Some Important Results

Theorem 1.8 [55] Let G be a connected graph with minimum degree δ, vertex-

connectivity κ and edge-connectivity λ. Then κ ≤ λ ≤ δ.

The proof can be found in many textbooks including [7]. 2

For trees, we have a much stronger relationship stated in the following theorem

which is due to Jordan, [33].

Theorem 1.9 [33] Let T be a tree of order n ≥ 2.

(a) The centre of T consist of a single vertex or two adjacent vertices.

(b) If the centre of T consists of a single vertex then diam(T ) = 2rad(T ), and if

the centre of T consists of two adjacent vertices then diam(T ) = 2rad(T )− 1.

Proof: The proof is by induction on the radius. We may easily verify the theorem

for trees of radius 1 and 2. If rad(T ) ≥ 3, then consider the tree T0 obtained from

T by removing all end vertices. Since removing the end vertices reduces the radius

by 1, the diameter by 2, and maintains the centre, the theorem follows. 2

We present a very elementary, but handy, bound on the diameter due to Mukwembi,

[42].
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Theorem 1.10 [42] Let G be a connected graph of order n. The diameter of G

satisfies the inequality

diam(G) ≤ n− t+ 1,

where t is the irregularity index of G. Moreover, this inequality is sharp.

Proof: Since every vertex can be adjacent to at most 3 vertices of a diametral path,

then ∆ ≤ n − diam(G) + 1. Clearly, t ≤ ∆. It follows that t ≤ n − diam(G) + 1

from which the inequality is deduced. 2

One quantity closely analogous to the Wiener index is the edge-Wiener index, We(G)

defined by Dankelmann, Gutman, Mukwembi and Swart, [18] as the sum of the

distances (in the line graph) between all pairs of edges of G. It was shown in [18]

that the Gutman index is connected to the edge-Wiener index by the following useful

inequality. We therefore state the result without proof.

Theorem 1.11 [18] Let G be a connected graph of order n. Then

|We(G)− 1

4
Gut(G)| ≤ n4

8
.

1.5 Conclusion

In the first chapter, we introduced the terminology, distance concepts, motivation

and background to the study as well as some important results whose application

is important in most of our proofs in the next chapters. In the following chapter,

we prove an asymptotically sharp upper bound on the radius in terms of order,
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minimum degree and the irregularity index. Our bound is a strengthening of the

bound by Erdös, Pach, Pollack and Tuza, [24]. We also give similar improved bounds

on the diameter and radius for triangle-free and for C4-free graphs. Further, we also

give asymptotically sharp upper bounds on the radius and diameter when order,

minimum, and maximum degree of the graph are given.
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Chapter 2

Radius, diameter and the degree

sequence of a graph

2.1 Introduction

The goal of this chapter is to find asymptotically sharp upper bounds on the radius

and diameter of (i) a connected graph, (ii) a connected triangle-free graph, (iii)

a connected C4-free graph of given order, minimum degree, and given number of

distinct terms in the degree sequence of the graph. We also give better bounds

for graphs with a given order, minimum degree and maximum degree. Our results

improve on old classical theorems by Erdös, Pach, Pollack and Tuza [24] on radius,

diameter and minimum degree.

2.2 Definitions, notations and preliminaries

As mentioned in Chapter 1, in 1869, Jordan [33] showed that if T is a tree, then

either diam(T ) = 2rad(T ) or diam(T ) = 2rad(T ) − 1. In particular, we have the
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following fact.

Fact 2.1 For every tree T, rad(T ) ≤ 1
2
[diam(T ) + 1].

A 2-packing of G is a subset A ⊆ V with dG(u, v) > 2 for all u, v ∈ A. A 4-packing

is similarly defined. The k-th power of G, denoted by Gk, is the graph with vertex

set V (G), in which two distinct vertices u and v are adjacent if dG(u, v) ≤ k. Recall

that for an integer r, we denote the smallest integer greater than or equal to r by

dre.

Let v be a vertex of G. The ith distance layer of v, Ni(v), is the set of all vertices

that are at distance i from v, i.e., Ni(v) = {x ∈ V (G) : dG(v, x) = i}. Where there

is no danger of confusion and if vertex v is understood, we simply write Ni instead

of Ni(v).

2.3 Results

We begin by presenting a result on an upper bound on the radius in terms of order,

minimum degree and the irregularity index. The proof technique of this result is a

refinement of the widely used method of spanning trees introduced by Dankelmann

and Entringer [13].

Theorem 2.1 Let G be a connected graph of order n, irregularity index t and min-

imum degree δ. Then

rad(G) ≤ 3(n− t)
2(δ + 1)

+O(1).
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Moreover, this bound is asymptotically tight.

Proof: Since G has t vertices of distinct degrees, let {v1, v2, . . . , vt} be a set of t

vertices such that deg(v1) < deg(v2) < deg(v3) < · · · < deg(vt). Since deg(v1) ≥ δ,

we have deg(vt) ≥ δ + t − 1. Hence |N [vt]| ≥ δ + t. We find a maximal 2-packing

A of G using the following procedure. Let A = {vt}. If there exists a vertex x in G

with d(x,A) = 3, add x to A. Add vertices x with d(x,A) = 3 to A until each of the

vertices not in A are within distance 2 of A.

Fact 2.2 |A| ≤ n− t+ 1

δ + 1
.

Proof of Fact 2.2: First note that by our construction, for any two vertices x, y ∈ A,

we have N [x]
⋂
N [y] = ∅. Since minimum degree is δ and |N [vt]| ≥ δ + t, it follows

that

n ≥ |
⋃
x∈A

N [x]|

= |N [vt]|+
∑

x∈A−{vt}

|N [x]|

≥ δ + t+ (|A| − 1)(δ + 1).

Fact 2.2 is proven upon re-arranging the terms.

Let T1 ≤ G be the forest with V (T1) = N [A], whose edge set consists of all edges

incident with a vertex in A. By our construction of A, there exists |A| − 1 edges in

G, each of them joining two neighbours of distinct elements of A whose addition to
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T1 gives a tree T2 ≤ G.

Every vertex x not in T2 is adjacent to some vertex x′ in T2. Let T be a spanning

tree of G with edge set E(T2)∪{xx′ : x ∈ V (G)−V (T2)}. We have by construction

that T 3[A] is connected and that diam(T 3[A]) ≤ |A| − 1, and hence

dT (x, y) ≤ 3(|A| − 1) for all x, y ∈ A. (2.1)

Clearly, rad(G) ≤ rad(T ). It follows from Fact 2.1 that

rad(G) ≤ 1

2
[diam(T ) + 1]. (2.2)

We now bound diam(T ). Let u, v be arbitrary vertices in T. By our construction u

and v are each within distance 2 of A. Let u′, v′ ∈ A be such that dT (u, u′) ≤ 2 and

dT (v, v′) ≤ 2.

Then, in conjunction with (2.1), we have

dT (u, v) ≤ dT (u, u′) + dT (u′, v′) + dT (v′, v)

≤ 2 + dT (u′, v′) + 2

≤ 2 + 3(|A| − 1) + 2

≤ 3(|A| − 1) + 4.

By Fact 2.2, we get

dT (u, v) ≤ 3
(n− t+ 1

δ + 1
− 1
)

+ 4

=
3(n− t)
δ + 1

+
3

δ + 1
+ 1,
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and so

diam(T ) ≤ 3(n− t)
δ + 1

+
3

δ + 1
+ 1.

This, in conjunction with (2.2), yields

rad(G) ≤ 1

2

[3(n− t)
δ + 1

+
3

δ + 1
+ 1 + 1

]
=

3(n− t)
2(δ + 1)

+
3

2(δ + 1)
+ 1,

and the bound in the theorem is proven.

To see that the bound is asymptotically tight, let n, δ, t and k be positive integers

for which k = n−t−δ+3
δ+1

and consider the graph Gn,δ,t, t ≥ 2, constructed as follows.

Let S0, S1, S2, . . . , S3k−1, S3k be mutually disjoint sets such that

|Si| =



t− 1 if i = 1,

δ − 1 if i ≡ 0(mod 3), i 6= 0, 3k,

1 if i ≡ 1 or 2(mod 3), i 6= 1,

δ if i = 0, 3k.

Define the following sets:

E0 := {uv | u, v ∈ S0},

E0,1 := {uv | (u, v) ∈ S0 × S1}.

Write the elements of S1 and S2 as S1 = {w1, w2, . . . , wt−1}, S2 = {w}, respectively,

and define

E1 := {wiwj | i+ j ≥ t, i 6= j},

E1,2 := {wt−1w},
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E≥2 := {uv | (u, v) ∈ Si × Sj, u 6= v, i, j ≥ 2 and |j − i| ≤ 1}.

Define the graph Gn,δ,t to be the graph with vertex set

V (Gn,δ,t) = S0 ∪ S1 ∪ · · · ∪ S3k−1 ∪ S3k,

and edge set

E(Gn,δ,t) = E0 ∪ E0,1 ∪ E1 ∪ E1,2 ∪ E≥2.

By inspection, Gn,δ,t has minimum degree δ, irregularity index t and

diam(Gn,δ,t) = 3k. From k = n−t−δ+3
δ+1

, we get

diam(Gn,δ,t) =
3(n− t)
δ + 1

+O(1).

Since diam(Gn,δ,t) ≤ 2rad(Gn,δ,t), it follows that rad(Gn,δ,t) ≥
3(n− t)
2(δ + 1)

+O(1), and

so the bound is asymptotically tight, as desired. 2

Consider the vertex vt in the proof of Theorem 2.1. The lower bound

deg(vt) ≥ δ + t− 1

played a pivotal role in the proof of Theorem 2.1. It is not hard to show that in

general δ+ t− 1 ≤ ∆, where ∆ is the maximum degree of G. It is therefore natural

to expect better bounds when the maximum degree of the graph is known. We prove

this below.

Theorem 2.2 Let G be a connected graph of order n, minimum degree δ and max-

imum degree ∆. Then

rad(G) ≤ 3(n−∆)

2(δ + 1)
+O(1).
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Moreover, this bound is asymptotically tight.

Proof: Let v be a vertex of maximum degree in G. We find a maximal 2-packing A

of G using the following procedure. Let A = {v}. Add vertices x with d(x,A) = 3

to A until each of the vertices not in A are within distance 2 of A.

Fact 2.3 |A| ≤ n−∆ + δ

δ + 1
.

Proof of Fact 2.3: First note that by our construction, for any two vertices x, y ∈ A,

we have N [x]
⋂
N [y] = ∅. Since minimum degree is δ and |N [v]| = ∆ + 1, it follows

that

n ≥ |
⋃
x∈A

N [x]|

= |N [v]|+
∑

x∈A−{v}

|N [x]|

≥ ∆ + 1 + (|A| − 1)(δ + 1).

Fact 2.3 is proven upon re-arranging the terms. 2

Let T1 ≤ G be the forest with V (T1) = N [A], whose edge set consists of all edges

incident with a vertex in A. By our construction of A, there exists |A| − 1 edges in

G, each of them joining two neighbours of distinct elements of A whose addition to

T1 gives a tree T2 ≤ G.

Every vertex x not in T2 is adjacent to some vertex x′ in T2. Let T be a spanning

tree of G with edge set E(T2)∪{xx′ : x ∈ V (G)−V (T2)}. We have by construction
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that T 3[A] is connected and that diam(T 3[A]) ≤ |A| − 1, and hence

dT (x, y) ≤ 3(|A| − 1) for all x, y ∈ A. (2.3)

Clearly, rad(G) ≤ rad(T ). It follows from Fact 2.1 that

rad(G) ≤ 1

2
(diam(T ) + 1). (2.4)

We now bound diam(T ). Let u, v be arbitrary vertices in T. By our construction u

and v are each within distance 2 of A. Let u′, v′ ∈ A be such that dT (u, u′) ≤ 2 and

dT (v, v′) ≤ 2.

Then, in conjunction with (2.3), we have

dT (u, v) ≤ dT (u, u′) + dT (u′, v′) + dT (v′, v)

≤ 2 + 3(|A| − 1) + 2

= 3|A|+ 1.

By Fact 2.3, we get

dT (u, v) ≤ 3
(n−∆ + δ

δ + 1

)
+ 1

=
3(n−∆)

δ + 1
+O(1),

and so

diam(T ) ≤ 3(n−∆)

δ + 1
+O(1).

This, in conjunction with (2.4), yields

rad(G) ≤ 1

2

(3(n−∆)

δ + 1
+O(1) + 1

)
=

3(n−∆)

2(δ + 1)
+O(1),
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and the bound in the theorem is proven.

To see that the bound is asymptotically tight, let n, δ,∆ and k be positive integers

for which k = n−∆−2
δ+1

+ 1, δ ≤ ∆− 1, and consider the graph Gn,δ,∆ constructed as

follows.

Let S0, S1, S2, . . . , S3k−2, S3k−1 be mutually disjoint sets such that

|Si| =



∆− 1 if i = 1,

δ − 1 if i ≡ 1(mod 3), i 6= 1,

1 if i ≡ 0 or 2(mod 3), i 6= 3k − 1,

2 if i = 3k − 1.

Define graph Gn,δ,∆ to be the graph with vertex set

V (Gn,δ,∆) = S0 ∪ S1 ∪ · · · ∪ S3k−2 ∪ S3k−1,

where vertices u ∈ Si and v ∈ Sj, u 6= v, are adjacent in Gn,δ,∆ if |i − j| ≤ 1. By

inspection, Gn,δ,∆ has minimum degree δ, maximum degree ∆ and diam(Gn,δ,∆) =

3k − 1. From k = n−∆−2
δ+1

+ 1, we get

diam(Gn,δ,∆) ≥ 3(n−∆)

δ + 1
+O(1).

Since diam(Gn,δ,∆) ≤ 2rad(Gn,δ,∆), it follows that rad(Gn,δ,∆) ≥ 3(n−∆)

2(δ + 1)
+O(1),

and so the bound is asymptotically tight, as desired. 2

The following bound, which is attained by Gn,δ,∆ constructed in Theorem 2.2, follows

from Theorem 2.2 and the fact that diam(G) ≤ 2rad(G).
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Corollary 2.3 Let G be a connected graph of order n, minimum degree δ and max-

imum degree ∆. Then

diam(G) ≤ 3(n−∆)

δ + 1
+O(1).

Moreover, this bound is asymptotically tight. 2

We now turn to triangle-free graphs. From now onwards, unless specified, z is a

fixed centre vertex of G so that rad(G) = r = ec(z). For each i = 0, 1, . . . , r, let

Ni = {v ∈ V (G) : dG(v, z) = i} be the ith distance layer of z. We employ the

notation N≤j = ∪0≤i≤jNi and N≥j = ∪j≤i≤rNi. Since Nr 6= ∅, from now onwards

fix a vertex zr ∈ Nr. Form a spanning tree T of G that is distance preserving from

z, i.e., dT (z, x) = dG(z, x) for all x ∈ V (G). For a vertex x, y ∈ V (G), denote by

T (x, y), the set of vertices on a path connecting x and y in T .

Definition 1 Let y ∈ V (G). We say y is related to zr if there exist vertices

u, v ∈ V (G), where u ∈ T (z, zr)∩N≥9 and v ∈ T (z, y)∩N≥9 such that dG(u, v) ≤ 4.

The following important observation is an analogue of one due to Erdős et al. [24].

Lemma 2.4 Let rad(G) ≥ 18 and z, zr as above. Then there exists a vertex in

N≥r−9 which is not related to zr.

Proof: Suppose to the contrary that every vertex y ∈ N≥r−9 is related to zr. Let

z9 be the vertex of T (z, zr) which belongs to N9. We show that the eccentricity of

z9 is less than r. For any x ∈ N≤r−10, we have dG(z9, x) ≤ dG(z9, z) + dG(z, x) ≤
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9+r−10 = r−1. Since every vertex inN≥r−9 is related to zr, for any x ∈ N≥r−9, there

exists u, v, where u ∈ T (z, zr) ∩N≥9 and v ∈ T (z, x) ∩N≥9 such that dG(u, v) ≤ 4.

Since z9 and u are on a z-zr shortest path, we have, dG(z, u) = dG(z, z9)+dG(z9, u) =

9 + dG(z9, u). Thus, dG(z9, u) = dG(z, u)− 9. It follows that

dG(z9, x) ≤ dG(z9, u) + dG(u, v) + dG(v, x)

≤ dG(z, u)− 9 + 4 + (r − dG(z, v))

≤ r − 5 + dG(z, u)− dG(z, v)

≤ r − 5 + dG(u, v)

≤ r − 1.

Hence ec(z9) ≤ r − 1, contradicting the fact that rad(G) = r. 2

Lemma 2.5 Let G be a connected triangle-free graph with radius r ≥ 21. Let z be a

centre vertex of G and Ni be its ith distance layer. Let k, l, where 9 ≤ k ≤ l ≤ r−9,

be integers. Then

(|Nk|+ |Nk+1|+ · · ·+ |Nl|) ≥
⌊
l − k + 1

4

⌋
4δ.

Proof: By Lemma 2.4, let y ∈ N≥r−9 be a fixed vertex that is not related to zr.

Hence for all u ∈ T (z, zr) ∩ N≥9 and v ∈ T (z, y) ∩ N≥9 we have dG(u, v) ≥ 5. For

i ≥ 9, let N ′i denote the set of elements in Ni that are within a distance of 2 from

T (z, y) ∩ N≥9. Similarly, let N ′′i be the set of all elements in Ni that are within a
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distance of 2 from T (z, zr) ∩N≥9. By the un-relatedness of zr and y, we have

(∪r−9
i=9N

′
i) ∩ (∪ri=9N

′′
i ) = ∅. (2.5)

Claim 1 Let i, 10 ≤ i ≤ r − 11, be an integer. Then

|N ′i−1|+ |N ′i |+ |N ′i+1|+ |N ′i+2| ≥ 2δ, (2.6)

and

|N ′′i−1|+ |N ′′i |+ |N ′′i+1|+ |N ′′i+2| ≥ 2δ. (2.7)

Proof of Claim 1: We prove (2.6); (2.7) is treated similarly. Consider the edge uv on

T , where u and v is the only vertex in N ′i ∩ T (z, y) and N ′i+1 ∩ T (z, y), respectively.

Note that N(u)∪N(v) ⊆ N ′i−1 ∪N ′i ∪N ′i+1 ∪N ′i+2. Since G is triangle-free, we have

N(u) ∩N(v) = ∅. It follows that

|N ′i−1|+ |N ′i |+ |N ′i+1|+ |N ′i+2| = |N ′i−1 ∪N ′i ∪N ′i+1 ∪N ′i+2|

≥ |N(u) ∪N(v)|

= |N(u)|+ |N(v)| ≥ 2δ,

and the claim is proven.

Now, if i, 10 ≤ i ≤ r − 11, is an integer, then

|Ni−1|+ |Ni|+ |Ni+1|+ |Ni+2| = |Ni−1 ∪Ni ∪Ni+1 ∪Ni+2|

≥ |
(
N ′i−1 ∪N ′i ∪N ′i+1 ∪N ′i+2

)
∪
(
N ′′i−1 ∪N ′′i ∪N ′′i+1 ∪N ′′i+2

)
|.
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By (2.5),

(
N ′i−1 ∪N ′i ∪N ′i+1 ∪N ′i+2

)
∩
(
N ′′i−1 ∪N ′′i ∪N ′′i+1 ∪N ′′i+2

)
= ∅.

It follows that

|Ni−1|+ |Ni|+ |Ni+1|+ |Ni+2| ≥ (|N ′i−1|+ |N ′i |+ |N ′i+1|+ |N ′i+2|)

+ (|N ′′i−1|+ |N ′′i |+ |N ′′i+1|+ |N ′′i+2|).

Therefore, by Claim 1, we have

|Ni−1|+ |Ni|+ |Ni+1|+ |Ni+2| ≥ 4δ.

Applying this to the following sums, we get

|Nk|+ |Nk+1|+ · · ·+ |Nl| = (|Nk|+ |Nk+1|+ |Nk+2|+ |Nk+3|)

+ (|Nk+4|+ |Nk+5|+ |Nk+6|+ |Nk+7|) + · · ·

≥
⌊
l − k + 1

4

⌋
4δ,

and the lemma is proven. 2

Theorem 2.6 Let G be a connected triangle-free graph of order n, minimum degree

δ and maximum degree ∆. Then

rad(G) ≤ n−∆

δ
+O(1).

Moreover, this bound is asymptotically tight.
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Proof: Denote the radius of G by r and assume the notation of z and Ni given

above. If r ≤ 21, then the theorem is trivially true, and so, from now onwards we

assume that r ≥ 22. Let v be a vertex in G of degree ∆. Let j be a fixed integer

such that v ∈ Nj. Then N [v] ⊆ Nj−1 ∪ Nj ∪ Nj+1, where N−1 = ∅ = Nr+1, and so∑j+1
i=j−1 |Ni| ≥ ∆ + 1. We look at two cases:

Case A: j ∈ {11, 12, . . . , r − 11}. Then from Lemma 2.5, and the fact that∑j+1
i=j−1 |Ni| ≥ ∆ + 1, we get

n =
r∑
i=0

|Ni|

=

(
8∑
i=0

|Ni|

)
+

(
j−2∑
i=9

|Ni|

)
+

(
j+1∑
i=j−1

|Ni|

)
+

(
r−9∑
i=j+2

|Ni|

)
+

(
r∑

i=r−8

|Ni|

)

≥ 9 +

(⌊
j − 10

4

⌋
4δ

)
+ (∆ + 1) +

(⌊
r − j − 10

4

⌋
4δ

)
+ 9.

The bound in the theorem follows upon re-arranging the terms.

Case B: j ∈ {0, 1, . . . , 10} ∪ {r − 10, . . . , r}. Then, as above,

n >

(
j+1∑
i=j−1

|Ni|

)
+

(
r−12∑
i=12

|Ni|

)
≥ (∆ + 1) +

(⌊
r − 21

4

⌋
4δ

)
,

and again, the bound of the theorem follows upon re-arranging the terms.

To see that the bound is asymptotically tight, let n, δ,∆ and k, k ≥ 2, be positive

integers for which k = n−∆+δ−1
2δ

, 2 ≤ δ ≤ ∆ − 1, and consider the graph Gn,δ,∆

constructed as follows.

34



Let S1, S2, . . . , S4k−1, S4k be mutually disjoint sets such that

|Si| =



1 if i ≡ 0 or 1(mod 4),

∆− 1 if i = 2,

δ if i = 4k − 1,

δ − 1 otherwise.

Define graph Gn,δ,∆ to be the graph with vertex set

V (Gn,δ,∆) = S1 ∪ S2 ∪ · · · ∪ S4k−1 ∪ S4k,

where vertices u ∈ Si and v ∈ Sj are adjacent in Gn,δ,∆ if |i− j| = 1. By inspection,

Gn,δ,∆ is triangle-free, has minimum degree δ, maximum degree ∆ and rad(Gn,δ,∆) =

2k. From k = n−∆+δ−1
2δ

, we get

rad(Gn,δ,∆) =
n−∆

δ
+O(1),

as desired. 2

From Theorem 2.6, we immediately obtain the following corollary.

Corollary 2.7 Let G be a connected triangle-free graph of order n, minimum degree

δ and maximum degree ∆. Then

diam(G) ≤ 2(n−∆)

δ
+O(1).

Moreover, this bound is asymptotically tight. 2

Next we show that if the irregularity index t is given, with ∆ < 3
2
t, then Theorem

2.6 and Corollary 2.7 can be improved.
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Theorem 2.8 Let G be a connected triangle-free graph of order n, irregularity index

t, t ≥ 2, and minimum degree δ. Then

rad(G) ≤
n− 3

2
t

δ
+O(1).

Moreover, this bound is asymptotically tight.

Proof: Denote the radius of G by r and assume the notation of z and Ni given

above. If r ≤ 22, then the theorem is trivially true, and so, from now onwards we

assume that r > 22. Let {v1, v2, . . . , vt} be a set of t vertices such that deg(v1) <

deg(v2) < · · · < deg(vt). Then deg(vt) ≥ δ + t− 1. Let

S = {vd t
2
e, vd t

2
e+1, . . . , vt−1}.

Hence for every x ∈ S, deg(x) ≥ δ + d t
2
e − 1. Since t ≥ 2, S 6= ∅. We now consider

two cases.

Case 1: There exists a vertex v ∈ S such that d(vt, v) ≥ 3. Assume that vt ∈ Ni

and v ∈ Nj, where i, j ∈ {0, 1, . . . , r}. We assume that i ≤ j; the case j ≤ i is

treated analogously.

We look at two subcases separately.

Subcase 1: |i− j| ≤ 2. Then since N [vt] and N [v] are both contained in ∪j+1
s=i−1Ns,
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and N [vt] ∩N [v] = ∅, we have

j+1∑
s=i−1

|Ns| ≥ |N [vt]|+ |N [v]|

≥ t+ δ − 1 +

⌈
t

2

⌉
+ δ − 1

≥ 3

2
t+ 2δ − 2.

Hence, if 11 ≤ i ≤ j ≤ r − 11, this, together with Lemma 2.5, gives

n =
r∑
s=0

|Ns|

=

(
8∑
s=0

|Ns|

)
+

(
i−2∑
s=9

|Ns|

)
+

(
j+1∑
s=i−1

|Ns|

)
+

(
r−9∑
s=j+2

|Ns|

)
+

(
r∑

s=r−8

|Ns|

)

≥ 9 +

(⌊
i− 10

4

⌋
4δ

)
+

(
3

2
t+ 2δ − 2

)
+

(⌊
r − j − 10

4

⌋
4δ

)
+ 9.

The bound in the theorem follows upon re-arranging the terms.

If either i or j is outside {11, 12, . . . , r − 11}, then the bound in the theorem is

established as in Theorem 2.6, Case B.

Subcase 2: |i − j| ≥ 3. Since N [vt] ⊆ Ni−1 ∪ Ni ∪ Ni+1, we have
∑i+1

s=i−1 |Ns| ≥

t+δ−1. Similarly, since N [v] ⊆ Nj−1∪Nj∪Nj+1, we have
∑j+1

s=j−1 |Ns| ≥ d t2e+δ−1.
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Assume that 11 ≤ i < j ≤ r − 11. As in Subcase 1, we have

n =
r∑
s=0

|Ns|

=

(
8∑
s=0

|Ns|

)
+

(
i−2∑
s=9

|Ns|

)
+

(
i+1∑
s=i−1

|Ns|

)
+

(
j−2∑
s=i+2

|Ns|

)
+

(
j+1∑
s=j−1

|Ns|

)
+

(
r−9∑
s=j+2

|Ns|

)
+

(
r∑

s=r−8

|Ns|

)

≥ 9 +

(⌊
i− 10

4

⌋
4δ

)
+ (t+ δ − 1) +

(⌊
j − i− 3

4

⌋
4δ

)
+

(⌈
t

2

⌉
+ δ − 1

)
+

(⌊
r − j − 10

4

⌋
4δ

)
+ 9.

The bound in the theorem follows upon re-arranging the terms. The case when

either at least one of i or j is outside {11, 12, . . . , r − 11} is treated similarly. This

completes the proof for Subcase 2.

Case 2: d(vt, x) ≤ 2 for every x ∈ S. Then S ∪N [vt] ⊆ N2[vt].

Claim 2 |N2[vt]| ≥ 3
2
t+ δ − 1.

Proof of Claim 2: If vt is adjacent to a vertex w of S, then since G is triangle-free,

|N2[vt]| ≥ |N(vt)|+ |N(w)|

≥ δ + t− 1 + δ +

⌈
t

2

⌉
− 1

=
3

2
t+ 2δ − 2 ≥ 3

2
t+ δ − 1,
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as claimed. If vt is not adjacent to any vertex of S, then we have N [vt] ∩ S = ∅.

Hence, from S ∪N [vt] ⊆ N2[vt], we get

|N2[vt]| ≥ |N [vt]|+ |S|

≥ δ + t+
⌈ t

2

⌉
− 1

≥ 3

2
t+ δ − 1,

as desired. This completes the proof of Claim 2.

Let Nj be the distance layer containing vt. Then, as before, using Lemma 2.5, Claim

2, and the equation

n =

j−3∑
s=0

|Ns|+
j+2∑
i=j−2

|Ns|+
r∑

s=j+3

|Ns|,

we get the bound in the theorem. We conclude from Case 1 and 2 that

rad(G) ≤
n− 3

2
t

δ
+O(1),

and the bound in the theorem is proven. Finally, let us mention that, analogously

to the construction done in Theorem 2.6, it is an easy exercise to construct a graph

attaining the bound in the present theorem. 2

Corollary 2.9 Let G be a connected triangle-free graph of order n, irregularity index

t, t ≥ 2, and minimum degree δ. Then

diam(G) ≤
2(n− 3

2
t)

δ
+O(1).

Moreover, this bound is asymptotically tight. 2
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We now turn our attention to C4-free graphs.

Theorem 2.10 Let G be a connected C4-free graph of order n, minimum degree δ

and maximum degree ∆. Then

(i) diam(G) ≤ 5(n−∆(δ − 1)− 1)

δ2 − 2d δ
2
e+ 1

+ 8,

(ii) rad(G) ≤ 5(n−∆(δ − 1)− 1)

2(δ2 − 2d δ
2
e+ 1)

+
9

2
.

Moreover these bounds are asymptotically tight.

Proof: Let v be a fixed vertex of G with degree ∆. Since G is C4-free, each

neighbour of v has at most one neighbour in N(v) and no two neighbours of v have

a common neighbour apart from v. It follows that

|N2[v]| ≥

 ∆(δ − 1) + 1, if ∆ is even,

∆(δ − 1) + 2, if ∆ is odd.

Therefore, comparing the two lower bounds, we deduce that

|N2[v]| ≥ ∆(δ − 1) + 1. (2.8)

Similarly, if w is in V − {v}, then |N2[w]| ≥ δ2 − 2d δ
2
e+ 1.

We find a maximal 4-packing A of G using the following procedure. Let A = {v}.

Add vertices x with d(x,A) = 5 to A until each of the vertices not in A are within

distance 4 of A. By our construction of A, for any two vertices x, y ∈ A, we have
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N2[x]
⋂
N2[y] = ∅. Therefore,

n ≥ |
⋃
x∈A

N2[x]|

= |N2[v]|+
∑

x∈A−{v}

|N2[x]|

≥ (∆(δ − 1) + 1) + (|A| − 1)

(
δ2 − 2

⌈
δ

2

⌉
+ 1

)
.

Hence, we have proved

Claim 3 |A| ≤ n−∆(δ − 1)− 1

δ2 − 2d δ
2
e+ 1

+ 1.

For x ∈ A, let T1(x) ≤ G be the tree with V (T1(x)) = N2[x], which is distance

preserving from x. Then T2 =
⋃
x∈A T1(x) is a subforest of G. By our construction

of A, there exists |A| − 1 edges in G, each of them joining two components of T2,

whose addition to T2 gives a tree T3 ≤ G.

Extend the tree T3 to a spanning tree T of G with dT (x,A) = dG(x,A) for each

x ∈ V (G). We have by construction that T 5[A] is connected and that diam(T 5[A]) ≤

|A| − 1, so

dT (x, y) ≤ 5(|A| − 1) for all x, y ∈ A. (2.9)

We now bound diam(T ). Let u, v be arbitrary vertices in T. By our construction u

and v are each within distance 4 of A. Let u′, v′ ∈ A be such that dT (u, u′) ≤ 4 and

dT (v, v′) ≤ 4.
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This, together with (2.9), gives

dT (u, v) ≤ dT (u, u′) + dT (u′, v′) + dT (v′, v) ≤ 4 + dT (u′, v′) + 4

≤ 4 + 5(|A| − 1) + 4

= 5(|A| − 1) + 8.

It follows from Claim 3 that

dT (u, v) ≤ 5
(n−∆(δ − 1)− 1

δ2 − 2d δ
2
e+ 1

)
+ 8,

and so

diam(T ) ≤ 5
(n−∆(δ − 1)− 1

δ2 − 2d δ
2
e+ 1

)
+ 8.

Therefore,

diam(G) ≤ 5
(n−∆(δ − 1)− 1

δ2 − 2d δ
2
e+ 1

)
+ 8, (2.10)

and so the bound in (i) is proven. To establish the bound in (ii), observe from Fact

2.1 and (2.10) that rad(T ) ≤ 1

2
(diam(T ) + 1) ≤ 5(n−∆(δ − 1)− 1)

2(δ2 − 2d δ
2
e+ 1)

+
9

2
.

Thus, rad(G) ≤ rad(T ) ≤ 5(n−∆(δ − 1)− 1)

2(δ2 − 2d δ
2
e+ 1)

+
9

2
, and (ii) is proven. 2

2.4 Conclusion

In this chapter, we proved an asymptotically sharp upper bound on the radius

in terms of order, minimum degree and the irregularity index. Our bound is a

strengthening of the bound by Erdös, Pach, Pollack and Tuza, [24]. We also gave
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similar improved bounds on the diameter and radius for triangle-free and for C4-free

graphs. Further, we also gave asymptotically sharp upper bounds on the radius and

diameter when order, minimum, and maximum degree of the graph are given. In

Chapter 3, we give asymptotically sharp upper bounds for the Gutman index in

terms of order and minimum degree δ for every δ ≥ 2. Our method relies on the

diameter of a graph.

43



Chapter 3

The Gutman index and minimum

degree

3.1 Introduction

In Chapter 2, we improved the upper bound on the radius in terms of order, mini-

mum degree and the irregularity index. We also gave similar improved bounds on

the diameter and radius for triangle-free and for C4-free graphs. In this chapter, we

improve the bound of Mukwembi, [43], for δ ≥ 3, on the Gutman index and show

that

Gut(G) ≤ 24 · 3
55(δ + 1)

n5 +O(n4),

where n is the order of the graph G and the minimum degree δ ≥ 2 is a constant.

Moreover we show that our bound is asymptotically sharp for every δ ≥ 2.

44



3.2 Results

First we present the following lemma, which will be used in the proof of our main

result.

Lemma 3.1 Let G be a connected graph of order n, diameter d and minimum degree

δ, where δ is a constant. Let v, v′ be any vertices of G.

(1) Then deg(v) ≤ n− 1
3
d(δ + 1) + δ.

(2) If d(v, v′) ≥ 3, then deg(v) + deg(v′) ≤ n− 1
3
d(δ + 1) + 4δ.

Proof: Let P : v0, v1, . . . , vd be a diametric path of G. Let S ⊂ V (P ) be the set

S :=
{
v3i+1 : i = 0, 1, 2, . . . ,

⌊d− 1

3

⌋}
.

For each u ∈ S, choose any δ neighbours u1, u2, . . . , uδ of u and denote the set

{u, u1, u2, . . . , uδ} by P [u]. Let P = ∪u∈SP [u]. Then

|P| = (δ + 1)
(⌊d− 1

3

⌋
+ 1
)
.

Let v be any vertex of G. We denote by N [v] the closed neighbourhood of v, which

is the set that consists of v and its neighbours. Note that if v /∈ P, then v can

be adjacent to at most one vertex in S and to neighbors of at most 2 vertices of

S, hence v is adjacent to at most 2δ + 1 vertices in P. If v ∈ P, then it can be

checked that v can be adjacent to at most 2δ vertices in P. In both cases we obtain
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|P ∩N [v]| ≤ 2δ + 1 which implies

n ≥ |P|+ |N [v]| − |P ∩N [v]|

≥ (δ + 1)
(⌊d− 1

3

⌋
+ 1
)

+ (deg(v) + 1)− (2δ + 1)

≥ (δ + 1)
d

3
+ deg(v)− 2δ.

Rearranging the terms, we obtain deg(v) ≤ n− 1
3
d(δ+ 1) + 2δ, which completes the

proof of (1).

Now we prove the statement (2). If v, v′ are any two vertices of G, such that

d(v, v′) ≥ 3, then N [v] ∩N [v′] = ∅. It follows that

n ≥ |P|+ |N [v]|+ |N [v′]| − |P ∩N [v]| − |P ∩N [v′]|

≥ (δ + 1)
(⌊d− 1

3

⌋
+ 1
)

+ (deg(v) + 1) + (deg(v′) + 1)− 2(2δ + 1)

≥ (δ + 1)
d

3
+ deg(v) + deg(v′)− 4δ,

which implies deg(v) + deg(v′) ≤ n− 1
3
d(δ + 1) + 4δ. 2

Now we present our main result.

Theorem 3.2 Let G be a connected graph of order n and minimum degree δ, where

δ is a constant. Then

Gut(G) ≤ 24 · 3
55(δ + 1)

n5 +O(n4),

and this bound is asymptotically sharp.

Proof: We denote the diameter of G (the largest distance between any two vertices

in G) by d. Let P : v0, v1, . . . , vd be a diametric path of G and let S ⊂ V (P ) be the
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set

S :=
{
v3i+1 : i = 0, 1, 2, . . . ,

⌊d− 1

3

⌋}
.

For each v ∈ S, choose any δ neighbours u1, u2, . . . , uδ of v and denote the set

{v, u1, u2, . . . , uδ} by P [v]. Let P = ∪v∈SP [v]. Then

|P| = (δ + 1)
(⌊d− 1

3

⌋
+ 1
)
. (3.1)

Now let V = {{x, y} : x, y ∈ V }. We partition V as follows:

V = P ∪ A ∪ B,

where

P := {{x, y} : x ∈ P and y ∈ V (G)}, A := {{x, y} ∈ V − P : d(x, y) ≥ 3}

and

B := {{x, y} ∈ V − P : d(x, y) ≤ 2}.

Setting |A| = a, |B| = b, we have
(
n
2

)
= |P|+ a+ b, and so from (3.1), a+ b =

(
n− |P|

2

)
=

1

2

[
n− (δ + 1)

(⌊d− 1

3

⌋
+ 1
)][

n− (δ + 1)
(⌊d− 1

3

⌋
+ 1
)
− 1
]
. (3.2)

Note that

Gut(G) =
∑
{x,y}∈A

deg(x)deg(y)d(x, y) +
∑
{x,y}∈B

deg(x)deg(y)d(x, y)

+
∑
{x,y}∈P

deg(x)deg(y)d(x, y).

We bound each term separately.
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Claim 4 Assume the notation above. Then

∑
{x,y}∈P

deg(x)deg(y)d(x, y) ≤ O(n4).

Proof of Claim 4: We partition S as S = S1∪S2, where S1 = {vj ∈ S : j ≡ 1 (mod 6)},

and S2 = S − S1. It follows that P = (∪v∈S1P [v]) ∪ (∪v∈S2P [v]).

For each vertex x in P, define the score s(x) of x as

s(x) :=
∑
y∈V

deg(x)deg(y)d(x, y).

Then

∑
{x,y}∈P

deg(x)deg(y)d(x, y) ≤
∑
x∈P

s(x) =
∑

x∈(∪v∈S1P [v])

s(x) +
∑

x∈(∪v∈S2P [v])

s(x).

We now consider ∪v∈S1P [v]. For each u, v ∈ S1, u 6= v, we have P [u]∩P [v] = ∅ and

the neighbourhoods of P [u] and P [v] are also disjoint. Write the elements of S1 as

S1 = {w1, w2, . . . , w|S1|}. For each wj ∈ S1, let P [wj] = {wj, wj1, w
j
2, . . . , w

j
δ}, where

wj1, w
j
2, . . . , w

j
δ are neighbours of wj. Then

n ≥ (deg(w1) + 1) + (deg(w2) + 1) + · · ·+ (deg(w|S1|) + 1)

and for t = 1, 2, . . . , δ,

n ≥ (deg(w1
t ) + 1) + (deg(w2

t ) + 1) + · · ·+ (deg(w
|S1|
t ) + 1).

Summing we get

(δ + 1)n ≥
∑

x∈(∪u∈S1P [u])

deg(x) + (δ + 1)|S1|.
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That is, ∑
x∈(∪u∈S1P [u])

deg(x) ≤ (δ + 1)n− (δ + 1)|S1|. (3.3)

Similarly, ∑
x∈(∪u∈S2P [u])

deg(x) ≤ (δ + 1)n− (δ + 1)|S2|. (3.4)

Now from Lemma 3.1, for every x ∈ P, we have

s(x) = deg(x)

(∑
y∈V

deg(y)d(x, y)

)

≤ deg(x)

(∑
y∈V

(
n− 1

3
d(δ + 1) + 2δ

)
d

)

≤ deg(x)

(
dn
(
n− 1

3
d(δ + 1) + 2δ

))
.

This, in conjunction with (3.3), (3.4) and the fact that δ is a constant, yields

∑
{x,y}∈P

deg(x)deg(y)dG(x, y)

≤
∑

x∈(∪v∈S1P [v])

[
deg(x)

[
dn
(
n− 1

3
d(δ + 1) + 2δ

)]]

+
∑

x∈(∪v∈S2P [v])

[
deg(x)

[
dn
(
n− 1

3
d(δ + 1) + 2δ

)]]

= dn
(
n− 1

3
d(δ + 1) + 2δ

)( ∑
x∈(∪v∈S1P [v])

deg(x) +
∑

x∈(∪v∈S2P [v])

deg(x)

)

≤ dn
(
n− 1

3
d(δ + 1) + 2δ

)[
(δ + 1)n− (δ + 1)|S1|+ (δ + 1)n− (δ + 1)|S2|

]
= dn

(
n− 1

3
d(δ + 1) + 2δ

)[
2(δ + 1)n− (δ + 1)

⌊d− 1

3

⌋]
= O(n4),
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as required and so Claim 4 is proven.

Now we bound those pairs of vertices, which are in B.

Claim 5 Assume the notation above. Then

∑
{x,y}∈B

deg(x)deg(y)d(x, y) ≤ O(n4).

Proof of Claim 5: Note that if {x, y} ∈ B, then d(x, y) ≤ 2. This, together with

Lemma 3.1 and the fact that b = O(n2), gives

∑
{x,y}∈B

deg(x)deg(y)d(x, y) ≤
∑
{x,y}∈B

2
(
n− 1

3
d(δ + 1) + 2δ

)2

= 2b
(
n− 1

3
d(δ + 1) + 2δ

)2

= O(n4),

as claimed.

Finally, we study pairs of vertices, which are in A.

Claim 6 Assume the notation above. Then

∑
{x,y}∈A

deg(x)deg(y)d(x, y) ≤ 1

16
d
(
n− 1

3
d(δ + 1)

)4

+O(n4).

Proof of Claim 6: Let {w, z} be a pair in A, such that deg(w)+deg(z) is maximum.

Let deg(w) + deg(z) = s. Since deg(w)deg(z) ≤ 1
4
(deg(w) + deg(z))2, we have

deg(w)deg(z) ≤ 1

4
s2. (3.5)

50



Now we find an upper bound on a, the cardinality of A. From (3.2) we have

a =
1

2

[
n− (δ + 1)

(⌊d− 1

3

⌋
+ 1
)][

n− (δ + 1)
(⌊d− 1

3

⌋
+ 1
)
− 1
]
− b. (3.6)

Note that all pairs {x, y}, x, y ∈ N [w]−P and all pairs {x, y}, x, y ∈ N [z]−P (where

N [w] (N [z]) is the closed neighbourhood of w (of z)) are in B. Since w (and z) can

be adjacent to at most one vertex in S and to neighbours of at most 2 vertices of S,

it follows that w (and z) is adjacent to at most 2δ + 1 vertices in P. Then we have

b ≥
(

deg(w)− 2δ

2

)
+

(
deg(z)− 2δ

2

)

=
1

2
([deg(w)]2 + [deg(x)]2)− 4δ + 1

2
(deg(w) + deg(z)) + (4δ2 + 2δ)

≥ 1

4
s2 − 4δ + 1

2
s+ (4δ2 + 2δ).

Hence from (3.6), we get

a ≤ 1

2

[
n− (δ + 1)

(⌊d− 1

3

⌋
+ 1
)][

n− (δ + 1)
(⌊d− 1

3

⌋
+ 1
)
− 1
]

− 1

4
s2 +

4δ + 1

2
s− (4δ2 + 2δ).

From (3.5), we have

∑
{x,y}∈A

deg(x)deg(y)d(x, y) ≤
∑
{x,y}∈A

s2d

4

≤ s2d

4

[
1

2

[
n− (δ + 1)

(⌊d− 1

3

⌋
+ 1
)][

n− (δ + 1)
(⌊d− 1

3

⌋
+ 1
)
− 1
]

− 1

4
s2 +

4δ + 1

2
s− (4δ2 + 2δ)

]
.

By Lemma 3.1, s ≤ n− 1
3
d(δ + 1) + 4δ. Subject to this condition

s2d
4

[
1
2

[
n− (δ+ 1)(

⌊
d−1

3

⌋
+ 1)

][
n− (δ+ 1)(

⌊
d−1

3

⌋
+ 1)−1

]
− 1

4
s2 + 4δ+1

2
s− (4δ2 + 2δ)

]
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is maximized for s = n− 1
3
d(δ + 1) +O(1) to give

∑
{x,y}∈A

deg(x)deg(y)d(x, y)

≤ d

4

(
n− 1

3
d(δ + 1)

)2[1

2

(
n− 1

3
d(δ + 1)

)2

− 1

4

(
n− 1

3
d(δ + 1)

)2

+O(n)
]

=
d

16

(
n− 1

3
d(δ + 1)

)4

+O(n4).

The proof of Claim 6 is complete.

Now we can complete the proof of the theorem. From Claims 4, 5 and 6, we get

Gut(G) =
∑
{x,y}∈A

deg(x)deg(y)d(x, y) +
∑
{x,y}∈B

deg(x)deg(y)d(x, y)

+
∑
{x,y}∈P

deg(x)deg(y)d(x, y)

≤ 1

16
d
(
n− 1

3
d(δ + 1)

)4

+O(n4) +O(n4) +O(n4)

=
1

16
d
(
n− 1

3
d(δ + 1)

)4

+O(n4).

The term

1

16
d
(
n− 1

3
d(δ + 1)

)4

is maximized, with respect to d, for d = 3n
5(δ+1)

to give

Gut(G) ≤ 24 · 3
55(δ + 1)

n5 +O(n4),

as desired.

It remains to show that the bound is asymptotically sharp. We construct the graph
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Gn,d,δ for d ≡ 1 (mod 3). Let V (G) = V0 ∪ V1 ∪ . . . ∪ Vd, where

|Vi| =



δ − 1 if i ≡ 2 (mod 3),

d1
2
(n− 1

3
(d− 1)(δ + 1))e if i = 0,

b1
2
(n− 1

3
(d− 1)(δ + 1))c if i = d,

1 otherwise.

Let two distinct vertices v ∈ Vi, v′ ∈ Vj be adjacent if and only if |j− i| ≤ 1, and let

d = 3n
5(δ+1)

be an integer. Then the graph Gn, 3n
5(δ+1)

,δ has order n, minimum degree δ

and the Gutman index is 24·3
55(δ+1)

n5 +O(n4). 2

Lemma 1.11 proved in [18] can be used to obtain a bound on the edge-Wiener index

of a graph G.

Corollary 3.3 Let G be a connected graph of order n. Then

We(G) ≤ 22 · 3
55(δ + 1)

n5 +O(n4)

and the bound is asymptotically sharp.

Proof: From Theorem 3.2 and Lemma 1.11, we obtain

We(G) ≤ 22 · 3
55(δ + 1)

n5 +O(n4).

The graph Gn,d,δ is also the extremal graph on the edge-Wiener index

We(Gn,d,δ) =
22 · 3

55(δ + 1)
n5 +O(n4),

therefore the bound is best possible. 2
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3.3 Conclusion

In this chapter, we improved the bound of Mukwembi, [43], for δ ≥ 3, and we

precisely showed that

Gut(G) ≤ 24 · 3
55(δ + 1)

n5 +O(n4),

where n is the order of the graph G and the minimum degree δ ≥ 2 is a constant.

In [43], Mukwembi showed that for any graph of order n, the Gutman index of G,

Gut(G) ≤ 24

55
n5 + O(n4). This bound is best possible only for graphs of vertex-

connectivity κ = 1. In the next chapter, we show that Gut(G) ≤ 24

55κ
n5 +O(n4) for

graphs of order n and vertex-connectivity κ, where κ is a constant. Our bound is

asymptotically sharp for every κ ≥ 1 and it substantially generalizes the bound of

Mukwembi, [43].
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Chapter 4

The Gutman index and the

edge-Wiener index of graphs with

given vertex-connectivity

4.1 Introduction

In Chapter 3 we precisely showed that

Gut(G) ≤ 24 · 3
55(δ + 1)

n5 +O(n4),

where n is the order of the graph G and the minimum degree δ ≥ 2 is a constant.

The goal of this chapter is to find asymptotically sharp upper bounds on the Gutman

index of graphs of given order and vertex-connectivity. We show that

Gut(G) ≤ 24

55κ
n5 +O(n4)

for connected graphs G of order n and vertex-connectivity κ ≥ 1, where κ is a

constant. Our bound is best possible for every κ ≥ 1 and it substantially generalizes
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the bound in [43], and improves on the bound in [40]. We also obtain, as a corollary,

a similar result for the edge-Wiener index of connected graphs of given order and

vertex-connectivity.

4.2 Results

First we bound degrees of vertices of a graph G in terms of the order, diameter and

vertex-connectivity of G. This result will be used in the proof of Theorem 4.2, which

bounds the Gutman index of a graph.

Lemma 4.1 Let G be a connected graph of order n, diameter d and vertex-connectivity

κ, where κ is a constant. Let v, v′ be any vertices of G.

(i) Then deg(v) ≤ n− κd+ 4κ− 3.

(ii) If d(v, v′) ≥ 3, then deg(v) + deg(v′) ≤ n− κd+ 7κ− 4.

Proof: Let G be a connected graph of order n, diameter d and vertex-connectivity

κ. Let v0 be any vertex of G of eccentricity d and let Ni be the i-th neighbourhood

of v0, i = 0, 1, 2, . . . , d.

Let v ∈ V (G). Then v ∈ Ni for some i. Note that N(v) ⊂ Ni−1 ∪ Ni ∪ Ni+1,

which implies that deg(v) ≤ |Ni−1| + |Ni| + |Ni+1| − 1. It is also easy to see that

removal of all vertices in Ni, i = 1, 2, . . . , d − 1, disconnects G, thus |Ni| ≥ κ for
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i = 1, 2, . . . , d− 1. It follows that

n = | ∪dj=0 Nj| ≥ | ∪i−2
j=0 Nj|+ deg(v) + |{v}|+ | ∪dj=i+2 Nj|

≥ deg(v) + 1 + κ(d− 4) + 2,

Rearranging the terms, we obtain deg(v) ≤ n − κd + 4κ − 3, which completes the

proof of (i).

Now we prove the statement (ii). Let v, v′ ∈ V (G) such that d(v, v′) ≥ 3. Then

N(v) ∩N(v′) = ∅. Since |Ni| ≥ κ for i = 1, 2, . . . , d− 1 and

deg(v) ≤ |Ni−1|+ |Ni|+ |Ni+1| − 1 (simiarly for v′), we obtain

n ≥ (deg(v) + 1) + (deg(v′) + 1) + (d− 7)κ+ 2.

Rearranging the terms, we get deg(v)+ deg(v′) ≤ n− κd+ 7κ− 4, which completes

the proof of (ii). 2

In the following theorem we present an upper bound on the Gutman index of a

graph G in terms of its order, diameter and vertex-connectivity.

Theorem 4.2 Let G be a connected graph of order n, diameter d and vertex-

connectivity κ, where κ is a constant. Then

Gut(G) ≤ 1

16
d
(
n− κd

)4

+O(n4),

and the bound is asymptotically sharp.

Proof: Let v0 be a vertex of G of eccentricity d and let Ni be the i-th neigh-

bourhood of v0, i = 0, 1, 2, . . . , d. Since |Ni| ≥ κ for all i = 1, 2, . . . , d − 1, we
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can choose κ vertices ui1, ui2, . . . , uiκ of Ni. Then for each j = 1, 2, . . . , κ, let

Pj = {u1j, u2j, u3j, . . . , ud−1j} and P = ∪d−1
j=1Pj. We have

|P | = (d− 1)κ (4.1)

We partition the 2-subsets of V (G), V = {{x, y} : x, y ∈ V (G)}, as follows:

V = P ∪ A ∪ B,

where

P = {{x, y} : x ∈ P and y ∈ V (G)}, A = {{x, y} ∈ V − P : d(x, y) ≥ 3}

and

B = {{x, y} ∈ V − P : d(x, y) ≤ 2}.

We set |A| = a, |B| = b, which implies
(
n
2

)
= |P| + a + b, and consequently from

(4.1) we obtain

a+ b =

(
n− |P |

2

)
=

1

2

[
n− (d− 1)κ

][
n− (d− 1)κ− 1

]
. (4.2)

Note that

Gut(G) =
∑
{x,y}∈A

deg(x)deg(y)d(x, y) +
∑
{x,y}∈B

deg(x)deg(y)d(x, y)

+
∑
{x,y}∈P

deg(x)deg(y)d(x, y).

We bound these three terms in the following claims.

Claim 7 Assume the notation above. Then

∑
{x,y}∈P

deg(x)deg(y)d(x, y) ≤ O(n4).
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Proof of Claim 7: For j = 1, 2, . . . κ, let Pj = U1j ∪U2j ∪U3j, where U1j, U2j and U3j

are defined as follows:

U1j = {u1j, u4j, u7j, . . . },

U2j = {u2j, u5j, u8j, . . . }.

U3j = {u3j, u6j, u9j, . . . }.

Note that for any two different vertices x, y in the same set Uij, i = 1, 2, 3, we have

N(x) ∩N(y) = ∅, since d(x, y) ≥ 3. Therefore
∑

x∈Uij deg(x) < n for i = 1, 2, 3.

For each vertex x in P , we define the score s(x) as

s(x) =
∑

y∈V (G)

deg(x)deg(y)d(x, y)

= deg(x)
( ∑
y∈V (G)

deg(y)d(x, y)
)
.

Then from Lemma 4.1 we have

s(x) ≤ deg(x)
( ∑
y∈V (G)

(n− κd+O(1))d(x, y)
)

= deg(x)(n− κd+O(1))
( ∑
y∈V (G)

d(x, y)
)

< deg(x)(n− κd+O(1))(nd).
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Then for j = 1, 2, . . . κ,

∑
x∈Pj

s(x) =
∑
x∈U1j

s(x) +
∑
x∈U2j

s(x) +
∑
x∈U3j

s(x)

<
∑
x∈U1j

deg(x)(n− κd+O(1))(nd) +
∑
x∈U2j

deg(x)(n− κd+O(1))(nd)

+
∑
x∈U3j

deg(x)(n− κd+O(1))(nd)

= (n− κd+O(1))(nd)
(∑
x∈U1j

deg(x) +
∑
x∈U2j

deg(x) +
∑
x∈U3j

deg(x)
)

< (n− κd+O(1))(nd)(3n).

Hence

∑
{x,y}∈P

deg(x)deg(y)d(x, y) ≤
∑
x∈P

s(x)

=
∑
x∈P1

s(x) +
∑
x∈P2

s(x) + . . .+
∑
x∈Pκ

s(x)

< κ(n− κd+O(1))(nd)(3n),

which implies Claim 7.

Now we study pairs of vertices, which are in B.

Claim 8 Assume the notation above. Then

∑
{x,y}∈B

deg(x)deg(y)d(x, y) ≤ O(n4).
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Proof of Claim 8: We know that if {x, y} ∈ B, then d(x, y) ≤ 2 and b = O(n2).

Using these facts and Lemma 4.1, we obtain

∑
{x,y}∈B

deg(x)deg(y)d(x, y) ≤
∑
{x,y}∈B

2(n− κd+O(1))2

= 2b(n− κd+O(1))2

≤ O(n4),

as claimed.

Finally, we bound those pairs of vertices, which are in A.

Claim 9 Assume the notation above. Then

∑
{x,y}∈A

deg(x)deg(y)d(x, y) ≤ d

16

(
n− κd

)4

+O(n4).

Proof of Claim 9: Let {w, z} be any pair inA, such that deg(w)+deg(z) is maximum.

Let deg(w) + deg(z) = s. Since deg(w)deg(z) ≤ 1
4
(deg(w) + deg(z))2, we get

deg(w)deg(z) ≤ 1

4
s2. (4.3)

Now we find an upper bound on the cardinality of A. From (4.2) it follows that

a =
1

2

[
n− (d− 1)κ

][
n− (d− 1)κ− 1

]
− b. (4.4)

Note that all pairs {x, y}, x, y ∈ N [w] − P and all pairs {x, y}, x, y ∈ N [z] − P

are in B. Clearly, w ∈ Ni for some i = 0, 1, . . . , d, and consequently we have

N [w] ⊆ Ni−1 ∪ Ni ∪ Ni+1. Since |Ni| ≥ κ for any i = 1, 2, . . . , d − 1, we obtain
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|N [w] ∩ P | ≤ 3κ. Similarly, |N [z] ∩ P | ≤ 3κ, which implies

b ≥
(

deg(w) + 1− 3κ

2

)
+

(
deg(z) + 1− 3κ

2

)

=
1

2

[
(deg(w))2 + (deg(x))2

]
− 6κ− 1

2

(
deg(w) + deg(z)

)
+ 9κ2 − 3κ

≥ 1

4
s2 − 6κ− 1

2
s+ 9κ2 − 3κ.

Then from (4.4), we get

a ≤ 1

2

[
n− (d− 1)κ

][
n− (d− 1)κ− 1

]
− 1

4
s2 +

6κ− 1

2
s− 9κ2 + 3κ,

and consequently from (4.3), we have

∑
{x,y}∈A

deg(x)deg(y)d(x, y) ≤
∑
{x,y}∈A

s2d

4
≤

s2d

4

[
1

2

[
n− (d− 1)κ

][
n− (d− 1)κ− 1

]
− 1

4
s2 +

6κ− 1

2
s− 9κ2 + 3κ

]
. (4.5)

By Lemma 4.1, s ≤ n− κd + 7κ− 4. Subject to this condition, (4.5) is maximized

for s = n− κd+O(1) to give

∑
{x,y}∈A

deg(x)deg(y)d(x, y)

≤ d

4

(
(n− κd)2 +O(n)

)[1

2

(
n− κd

)2

− 1

4

(
n− κd

)2

+O(n)
]

=
d

16

(
n− κd

)4

+O(n4),

which completes the proof of Claim 9.
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Now we complete the proof of the theorem. From Claims 7, 8 and 9, we obtain

Gut(G) =
∑
{x,y}∈A

deg(x)deg(y)d(x, y) +
∑
{x,y}∈B

deg(x)deg(y)d(x, y)

+
∑
{x,y}∈P

deg(x)deg(y)d(x, y)

≤ 1

16
d
(
n− κd

)4

+O(n4) +O(n4) +O(n4)

=
1

16
d
(
n− κd

)4

+O(n4).

Finally we show that our bound is asymptotically sharp. We construct a graph

Gn,d,κ such that

Gut(Gn,d,κ) =
1

16
d
(
n− κd

)4

+O(n4).

Let Gn,d,κ be a graph join defined as follows:

Gn,d,κ = Kd 1
2

(n−κ(d−1))e +G1 +G2 + · · ·+Gd−1 +Kb 1
2

(n−κ(d−1))c,

where G1 = G2 = · · · = Gd−1 = Kκ. It can be checked that Gn,d,κ has order n,

diameter d, vertex-connectivity κ and Gut(Gn,d,κ) = 1
16
d(n− κd)4 +O(n4). 2

Now we present an upper bound on the Gutman index of a graph in terms of its

order and vertex-connectivity.

Corollary 4.3 Let G be a connected graph of order n and vertex-connectivity κ,

where κ is a constant. Then

Gut(G) ≤ 24

55κ
n5 +O(n4),

and the bound is asymptotically sharp.
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Proof: By Theorem 4.2, we have Gut(G) ≤ 1
16
d(n − κd)4 + O(n4) for connected

graphs G of order n, diameter d and vertex-connectivity κ. Since

1

16
d
(
n− κd

)4

is maximized, with respect to d, for d = n
5κ

, we obtain Gut(G) ≤ 24

55κ
n5 +O(n4) for

connected graphs G of order n and vertex-connectivity κ.

Consider the graph Gn,d,κ described in the proof of Theorem 4.2. Let n
5κ

be an

integer. Then the graph Gn, n
5κ
,κ has the Gutman index 24

55κ
n5 +O(n4). 2

We can now use Lemma 1.11 to obtain a bound on the edge-Wiener index of a graph

G.

Corollary 4.4 Let G be a connected graph of order n and vertex-connectivity κ,

where κ is a constant. Then

We(G) ≤ 22

55κ
n5 +O(n4),

and the bound is asymptotically sharp.

Proof: From Theorem 4.2 and Lemma 1.11, we obtain We(G) ≤ 22

55κ
n5+O(n4). The

graph Gn, n
5κ
,κ is also the extremal graph on the edge-Wiener index (We(Gn, n

5κ
,κ) =

22

55κ
n5 +O(n4)), therefore the bound is best possible. 2

4.3 Conclusion

In this chapter, we studied the Gutman index of graphs of given order and vertex-

connectivity. We also obtained, as a corollary, a similar result for the edge-Wiener
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index of connected graphs of given order and vertex-connectivity. In Chapter 5, we

give asymptotically sharp upper bounds on the Gutman index in terms of order and

edge-connectivity. As a corollary, we obtain a similar result for the edge-Wiener

index of graphs of given order and edge-connectivity.

65



Chapter 5

The Gutman index, the

edge-Wiener index and the

edge-connectivity of graphs

5.1 Introduction

This chapter is a continuation of the work that was started by Mazorodze, Muk-

wembi and Vetŕık in [40] where upper bounds on the Gutman index of a graph in

terms of order, diameter and minimum degree were given. Here we find, using ideas

developed in the previous chapters, an asymptotically sharp upper bound on the

Gutman index of graphs of given order n and edge-connectivity λ.

If λ = 1, then from Mukwembi in [43], we have Gut(G) ≤ 24

55
n5 + O(n4), and the

bound is asymptotically sharp, since the extremal graph given in [43] has edge-

connectivity one.

It is well-known that λ ≤ δ for any graph G, thus from Chapter 3, we obtain the
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inequality

Gut(G) ≤ 24 · 3
55(λ+ 1)

n5 +O(n4). (5.1)

We will show that this bound is best possible for λ ≥ 8. The main challenge of

this chapter is to obtain asymptotically sharp upper bounds on the Gutman index

for graphs of given order and edge-connectivity λ, where 2 ≤ λ ≤ 7. We prove

that the bound (5.1) can be improved considerably for 2 ≤ λ ≤ 7. We also obtain

asymptotically sharp upper bounds on the edge-Wiener index of graphs of given

order and edge-connectivity λ ≥ 2.

5.2 Results

First we consider the Gutman index of graphs of edge-connectivity at least 8.

Theorem 5.1 Let G be a graph of order n and edge-connectivity λ, where λ ≥ 8 is

a constant. Then

Gut(G) ≤ 24 · 3
55(λ+ 1)

n5 +O(n4)

and the bound is best possible.

Proof: The bound follows from Theorem 3.2 by applying the inequality λ ≤ δ.

Thus it remains to show that the bound is best possible. We construct the graph

G′ of diameter d = 3k+ 2 where k ≥ 1. Let G′ = G0 +G1 +G2 + · · ·+G3k+1, where
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G0 = Kb 1
2

[n−k(λ+1)]c, G3k+1 = Kd 1
2

[n−k(λ+1)]e, and for 1 ≤ i ≤ 3k

Gi =


Kλ+1

3
if λ ≡ 2 (mod 3),

Kλ
3

+1 for i = 0, 1 (mod 3) and Kλ
3

for i = 2 (mod 3) if λ ≡ 0 (mod 3),

Kλ+2
3

for i = 0, 1 (mod 3) and Kλ−1
3

for i = 2 (mod 3) if λ ≡ 1 (mod 3).

We have |V (Gj−2)|+ |V (Gj−1)|+ |V (Gj)| = λ+1 for j = 3, 6, . . . , 3k, thus |V (G1)|+

|V (G2)|+ · · ·+ |V (G3k)| = k(λ+ 1). Since |V (G0)|+ |V (G3k+1)| = n− k(λ+ 1), we

have |V (G′)| = n. Note that the edge-connectivity of G′ is λ.

Let Gut(x, y) = deg(x)deg(y)d(x, y) where x, y ∈ V (G′). Clearly Gut(G) =
∑
{x,y}⊆V (G′) Gut(x, y).

For any x ∈ V (G0) and y ∈ V (G3k+1), we obtain

Gut(x, y) =
(⌊1

2
[n− k(λ+ 1)]

⌋
+
⌈λ+ 1

3

⌉
− 1
)(⌈1

2
[n− k(λ+ 1)]

⌉
+
⌊λ+ 1

3

⌋
− 1
)

(3k + 2)

=
1

4
[n− k(λ+ 1)]2(3k + 2) +O(nk).

Then for k = n
5(λ+1)

, we obtain

∑
x∈V (G0),y∈V (G3k+1)

Gut(x, y) =
1

16
[n− k(λ+ 1)]4(3k + 2) +O(n3k)

=
24 · 3

55(λ+ 1)
n5 +O(n4).

For x ∈ H = V (G1)∪V (G2)∪· · ·∪V (G3k) and y ∈ V (G′), we have Gut(x, y) = O(n2)

and consequently
∑

x∈H,y∈V (G′) Gut(u, v) = O(n4), which implies that Gut(G′) =

24·3
55(λ+1)

n5 +O(n4). 2

We present three lemmas, which will be used to prove our main results.

Lemma 5.2 Let G be a graph of edge-connectivity λ and let v be any vertex of G.

Then |Ni(v)||Ni+1(v)| ≥ λ for any i = 0, 1, 2, . . . , ec(v)− 1.
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Proof: For any vertex v ∈ V (G) and i = 0, 1, 2, . . . , ec(v)− 1, the number of edges

between Ni(v) and Ni+1(v) is at most |Ni(v)||Ni+1(v)|. If |Ni(v)||Ni+1(v)| < λ,

then we can disconnect G by removing less than λ edges which connect Ni(v) and

Ni+1(v). 2

From the inequality xy ≤ (x+y
2

)2, we obtain the following lemma.

Lemma 5.3 Let x and y be positive integers.

(a) If xy ≥ 2, then x+ y ≥ 3.

(b) If xy ≥ 3, then x+ y ≥ 4.

(c) If xy ≥ 4, then x+ y ≥ 4.

(d) If xy ≥ 5, then x+ y ≥ 5.

(e) If xy ≥ 6, then x+ y ≥ 5.

(f) If xy ≥ 7, then x+ y ≥ 6.

In the following lemma, we study the degrees of vertices in graphs of edge-connectivity

2.

Lemma 5.4 Let G be a graph of order n, edge-connectivity 2 and diameter d. Let

v, v′ be any vertices of G.

(i) Then deg(v) ≤ n− 3
2
d+O(1).

(ii) If d(v, v′) ≥ 3, then deg(v) + deg(v′) ≤ n− 3
2
d+O(1).

Proof: Let G be a graph of order n, edge-connectivity 2 and diameter d. Let v0 be

any vertex of G of eccentricity d. We denote the i-th neighbourhood of v0 by Ni,

69



i = 0, 1, 2, . . . , d.

Let v ∈ V (G). Clearly v ∈ Ni for some i and N(v) ⊂ Ni−1 ∪ Ni ∪ Ni+1. Thus

deg(v) ≤ |Ni−1|+ |Ni|+ |Ni+1|−1. Since the edge-connectivity of G is 2, by Lemma

5.2 we have |Nj||Nj+1| ≥ 2 for any j = 0, 1, 2, . . . , d − 1, and from Lemma 5.3 it

follows that |Nj|+ |Nj+1| ≥ 3. It follows that
∑i−2

j=0 |Nj|+
∑d

j=i+2 |Nj| ≥ 3
2
(d−2)−1,

and consequently

n = |
d⋃
j=0

Nj| ≥ deg(v) +
3

2
(d− 2) = deg(v) +

3

2
d−O(1).

Hence deg(v) ≤ n− 3
2
d+O(1). Note that the inequalities hold also if v ∈ Ni where

i ∈ {0, 1, d− 1, d}.

Now we prove the statement (ii). Let v, v′ ∈ V (G) where d(v, v′) ≥ 3. We have

N(v) ∩ N(v′) = ∅. Since |Nj| + |Nj+1| ≥ 3 for any j = 0, 1, 2, . . . , d − 1, and

deg(v) ≤ |Ni−1|+ |Ni|+ |Ni+1| − 1 (similarly for v′), we get

n ≥ (deg(v) + 1) + (deg(v′) + 1) +
3

2
(d− 5)−O(1)

= (deg(v)) + (deg(v′)) +
3

2
d−O(1).

Rearranging the terms, we obtain deg(v)+ deg(v′) ≤ n− 3
2
d+O(1), which completes

the proof of (ii). 2

In the following theorem we present an upper bound on the Gutman index of graphs

G of given order, diameter and edge-connectivity 2.
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Theorem 5.5 Let G be a graph of order n, diameter d and edge-connectivity 2.

Then

Gut(G) ≤ d

16

(
n− 3d

2

)4

+O(n4),

and the bound is asymptotically sharp.

Proof: Let v0 ∈ V (G) be a vertex of eccentricity d. We denote the i-th neigh-

bourhood of v0 by Ni, i = 0, 1, 2, . . . , d. Since |Ni| + |Ni+1| ≥ 3 for every i =

0, 1, 2, . . . , d − 1, it is possible to choose three vertices ui1, ui2, ui3 from the set

N2i−2 ∪N2i−1 for each i = 1, 2, . . . , dd
2
e. Let Pi = {ui1, ui2, ui3} and let P = ∪d

d
2
e

i=1Pi.

Then

|P | = 3
⌈d

2

⌉
. (5.2)

Note that if d is even, then P does not contain vertices of Nd.

Let us partition the 2-subsets of V (G), Z = {{x, y} : x, y ∈ V (G)}, as follows:

Z = C ∪ A ∪B,

where

C = {{x, y} : x ∈ P and y ∈ V (G)},

A = {{x, y} ∈ Z − C : d(x, y) ≥ 3},

B = {{x, y} ∈ Z − C : d(x, y) ≤ 2}.

Let |A| = a and |B| = b. Then
(
n
2

)
= |C|+ a+ b and from (5.2) we obtain

a+ b =

(
n− |P |

2

)
=

1

2

(
n− 3

⌈d
2

⌉)(
n− 3

⌈d
2

⌉
− 1
)
. (5.3)
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We have

Gut(G) =
∑
{x,y}∈A

deg(x)deg(y)d(x, y) +
∑
{x,y}∈B

deg(x)deg(y)d(x, y)

+
∑
{x,y}∈C

deg(x)deg(y)d(x, y).

Let us bound these three terms in the following claims.

Claim 10
∑
{x,y}∈C

deg(x)deg(y)d(x, y) ≤ O(n4).

Proof of Claim 10: Let P = U1 ∪ U2 ∪ · · · ∪ U6 where

U1 = {u11, u31, u51, . . . },

U2 = {u12, u32, u52, . . . },

U3 = {u13, u33, u53, . . . },

U4 = {u21, u41, u61, . . . },

U5 = {u22, u42, u62, . . . },

U6 = {u23, u43, u63, . . . }.

For any two different vertices x, y in the same set Ui, i = 1, 2, . . . , 6, we have N(x)∩

N(y) = ∅, since d(x, y) ≥ 3. Thus
∑

x∈Ui deg(x) < n for i = 1, 2, . . . 6.

Let us define the score s(x) for each vertex x ∈ P as

s(x) =
∑

y∈V (G)

deg(x)deg(y)d(x, y)

= deg(x)
∑

y∈V (G)

deg(y)d(x, y). (5.4)
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Then by Lemma 5.3,

s(x) ≤ deg(x)
∑

y∈V (G)

(
n− 3

2
d+O(1)

)
d(x, y)

= deg(x)
(
n− 3

2
d+O(1)

) ∑
y∈V (G)

d(x, y)

< deg(x)
(
n− 3

2
d+O(1)

)
nd

and

∑
x∈P

s(x) =
∑
x∈U1

s(x) +
∑
x∈U2

s(x) + · · ·+
∑
x∈U6

s(x)

<
∑
x∈U1

deg(x)
(
n− 3

2
d+O(1)

)
nd+ · · ·+

∑
x∈U3

deg(x)
(
n− 3

2
d+O(1)

)
nd

=
(∑
x∈U1

deg(x) +
∑
x∈U2

deg(x) + · · ·+
∑
x∈U6

deg(x)
)(
n− 3

2
d+O(1)

)
nd

< 6n
(
n− 3

2
d+O(1)

)
nd ≤ O(n4).

Since
∑
{x,y}∈C

deg(x)deg(y)d(x, y) ≤
∑
x∈P

s(x), the proof of Claim 10 is complete.

We bound those pairs of vertices, which are in B.

Claim 11
∑
{x,y}∈B

deg(x)deg(y)d(x, y) ≤ O(n4).
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Proof of Claim 11: Note that if {x, y} ∈ B, then d(x, y) ≤ 2 and b = O(n2). Using

these facts and Lemma 5.3, we get

∑
{x,y}∈B

deg(x)deg(y)d(x, y) ≤
∑
{x,y}∈B

2
(
n− 3

2
d+O(1)

)2

= 2b
(
n− 3

2
d+O(1)

)2

≤ O(n4).

Finally, we study the pairs of vertices, which are in A.

Claim 12
∑
{x,y}∈A

deg(x)deg(y)d(x, y) ≤ d

16

(
n− 3d

2

)4

+O(n4).

Proof of Claim 12: Let {w, z} be any pair in A, where deg(w)+deg(z) is maximum.

Let deg(w) + deg(z) = s. Since deg(w)deg(z) ≤ 1
4
(deg(w) + deg(z))2, we obtain

deg(w)deg(z) ≤ 1

4
s2. (5.5)

We find an upper bound on the cardinality of A. From (5.3) we have

a =
1

2

(
n− 3

⌈d
2

⌉)(
n− 3

⌈d
2

⌉
− 1
)
− b. (5.6)

Clearly, all pairs {x, y}, x, y ∈ N [w]− P and all pairs {x, y}, x, y ∈ N [z]− P are in

B. Since w ∈ Ni for some i = 0, 1, . . . , d, we have N [w] ⊆ Ni−1 ∪Ni ∪Ni+1. Since

|N [w] ∩ P | ≤ 6 and |N [z] ∩ P | ≤ 6, we obtain

b ≥
(

deg(w) + 1− 6

2

)
+

(
deg(z) + 1− 6

2

)

=
1

2
[(deg(w))2 + (deg(z))2]− 11(deg(w) + deg(z)) + 30

≥ 1

4
s2 − 11s+ 30.
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Then by (5.6),

a ≤ 1

2

(
n− 3

⌈d
2

⌉)(
n− 3

⌈d
2

⌉
− 1
)
− 1

4
s2 + 11s− 30,

and by (5.5), we get

∑
{x,y}∈A

deg(x)deg(y)d(x, y) ≤
∑
{x,y}∈A

s2d

4
=
s2da

4

≤ s2d

4

[1

2

(
n− 3

⌈d
2

⌉)(
n− 3

⌈d
2

⌉
− 1
)
− 1

4
s2 + 11s− 30

]
=

s2d

4

[1

2

((
n− 3d

2

)2

+O(n)
)
− 1

4
s2 +O(n)

]
=

s2d

4

[1

2

(
n− 3d

2

)2

− 1

4
s2
]

+O(n4).

From Lemma 5.4, we have

s ≤ n− 3d

2
+O(1).

Subject to this condition, s2d
4

[1
2
(n− 3d

2
)2 − 1

4
s2] is maximized for s = n− 3d

2
+O(1)

and we obtain

∑
{x,y}∈A

deg(x)deg(y)d(x, y)

≤ d

4

[(
n− 3d

2

)2

+O(n)
][1

2

(
n− 3d

2

)2

− 1

4

(
n− 3d

2

)2

+O(n)
]

+O(n4)

=
d

16

(
n− 3d

2

)4

+O(n4),

as claimed. 2
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Let us complete the proof of Theorem 5.5. From Claims 10, 11 and 12, we have

Gut(G) =
∑
{x,y}∈A

deg(x)deg(y)d(x, y) +
∑
{x,y}∈B

deg(x)deg(y)d(x, y)

+
∑
{x,y}∈C

deg(x)deg(y)d(x, y)

≤ d

16

(
n− 3d

2

)4

+O(n4) +O(n4) +O(n4)

=
d

16

(
n− 3d

2

)4

+O(n4).

It remains to show that the bound is asymptotically sharp. Let Gn,d,2 be a graph

defined as follows:

Gn,d = Kd 1
2

(n−b 3
2

(d−1)c)e +G1 +G2 + · · ·+Gd−1 +Kb 1
2

(n−b 3
2

(d−1)c)c,

where

Gi =

 K1 if i is odd,

K2 if i is even,

i = 1, 2, 3, . . . , d − 1. Since |V (G1) ∪ V (G2) ∪ · · · ∪ V (Gd−1)| = b3
2
(d − 1)c and

|V (Kd 1
2

(n−b 3
2

(d−1)c)e)|+ |V (Kb 1
2

(n−b 3
2

(d−1)c)c)| = n−b3
2
(d−1)c, the order of Gn,d,2 is n.

It can be checked that Gn,d,2 has diameter d, edge-connectivity 2 and Gut(Gn,d,2) =

d
16

(n− 3d
2

)4 +O(n4). 2

Let us present an upper bound on the Gutman index of graphs of given order and

edge-connectivity 2.

Corollary 5.6 Let G be a graph of order n and edge-connectivity 2. Then

Gut(G) ≤ 25

3 · 55
n5 +O(n4)
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and the bound is asymptotically sharp.

Proof: By Theorem 5.5, Gut(G) ≤ d
16

(n − 3d
2

)4 + O(n4) for graphs G of order n,

diameter d and edge-connectivity 2. Since

d

16

(
n− 3d

2

)4

is maximized, with respect to d, for d = 2n
15

, we get Gut(G) ≤ 25

3·55n
5 + O(n4) for

graphs G of order n and edge-connectivity 2.

Consider the graphGn,d,2 described in the proof of Theorem 5.5. Let 2n
15

be an integer.

Then the Gutman index of the graph Gn, 2n
15
,2 is 25

3·55n
5 +O(n4). 2

Now we study graphs of edge-connectivity λ for 3 ≤ λ ≤ 7.

Lemma 5.7 Let G be a graph of order n, edge-connectivity λ and diameter d. Let

v, v′ be any vertices of G such that d(v, v′) ≥ 3.

(a) If λ = 3 or 4, then deg(v) ≤ n−2d+O(1) and deg(v)+deg(v′) ≤ n−2d+O(1).

(b) If λ = 5 or 6, then deg(v) and deg(v) + deg(v′) are at most n− 5
2
d+O(1).

(c) If λ = 7, then deg(v) and deg(v) + deg(v′) are at most n− 3d+O(1).

Proof: The proof is similar to the proof of Lemma 5.4.

(a) If λ = 3 or 4, then from Lemmas 5.2 and 5.3 we have |Nj|+ |Nj+1| ≥ 4 for any

j = 0, 1, 2, . . . , d−1. Then
∑i−2

j=0 |Nj|+
∑d

j=i+2 |Nj| ≥ 2d−O(1), which implies that

n ≥ deg(v) + 2d−O(1). Similarly we obtain n ≥ deg(v) + deg(v′) + 2d−O(1).

(b) If λ = 5 or 6, then by Lemmas 5.2 and 5.3 we get |Nj| + |Nj+1| ≥ 5 for

any j = 0, 1, 2, . . . , d − 1. Thus
∑i−2

j=0 |Nj| +
∑d

j=i+2 |Nj| ≥ 5
2
d − O(1) and n ≥
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deg(v) + 5
2
d−O(1). Similarly n ≥ deg(v) + deg(v′) + 5

2
d−O(1).

(c) If λ = 7, then |Nj|+ |Nj+1| ≥ 6 for any j = 0, 1, 2, . . . , d− 1, which can be used

to obtain the inequalities n ≥ deg(v) + 3d−O(1) and

n ≥ deg(v) + deg(v′) + 3d−O(1). 2

We are now ready to give an upper bound on the Gutman index of graphs of given

order, diameter and edge-connectivity λ, where 3 ≤ λ ≤ 7.

Theorem 5.8 Let G be a graph of order n, diameter d and edge-connectivity λ.

(a) If λ = 3 or 4, then Gut(G) ≤ d
16

(n− 2d)4 +O(n4).

(b) If λ = 5 or 6, then Gut(G) ≤ d
16

(n− 5
2
d)4 +O(n4).

(c) If λ = 7, then Gut(G) ≤ d
16

(n− 3d)4 +O(n4).

The bounds are asymptotically sharp.

The proof of Theorem 5.8 is similar to the proof of Theorem 5.5. We present the

main differences between the proof of part (a) of Theorem 5.8 and the proof of

Theorem 5.5.

If λ = 3 or 4, then |Ni| + |Ni+1| ≥ 4 for every i = 0, 1, 2, . . . , d − 1. We define

Pi = {ui1, ui2, ui3, ui4} where ui1, ui2, ui3, ui4 ∈ N2i−2∪N2i−1 for each i = 1, 2, . . . , dd
2
e

78



and P = ∪d
d
2
e

i=1Pi. Then |P | = 4dd
2
e. Let P = U1 ∪ U2 ∪ · · · ∪ U8 where

U1 = {u11, u31, u51, . . . },

U2 = {u12, u32, u52, . . . },

U3 = {u13, u33, u53, . . . },

U4 = {u14, u34, u54, . . . },

U5 = {u21, u41, u61, . . . },

U6 = {u22, u42, u62, . . . },

U7 = {u23, u43, u63, . . . },

U8 = {u24, u44, u64, . . . }.

The rest of the proof of (a) can be easily obtained by following the proof of Theorem

5.5 and using Lemma 5.7 instead of Lemma 5.4.

For λ = 3, 4, 5, 6, 7 we construct the graph Gn,d,λ, such that Gut(Gn,d,λ) is equal to

the bound presented in Theorem 5.8.

Let Gn,d,λ = G0 +G1 +G2 + · · ·+Gd.

For λ = 3 let G1 = K1, G2 = K3, Gi = K2 for i = 3, 4, . . . , d−1, G0 = Kd 1
2

(n−2(d−1))e

and Gd = Kb 1
2

(n−2(d−1))c.

For λ = 4 let Gi = K2 for i = 1, 2, . . . , d − 1, G0 = Kd 1
2

(n−2(d−1))e and Gd =

Kb 1
2

(n−2(d−1))c.
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For λ = 5 let G1 = K1, G2 = K5,

Gi =

 K2 if i is odd,

K3 if i is even,

i = 3, 4, . . . , d− 1, G0 = Kd 1
2

(n−b 5
2

(d−1)c−1)e and Gd = Kb 1
2

(n−b 5
2

(d−1)c−1)c.

For λ = 6 let

Gi =

 K2 if i is odd,

K3 if i is even,

i = 1, 2, . . . , d− 1, G0 = Kd 1
2

(n−b 5
2

(d−1)c)e and Gd = Kb 1
2

(n−b 5
2

(d−1)c)c.

For λ = 7 let G1 = K1, G2 = K7, Gi = K3 for i = 3, 4, . . . , d− 1, G0 = Kd 1
2

(n−3d+1)e

and Gd = Kb 1
2

(n−3d+1)c.

It can be checked that the graphs Gn,d,λ have order n, diameter d, edge-connectivity

λ and Gut(Gn,d,λ) is equal to the bound given in Theorem 5.8. 2

From Theorem 5.8 we obtain the following corollary.

Corollary 5.9 Let G be a graph of order n and edge-connectivity λ.

(a) If λ = 3 or 4, then Gut(G) ≤ 23

55
n5 +O(n4).

(b) If λ = 5 or 6, then Gut(G) ≤ 25

56
n5 +O(n4).

(c) If λ = 7, then Gut(G) ≤ 24

3·55n
5 +O(n4).

The bounds are asymptotically sharp.

Proof: (a) If λ = 3 or 4, then by Theorem 5.8 we have

Gut(G) ≤ d

16
(n− 2d)4 +O(n4)
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for graphs G of order n and diameter d. Since d
16

(n− 2d)4 is maximized for d = n
10

,

we obtain Gut(G) ≤ 23

55
n5 +O(n4) for graphs G of order n.

Let n
10

be an integer. Then the graphs Gn, n
10
,λ described above for λ = 3 and 4 have

the Gutman index 23

55
n5 +O(n4).

(b) Let λ = 5 or 6. Then d
16

(n − 5
2
d)4 is maximized for d = 2n

25
and we obtain the

bound Gut(G) ≤ 25

56
n5 +O(n4).

If 2n
25

is an integer, then the graphs Gn, 2n
25
,λ described above for λ = 5 and 6 have the

Gutman index 25

56
n5 +O(n4).

(c) Let λ = 7. Then d
16

(n− 3d)4 is maximized for d = n
15

and we obtain the bound

Gut(G) ≤ 24

3·55n
5 +O(n4).

If n
15

is an integer, then the graph Gn, n
15
,7 described above for λ = 7 has the Gutman

index 24

3·55n
5 +O(n4). 2

We use Lemma 1.11 to get bounds on the edge-Wiener index of graphs of given

order and edge-connectivity.

Corollary 5.10 Let G be a graph of order n and edge-connectivity λ.

(a) If λ = 2, then We(G) ≤ 23

3·55n
5 +O(n4).

(b) If λ = 3 or 4, then We(G) ≤ 2
55
n5 +O(n4).

(c) If λ = 5 or 6, then We(G) ≤ 23

56
n5 +O(n4).

(d) If λ = 7, then We(G) ≤ 22

3·55n
5 +O(n4).

(e) If λ ≥ 8 is a constant, then We(G) ≤ 22·3
55(λ+1)

n5 +O(n4).
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The bounds are asymptotically sharp.

Proof: From Corollary 5.6 and Lemma 1.11 we obtain the bound

We(G) ≤ 23

3 · 55
n5 +O(n4)

for λ = 2. From Corollary 5.9 and Lemma 1.11 we have the results (b), (c) and (d).

From Theorem 5.1 and Lemma 1.11 we get We(G) ≤ 22·3
55(λ+1)

n5 +O(n4). The graphs

which have the largest Gutman index in terms of the order and the edge-connectivity

λ ≥ 2 also achieve also the bounds given in this corollary, thus the bounds on We(G)

are best possible. 2

5.3 Conclusion

In this chapter we gave asymptotically sharp upper bounds on the Gutman index in

terms of order and edge-connectivity. As a corollary, we obtain a similar result for

the edge-Wiener index of graphs of given order and edge-connectivity. In Chapter 6,

we will give asymptotically sharp upper bounds on the size of a connected triangle-

free graph in terms of order, diameter and minimum degree. We also give a sharp

upper bound on the size of a connected graph in terms of order, diameter and edge-

connectivity. Lastly we give an upper bound on the size of a connected triangle-free

graph in terms of edge-connectivity, order and diameter.
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Chapter 6

Size, order, diameter and

edge-connectivity

6.1 Introduction

In this chapter, we bound the size (the number of edges) of a graph in terms of other

parameters of the graph, namely order, diameter and edge-connectivity. This forms

a very important family of problems in the extremal graph theory. We considerably

extend known results in this area by presenting a number of upper bounds on the

size of general graphs and triangle-free graphs. We also give an upper bound on

the size of triangle-free graphs of given order, diameter and minimum degree. All

bounds presented in this chapter are asymptotically sharp.

Recall that Mukwembi in [45], obtained the following result:

Theorem 6.1 [45] Let G be a connected graph of order n, minimum degree δ, di-
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ameter d and size m. Then

m ≤ 1

2

[
n− 1

3
d(δ + 1)

]2

+ (2δ + 1)
(
n− 1

6
d(δ + 2)

)
=

1

2

[
n− 1

3
d(δ + 1)

]2

+O(n), (6.1)

and the bound, for fixed δ, is asymptotically tight.

Hence, it becomes natural to ask if an asymptotically sharp upper bound on the

size of a graph G can be obtained in terms of order, diameter and the third classical

connectivity measure, edge-connectivity.

6.2 Results

First we give an upper bound on the number of edges in any graph G in terms of

order, diameter and edge-connectivity of G.

Theorem 6.2 Let G be a graph of order n, size m, diameter d and edge-connectivity

λ, where λ ≥ 8 is a constant. Then

m ≤ 1

2

[
n− d

3
(λ+ 1)

]2

+O(n)

and the bound is asymptotically sharp.

Proof: It is well-known that λ ≤ δ for any graph, thus the bound presented in

Theorem 6.2 follows from (6.1).

Let us show that the bound is asymptotically sharp. We construct the graph G′ of
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diameter d = 3k + 1 where k ≥ 1. Let G′ = G0 + G1 + G2 + · · · + G3k+1, where

G0 = Kλ, for 1 ≤ i ≤ 3k

Gi =


Kλ+1

3
if λ ≡ 2 (mod 3),

Kλ
3

for i = 0, 1 (mod 3) and Kλ
3

+1 for i = 2 (mod 3) if λ ≡ 0 (mod 3),

Kλ+2
3

for i = 0, 1 (mod 3) and Kλ−1
3

for i = 2 (mod 3) if λ ≡ 1 (mod 3),

and G3k+1 = Kn−k(λ+1)−λ. We have |V (Gj−2)| + |V (Gj−1)| + |V (Gj)| = λ + 1

for j = 3, 6, . . . , 3k, thus |V (G1)| + |V (G2)| + · · · + |V (G3k)| = k(λ + 1). Since

|V (G0)| = λ and |V (G3k+1)| = n − k(λ + 1) − λ, we have |V (G′)| = n. Note

that the edge-connectivity of G′ is λ. Since λ is a constant, we have |E(G′)| =

|E(G3k+1)|+O(n) = 1
2
[n− k(λ+ 1)]2 +O(n) = 1

2
[n− d

3
(λ+ 1)]2 +O(n). 2

The following lemma will be used in the study of graphs with edge-connectivity λ

where 2 ≤ λ ≤ 7.

Lemma 6.3 Let G be a graph of edge-connectivity λ and let v be any vertex of G.

Then |Ni(v)||Ni+1(v)| ≥ λ for any i = 0, 1, 2, . . . , ec(v)− 1.

Proof: For any vertex v ∈ V (G) and i = 0, 1, 2, . . . , ec(v)− 1, the number of edges

between Ni(v) and Ni+1(v) is at most |Ni(v)||Ni+1(v)|. If |Ni(v)||Ni+1(v)| < λ,

then we can disconnect G by removing less than λ edges which connect Ni(v) and

Ni+1(v). 2

For graphs of edge-connectivity smaller than 8 we can get bounds better than the

result given in Theorem 6.2.
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Theorem 6.4 Let G be a graph of order n, size m, diameter d and edge-connectivity

2. Then

m ≤ 1

2

(
n− 3d

2

)2

+O(n)

and the bound is asymptotically sharp.

Proof: Let v0 ∈ V (G) be a vertex of eccentricity d. We denote the i-th neighbour-

hood of v0 by Ni, i = 0, 1, 2, . . . , d. Since the edge-connectivity of G is 2, by Lemma

6.3 we have |Nj||Nj+1| ≥ 2 for any j = 0, 1, 2, . . . , d − 1, and from Lemma 5.3 it

follows that |Nj|+ |Nj+1| ≥ 3. Then it is possible to choose three vertices ui1, ui2, ui3

from the set N2i−2 ∪N2i−1 for each i = 1, 2, . . . , dd
2
e. Let Pi = {ui1, ui2, ui3} and let

P = ∪d
d
2
e

i=1Pi. Then

|P | = 3
⌈d

2

⌉
. (6.2)

Note that if d is even, then P does not contain vertices of Nd. Let

P = U1 ∪ U2 ∪ · · · ∪ U6

where

U1 = {u11, u31, u51, . . . }, U4 = {u21, u41, u61, . . . },

U2 = {u12, u32, u52, . . . }, U5 = {u22, u42, u62, . . . },

U3 = {u13, u33, u53, . . . }, U6 = {u23, u43, u63, . . . }.

For any two different vertices x, y in the same set Ui, i = 1, 2, . . . , 6, we have

N(x)∩N(y) = ∅, since d(x, y) ≥ 3. Thus
∑

x∈Ui deg(x) < n for i = 1, 2, . . . , 6. Thus

∑
x∈P

deg(x) =
∑
x∈U1

deg(x) +
∑
x∈U2

deg(x) + · · ·+
∑
x∈U6

deg(x) < 6n. (6.3)
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Let Q = V (G) \ P . From (6.2) we have

|Q| = n− 3
⌈d

2

⌉
. (6.4)

Note that each vertex x ∈ Q is adjacent to at most 6 vertices in P , therefore

deg(x) ≤ n− 3dd
2
e − 1 + 6. Then

∑
x∈Q

deg(x) ≤
∑
x∈Q

(
n− 3

⌈d
2

⌉
+O(1)

)
=
(
n− 3

⌈d
2

⌉)(
n− 3

⌈d
2

⌉
+O(1)

)

=
(
n− 3d

2

)2

+O(n). (6.5)

From (6.3) and (6.5) we obtain

∑
x∈V (G)

deg(x) =
∑
x∈P

deg(x) +
∑
x∈Q

deg(x) ≤
(
n− 3d

2

)2

+O(n).

By the Handshaking lemma, we have m = 1
2

∑
x∈V (G) deg(x), hence

m ≤ 1

2
(n− 3d

2
)2 +O(n).

It remains to show that the bound is asymptotically sharp. Let Gn,d,2 be a graph

defined as follows:

Gn,d,2 = G0 +G1 + · · ·+Gd−1 +Kn−b 3
2
dc,

where

Gi =

 K1 if i is even,

K2 if i is odd,

i = 0, 1, . . . , d−1. Since |V (G0)∪V (G1)∪· · ·∪V (Gd−1)| = b3d
2
c, the order of Gn,d,2 is

n. It can be checked thatGn,d,2 has diameter d and edge-connectivity 2. For the num-

ber of edges in Gn,d,2 we have |E(Gn,d,2)| = |E(Kn−b 3
2
dc)|+O(n) = 1

2
(n− 3d

2
)2 +O(n).
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2

The following theorem yields upper bounds on the number of edges in any graph of

given order, diameter and edge-connectivity λ, where 3 ≤ λ ≤ 7.

Theorem 6.5 Let G be a graph of order n, size m, diameter d and edge-connectivity

λ.

(a) If λ = 3 or 4, then m ≤ 1
2
(n− 2d)2 +O(n).

(b) If λ = 5 or 6, then m ≤ 1
2
(n− 5d

2
)2 +O(n).

(c) If λ = 7, then m ≤ 1
2
(n− 3d)2 +O(n).

The bounds are asymptotically sharp.

The proof of Theorem 6.5 is similar to the proof of Theorem 6.4. We present the

main differences between the proof of part (a) of Theorem 6.5 and the proof of

Theorem 6.4.

If λ = 3 or 4, then |Ni| + |Ni+1| ≥ 4 for every j = 0, 1, 2, . . . , d − 1. We define

Pi = {ui1, ui2, ui3, ui4} where ui1, ui2, ui3, ui4 ∈ N2i−2∪N2i−1 for each i = 1, 2, . . . , dd
2
e

and P = ∪d
d
2
e

i=1Pi. Then |P | = 4dd
2
e. Let P = U1 ∪ U2 ∪ · · · ∪ U8 where

U1 = {u11, u31, u51, . . . }, U5 = {u21, u41, u61, . . . },

U2 = {u12, u32, u52, . . . }, U6 = {u22, u42, u62, . . . },

U3 = {u13, u33, u53, . . . }, U7 = {u23, u43, u63, . . . },

U4 = {u14, u34, u54, . . . }, U8 = {u24, u44, u64, . . . }.
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Then
∑

x∈P deg(x) < 8n, |Q| = n − 4dd
2
e and

∑
x∈Q deg(x) ≤ (n − 2d)2 + O(n).

Thus m = 1
2

∑
x∈V (G) deg(x) ≤ (n− 2d)2 +O(n).

For λ = 3, 4, 5, 6, 7 we construct the graph Gn,d,λ, such that the size, m, is equal to

the bound presented in Theorem 6.5. Let Gn,d,λ = G0 +G1 +G2 + · · ·+Gd.

For λ = 3 let Gi = K2 for i = 0, 1, . . . , d− 1 and Gd = Kn−2d.

For λ = 4 let G0 = K3, Gi = K2 for i = 1, 2, . . . , d− 1, and Gd = Kn−2d−1.

For λ = 5 let G0 = K3,

Gi =

 K3 if i is odd,

K2 if i is even,

where i = 1, 2, . . . , d− 1, and Gd = Kn−b 5d
2
c−1. Note that

|V (G0) ∪ V (G1) ∪ · · · ∪ V (Gd−1)| = b5d
2
c+ 1.

For λ = 6 let G0 = K4,

Gi =

 K3 if i is odd,

K2 if i is even,

where i = 1, 2, . . . , d− 1, and Gd = Kn−b 5d
2
c−2.

For λ = 7 let G0 = K5, Gi = K3 for i = 1, 2, . . . , d − 1, and Gd = Kn−3d−2. Note

that |V (G1) ∪ V (G2) ∪ · · · ∪ V (Gd)| = 3d+ 2.

It can be checked that the graphs Gn,d,λ have order n, diameter d, edge-connectivity

λ and the number of edges of Gn,d,λ is equal to the bound given in Theorem 6.5. 2

In the rest of this chapter we study triangle-free graphs. In our proofs we use
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Mantel’s theorem, which says that for any triangle-free graph of order n and size m,

we have

m ≤
⌊n2

4

⌋
. (6.6)

Let us present an upper bound on the number of edges in a triangle-free graph G in

terms of order, diameter and minimum degree of G.

Theorem 6.6 Let G be a connected triangle-free graph of order n, size m, diameter

d and minimum degree δ, where δ ≥ 2 is a constant. Then

m ≤ 1

4

(
n− δd

2

)2

+O(n).

Moreover, the bound is asymptotically sharp.

Proof: Let P : v0, v1, . . . , vd be a diametric path of G. Let A ⊂ V (P ) be the set

A = {vi | i ≡ 1 or 2 (mod 4), 1 ≤ i ≤ d}.

For each vertex vi ∈ A let M(vi) be a set containing any δ neighbours of vi and let

S = ∪vi∈AM(vi). Since G is triangle-free, M(vi) ∩M(vj) = ∅ for any vi, vj ∈ A.

Since A contains about d
2

vertices, we can write |A| = d
2

+O(1) and then

|S| = δ|A| = δd

2
+O(1). (6.7)
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We show that
∑

u∈S deg(u) = O(n). Let us partition A as A = A1 ∪ A2 ∪ A3 ∪ A4,

where

A1 = {vi | i ≡ 1 (mod 8), 1 ≤ i ≤ d},

A2 = {vi | i ≡ 2 (mod 8), 2 ≤ i ≤ d},

A3 = {vi | i ≡ 5 (mod 8), 5 ≤ i ≤ d},

A4 = {vi | i ≡ 6 (mod 8), 6 ≤ i ≤ d}.

We can write A1 = {w1, w2, . . . , w|A1|}. For each wj ∈ A1, j = 1, 2, . . . , |A1| let

M(wj) = {uj1, u
j
2, . . . , u

j
δ} be a set of δ neighbours of wj. Since dG(w,w′) ≥ 8 for

any w,w′ ∈ A1, for s = 1, 2, . . . , δ we have

n ≥ deg(u1
s) + deg(u2

s) + · · ·+ deg(u|A1|
s ),

and consequently

δn ≥
∑

u∈(∪w∈A1
M(w))

deg(u).

Similarly it can be shown that δn ≥
∑

u∈(∪w∈AiM(w)) deg(u) for i = 2, 3, 4. Thus

∑
u∈S

deg(u) ≤ 4δn = O(n). (6.8)

Let Q = V (G) \ S. Then from (6.7) we have |Q| = n − δd
2

+ O(1). Note that

m = |E(G[S]) ∪ E(G[Q]) ∪ E(S,Q)| and by (6.8),

|E(G[S]) ∪ E(S,Q)| <
∑
u∈S

deg(u) = O(n). (6.9)
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Since G[Q] is triangle-free, by (6.6) we obtain

|E(G[Q])| ≤ |Q|
2

4
=

1

4

(
n− δd

2

)2

+O(n). (6.10)

From (6.9) and (6.10) it follows that m ≤ 1
4
(n− δd

2
)2 +O(n).

We show that the bound is asymptotically sharp. Let G′ = G0 +G1 + · · ·+G2k+1,

where

Gi =



K1 if i ≡ 0 or 3 (mod 4), 0 ≤ i ≤ 2k − 1,

Kδ−1 if i ≡ 1 or 2 (mod 4), 2 ≤ i ≤ 2k − 1,

Kδ if i = 1,

Kd 1
2

(n−δk−1)e if i = 2k,

Kb 1
2

(n−δk−1)c if i = 2k + 1.

Note that |V (G0)∪V (G1)| = δ+1 and |V (Gi)∪V (Gi+1)| = δ for i = 2, 4, . . . , 2k−2,

which means that |V (G0)∪V (G1)∪· · ·∪V (G2k−1)| = δk+1. Since |V (Kd 1
2

(n−δk−1)e)|+

|V (Kb 1
2

(n−δk−1)c)| = n − δk − 1, the order of G′ is n. It is easy to see that G′ is

a triangle-free graph of diameter d = 2k + 1 and minimum degree δ. Since δ is a

constant, we have |E(G0 +G1 + · · ·+G2k)| = O(n) and hence the number of edges

in G′ is |E(G′)| = |E(G2k+G2k+1)|+O(n) = 1
4
(n−δk)2 +O(n) = 1

4
(n− δd

2
)2 +O(n).

2

We obtain similar results for triangle-free graphs of given edge-connectivity.

Theorem 6.7 Let G be a triangle-free graph of order n, size m, diameter d and

edge-connectivity λ, where λ = 4 or λ ≥ 6 is a constant. Then

m ≤ 1

4

(
n− λd

2

)2

+O(n)
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and the bound is asymptotically sharp.

Proof: The bound follows from Theorem 6.6 by applying the inequality λ ≤ δ. Let

us show that the bound is best possible. We construct the graph G′ of diameter

d = 2k. Let G′ = G0 +G1 +G2 + · · ·+G2k, where G0 = Kbλ
2
c, G1 = Kλ,

Gi =

 Kbλ
2
c if i ≡ 0 or 1 (mod 4),

Kdλ
2
e if i ≡ 2 or 3 (mod 4)

for 2 ≤ i ≤ 2k − 2, G2k−1 = Kd 1
2

(n−λk)e and G2k = Kb 1
2

(n−λk)c. Then we ob-

tain |V (G1)| = λ, |V (G0) ∪ V (G2)| = λ and |V (Gi) ∪ V (Gi+1)| = λ for i =

3, 5, . . . , 2k−3, thus |V (G0)∪V (G1)∪· · ·∪V (G2k−2)| = λk. Clearly |V (Kd 1
2

(n−λk)e)|+

|V (Kb 1
2

(n−λk)c)| = n − λk, so V (G′) = n. The graph G′ is a triangle-free graph of

diameter d = 2k + 1 and edge-connectivity λ. Since λ is a constant, the number of

edges in G′ is

|E(G2k−1 +G2k)|+O(n) =
1

4
(n− λk)2 +O(n)

=
1

4
(n− λd

2
)2 +O(n). 2

The bound given in the previous theorem holds also for λ = 2, 3 and 5, but for these

values we can improve the bound presented in Theorem 6.7.

Theorem 6.8 Let G be a triangle-free graph of order n, size m, diameter d and

edge-connectivity 2. Then

m ≤ 1

4

(
n− 3d

2

)2

+O(n)

and the bound is asymptotically sharp.

93



Proof: Let v0 ∈ V (G) be a vertex of eccentricity d. We denote the i-th neigh-

bourhood of v0 by Ni, i = 0, 1, 2, . . . , d. From Lemmas 5.3 and 6.3 it follows

that |Nj| + |Nj+1| ≥ 3 for j = 0, 1, 2, . . . , d − 1. Let Pi = {ui1, ui2, ui3}, where

ui1, ui2, ui3 ∈ N2i−2 ∪N2i−1 for each i = 1, 2, . . . , dd
2
e, and let P = ∪d

d
2
e

i=1Pi. From the

proof of Theorem 6.4 we know that
∑

x∈P deg(x) = O(n).

Let Q = V (G) \ P . Since |P | = 3dd
2
e, we have |Q| = n− 3dd

2
e. Note that

m = |E(G[P ])|+ |E(P,Q)|+ |E(G[Q])| and |E(G[P ])|+ |E(P,Q)| <
∑
x∈P

deg(x).

Since by (6.6), |E(G[Q])| ≤ b1
4
(n− 3dd

2
e)2c = 1

4
(n− 3d

2
)2 +O(n), we obtain

m ≤ 1
4
(n− 3d

2
)2 +O(n), as desired.

It remains to show that the bound is asymptotically sharp.

Let Gn,d,2 = G0 +G1 + · · ·+Gd, where

Gi =

 K1 if i is even,

K2 if i is odd,

i = 0, 1, . . . , d − 2, Gd−1 = Kd 1
2

(n−b 3
2

(d−1)c)e and Gd = Kb 1
2

(n−b 3
2

(d−1)c)c It is easy to

see that |V (G0) ∪ V (G1) ∪ · · · ∪ V (Gd−2)| = b3
2
(d− 1)c and |V (Kd 1

2
(n−b 3

2
(d−1)c)e)|+

|V (Kb 1
2

(n−b 3
2

(d−1)c)c)| = n − b3
2
(d − 1)c, thus the order of Gn,d,2 is n. The graph

Gn,d,2 is a triangle-free graph of diameter d, edge-connectivity 2 and |E(Gn,d,2)| =

|E(Gd−1 +Gd)|+O(n) = 1
4
(n− 3d

2
)2 +O(n). 2

Theorem 6.9 Let G be a triangle-free graph of order n, size m, diameter d and
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edge-connectivity 3. Then

m ≤ 1

4
(n− 2d)2 +O(n)

and the bound are asymptotically sharp.

The proof of Theorem 6.9 is similar to the proof of Theorem 6.8. Let us con-

struct the graph Gn,d,3 = G0 + G1 + G2 + · · · + Gd, where G0 = K1, G1 = K3,

Gi = K2 for i = 2, 3, . . . , d−2, Gd−1 = Kd 1
2

(n−2(d−1))e and Gd = Kb 1
2

(n−2(d−1))c. Since

Gn,d,3 is a traingle-free graph of diameter d, edge-connectivity 3 and |E(Gn,d,3)| =

1
4
(n− 2d)2 +O(n), the bound m ≤ 1

4
(n− 2d)2 +O(n) is asymptotically sharp.

One might have an impression that the bound stated in Theorem 6.7 is an asymp-

totically sharp bound also if the edge-connectivity is 5. But let us note that the

graph G′ described in the proof of Theorem 6.7 cannot be used for λ = 5. For i ≡ 0

(mod 4), 4 ≤ i ≤ 2k − 4 the number of edges between Gi and Gi+1 is (bλ
2
c)2, which

is at least λ for any λ ≥ 6 or λ = 4, but not for λ = 5.

We use additional arguments to improve the bound given in Theorem 6.7 for triangle-

free graphs of edge-connectivity 5.

Theorem 6.10 Let G be a triangle-free graph of order n, size m, diameter d and

edge-connectivity 5. Then

m ≤ 1

4

(
n− 8d

3

)2

+O(n)

and the bound is asymptotically sharp.
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Proof: Let v0 ∈ V (G) be a vertex of eccentricity d and denote the i-th neigh-

bourhood of v0 by Ni, i = 0, 1, 2, . . . , d. From Lemmas 5.3 and 6.3 we have

|Nj−1| + |Nj| ≥ 5 and |Nj| + |Nj+1| ≥ 5 for j = 1, 2, . . . , d − 1. To prove the

theorem, we need the following claim.

Claim 13 |Nj−1|+ |Nj|+ |Nj+1| ≥ 8 for j = 1, 2, . . . , d− 1.

Proof of Claim 13: We distinguish two cases:

Case 1: There are two vertices u and v in Nj, which are adjacent in G.

Then u and v do not have a common neighbour (because G is a triangle-free graph).

Since λ ≤ δ for any graph, the vertex u is adjacent to at least 4 vertices other than

v and the vertex v is adjacent to at least 4 vertices other than u. It follows that

|Nj−1|+ |Nj|+ |Nj+1| ≥ 10.

Case 2: No two vertices u, v of Nj are adjacent in G.

Since λ ≤ δ, any vertex in Ni is adjacent to at least 5 vertices and all of them must be

in Nj−1∪Nj+1. Thus |Nj−1|+|Nj+1| ≥ 5. If |Nj| ≥ 3, then |Nj−1|+|Nj|+|Nj+1| ≥ 8.

If |Nj| ≤ 2, then from the inequalities |Nj−1|+|Nj| ≥ 5 and |Nj|+|Nj+1| ≥ 5 we have

|Nj−1|+2|Nj|+ |Nj+1| ≥ 10 and consequently |Nj−1|+ |Nj|+ |Nj+1| ≥ 10−|Nj| ≥ 8.

The proof of Claim 13 is complete.

Let Pi = {ui1, ui2, . . . , ui8}, where ui1, ui2, . . . , ui8 are any 8 vertices in N3i−3∪N3i−2∪

N3i−1 for each i = 1, 2, . . . , dd−1
3
e, and let P = ∪d

d−1
3
e

i=1 Pi. Then |P | = 8dd−1
3
e. Let
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P = U1 ∪ U2 ∪ · · · ∪ U16 where

U1 = {u11, u31, u51, . . . }, U2 = {u12, u32, u52, . . . }, . . . , U8 = {u18, u38, u58, . . . },

U9 = {u21, u41, u61, . . . }, U10 = {u22, u42, u62, . . . }, . . . , U16 = {u28, u48, u68, . . . }.

For any two different vertices x, y in the same set Ui, i = 1, 2, . . . , 16, we have

d(x, y) ≥ 4, thus N(x) ∩ N(y) = ∅. This implies that
∑

x∈Ui deg(x) < n for

i = 1, 2, . . . , 16, and
∑

x∈P deg(x) < 16n = O(n).

Let Q = V (G) \ P . We have |Q| = n− 8dd−1
3
e. Note that |E(G[P ])|+ |E(P,Q)| <∑

x∈P deg(x) and by (6.6), |E(G[Q])| is at most b1
4
(n−8dd−1

3
e)2c, thusm = |E(G[P ])|+

|E(P,Q)|+ |E(G[Q])| ≤ 1
4
(n− 8d

3
)2 +O(n).

We show that the bound is best possible. Let Gn,d,5 = G0 + G1 + · · · + Gd, where

G1 = K5,

Gi =

 K2 if i ≡ 0 (mod 3), 0 ≤ i ≤ d− 2,

K3 if i ≡ 1 or 2 (mod 3), 2 ≤ i ≤ d− 2,

Gd−1 = Kd 1
2

(n−b 8
3

(d−1)c−2)e and Gd = Kb 1
2

(n−b 8
3

(d−1)c−2)c. It can be checked that

|V (G0) ∪ V (G1) ∪ · · · ∪ V (Gd−2)| = b8
3
(d − 1)c + 2 and |V (Kd 1

2
(n−b 8

3
(d−1)c−2)e)|

+|V (Kb 1
2

(n−b 8
3

(d−1)c−2)c)| = n − b8
3
(d − 1)c − 2, thus |V (Gn,d,5)| = n. The graph

Gn,d,5 is a triangle-free graph of diameter d, edge-connectivity 5 and |E(Gn,d,2)| =

|E(Gd−1 +Gd)|+O(n) = 1
4
(n− 8d

3
)2 +O(n). 2

6.3 Conclusion

We studied an important topic in the extremal graph theory: bounds on the size of a

graph in terms of other parameters of the graph. Let us summarize results obtained
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in this chapter. We proved that for any graph G of order n, size m, diameter d and

edge-connectivity λ,

m ≤



1

2

(
n− 3d

2

)2

+O(n) if λ = 2,

1

2

(
n− 2d

)2

+O(n) if λ = 3 or 4,

1

2

(
n− 5d

2

)2

+O(n) if λ = 5 or 6,

1

2

(
n− 3d

)2

+O(n) if λ = 7,

1

2

[
n− d

3
(λ+ 1)

]2

+O(n) if λ ≥ 8 is a constant.

For any triangle-free graph G of order n, size m, diameter d and edge-connectivity

λ, we have

m ≤



1

4

(
n− 3d

2

)2

+O(n) if λ = 2,

1

4
(n− 2d)2 +O(n) if λ = 3,

1

4

(
n− 8d

3

)2

+O(n) if λ = 5,

1

4

(
n− λd

2

)2

+O(n) if λ = 4 or if λ ≥ 6 is a constant.

We also showed that for connected triangle-free graphs G of order n, size m, diameter

d and minimum degree δ, where δ ≥ 2 is a constant.

m ≤ 1

4

(
n− δd

2

)2

+O(n).
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All bounds presented in this chapter are asymptotically sharp. These bounds con-

siderably extend known results in the area.
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Chapter 7

Conclusion

In this thesis we have completely solved the problem of determining upper bounds on

four distances measures, namely, radius, diameter, the Gutman index and the edge-

Wiener index, in terms of other graph parameters, namely, order, irregularity index

and the three classical connectivity measures, minimum degree, vertex-connectivity

and edge-connectivity.

In Chapter 2 focused on the radius, diameter and the degree sequence of a graph.

We gave asymptotically sharp upper bounds on the radius and diameter of (i) a con-

nected graph, (ii) a connected triangle-free graph, (iii) a connected C4-free graph

of given order, minimum degree, and given number of distinct terms in the degree

sequence of the graph. We also gave better bounds for graphs with a given order,

minimum degree and maximum degree. Our results improved on old classical the-

orems by Erdös, Pach, Pollack and Tuza [24] on radius, diameter and minimum

degree.
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In Chapter 3, we showed that for finite connected graphs of order n and mini-

mum degree δ, where δ is a constant, Gut(G) ≤ 24·3
55(δ+1)

n5 + O(n4). Our bound is

asymptotically sharp for every δ ≥ 2 and it extended results of Dankelmann, Gut-

man, Mukwembi and Swart [18] and Mukwembi [43], whose bound is sharp only for

graphs of minimum degree 2.

In Chapter 4, we showed that Gut(G) ≤ 24

55κ
n5 + O(n4) for graphs of order n and

vertex-connectivity κ, where κ is a constant. Our bound is asymptotically sharp

for every κ ≥ 1 and it substantially generalized the bound of Mukwembi [43]. As a

corollary, we obtained a similar result for the edge-Wiener index of graphs of given

order and vertex-connectivity.

Chapter 5 completed our study on the Gutman index Gut(G) and on the edge-

Wiener index We(G) of graphs G of given order n and edge-connectivity λ. We

showed that the bound Gut(G) ≤ 24·3
55(λ+1)

n5 + O(n4) is asymptotically sharp for

λ ≥ 8. We improved this result considerably for λ ≤ 7 by presenting asymptotically

sharp upper bounds on Gut(G) and We(G) for 2 ≤ λ ≤ 7.

In Chapter 6, we gave asymptotically sharp upper bounds on the size, m of (i) a

connected graph in terms of order, diameter and edge-connectivity, (ii) a connected

triangle-free graph in terms of order, diameter and minimum degree, (iii) a con-

nected triangle-free graph in terms of edge-connectivity, order and diameter. The

result was a strengthening of an old classical theorem of Ore [49] if edge-connectivity

was prescribed and constant.
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The following are some interesting problems for further investigation.

Problem 1 Finding the upper bound on the Gutman index of triangle-free or C4−free

graphs in terms of order n, diameter d and minimum degree δ.

Problem 2 Finding the upper bound on the Gutman index of triangle-free or C4−free

graphs in terms of order n, diameter d and vertex-connectivity κ.

Problem 3 Finding the upper bound on the Gutman index of triangle-free or C4−free

graphs in terms of order n, diameter d and and edge-connectivity λ.
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