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ABSTRACT 
 

The mannose/glucose specific lectin from Pterocarpus angolensis (mukwa tree) seeds 
was expressed in Escherichia coli using the pBAD expression system.  The expression vector 
pBADMycHisA was digested with NcoI and filled-in with T4 DNA polymerase in order to 
introduce an initiator ATG codon preceding the polymerase chain reaction-amplified cDNA 
encoding the mature mukwa seed lectin.  The recombinant plasmid was used to transform the 
expression cell line E. coli TOP10 cells. 

The cDNA clone, Muk151QII28, encoding the wild type mukwa seed lectin, was used 
as the template for oligonucleotide-directed mutagenesis of the sugar binding specificity.  The 
first approach involved removing the part of the mukwa seed lectin sugar-specificity loop 
(loop D) that interacts with the sugar, and replacing it with the corresponding region of either 
the Ulex europaeus II lectin (UEA II) or the Erythrina corallodendron lectin (ECorL).  In the 
second approach, two other mutants, predicted from X-ray crystallography to change the 
mukwa seed lectin sugar specificity from α-mannose/glucose to β-mannose/glucose, were 
generated.  The DNA region carrying the mutations was then sub-cloned into the 
pBADMycHisA-wild type mukwa seed lectin recombinant in which the corresponding DNA 
region had been excised.  The four mutants were expressed in E. coli TOP10 cells.  The 
mutant lectins were assayed for cross-reactivity with antiserum directed against the native 
mukwa seed lectin in order to determine if the antiserum could be used in Western blotting.  
Hen egg white glycoproteins and glycoproteins of high variability isolated from porcine and 
bovine plasma were then blotted onto nitrocellulose and used to determine if the mutant 
lectins were capable of recognizing any carbohydrate moieties on glycoproteins. 

Maximum expression of both the wild type and the mutant lectins was obtained after 
induction with 0.2 % L-arabinose in cultures grown overnight.  The presence or absence of a 
protease inhibitor cocktail did not seem to improve the yield.  Up to 7.7 mg/500 ml culture of 
the expressed wild type lectin could be isolated from the extract by affinity chromatography 
on mannose-Sepharose.  The purified lectin has a specific absorbance of OD280nm 1 mg/ml = 
1.3 and shows an absorbance ratio of OD280nm/ OD250nm ≈3, the same as for the native lectin 
isolated from mukwa seeds.  The expressed lectin has a slightly lower molecular mass than 
the native lectin but the two are essentially indistinguishable by Western blot analysis with 
anti-mukwa seed lectin polyclonal antibodies, haemagglutinating activity and both are 
inhibited by methyl-α-D-mannopyranoside. 

The mutant lectins cross-reacted with antiserum directed against the native mukwa 
seed lectin and all of them were capable of binding some carbohydrate moieties as shown by 
Western blotting.  However, the wild type lectin showed a higher affinity for the carbohydrate 
moieties on the glycoproteins compared to the mutant lectins.  The mutants, except for the 
UEA II specificity loop mutant, were successfully purified on an anti-mukwa seed lectin IgG-
Sepharose column and used in agglutination assays.  None of the mutants was capable of 
agglutinating any of the different animal erythrocytes tested showing that other factors apart 
from loop D determine sugar specificity in legume lectins. 
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