FINITE ELEMENT METHOD WITH
QUASI-LINEARIZATION FOR SOLVING BRATU’S
PROBLEM

A THESIS SUBMITTED TO THE UNIVERSITY OF ZIMBABWE
IN PARTIAL FULFILLMENT OF THE DEGREE OF MASTER OF SCIENCE

IN THE FACULTY OF SCIENCE

By
Hillary Muzara
Supervisor: Dr. G. T. Marewo
Department of Mathematics

June 2015

Contents

List of Figures
Abstract
Declaration

1 Introduction
1.1 Introduction to problem
1.2 Overview of the numerical methods
1.2.1 Quasi-linearization
1.2.2 Finite element methods L

1.2.3 Spectral collocation methods(CSCM)

10

2 Numerical methods 15

2.1 Imtroduction L 15
2.2 Spectral quasi-linearization method 16
2.2.1 Application to the Bratu problem 19

2.3 Finite element method oo 20
2.3.1 Piecewise linear lagrange finite element solution 20
2.3.2 Piecewise quadratic Lagrange finite element solution 35
2.3.3 Finite element solution using hierarchical basis functions 43

24 The Bvpde . . . o o o 49
2.4.1 Application to the Bratu problem 51

2.5 The Spectral Collocation Method 52
2.5.1 Application to the Bratu’s problem 56

3 Results and discussion 58
3.1 Imtroduction 58

3.2 Finite element solution using piecewise linear Lagrange polynomials as basis functions

(LFEM) . . . oo 58

3.3 Finite element solution using piecewise quadratic Lagrange polynomials as basis func-

tions (QFEM) o o

3.4 Finite element solution using quadratic hierarchical basis functions (QHFEM)

3.5 Results from using bvp4c to solve Bratu’s problem

3.6 Solution using Chebyshev spectral collocation method (CSCM)

4 Conclusion and future work

A Computer Code

B Nomenclature

62

63

69

71

73

85

List of Figures

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

3.1

3.2

3.3

The hat function ¢c(X) 24
Element shape functions L 25
A general element for quadratic shape functions 35
Quadratic element shape functions L. 36
Linear transformation L 37
Hierarchical shape functions 44
Linear transformation 52
Chebyshev points 53
FE solution using piecewise linear Lagrange basis functions. 99
FE solution using piecewise quadratic Lagrange basis functions. 61
FE solution using piecewise quadratic hierarchical basis functions. 62

4

3.4 Matlab bvp4c solution of the Bratu problem

3.5 A comparison of FE solutions and Matlab bvp4c solution

3.6 Comparison of bvp4c and CSCM solutions with the exact solution

Abstract

This work presented here is the solution of one-dimensional Bratu’s problem. The major aim of
this research is to master the techniques used to solve the Bratu problem. The nonlinear Bratu’s
problem is first linearised using the quasi-linearization method and then solved by the finite element

method using

1. piecewise linear Lagrange polynomials as basis functions
2. piecewise quadratic Lagrange polynomials as basis functions and

3. hierarchical basis functions.

Unlike other basis functions like the trigonometric functions, the three basis functions used in
this research have an advantage that they have small local support, that is, they are only non-
zero on a small portion of the given domain. A comparison of the exact solution and the finite
element solutions using Matlab plots and tabulated results is made. The finite element solutions

are validated using both Matlab’s bvp4c and the Chebyshev spectral collocation method.

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree
or qualification of this or any other university or other

institution of learning.

Dedication

This work is dedicated to my beloved brother, Happymore.

Acknowledgements

My heartfelt gratitude is extended to the following for their contribution towards the success of this

work

e My supervisor, Dr G.T. Marewo for his unmeasurable and tireless support and guidance

during the course of the study

All the mathematics department staff at University of Zimbabwe who assisted me to make

this work a success

My family and friends for their financial and moral support

God, the Almighty, for the precious gift of life

Chapter 1

Introduction

1.1 Introduction to problem

There are many nonlinear phenomena which are of great importance in various fields of science
and engineering. Examples of the nonlinear models that are used in applications include the fuel
ignition model of the thermal combustion theory, the model of thermal reaction process, the Chan-
drasekhar model of the expansion of the universe, questions in geometry and relativity about the
Chandrasekhar model, chemical reaction theory, radiative heat transfer and nanotechnology [1, 2, 3].
Such models are classified as Bratu’s boundary value problem. In one dimensional planar coordi-

nates, Bratu’s model has the form
u(z) + X = 0, 0<z<1 (1.1)

together with boundary conditions u(0) = u(1) = 0 where X is a constant. For A\ > 0, this problem

has an exact solution which from literature [9, 10, 11, 12] is given by

(1.2)

where 0 is a solution of the equation 6 = v2\ cosh(%). There exists A. such that Bratu’s problem
has no solution when A > A.. It has one solution when A = A, and two solutions when A < A. where

the critical value A, = 3.513830719 [6, 7] satisfies

1= i\/Q)\C sinh (%) : (1.3)

In n-dimensional coordinates, Bratu’s model has the form

Au(x) = —Xe'™ xeD (1.4)
u(x) = 0, x€ oD (1.5)
where x = [z1, 29, ..., 2,]T, A = (8%1’ 8%2, cee %) is the Laplace operator, D C R"and §D denotes

the boundary of the problem domain D.

In this work we restrict the Bratu problem only to the one-dimensional case. Much work has
been done by researchers to solve Bratu’s problem. The Adomain decomposition method (ADM)
[4, 5] which approximates the analytical solutions in the form of an infinite power series is an ex-
ample method of solution. Some of the methods which have been used to solve the Bratu problem
include the weighted residual method [6], the shooting method [7] and the Sinc-Garlekin method [8].
In this work we use a combination of the finite element method (FEM) and an iterative method to
find the numerical solution of the Bratu problem. The results obtained are validated using Matlab’s

in-built routine bvp4c and the Chebyshev spectral collocation method.

1.2 Overview of the numerical methods

1.2.1 Quasi-linearization

The quasi-linearization method (QLM) whose origins are in the theory of dynamic programming

was first proposed by Bellman and Kalaba [13]. This method can be viewed as the Newton-Raphson

11

method applied to nonlinear differential equations. It is a very powerful method for approximating
solutions of nonlinear differential equations and makes use of the Taylor series expansion of first order
to linearise a nonlinear differential equation. The solution is then approximated as a sequence of the
linear equations. Originally, the method was restricted to twice differentiable and strictly concave
(or convex) functions. However, great work was done by Lakshmikantham [14] who presented the
QLM with the concavity assumption relaxed. This made the QLM applicable to a wider variety of

problems.

1.2.2 Finite element methods

The finite element method (FEM) is a computational technique used to obtain approximate solutions
of boundary value problems (BVPs) in science and engineering [15]. Many engineering phenomena
can be modelled by differential equations together with boundary conditions. In many practical
problems the governing equation and the domain are usually complex making it very difficulty to
come up with the exact solution of the differential equation, hence the need for approximation of

solutions using numerical techniques and digital computations.

The history of the finite element method can be traced back to 1909 when Ritz introduced a
method of obtaining approximate solutions of problems in deformable solids. The method included
the approximation of the energy functional of known functions with unknown coefficients but had
a disadvantage that the functions used had to satisfy the boundary conditions of the problem. The
method of Ritz was improved in 1943 by Courant when he introduced a special type of linear func-

tions defined on triangular regions to approximate solutions of torsion problems [16].
Many years later Ray Clough who introduced the term “finite element method” for the first time

in 1960 in his paper [17] marked the beginning of the finite element method. The FEM spread

widely after 1960 due to the introduction of digital computers. Some other work important in the

12

development of FEM include the papers by Argyris [18], Turner [19], Hrennikov [20] and many

others.

When analysing the behaviour or properties of a complex system, it is easy to consider it as an
assemblage of simple elements, then dismantle it and analyse the properties of its elements indi-
vidually. This is exactly the principle used in the finite element method. The dismantling done
in the FEM is the meshing of the physical domain into sub-domains called finite elements. Each
element will have interior and exterior nodes, which are points at which the dependent variables
will be computed explicitly. Exterior nodes are found at the boundary of the finite element and are
used for joining one element to another. The approximate solution will be obtained on the finite
element using the nodal values as unknowns and predetermined interpolation functions. The finite
element equations are formulated in such a way that the values at each exterior node is the same

for the other connecting element hence maintaining continuity:.

The basic steps for solving a differential problem using the finite element method are;

1. formulation of the problem in variational form,
2. the finite element dicretization of this formulation and

3. the solution of the resulting finite element equations.

1.2.3 Spectral collocation methods(CSCM)

Spectral methods which became famous in the 1970s are one of the very accurate numerical meth-
ods used to solve ordinary and partial differential equations numerically. Spectral methods can
achieve upto ten digits of accuracy in problems where other numerical methods like the FEM and

finite differences achieve only two or three digits of accuracy [21]. There are mainly three types of

13

spectral methods which can be identified as collocation, tau and the Garlekin methods [22, 23, 24]
distinguished by the type of the trial and test functions used. The choice of the spectral method
to use mainly depends on the application. The tau method, discovered by Lanczos [25] is most
suited for problems which are non-periodic with complicated boundary conditions. In the Garlekin
method, the test and trial functions are considered to be the same. In this work we use the colloca-
tion method which is most suited for non-linear problems. The spectral collocation method whose
motivation is the finite difference method is in principle similar to the finite element method (FEM)
due to the use of basis functions. The major difference is that the finite element method uses local
basis functions which have small support, that is, the basis functions are non-zero on small portions
of the problem domain whilst the global basis functions used in spectral collocation method are

non-zero on the entire domain.

The CSCM has been used to solve the Lane-Emden equation [44] to get more accurate results than
those obtained using other methods such as pertubative and nonpertubative techniques [46, 47],
quasilinearisation method [48] and Adomain decomposition method [49]. In this work we intend to
use the CSCM because of its ability to achieve higher accuracy, given the same grid points, than
other methods like the FEM and finite difference methods [45]. It also has excellent error properties
with exponential convergence being the fastest possible [50]. However, the CSCM is more difficult

to code and can result in heavy loss of accuracy for complicated domains.

14

Chapter 2

Numerical methods

2.1 Introduction

In this chapter we shall discuss the linearization of equation (1.1) using the quasi-linearisation

method. Also presented are the solutions of equation (1.1) using:

1. finite element method with piecewise linear Lagrange polynomials as basis functions

2. finite element method with piecewise quadratic Lagrange polynomials as basis functions
3. finite element method with hierarchical basis functions

4. Matlab bvp4c and

5. Chebyshev spectral collocation method.

15

2.2 Spectral quasi-linearization method

We begin by presenting problems that were solved by other authors using the quasi-linearization

method.

Examples of applications of QLM

Example 1. The Lane-Emden equation given by

2
u'(z) + = (z) + u™(x) =0, u(0) =0, «'(0) =0, 0<m <5 (2.1)

x
is an equation which occurs in stellar structure [26]. It can be solved analytically for the indices
m =0, m = 1 and m = 5 but is unsolvable analytically when m = 4. By making the substitution
u = y/x and applying the QLM, Mandelzweig and Tabakin [29], managed to transform the boundary

value problem (2.1) to the problem of constructing a sequence {u} that satisfies

m—1
K m—1
W () () = T (@), i (0) = 0, (0) = 1 (22)
where s = 0,1,2,... and with an initial approximation ug(x) = x, this sequence converges rapidly

to the exact solution.

Example 2. The Thomas-Fermi equation
Vau'(z) = u(z), u(0) =1, u(cc) =0 (2.3)

is widely used in nuclear Physics. This equation is very difficult to solve because u”(x) = 0 when
u < 0 and also that the solution is very sensitive to the first derivative of the solution at zero.

However, it is shown in [29] that by the QLM the resultant iterative scheme

Vil () = Sud (@) (2) = 505 @), 0 (0) = 1, tepa(00) = 0 (2.4

can be easily solved by specifying the boundary condition at infinity directly.

16

There are many other methods which can be used to solve nonlinear differential equations with
the two mostly widely used being the shooting method and the finite difference method [27]. The
shooting method [28] fails if one of the solutions of the differential equations under consideration is
highly unstable. On the other hand, approximating the solution of a nonlinear system of differential
equations using finite difference methods usually results in nonlinear algebraic systems which are
difficult to solve. Other methods of solving nonlinear problems include the monotone iterative tech-
nique [32, 33, 34] and pertubation techniques [35]. Pertubation techniques also provide a powerful
tool of obtaining solutions of nonlinear differential equations but are only appropriate for weakly
nonlinear differential equations due to their strong dependence on some small parameters in the

equations under consideration.

In this work we intend to use the QLM to solve equation (1.1) because it produces a linear it-
erative scheme whose iterates converge monotonically. From this scheme we can form a sequence

of solutions us(x), s =0, 1,2, ..., which has been shown [36] to have the following properties:

1. The sequence us(x) is bounded below and above by wug(z) (initial solution) and u(x) respec-

tively, and that

2. Uspi(z) —us(x) >0,s=0,1,2,....

From properties 1 and 2 above, the iterative scheme is bounded and monotone increasing. Using
the monotone convergence theorem [37], it can be deduced that the iterative scheme is convergent.
The scheme also converges uniformly and quadratically to the solution of the original problem [38].
This iterative scheme produces successive approximations of the solution. For quadratic, monotone
and uniform convergence of the QLM to the solution of the problem in question we refer the reader
to reference [29]. Another desirable attribute of the QLM is that it is numerically stable as com-
pared to other methods of approximating solutions of nonlinear differential equations [13]. If the

initial guess given is close to the true solution, the method converges rapidly to the true solution [31].

17

Derivation of the QLM formula

Let us consider an n* order nonlinear differential equation of the form
Flu(z)] =0, =z € a,b (2.5)

where z is an independent variable and u(z) = (u,/, ..., u™) is a vector of solutions of (2.5). Let

d"u
dmn)

v = 2 and u™ =

- for n = 2,3,.... As in [30] it is assumed that z = (z,2/,...,2™) is an

approximate solution of (2.5) which is sufficiently close to the true solution u. Assuming that all

the partial derivatives of F exists, applying Taylor’s theorem we get
F[u] = F(z) + VF(z).(u — z) + (higher order terms) (2.6)
Upon ignoring higher order terms equation (2.6) becomes
VF(z).u = VF(z).z — F(z) (2.7)

The solution from (2.7) will not be, generally, the exact solution of (2.5) because of the discarded
higher order terms. We will use the initial approximate solution z as a calculated solution to
iteratively compute the new solution u. With this in mind, denote z and u by u,; and us,

respectively to get the iterative formula
VF(us).us;1 = VF(ug).us — F(uy) (2.8)

where s = 0,1,2,.... Since

OF (uy) OF (uy)

e 4 OF (ug) d™1 OF (ug) d
Ou, st ou

d
VF(us).us—l—l - %(us-i-l) + ...+ 8ugn_1) dr (us—l—l) + augn) %(us-i-l)

/
s

then equation (2.8) can be written in operator form as
Lugy1 = Lus — F(uy) (2.9)

where

dn dn—l d
=b b o +bp_1— + b, 2.1
L=byge F b ot b+ (2.10)

18

and

OF (us) OF (uy)
bO = W? bl
Ous

The iterative scheme (2.9) is the standard QLM formula used to obtain the (s + 1)th iterative

B _ OF(us) _ OF(us)
= W,..., bp_1 = ul and b, = i

approximation us1(x) of the solution of (2.5).

2.2.1 Application to the Bratu problem

The Bratu problem (1.1) can be transformed to a linear differential problem using the QLM. Equa-

tion (1.1) is of second order, thus we have
F(u,u',u") = u"(z) + Ae"®

and

e d
£=byzs +hio + by

Calculating the coefficients by, by and by and substituting into (2.9) we get the iterative scheme

ul () + Ae" Pugy g (2) = Ae™ @ (ug(z) — 1) (2.11a)
u8+1(0) = u8+1(1) =0 (211b)
where s =0, 1,2, Equation (2.11a) can be used to compute us;1(x) provided ug(z) is known. In

particular, the initial approximation wu(z) must be specified so that we compute u;(z). Once u;(z)
is known, we compute uy(z) using equation (2.11a) and so on. Also, ug(x) must satisfy boundary
conditions (2.11b). For the sake of brevity, we replace equations (2.11a) and (2.11b) with equations

L(u) =u"(z) + a(zx)u(z) =b(z),0 <z <1 (2.12a)

u(0) = u(1) = 0. (2.12b)

19

2.3 Finite element method

2.3.1 Piecewise linear lagrange finite element solution

Variational formulation of the differential problem

To implement the finite element method to the linear differential equation (2.12a) subject to bound-
ary conditions (2.12b), it has to be first converted into its variational or integral form. This is done

by making use of the fundamental lemma of variational calculus [39]

b
Lemma 1. If a function u(z) is continuous and if / u(z)v(xz)dr = 0, for all continuous func-

tions v(x), then u(z) =0 for a <z <b.

Relative to our problem (2.12a), the function u(z) is the trial solution to the problem and the
function v(z) is the weight or test function which is arbitrarily chosen so that it satisfies the same
boundary conditions as the trial solution. From lemma 1, requiring the trial solution u(x) = 0 is
the same as taking the residual function R(z) = L(u) — b(x), to be zero for 0 < z < 1. Hence from

equation (2.12a) we have
/01 [L(u) — b(x)] v(z)dz = 0, for all continuous functions v(x) , (2.13)
or
A(v,u) = (v,b), for all continuous functions v(x), (2.14)
where the bilinear functional
Alv,u) = /Ol[v(x)u”(x) + v(z)a(x)u(x)]dz, (2.15)
is usually called the strain energy and the L? inner product
(v,b) = /01 v(z)b(z)dz

20

is an £? inner product. In the strain energy, the product v(z)u”(x) causes different smoothness
requirements for the two functions. Symmetry is however introduced by using the integration by

parts formula in one dimension to get:

Av,u) = /01 [— V' (2)u (%) + v(z)a(z)u(z)]de — u(x)/v(x)‘(l) (2.16)

Since the solution w(z) is known to be zero at both endpoints = 0 and z = 1, the test function
is chosen so that it satisfies the same trivial boundary conditions hence making the boundary term

to vanish. Now (2.16) takes the form

Av,u) = /0 [— V' (2)d(z) + v(z)a(z)u(z)]dz. (2.17)

Integration by parts has added a derivative to the function v(x) so that its selection is restricted to
a space where the functions have more continuity than those in £2. The functions u(z) and v(z)
will be required to be elements of the Sobolev space H!, which is a space of continuous functions

where

Since the functions u(z) and v(z) satisfy the trivial boundary conditions (2.12b), they are elements

of the Sobolev space Hj. The variational problem becomes that of determining u(z) € H} satisfying
A(v,u) = (v,b), You(z) € Hp (2.18)

where

/0 (v (2))? + (u(z))})dr < co,u(0) =0 and u(1) = O}.

Problem variable approximation

The problem variable approximation is

u(w) = U(x) =Y uepe() (2.19)

where ¢.(z), ¢=0,1,2,--- ,F — 1, F are arbitrarily chosen continuous piecewise linear functions.

Since U(0) = U(E) = 0, equation (2.19) can be written as

U) = 3 uol) (220)

Substituting (2.20) into equation (2.18) gives

BE-1
> A, ¢e(x)) = (v, b(x)), for all v : v(0)=v(1)=0 (2.21)
c=1

which upon choosing functions £ — 1 distinct values vy (), v2(x), ..., vp_1(x) of the test function

v(x) becomes

E-1
> ucA(vg, ¢e(r)) = (va, b)), d=1,2,-+ | E—1
c=1

which is a linear system of £'—1 equations of unknowns u., c = 1,2,...,... E—1since A(vg(x), ¢.(7))
and (vg(x),b(z)), d=c=1,2,..., E — 1 are constants. The system can be written as
(M —-—Kju=w (2.22)
where u = [uy, us, ..., up_1|7 and
nr vy o Vi,
1 ,U/ / ,U/ / . ,U/ /
K— / 29 2% 2PE-1 d (2.23)
0 : : - :
Vg1 @) Vp_1¢h o Vg9

is the global stiffness matrix with each of its elements given by
1
Ky = / vydldx, where d,c=1,2,...,E—1
0
The elements of the global mass matrix M and the global load vector w are

1 1
M. = / vaa(r)p.dr and wy = / vgbdx (2.24)
0 0

22

respectively. The values d and ¢ represent the row and column number, respectively, of each entry

in the global matrix. Upon solving the linear algebraic system (2.22) we determine the coeffi-

cients u., ¢ = 1,2,--- | E — 1 for the approximate solution (2.20). The choice of the functions

¢e(x), c=1,2,--+ , E —1 determines how good (2.20) is as an approximation of the solution u(x).

Considering the general element €2, = [x._1, z.]

where

Similarly

with

and

1
!yt
ch - / Udgbch
0
E
e=

Tc
_ Y
= > [ol
1Y %e—1
E
_ § e
- ch’
e=1

[Fe vl (z)¢),(z)dz where m and n are either c or ¢ — 1

Ke, = " (2.25)
0 otherwise.
E E
Mg = ZMjC and wy = Zw§,
e=1 e=1
e — ff;l Um(z)a(z)d,(x)dx where m and n are either ¢ or ¢ — 1
0 otherwise,
. f;ﬁl U (x)b(x)dx where m is either ¢ or ¢ — 1
wo o=

0 otherwise,

respectively.

23

Discretizing problem domain and choosing basis functions

The problem domain [0, 1] is partitioned into uniform discrete subintervals [x._1, z.], ¢ =1,2,3,--- | E

called finite elements, where
O=zg< 1 < - <xp1<xg=1

The uniform width of each interval is h = z. — xz._1, ¢ = 1,2,3, ..., F with each endpoint of the
subinterval called a node. Each basis function ¢.(x) is chosen to be a piecewise linear Lagrange
polynomial. These polynomials should be continuous and piecewise linear on [0, 1]. Such class of

polynomials are chosen to be the hat functions

)
%, if =€ [z, 1,2
Pe(x) = %, if =€ [z, Teiq] (2.26)
0, otherwise
\

which have the form shown in Figure 2.1

Pe(X)

0 Xeo1 Xe Xeql Xg

Figure 2.1: The hat function ¢(x)

The most desirable properties about these functions are that ¢.(z) has a value of unity at the
node ¢, vanishing at all other nodes. This makes the determination of solutions at the node simple.
Secondly, ¢.(x) is nonzero on the elements containing the node ¢ and zero elsewhere on [0, 1] hence

simplifying the solution of the resulting algebraic system. Such functions are said to have local

24

support.

Computation of element matrices

The variational problem counterpart of equation (2.18) is now constructed by replacing the function
u(x) by its approximation given by (2.20) and then choose each test function V' (z) = ¢,(x) by the
Garlekin method. The functions U(x) and V(x) belong to a finite dimensional subspace S{¥ of the
Sobolev space H{. The basis of the space SJ is formed by the functions ¢.(z),c=1,2,--- , E — 1.

The variational counterpart problem now consists of determining U(z) satisfying
A(V,U) = (V,b),¥V () € SY. (2.27)
Restricting (2.20) to a finite element (), yields the approximate solution
U(x) = Ue1Pe—1(2) + ucte(x), T € Q, (2.28)

since ¢.—1(x) and ¢.(x) are the only nonzero basis functions on 2.. These basis functions are both
unity at the nodes x._; and z. respectively hence we deduce that U(x.) = u.. Since by the Garlekin

method U(x) and V(x) are both chosen from S,

V(z) = vee1¢e—1(T) + ve0c(), = € Q. (2.29)
The basis functions
Ge1(x) = xc}; z and ¢.(z) = I—TM’ z e,

are shown in Figure 2.2

¢C—l (X>

Figure 2.2: Element shape functions

25

Equation (2.27) can be written as a summation of the contributions of each element on the

problem domain [0, 1] as

Z/ (2) + V(2)a(x)U(z) — V(2)b(z)]de = 0,¥V (z) € SV. (2.30)

Element stifflness matrix

The entries of element stiffness matrix are obtained by integrating the first term in (2.30) to get

/:lvf<x>U’<x>dx _ / s] ¢¢1 s o uul N .
= [Uc—l Uc} K. UCI}, (2.32)
Ue

where

Kc—l,c—l Kc—l,c
K,=|° ‘ : (2.33)
Kc,c—l Koc

is the condensed form of K. The elements of the matrix K, are

K = / " 8 (0 (), (2.34)

where m and n are either ¢ — 1 or ¢. For example

Kool = / " ()¢ (2)de
Te 1 1
- ‘/W (ﬁ) (ﬁ)‘“

= -1

Hence

(2.35)

Element mass matrix

We proceed in a similar manner for the second term V(x)a(x)U(x) in equation (2.30). We be-

gin by approximating the function a(x) by its linear interpolant so that

a(z) & ae—1¢c-1(x) + acpe(z), x €€, (2.36)

where a._1 = a(z._1) and we get

/ Vi@a(@)U(a)dr = [u_, o] M, { (2.37)
where
h [361+ ac a1+ ac
M, = — ' ! (2.38)
12 Qe—1+ Q¢ Qe 1+3ac
is called the condensed element mass matrix. If the function a(x) = a is constant, then M, reduces
to
2 1
M, = e . (2.39)
6 \1 2
Element load vector
Similarly if we let
b(z) = be—1¢e—1(x) + betde(x), x € (2.40)

then

/ V(@)b(a)de ~ / o] Z(S) o) o) || o

= [UC_ 1 ’Uc:| W

27

where

2,1 + be
w1 ' (2.41)
bc—l + ch

which is called the condensed element load vector.
Assembling global matrices

Assembling is a process of constructing the global matrices as the summation of the element ma-
trices. In forming the global matrices it is not necessary to expand the element matrices in their
condensed form but to only work out their appropriate positions in the global matrix and then add

the numbers. In this summation we will consider a uniform width h = 1/F for the elements so that

> [verea = 3 [u o)

1
+ [UE—2 UE—JE

The first and last terms have this form due to application of the boundary conditions

ug = ug = vg = vg = 0. Expanding each vector and matrix to the same dimension we get

28

1 (751
E 1 U2
3 / VU @) = [o v oo v g
c=1 Y Te—1
1 —1 (751
-1 1 U9
1
+ [Ul Vo = UE_l]E
' — - — -
Uy
U2
1
+ [Ul Vo - ’UE'_l]E
1 -1
—1 1 Up—1
Uy
U2
1
+ [Ul (%) . ’UE'_l]E
1 Up—1
This can be written as
E .
Z/ V' (2)U'(z)dx = v Ku, (2.42)
c=1 Y Te—1

29

where

SRS

is the global stiffness matrix and the vectors of unknown coefficients have the forms

T
V=1v1 vy -+ VUg_2 Vg1 and u= |u; uy

Similarly

and

where the global mass matrix

T
Up—2 UE—I] :

ag + 6a; + as a; + ag
a1 + as a1+6a2+a3 a9 + as
h Ao + as CL2+6CL3+CL4 as + ay

30

ap—2 +ag_p ap_3+6ag_s2+ag_y

agp—o+ag_1

(2.43)

(2.44)

agp—o+ag_1

ap—9 + 6aE_1 +ag

is the global stiffness matrix which reduces to

4 1
1 4 1
ah 1 4
M =" 2.4
4 1
1 4
when a(z) = a is constant and
bo + 4by + by
by + 4by + b
we | Tt (2.46)
§
_bE—2 +4bg_1 + bE_
is the global load vector. Substituting (2.42) ,(2.43) and (2.44) into (2.30) we get
vI[(M — K)u —w] =, for all V(z)e€ SY
or
(M —-—Kju=w (2.47)
for all choices of choices of v . Solving this linear system we get the nodal values u., c =1,2,--- , E—1

for the approximation (2.20). Looking closely at (2.42) , without applying boundary conditions,

this summation can be written as

E

2

c=1

[v @i = [w v

31

VE-1 'UE] K

Uop

Uy

Up—1

Ug

(2.48)

with the (E'+ 1) x (E'+ 1) matrix K being the summations of matrices given by

1 -1
-1 1 1 -1
1 -1 1
K=- + ot -
h 1 -1
-1 1 1 -1
-1 1
which we can write in compact form as
E
K=Y K° (2.49)
e=1
where
1 e—1 e E
0 0 0 0 1
1
Ke:_ 0 ... 1 —1 0 e—1 2.50
: (2.50)
0 —1 1 0 e
0 0 0 0 E
is a sparse matrix and its condensed form is
e—1 e
1
Ki= 1 -1 e-1 (2.51)
—1 1 e

The numbers e — 1 and e on the boarders of the matrix indicates the appropriate positions of the

elements in the global matrix. Similarly we get

e—1 e
h T3
Me = 2 |31+ eyt ae | e—1 .
© 12 [(2.52)
(e—1 + Qe Qo1 + 30 e

32

and
2be—l + be
be—l + 2be

.k e—1

we = —
€ 6

(2.53)

(&

as the condensed element mass matrix and element load vector respectively. We demonstrate the

assembly procedure by example.

Example 3. We now describe the assembly procedure for the element stiffness matrix on the
problem domain [0, 1] with three elements, that is, £ = 3 and h = 1/E = 1/3 to form a global
stiffness matrix K of dimension E + 1 = 4. Starting with an empty 4 x 4 global stiffness matrix,

the contribution of K to the global matrix K is

0 1
! 10
ko3| -1 1 1
and upon adding K? we get
1 2
SR ;
Kos| -1 141 <1 |1
—1 1 2
and finally adding K3 changes K to
2 3
- ;
ko3| -1 1+1 -1
-1 1+1 1|2
I 113

33

After adding K', K? and K? to K and padding with zeros we get

3
0
-1 0
1
1

w N = O

The assembly procedure for the global mass matrix follows in a similar manner to yield

0 1 2 3
_3a0 +ap ap + ap 0 0
M:i ap+ a1 ag—+ 6a; + as ar + as 0
36 0 a1 + as a; + 6as +as as + as
.0 0 as + as az + 3as
Similarly the global load vector
2by + by 0
by + 4by + by 1
VAR b+ by by | 2
by + 2b3 3

Imposing boundary conditions

The algebraic system (2.47) can be written as
Nu

where

w N o= O

(2.54)

(2.55)

(2.56)

Moo no1 T Ny, E-1 ToE Ug Wo
10 n11 T n,e—1 g Uy wq
N = : : : : ,u= : and w =
ng-10 Neg-11 '+ Mep-1,E-1 NE-1E Up-1 WE-1
nE0 nNEa o NMEE-1 NE.E Ug WE

hence can be solved easily using any suitable method but only after imposing the boundary condi-
tions. To apply the boundary conditions, we delete the first and last rows of both N and w and the
first and last columns of V. This is because the first and last finite element equations correspond to
the nodal values uy and ug respectively which are known from the boundary hence are not needed.

The system becomes

Nio ni T nirE-1 E Uy wq
20 21 e N2 EB—1 TR U2 Wa
nNg—20 Nep-21 '+ NMep—2E-1 NE-2FE Up—2 WE—2
ng-10 Neg-11 '+ Mep-1,E-1 NE-1E Up—1 WE-1

2.3.2 Piecewise quadratic Lagrange finite element solution

For piecewise quadratic Lagrange finite element solution of problem (2.12a) subject to boundary
conditions (2.12b), the same general element Q. = [z, 1,z.,¢c=1,2,--- , E—1, F used for piecewise
linear Lagrange finite element solution is considered. The only difference on the element is that

besides the two end nodes, a middle node is added to the element as shown in Figure 2.3

—0
>
Ay

Xe—1 X1 Xc

Figure 2.3: A general element for quadratic shape functions

35

On problem domain [0, 1] we form a mesh

OILL’0<LL’1<LL’2<"'<SL’C_1<SL’C_%<SL’C"'<LL’2E_2<SL’2E_1<SL’2E:1.

The length of each element h = z. — x._; for each ¢ = 1,2,--- , F — 1, E as shown in Figure 2.3.

The finite element trial solution is given as
2F
Ulx) = usds()
c=0
where ¢ (x) a piecewise quadratic global basis function which satisfies

1, at node c
pe(x) =

0, otherwise

The restriction of the trial function to the element €2, is

U(x) = te_1¢0e_1(x) + uc_%gbc_%(:v) + ucpe(T), T € Q.

The restriction of ¢.(x) to € is the element shape function N.(x)
¢c(r) = NZ(2), Yo € Q..
where
1, at node ¢

Ni(x) =
0, otherwise

Figure 2.4 shows the three element shape functions associated with the nodes x._1, x

Qe

Figure 2.4: Quadratic element shape functions

36

(2.57)

(2.58)

(2.59)

(2.60)

(2.61)

1 and z. on
2

Using the illustration in Figure (2.4) and with property (2.61) in mind, it follows that
N¢ ((xee1) =1, N¢ (z,_1) = 0and N¢ ;(z.) = 0. Using the factor theorem, (x

! %—x) and (z.—1x)

c—

are factors of the quadratic element shape function N¢ | (z) such that coupled with normalisation

. 2
Nc—l(x> = 79

15Ty — @) (we —), 7€ Qe (2.62)

1
2

Similarly, the other two element shape functions are

Nf_%(:c) = %(:c — Ze1)(x — z.) and NS(z) = %(m — ZTeq) (T — xc_%). (2.63)

Constructing element matrices

In the construction of element matrices, to conveniently evaluate the involved integrals, the physical
element Q. = [x._1,2.] on the z-axis is mapped onto the canonical element II, = [—1, 1] on the

&-axis using the transformation
2(f) = —— ey + ——1, -1 < €< (2.64)

See Figure 2.5.

Figure 2.5: Linear transformation

Using the linear transformation (2.64), element shape functions (2.62) and (2.63) on the z-axis

are transformed to the equivalent quadratic shape functions

Ve = S, Ny = 1- € and Ny(6) =

37

associated with nodes —1, 0 and 1 on the {-axis respectively. This far, the finite element trial

solution on €2, can be written
Uf(x) = u_ 1N (&) + uoNG(§) +uiN{(§), £ eIl

with the test function V' (z) taking a similar form.

Element stifflness matrix

Like in the linear case,

Ue—1
/ V@)U @)de = [vey vy v Ke lu,s
Te—1
U
where K, is a symmetric 3 x 3 matrix given by
—1e—1
ch—l,c—l ch €T3 ch—l,c
K, = ch_%ﬁ_l ch_%ﬁ_% Ks_%vc
_1
ch,c—l KCQC 2 ch,c
The entries of the matrix are given by
K= [N @, @)
Tc—1
where m and n are either ¢ — 1, ¢ — % or c. For example
Kc—l,c—l — /*:BC ch—l(z) ch—l(z) dx
¢ vo, dT dz
_ /1 (E)sz—l(g) dN_l(g)ﬁdg
1 \ e 3 g 2
_ T
-3k

(2.66)

(2.67)

(2.68)

The determination of the rest of the entries follows a similar way to get the condensed element

38

stiffness matrix as

7T =8 1
K, = ! 8 16 8
VN B
1 -8 7
Element mass matrix
Similar to the linear case,
Ue—1
/ V(z)a(z)U(x)de = |v,_,4 Vool Ve M., U1
Te—1
Ue
where the 3 X 3 symmetric matrix.
Me—Le—1 MCC—LC—% Me—Le
Mce — Mg_%’c_l MCC_%’C_E MCC_E ¢

1
Mgt MR MEe
Cc

is the condensed element mass matrix where
M = / "N (@)a(x) N, (2)da
T
and
a(r) ~ ac_1N.q(x) + a1 N,_1 + a.N.(z), x € Q.
The entry in row ¢ — 1 and column ¢ — 1 of M, is

Metel - / Ne_i(z)a(x)Neq(x)dx

= | Ne_1(x) (ac_lNc_l(x) +ae_1N,_1(x) + CLCNC(SL’)) Ne_1(x)dx

13 1 1
= 2 hae 1+ —ha_1 — —ha,
140 1 %em1 T gy et — 45 "0

39

(2.69)

(2.70)

Other elements are computed in a similar manner to reveal that

Ba; | 8 e a4y 2a @ 24 a
140 T 21~ 140 21 7 105 ~ 105 140 ~ 105 140
M.=h| @ 4 3% _ 24 4e | 1605 | day 20, | Aa; | ap 2.71
¢ 2 T 105 ~ 105 105 T 3 T 105 105 T 105 T 21 ()
; 2a; 2a; da; a ; aj 13a
G 2% Gk 2G4 =45 ak G vl k
140 ~ 105 140 105 T 105 + a1 6 T2 T T

where a; = a(z.—1), a; = a(atc_%) and ay, = a(x.). If a(z) is a constant function, then (2.71) becomes

4 2 -1
ah
M, = — 2.72
0| 2 162 (2.72)
-1 2 4
Element load vector
Similarly, if
b(x) =~ be_1Neq(z) + bc_%Nc_%(x) + b.No(x), x € Qe, (2.73)
then
/ V(z)b(z)dx = [vc_l Vet Ve| We,
where

4b._1 + 2bc_% — b,
he
We = 5= | 2b.—1 + 16b,_1 + 2b. | , (2.74)
30 3
—b._1 + ch_% + 4b..

is the element load vector. Just like in the linear case, finite element equations reduce to linear

system

(M — K)u = w, for all choices of choices of v . (2.75)

40

Assemble global matrices

Example 4. We illustrate the assembly procedure for global matrices using three elements that is

E =3, h=1/E =1/3 and we have seven nodes. The condensed element stiffness matrix

e—1 e—1L1 ¢

1 7 -8 1 \e—1
Re=gpl s 16 —s|e-1 (2.76)
1 —8 7 e

is added to K for each e = 1,2, 3 in the appropriate rows and columns. Upon padding with zeros

we get

o 3 1 2 2 2 3

(7 -8 1 0 0 0 o0]o0
-8 16 -8 0 0 0 O0]3
1 -8 7+7 -8 1 0 0|1

K=lyo o s 16 -8 0o of?¢ (2.77)

0 0 1 -8 7+7 -8 1|2
o 0 o0 0 -8 16 -8|32
o 0 0 o0 1 -8 7]3

which upon applying the boundary conditions becomes

K=|0 -8 16 -8 0 (2.78)
0 1 -8 14 -8
0 0 0 -8 16

41

Similarly, with the condensed element mass matrix

1
e—1 e— 3 e
13a; | & _ ay a4 4y 2a e 29w\ o
140 21 140 21 105 105 140 105 140
. 1
Mc:g ﬂ+ﬂ_ﬂ 4ai_|_16“1’_|_ﬂ _2‘12'_'_%_'_“_1% e—1 (279)
21 105 105 105 35 105 105 105 21 2
) 2a;) 2a; 4a;) ; a; 13a
e _ 2% _ Gk __ 42l -2 Ak _a i k
140 105 140 105 + 105 + 21 140 _l— 21 _l— 140 €

where i = e—1j = e — % and k = e, adding M for each e = 1,2, 3 in the appropriate rows and

columns which upon applying the boundary conditions becomes

qg 0 O

r s t

o o O

<
I
o o o v
V)
IS
S

0 0 = =z
where

416 4 2 4
=—ap+ a1+ —a =———ap+ ——a1 + —
P=105" " 35% T 105" 17 T105" T 1057 T 21

Lo L 13 13] 1
r=———ay+—a1+—a; +—a1 + —as — ——a
140 021 T a0 T 140" T 2178 T 1402

Lo, 2 1 2 1
= —a; +—a3 — — =——a — —a3 — ——a
ST M T 105% T 105™ 140" 7 105" T 140™

4 16 4 2 4 1
u=—a —: —qa V= ———7—qQ —A: —a
1051 73572 T 105 105 1105 2 21t

- Ll o131]
U0 Tt T a0 T 120™ T 21 T 1a0™

Lo, 9 . 1016

r = —a —a5 — —Qa3 and 2 = —Q —a —Q
2172710572 105 ° 105 273573 " 105°°

and condensed element load vector
4b,_1 + 266_% —b, \e—1
h
we = — Qbe_l + 16[)6_% + Qbe € — % (280)

©7 30
—be_1+ 2,1 +4b.) e

42

yields the global load vector

4bo +2by — by 0
20 + 1601 + 2b, :
—bo +2b1 +4by +4by +2bs — by [1
w = 10 20, + 16b3 + 2b, g (2.81)
—by +2bs +4by 4 4by + 205 — b3 [2
20y + 16bs + 2bs 2
3

—by + 2bg + 4b3

which upon appying boundary conditions becomes

2by + 16bs1 + 2b;

—bo + 2b1 + 4by + by + 2bs — by

w = 10 2by + 16b3 + 2bs (2.82)

—b1 + 2bs + 4by + 4by + 2bs — by
2by + 16b5 + 2b

2.3.3 Finite element solution using hierarchical basis functions

The finite element approximation of the solution of the boundary value problem (2.12a) and (2.12b)
using the quadratic hierarchical basis functions is discussed in this Section. Used in the finite element
method, hierarchical basis functions have an advantage over the Lagrange polynomials in that the
resulting algebraic system is less susceptible to round-off error accumulation at high order. The
same general element €, = [x._1,z.] in Figure 2.3 is considered. Unlike in the quadratic Lagrange
finite element approximation, the basis functions associated with both end nodes are linear while

that associated with the middle node is quadratic as shown in Figure 2.6

43

Figure 2.6: Hierarchical shape functions

Similar to the quadratic Lagrange approximation, the physical element €. is transformed to the
canonical element II, = [—1,1] using transformation (2.64). The restriction of the solution to the

canonical element Il is given by
U(€) = te-1N-1(§) + w1 No(€) + ucNi(§), € €[-1,1] (2.83)

where N_;(£) and N;(§) are linear element shape functions derived from the hat functions in Figure

2.2 using transformation (2.64). Hence

NoA(©) = £ (1) and Ny(§) = 2(1+6), €€ IL,

Following Szabé and Babuska [40] we take

N© =3 [o),

where Pj(p) = p is the second Legendre polynomial

= No(€) = 3 (€ = 1) (2.84)

Constructing element matrices

Element stifflness matrix

44

Since

Teo 2 [tavdUu

Ue—1

[vc_l V1 vc] K. |u

1

¢T3

U

(2.85)

(2.86)

where the restrictions of the piecewise quadratic trial and test functions to the element (). are

Ny

Ny

respectively then the condensed element stiffness matrix K. given by
N/
2 [

K. = h_c/_1 N [N’_l Ny N{] d¢
Nj

which upon simplification becomes

1 0 —1
K. = ! 0 2 0
c hc
-1 0 1
Element mass matrix
In a similar way,
| v@eav@ds = oy vy] M|
Tce—1

Since

a(§) = a1 N-1(§) + acNi(§), € € [-1,1]

45

N_y
U€) = Jue1 ues ue| | No | and V(€)= |y v, vc] No

N

(2.87)

(2.88)

then the element mass matrix is

N_4
he (!
M. = 5/ No | a(§) [N_; Ny Nl] d§
-1
Ny
%ac—l + %ac _\g/_gac—l - %ac %ac—l + %ac
— V6 V6 1 V6 V6
- h'C _%ac—l - %ac 10ac—1 + 10ac _%ac 1 %ac
112ac—1 + 112a0 %ac—l \2/_06@c 112ac 1+ iac
which simplifies to
3
NI /3
a
_an 3
Mo=—| 1 2 —\@
_./3 _./3 6
2 2 5

when a(z) is constant.
Element load vector

As done for the linear piecewise approximation,

| venwa = 5 [vieowo

where
1 Ny
wo= [v | bt
-1
N
and

b(l’) ~ bc—lN—l(g) + chl(g)a 5 € [_1? 1]

46

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)

Simplifying (2.92) gives the element load vector as

2bc—l + bc
he
W= _\/g(bc—l +b) (2.94)
bc—l + ch

Substituting (2.85),(2.88) and (2.90) into (2.30),we get the linear algebraic system
(M — K)u = w, for all choices of v.,, c=1/2,1,3/2,---FE —1 (2.95)
Assembly procedure

Example 5. The assembly procedure for K, M and w for the quadratic hierarchical approximation

follows the same pattern as for the Lagrange approximations. The condensed forms of K, M and

W are
1
e—1 e— 3 €
1 1 0 -1 e—1
K; = 7 0 9 0l e % (2.96)
—1 0 1 e
e—1 e — % e
[Yot + $a. —%ae_l — %ae Sle1 + a. 1e—-1
ae -k (2.97)
c T 35 V6 V6 1 1 V6 V6 1 .
3 | 750 Ge—1 — 3 e 1g%e—1 T 75 —3pde—1 — H5le| €= 3
L %ae—l + 1_12ae _%ae—l - %ae %ae—l + %ae i €
Qbe_l + be e—1
1 3 1
weo L — 3 b0 | e} (2.98)

be—l + Qbe (&

47

respectively. With three nodes on the interval [0, 1], we get the global stiffness, mass and load vector

matrices as

o 3 1 2 2 33
(1 0 -1 0 0 0 0]o0
o 2 0 0 0 0 0]3
-1 0 141 0 -1 0 0]1
K=lo 0o 0o 2 o o of2" (2.99)
0 0 -1 0 1+1 0 —1{2
o0 0 0 0 2 0]3
L0 0 0 0 -1 0 1]3
0o+ 1 2 2 23
(a b ¢ 0 0 0 0]0
b d e 0 0 0 0] 3
c e f g h 0 0|1
M=l | ,
3]0 0 g « 5 0 0] 357
0O 0 h 53 k I m|2
0O 00 0 [o p g
o0 0 0m p s]3
and
N T
SVECEISIE
b + 2by + 2by + by | 1
W — 1_18 —\/§<b1 +h) |3 (2.100)
by + 2by + 2by + by | 2
oty |3
by + 2bs 3

48

respectively.

where
1 1 V6 V6 1 1 1 1
a= 7% + 5% b= T50 %0 T 3p® €= 134 + D d= 100 + o™
e V6 V6 f L + L + L + L V6 V6
=——=a)— —-a =——a =a —a —a =———a1 — -
300 20" RO TN TR 9 20+ 30 7
1 1 1 1 V6 V6
h: — e .: — _) = —-— —_ —
M TR T g T 0 I T T T g™
1 1 1 1 V6 V6 1 1
= — — — e l: _— _ = — e
k‘ 12a1+ 4a2+ 4a2+ 12&3, 30 a9 20 as, m 12a2+ 12&3
L1 V6 V6 Qs Lo o]
CT M T PT T T g MG T T g

2.4 The Bvp4c

Matlab has a built-in routine which was proposed by Kierzenka and Shampine [41] called bvp4c.

This Matlab program is used to solve a system of n first order differential equations with two-point

boundary conditions. It can also be used to solve multipoint boundary problems but in this work,

only the solution of two-point BVPs is discussed. The numerical method used by Matlab’s bvp4c

is the finite difference method which makes use of Lobatto formula [42] which is a collocation for-

mula and collocation polynomial that provides a continuous solution that is fourth-order accurate

uniformly in a closed interval. To solve any BVP with Matlab bvp4c, it should be of first order and

of the form

u' =f(z,u,p), v € [a,b

49

together with two point boundary conditions
bc(ua,ub,p) = 0. (2.102)

where the scalar variable x is the independent variable and the dependent vector variable

el 14 ()]
IR Z1C0] R 1C0
L, (2) | [(2) |

The columns vectors ua and ub corresponding to u(a) and u(b) respectively, are the values of the
column vector u evaluated at both end-points a and b. The vector p which contains unknown
parameters is optional. Matlab’s bvp4c function solves the boundary value problem and returns

the solution in the structure we will name BVPsol with the syntax given by

BVPsol = bvp4c(@odebratu,@bcbratu,initialsol);

Here bvp4c takes the following arguments:

1. @odebratu - a function handle which allows us to invoke the function odebratu from any part
of the program. It is the one used for evaluating the differential equation and it can take the

form

dudzr = odebratu(z, u)

2. @bcbratu - a function handle like @odebratu. The function bcbratu is for computing the
residual in the boundary conditions, that is, a measure of how much the boundary conditions

are not satisfied. bcbratu returns a column vector and it takes the form

bcres = bebratu(ua, ub)

50

3. initialsol - a structure containing the initial guess to the solution which is created using
the function bvpinit. initialsol has the first field x of ordered nodes where the endpoints

are defined as
a = initialsol.x(1) and b = initialsol.(end).

The other field u contains the initial guess where initialsol.u(:,i) is an initial guess of

u(z(7)) at node initialsol.x(i). The function initialsol is used with syntax
initialsol=bvpinit(xmesh,uinit);

where xmesh is the mesh formed on the problem domain [a,b] and uinit is the initial guess

of the solution.

The value of the solution u at each mesh point xmesh can be evaluated using the function deval

as follows

uatx=deval (BVPsol, xmesh)

2.4.1 Application to the Bratu problem

To transform Bratu’s problem (1.1) to a linear differential equation let u;(x) = wu(x) and also

us(zx) = dz;(x)j to get
X
e 2.1
T A€) (2.103a)

51

2.5 The Spectral Collocation Method

To solve a differential problem on a physical domain [a, b] on the x-axis, it is convenient to transform

[a, b] to the interval [—1, 1] on the &-axis using the transformation

1-— 1
r = 2§a—|— _;fb, —1<¢e<1 (2.104)
See Figure 2.7
‘ —T : — &
a b -1 1

Figure 2.7: Linear transformation

Like the finite element method, some discretization
—1=¢(p<ép1<...<&=1
is made where
e
c = - | :0,1,2,...,E
& = cos <E> c

are called Chebyshev collocation points. These points are not equally spaced on [—1,1] and can
be viewed as the projection on [—1, 1] of equispaced points on the upper half of the unit circle [21]

shown in Figure 2.8

52

Figure 2.8: Chebyshev points

On [—1, 1], the problem variable approximation is

u(€) = ueLe(€) (2.105)

where u, = u(&.) and

L) = 1]

§— &
k:(],k7é6 gC - é-k
is the Lagrange polynomial of degree E associated with node £ = £.. When E = 1, equation (2.105)

becomes

u(€) = uoLo(§) +urLi(§) (2.106)

where
Lof€) = 15 and L) = 15 (2.107)

Approximation of derivatives at collocation points gives

1 1 1 1
u'({o) = 5“0 - §U1 and U,(Sl) = §UO - §u1

or

where u = [uy u;]” and

D —

NIR N
NI N

is the so-called Chebyshev differentiation matrix when E = 1. Similarly, when E = 2

u(§) = uoLo(§) + w1 L1 (§) + uala(§)

where
fE+1 -1
Lo©) = Y L =1 and L= Y
Approximation of derivatives at collocation points gives
3 1
u'(&) = o — 2uy + U2
1 1
u'(§) = §Uo - §U2
3
u'(&) = 5o + 2uy — U2
or
u = Du
where u = [ug u; us]? and
b2
p=|}t 0 4
1 3
—3 2 3

(2.108)

(2.109)

is the Chebyshev differentiation matrix when £ = 2. Generally, for any £ = 1,2,3,..., u' = Du

where D is given by the following theorem.

Theorem 1. For each E > 1, let the rows and columns of the (£ + 1) x (E + 1) Chebyshev

differentiation matrix D be indexed from 0 to E. The entries of this matrix are

Do 2E% +1 2E%+1
00 — 6) EFEE — 6
&

Dcc = 3 _1727 7E_1
21—¢2) ©
. -1 c+1

p, = %1 e de=1,2.. E—1
ai(&c_£Z>

where

[

Since u’ = Du, then

Generally,
dPu
@~
for each p=1,2,.... Evaluating a given differential equation
d™u d" du
an(f)@ + an—l(ﬁ)@ +...+ Oll(ﬁ)al—5 + ao(§) = f(§)
at each &y, &, ..., &N gives the system
d™u d" tu du
Ayb—+ A 14— +.. .+ A — +Agu="~
d§"+ 1d€"_1+ + 1d§+ ou
of n'" order differential equations where
anp, (50)
an(gl)

An = diag{an(£0)v cee 7an(£E)} =

an(§p)

is an (£ + 1) x (£ + 1) diagonal matrix,

u= [u(&]) u(&y) ... u(ﬁE)]T and f=f(&) f(&) ... f(gE)]T

Using Chebyshev differentiation equation, (2.111) is replaced by
(A, D"+ A, D" '+ ...+ AD+ A)u=f

55

(2.110)

(2.111)

(2.112)

or in short
Au=f (2.113)
where
A=A,D"+ A, D" '+ ...+ AD+ A4

Suppose differential equation (2.110) is subject to boundary conditions u(—1) = «a and u(1) = S,

then we include them into equation (2.113) as follows

A u = f (2.114)
0 ... 0 1 Ug «

Since the first equation is for determining wy which is known from boundary condition u(1) = S
we do not need first equation so we delete it and replace with uy = 8. Similarly, last equation is
replaced with ug = a. Once g, uq, ... ,up are known upon solving linear system (2.114), equation

(2.105) determines the value of u at any £ € [—1,1].

2.5.1 Application to the Bratu’s problem

So far (1.1) has been transformed by quasi-linearization to

Wl (@) AP (@) = e O uy(2) = 1), 5 =0,1,2,... (2.1152)

Us+1(0) = us41(1) =0 (2.115b)
which upon using Chebyshev differentiation is replaced by

D*u,,1 +Bu,, =r,, s=0,1,2,... (2.116)

56

or

Augi=r1s, s=0,1,2,... (2.117a)
us11(0) = ugp1(1) =0 (2.117b)
where
B = diag{\e®®@},
A = D?’+B,
rg(us) = Ae™o(us —1i)
i= [1 1 ... 1] ! and A o F' denotes the Hadamard product, a matrix of the same size as A and

I whose elements are given by
[A o Flij = [A];Fli;

Hence o denotes elementwise multiplication for matrices. Before we solve the linear system (2.117a)

we include boundary conditions (2.117b) as follows

1 0 ... 0 0 0
A Ust1 = I's
0 ... 0 1 0 0
In order to generate subsequent approximations ugy 1, s =1,2,..., F/, we choose the initial approx-
imation
1'0(1 — ZL’Q)
(1 —2
ug = i _ 1) (2.118)
ZL’E(l — ZL’E)

so that boundary conditions (2.117b) are satisfied. Hence, successive approximations are
_p-1
Us41 = A r

for each s =0, 1

57

Chapter 3

Results and discussion

3.1 Introduction

In this chapter we present the results of the finite element solutions, Matlab bvp4c solution as well

as the Chebyshev spectral collocation method solution of the Bratu’s problem and their discussion.

3.2 Finite element solution using piecewise linear Lagrange

polynomials as basis functions (LFEM)

The linear system (2.47) is solved using the Matlab code given by Program 1 in Appendix A for
E =20 and A = 1. A comparison between the FE solution using piecewise linear Lagrange basis

functions and the exact solution (1.2) is done in Figure 3.1

58

0.16 T T
O numerical
exact

0.14 9

0.06 - 9

0.04 9

0.02- 9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 3.1: FE solution using piecewise linear Lagrange basis functions.

A closer comparison of the results shown in Figure 3.1 is done in Table 3.1 and it shows that the
finite element solution using piecewise linear Lagrange basis functions gives a good approximation
to the exact solution with values agreeing up to 4 decimal places with a maximum absolute error

0.5 x 1074,

59

x exact solution u(r) LFEM absolute error(x107%)
0.1 0.04985 0.04983 0.2
0.2 0.08919 0.08916 0.3
0.3 0.11761 0.11757 0.4
0.4 0.13479 0.13474 0.5
0.5 0.14054 0.14049 0.5
0.6 0.13479 0.13474 0.5
0.7 0.11761 0.11757 0.4
0.8 0.08919 0.08916 0.3
0.9 0.04985 0.04982 0.3

Table 3.1: Results for FEM solution with linear Lagrange basis

3.3 Finite element solution using piecewise quadratic La-

grange polynomials as basis functions (QFEM)

The Matlab code for the solution of (2.75) with piecewise quadratic lagrange basis functions is
given in Program 2 in Appendix A. The comparison of the results of the exact solution against
the FE solution using piecewise quadratic Lagrange basis functions is shown in Figure 3.2 and
Table 3.2. The results from Table 3.2 show a good approximation of the exact solution by the FE
solution using quadratic lagrange basis functions with values agreeing up to 3 decimal places. The
comparisons made in Table 3.1 and Table 3.2 show that results for LFEM with a maximum absolute

error 0.5 x 10~ are closer to the exact solution than those QFEM with a maximum absolute error

0.23 x 1073,

60

0.16 T T T

O quadratic fem solution
exact solution

0.14- bl

0.12f .

0.1f .
= oosk 4
Z 0.08

0.06 - h

0.02- h

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.2: FE solution using piecewise quadratic Lagrange basis functions.

A closer comparison is presented in Table 3.2

x exact solution u(z) QFEM absolute error(x1073)

0.1 0.04985 0.04979 0.06
0.2 0.08919 0.08909 0.10
0.3 0.11761 0.11746 0.15
0.4 0.13479 0.13460 0.19
0.5 0.14054 0.14033 0.21
0.6 0.13479 0.13457 0.22
0.7 0.11761 0.11738 0.23
0.8 0.08919 0.08898 0.21
0.9 0.04985 0.04970 0.15

Table 3.2: Results for FE solution using piecewise quadratic Lagrange basis functions

61

3.4 Finite element solution using quadratic hierarchical ba-

sis functions (QHFEM)

We solved the FE equations given by (2.95) on a mesh of 20 elements with A = 1 using the Matlab

code given in Program 3 to get results with shown in Figure 3.3.

0.16
O numerical
exact

0.14 - B

0.12 B

= L 4
< 0.08

0.06 - B

0.02 B

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.3: FE solution using piecewise quadratic hierarchical basis functions.

Numerical and exact results are in good agreement. A closer comparison is done in Table 3.3.

62

x exact solution u(z) QHFEM absolute error(x1073)

0.1 0.04985 0.04967 0.18
0.2 0.08919 0.08886 0.33
0.3 0.11761 0.11714 0.47
0.4 0.13479 0.13423 0.56
0.5 0.14054 0.13995 0.59
0.6 0.13479 0.13423 0.56
0.7 0.11761 0.11713 0.48
0.8 0.08919 0.08883 0.36
0.9 0.04985 0.04965 0.20

Table 3.3: Results for FE solution using piecewise quadratic hierarchical basis functions

The results in Table 3.3 show that the FE solution using hierarchical basis functions and the
exact solution agree up to 3 decimal places and the solution of the former with maximum error
0.59 x 1073 is less closer to the exact solution as the quadratic FE solution with maximum absolute

error 0.23 x 1073,

3.5 Results from using bvp4c to solve Bratu’s problem

As in the FE solution, we solve equation (2.103a) subject to boundary conditions (2.103b) using
Matlab’s bvp4c on a mesh of 20 elements with A = 1 using the Matlab code shown in Program 4
in Appendix A. The results of the comparison between the exact solution and the Matlab bvp4c is

shown in Figure 3.4.

63

0.16 T T
bvp4c solution
O exact solution

0.14 h

012} |
01f |

Z o.08f]
0.06} |
0.04f R

0.02- h

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.4: Matlab bvp4c solution of the Bratu problem.

Generally, there is a good agreement between the exact solution and the bvp4c solution. A close

comparison of the results in Figure 3.4 is done in Table 3.4

64

x exact solution u(xr) bvpdc absolute error(x107%)

0.1 0.04985 0.04984 0.07029
0.2 0.08919 0.08918 0.13436
0.3 0.11761 0.11759 0.18586
0.4 0.13479 0.13477 0.21929
0.5 0.14054 0.14052 0.23088
0.6 0.13479 0.13477 0.21929
0.7 0.11761 0.11759 0.18586
0.8 0.08919 0.08918 0.13436
0.9 0.04985 0.04984 0.07029

Table 3.4: Results for exact solution against bvp4c solution

The results shown in Table 3.4 show that bvp4c solution gives results which are correct to within
4 decimal places of the exact solution. A comparison of the bvp4c, linear FE, quadratic FE and

the hiererchical basis functions solutions is made in Figure 3.5.

65

01

2

Z o008
0.06
0.04

0.02

0.16 T T
O quadratic FE
O linear FE x bvpdc
X bypdc i o1l exact
exact
1 0121
1 01k
1 Z o008}
B 0.06~
1 0.041
1 0.021-
I I I I I I I I I I I I I I I I I
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 0 0.1 0.2 0.4 05 0.6 0.7 0.8 0.9
X X
(a) (b)
0.16 T T
O hierarchical FE
bvpdc
0.14- x exact
0121 1
0.1f 1
Z o008} 1
0.06~ B
0.041 1
0.021- 1
I I I I I I I I I
0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9

Figure 3.5: A comparison of FE solutions and Matlab bvp4c solution

66

A closer comparison of results in Figure 3.5 is made in Table 3.7

X exact bvp4dc LFEM QFEM QHFEM

0.1 0.04985 0.04984 0.04983 0.04979 0.04969
0.2 0.08919 0.08918 0.08916 0.08909 0.08889
0.3 0.11761 0.11759 0.11757 0.11746 0.11717
0.4 0.13479 0.13477 0.13474 0.13460 0.13426
0.5 0.14054 0.14052 0.14049 0.14033 0.13995
0.6 0.13479 0.13477 0.13474 0.13457 0.13420
0.7 0.11761 0.11759 0.11757 0.11738 0.11707
0.8 0.08919 0.08918 0.08916 0.08898 0.08875
0.9 0.04985 0.04984 0.04983 0.04970 0.04957

Table 3.5: Results for FE solutions against bvp4c solution

According to results from Table 3.5 it can be deduced that the four solutions can be arranged

in order of decreasing accuracy as follows:

1. bvpdc
2. linear FE
3. quadratic FE

4. hierarchical basis functions solution.

The results of the comparison between the number of iterations and amount of time required to

achieve specified accuracy for a given number of elements is done in Table 3.6.

67

No. of elements(E) No. of iterations Decimal places Runtime(s)

LFEM
20 70 4 0.11394
40 19 4 0.03651
500 1728 6 81.9406
QFEM
20 5 4 0.005715
40 4 4 0.018514
500 35 6 7.209471
QHFEM
20 3 4 0.013925
40 3 4 0.024309
500 25 6 4.805692

Table 3.6: Comparison of iteration number against runtime for LFEM, QFEM and QHFEM

Results from Table 3.6 shows that piecewise linear approximation is computationally intensive
since it requires too large a mesh E = 500 and too many iterations and runtime to achieve accuracy
of up to 6 decimal places. Increasing the polynomials from linear to quadratic and then hierarchical

reduces the number of iterations and runtime to achieve the required degree of accuracy.

68

3.6 Solution using Chebyshev spectral collocation method

(CSCM)

Solution of problem (2.117a) using the Chebyshev spectral collocation method on a mesh of 20
element with A = 1 was done using the Matlab code given as Program 5 in Appendix A. A
comparison of the Chebyshev spectral collocation solution, the exact solution and Matlab bvpéc
solution is done in Figure 3.6. They look the same and a closer comparison of the results of the

CSCM solution and exact solution is done in Table 3.7

0.16

T T
O bvp4c solution
CSCM solution
x exact solution ||

012} |
01f |

Z o.08f]
0.06} |
0.04f R

0.02- h

Figure 3.6: Comparison of bvp4c and CSCM solutions with the exact solution

69

x exact solution u(z) Matlab bvpdc ¢ CSCM solution u(§)
0.1 0.049846791245413 0.049839767018395 -0.8 0.049846791245413
0.2 0.089189934628823 0.089176512344122 -0.6 0.089189934628823
0.3 0.117609095767941 0.117590532668624 -0.4 0.117609095767941
0.4 0.134790253884190 0.134768355546353 -0.2 0.134790253884189
0.5 0.140539214400472 0.140516160101251 0O 0.140539214400472
0.6 0.134790253884190 0.134768355546353 0.2 0.134790253884190
0.7 0.117609095767941 0.117590532668624 0.4 0.117609095767941
0.8 0.089189934628823 0.089176512344122 0.6 0.089189934628823
0.9 0.049846791245413 0.049839767018395 0.8 0.049846791245413

Table 3.7: Results of the exact solution against CSCM solution

The results in Table 3.7 show that the CSCM is more accurate than bvp4c with the solutions

agreeing up to 15 decimal places in the former.

70

Chapter 4

Conclusion and future work

In this work the one-dimensional Bratu problem is solved in two steps. First the differential equation

is linearized using quasilinearization, then linearized equation is solved using

e FEM linear and quadratic polynomial basis functions
e Chebyshev spectral collocation method

e Matlab’s bvp4c.

A comparison of the numerical results is made with the exact solution. Generally, there is good
agreement. Results obtained show that the current form of the finite element is not favourable. In
terms of accuracy, the finite element solutions are correct to 4 decimal places of the exact solution
whereas Chebyshev spectral collocation method gave results correct to 13 decimal places easily.
The accuracy of results was found to improve in the order HFEM, QFEM, LFEM and CSCM.
The large mesh size and too many iterations needed to achieve desired accuracy make the finite

element method using linear lagrange polynomials computationally intensive. This computational

71

complexity could be reduced by improving polynomial degree to quadratic and hierarchical basis
functions. Achieving convergent results and ease of implementation was found to improve in the
order LFEM, QFEM, HFEM and CSCM. Future work could include the use of methods other than

the Garlekin method for constructing the trial space.

72

Appendix A

Computer Code

Program 1

[o)

% pliecewise linear approximation

clear all % start with a clean workspace

E=500; h=1/E; % shall form a mesh on [0,1] with E elements of length h each
Ke=(1/h)x[1 —1; —1 1]; % element stiffness matrix

K=zeros (E+1); M=zeros(E+1l); w=zeros(E+1l,1); % initialize global matrices
x=[0:h:1]"' ;% form uniform mesh on [0, 1]

u=x.*x(1l—x); % initial guess u_.0 of u

lambda=1; % choose constant in a of
%u"_{s+1}+a(u_s(x))u_s(x):b(u_s(x)); s=0,1, ...

ndp=6; tol=eval (sprintf('5e—%d',ndp+l)); % require accuracy to ndp
%$decimal places?

du=1l; % initialize 'distance' between successive u values

[o)

% must begin with du > tol. error checking needed here?????

[}

it=0; % initialize iteration number

73

% begin exact solution

options = optimset('Display', 'iter', '"TolFun',le—12);
tt = fsolve(Q@(tt) tt — sgrt(2xlambda)*cosh(tt/4),t0,options);

tt

tt (1) ;
uex = —2xlog(cosh(0.5% (x—0.5)*tt) /cosh(0.25+tt)) % exact solution
% end exact solution

tic % start stopwatch

while du>=tol % perform iteration as long as desired accuracy
$not yet attained
uold=u; % remember last u
b=lambdaxexp (u) .* (u—1); a=lambda.xexp(u); % b(u_.s(x)) and a(u.s (x))
for e=1:E % assemble global matrices
K([e etl], [e etl])=K([e e+l], [e e+l])+Ke; % stiffness matrix
M([e e+tl], [e et+l])=M([e e+l], [e e+l])+(h/12)*]
3xa(e)+a(et+l) a(e)+ta(e+l)
a(e)+ta(e+l) a(e)+3*xa(e+l)
1; % mass matrix
w([e e+l])=w([e e+l])+(h/6)*]
2*xb(e)+b (e+1)
b(e) +2xb (e+1)

1;% load vector

end
A=M-K; % FE equations are (A(u.s(x)))*u_{s+1}(x)=w(u_s (x))
$where A(u_.s (x))=M(u_.s (x))—K

% include boundary conditions;
AA=A(2:E,2:E); % delete first, last rows of A
ww=w(2:E); % delete first, last columns of w

u=AA\ww; % compute u_{s+1}(x) given u_.s (x)

74

it=it+1l % increment iteration number
u=[0; u; 0]; % u together with boundary values
du=norm(u—uex, inf); % how close 1s current u to exact solution?
fprintf('$10.0f\t %10.6f\n',it,du)

end

toc $ end stopwatch

plot (x,u, 'ro',x,uex, 'b")

legend('numerical', 'exact')

xlabel ("x")

ylabel('u'")

o
°

Program 2

S$FE solution with quadratic Lagrange basis functions.

E=500; h=1/E; % form mesh on [0,1] with E elements of length h each
Ke=(1/(3*h))*([7 —8 1; —8 16 —8; 1 —8 7]1); % element stiffness matrix
K=zeros (2«E+1) ;M=zeros (2xE+1); w=zeros(2xE+1,1);%initialize global matrices
x=[0:h/2:11"'; % form uniform mesh on [0, 1]

u=x.*(l—x); % initial guess u_0 of u for gquadratic fem

lambda=1; % choose constant in a of u''_{s+1l}+a(u_s(x))u.s (x)=b(u_s(x))

% for s=0,1, ...

ndp=6; tol=eval (sprintf('5e—%d',ndp+l));%accuracy to ndp decimal places?

[}

du=1l; % initialize 'distance' between successive u values

)

% begin exact solution

options = optimset('Display', 'iter', '"TolFun',le—12);

tt = fsolve(@(tt) tt — sgrt(2xlambda)*cosh(tt/4),t0,options);

75

tt = tt(1);
$x=x(1l:2:end);

uex = —2x1log(cosh(0.5*(x—0.5)*tt)/cosh(0.25*xtt)); % exact solution

[}
©

o

tic % start stopwatch

while du>=tol %perform iteration as long as desired accuracy not attained
uold=u; % remember last u

$coefficients for quadratic basis fem

a=lambda.*xexp (u) ;

b=lambda. *exp (u) .* (u—1);

o

for e=1:E % assemble global matrices
K([2xe—1 2%e 2xe+l], [2+xe—1 2%e 2xe+l])=K([2+xe—1 2%e 2xe+l1l], [

2«e—1 2xe 2+e+l])+Ke; % stiffness matrix

o\°

m=(13/140)*a(e)+(1/21)*a(e+l)—(1/140) *a(e+2);
n=(1/21)*a(e)+(4/105)*a(e+l)—(2/105) xa (e+2) ;

o=(—1/140)*a(e)+(—2/105) *xa(e+1)—(1/140) *a (e+2) ;
g=(4/105)xa(e)+(16/35) xa(e+l)+(4/105) xa (e+2);
r=(—2/105)*a(e)+(4/105)*a(e+l)+(1/21) xa(e+2);

s=(—1/140)xa(e)+(1/21)xa(e+1l)+(13/140) xa (e+2) ;

M([2%xe—1 2*xe 2xe+l], [2%e—1 2%xe 2xe+1])=M(]|

2+xe—1 2xe 2+e+l], [2+e—1 2xe 2%e+1l])+(h)*[

[mMm n o
n g r
o r s]

]1;% mass matrix

76

wW([2%e—1 2xe 2*xe+l])=w([2*e—1 2xe 2xe+1])+ (h/30)*][
4xb (e)+2xb (e+l) —b (e+2)
2xb (e)+16xb(e+l)+2*b (e+2)
—b(e)+2xb(e+l)+4+xb(e+2)

1;% load vector

end

o
°

$solution for quadratic fem

A=M-K; % FE equations are (A(u.s(x)))*u_{s+1}(x)=w(u_s(x)) where
$A(u_s (x))=M(u_s (x))—K

o

% include boundary conditions;
AA=A(2:2xE,2:2*E); % delete first, last rows of A
ww=w (2:2*E); % delete first, last columns of w
u=AA\ww; % compute u_{s+1}(x) given u_.s (x)
%$error = norm(u—uex, inf)
it=it+1l % increment iteration number
u=[0; u; 0]; % u together with boundary values
du=norm(u—uold,inf); % how close is current u to previous u?
fprintf('$10.0f\t %10.6f\n',it,du)
end
toc % end stopwatch
format long
Su=u(l:2:end);
plot (x,u, 'ro',x,uex, 'b")
legend('quadratic fem solution', 'exact solution')
xlabel('x")
ylabel ('u(x)")

$title('Quadratic Lagrange FE solution ')

o
°

7

Program 3

o

% piecewise quadratic hierarchical approximation

% clear all % start with a clean workspace

E=500; h=1/E; % shall form a mesh on [0,1] with E elements of length h each
Ke=(1l/h)*«([1 0 —=1; 0 2 0; —1 0 1 1); % element stiffness matrix

% initialize global matrices

K=zeros (2+xE+1) ;M=zeros (2+xE+1); w=zeros (2+xE+1,1);

x=(0:h/2:1)"';% form uniform mesh on [0,1]

[}

u=x.*(1l—x); % initial guess u_.0 of u
% choose constant in a of u''_{s+l}+a(u_s(x))u.s(x)=b(u_s(x)); s=0,1,...
lambda=1;
% require accuracy to ndp decimal places?
ndp=6; tol=eval (sprintf('5e—%d',ndp+1));
du=1l; % initialize 'distance' between successive u values
% must begin with du > tol. error checking needed here?????
it=0; % initialize iteration number

% begin exact solution

options = optimset('Display', 'iter', '"TolFun',le—12);

tt = fsolve(@(tt) tt — sgrt(2xlambda)*cosh(tt/4),t0,options);

tt = tt(1);

x=x(1:2:end);

uex = —2xlog(cosh(0.5% (x—0.5)*tt) /cosh(0.25*tt));% exact solution

[}

% end exact solution

[o)

tic % start stopwatch
% perform iteration as long as desired accuracy not yet attained
while du>=tol

uold=u; % remember last u

78

a=lambdax*exp (u) ;

b=lambda*xexp(u) .x (u—1); % b(u.s(x)) and a(u-s(x))

for e=1:E % assemble global matrices

K([2xe—1 2+e 2xe+l], [2+xe—1 2+e 2xe+l])=K([2xe—1 2+e 2xe+1], [

2«e—1 2xe 2+e+l])+Ke; % stiffness matrix

[}
©

Sexpressions for mass matrix elements
m=(1l/4)*a(e)+(1/12)xa(e+l);

n=(—sqrt (6) /20) »a(e)—(sqrt (6) /30) *xa (e+l);
o=(1/12)*a(e)+(1/12)~a(e+l);
g=(1/10)*a(e)+(1/10) xa(e+l);

r=(—sqrt (6) /30) xa(e)—(sqrt (6) /20) xa (e+l) ;
u=(1/12)*a(e)+(1/4)*a(e+l);

o
°

M([2%xe—1 2*xe 2xe+l], [2%e—1 2%xe 2xe+1])=M(]|

2+xe—1 2xe 2+e+l], [2+e—1 2xe 2%e+1l])+(h)*[

m n o
n gq r
o r u

1;% mass matrix
w([2+xe—1 2xe 2+et+l])=w([2%e—1 2xe 2xe+l])+(h/6) x|
2xb (e)+tb (e+l)
(—sqrt (3/2)) (b (e)+b(e+l))
b(e)+2xb(e+l)
1;% load vector
end
$ FE equations are (A(u.s(x)))+u_{s+1}(x)=w(u.s (x))
Swhere A(u.s (x))=M(u.s (x))—K
A=M—K;

% include boundary conditions;

79

AA=A(2:2xE,2:2*E); % delete first, last rows of A
ww=w (2:2*E); % delete first, last columns of w
u=AA\ww; % compute u_{s+1}(x) given u_s (x)
it=it+l % increment iteration number
format long
u=[0; u; 0]; % u together with boundary values
du=norm(u—uold,inf); % how close is current u to previous u?
$fprintf('%10.0£\t %10.6f\t %10.6f\n',it,u(E/2),uex(E/2))
$du=norm(u—uex,inf) % how close 1is current u to exact solution?
fprintf('$10.0£\t %10.6f\n',it,du)

end

$Serror=u—uex;

toc $ end stopwatch

u=u(l:2:end);

plot(x,u, 'ro',x,uex, 'b")

legend ('numerical', 'exact'")

xlabel ('x")

ylabel ('u(x)")

$title('FE solution with quadratic hierarchical basis functions')

[}
°

Program 4

$Bratu type u'' (x)+exp(u(x))=0 solution using matlab bvpic
function bvpBratu %$function definition

lambda=1;% using the value lambda=1

E=20; $number of elements

h=1/E; %1lenght of each element

solinit=bvpinit ([0:h:1],[—1 0]);% initial guess of the solution

80

BVPsol=bvpic (@twoode, @twobc, solinit);%solving the differential equation
xmesh=[0:h:1];% forming a mesh of 20 elements

uatx=deval (BVPsol, xmesh) ;% evaluating the solution at mesh points
s=uatx (1, :);

o
0

%$exact solution

t0=1;

tt fsolve(@(tt) tt — sqgrt(2+«lambda)*cosh(tt/4),t0);
tt = tt(1);
uex = —2x1log(cosh(0.5* (xmesh—0.5)*tt) /cosh(0.25%tt));

o
°

plot (xmesh,uatx(1l,:),'r',xmesh,uex, 'o")
xlabel ("x")

ylabel ('u(x)")

legend('bvp4c solution', 'exact solution')
Stitle('bvp4c solution of Bratu problem')

end

o
°

function dudx=twoode (xmesh, uatx)
%$evaluating the differential equation
dudx=[uatx(2);—exp(uatx(1l))];

end

<)
©

function res = twobc (uatxa,uatxb)
$combuting residues in the boundary conditions
res=[uatxa(l); uatxb(l)];

end

<)
©

Program 5

81

function bvpCheb%function definition

E =20;h=1/E;% shall form a mesh on [—1,1] with E elements of length h each

[DifMatrx , x] = cheb(E);%computing differentiation matrix
xmesh=[—1:h:1];% form a mesh on [—1,1]

D2 = DifMatrx"2; D2 = D2(2:E,2:E);%applying the boundary condition
u = xXx.*x(l—x);%initial guess of the solution

u=u(2:E); %applying boundar conditions

du = 1; it = 0;%initialise iteration number to zero

D21=D2+diag(exp(u)); %equation in terms of differentiation matrices

tic%start stopwatch
while du > le—4 % fixed-—point iteration
fl=exp(u) .x (u—1);

f=exp(u)/4;

unew = —D2\f;

du = norm(unew—u, inf);
u = unew; it = it+1;
end

toc%stop stopwatch
u = [0;u;0];%solution u(x)
format long

uu = polyval (polyfit(x,u,E),xmesh);

[o)
o

$bvp4dc solution

initialsol=bvpinit(—1:h:1,[—1 1]); % initial guess
BVPsol=bvpic (Qodebratu, @bcbratu,initialsol); % solving the d.e
uatx=deval (BVPsol, xmesh) ; $evaluating solution at mesh points

s=uatx (1, :);

[o)
o

% begin exact solution

82

xmesh=[0:h:1];

lambda=1;

t0 = 1;

options = optimset('Display', 'iter', '"TolFun',le—12);

tt = fsolve(@(tt) tt — sgrt(2xlambda)*cosh(tt/4),t0,options);

tt

tt (1),
uex = —2x1log(cosh(0.5* (xmesh—0.5)*tt) /cosh(0.25*tt)); % exact solution

% end exact solution

[}
©

[o)

% plotting the solution

s=uatx(1l, :);

s=s(1l:2:end);

uu=uu (l:2:end);

plot (xmesh,s, 'ro',xmesh,uu, xmesh, uex, 'x")

xlabel (' x")

ylabel ('u(x)")

legend('bvp4c solution', 'CSCM solution', 'exact solution')
$title('bvp4dc,exact and CSCM solution')

end

function dudx = odebratu(xmesh, uatx)

$evaluate differential equation for different coefficients a(x)
a=1/4;

dudx = [uatx(2);

—axexp(uatx(1l))1;

end

function [bcres] = bcbratu(uatxa, uatxb)

% compute residuals in boundary conditions

bcres= [uatxa(l);

83

uatxb (1) 1;

end

el

84

Appendix B

Nomenclature
Qe = physical domain associated with element e
c = number of edges
T._1 = vertex associated with edge ¢ — 1
T, 1 = vertex associated with edge ¢ — :
Te = vertex associated with edge c
E = number of elements
u = exact solution
v = test/weight function
U = trial solution
\%4 = approximation of the weight function
¢.—1 = basis function associted with node ¢ — 1
O, 1= basis function associted with node ¢ — %
Oe = basis function associted with node ¢
N._1 = element shape function associted with node ¢ — 1

85

element shape function associted with node ¢ — %

element shape function associted with node ¢
canonoical problem domain

element stiffness matrix

element mass matrix

element load vector

nodal value associated with node x,

Young’s modulus

resultant force (V)

length (m)

cross sectional area (m?)

distributed force (N)

86

References

[1] Buckmire, R: Application of a Mickens finite-difference scheme to the cylindrical Bratu-

Gelfand problem. Numer. Methods Partial Differ. Equ. 20(3), 327-337 (2004)

[2] Mounim, AS, de Dormale, BM: From the fitting techniques to accurate schemes for the
Liouville-Bratu-Gelfand problem. Numer. Methods Partial Differ. Equ. 22(4), 761-775 (2006)

[3] Li, S, Liao, SJ: Analytic approach to solve multiple solutions of a strongly nonlinear problem.

Appl. Math. Comput. 169, 854-865 (2005)

[4] G. Adomian, A review of the decomposition method and some recent results for nonlinear

equations, Computers & Mathematics with Applications, vol. 21, no. 5, pp. 101127, 1991.

[5] G. Adomian, Solving frontier problems modelled by nonlinear partial differential equations,

Computers & Mathematics with Applications, vol. 22, no. 8, pp. 9194, 1991.

[6] Aregbesola, Y. Numerical solution of Bratu problem using the method of weighted residual,

Electronic Journal of Southern African Mathematical Sciences Association 3 (01), 17, 2003.

[7] Ascher, U.M., Matheij, R. and Russell, R.D. Numerical solution of boundary value problems
for ordinary differential equations (SIAM, Philadelphia, PA, 1995)

[8] Caglara, H, Caglarb, N, zer, M: B-spline method for solving Bratus problem. Int. J. Comput.
Math. 87(8), 1885-1891 (2010)

87

[9]

[15]

[16]

[18]

Hassan, H. N., Semary, M. S. Analytic approximate solution for the Bratus problem
by optimal homotopy analysis method. Communications in Numerical Analysis, 2013.

doi.org/10.5899,/2013 /cna-00139.

Ascher, U.M., Matheij, R. and Russell, R.D. Numerical solution of boundary value problems
for ordinary differential equations (STAM, Philadelphia, PA, 1995).

Boyd, J.P. An analytical and numerical study of the two-dimensional Bratu equation, J.Scien.

Computing 1 (2), 183206, 1986.

Boyd, J. P. Chebyshev polynomial expansions for simultaneous approximation of two
branches of a function with application to the one-dimensional Bratu equation, Appl. Math.

Comput. 142, 189200, 2003.

R.E. Bellman, R.E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems,

Elsevier Publishing Company, New York, 1965.

V. Lakshmikantham, An extension of the method of quasilinearization, J. Optim. Theory

Appl., 82 (1994), 315-321.

David V. Hutton. Fundamentals Of Finite Element Analysis, The McGraw-Hill compa-
nies,New York,2004, page 1.

Courant R. Variational methods for the solution of problems of equilibrium and vibrations.

Bulletin of the American Mathematical Society, 1943, Vol. 49, P. 1-23.

Clough R. W. The finite element method in plane stress analysis. Proc. American Society of
Civil Engineers (2nd Conference on Electronic Computation, Pitsburg, Pennsylvania), 1960,

Vol. 23, P. 345-378.

Argyris J. H. Energy theorems and structural analysis. Aircraft Engineering, 1954, Vol. 26,
Part 1 (Oct. Nov.), 1955, Vol. 27, Part 2 (Feb. May).

88

[19]

[20]

23]

[24]

[30]

Turner M. J., Clough R. W., Martin H. C. and Topp L. J. Stiffness and deflection analysis
of complex structures. Journal of Aeronautical Science, 1956, Vol. 23, No. 9, P. 805-824.

Hrennikov A. Solution of problems in elasticity by the frame work method. Journal of Applied
Mechanics, 1941, Vol. 8, P. 169-175.

Trefethen, L. N., Spectral Methods in MATLAB, SIAM, Philadelphia, PA,2000.

Canuto, C, Hussaini, M.Y., Quarteroni, A., Zang, T.A., Spectral Methods in Fluid Dynamics,
Springer Verlag, 1987.

Gottlieb, D., Orszag, S.A., Numerical Analysis of Spectral Methods: Theory and Applica-
tions, STAM, 1977.

Gottlieb, D., Hussaini, M.Y., Orszag, S.A., Theory and Applications of Spectral Methods, in
Spectral Methods for Partial Differential Equations, Ed. by R.G. Voigt, D. Gottlieb, M.Y.
Hussaini, STAM-CBMS, P. 1-54, 1984.

Lanczos, C., Applied Analysis, Prentice Hall Inc., Englewood Cliffs, N. J.;1956

Chandrasekhar, S. An Introduction to the Study of Stellar Structure. New York: Dover, pp.
84-182, 1967.

R. J. Sylvester and F. Meyer, Two Point Boundary Problems by Quasilinearization, Journal

of the Society for Industrial and Applied Mathematics, Vol. 13, No. 2 (Jun.,1965), pp. 586-602

Liu, C. "Efficient shooting methods for the second-order ordinary differential equations.”

Computer Modeling in Engineering and Sciences 15.2 (2006): 69.

V.B. Mandelzweig, F. Tabakin, Quasilinearization approach to nonlinear problems in physics

with application to nonlinear ODEs, Computer Physics Comm., 141 (2001), 268-281.

C. Chun, Iterative methods improving Newtons method by the decomposition method, Com-

puters & Mathematics with Applications, vol. 50, no. 1012, pp. 15591568, 2005.

89

[31]

[35]

[36]

[39]

[40]

[41]

Sandile S. Motsa and Precious Sibanda, On Extending the Quasilinearization Method
to Higher Order Convergent Hybrid Schemes Using the Spectral Homotopy Analysis
Method, Journal of Applied Mathematics, vol. 2013, Article ID 879195, 9 pages, 2013.
doi:10.1155/2013 /879195

Vatsala, A. S. ”Monotone iterative technique for singular systems of differential equations.”

Nonlinear Analysis and Applications 109 (1987): 579-582.

Ladde, GS, Lakshmikantham, V, Vatsala, AS: Monotone Iterative Techniques for Nonlinear
Differential Equations.Pitman, Boston (1985)

Pao, C. V. Review: G. S. Ladde, V. Lakshmikantham, and A. S. Vatsala, Monotone iterative
techniques for nonlinear differential equations . Bulletin (New Series) of the American Math-

ematical Society 18 (1988), no. 1, 65—67. http://projecteuclid.org/euclid.bams/1183554440

Bellman, Richard Ernest. Perturbation techniques in mathematics, engineering and physics.

Courier Dover Publications, 2003.

R. Kalaba, On nonlinear differential equations, the maximum operation and monotone con-

vergence, J. Math. Mech. 8 1959) 519.
R.G. Bartle, D.R. Sherbert, (2000) Introduction to Real Analysis 3ed. John Wiley & Sons.

Agarwal et al.: Method of quasilinearization for a nonlocal singular boundary value problem

in weighted spaces. Boundary Value Problems 2013, 2013:261.

Henwood, D., and Bonet, J. (1996). Finite elements: A gentle introduction. Houndmills,
England: MacMillan.

B. Szabg and 1. Babuska. Finite Element Analysis. John Wiley and Sons, New York, 1991, page
38.

J. Kierzenka and L. F. Shampine, A BVP solver that controls residual and error, Journal of

Numerical Analysis, Industrial and Applied Mathematics, vol. 3, no. 1-2, pp. 2741, 2008.

90

[42]

[51]

Gonzlez Pinto, S., S. Prez Rodrguez, and J. I. Montijano Torcal. ”On the numerical solution
of stiff IVPs by Lobatto IIIA Runge-Kutta methods.” Journal of computational and applied
mathematics 82.1 (1997): 129-148.

Clenshaw, C. W. 1962. Chebyshev series for mathematical functions. National Physical Lab-
oratory Mathematical Tables, Volume 5, H.M.S.O.,London, 1962.

Parand, Kourosh, and Mehdi Shahini. ”Rational Chebyshev collocation method for solving

nonlinear ordinary differential equations of Lane-Emden type.”

Chen, Hsin-Chu, T. L. Horng, and Y. H. Yang. ”Reflexive decompositions for solving Pois-
son equation by Chebyshev pseudospectral method.” Proceedings of Neural, Parallel, and

Scientific Computations 4 (2010): 98-103.

Bender, C.M., Milton, K.A., Pinsky, S.S. and Simmons Jr. L.M., A new perturbative ap-
proach to nonlinear problems, J. Math. Phys., 30 (1989) 1447-55.

Shawagfeh, N.T., Nonperturbative approximate solution for Lane-Emden equation, J. Math.

Phys., 34 (1993) 4364-69.

Mandelzweig V.B. and Tabakin F., Quasilinearization approach to nonlinear problems in

physics with application to nonlinear ODEs, Comput. Phys. Commun., 141 (2001) 268-281.

Wazwaz, A.M., A new algorithm for solving differential equations of Lane-Emden type, Appl.
Math. Comput., 118 (2001) 287-310.

Wei, Yunxia, and Yanping Chen. ”Convergence analysis of the spectral methods for weakly
singular Volterra integro-differential equations with smooth solutions.” Advances in Applied

Mathematics and Mechanics 4.1 (2012): 1-20.

Jean-Paul Berrut & Lloyd N. Trefethen (2004). ” Barycentric Lagrange Interpolation”. STAM
Review 46 (3): 501517. doi:10.1137/S0036144502417715.

91

