
FINITE ELEMENT METHOD WITH

QUASI-LINEARIZATION FOR SOLVING BRATU’S

PROBLEM

A thesis submitted to the University of Zimbabwe

in partial fulfillment of the degree of Master of Science

in the Faculty of Science

By

Hillary Muzara

Supervisor: Dr. G. T. Marewo

Department of Mathematics

June 2015



Contents

List of Figures 5

Abstract 6

Declaration 7

1 Introduction 10

1.1 Introduction to problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Overview of the numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Quasi-linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.2 Finite element methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.3 Spectral collocation methods(CSCM) . . . . . . . . . . . . . . . . . . . . . . 13

1



2 Numerical methods 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Spectral quasi-linearization method . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Application to the Bratu problem . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Piecewise linear lagrange finite element solution . . . . . . . . . . . . . . . . 20

2.3.2 Piecewise quadratic Lagrange finite element solution . . . . . . . . . . . . . 35

2.3.3 Finite element solution using hierarchical basis functions . . . . . . . . . . . 43

2.4 The Bvp4c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.1 Application to the Bratu problem . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 The Spectral Collocation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.5.1 Application to the Bratu’s problem . . . . . . . . . . . . . . . . . . . . . . . 56

3 Results and discussion 58

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Finite element solution using piecewise linear Lagrange polynomials as basis functions

(LFEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2



3.3 Finite element solution using piecewise quadratic Lagrange polynomials as basis func-

tions (QFEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Finite element solution using quadratic hierarchical basis functions (QHFEM) . . . 62

3.5 Results from using bvp4c to solve Bratu’s problem . . . . . . . . . . . . . . . . . . . 63

3.6 Solution using Chebyshev spectral collocation method (CSCM) . . . . . . . . . . . . 69

4 Conclusion and future work 71

A Computer Code 73

B Nomenclature 85

3



List of Figures

2.1 The hat function φc(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Element shape functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 A general element for quadratic shape functions . . . . . . . . . . . . . . . . . . . . 35

2.4 Quadratic element shape functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Linear transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Hierarchical shape functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Linear transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.8 Chebyshev points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.1 FE solution using piecewise linear Lagrange basis functions. . . . . . . . . . . . . . 59

3.2 FE solution using piecewise quadratic Lagrange basis functions. . . . . . . . . . . . 61

3.3 FE solution using piecewise quadratic hierarchical basis functions. . . . . . . . . . . 62

4



3.4 Matlab bvp4c solution of the Bratu problem. . . . . . . . . . . . . . . . . . . . . . . 64

3.5 A comparison of FE solutions and Matlab bvp4c solution . . . . . . . . . . . . . . 66

3.6 Comparison of bvp4c and CSCM solutions with the exact solution . . . . . . . . . . 69

5



Abstract

This work presented here is the solution of one-dimensional Bratu’s problem. The major aim of

this research is to master the techniques used to solve the Bratu problem. The nonlinear Bratu’s

problem is first linearised using the quasi-linearization method and then solved by the finite element

method using

1. piecewise linear Lagrange polynomials as basis functions

2. piecewise quadratic Lagrange polynomials as basis functions and

3. hierarchical basis functions.

Unlike other basis functions like the trigonometric functions, the three basis functions used in

this research have an advantage that they have small local support, that is, they are only non-

zero on a small portion of the given domain. A comparison of the exact solution and the finite

element solutions using Matlab plots and tabulated results is made. The finite element solutions

are validated using both Matlab’s bvp4c and the Chebyshev spectral collocation method.
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Chapter 1

Introduction

1.1 Introduction to problem

There are many nonlinear phenomena which are of great importance in various fields of science

and engineering. Examples of the nonlinear models that are used in applications include the fuel

ignition model of the thermal combustion theory, the model of thermal reaction process, the Chan-

drasekhar model of the expansion of the universe, questions in geometry and relativity about the

Chandrasekhar model, chemical reaction theory, radiative heat transfer and nanotechnology [1, 2, 3].

Such models are classified as Bratu’s boundary value problem. In one dimensional planar coordi-

nates, Bratu’s model has the form

u′′(x) + λeu(x) = 0, 0 < x < 1 (1.1)

together with boundary conditions u(0) = u(1) = 0 where λ is a constant. For λ > 0, this problem

has an exact solution which from literature [9, 10, 11, 12] is given by

u(x) = −2 ln

(

cosh((x− 1
2
) θ
2
)

cosh( θ
4
)

)

(1.2)
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where θ is a solution of the equation θ =
√
2λ cosh( θ

4
). There exists λc such that Bratu’s problem

has no solution when λ > λc. It has one solution when λ = λc and two solutions when λ < λc where

the critical value λc = 3.513830719 [6, 7] satisfies

1 =
1

4

√

2λc sinh

(

θc
4

)

. (1.3)

In n-dimensional coordinates, Bratu’s model has the form

∆u(x) = −λeu(x), x ∈ D (1.4)

u(x) = 0, x ∈ δD (1.5)

where x = [x1, x2, . . . , xn]
T , ∆ = ( ∂

∂x1

, ∂
∂x2

, . . . , ∂
∂xn

) is the Laplace operator, D ⊂ R
nand δD denotes

the boundary of the problem domain D.

In this work we restrict the Bratu problem only to the one-dimensional case. Much work has

been done by researchers to solve Bratu’s problem. The Adomain decomposition method (ADM)

[4, 5] which approximates the analytical solutions in the form of an infinite power series is an ex-

ample method of solution. Some of the methods which have been used to solve the Bratu problem

include the weighted residual method [6], the shooting method [7] and the Sinc-Garlekin method [8].

In this work we use a combination of the finite element method (FEM) and an iterative method to

find the numerical solution of the Bratu problem. The results obtained are validated using Matlab’s

in-built routine bvp4c and the Chebyshev spectral collocation method.

1.2 Overview of the numerical methods

1.2.1 Quasi-linearization

The quasi-linearization method (QLM) whose origins are in the theory of dynamic programming

was first proposed by Bellman and Kalaba [13]. This method can be viewed as the Newton-Raphson
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method applied to nonlinear differential equations. It is a very powerful method for approximating

solutions of nonlinear differential equations and makes use of the Taylor series expansion of first order

to linearise a nonlinear differential equation. The solution is then approximated as a sequence of the

linear equations. Originally, the method was restricted to twice differentiable and strictly concave

(or convex) functions. However, great work was done by Lakshmikantham [14] who presented the

QLM with the concavity assumption relaxed. This made the QLM applicable to a wider variety of

problems.

1.2.2 Finite element methods

The finite element method (FEM) is a computational technique used to obtain approximate solutions

of boundary value problems (BVPs) in science and engineering [15]. Many engineering phenomena

can be modelled by differential equations together with boundary conditions. In many practical

problems the governing equation and the domain are usually complex making it very difficulty to

come up with the exact solution of the differential equation, hence the need for approximation of

solutions using numerical techniques and digital computations.

The history of the finite element method can be traced back to 1909 when Ritz introduced a

method of obtaining approximate solutions of problems in deformable solids. The method included

the approximation of the energy functional of known functions with unknown coefficients but had

a disadvantage that the functions used had to satisfy the boundary conditions of the problem. The

method of Ritz was improved in 1943 by Courant when he introduced a special type of linear func-

tions defined on triangular regions to approximate solutions of torsion problems [16].

Many years later Ray Clough who introduced the term “finite element method” for the first time

in 1960 in his paper [17] marked the beginning of the finite element method. The FEM spread

widely after 1960 due to the introduction of digital computers. Some other work important in the
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development of FEM include the papers by Argyris [18], Turner [19], Hrennikov [20] and many

others.

When analysing the behaviour or properties of a complex system, it is easy to consider it as an

assemblage of simple elements, then dismantle it and analyse the properties of its elements indi-

vidually. This is exactly the principle used in the finite element method. The dismantling done

in the FEM is the meshing of the physical domain into sub-domains called finite elements. Each

element will have interior and exterior nodes, which are points at which the dependent variables

will be computed explicitly. Exterior nodes are found at the boundary of the finite element and are

used for joining one element to another. The approximate solution will be obtained on the finite

element using the nodal values as unknowns and predetermined interpolation functions. The finite

element equations are formulated in such a way that the values at each exterior node is the same

for the other connecting element hence maintaining continuity.

The basic steps for solving a differential problem using the finite element method are;

1. formulation of the problem in variational form,

2. the finite element dicretization of this formulation and

3. the solution of the resulting finite element equations.

1.2.3 Spectral collocation methods(CSCM)

Spectral methods which became famous in the 1970s are one of the very accurate numerical meth-

ods used to solve ordinary and partial differential equations numerically. Spectral methods can

achieve upto ten digits of accuracy in problems where other numerical methods like the FEM and

finite differences achieve only two or three digits of accuracy [21]. There are mainly three types of
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spectral methods which can be identified as collocation, tau and the Garlekin methods [22, 23, 24]

distinguished by the type of the trial and test functions used. The choice of the spectral method

to use mainly depends on the application. The tau method, discovered by Lanczos [25] is most

suited for problems which are non-periodic with complicated boundary conditions. In the Garlekin

method, the test and trial functions are considered to be the same. In this work we use the colloca-

tion method which is most suited for non-linear problems. The spectral collocation method whose

motivation is the finite difference method is in principle similar to the finite element method (FEM)

due to the use of basis functions. The major difference is that the finite element method uses local

basis functions which have small support, that is, the basis functions are non-zero on small portions

of the problem domain whilst the global basis functions used in spectral collocation method are

non-zero on the entire domain.

The CSCM has been used to solve the Lane-Emden equation [44] to get more accurate results than

those obtained using other methods such as pertubative and nonpertubative techniques [46, 47],

quasilinearisation method [48] and Adomain decomposition method [49]. In this work we intend to

use the CSCM because of its ability to achieve higher accuracy, given the same grid points, than

other methods like the FEM and finite difference methods [45]. It also has excellent error properties

with exponential convergence being the fastest possible [50]. However, the CSCM is more difficult

to code and can result in heavy loss of accuracy for complicated domains.
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Chapter 2

Numerical methods

2.1 Introduction

In this chapter we shall discuss the linearization of equation (1.1) using the quasi-linearisation

method. Also presented are the solutions of equation (1.1) using:

1. finite element method with piecewise linear Lagrange polynomials as basis functions

2. finite element method with piecewise quadratic Lagrange polynomials as basis functions

3. finite element method with hierarchical basis functions

4. Matlab bvp4c and

5. Chebyshev spectral collocation method.
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2.2 Spectral quasi-linearization method

We begin by presenting problems that were solved by other authors using the quasi-linearization

method.

Examples of applications of QLM

Example 1. The Lane-Emden equation given by

u′′(x) +
2

x
u′(x) + um(x) = 0, u(0) = 0, u′(0) = 0, 0 ≤ m ≤ 5 (2.1)

is an equation which occurs in stellar structure [26]. It can be solved analytically for the indices

m = 0, m = 1 and m = 5 but is unsolvable analytically when m = 4. By making the substitution

u = y/x and applying the QLM, Mandelzweig and Tabakin [29], managed to transform the boundary

value problem (2.1) to the problem of constructing a sequence {us} that satisfies

u′′
s+1(x) +m

um−1
s

xm−1
us+1(x) =

m− 1

xm−1
um
s (x), us+1(0) = 0, u′

s+1(0) = 1 (2.2)

where s = 0, 1, 2, . . . and with an initial approximation u0(x) = x, this sequence converges rapidly

to the exact solution.

Example 2. The Thomas-Fermi equation

√
xu′′(x) = u

3

2 (x), u(0) = 1, u(∞) = 0 (2.3)

is widely used in nuclear Physics. This equation is very difficult to solve because u′′(x) = 0 when

u < 0 and also that the solution is very sensitive to the first derivative of the solution at zero.

However, it is shown in [29] that by the QLM the resultant iterative scheme

√
xu′′

s+1(x)−
3

2
u

1

2

s (x)us+1(x) =
1

2
u

3

2

s (x), us+1(0) = 1, us+1(∞) = 0 (2.4)

can be easily solved by specifying the boundary condition at infinity directly.
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There are many other methods which can be used to solve nonlinear differential equations with

the two mostly widely used being the shooting method and the finite difference method [27]. The

shooting method [28] fails if one of the solutions of the differential equations under consideration is

highly unstable. On the other hand, approximating the solution of a nonlinear system of differential

equations using finite difference methods usually results in nonlinear algebraic systems which are

difficult to solve. Other methods of solving nonlinear problems include the monotone iterative tech-

nique [32, 33, 34] and pertubation techniques [35]. Pertubation techniques also provide a powerful

tool of obtaining solutions of nonlinear differential equations but are only appropriate for weakly

nonlinear differential equations due to their strong dependence on some small parameters in the

equations under consideration.

In this work we intend to use the QLM to solve equation (1.1) because it produces a linear it-

erative scheme whose iterates converge monotonically. From this scheme we can form a sequence

of solutions us(x), s = 0, 1, 2, ..., which has been shown [36] to have the following properties:

1. The sequence us(x) is bounded below and above by u0(x) (initial solution) and u(x) respec-

tively, and that

2. us+1(x)− us(x) ≥ 0, s = 0, 1, 2, ....

From properties 1 and 2 above, the iterative scheme is bounded and monotone increasing. Using

the monotone convergence theorem [37], it can be deduced that the iterative scheme is convergent.

The scheme also converges uniformly and quadratically to the solution of the original problem [38].

This iterative scheme produces successive approximations of the solution. For quadratic, monotone

and uniform convergence of the QLM to the solution of the problem in question we refer the reader

to reference [29]. Another desirable attribute of the QLM is that it is numerically stable as com-

pared to other methods of approximating solutions of nonlinear differential equations [13]. If the

initial guess given is close to the true solution, the method converges rapidly to the true solution [31].
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Derivation of the QLM formula

Let us consider an nth order nonlinear differential equation of the form

F[u(x)] = 0, x ∈ [a, b] (2.5)

where x is an independent variable and u(x) = (u, u′, ..., u(n)) is a vector of solutions of (2.5). Let

u′ = du
dx

and u(n) = dnu
dxn , for n = 2, 3, .... As in [30] it is assumed that z = (z, z′, ..., z(n)) is an

approximate solution of (2.5) which is sufficiently close to the true solution u. Assuming that all

the partial derivatives of F exists, applying Taylor’s theorem we get

F[u] = F(z) +∇F (z).(u− z) + (higher order terms) (2.6)

Upon ignoring higher order terms equation (2.6) becomes

∇F(z).u = ∇F(z).z− F(z) (2.7)

The solution from (2.7) will not be, generally, the exact solution of (2.5) because of the discarded

higher order terms. We will use the initial approximate solution z as a calculated solution to

iteratively compute the new solution u. With this in mind, denote z and u by us and us+1

respectively to get the iterative formula

∇F(us).us+1 = ∇F(us).us − F(us) (2.8)

where s = 0, 1, 2, . . . . Since

∇F(us).us+1 =
∂F (us)

∂us

us+1 +
∂F (us)

∂u′
s

d

dx
(us+1) + ... +

∂F (us)

∂u
(n−1)
s

dn−1

dx
(us+1) +

∂F (us)

∂u
(n)
s

dn

dx
(us+1)

then equation (2.8) can be written in operator form as

Lus+1 = Lus − F (us) (2.9)

where

L = b0
dn

dxn
+ b1

dn−1

dxn−1
+ ...+ bn−1

d

dx
+ bn (2.10)
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and

b0 =
∂F (us)

∂u
(n)
s

, b1 =
∂F (us)

∂u
(n−1)
s

, ..., bn−1 =
∂F (us)

∂u′
s

and bn =
∂F (us)

∂us

The iterative scheme (2.9) is the standard QLM formula used to obtain the (s + 1)th iterative

approximation us+1(x) of the solution of (2.5).

2.2.1 Application to the Bratu problem

The Bratu problem (1.1) can be transformed to a linear differential problem using the QLM. Equa-

tion (1.1) is of second order, thus we have

F (u, u′, u′′) = u′′(x) + λeu(x)

and

L = b0
d2

dx2
+ b1

d

dx
+ b2

Calculating the coefficients b0, b1 and b2 and substituting into (2.9) we get the iterative scheme

u′′
s+1(x) + λeus(x)us+1(x) = λeus(x)(us(x)− 1) (2.11a)

us+1(0) = us+1(1) = 0 (2.11b)

where s = 0, 1, 2, .... Equation (2.11a) can be used to compute us+1(x) provided us(x) is known. In

particular, the initial approximation u0(x) must be specified so that we compute u1(x). Once u1(x)

is known, we compute u2(x) using equation (2.11a) and so on. Also, u0(x) must satisfy boundary

conditions (2.11b). For the sake of brevity, we replace equations (2.11a) and (2.11b) with equations

L(u) = u′′(x) + a(x)u(x) = b(x), 0 < x < 1 (2.12a)

u(0) = u(1) = 0. (2.12b)
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2.3 Finite element method

2.3.1 Piecewise linear lagrange finite element solution

Variational formulation of the differential problem

To implement the finite element method to the linear differential equation (2.12a) subject to bound-

ary conditions (2.12b), it has to be first converted into its variational or integral form. This is done

by making use of the fundamental lemma of variational calculus [39]

Lemma 1. If a function u(x) is continuous and if

∫ b

a

u(x)v(x)dx = 0, for all continuous func-

tions v(x), then u(x) ≡ 0 for a ≤ x ≤ b.

Relative to our problem (2.12a), the function u(x) is the trial solution to the problem and the

function v(x) is the weight or test function which is arbitrarily chosen so that it satisfies the same

boundary conditions as the trial solution. From lemma 1, requiring the trial solution u(x) ≡ 0 is

the same as taking the residual function R(x) = L(u)− b(x), to be zero for 0 ≤ x ≤ 1. Hence from

equation (2.12a) we have
∫ 1

0

[L(u)− b(x)] v(x)dx = 0, for all continuous functions v(x) , (2.13)

or

A(v, u) = (v, b), for all continuous functions v(x), (2.14)

where the bilinear functional

A(v, u) =

∫ 1

0

[v(x)u′′(x) + v(x)a(x)u(x)]dx, (2.15)

is usually called the strain energy and the L2 inner product

(v, b) =

∫ 1

0

v(x)b(x)dx

20



is an L2 inner product. In the strain energy, the product v(x)u′′(x) causes different smoothness

requirements for the two functions. Symmetry is however introduced by using the integration by

parts formula in one dimension to get:

A(v, u) =

∫ 1

0

[

− v′(x)u′(x) + v(x)a(x)u(x)
]

dx− u(x)′v(x)
∣

∣

1

0
. (2.16)

Since the solution u(x) is known to be zero at both endpoints x = 0 and x = 1, the test function

is chosen so that it satisfies the same trivial boundary conditions hence making the boundary term

to vanish. Now (2.16) takes the form

A(v, u) =

∫ 1

0

[

− v′(x)u′(x) + v(x)a(x)u(x)
]

dx. (2.17)

Integration by parts has added a derivative to the function v(x) so that its selection is restricted to

a space where the functions have more continuity than those in L2. The functions u(x) and v(x)

will be required to be elements of the Sobolev space H1, which is a space of continuous functions

where
∫ 1

0

[(u′(x))2 + (u(x))2]dx < ∞.

Since the functions u(x) and v(x) satisfy the trivial boundary conditions (2.12b), they are elements

of the Sobolev space H1
0 . The variational problem becomes that of determining u(x) ∈ H1

0 satisfying

A(v, u) = (v, b), ∀v(x) ∈ H1
0 (2.18)

where

H1
0 =

{

u(x)

∣

∣

∣

∣

∫ 1

0

[(u′(x))2 + (u(x))2]dx < ∞, u(0) = 0 and u(1) = 0

}

.

Problem variable approximation

The problem variable approximation is

u(x) ≈ U(x) =
E
∑

c=0

ucφc(x) (2.19)
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where φc(x), c = 0, 1, 2, · · · , E − 1, E are arbitrarily chosen continuous piecewise linear functions.

Since U(0) = U(E) = 0, equation (2.19) can be written as

U(x) =

E−1
∑

c=1

ucφc(x) (2.20)

Substituting (2.20) into equation (2.18) gives

E−1
∑

c=1

ucA(v, φc(x)) = (v, b(x)), for all v : v(0)=v(1)=0 (2.21)

which upon choosing functions E − 1 distinct values v1(x), v2(x), . . . , vE−1(x) of the test function

v(x) becomes

E−1
∑

c=1

ucA(vd, φc(x)) = (vd, b(x)), d = 1, 2, · · · , E − 1

which is a linear system of E−1 equations of unknowns uc, c = 1, 2, . . . , . . . E−1 since A(vd(x), φc(x))

and (vd(x), b(x)), d = c = 1, 2, . . . , E − 1 are constants. The system can be written as

(M −K)u = w (2.22)

where u = [u1, u2, . . . , uE−1]
T and

K =

∫ 1

0

















v′1φ
′
1 v′1φ

′
2 · · · v′1φ

′
E−1

v′2φ
′
1 v′2φ

′
2 · · · v′2φ

′
E−1

...
...

. . .
...

v′E−1φ
′
1 v′E−1φ

′
2 · · · v′E−1φ

′
E−1

















dx (2.23)

is the global stiffness matrix with each of its elements given by

Kdc =

∫ 1

0

v′dφ
′
cdx, where d, c = 1, 2, . . . , E − 1

The elements of the global mass matrix M and the global load vector w are

Mdc =

∫ 1

0

vda(x)φcdx and wd =

∫ 1

0

vdbdx (2.24)
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respectively. The values d and c represent the row and column number, respectively, of each entry

in the global matrix. Upon solving the linear algebraic system (2.22) we determine the coeffi-

cients uc, c = 1, 2, · · · , E − 1 for the approximate solution (2.20). The choice of the functions

φc(x), c = 1, 2, · · · , E − 1 determines how good (2.20) is as an approximation of the solution u(x).

Considering the general element Ωe = [xc−1, xc]

Kdc =

∫ 1

0

v′dφ
′
cdx

=

E
∑

e=1

∫ xc

xc−1

v′dφ
′
cdx

=
E
∑

e=1

Ke
dc,

where

Ke
mn =











∫ xc

xc−1

v′m(x)φ
′
n(x)dx where m and n are either c or c− 1

0 otherwise.

(2.25)

Similarly

Mdc =

E
∑

e=1

Me
dc and wd =

E
∑

e=1

we
d,

with

Me
mn =











∫ xc

xc−1

vm(x)a(x)φn(x)dx where m and n are either c or c− 1

0 otherwise,

and

we
m =











∫ xc

xc−1

vm(x)b(x)dx where m is either c or c− 1

0 otherwise,

respectively.
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Discretizing problem domain and choosing basis functions

The problem domain [0, 1] is partitioned into uniform discrete subintervals [xc−1, xc], c = 1, 2, 3, · · · , E
called finite elements, where

0 = x0 < x1 < · · · < xE−1 < xE = 1.

The uniform width of each interval is h = xc − xc−1, c = 1, 2, 3, ..., E with each endpoint of the

subinterval called a node. Each basis function φc(x) is chosen to be a piecewise linear Lagrange

polynomial. These polynomials should be continuous and piecewise linear on [0, 1]. Such class of

polynomials are chosen to be the hat functions

φc(x) =



























x− xc−1

h
, if x ∈ [xc−1, xc]

xc+1 − x

h
, if x ∈ [xc, xc+1]

0, otherwise

(2.26)

which have the form shown in Figure 2.1

x

φc(x)

1

0 xc−1 xc xc+1 xE

Figure 2.1: The hat function φc(x)

The most desirable properties about these functions are that φc(x) has a value of unity at the

node c, vanishing at all other nodes. This makes the determination of solutions at the node simple.

Secondly, φc(x) is nonzero on the elements containing the node c and zero elsewhere on [0, 1] hence

simplifying the solution of the resulting algebraic system. Such functions are said to have local
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support.

Computation of element matrices

The variational problem counterpart of equation (2.18) is now constructed by replacing the function

u(x) by its approximation given by (2.20) and then choose each test function V (x) = φr(x) by the

Garlekin method. The functions U(x) and V (x) belong to a finite dimensional subspace SN
0 of the

Sobolev space H1
0 . The basis of the space SN

0 is formed by the functions φc(x), c = 1, 2, · · · , E − 1.

The variational counterpart problem now consists of determining U(x) satisfying

A(V, U) = (V, b), ∀V (x) ∈ SN
0 . (2.27)

Restricting (2.20) to a finite element Ωe yields the approximate solution

U(x) = uc−1φc−1(x) + ucφc(x), x ∈ Ωe, (2.28)

since φc−1(x) and φc(x) are the only nonzero basis functions on Ωe. These basis functions are both

unity at the nodes xc−1 and xc respectively hence we deduce that U(xc) = uc. Since by the Garlekin

method U(x) and V (x) are both chosen from SN
0 ,

V (x) = vc−1φc−1(x) + vcφc(x), x ∈ Ωe. (2.29)

The basis functions

φc−1(x) =
xc − x

h
and φc(x) =

x− xc−1

h
, x ∈ Ωe,

are shown in Figure 2.2

x

φc−1(x)

1

0 xc−1 xc

1

0
x

φc(x)

xc−1 xc

Figure 2.2: Element shape functions
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Equation (2.27) can be written as a summation of the contributions of each element on the

problem domain [0, 1] as

E−1
∑

c=1

∫ xc

xc−1

[−V ′(x)U ′(x) + V (x)a(x)U(x) − V (x)b(x)]dx = 0, ∀V (x) ∈ SN
0 . (2.30)

Element stiffness matrix

The entries of element stiffness matrix are obtained by integrating the first term in (2.30) to get

∫ xc

xc−1

V ′(x)U ′(x)dx =

∫ xc

xc−1

[

vc−1 vc

]





φ′
c−1

φ′
c





[

φ′
c−1 φ′

c

]





uc−1

uc



 dx (2.31)

=
[

vc−1 vc

]

Kc





uc−1

uc



 , (2.32)

where

Kc =





Kc−1,c−1
c Kc−1,c

c

Kc,c−1
c Kc,c

c



 , (2.33)

is the condensed form of K. The elements of the matrix Kc are

Km,n
c =

∫ xc

xc−1

φ′
m(x)φ

′
n(x)dx, (2.34)

where m and n are either c− 1 or c. For example

Kc,c−1
c =

∫ xc

xc−1

φ′
c(x)φ

′
c−1(x)dx

= −
∫ xc

xc−1

(

1

h

)(

1

h

)

dx

= −1

= Kc−1,c
c .

Hence

Kc =
1

h





1 −1

−1 1



 . (2.35)
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Element mass matrix

We proceed in a similar manner for the second term V (x)a(x)U(x) in equation (2.30). We be-

gin by approximating the function a(x) by its linear interpolant so that

a(x) ≈ ac−1φc−1(x) + acφc(x), x ∈ Ωe (2.36)

where ac−1 = a(xc−1) and we get

∫ xc

xc−1

V (x)a(x)U(x)dx =
[

vc−1 vc

]

Mc





uc−1

uc



 , (2.37)

where

Mc =
h

12





3ac−1 + ac ac−1 + ac

ac−1 + ac ac−1 + 3ac



 , (2.38)

is called the condensed element mass matrix. If the function a(x) = a is constant, then Mc reduces

to

Mc =
ahc

6





2 1

1 2



 . (2.39)

Element load vector

Similarly if we let

b(x) ≈ bc−1φc−1(x) + bcφc(x), x ∈ Ωe (2.40)

then

∫ xc

xc−1

V (x)b(x)dx ≈
∫ xc

xc−1

[

vc−1 vc

]





φc−1(x)

φc(x)





[

φc−1(x) φc(x)
]





bc−1

bc



 dx

=
[

vc−1 vc

]

wc
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where

wc =
h

6





2bc−1 + bc

bc−1 + 2bc



 (2.41)

which is called the condensed element load vector.

Assembling global matrices

Assembling is a process of constructing the global matrices as the summation of the element ma-

trices. In forming the global matrices it is not necessary to expand the element matrices in their

condensed form but to only work out their appropriate positions in the global matrix and then add

the numbers. In this summation we will consider a uniform width h = 1/E for the elements so that

E
∑

c=1

∫ xc

xc−1

V ′(x)U ′(x)dx =
E
∑

c=1

[

vc−1 vc

] 1

h





1 −1

−1 1









uc−1

uc





=
[

v1

] 1

h

[

1
] [

c1

]

+
[

v1 v2

] 1

h





1 −1

−1 1









u1

u2



+ · · ·

+
[

vE−2 vE−1

] 1

h





1 −1

−1 1









uE−2

uE−1



+
[

vE−1

] 1

h

[

1
] [

uE−1

]

.

The first and last terms have this form due to application of the boundary conditions

u0 = uE = v0 = vE = 0. Expanding each vector and matrix to the same dimension we get
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E
∑

c=1

∫ xc

xc−1

V ′(x)U ′(x)dx =
[

v1 v2 · · · vE−1

] 1

h























1












































u1

u2

...

uE−1























+
[

v1 v2 · · · vE−1

] 1

h























1 −1

−1 1













































u1

u2

...

uE−1























+ · · ·

+
[

v1 v2 · · · vE−1

] 1

h























1 −1

−1 1













































u1

u2

...

uE−1























+
[

v1 v2 · · · vE−1

] 1

h























1













































u1

u2

...

uE−1























.

This can be written as

E
∑

c=1

∫ xc

xc−1

V ′(x)U ′(x)dx = vTKu, (2.42)
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where

K =
1

h





























2 −1

−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2





























is the global stiffness matrix and the vectors of unknown coefficients have the forms

v =
[

v1 v2 · · · vE−2 vE−1

]T

and u =
[

u1 u2 · · · uE−2 uE−1

]T

.

Similarly

E
∑

c=1

∫ xc

xc−1

V (x)a(x)U(x)dx = vTMu (2.43)

and

E
∑

c=1

∫ xc

xc−1

V (x)b(x)dx = vTw (2.44)

where the global mass matrix

M =
h

12





























a0 + 6a1 + a2 a1 + a2

a1 + a2 a1 + 6a2 + a3 a2 + a3

a2 + a3 a2 + 6a3 + a4 a3 + a4
. . .

. . .
. . .

aE−2 + aE−2 aE−3 + 6aE−2 + aE−1 aE−2 + aE−1

aE−2 + aE−1 aE−2 + 6aE−1 + aE




























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is the global stiffness matrix which reduces to

M =
ah

12





























4 1

1 4 1

1 4 1
. . .

. . .
. . .

1 4 1

1 4





























(2.45)

when a(x) ≡ a is constant and

w =
h

6

















b0 + 4b1 + b2

b1 + 4b2 + b3
...

bE−2 + 4bE−1 + bE

















(2.46)

is the global load vector. Substituting (2.42) ,(2.43) and (2.44) into (2.30) we get

vT[(M −K)u−w] =, for all V (x) ∈ SN
0

or

(M −K)u = w (2.47)

for all choices of choices of v . Solving this linear system we get the nodal values uc, c = 1, 2, · · · , E−1

for the approximation (2.20). Looking closely at (2.42) , without applying boundary conditions,

this summation can be written as

E
∑

c=1

∫ xc

xc−1

V ′(x)U ′(x)dx =
[

v0 v1 · · · vE−1 vE

]

K























u0

u1

...

uE−1

uE























(2.48)
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with the (E + 1)× (E + 1) matrix K being the summations of matrices given by

K =
1

h

























































1 −1

−1 1





























+





























1 −1

−1 1





























+ · · ·+





























1 −1

−1 1





























+





























1 −1

−1 1

























































which we can write in compact form as

K =
E
∑

e=1

Ke (2.49)

where

Ke =
1

h

1 . . . e− 1 e . . . E




















































0 . . . 0 0 . . . 0 1
...

. . .
...

...
. . .

...
...

0 . . . 1 −1 . . . 0 e− 1

0 . . . −1 1 . . . 0 e
...

. . .
...

...
. . .

...
...

0 . . . 0 0 . . . 0 E

(2.50)

is a sparse matrix and its condensed form is

Ke
c =

1

h

e− 1 e
[ ]

1 −1 e− 1

−1 1 e

(2.51)

The numbers e − 1 and e on the boarders of the matrix indicates the appropriate positions of the

elements in the global matrix. Similarly we get

Me
c =

h

12

e− 1 e
[ ]

3ae−1 + ae ae−1 + ae e− 1

ae−1 + ae ae−1 + 3ae e

(2.52)
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and

we

c
=

h

6

[ ]

2be−1 + be e− 1

be−1 + 2be e
(2.53)

as the condensed element mass matrix and element load vector respectively. We demonstrate the

assembly procedure by example.

Example 3. We now describe the assembly procedure for the element stiffness matrix on the

problem domain [0, 1] with three elements, that is, E = 3 and h = 1/E = 1/3 to form a global

stiffness matrix K of dimension E + 1 = 4. Starting with an empty 4 × 4 global stiffness matrix,

the contribution of K1 to the global matrix K is

K = 3

0 1




























1 −1 0

−1 1 1

and upon adding K2 we get

K = 3

1 2




























1 −1

−1 1 + 1 −1 1

−1 1 2

and finally adding K3 changes K to

K = 3

2 3




























1 −1

−1 1 + 1 −1

−1 1 + 1 1 2

−1 1 3

33



After adding K1, K2 and K3 to K and padding with zeros we get

K = 3

0 1 2 3




























1 −1 0 0 0

−1 2 −1 0 1

0 −1 2 1 2

0 0 −1 1 3

The assembly procedure for the global mass matrix follows in a similar manner to yield

M =
1

36

0 1 2 3




























3a0 + a1 a0 + a1 0 0 0

a0 + a1 a0 + 6a1 + a2 a1 + a2 0 1

0 a1 + a2 a1 + 6a2 + a3 a2 + a3 2

0 0 a2 + a3 a2 + 3a3 3

Similarly the global load vector

w =
1

18





























2b0 + b1 0

b0 + 4b1 + b2 1

b1 + 4b2 + b3 2

b2 + 2b3 3

(2.54)

Imposing boundary conditions

The algebraic system (2.47) can be written as

Nu = w (2.55)

where

N = M −K (2.56)
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N =























n00 n01 · · · n0,E−1 n0E

n10 n11 · · · n1,E−1 n1E

...
...

. . .
...

...

nE−1,0 nE−1,1 · · · nE−1,E−1 nE−1,E

nE,0 nE,1 · · · nE,E−1 nE,E























,u =























u0

u1

...

uE−1

uE























and w =























w0

w1

...

wE−1

wE























hence can be solved easily using any suitable method but only after imposing the boundary condi-

tions. To apply the boundary conditions, we delete the first and last rows of both N and w and the

first and last columns of N . This is because the first and last finite element equations correspond to

the nodal values u0 and uE respectively which are known from the boundary hence are not needed.

The system becomes























n10 n11 · · · n1,E−1 n1E

n20 n21 · · · n2,E−1 n2E

...
...

. . .
...

...

nE−2,0 nE−2,1 · · · nE−2,E−1 nE−2,E

nE−1,0 nE−1,1 · · · nE−1,E−1 nE−1,E













































u1

u2

...

uE−2

uE−1























=























w1

w2

...

wE−2

wE−1























.

2.3.2 Piecewise quadratic Lagrange finite element solution

For piecewise quadratic Lagrange finite element solution of problem (2.12a) subject to boundary

conditions (2.12b), the same general element Ωe = [xc−1, xc], c = 1, 2, · · · , E−1, E used for piecewise

linear Lagrange finite element solution is considered. The only difference on the element is that

besides the two end nodes, a middle node is added to the element as shown in Figure 2.3

xc−1 xcx
c− 1

2

h

Figure 2.3: A general element for quadratic shape functions
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On problem domain [0, 1] we form a mesh

0 = x0 < x1 < x2 < · · · < xc−1 < xc− 1

2

< xc · · · < x2E−2 < x2E−1 < x2E = 1.

The length of each element h = xc − xc−1 for each c = 1, 2, · · · , E − 1, E as shown in Figure 2.3.

The finite element trial solution is given as

U(x) =

2E
∑

c=0

u c
2
φ c

2
(x) (2.57)

where φ c
2
(x) a piecewise quadratic global basis function which satisfies

φc(x) =











1, at node c

0, otherwise

(2.58)

The restriction of the trial function to the element Ωe is

Ue(x) = uc−1φc−1(x) + uc− 1

2

φc− 1

2

(x) + ucφc(x), x ∈ Ωe. (2.59)

The restriction of φc(x) to Ωe is the element shape function Nc(x)

φc(x) ≡ N e
c (x), ∀x ∈ Ωe. (2.60)

where

N e
c (x) =











1, at node c

0, otherwise

(2.61)

Figure 2.4 shows the three element shape functions associated with the nodes xc−1, xc− 1

2

and xc on

Ωe

x

1

0 xc−1

Nc−1(x)Nc−1(x) N
c− 1

2

(x) Nc(x)

x
c− 1

2

xc xE

Figure 2.4: Quadratic element shape functions
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Using the illustration in Figure (2.4) and with property (2.61) in mind, it follows that

N e
c−1(xc−1) = 1, N e

c−1(xc− 1

2

) = 0 and N e
c−1(xc) = 0. Using the factor theorem, (xc− 1

2

−x) and (xc−x)

are factors of the quadratic element shape function N e
c−1(x) such that coupled with normalisation

N e
c−1(x) =

2

h2
(xc− 1

2

− x)(xc − x), x ∈ Ωe (2.62)

Similarly, the other two element shape functions are

N e
c− 1

2

(x) =
4

h2
(x− xc−1)(x− xc) and N e

c (x) =
2

h2
(x− xc−1)(x− xc− 1

2

). (2.63)

Constructing element matrices

In the construction of element matrices, to conveniently evaluate the involved integrals, the physical

element Ωe = [xc−1, xc] on the x-axis is mapped onto the canonical element Πe = [−1, 1] on the

ξ-axis using the transformation

x(ξ) =
1− ξ

2
xc−1 +

1 + ξ

2
xc,−1 ≤ ξ ≤ 1 (2.64)

See Figure 2.5.

x
xc−1 x

c− 1

2

xc

ξ
-1 0 1

Figure 2.5: Linear transformation

Using the linear transformation (2.64), element shape functions (2.62) and (2.63) on the x-axis

are transformed to the equivalent quadratic shape functions

N−1(ξ) =
ξ(ξ − 1)

2
, N0(ξ) = 1− ξ2 and N1(ξ) =

ξ(ξ + 1)

2
(2.65)
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associated with nodes −1, 0 and 1 on the ξ-axis respectively. This far, the finite element trial

solution on Ωe can be written

Ue(x) = u−1N
e
−1(ξ) + u0N

e
0 (ξ) + u1N

e
1 (ξ), ξ ∈ Πe (2.66)

with the test function V (x) taking a similar form.

Element stiffness matrix

Like in the linear case,

∫ xc

xc−1

V ′(x)U ′(x)dx =
[

vc−1 vc− 1

2

vc

]

Kc











uc−1

uc− 1

2

uc











,

where Kc is a symmetric 3× 3 matrix given by

Kc =











Kc−1,c−1
c K

c−1,c− 1

2

c Kc−1,c
c

K
c− 1

2
,c−1

c K
c− 1

2
,c− 1

2

c K
c− 1

2
,c

c

Kc,c−1
c K

c,c− 1

2

c Kc,c
c











. (2.67)

The entries of the matrix are given by

Km,n
c =

∫ xc

xc−1

N ′
m(x)N

′
n(x)dx, (2.68)

where m and n are either c− 1, c− 1
2
or c. For example

Kc−1,c−1
c =

∫ xc

xc−1

dNc−1(x)

dx

dNc−1(x)

dx
dx

=

∫ 1

−1

(

2

hc

)2
dN−1(ξ)

dξ

dN−1(ξ)

dξ

h

2
dξ

=
7

3h
.

The determination of the rest of the entries follows a similar way to get the condensed element
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stiffness matrix as

Kc =
1

3h











7 −8 1

−8 16 −8

1 −8 7











(2.69)

Element mass matrix

Similar to the linear case,

∫ xc

xc−1

V (x)a(x)U(x)dx =
[

vc−1 vc− 1

2

vc

]

Mc











uc−1

uc− 1

2

uc











where the 3× 3 symmetric matrix.

Me
c =











M c−1,c−1
c M

c−1,c− 1

2

c M c−1,c
c

M
c− 1

2
,c−1

c M
c− 1

2
,c− 1

2

c M
c− 1

2
,c

c

M c,c−1
c M

c,c− 1

2

c M c,c
c











(2.70)

is the condensed element mass matrix where

Mm,n
c =

∫ xc

xc−1

Nm(x)a(x)Nn(x)dx

and

a(x) ≈ ac−1Nc−1(x) + ac− 1

2

Nc− 1

2

+ acNc(x), x ∈ Ωe

The entry in row c− 1 and column c− 1 of Mc is

M c−1,c−1
c =

∫ xc

xc−1

Nc−1(x)a(x)Nc−1(x)dx

=

∫ xc

xc−1

Nc−1(x)

(

ac−1Nc−1(x) + ac− 1

2

Nc− 1

2

(x) + acNc(x)

)

Nc−1(x)dx

=
13

140
hac−1 +

1

21
hac− 1

2

− 1

140
hac
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Other elements are computed in a similar manner to reveal that

Mc = h























13ai
140

+
aj
21

− ak
140

ai
21

+
4aj
105

− 2ak
105

− ai
140

− 2aj
105

− ak
140

ai
21

+
4aj
105

− 2ak
105

4ai
105

+
16aj
35

+ 4ak
105

− 2ai
105

+
4aj
105

+ ak
21

− ai
140

− 2aj
105

− ak
140

− 2ai
105

+
4aj
105

+ ak
21

− ai
140

+
aj
21

+ 13ak
140























(2.71)

where ai = a(xc−1), aj = a(xc− 1

2

) and ak = a(xc). If a(x) is a constant function, then (2.71) becomes

Mc =
ah

30











4 2 −1

2 16 2

−1 2 4











(2.72)

Element load vector

Similarly, if

b(x) ≈ bc−1Nc−1(x) + bc− 1

2

Nc− 1

2

(x) + bcNc(x), x ∈ Ωe, (2.73)

then
∫ xc

xc−1

V (x)b(x)dx =
[

vc−1 vc− 1

2

vc

]

wc,

where

wc =
hc

30











4bc−1 + 2bc− 1

2

− bc

2bc−1 + 16bc− 1

2

+ 2bc

−bc−1 + 2bc− 1

2

+ 4bc











, (2.74)

is the element load vector. Just like in the linear case, finite element equations reduce to linear

system

(M −K)u = w, for all choices of choices of v . (2.75)
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Assemble global matrices

Example 4. We illustrate the assembly procedure for global matrices using three elements that is

E = 3, h = 1/E = 1/3 and we have seven nodes. The condensed element stiffness matrix

Ke
c =

1

3h

e− 1 e− 1
2

e
















7 −8 1 e− 1

−8 16 −8 e− 1
2

1 −8 7 e

(2.76)

is added to K for each e = 1, 2, 3 in the appropriate rows and columns. Upon padding with zeros

we get

K =

0 1
2

1 3
2

2 5
2

3
































































7 −8 1 0 0 0 0 0

−8 16 −8 0 0 0 0 1
2

1 −8 7 + 7 −8 1 0 0 1

0 0 −8 16 −8 0 0 3
2

0 0 1 −8 7 + 7 −8 1 2

0 0 0 0 −8 16 −8 5
2

0 0 0 0 1 −8 7 3

(2.77)

which upon applying the boundary conditions becomes

K =























16 −8 0 0 0

−8 14 −8 1 0

0 −8 16 −8 0

0 1 −8 14 −8

0 0 0 −8 16























(2.78)
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Similarly, with the condensed element mass matrix

Me
c =

1

3

e− 1 e− 1
2

e








































13ai
140

+
aj
21

− ak
140

ai
21

+
4aj
105

− 2ak
105

− ai
140

− 2aj
105

− ak
140

e− 1

ai
21

+
4aj
105

− 2ak
105

4ai
105

+
16aj
35

+ 4ak
105

− 2ai
105

+
4aj
105

+ ak
21

e− 1
2

− ai
140

− 2aj
105

− ak
140

− 2ai
105

+
4aj
105

+ ak
21

− ai
140

+
aj
21

+ 13ak
140

e

(2.79)

where i = e − 1,j = e − 1
2
and k = e, adding M for each e = 1, 2, 3 in the appropriate rows and

columns which upon applying the boundary conditions becomes

M =























p q 0 0 0

q r s t 0

0 s u v 0

0 t v w x

0 0 0 x z























where

p =
4

105
a0 +

16

35
a 1

2

+
4

105
a1, q = − 2

105
a0 +

4

105
a 1

2

+
1

21

r = − 1

140
a0 +

1

21
a 1

2

+
13

140
a1 +

13

140
a1 +

1

21
a 3

2

− 1

140
a2

s =
1

21
a1 +

4

105
a 3

2

− 2

105
a2, t = − 1

140
a1 −

2

105
a 3

2

− 1

140
a2

u =
4

105
a1 +

16

35
a 3

2

+
4

105
a2, v = − 2

105
a1 +

4

105
a 3

2

+
1

21
a1

w = − 1

140
+

1

21
a 3

2

+
13

140
a2 +

13

140
a2 +

1

21
a 3

2

− 1

140
a3,

x =
1

21
a2 +

4

105
a 5

2

− 2

105
a3 and z =

4

105
a2 +

16

35
a 5

2

+
4

105
a3

and condensed element load vector

we

c
=

h

30

















4be−1 + 2be− 1

2

− be e− 1

2be−1 + 16be− 1

2

+ 2be e− 1
2

−be−1 + 2be− 1

2

+ 4be e

(2.80)
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yields the global load vector

w = 10

































































4b0 + 2b 1

2

− b1 0

2b0 + 16b 1

2

+ 2b1
1
2

−b0 + 2b 1

2

+ 4b1 + 4b1 + 2b 3

2

− b2 1

2b1 + 16b 3

2

+ 2b2
3
2

−b1 + 2b 3

2

+ 4b2 + 4b2 + 2b 5

2

− b3 2

2b2 + 16b 5

2

+ 2b3
5
2

−b2 + 2b 5

2

+ 4b3 3

(2.81)

which upon appying boundary conditions becomes

w = 10























2b0 + 16b 1

2

+ 2b1

−b0 + 2b 1

2

+ 4b1 + 4b1 + 2b 3

2

− b2

2b1 + 16b 3

2

+ 2b2

−b1 + 2b 3

2

+ 4b2 + 4b2 + 2b 5

2

− b3

2b2 + 16b 5

2

+ 2b3























(2.82)

2.3.3 Finite element solution using hierarchical basis functions

The finite element approximation of the solution of the boundary value problem (2.12a) and (2.12b)

using the quadratic hierarchical basis functions is discussed in this Section. Used in the finite element

method, hierarchical basis functions have an advantage over the Lagrange polynomials in that the

resulting algebraic system is less susceptible to round-off error accumulation at high order. The

same general element Ωe = [xc−1, xc] in Figure 2.3 is considered. Unlike in the quadratic Lagrange

finite element approximation, the basis functions associated with both end nodes are linear while

that associated with the middle node is quadratic as shown in Figure 2.6
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x

1

0 xc−1

Nc−1(x)Nc−1(x) N
c− 1

2

(x) Nc(x)

x
c− 1

2

xc xE

Figure 2.6: Hierarchical shape functions

Similar to the quadratic Lagrange approximation, the physical element Ωe is transformed to the

canonical element Πe = [−1, 1] using transformation (2.64). The restriction of the solution to the

canonical element Πe is given by

U(ξ) = uc−1N−1(ξ) + uc− 1

2

N0(ξ) + ucN1(ξ), ξ ∈ [−1, 1] (2.83)

where N−1(ξ) and N1(ξ) are linear element shape functions derived from the hat functions in Figure

2.2 using transformation (2.64). Hence

N−1(ξ) =
1

2
(1− ξ) and N1(ξ) =

1

2
(1 + ξ), ξ ∈ Πe.

Following Szabǿ and Babuska [40] we take

N0(ξ) =

√

3

2

∫ ξ

−1

P1(ρ)d(ρ),

where P1(ρ) = ρ is the second Legendre polynomial

⇒ N0(ξ) =
3

2
√
6
(ξ2 − 1) (2.84)

Constructing element matrices

Element stiffness matrix
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Since

∫ xc

xc−1

V ′(x)U ′(x)dx =
2

hc

∫ 1

−1

dV

dξ

dU

dξ
d. ξ (2.85)

=
[

vc−1 vc− 1

2

vc

]

Kc











uc−1

uc− 1

2

uc











(2.86)

where the restrictions of the piecewise quadratic trial and test functions to the element Ωe are

U(ξ) =
[

uc−1 uc− 1

2

uc

]











N−1

N0

N1











and V (ξ) =
[

vc−1 vc− 1

2

vc

]











N−1

N0

N1











respectively then the condensed element stiffness matrix Kc given by

Kc =
2

hc

∫ 1

−1











N ′
−1

N ′
0

N ′
1











[

N ′
−1 N ′

0 N ′
1

]

d. ξ (2.87)

which upon simplification becomes

Kc =
1

hc











1 0 −1

0 2 0

−1 0 1











Element mass matrix

In a similar way,

∫ xc

xc−1

V (x)a(x)U(x)dx =
[

vc−1 vc− 1

2

vc

]

Mc











uc−1

uc− 1

2

uc











(2.88)

Since

a(ξ) ≈ ac−1N−1(ξ) + acN1(ξ), ξ ∈ [−1, 1]
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then the element mass matrix is

Mc =
hc

2

∫ 1

−1











N−1

N0

N1











a(ξ)
[

N−1 N0 N1

]

dξ

= hc























1
4
ac−1 +

1
12
ac −

√
6

20
ac−1 −

√
6

30
ac

1
12
ac−1 +

1
12
ac

−
√
6

20
ac−1 −

√
6

30
ac

1
10
ac−1 +

1
10
ac −

√
6

30
ac−1 −

√
6

20
ac

1
12
ac−1 +

1
12
ac −

√
6

30
ac−1 −

√
6

20
ac

1
12
ac−1 +

1
4
ac























.

which simplifies to

Mc =
ah

6











2 1 −
√

3
2

1 2 −
√

3
2

−
√

3
2

−
√

3
2

6
5











(2.89)

when a(x) is constant.

Element load vector

As done for the linear piecewise approximation,
∫ xc

xc−1

V (x)b(x)dx =
h

2

∫ 1

−1

V (ξ)b(ξ)dξ (2.90)

=
[

vc−1 vc− 1

2

vc

]

wc (2.91)

where

wc =

∫ 1

−1











N−1

N0

N1











b(x(ξ))d. ξ (2.92)

and

b(x) ≈ bc−1N−1(ξ) + bcN1(ξ), ξ ∈ [−1, 1] (2.93)
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Simplifying (2.92) gives the element load vector as

wc =
hc

6











2bc−1 + bc

−
√

3
2
(bc−1 + bc)

bc−1 + 2bc











(2.94)

Substituting (2.85),(2.88) and (2.90) into (2.30),we get the linear algebraic system

(M −K)u = w, for all choices of vc, c = 1/2, 1, 3/2, · · ·E − 1 (2.95)

Assembly procedure

Example 5. The assembly procedure for K, M and w for the quadratic hierarchical approximation

follows the same pattern as for the Lagrange approximations. The condensed forms of K, M and

w are

Ke
c =

1

h

e− 1 e− 1
2

e
















1 0 −1 e− 1

0 2 0 e− 1
2

−1 0 1 e

(2.96)

Me
c =

1

3

e− 1 e− 1
2

e








































1
4
ae−1 +

1
12
ae −

√
6

20
ae−1 −

√
6

30
ae

1
12
ae−1 +

1
12
ae e− 1

−
√
6

20
ae−1 −

√
6

30
ae

1
10
ae−1 +

1
10
ae −

√
6

30
ae−1 −

√
6

20
ae e− 1

2

1
12
ae−1 +

1
12
ae −

√
6

30
ae−1 −

√
6

20
ae

1
12
ae−1 +

1
4
ae e

(2.97)

we

c
=

1

18

















2be−1 + be e− 1

−
√

3
2
(be−1 + be) e− 1

2

be−1 + 2be e

(2.98)
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respectively. With three nodes on the interval [0, 1], we get the global stiffness, mass and load vector

matrices as

K =

0 1
2

1 3
2

2 5
2

3
































































1 0 −1 0 0 0 0 0

0 2 0 0 0 0 0 1
2

−1 0 1 + 1 0 −1 0 0 1

0 0 0 2 0 0 0 3
2

0 0 −1 0 1 + 1 0 −1 2

0 0 0 0 0 2 0 5
2

0 0 0 0 −1 0 1 3

, (2.99)

M =
1

3

0 1
2

1 3
2

2 5
2

3
































































a b c 0 0 0 0 0

b d e 0 0 0 0 1
2

c e f g h 0 0 1

0 0 g i j 0 0 3
2

0 0 h j k l m 2

0 0 0 0 l o p 5
2

0 0 0 0 m p s 3

,

and

w =
1

18





































































2b0 + b1 0

−
√

3
2
(b0 + b1)

1
2

b0 + 2b1 + 2b1 + b2 1

−
√

3
2
(b1 + b2)

3
2

b1 + 2b2 + 2b2 + b3 2

−
√

3
2
(b2 + b3)

5
2

b2 + 2b3 3

, (2.100)
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respectively.

where

a =
1

4
a0 +

1

12
a1, b = −

√
6

20
a0 −

√
6

30
a1, c =

1

12
a0 +

1

12
a1, d =

1

10
a0 +

1

10
a1

e = −
√
6

30
a0 −

√
6

20
a1, f =

1

12
a0 +

1

4
a1 +

1

4
a1 +

1

12
a2, g = −

√
6

20
a1 −

√
6

30
a2

h =
1

12
a1 +

1

12
a2, i =

1

10
a1 +

1

a1
a2, j = −

√
6

30
a1 −

√
6

20
a2

k =
1

12
a1 +

1

4
a2 +

1

4
a2 +

1

12
a3, l = −

√
6

30
a2 −

√
6

20
a3, m =

1

12
a2 +

1

12
a3

o =
1

10
a2 +

1

10
a3, p = −

√
6

30
a2 −

√
6

20
a3, and s =

1

12
a2 +

1

4
a3.

2.4 The Bvp4c

Matlab has a built-in routine which was proposed by Kierzenka and Shampine [41] called bvp4c.

This Matlab program is used to solve a system of n first order differential equations with two-point

boundary conditions. It can also be used to solve multipoint boundary problems but in this work,

only the solution of two-point BVPs is discussed. The numerical method used by Matlab’s bvp4c

is the finite difference method which makes use of Lobatto formula [42] which is a collocation for-

mula and collocation polynomial that provides a continuous solution that is fourth-order accurate

uniformly in a closed interval. To solve any BVP with Matlab bvp4c, it should be of first order and

of the form

u′ = f(x,u,p), x ∈ [a, b] (2.101)
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together with two point boundary conditions

bc(ua,ub,p) = 0. (2.102)

where the scalar variable x is the independent variable and the dependent vector variable

u(x) =

















u1(x)

u2(x)
...

un(x)

















⇒ u′(x) =

















u′
1(x)

u′
2(x)
...

u′
n(x)

















The columns vectors ua and ub corresponding to u(a) and u(b) respectively, are the values of the

column vector u evaluated at both end-points a and b. The vector p which contains unknown

parameters is optional. Matlab’s bvp4c function solves the boundary value problem and returns

the solution in the structure we will name BVPsol with the syntax given by

BVPsol = bvp4c(@odebratu,@bcbratu,initialsol);

Here bvp4c takes the following arguments:

1. @odebratu - a function handle which allows us to invoke the function odebratu from any part

of the program. It is the one used for evaluating the differential equation and it can take the

form

dudx = odebratu(x,u)

2. @bcbratu - a function handle like @odebratu. The function bcbratu is for computing the

residual in the boundary conditions, that is, a measure of how much the boundary conditions

are not satisfied. bcbratu returns a column vector and it takes the form

bcres = bcbratu(ua,ub)
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3. initialsol - a structure containing the initial guess to the solution which is created using

the function bvpinit. initialsol has the first field x of ordered nodes where the endpoints

are defined as

a = initialsol.x(1) and b = initialsol.(end).

The other field u contains the initial guess where initialsol.u(:,i) is an initial guess of

u(x(i)) at node initialsol.x(i). The function initialsol is used with syntax

initialsol=bvpinit(xmesh,uinit);

where xmesh is the mesh formed on the problem domain [a, b] and uinit is the initial guess

of the solution.

The value of the solution u at each mesh point xmesh can be evaluated using the function deval

as follows

uatx=deval(BVPsol,xmesh)

2.4.1 Application to the Bratu problem

To transform Bratu’s problem (1.1) to a linear differential equation let u1(x) = u(x) and also

u2(x) =
du(x)

dx
, to get

du2(x)

dx
= −λeu1(x), (2.103a)

u1(0) = u1(1) = 0. (2.103b)

51



2.5 The Spectral Collocation Method

To solve a differential problem on a physical domain [a, b] on the x-axis, it is convenient to transform

[a, b] to the interval [−1, 1] on the ξ-axis using the transformation

x =
1− ξ

2
a +

1 + ξ

2
b, − 1 ≤ ξ ≤ 1 (2.104)

See Figure 2.7

x
a b

ξ
-1 1

Figure 2.7: Linear transformation

Like the finite element method, some discretization

−1 = ξE < ξE−1 < . . . < ξ0 = 1

is made where

ξc = cos

(

πc

E

)

, c = 0, 1, 2, . . . , E

are called Chebyshev collocation points. These points are not equally spaced on [−1, 1] and can

be viewed as the projection on [−1, 1] of equispaced points on the upper half of the unit circle [21]

shown in Figure 2.8
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ξE = −1 ξ0 = 1ξE
2

= 0

Figure 2.8: Chebyshev points

On [−1, 1], the problem variable approximation is

u(ξ) ≈
E
∑

c=0

ucLc(ξ) (2.105)

where uc = u(ξc) and

Lc(ξ) =

E
∏

k=0,k 6=c

ξ − ξk
ξc − ξk

is the Lagrange polynomial of degree E associated with node ξ = ξc. When E = 1, equation (2.105)

becomes

u(ξ) = u0L0(ξ) + u1L1(ξ) (2.106)

where

L0(ξ) =
1 + ξ

2
and L1(ξ) =

1− ξ

2
(2.107)

Approximation of derivatives at collocation points gives

u′(ξ0) =
1

2
u0 −

1

2
u1 and u′(ξ1) =

1

2
u0 −

1

2
u1

or

u′ = Du
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where u = [u0 u1]
T and

D =





1
2

−1
2

1
2

−1
2





is the so-called Chebyshev differentiation matrix when E = 1. Similarly, when E = 2

u(ξ) = u0L0(ξ) + u1L1(ξ) + u2L2(ξ) (2.108)

where

L0(ξ) =
ξ(ξ + 1)

2
, L1(ξ) = 1− ξ2 and L2(ξ) =

ξ(ξ − 1)

2

Approximation of derivatives at collocation points gives

u′(ξ0) =
3

2
u0 − 2u1 +

1

2
u2

u′(ξ1) =
1

2
u0 −

1

2
u2 (2.109)

u′(ξ2) = −1

2
u0 + 2u1 −

3

2
u2

or

u′ = Du

where u = [u0 u1 u2]
T and

D =











3
2

−2 1
2

1
2

0 1
2

−1
2

2 −3
2











is the Chebyshev differentiation matrix when E = 2. Generally, for any E = 1, 2, 3, . . ., u′ = Du

where D is given by the following theorem.

Theorem 1. For each E ≥ 1, let the rows and columns of the (E + 1) × (E + 1) Chebyshev

differentiation matrix D be indexed from 0 to E. The entries of this matrix are

D00 =
2E2 + 1

6
, DEE = −2E2 + 1

6

Dcc = − ξc
2(1− ξ2c )

, c = 1, 2, ..., E − 1

Dci =
ac(−1)c+i

ai(ξc − ξi)
, c 6= i, i, c = 1, 2, ..., E − 1.
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where

ac =











2, c = 0, E

1, − 1 ≤ c ≤ 1

Since u′ = Du, then

u′′ = (u′)′ = (Du)′ = Du′ = D(Du) = D2u

Generally,

dpu

dξp
= Dpu

for each p = 1, 2, . . .. Evaluating a given differential equation

an(ξ)
dnu

dξn
+ an−1(ξ)

dn−1u

dξn−1
+ . . .+ a1(ξ)

du

dξ
+ a0(ξ) = f(ξ) (2.110)

at each ξ0, ξ1, . . . , ξN gives the system

An

dnu

dξn
+ An−1

dn−1u

dξn−1
+ . . .+ A1

du

dξ
+ A0u = f (2.111)

of nth order differential equations where

An = diag{an(ξ0), . . . , an(ξE)} =

















an(ξ0)

an(ξ1)
. . .

an(ξE)

















(2.112)

is an (E + 1)× (E + 1) diagonal matrix,

u =
[

u(ξ0) u(ξ1) . . . u(ξE)
]T

and f =
[

f(ξ0) f(ξ1) . . . f(ξE)
]T

Using Chebyshev differentiation equation, (2.111) is replaced by

(AnD
n + An−1D

n−1 + . . .+ A1D + A0)u = f
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or in short

Au = f (2.113)

where

A = AnD
n + An−1D

n−1 + . . .+ A1D + A0

Suppose differential equation (2.110) is subject to boundary conditions u(−1) = α and u(1) = β,

then we include them into equation (2.113) as follows























1 0 . . . 0

A

0 . . . 0 1













































u0

u

uE























=























β

f

α























(2.114)

Since the first equation is for determining u0 which is known from boundary condition u(1) = β

we do not need first equation so we delete it and replace with u0 = β. Similarly, last equation is

replaced with uE = α. Once u0, u1, . . . ,uE are known upon solving linear system (2.114), equation

(2.105) determines the value of u at any ξ ∈ [−1, 1].

2.5.1 Application to the Bratu’s problem

So far (1.1) has been transformed by quasi-linearization to

u′′
s+1(x) + λeus(x)us+1(x) = λeus(x)(us(x)− 1), s = 0, 1, 2, . . . (2.115a)

us+1(0) = us+1(1) = 0 (2.115b)

which upon using Chebyshev differentiation is replaced by

D2us+1 +Bus+1 = rs, s = 0, 1, 2, . . . (2.116)
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or

Aus+1 = rs, s = 0, 1, 2, . . . (2.117a)

us+1(0) = us+1(1) = 0 (2.117b)

where

B = diag{λeus(x)},

A = D2 +B,

rs(us) = λeus ◦ (us − i)

i =
[

1 1 . . . 1
]T

and A ◦ F denotes the Hadamard product, a matrix of the same size as A and

F whose elements are given by

[A ◦ F ]ij = [A]ij[F ]ij

Hence ◦ denotes elementwise multiplication for matrices. Before we solve the linear system (2.117a)

we include boundary conditions (2.117b) as follows






















1 0 . . . 0

A

0 . . . 0 1













































0

us+1

0























=























0

rs

0























In order to generate subsequent approximations us+1, s = 1, 2, . . . , E, we choose the initial approx-

imation

u0 =

















x0(1− x0)

x1(1− x1)
...

xE(1− xE)

















(2.118)

so that boundary conditions (2.117b) are satisfied. Hence, successive approximations are

us+1 = A−1rs

for each s = 0, 1
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Chapter 3

Results and discussion

3.1 Introduction

In this chapter we present the results of the finite element solutions, Matlab bvp4c solution as well

as the Chebyshev spectral collocation method solution of the Bratu’s problem and their discussion.

3.2 Finite element solution using piecewise linear Lagrange

polynomials as basis functions (LFEM)

The linear system (2.47) is solved using the Matlab code given by Program 1 in Appendix A for

E = 20 and λ = 1. A comparison between the FE solution using piecewise linear Lagrange basis

functions and the exact solution (1.2) is done in Figure 3.1
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Figure 3.1: FE solution using piecewise linear Lagrange basis functions.

A closer comparison of the results shown in Figure 3.1 is done in Table 3.1 and it shows that the

finite element solution using piecewise linear Lagrange basis functions gives a good approximation

to the exact solution with values agreeing up to 4 decimal places with a maximum absolute error

0.5× 10−4.
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x exact solution u(x) LFEM absolute error(×10−4)

0.1 0.04985 0.04983 0.2

0.2 0.08919 0.08916 0.3

0.3 0.11761 0.11757 0.4

0.4 0.13479 0.13474 0.5

0.5 0.14054 0.14049 0.5

0.6 0.13479 0.13474 0.5

0.7 0.11761 0.11757 0.4

0.8 0.08919 0.08916 0.3

0.9 0.04985 0.04982 0.3

Table 3.1: Results for FEM solution with linear Lagrange basis

3.3 Finite element solution using piecewise quadratic La-

grange polynomials as basis functions (QFEM)

The Matlab code for the solution of (2.75) with piecewise quadratic lagrange basis functions is

given in Program 2 in Appendix A. The comparison of the results of the exact solution against

the FE solution using piecewise quadratic Lagrange basis functions is shown in Figure 3.2 and

Table 3.2. The results from Table 3.2 show a good approximation of the exact solution by the FE

solution using quadratic lagrange basis functions with values agreeing up to 3 decimal places. The

comparisons made in Table 3.1 and Table 3.2 show that results for LFEM with a maximum absolute

error 0.5× 10−4 are closer to the exact solution than those QFEM with a maximum absolute error

0.23× 10−3.

60



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x

u(
x)

 

 

quadratic fem solution
exact solution

Figure 3.2: FE solution using piecewise quadratic Lagrange basis functions.

A closer comparison is presented in Table 3.2

x exact solution u(x) QFEM absolute error(×10−3)

0.1 0.04985 0.04979 0.06

0.2 0.08919 0.08909 0.10

0.3 0.11761 0.11746 0.15

0.4 0.13479 0.13460 0.19

0.5 0.14054 0.14033 0.21

0.6 0.13479 0.13457 0.22

0.7 0.11761 0.11738 0.23

0.8 0.08919 0.08898 0.21

0.9 0.04985 0.04970 0.15

Table 3.2: Results for FE solution using piecewise quadratic Lagrange basis functions
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3.4 Finite element solution using quadratic hierarchical ba-

sis functions (QHFEM)

We solved the FE equations given by (2.95) on a mesh of 20 elements with λ = 1 using the Matlab

code given in Program 3 to get results with shown in Figure 3.3.
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Figure 3.3: FE solution using piecewise quadratic hierarchical basis functions.

Numerical and exact results are in good agreement. A closer comparison is done in Table 3.3.
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x exact solution u(x) QHFEM absolute error(×10−3)

0.1 0.04985 0.04967 0.18

0.2 0.08919 0.08886 0.33

0.3 0.11761 0.11714 0.47

0.4 0.13479 0.13423 0.56

0.5 0.14054 0.13995 0.59

0.6 0.13479 0.13423 0.56

0.7 0.11761 0.11713 0.48

0.8 0.08919 0.08883 0.36

0.9 0.04985 0.04965 0.20

Table 3.3: Results for FE solution using piecewise quadratic hierarchical basis functions

The results in Table 3.3 show that the FE solution using hierarchical basis functions and the

exact solution agree up to 3 decimal places and the solution of the former with maximum error

0.59×10−3 is less closer to the exact solution as the quadratic FE solution with maximum absolute

error 0.23× 10−3.

3.5 Results from using bvp4c to solve Bratu’s problem

As in the FE solution, we solve equation (2.103a) subject to boundary conditions (2.103b) using

Matlab’s bvp4c on a mesh of 20 elements with λ = 1 using the Matlab code shown in Program 4

in Appendix A. The results of the comparison between the exact solution and the Matlab bvp4c is

shown in Figure 3.4.
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Figure 3.4: Matlab bvp4c solution of the Bratu problem.

Generally, there is a good agreement between the exact solution and the bvp4c solution. A close

comparison of the results in Figure 3.4 is done in Table 3.4
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x exact solution u(x) bvp4c absolute error(×10−4)

0.1 0.04985 0.04984 0.07029

0.2 0.08919 0.08918 0.13436

0.3 0.11761 0.11759 0.18586

0.4 0.13479 0.13477 0.21929

0.5 0.14054 0.14052 0.23088

0.6 0.13479 0.13477 0.21929

0.7 0.11761 0.11759 0.18586

0.8 0.08919 0.08918 0.13436

0.9 0.04985 0.04984 0.07029

Table 3.4: Results for exact solution against bvp4c solution

The results shown in Table 3.4 show that bvp4c solution gives results which are correct to within

4 decimal places of the exact solution. A comparison of the bvp4c, linear FE, quadratic FE and

the hiererchical basis functions solutions is made in Figure 3.5.
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Figure 3.5: A comparison of FE solutions and Matlab bvp4c solution

A closer comparison of results in Figure 3.5 is made in Table 3.7
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x exact bvp4c LFEM QFEM QHFEM

0.1 0.04985 0.04984 0.04983 0.04979 0.04969

0.2 0.08919 0.08918 0.08916 0.08909 0.08889

0.3 0.11761 0.11759 0.11757 0.11746 0.11717

0.4 0.13479 0.13477 0.13474 0.13460 0.13426

0.5 0.14054 0.14052 0.14049 0.14033 0.13995

0.6 0.13479 0.13477 0.13474 0.13457 0.13420

0.7 0.11761 0.11759 0.11757 0.11738 0.11707

0.8 0.08919 0.08918 0.08916 0.08898 0.08875

0.9 0.04985 0.04984 0.04983 0.04970 0.04957

Table 3.5: Results for FE solutions against bvp4c solution

According to results from Table 3.5 it can be deduced that the four solutions can be arranged

in order of decreasing accuracy as follows:

1. bvp4c

2. linear FE

3. quadratic FE

4. hierarchical basis functions solution.

The results of the comparison between the number of iterations and amount of time required to

achieve specified accuracy for a given number of elements is done in Table 3.6.
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No. of elements(E) No. of iterations Decimal places Runtime(s)

LFEM

20 70 4 0.11394

40 19 4 0.03651

500 1728 6 81.9406

QFEM

20 5 4 0.005715

40 4 4 0.018514

500 35 6 7.209471

QHFEM

20 3 4 0.013925

40 3 4 0.024309

500 25 6 4.805692

Table 3.6: Comparison of iteration number against runtime for LFEM, QFEM and QHFEM

Results from Table 3.6 shows that piecewise linear approximation is computationally intensive

since it requires too large a mesh E = 500 and too many iterations and runtime to achieve accuracy

of up to 6 decimal places. Increasing the polynomials from linear to quadratic and then hierarchical

reduces the number of iterations and runtime to achieve the required degree of accuracy.
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3.6 Solution using Chebyshev spectral collocation method

(CSCM)

Solution of problem (2.117a) using the Chebyshev spectral collocation method on a mesh of 20

element with λ = 1 was done using the Matlab code given as Program 5 in Appendix A. A

comparison of the Chebyshev spectral collocation solution, the exact solution and Matlab bvp4c

solution is done in Figure 3.6. They look the same and a closer comparison of the results of the

CSCM solution and exact solution is done in Table 3.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 x

u(
x)

 

 
bvp4c solution
CSCM solution
exact solution

Figure 3.6: Comparison of bvp4c and CSCM solutions with the exact solution
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x exact solution u(x) Matlab bvp4c ξ CSCM solution u(ξ)

0.1 0.049846791245413 0.049839767018395 -0.8 0.049846791245413

0.2 0.089189934628823 0.089176512344122 -0.6 0.089189934628823

0.3 0.117609095767941 0.117590532668624 -0.4 0.117609095767941

0.4 0.134790253884190 0.134768355546353 -0.2 0.134790253884189

0.5 0.140539214400472 0.140516160101251 0 0.140539214400472

0.6 0.134790253884190 0.134768355546353 0.2 0.134790253884190

0.7 0.117609095767941 0.117590532668624 0.4 0.117609095767941

0.8 0.089189934628823 0.089176512344122 0.6 0.089189934628823

0.9 0.049846791245413 0.049839767018395 0.8 0.049846791245413

Table 3.7: Results of the exact solution against CSCM solution

The results in Table 3.7 show that the CSCM is more accurate than bvp4c with the solutions

agreeing up to 15 decimal places in the former.
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Chapter 4

Conclusion and future work

In this work the one-dimensional Bratu problem is solved in two steps. First the differential equation

is linearized using quasilinearization, then linearized equation is solved using

� FEM linear and quadratic polynomial basis functions

� Chebyshev spectral collocation method

� Matlab’s bvp4c.

A comparison of the numerical results is made with the exact solution. Generally, there is good

agreement. Results obtained show that the current form of the finite element is not favourable. In

terms of accuracy, the finite element solutions are correct to 4 decimal places of the exact solution

whereas Chebyshev spectral collocation method gave results correct to 13 decimal places easily.

The accuracy of results was found to improve in the order HFEM, QFEM, LFEM and CSCM.

The large mesh size and too many iterations needed to achieve desired accuracy make the finite

element method using linear lagrange polynomials computationally intensive. This computational
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complexity could be reduced by improving polynomial degree to quadratic and hierarchical basis

functions. Achieving convergent results and ease of implementation was found to improve in the

order LFEM, QFEM, HFEM and CSCM. Future work could include the use of methods other than

the Garlekin method for constructing the trial space.
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Appendix A

Computer Code

Program 1

% piecewise linear approximation

clear all % start with a clean workspace

E=500; h=1/E; % shall form a mesh on [0,1] with E elements of length h each

Ke=(1/h)*[1 −1; −1 1]; % element stiffness matrix

K=zeros(E+1); M=zeros(E+1); w=zeros(E+1,1); % initialize global matrices

x=[0:h:1]' ;% form uniform mesh on [0,1]

u=x.*(1−x); % initial guess u 0 of u

lambda=1; % choose constant in a of

%u'' {s+1}+a(u s(x))u s(x)=b(u s(x)); s=0,1,...

ndp=6; tol=eval(sprintf('5e−%d',ndp+1)); % require accuracy to ndp

%decimal places?

du=1; % initialize 'distance' between successive u values

% must begin with du > tol. error checking needed here?????

it=0; % initialize iteration number
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% begin exact solution

t0 = 1;

options = optimset('Display','iter','TolFun',1e−12);
tt = fsolve(@(tt) tt − sqrt(2*lambda)*cosh(tt/4),t0,options);

tt = tt(1);

uex = −2*log(cosh(0.5*(x−0.5)*tt)/cosh(0.25*tt)) % exact solution

% end exact solution

tic % start stopwatch

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
while du>=tol % perform iteration as long as desired accuracy

%not yet attained

uold=u; % remember last u

b=lambda*exp(u).*(u−1); a=lambda.*exp(u); % b(u s(x)) and a(u s(x))

for e=1:E % assemble global matrices

K([e e+1],[e e+1])=K([e e+1],[e e+1])+Ke; % stiffness matrix

M([e e+1],[e e+1])=M([e e+1],[e e+1])+(h/12)*[

3*a(e)+a(e+1) a(e)+a(e+1)

a(e)+a(e+1) a(e)+3*a(e+1)

]; % mass matrix

w([e e+1])=w([e e+1])+(h/6)*[

2*b(e)+b(e+1)

b(e)+2*b(e+1)

];% load vector

end

A=M−K; % FE equations are (A(u s(x)))*u {s+1}(x)=w(u s(x))

%where A(u s(x))=M(u s(x))−K
% include boundary conditions;

AA=A(2:E,2:E); % delete first, last rows of A

ww=w(2:E); % delete first, last columns of w

u=AA\ww; % compute u {s+1}(x) given u s(x)
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it=it+1 % increment iteration number

u=[0; u; 0]; % u together with boundary values

du=norm(u−uex,inf); % how close is current u to exact solution?

fprintf('%10.0f\t %10.6f\n',it,du)
end

toc % end stopwatch

plot(x,u,'ro',x,uex,'b')

legend('numerical','exact')

xlabel('x')

ylabel('u')

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Program 2

%FE solution with quadratic Lagrange basis functions.

E=500; h=1/E; % form mesh on [0,1] with E elements of length h each

Ke=(1/(3*h))*([7 −8 1; −8 16 −8; 1 −8 7]); % element stiffness matrix

K=zeros(2*E+1);M=zeros(2*E+1); w=zeros(2*E+1,1);%initialize global matrices

x=[0:h/2:1]'; % form uniform mesh on [0,1]

u=x.*(1−x); % initial guess u 0 of u for quadratic fem

lambda=1; % choose constant in a of u'' {s+1}+a(u s(x))u s(x)=b(u s(x))

% for s=0,1,...

ndp=6; tol=eval(sprintf('5e−%d',ndp+1));%accuracy to ndp decimal places?

du=1; % initialize 'distance' between successive u values

% begin exact solution

it=0;

t0 = 1;

options = optimset('Display','iter','TolFun',1e−12);
tt = fsolve(@(tt) tt − sqrt(2*lambda)*cosh(tt/4),t0,options);
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tt = tt(1);

%x=x(1:2:end);

uex = −2*log(cosh(0.5*(x−0.5)*tt)/cosh(0.25*tt)); % exact solution

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
tic % start stopwatch

while du>=tol %perform iteration as long as desired accuracy not attained

uold=u; % remember last u

%coefficients for quadratic basis fem

a=lambda.*exp(u);

b=lambda.*exp(u).*(u−1);

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
for e=1:E % assemble global matrices

K([2*e−1 2*e 2*e+1],[2*e−1 2*e 2*e+1])=K([2*e−1 2*e 2*e+1],[

2*e−1 2*e 2*e+1])+Ke;% stiffness matrix

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
m=(13/140)*a(e)+(1/21)*a(e+1)−(1/140)*a(e+2);
n=(1/21)*a(e)+(4/105)*a(e+1)−(2/105)*a(e+2);
o=(−1/140)*a(e)+(−2/105)*a(e+1)−(1/140)*a(e+2);
q=(4/105)*a(e)+(16/35)*a(e+1)+(4/105)*a(e+2);

r=(−2/105)*a(e)+(4/105)*a(e+1)+(1/21)*a(e+2);
s=(−1/140)*a(e)+(1/21)*a(e+1)+(13/140)*a(e+2);

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
M([2*e−1 2*e 2*e+1],[2*e−1 2*e 2*e+1])=M([

2*e−1 2*e 2*e+1],[2*e−1 2*e 2*e+1])+(h)*[

[m n o

n q r

o r s ]

];% mass matrix
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w([2*e−1 2*e 2*e+1])=w([2*e−1 2*e 2*e+1])+(h/30)*[

4*b(e)+2*b(e+1)−b(e+2)
2*b(e)+16*b(e+1)+2*b(e+2)

−b(e)+2*b(e+1)+4*b(e+2)
];% load vector

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%solution for quadratic fem

A=M−K; % FE equations are (A(u s(x)))*u {s+1}(x)=w(u s(x)) where

%A(u s(x))=M(u s(x))−K
% include boundary conditions;

AA=A(2:2*E,2:2*E); % delete first, last rows of A

ww=w(2:2*E); % delete first, last columns of w

u=AA\ww; % compute u {s+1}(x) given u s(x)

%error = norm(u−uex,inf)
it=it+1 % increment iteration number

u=[0; u; 0]; % u together with boundary values

du=norm(u−uold,inf); % how close is current u to previous u?

fprintf('%10.0f\t %10.6f\n',it,du)
end

toc % end stopwatch

format long

%u=u(1:2:end);

plot(x,u,'ro',x,uex,'b')

legend('quadratic fem solution','exact solution')

xlabel('x')

ylabel('u(x)')

%title('Quadratic Lagrange FE solution ')

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Program 3

% piecewise quadratic hierarchical approximation

% clear all % start with a clean workspace

E=500; h=1/E; % shall form a mesh on [0,1] with E elements of length h each

Ke=(1/h)*([1 0 −1; 0 2 0; −1 0 1 ]); % element stiffness matrix

% initialize global matrices

K=zeros(2*E+1);M=zeros(2*E+1); w=zeros(2*E+1,1);

x=(0:h/2:1)';% form uniform mesh on [0,1]

u=x.*(1−x); % initial guess u 0 of u

% choose constant in a of u'' {s+1}+a(u s(x))u s(x)=b(u s(x)); s=0,1,...

lambda=1;

% require accuracy to ndp decimal places?

ndp=6; tol=eval(sprintf('5e−%d',ndp+1));
du=1; % initialize 'distance' between successive u values

% must begin with du > tol. error checking needed here?????

it=0; % initialize iteration number

% begin exact solution

t0 = 1;

options = optimset('Display','iter','TolFun',1e−12);
tt = fsolve(@(tt) tt − sqrt(2*lambda)*cosh(tt/4),t0,options);

tt = tt(1);

x=x(1:2:end);

uex = −2*log(cosh(0.5*(x−0.5)*tt)/cosh(0.25*tt));% exact solution

% end exact solution

tic % start stopwatch

% perform iteration as long as desired accuracy not yet attained

while du>=tol

uold=u; % remember last u
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a=lambda*exp(u);

b=lambda*exp(u).*(u−1); % b(u s(x)) and a(u s(x))

for e=1:E % assemble global matrices

K([2*e−1 2*e 2*e+1],[2*e−1 2*e 2*e+1])=K([2*e−1 2*e 2*e+1],[

2*e−1 2*e 2*e+1])+Ke;% stiffness matrix

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%expressions for mass matrix elements

m=(1/4)*a(e)+(1/12)*a(e+1);

n=(−sqrt(6)/20)*a(e)−(sqrt(6)/30)*a(e+1);
o=(1/12)*a(e)+(1/12)*a(e+1);

q=(1/10)*a(e)+(1/10)*a(e+1);

r=(−sqrt(6)/30)*a(e)−(sqrt(6)/20)*a(e+1);
u=(1/12)*a(e)+(1/4)*a(e+1);

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
M([2*e−1 2*e 2*e+1],[2*e−1 2*e 2*e+1])=M([

2*e−1 2*e 2*e+1],[2*e−1 2*e 2*e+1])+(h)*[

m n o

n q r

o r u

];% mass matrix

w([2*e−1 2*e 2*e+1])=w([2*e−1 2*e 2*e+1])+(h/6)*[

2*b(e)+b(e+1)

(−sqrt(3/2))*(b(e)+b(e+1))
b(e)+2*b(e+1)

];% load vector

end

% FE equations are (A(u s(x)))*u {s+1}(x)=w(u s(x))

%where A(u s(x))=M(u s(x))−K
A=M−K;
% include boundary conditions;
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AA=A(2:2*E,2:2*E); % delete first, last rows of A

ww=w(2:2*E); % delete first, last columns of w

u=AA\ww; % compute u {s+1}(x) given u s(x)

it=it+1 % increment iteration number

format long

u=[0; u; 0]; % u together with boundary values

du=norm(u−uold,inf); % how close is current u to previous u?

%fprintf('%10.0f\t %10.6f\t %10.6f\n',it,u(E/2),uex(E/2))
%du=norm(u−uex,inf) % how close is current u to exact solution?

fprintf('%10.0f\t %10.6f\n',it,du)
end

%error=u−uex;
toc % end stopwatch

u=u(1:2:end);

plot(x,u,'ro',x,uex,'b')

legend('numerical','exact')

xlabel('x')

ylabel('u(x)')

%title('FE solution with quadratic hierarchical basis functions')

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Program 4

%Bratu type u''(x)+exp(u(x))=0 solution using matlab bvp4c

function bvpBratu %function definition

lambda=1;% using the value lambda=1

E=20;%number of elements

h=1/E;%lenght of each element

solinit=bvpinit([0:h:1],[−1 0]);% initial guess of the solution
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BVPsol=bvp4c(@twoode,@twobc,solinit);%solving the differential equation

xmesh=[0:h:1];% forming a mesh of 20 elements

uatx=deval(BVPsol,xmesh);% evaluating the solution at mesh points

s=uatx(1,:);

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%exact solution

t0=1;

tt = fsolve(@(tt) tt − sqrt(2*lambda)*cosh(tt/4),t0);

tt = tt(1);

uex = −2*log(cosh(0.5*(xmesh−0.5)*tt)/cosh(0.25*tt));
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
plot(xmesh,uatx(1,:),'r',xmesh,uex,'o')

xlabel('x')

ylabel('u(x)')

legend('bvp4c solution','exact solution')

%title('bvp4c solution of Bratu problem')

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function dudx=twoode(xmesh,uatx)

%evaluating the differential equation

dudx=[uatx(2);−exp(uatx(1))];
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function res = twobc(uatxa,uatxb)

%combuting residues in the boundary conditions

res=[uatxa(1); uatxb(1)];

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Program 5
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function bvpCheb%function definition

E =20;h=1/E;% shall form a mesh on [−1,1] with E elements of length h each

[DifMatrx , x] = cheb(E);%computing differentiation matrix

xmesh=[−1:h:1];% form a mesh on [−1,1]
D2 = DifMatrxˆ2; D2 = D2(2:E,2:E);%applying the boundary condition

u = x.*(1−x);%initial guess of the solution

u=u(2:E);%applying boundar conditions

du = 1; it = 0;%initialise iteration number to zero

D21=D2+diag(exp(u));%equation in terms of differentiation matrices

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
tic%start stopwatch

while du > 1e−4 % fixed−point iteration

f1=exp(u).*(u−1);
f=exp(u)/4;

unew = −D2\f;
du = norm(unew−u,inf);
u = unew; it = it+1;

end

toc%stop stopwatch

u = [0;u;0];%solution u(x)

format long

uu = polyval(polyfit(x,u,E),xmesh);

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%bvp4c solution

initialsol=bvpinit(−1:h:1,[−1 1]); % initial guess

BVPsol=bvp4c(@odebratu,@bcbratu,initialsol); % solving the d.e

uatx=deval(BVPsol,xmesh);%evaluating solution at mesh points

s=uatx(1,:);

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% begin exact solution
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xmesh=[0:h:1];

lambda=1;

t0 = 1;

options = optimset('Display','iter','TolFun',1e−12);
tt = fsolve(@(tt) tt − sqrt(2*lambda)*cosh(tt/4),t0,options);

tt = tt(1);

uex = −2*log(cosh(0.5*(xmesh−0.5)*tt)/cosh(0.25*tt)); % exact solution

% end exact solution

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% plotting the solution

s=uatx(1,:);

s=s(1:2:end);

uu=uu(1:2:end);

plot(xmesh,s,'ro',xmesh,uu,xmesh,uex,'x')

xlabel(' x')

ylabel('u(x)')

legend('bvp4c solution','CSCM solution','exact solution')

%title('bvp4c,exact and CSCM solution')

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function dudx = odebratu(xmesh,uatx)

%evaluate differential equation for different coefficients a(x)

a=1/4;

dudx = [uatx(2);

−a*exp(uatx(1))];
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
function [bcres] = bcbratu(uatxa,uatxb)

% compute residuals in boundary conditions

bcres= [uatxa(1);
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uatxb(1)];

end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Appendix B

Nomenclature

Ωe = physical domain associated with element e

c = number of edges

xc−1 = vertex associated with edge c− 1

xc− 1

2

= vertex associated with edge c− 1
2

xc = vertex associated with edge c

E = number of elements

u = exact solution

v = test/weight function

U = trial solution

V = approximation of the weight function

φc−1 = basis function associted with node c− 1

φc− 1

2

= basis function associted with node c− 1
2

φc = basis function associted with node c

Nc−1 = element shape function associted with node c− 1
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Nc− 1

2

= element shape function associted with node c− 1
2

Nc = element shape function associted with node c

Πe = canonoical problem domain

Kc = element stiffness matrix

Mc = element mass matrix

wc = element load vector

bc = nodal value associated with node xc

E(x) = Young’s modulus

N(x) = resultant force (N)

L = length (m)

A(x) = cross sectional area (m2)

p(x) = distributed force (N)
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