Abstract

Rubella virus is a teratogen that may induce foetal death or Congenital Rubella Syndrome (CRS) in the newborn. A baseline sero-survey was carried out in Harare to determine the population susceptible to Rubella virus amongst pregnant women. A descriptive crosssectional study was carried out on pregnant women between June and July 2012, to establish baseline data on the sero-prevalence of Rubella in pregnant women in Harare. A total of 51 pregnant women at various gestational ages were recruited from Rujeko and Rutsanana antenatal clinics. Also a retrospective analytical study was carried on the laboratory surveillance data of the Zimbabwean Measles/Rubella outbreak of 2009-2011 to assses the age groups affected by Rubella virus infection and Rubella incidence. A 3-5ml blood sample was collected from each consenting subject and serum assayed for Rubella IgG/IgM antibodies by indirect ELISA test. The seroprevalence of Rubella in pregnant women was 92.2%. This study found out that 7.8% of the pregnant women were susceptible to Rubella virus infection in Harare. In this study the seroprevalence of Rubella showed some fluctuations with an increase in age and parity, thus indicating that pregnant women were probably previously exposed to natural Rubella infection since there is no vaccination in Zimbabwe. There were no significant correlations between Rubella infection and age. Although the seronegative rate of Rubella is low, this study suggests the need for detection and vaccination of seronegative women of child bearing age. I concluded that Rubella virus immunity is still >80% in Zimbabwe as stated by the WHO Rubella virus antibody survey.

Acknowledgements

I would like to express my gratitude to Dr. P Nziramasanga of the Department of Medical Microbiology for his professional supervision and Dr. M Kubara for her unwavering assistance. Ms C Berejena and Mr P Chibukira of the University of Zimbabwe, Department of Medical Microbiology for their support in the laboratory. Dr. C Chinamasa, Department of Community Medicine- UZ and Dr. EN Kurewa, Research Support Centre- University of Zimbabwe for their supervision.

I also acknowledge the technical and practical assistance I had from Ms A Shonhai of the Parirenyatwa Group of Hospitals- (Public Health Laboratories and WHO Measles and Rubella Laboratory) and other UZ- Medical Microbiology staff. Mr M Mapingure for the great help in biostatistics and data analysis.

I would like to express my heartly thanks to the Centres for Disease Control and Prevention, Atlanta- USA, Measles Mumps Rubella Herpesviruses Laboratory Branch namely Dr. P Icenogle and E. Abernathy for providing me with information and reagents to use for Rubella detection in my dissertation. I acknowledge the World Health Organisation for their willingness to provide me with other consumables to use in my study.

Lastly my family, friends and work colleagues for the encouragement, support and prayers. May the Lord God richly bless you all.

ii

Table of Contents

Abstract	i
Acknowledgements	
Contents	
List of Tables	
List of Abbreviations	vii
CHAPTER 1	
1.1 Introduction	1
1.2 Literature Review	4
1.2.1 Classification	4
1.2.2 Virus structure	4
1.2.3 Genomic organisation	6
1.2.4 Capsid protein	8
1.3 Virus life cycle	
1.3.1 Attachment and entry	9
1.3.2 Replication	9
1.4 Structural proteins	
1.4.1 Translation, processing and assembly	11
1.5 Pathology of Rubella and CRS	
1.5.1 Vertical transmission and risk of CRS	12
1.5.2 Diagnosis of Rubella infection	14
1.6 Clinical features	18
1.7 Vaccines	
1.8 Epidemiology	
1.9 Treatment	

1.9.1 Management of Rubella exposure	23
1.10 Justification of project	24
1.10.1 Research Questions	24
1.10.2 Aims and Objectives	24
CHAPTER 2	
2.1 Study design	27
2.2 Study population	27
2.2.1 Inclusion criteria	27
2.2.2 Exclusion criteria	27
2.3 Sample size calculation	28
2.4 Study area	29
2.5 Study samples	29
2.5.1 EDTA plasma samples	29
2.5.2 Zimbabwe Measles and Rubella samples	29
2. 6 Ethical consideration	30
2.6.1 Ethical approval	30
2.7 Specimen collection and transport	31
2.8 Methods	32
2.8.1 Detection of Rubella IgM antibodies	32
2.8.2 Detection of Rubella IgG antibodies	32
2.8.3 Quality control	33
2.9 Data analysis	

CHAPTER 3

CHAPTER 4

4.1 Discussion		45
CHAPTER 5		
5.1 Conclusion		52
5.2 Recommendations		53
5.3 Limitations		53
References		54
Appendices		
Appendix A	Rubella IgM antibody ELISA assay	63
Appendix B	Rubella IgG antibody ELISA assay	65
Appendix C	City of Harare research study approval	66
Appendix D	Informed consent form (English)	67
Appendix E	Informed consent form (Shona)	69
Appendix F	Laboratory request form	71

List of Figures

Figure 1.1 The Rubella virion	7
Figure 1.2 Rubella virus genomic structure	9
Figure 1.3 Rubella virus screening procedure algorithm	17
Figure 3.1 Prevalence of Rubella in women according to age group	37
Figure 3.2 Bar graph showing incidence of Rubella	39
Figure 3.3 Distribution of Rubella positive IgM according to age groups	41
List of tables	
Table 3.1 Demographic data of respondents	36
Table 3.2 Two- sample test with equal variances	38
Table 3.3 Incidence of Rubella virus in 2009-2011	40
Table 3.4 Age distribution of susceptible Rubella cases 2009-2011	42
Table 3.5 Age distribution and rubella IgM results 2009-2011	43

List of Abbreviations

μg	microgram
μl	microliter
аа	amino acid (s)
BSC	biological safety cabinet
CDC	Centres for Disease Control and Prevention, Atlanta USA
cDNA	complementary DNA
CO2	carbon dioxide
CPE	cytopathic effect
CRS	congenital rubella syndrome
DNA	deoxyribonucleic acid
DMEM	Dulbecco's Minimal Essential Medium
DMSO	dimethyl sulfoxide
EIA	enzyme immunoassay
ELISA	enzyme linked immunosorbent assay
EPI	Expanded Programme on Immunisation
FBS	foetal bovine serum
G	relative centrifugal force
g	gram
IgG	Immunoglobulin class G
lgM	immunoglobulin class M
MEM	minimal essential medium
mg	milligram
ml	millilitre
ММ	maintenance medium
Nsp	non-structural protein

OD	optical density
PFU	plaque forming unit
PBS	phosphate buffered saline
RF	rheumatoid factor
RNA	ribonucleic acid
RNase	ribonuclease
RPM	revolutions per minute
RRL	Regional Reference Laboratory
RT	reverse transcription
RT-PCR	reverse transcription- polymerase chain reaction
SLAM	signalling lymphocyte- activation molecule; also known as CDw150
SOP	Standard Operating Procedure
тмв	3, 3' 5, 5'- tetramethylbenzidine
VTM	Viral transport medium
WHO	World Health Organisation
wt	wild type