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Tobacco crop area and yield forecasts are important in stabilizing tobacco prices at the auction floors. Tobacco yield estimation
in Zimbabwe is currently based on statistical surveys and ground-based field reports. These methods are costly, time consuming,
and are prone to large errors. Remote sensing can provide timely information on crop spectral characteristics which can be used
to estimate crop yields. Remote sensing application on agriculture in Zimbabwe is still very limited. Research should focus on
identifying suitable reflectance indices that are related to tobacco growth and yield. Varietal yield response to fertiliser and planting
dates as well as suitable temporal windows for spectral data collection should be identified. The challenges of the different tobacco
land sizes have to be overcome by identifying suitable satellite platform, with sufficient spectral resolution to separate the tobacco
crop from the adjacent competing crops and noncrop vegetative surfaces. The identified suitable index should be strongly correlated
with tobacco in season dry mass and yield. The suitable vegetative indices can be employed in establishing tobacco cropped area
and then apply the long-term area yield relationship from government and nongovernmental statistical departments to estimate

yield from remote sensing derived cropped area.

1. Background

Zimbabwe is the largest producer of tobacco in Africa and
the world’s fourth-largest producer of flue-cured tobacco
(Nicotiana tabacum), after China, Brazil, and the United
States of America. Tobacco production has been the leading
driver behind the 34% growth in Zimbabwe’s agriculture and
one of the major sources of foreign currency [1]. Tobacco crop
plays an important role in the economy of Zimbabwe and in
the 2012/2013 marketing season, 144 million kg of tobacco was
sold, earning the country $525 million [2].

Crop area and yield forecasts play an important role in
stabilizing tobacco prices at the auction floors. Crop fore-
casting is the art of predicting crop yields and production
before the harvest actually takes place, typically a couple of

months in advance [2]. Zimbabwe mostly relies on crop sta-
tistical forecasting/estimation, crop reports/field visits from
extension officers, and statistical crop forecasts for crop yield
forecasts [3]. However, data from crop estimates, which are
obtained through surveys conducted after harvests, are in
most countries available quite late for early warning purposes.

Crop vyield estimation in many countries is based on
conventional techniques of data collection and ground-based
field reports [4]. A variety of mathematical models relating
to crop yield have also been proposed in recent years for
many crops [4, 5]. In Zimbabwe crop surveys are mostly
used in estimating crop yield [3]. The method is costly, time
consuming, and prone to large errors due to incomplete
ground observations, leading to poor crop yield assessment
and crop area estimations [4].



2. Remote Sensing Applications in
Crop Area Assessment

Remote sensing is defined as acquiring information about
an object without physically getting into contact with it.
Remote sensing has been used for some time to characterize
properties of vegetation, to estimate yield, to estimate total
biomass, and to monitor plant health and plant stress [6]. The
interaction of the incident energy with the atomic structures
of soil, rocks, plants, bodies of water, man-made objects, and
so forth governs how much energy is absorbed and thus how
much is reflected [7]. It is this reflected and absorbed energy
that is picked up by the remote sensing devices, which is used
to characterize the properties of a plant.

Visible (reflected light) and near-infrared (absorbed light)
can be used to detect plant stress as a result of water shortages,
nutrient deficiencies, and pests [8]. The contrast of light
reflectance provides an assessment of the vegetation. Remote
sensing can therefore provide a powerful tool for monitoring
changes in the crop canopy over the growing season and can
provide crop developmental information that is time-critical
for site-specific crop management [9]. Remote sensing thus
makes assessment objective faster, easier, and more reliable.

Remote sensing data has the potential and the capacity
to provide spatial information at global scale of features and
phenomena on earth on an almost real-time basis [4]. Use
of remote sensing techniques has the potential to provide
quantitative and timely information on agricultural crops
over large areas, and many different methods have been
developed to estimate crop yields [10, 11]. In general, the use
of remote sensing is aimed at reducing the number of samples
of ground surveys, making it less expensive [12]. With the
application of remote sensing in agriculture, there is potential
not only in identifying crop classes but also of estimating crop
yield [4].

Remote sensing applications include monitoring defor-
estation, wildlife inventory, crop health status assessments,
and yield forecasting [12]. Researchers have used remote
sensing greatly to estimate fractional intercepted photosyn-
thetically active radiation [13] and crop parameters like leaf
chlorophyll, ground cover [12, 14], total dry-mass accumula-
tion [14], plant greenness [15], yield [16], nitrogen status, and
many other chemical properties of vegetation [17].

Spectral measurements from crops can be used in esti-
mating crop parameters such as leaf area index [18], plant
population, and even canopy total nitrogen status during
the growth cycle of the crop [19]. Vegetation indices are
algorithms which simplify data from multiple reflectance
bands to a single value correlating to physical vegetation
parameters, such as biomass, productivity, leaf area index,
or percent vegetation ground cover [14]. Single refelectance
bands are combined into a vegetation index in order to
minimize the effect of such factors as optical properties of the
soil background, illumination, and view geometric as well as
meteorological factors on the canopy radiometric properties
[20].

The current conventional tobacco yield forecasts rely on
seed purchase records, land area, and visual assessment of
the crop. Since farmers’ records may not be exhaustive, the
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current forecast may not be accurate. Use of yield forecasting
models can be employed to avoid these problems. Some exist-
ing models relate meteorological parameters to crop yield and
production, while others are purely statistical in nature [3].
Although use of models has allowed fairly good forecasting
capability to be conducted, the nature and relations between
yield and some parameters may not be easily determined.
Statistical models, for example, are location specific, and the
use of averages in developing a yield model may not reflect
conditions in extreme situations. The process of collecting
data can be tedious and time consuming and thus preclude
large-scale investigations [21].

Remote sensing can complement or even improve the
current conventional tobacco yield prediction methods used.
This is because remote sensing to provides useful information
on real time crop condition as well as for yield forecast-
ing. Every substance emits, absorbs, transmits, or reflects
electromagnetic radiation in a manner characteristic of the
substance [17] and depending on the chemical properties of
the intercepting molecule, information from analysis of the
energy of parts of the light spectrum absorbed or scattered
by the atomic bonds, electrons, or atoms in the intercepting
molecule can be used to predict yield [22].

The current conventional tobacco yield forecasts rely
on seed purchase records, land area, and visual assessment
of the crop. Since farmers’ records may not be exhaustive
the current forecast may not be accurate [21]. Use of yield
forecasting models can be employed to avoid these problems.
Some existing models relate meteorological parameters to
crop yield and production, while others are purely statistical
in nature [3]. Although use of models has allowed fairly
good forecasting capability to be conducted, the nature and
relations between yield and some parameters may not be
easily determined.

3. Remote Sensing Science

By measuring the quantity of radiation in each of the wave-
lengths, the plant canopy characteristics can be defined
[22]. The differences in leaf colours, textures, shapes or
even how the leaves are attached to plants, determine the
amount of reflected, absorbed, or transmitted energy, and
such relationships are used to determine spectral signatures
of individual plants, which are unique to plant species [23].
Spectral signatures make it possible to use remote sensing in
studying changes in specific crop conditions in the field and
relate these to final yield and quality [18].

The comparison of the reflectance values at different
wavelengths is used to determine plant vigour [24]. The most
common index that is used for this purpose is the normalized
deviation vegetative index (NDVI) [8]. Vegetation indices,
as summarized by Broge and Leblanc [25], are based on the
characteristic reflection of plant leaves in the visible and near-
infrared portions of light. By applying a “Vegetation Index” to
the satellite imagery, concentration of green leaf vegetation
can be quantified [26]. As explained by Broge and Leblanc
[25], healthy vegetation has low reflection of visible light
(from 0.4 to 0.7 um), since it strongly absorbs chlorophyll for
photosynthesis and, at the same time, there is high reflection



ISRN Agronomy

of near-infrared light (from 0.7 to 1.1um). The portion of
reflected near-infrared light depends on the cell structure of
the leaf [27]. In fading or unhealthy leaves, photosynthesis
decreases and cell structure collapses resulting in an increase
of reflected visible light and a decrease of reflected near-
infrared light [25].

The normalized difference vegetation index (NDVI) has
been considered to be a useful way for crop yield assessment
models, using various approaches such as simple integration,
to reflect vegetation greenness [29]. The index responds to
changes in the amount of green biomass, chlorophyll content,
and canopy water stress and, hence, is the most commonly
used in assessing crop vigor, vegetation cover, and biomass
production from multispectral satellite data [30]. The NDVI
is calculated from the near infrared (NIR) and red (R) bands
of either handheld or satellite sensors using the formular:
NDVI = (NIR - Red)/(NIR + Red). According to Kidwell
[31] the NDVI value of each area on an image helps identify
areas of varying levels of plant vigour within fields.

The validity of crop yield models with NDVI is deter-
mined by the strengths of association between the two
variables included in the model [32]. It is also essential to
have an understanding of the correlation existing between
yield and NDVT at different phonological stages of crop for
selecting appropriate date of satellite pass to include in the
model [32].

Research has shown that the NDVTI is directly related to
the photosynthetic activity and hence energy absorption by
plant canopy; typical examples include the leaf area index
(LAI) and biomass chlorophyll concentration in leaves, plant
productivity, and fractional vegetation cover [33]. These
could also be considered when developing models for esti-
mating seasonal biomass production for either individual
species or communities. Remote sensing surveys have suc-
cessfully been conducted elsewhere in forecasting yield in
paddy rice [34], maize [18], and potatoes [35].

4. Need for a Remote Sensing Based Yield
Estimation Model

Tobacco producers need to monitor crop growth and devel-
opment and obtain early estimates of final yield [1]. In the
current scenario, unavailability of a comprehensive method
for estimating tobacco yield has often led to contradicting
estimates, subjective national statistics, and general planning
inefficiency by stakeholders. The current tobacco yield esti-
mation is based on the Garvin model [21], seed tracking
approach, and the statistical and crop condition assessment
approaches. Such conventional methods of scouting are often
labour intensive and are based on data collected from sam-
pled area and, hence, their precision varied [21]. Variable crop
conditions are only distinguishable to the very trained and
experienced eye. A more objective and practical model for
yield estimation could assist tobacco stakeholders with more
precise data on tobacco growth characteristics, hectarage, and
final yield that would be available for export [2].

Site-specific information on varieties, fertiliser manage-
ment, and cultural practices may improve the accuracy of

yield crop forecasting and, offers the potential to provide
quantitative and timely information on agricultural crops
over large areas [36]. Multispectral imaging sensors are able
to view more than one particular band of energy. These
bands are selected in various regions of the electromagnetic
spectrum, based on the optimum range of energy being
reflected by the objects observed. In-season canopy images
have also been found useful in predicting yields in maize,
soybean, and cotton plant canopy [13, 16, 37].

Developing a model to forecast or estimate tobacco yield
is very useful for decision making in the Zimbabwean tobacco
industry [2]. A yield estimation model for tobacco could
also assist stakeholders to accurately determine total energy
requirements for curing [21]. For the government an accurate
prediction of the crop size is a useful planning tool in view
of foreign currency generated by tobacco, for determining
import-export policies, government aid for farmers, and
allocation of subsidies for agricultural programs [2].

By using satellite imagery instead of traditional sampling
techniques, tobacco yield forecasts can be generated earlier
than traditional estimates; and because they are based on
images that can be constantly downloaded from the satellite,
these forecasts can be updated frequently throughout the
growing season, thus tracking growth response to different
conditions as the season progresses [4]. The signatures from
satellite imagery will then be fed into the model in order to
come up with the volume estimate of the crop [16]. Remote
sensing would enable observations over large areas at regular
intervals, making it useful in large-scale crop modelling [22].

Use of satellite imagery would also enable the verifi-
cation farmers’ claims of seedbed area established, size of
irrigated and dry land tobacco crop, varietal proportions in
the field, and even monitor disease development adherence
to legislation. Varietal distribution, nutrient, and cultural
management effects can also be easily monitored and factored
in the final yield forecast.

Tobacco yield estimates are essential for marketing of the
crop as well as infrastructure development and policy making
[2]. When estimates are overestimated, tobacco merchants
supply larger volumes of money early in the season to
accommodate an anticipated huge volume of leaf only for the
prices to fall dramatically when the expectation is not met [2].
When crop yields are understated, merchants will typically
avail less money for the leaf which will force market prices
of the crop to drop in order to gain as much leaf as possible
with the limited funds available. It goes without say as well
that policy planning and infrastructure allocation become
biased when based on tobacco estimates with a tendency to
vary due to inaccuracy. Planted area estimates and field visits
often present the challenge of not accurately representing
the overall production picture because it is difficult to assess
every farm every year due to accessibility challenges, financial
constraints, and the temporal function of assessments.

There is need for a comprehensive and holistic approach
to tobacco yield estimation for the nation. Remote sensing
presents an interesting, cost effective, faster, comparatively
cheaper, and more accurate means of determining planted
area, crop vigour, and expected yield at a national level
if suitably developed and applied. Satellite remote sensing



specifically involves the use of space borne instruments to
observe, analyze, and compare areas of interest for vegetative
growth and development. Several platforms have become
commercially available to aid the purpose of vegetative
assessments. Satellite images collected over time specific
crop periods can be easily accessed, compared, and used to
provide key indications on crop vigour, biomass, and spatial
distribution.

5. Recommended Research

Remote sensing application in Zimbabwe is still very limited,
largely due to the perception that satellite data is expensive
to obtain and complicated to process [38]. This could be
as a result of research work that has focused on the high
resolution spectral imagery from commercial satellites such
as Quickbird which have been used extensively in more
developed countries leading to wide adoption in the purposes
of developing yield estimation procedures for various crops
as was outlined by Wu et al. [35]. Indirect relationships
between cereal yield and satellite derived vegetation indices
have been developed and can accurately predict yields despite
the economic organ not being directly assessed [39].

Satellite sensing presents the challenge of spectral confu-
sion when imaging crops with planting dates spaced closely
together or crops with near similar spectral signatures [40].
When the spectral resolution of a remote sensing instrument
is comparatively low, it can be difficult to distinguish target
crop species from other crops that may be in vegetative
growth at the same time [41]. Spectral distinction of closely
related species can be achieved by several methods such as
using high spectral resolution sensors to identify specific
wavelength regions that are unique to specific plant species
[24]. Assuming the spectral resolution of the instrument in
use is of adequate capacity such as high resolution Hyperion
EO-1 platforms, discrimination can be based on the differ-
ences picked in specific wavelength regions affected by the
growth and development of a species as demonstrated in the
United States on trials to distinguish field peas, wheat, barley,
and slashed wheat from the baseline soil reflectance [42].

Tobacco cultivation in Zimbabwe is guided by law [2]
which states that tobacco can only be planted on or after
the 1st of September up until the 31st of December of each
growing season [19]. This narrows down the prospective
window when land use change associated with tobacco area
estimation can be done to practical time frames since any
crop canopy reflectance’s detected by satellite instruments
before the Ist of September can easily be ruled out as those of
flue cured tobacco. Most commercially grown crop species in
Zimbabwe will not be in production by this time since they
are dependent on rainfall distribution which does not nor-
mally begin until November [43]. The dominant reflection
therefore detectable during September is that of the winter
wheat that should be in senescence stage and ploughed lands
in preparation of tobacco planting [38]. Senescencing wheat
can be easily identified and separated from tobacco planted
by the relatively higher reflection in the visible spectrum
electromagnetic range than tobacco which would be in active
growth and development. Bare soil displays a characteristic
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spectral signature characteristic with an increasing linear
profile, making it very easy to separate the September planted
tobacco crop from adjacent bare fields [38].

When the October crop is planted, its growth profile
appears similar to that of September planted crops with the
distinct difference of temporal spacing [38]. Therefore the two
crops appear to develop parallel to each other and this again
makes separation and estimation relatively easier. The posi-
tion of the red edge and corresponding reflective responses
in specific wavelength sections can be used accurately to
distinguish crop species that occur in the same temporal time
frame but of different species [38].

Unlike cereal crops, there is a direct relationship between
vegetative response and crop vigour, yield and biomass unlike
in wheat, maize, and sorghum where biomass becomes a
function of accumulated density but does not significantly
contribute to canopy reflectance [41]. It becomes plausible to
argue that due to this direct relationship, yield estimation and
crop vigour assessments can be more accurately assessed by
remote sensing instruments than cereal crops [38] and are less
subjective to bias and anomalies in data interpretation [44].
In fact, the nature of yield-canopy reflectance relationships
may be reversed in crop species whose economic yield
function is inversely related to biomass, one such crop being
cotton [28] even though the agronomic plant parameters
such as stem height, leaf number, and vegetative overall plant
biomass may be positively correlated to vegetative indices
[45]. Interestingly enough, spatial resolution can significantly
affect the ability of a satellite sensor to identify subtle
differences in crops as was demonstrated by Toulios et al. [28].
Table 1 below shows the correlation strength variations that
occur due to spatial variation differences applied to a cotton
field to estimate yield.

Remote sensing skills developed for Zimbabwe’s flue
cured tobacco estimation should seek to address the chal-
lenges of yield conflicts that may arise from tobacco with
different fertilizer management regimes [2]. Small scale
farmers tend to apply lower rates of fertilizer than their large
scale commercial counterparts; because of this, it becomes
possible to overestimate crop yields of crops that lie under
communal growers.

Research work should focus on whether the model should
separate low fertilizer regime crops from the standard as
well as those that might be subjected to over application of
fertilizer [41]. Varietal differences should also be investigated
to ascertain whether the influence of varietal differences
grown in the country will affect the applicability of the
method in predicting feasible tobacco yields [46]. The most
applicable means of utilizing remote sensing instruments for
yield estimation may lie in the temporal separation ability of
instruments based on different planting dates [43].

According to Garvin, [21] yield estimation is possible
with plant parameters such as plant height, leaf number, and
drymass, it therefore becomes feasible to use NDVT derived
from tobacco fields to estimate biomass and eventually derive
final yield of flue cured tobacco. Garvin also argued that
varietal differences do not significantly affect the prediction
potential of tobacco varieties, thus making the NDVI-yield
relationship independent of varietal expression.
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TaBLE 1: Correlation coeflicients of spectral variables with cotton yield.

Spectral variables Spectra 2 x 2m versus

Spectra 10 x 10 m versus Spectra 20 x 20 m versus

Yield 2 x 2m Yield 10 x 10 m Yield 20 x 20 m
12/07_NDVI 0.54 0.71 0.68
12/07_SAVI 0.54 0.71 0.68
12/07_1IR 0.44 0.68 0.69
12/07_RED 0.15 0.57 0.67
12/07_Green 0.24 0.61 0.68
12/07_NDVI 0.55 0.72 0.7
12/07_SAVI 0.55 0.72 0.7
12/07_IR 0.46 0.68 0.69
12/07_RED 0.16 0.59 0.67
12/07_Green 0.27 0.63 0.68
12/07_NDVI 0.24 0.61 0.68
12/07_SAVI 0.24 0.61 0.68
12/07_IR 0.21 0.6 0.69
12/07_RED 0.24 0.62 0.69
12/07_Green 0.27 0.63 0.69

Source: Toulios et al. [28].

There are several vegetative indices that were developed
for purposes of monitoring and quantifying crop growth and
development. Among these are the NDVI [14], EVI, and
SAVI [47], and correlation between these and the biophysical
parameters of tobacco crop must be studied. The tobacco
cropping season spans from September to April [19]. The
planting periods for these are continuous from September
to December [2]. Research should focus on identifying a
suitable index that can separate the crops in the different
planting regimes and then estimate yield separately. For
each planting regime, there is also need for establishing the
temporal window for collecting remote sensing data in order
to achieve the best prediction ability [47].

The tobacco sector in Zimbabwe is divided into small-
holder and commercial sector, with the former comprising
80% of total tobacco produced in the country [2]. The
challenge of the different land sizes in the two sectors still
has to be overcome by identifying suitable satellite platform,
with sufficient spectral resolution to separate the tobacco crop
from the adjacent competing crops and noncrop vegetative
surfaces.

The identified suitable index should be strongly correlated
with tobacco in season dry mass and yield for it to be
suitable for use in crop yield forecasting [47]. However,
another approach could be that of using the vegetative
indices to establish tobacco cropped area [43] and then
apply the long-term area yield relationship from government
and nongovernmental statistical departments and develop
models that can be used to estimate yield from remote sensing
derived cropped area. For the experimentation purposes, use
of hand held remote sensor like the multispectral radiometer
can be useful in characterising the spectral response prop-
erties of the different phenological stage of tobacco, for the
varieties and for different fertiliser levels. The information can
then be applied in operational yield forecasting of tobacco. It

is recommended that further research be done to establish
spectral ratios for different satellite platforms that can be
utilised for the different land size situations where differently
spectral resolutions could be required.
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