Expression of the cDNA Encoding the *Pterocarpus angolensis* (Mukwa Tree)-Seed Lectin in *Escherichia coli* and Site-Directed Mutagenesis of the Sugar-Binding Specificity Loop

By FARISAI CHIDZWONDO

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Department of Biochemistry Faculty of Science University of Zimbabwe August 2005

ABSTRACT

The mannose/glucose specific lectin from *Pterocarpus angolensis* (mukwa tree) seeds was expressed in *Escherichia coli* using the pBAD expression system. The expression vector pBAD*Myc*HisA was digested with *Nco*I and filled-in with T4 DNA polymerase in order to introduce an initiator ATG codon preceding the polymerase chain reaction-amplified cDNA encoding the mature mukwa seed lectin. The recombinant plasmid was used to transform the expression cell line *E. coli* TOP10 cells.

The cDNA clone, Muk151QII28, encoding the wild type mukwa seed lectin, was used as the template for oligonucleotide-directed mutagenesis of the sugar binding specificity. The first approach involved removing the part of the mukwa seed lectin sugar-specificity loop (loop D) that interacts with the sugar, and replacing it with the corresponding region of either the *Ulex europaeus* II lectin (UEA II) or the *Erythrina corallodendron* lectin (ECorL). In the second approach, two other mutants, predicted from X-ray crystallography to change the mukwa seed lectin sugar specificity from α-mannose/glucose to β-mannose/glucose, were generated. The DNA region carrying the mutations was then sub-cloned into the pBADMycHisA-wild type mukwa seed lectin recombinant in which the corresponding DNA region had been excised. The four mutants were expressed in E. coli TOP10 cells. The mutant lectins were assayed for cross-reactivity with antiserum directed against the native mukwa seed lectin in order to determine if the antiserum could be used in Western blotting. Hen egg white glycoproteins and glycoproteins of high variability isolated from porcine and bovine plasma were then blotted onto nitrocellulose and used to determine if the mutant lectins were capable of recognizing any carbohydrate moieties on glycoproteins.

Maximum expression of both the wild type and the mutant lectins was obtained after induction with 0.2 % L-arabinose in cultures grown overnight. The presence or absence of a protease inhibitor cocktail did not seem to improve the yield. Up to 7.7 mg/500 ml culture of the expressed wild type lectin could be isolated from the extract by affinity chromatography on mannose-Sepharose. The purified lectin has a specific absorbance of OD_{280nm} 1 mg/ml = 1.3 and shows an absorbance ratio of OD_{280nm} / OD_{250nm} \approx 3, the same as for the native lectin isolated from mukwa seeds. The expressed lectin has a slightly lower molecular mass than the native lectin but the two are essentially indistinguishable by Western blot analysis with anti-mukwa seed lectin polyclonal antibodies, haemagglutinating activity and both are inhibited by methyl- α -D-mannopyranoside.

The mutant lectins cross-reacted with antiserum directed against the native mukwa seed lectin and all of them were capable of binding some carbohydrate moieties as shown by Western blotting. However, the wild type lectin showed a higher affinity for the carbohydrate moieties on the glycoproteins compared to the mutant lectins. The mutants, except for the UEA II specificity loop mutant, were successfully purified on an anti-mukwa seed lectin IgG-Sepharose column and used in agglutination assays. None of the mutants was capable of agglutinating any of the different animal erythrocytes tested showing that other factors apart from loop D determine sugar specificity in legume lectins.

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Prof. J.S. Read for initiating the project and introducing me to the field of lectinology. His availability, encouragement and support, especially during times when experiments in the lab were not yielding much, are greatly appreciated. I am also grateful to Dr. K. Iams for his guidance throughout the initial experiments of the project.

I am deeply indebted to Prof. I. Sithole-Niang for her unwavering support and expertise guidance from the time she took over the supervision from Dr. Iams all the way to the writing up of the thesis. I am particularly thankful to her for the constructive discussions during the putting together of the thesis.

Special thanks to the Directorate General for International Cooperation, Flemish Interuniversity Council (DGIC/VLIR) for sponsoring the Free University of Brussels-University of Zimbabwe (VUB-UZ) Lectin Project. This project funded the three visits to the Free University of Brussels, Institute of Molecular Biology and Biotechnology.

Great appreciation is expressed to Prof. E. Van Driessche and Prof. S. Beeckmans for hosting me in Brussels. Many sincere thanks to Prof. H. De Greve and Prof. S. Beeckmans for allowing me to work in their laboratories. I am greatly indebted to them for their expertise and supervision throughout my stay. The technical assistance from Sien and Nele will always be remembered.

My sincere gratitude to Dr. I. Ncube, Rudo and Muzaka for the help I got from them during the last phase of the research work.

The contribution by Zvidzai, Claudius and Mayaba in the editing of the thesis and the constructive discussions with Richard and Jane in the putting together of the thesis cannot go unmentioned.

Many special thanks to Rudi and Alain for helping me find my way in a foreign land. I am also grateful to Connie, Dannele, Maria and Virna for the moral support. Sincere appreciation is expressed to Lynn, Memory, Loveness and the many brethren who encouraged me, prayed for me and believed God to see me through.

Back home, I am truly grateful to my husband, Weddington, for praying for me and encouraging me to soldier on, particularly during times when giving up was an attractive option. Special thanks to my son, Tirivashe, for believing in me that I would return from Belgium and that this project would one day come to an end. Thanks to my daughter, Bethel, for enduring my coming home late as I finalized on the writing up of the thesis.

The constant support and encouragement I got from my entire family throughout the study deserve to be mentioned.

Above all I thank my Lord and Saviour Jesus Christ for enabling me and to Him be all the glory and all the honour.

"I can do all things through Christ who strengthens me." Phillipians 4^{13} .

To the two men in my life, Weddington and Tirivashe, who many a time, had to bear with an absentee wife and mother respectively.

CONTENTS

				Page
Abstr				11 iii
Conte	owledg	ements		
	eviation	10		vi xi
Table		13		xiii
Figur				xiv
	ndices			xvi
1.		ROD	UCTION	1
_,	1.1		of the Present Study	3
2.			TURE REVIEW	5
	2.1		orical Background	5
	2.2		ning a Lectin	6
	2.3		ins in Nature	8
	2.4		t Lectins	8
	_, _		Classification	9
			2.4.1.1 Based on Sugar Specificity	10
			2.4.1.2 Based on Overall Structure of Mature Lectin	12
			2.4.1.3 Based on Evolutionary Relationships	13
		2.4.2	Physiological Functions	15
		2.4.3	Anti-Nutritional Properties	17
			Purification and Detection	19
			Applications	20
			Lectin Genes	22
	2.5	_	ime Lectins	23
			Biosynthetic Pathway	24
			Structure	26
			Lectin-Sugar Interaction	30
			Sugar-Binding Site	32
			Primary Sugar-Binding Specificity	32
	2.6			33 36
	_,,		ocarpus Genus	36
	4.1		ocarpus angolensis Distribution	36 36
			Description	37
			Uses	37
			Lectin Activity	39
3.	MA		ALS AND METHODS	40
3.1		TERI		40
•••			mids and Bacterial Strains	42
3.2		THO		43
			olification of the cDNA Encoding the Mature Wild	
	J.=11	_	e Mukwa Seed Lectin By PCR	43
	3.	.2.1.1	Primer Design	43
		2.1.2	PCR	46

	3.2.1.3	Purification of PCR Fragments	47
3.	2.2 Clon	ing of the Amplified cDNA Encoding the Mature	
		Type Mukwa Seed Lectin into the Expression	
		or pBADMycHisA	47
		± •	4/
	3.2.2.1	Digestion of pBAD <i>Myc</i> HisA with the Restriction Endonuclease	48
	2222	NcoI	48
	3.2.2.2	Filling-In of the Nool-digested pBADMycHisA	48
	3.2.2.3	Digestion of the <i>Nco</i> I-filled-in pBAD <i>Myc</i> HisA with <i>Eco</i> RI Polishing of the PCR Fragments	48 49
	3.2.2.4		49
	3.2.2.5	Digestion of the PCR-Generated Fragments with EcoRI	49
	3.2.2.6	Ligation of pBADMycHisA Vector to PCR-Generated	50
	3.2.2.7	Fragments Proportion of Competent Colls	50
		Preparation of Competent Cells Transformation of Competent Cells by the CaCl ₂ Method	51
	3.2.2.8	Colony Screening PCR for Possible Recombinants	51
	3.2.2.9	•	52
	3.2.2.10 3.2.2.11	Culturing of Bacteria and Small-Scale Plasmid DNA Isolation	32
	3.2.2.11	Identification of pBAD <i>Myc</i> HisA-Wild Type Mukwa Seed Lectin Recombinants	53
	2 2 2 12		53
•	3.2.2.12	Isolation of Plasmid DNA Using the QIAprep Spin Miniprep Kit	33
٤.		equencing of Cloned Wild Type Mukwa Seed Lectin	
		NA Fragments	54
	3.2.3.1	Preparation of Sequencing Reactions	55
		3.2.3.1.1 Reaction Mixture	55
		3.2.3.1.2 Termination Mixture	56
		3.2.3.1.3 PCR	56
	3.2.3.2	Denaturing Polyacrylamide Gel Electrophoresis	57
		3.2.3.2.1 Gel Casting	57
		3.2.3.2.2 Electrophoresis	58
		3.2.3.2.3 Gel Fixing, Drying and Autoradiography	58
	3.2.3.3	Reading of Sequences	58
3.	2.4 E	xpression of the Mature Wild Type Mukwa Seed	
	\mathbf{L}	ectin in <i>E. coli</i>	59
	3.2.4.1	Transformation of E. coli TOP10 Cells Using the the CaCl ₂	
		Method	59
	3.2.4.2	Pilot Expression of the Wild Type Mukwa Seed Lectin	60
	3.2.4.3	Analysis of Expression of the Wild Type Mukwa Seed Lectin	
		by SDS-PAGE	61
		3.2.4.3.1 Gel Casting	61
		3.2.4.3.2 Sample Preparation and Electrophoresis	62
	3.2.4.4	Analysis of Expression of the Wild Type Mukwa Seed Lectin by	
		Western Blotting	63
		3.2.4.4.1 Electrophoretic Transfer	63
		3.2.4.4.2 Immunoprobing and Visual Detection of Proteins	64
3.	2.5 Assa	ying the Expressed Wild Type Mukwa Seed Lectin	
		Activity	65
	3.2.5.1	Scale-Up of Expression for Assaying for Biological Activity	65
	3.2.5.2	Sonication of Cells	66
	3.2.5.3	Biological Activity Tests	66
		⊌ · · · · · · · · · · · · · · · · · · ·	

			viii
	3.2.5.3.1	Washing of Rabbit and Human Erythrocytes	66
	3.2.5.3.2	Haemagglutination Assays	67
	3.2.5.3.3	Inhibition of Agglutination	67
3.2.6 Puri	fication of t	he Expressed Wild Type Mukwa Seed	
		ty Chromatography	68
3.2.6.1		Expression for Purification	68
3.2.6.2		omatography	69
3.2.0.2	3.2.6.2.1	Immobilization of Mannose onto Sepharose-4B	70
	3.2.6.2.2	Affinity Chromatography on Mannose-	70
	0.2.0.2.2	Sepharose-4B Column	70
3.2.6.3	Analysis of l		71
	3.2.6.3.1	Determination of Protein Concentration by the	
		BCA Assay	71
3.2.6.4	Determination	on of the Effect of Culture Volumes on the Yield	
	of Expressed	l Lectin	72
3.2.7 Muta	agenesis of 1	the Sugar-Binding Specificity Loop of the	
	wa Seed Le		73
3.2.7.1		rimer Design	73
3.2.7.2		tide-Directed Mutagenesis by Elimination of a	
	Unique Rest		76
3.2.7.3	*	of the EcoRV Recognition Site into Clone	
	Muk151QII2	28	77
	3.2.7.3.1	Annealing of Primers to Plasmid DNA and	
		Synthesis of Mutant DNA Strand	77
	3.2.7.3.2	Primary Selection by Restriction Endonuclease	
		Digestion	78
	3.2.7.3.3	Transformation of <i>E. coli</i> WK6 <i>mut</i> S Cells	78
		3.2.7.3.3.1 Preparation of Electropocompetent	70
		Cells 3.2.7.3.3.2 Electroporation	79 79
	3.2.7.3.4	3.2.7.3.3.2 Electroporation Enrichment for Mutant Plasmids	80
3.2.7.4		of the <i>Bsp</i> EI Recognition Site into Clone	80
3.2.7.4		28 Carrying the Eco RV Recognition Site	81
3.2.7.5		of the UEA II and ECorL Specificity Loops into	01
3.2.7.3	the Mukwa S		81
3.2.7.6		t of Aspartic Acid Residue with Alanine (ESP10) in	01
		rying the ECorL Specificity Loop	82
3.2.7.7		of Glutamic Acid (E ²²¹) and Glutamine (Q ²²²)	
		the Mukwa Seed Lectin Specificity Loop by	
		Glycine (G) Residues	83
3.2.7.8		g of the DNA Encoding the Mukwa Mutant Lectins	
	into the pBA	ADMycHisA-Wild Type Mukwa Seed Lectin Clone	83
3.2.7.9	Expression of	of the Mukwa Seed Mutant Lectins	84
3.2.8 Chai	racterizatio	n of the Mukwa Seed Mutant Lectins	85
3.2.8.1	Assaying for	Cross-Activity of the Mutant Lectins with	
		Directed Against the Mukwa Seed Lectin	85
	3.2.8.1.1	Ammonium Sulphate Fractionation	85
	3.2.8.1.2	Agarose Gel Immunodiffusion Tests	86

	3.2	2.8.2 Assaying for Recognition of Glycoproteins by the Mukwa Seed	0.5
		Mutant Lectins	87
		3.2.8.2.1 Preparation of Glycoproteins of High Variability	87
		3.2.8.2.2 Analysis of Binding of Glycoproteins by Recombinant Lectins	88
	220		
		Purification of the Mukwa Seed Mutant Lectins	89
		2.9.1 Immunogen Preparation	89
		2.9.2 Immunization and Bleeding of Rabbits	90
	3	2.9.3 Isolation of Total IgG by Caprylic Acid Fractionation and DEAE-Cellulose Chromatography	91
	3 1	2.9.4 Immobilization of the Native Mukwa Seed Lectin onto	71
	5.2	Sepharose-4B	92
	3.2	2.9.5 Isolation of Specific IgG on the Mukwa Lectin-Sepharose-4B	-
		Column	92
	3.2	2.9.6 Immobilization of Specific IgG Directed Against the Mukwa	
		Seed Lectin onto Sepharose-4B	93
	3.2	2.9.7 Isolation of Mukwa Seed Recombinant Lectins on the Anti-	
		Mukwa Seed Lectin IgG-Sepharose-4B Column	93
	3.2.1	0 Assaying the Mukwa Seed Mutant Lectins for Activity	94
4.	RES	SULTS	95
4.1	Expr	ression of the cDNA Encoding the Mukwa Seed Lectin in	
	E. co		95
	4.1.1	Amplification of the cDNA Encoding the Mature Wild Type Mukwa	,
		Seed Lectin by PCR	95
	4.1.2	Cloning of the cDNA Encoding the Mature Wild Type Mukwa Seed	-
		Lectin into the Expression Vector pBADMycHisA	96
	4.1.3	Sequencing of the Mature Wild Type Mukwa Seed Lectin cDNA Clones	97
	4.1.4	Analysis of Expression of the cDNA Encoding the Wild Type Mukwa	
		Seed Lectin in E. coli	100
	4.1.5	Assaying the Expressed Wild Type Mukwa Seed Lectin for Activity	103
	4.1.6	Purification of the Expressed Wild Type Mukwa Seed Lectin by Affinity	
		Chromatography	103
4.2		agenesis of the Sugar-Binding Specificity Loop of the	
	Muk	wa Seed Lectin	10 4
	4.2.1	Introduction of Restriction Endonuclease Sites into Clone Muk151QII28	
		for the Removal of the Mukwa Seed Lectin Specificity Loop	104
	4.2.2	Introduction of the UEA II and ECorL Specificity Loops into the Mukwa	100
	4.0.0	Seed Lectin	106
	4.2.3	Replacement of Amino acid Residue D with A (ESP10) in Mutants	100
	121	Carrying the ECorL Specificity Loop Substitution of Glutamic Acid (E ²²¹) and Glutamine (Q ²²²) Residues	108
	4.2.4	in the Mukwa Seed Lectin Specificity Loop by One or by Two Glycine	
		Residues	110
4.3	Clan	ing of the Mukwa Seed Lectin Mutants into the Expression	110
T.J			112
1 1		or pBADMycHisA	
4.4	sequ	iencing of the Mukwa Seed Lectin Mutants	116

	4.5	Analysis of Expression of the Mukwa Seed Lectin Mutants	
		in E. coli	121
	4.6	Characterization of the Mukwa Seed Mutant Lectins	123
	4.6	Cross-Reactivity of the Mukwa Seed Recombinant Lectins with	
		Antiserum Directed Against the Native Mukwa Seed Lectin	123
	4.6	Preparation of Glycoproteins of High Variability	126
	4.6	Recognition of Glycoproteins by the Mukwa Seed Recombinant	
		Lectins	126
	4.6	Preparation of Antiserum Directed Against the Native Mukwa	
		Seed Lectin	132
		Isolation of Specific Anti-Mukwa Seed Lectin IgG	132
	4.6	Purification of the Mukwa Seed Recombinant Lectins on a	
		Specific Anti-Mukwa Seed Lectin IgG-Sepharose Column	133
	4.6	Agglutinating Assays of the Mukwa Seed Mutant Lectins	135
5.	. DIS	CUSSION	136
	5.1	Expression of the cDNA Encoding the Mukwa Seed	
		Lectin in E. coli	136
	5.2	Mutagenesis of the Sugar-Binding Specificity Loop of	
		the Mukwa Seed Lectin	142
	5.3	Conclusions	149
	5.4	Recommendations	149
6.		FERENCES	151
7.	. API	PENDICES	167

ABBREVIATIONS

 $\begin{array}{ccc} A & & amperes \\ \alpha & & alpha \end{array}$

AS ammonium sulphate ATP adenosine triphosphate

β beta

BCA bicinchoninic acid

BCIP 5-bromo-4-chloro-3-indoyl phosphate

bp base pair

BSA bovine serum albumin

°C degrees Celsius CaCl₂ calcium chloride

CBD carbohydrate-binding domain

cDNA complementary deoxyribonucleic acid

cm centimetre

CNBr cyanogen bromide CTP cytidine triphosphate

d deoxy dd dideoxy

DEAE diethylaminoethyl DMF dimethylformamide DNA deoxyribonucleic acid

dNTP deoxy nucleoside triphosphate

DTT dithiothreitol

EDTA ethylenediamine tetraacetic acid

ER endoplasmic reticulum

Fuc fucose g gram

Gal α -D-galactose

GalNAc N-acetyl-D-galactosamine

Glc α -D-glucose

GlcNAc N-acetyl-D-glucosamine GTP guanosine triphosphate HCl hydrochloric acid

hr hour

IgG immunoglobulin G ITP inosine triphosphate

kb kilobase kDa kilodalton

KOH potassium hydroxide

L litre

LB Luria-Bertani Man α-D-mannose

m milli
ml millilitre
mm millimetre
M molar

MgCl₂ magnesium chloride

min minute

MM molecular mass MnCl₂.4H₂O manganese chloride

mRNA messenger ribonucleic acid

Na₂CO₃ sodium carbonate

NaHCO₃ sodium hydrogen carbonate

 $\begin{array}{lll} NaCl & sodium \ chloride \\ NaIO_4 & sodium \ periodate \\ NaN_3 & sodium \ azide \\ NaOH & sodium \ hydroxide \\ NBT & nitroblue \ tetrazolium \\ NEB & New \ England \ Biolabs \\ \end{array}$

ng nanogram nm nanometre

NMR nuclear magnetic resonance NeuNAc N-acetyl-D-neuramic acid

OH hydroxyl group

PAGE polyacrylamide gel electrophoresis

PBS phosphate buffered saline PCR polymerase chain reaction PEG polyethyleneglycol

pmol picomol

PMSF phenylmethylsulfonylfluoride RIP ribosome inactivating protein rRNA ribosomal ribonucleic acid rpm revolutions per minute

sec second

SDS sodium dodecyl sulphate

TB tris borate

TBE tris-borate-ethylenediamine tetraacetic acid

TEA triethylamine

TEMED N,N,N'N'-tetramethylethylenediamine

tRNA transfer ribonucleic acid TTP thymidine triphosphate

μF micro Farads (units of capacitance)

μl microlitre μg microgram

U.S.E. unique site elimination

V volts

v/v volume for volume

W watts

w/v weight for volume

x g centrifugal force (gravity)

TABLES

	TABLES	
		Page
Table 2.1	Examples of Plant Lectins with Different Sugar Specificities	11

FIGURES

		Page
Figure 2.1	Schematic representation of the four structural types of plant lectins	12
Figure 2.2	Schematic representation of the biosynthesis of legume lectins	26
Figure 2.3	Overall structure of the <i>Pterocarpus angolensis</i> (mukwa) seed lectin	29
Figure 2.4	Schematic diagram showing monosaccharide recognition by lectins	31
Figure 2.5	Loop conformations in the sugar-binding sites of legume lectins	35
Figure 2.6	Picture of <i>Pterocarpus angolensis</i> (mukwa tree)	38
Figure 3.1	Primer design based on clone Muk151QII28	45
Figure 3.2	Mutagenic primer design	74
Figure 4.1	PCR analysis of clone Muk151QII28	95
Figure 4.2	EcoRI-EcoRV restriction pattern of pBADMycHisA putative clones	
C	carrying the mature mukwa seed lectin 700 bp DNA fragment	
	generated by PCR	97
Figure 4.3	Nucleotide sequence around the <i>NcoI</i> -filled-in recognition site	
O	of pBADMycHisA clones pGV4976 and pGV4977	98
Figure 4.4	Nucleotide sequence around the <i>NcoI</i> -filled-in recognition site of	
_	pBADMycHisA clones pGV4978 and pGV4979	98
Figure 4.5	Nucleotide and amino acid sequence of the mature mukwa seed lectin	99
Figure 4.6	SDS-PAGE analysis of total protein in <i>E. coli</i> TOP10 cells transformed	
_	with pGV4977	101
Figure 4.7	SDS-PAGE analysis of total protein in <i>E. coli</i> TOP10 cells transformed	
	with both BL21CodonPlus-RIL and pGV4977	101
Figure 4.8	Western blot analysis of total protein in E. coli TOP10 cells transformed	
	with pGV4977	102
Figure 4.9	SDS-PAGE analysis of the purified wild type mukwa seed lectin	104
Figure 4.10	Restriction pattern of putative mutants of clone Muk151QII28 carrying	
	the BspEI and EcoRV recognition sites	105
Figure 4.11	Nucleotide and amino acid sequence of the mukwa seed lectin mutant	
	carrying the <i>Bsp</i> EI and <i>Eco</i> RV recognition sites	106
Figure 4.12	Restriction pattern of putative mutants of clone Muk151QII28 with the	
	respective UEA II specificity loop and the ECorL specificity loop	107
Figure 4.13	Nucleotide and amino acid sequence of the mukwa seed lectin mutant	
	carrying the ECorL specificity loop with amino acid residue ESP10 as	
	D instead of the required A	108
Figure 4.14	ApaL1-restriction pattern of putative mutants of clone Muk151QII28	
	carrying the ECorL specificity loop	109
Figure 4.15	EcoRI-EcoRV-restriction pattern of putative mutants of clone	
	Muk151QII28 carrying the $S^{137} \rightarrow Y + E^{221}Q^{222} \rightarrow \text{single } G$	
	substitution in the specificity loop	111
Figure 4.16	Fsp1-restriction pattern of putative mutants of clone Muk151QII28	
	carrying the $S^{137} \rightarrow Y + E^{221}Q^{222} \rightarrow$ double G substitution in the	
	specificity loop	111
Figure 4.17	BstZ1-restriction pattern of pBADMycHisA-mukwa seed lectin putative	
	mutants carrying the UEA II specificity loop	113
Figure 4.18	ApaL1-restriction pattern of pBADMycHisA-mukwa seed lectin putative	
	mutants carrying the ECorL specificity loop	114

Figure 4.19	Restriction pattern of pBADMycHisA-mukwa seed lectin putative	
	mutants carrying the $S^{137} \rightarrow Y + E^{221}Q^{222} \rightarrow$ single G substitution in the	
	specificity loop	115
Figure 4.20	Restriction pattern of pBADMycHisA-mukwa seed lectin putative	
	mutants carrying the $S^{137} \rightarrow Y + E^{221}Q^{222} \rightarrow double G$	
E. 4.04	substitution in the specificity loop	115
Figure 4.21	Nucleotide and amino acid sequence of the mature mukwa seed	117
F. 4.00	lectin mutant carrying the UEA II specificity loop	117
Figure 4.22	Nucleotide and amino acid sequence of the mature mukwa seed	110
F: 4.22	lectin mutant carrying the ECorL specificity loop	118
Figure 4.23	Nucleotide and amino acid sequence of the mature mukwa seed lectin	440
E. 404	mutant carrying the $S^{137} \rightarrow Y + E^{221}Q^{222} \rightarrow \text{single G substitution}$	119
Figure 4.24	Nucleotide and amino acid sequence of the mature mukwa seed lectin	
	mutant carrying the $S^{137} \rightarrow Y + E^{221}Q^{222} \rightarrow$ double G substitution	120
Figure 4.25	SDS-PAGE analysis of total protein in <i>E. coli</i> TOP10 cells transformed	101
F: 406	with pGV5031	121
Figure 4.26	SDS-PAGE analysis of total protein in <i>E. coli</i> TOP10 cells transformed	100
Fia 4 27	with pGV5022	122
Figure 4.27	SDS-PAGE analysis of total protein in <i>E. coli</i> TOP10 cells transformed	122
Figure 4.28	with pGV5018 SDS PAGE analysis of total protein in E. coli TOP10 calls transformed	122
rigure 4.20	SDS-PAGE analysis of total protein in <i>E. coli</i> TOP10 cells transformed with pGV5026	123
Figure 4.29	Immunodiffusion assays of the ammonium sulphate fractions of the	123
rigure 4.27	crude extract from E. coli TOP10 cells expressing the mukwa seed	
	recombinant lectins	125
Figure 4.30	Western blot analysis of the recognition of glycoproteins by the crude	123
	extract from cells expressing the wild type mukwa seed lectin	127
Figure 4.31	Western blot analysis of the recognition of glycoproteins by the crude	
8	extract from cells expressing the mukwa seed lectin mutant carrying	
	the UEA II specificity loop	128
Figure 4.32	Western blot analysis of the recognition of glycoproteins by the crude	
	extract from cells expressing the mukwa seed lectin mutant carrying	
	the ECorL specificity loop	129
Figure 4.33	Western blot analysis of the recognition of glycoproteins by the crude	
	extract from cells expressing the mukwa seed lectin mutant carrying	
	the $S^{137} \rightarrow Y + E^{221}Q^{222} \rightarrow single G$ substitution	130
Figure 4.34	Western blot analysis of the recognition of glycoproteins by the crude	
	extract from cells expressing the mukwa seed lectin mutant carrying	
	the $S^{137} \rightarrow Y + E^{221}Q^{222} \rightarrow$ double G substitution	131
Figure 4.35	SDS-PAGE analysis of the purified wild type and the ECorL specificity	
	loop mukwa seed recombinant lectins expressed in <i>E. coli</i>	122
Fig 4 26	TOP10 cells	133
Figure 4.36	SDS-PAGE analysis of the purified $S^{137} \rightarrow Y + E^{221}Q^{222} \rightarrow single G$ substitution and the $S^{137} \rightarrow Y + E^{221}Q^{222} \rightarrow double G$ substitution	
	•	124
	mukwa seed mutant lectins expressed in E. coli TOP10 cells	134

APPENDICES

		Page
Appendix A	Abbreviations for Amino Acids	167
Appendix B	Abbreviations for Lectins	168
Appendix C	Nucleotide and Amino Acid Sequence of Clone Muk151QII28	169
Appendix D	Primer Sequences	170
Appendix E	Plasmid Map of pUC18/19	171
Appendix F	Plasmid Map of pBADHis/pBADMycHis	172
Appendix G	Regulation of the araBAD promoter	173
Appendix H	The Genetic Code	174
Appendix I	Structures of Selected Sugars	175