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Abstract

This thesis presents mathematical models for thermal energy storage in low energy buildings.
Two different cooling systems are considered. One uses a ventilated slab, the other a packed
bed.

The ventilated slab design is incorporated in a large commercial building in Harare, and
uses concrete floor and ceiling slabs with an air gap in between to store coolth. The site
engineer provided measured temperature data for various positions in the building, suffi-
cient to identify the performance of the building. Because the measurements indicate an
unexpected outcome, the instrumentation was carefully tested and proved to be correct. A
mathematical model for the design is proposed and a comparison is made of three numerical
methods in order to establish the most suitable. The computer code allows for time varying
fan speeds and convective heat transfer coefficient, and slab inlet temperatures from mea-
sured data. Measured outlet temperatures are compared with the model predictions; there
is good agreement between the trends but some differences. These were investigated through
varying certain parameters.

The cooling system at the Harare International School uses a packed bed for storing night
coolth to be used later for day-time air conditioning. This is described and a mathematical
model stated which includes heat dispersion in the fluid and heat loss to the ground sur-
rounding the bed. A numerical method of solution is outlined and the results are compared
with measured data at the outlet of the bed both using the measured inlet temperature. A
good agreement of trends is seen. The differences are examined through sensitivity analyses
for both the convective heat transfer coefficient and air velocity. A parametric study for heat
storage with materials and bed size is given.
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Chapter 1

Introduction

1.1 The role of mass in low energy cooling systems

Several studies [28, 9, 26] indicate how much attention has been given in the last few years

to the design of low energy buildings that use thermal mass and\or active thermal storage

systems. Thermal mass is defined by Balaras [9] as the part of the construction mass of a

building that is used to store thermal energy. There has been a growing need to reduce on

energy consumption for

• supply air cooling to the internal environment of such buildings and,

• ventilation: extraction of the exhaust air from the internal environment to the outside.

Coupled with saving on energy is the need to reduce on operational and maintenance costs.

A lower load on systems used for supplying air cooling and ventilation results in less frequent

maintenance. It is also desirable to reduce the need to have active thermal storage systems.

Chen [13] presented a predictive system for the operation of a building thermal system with

thermal mass and gave results on the minimising of energy consumption and operation costs.

Other studies which focus on strategies on saving energy at lower costs and maintaining a

comfortable internal environment of a building include that of Chen and Liu [14] and Paul

and Saini [24].

The energy technology systems used in low energy buildings may be classified as either active

or passive [28]. Active thermal energy storage systems are those that require additional

13



devices to store or recover thermal energy or, to control the systems that provide thermal

energy. A few examples are:

• variable volume pumping systems (the Eastgate building in Harare, Zimbabwe uses

timed fans for this purpose) and,

• solar collectors.

The weakness with active thermal storage is that extra energy and hence costs are required

to drive the system.

Passive thermal storage technologies include:

• Shading (at Eastgate this is provided by massive protruding concrete structures and

plants on the exterior of the building) and,

• Natural ventilation using atria integrated in the building, for example the Eastgate

building has an atrium (open space) in its core, glazed over to promote ventilation.

1.2 An overview of fabric thermal storage

The use of building fabric for storing thermal energy has been shown in several studies to

be an effective way of cooling (or heating) the internal environment of buildings [8, 34].

Basically, air is drawn from outside the building via passages within the fabric to cool the

inside. During the hottest part of the day (noon to mid-afternoon) the external air temperate

is too high to provide a comfortable internal environment. Building fabric is used to delay

the impact of the external climatic conditions on the internal environment. Heat is extracted

from the passing air into the fabric before entering the interior. The stored heat is released

later when the outside air temperature is lower and usually when the building is no longer

occupied. Fabric thermal storage also helps in decreasing the diurnal swing of the supply air

temperature and hence keeps the temperature within a comfortable range.

The design of low energy buildings that use fabric thermal storage involves implementing

special features as part of the supply air passage. Two features related to the work presented

in this thesis are:

• ventilated slabs and,

14



• packed beds.

The ventilated slabs are pre-cast concrete floor/roof slabs. One such slab was implemented

in the design of the Eastgate building in Harare, Zimbabwe. Some studies have been made

on thermal storage in ventilated slabs of the type at Eastagate. In 1996, Holmes and Wilson

[19] gave an assessment of the thermal performance of a ventilated floor slab thermal storage

system using a thermal network model. The author’s Masters thesis [20] presents a numerical

model for the ventilated floor slab thermal storage system used at Eastgate. Validation of the

model is done against measured data. In this thesis an extension of this work is presented.

Another type of ventilated slab uses hollow cores within the slab for passing the supply air.

This is based on the TermoDeck system as described by Barton et. al [10] in their paper

on a numerical model for its thermal performance. Ren and Wright [26] gave a thermal

network model for a hollow core ventilated slab. The hollow core ventilated slab thermal

storage system has been implemented in several buildings across the world for example in one

laboratory of the Chemical Engineering Department at the National University of Science

and Technology in Bulawayo, Zimbabwe.

Contrary to ventilated slabs, packed beds are usually part of the foundation of the building

as is the case for Harare International School in Zimbabwe [25]. A bed packed with solid

material (rocks for the case of Harare International School) acts as the thermal storage

system. Various studies have been published on heat transfer in a packed bed thermal

storage system. In 2004, Chen and Liu [14] presented a study on the use of an air-based rock

bed for passive heating in a cold climate. They also investigated the effect of various thermal

and physical properties on the thermal performance of the bed. A similar theoretical analysis

is involved for a different application of packed beds: waste heat recovery, [35]. Other recent

studies on packed bed thermal storage systems include those of Al-Nimr et. al [7, 6] and

Adebiyi et. al [5, 4]. Earlier studies have also been published [30, 27, 15, 3]. There are three

major differences between the packed bed thermal storage model presented in this thesis and

those by other authors:

• No previous report has been found referring to the application to room cooling.

• The model presented includes

– ground coupling,

– fluid heat dispersion and,

– variable fluid flow rate.
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• The model in this thesis is validated against measured results taken on site of a typical

building design.

1.3 An overview of the current work

The work in this thesis is divided into two parts. Both parts are on regulating the air

temperature in the interior of a building for a typical design

• using a ventilated slab for the Eastgate building in Harare and,

• using a packed bed for the Harare International School.

The first part is a continuation of the author’s Masters thesis [20]. A mathematical model

is developed for heat transfer in a ventilated slab. The slab material is coupled to the air by

a convection boundary condition. Heat transfer within the slab material is modelled by the

standard parabolic diffusion equation and an energy balance is used to derive the governing

equation for the air. Approximation in space is by finite elements and marching in time is

by an implicit finite difference scheme. The measured results that were used earlier on [20]

to validate the numerical model did not seem satisfactory and so a thorough investigation of

the measurements is carried out in chapter 2 of this thesis. Also given in the same chapter

is a description of the supply air cooling and ventilation at Eastgate. A full description of

the numerical model for Eastgate is given in chapter 3. Results are presented on a finite

element approach and on two finite difference schemes: a simple lumped parameter method

and another involving a modification on the boundaries. Chapter 3 ends with results on

validating the numerical model against measured data.

The second part of the thesis is on packed bed thermal storage and a case study on Harare

International School. Chapter 4 begins with a review of existing models. They are classified

as either single or two phase depending on whether an energy equation is needed for each

of the energy transporting fluid and storage material. The Schumann model [30] of 1928 is

introduced as a benchmark for all other models that follow. This is followed by a description

of the supply air cooling and ventilation at the Middle School part of the Harare International

School. A mathematical model and two methods of solution are then presented. A code

developed for the model is verified, and predicted and measured results are compared in

chapter 5. The sensitivity of the model to the convective heat transfer coefficient hc and
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the fluid flow rate V̇f is also investigated. The effect of ground coupling on the thermal

performance of the bed and a brief parametric study conclude chapter 5.
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Chapter 2

Eastgate and measurements

2.1 The building and measurements

2.1.1 Overall overview of the structure

The termitary; a model for Eastgate

The Eastgate building in Harare uses the same heating and cooling principles as the termite

mound (see Figure 2.1). Deep inside the termitary, insects farm fungus which must be kept

at an optimum temperature. Air is vented in at the base of the mound, down into chambers

cooled by wet mud and up through a channel to the peak. Ants constantly dig new vents

and plug old ones to regulate the temperature. The air from outside the termitary acts as

the energy transporting medium and, the soil and the mud that make up the termite mound

act as the energy storage material. Combined together they form a heat exchanger.

The Eastgate complex operates in a similar fashion. Air drawn from outside the building

together with the building mass form the heat exchanger which is used to regulate the

temperature in the office space.
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Figure 2.1: Design model

The building

The design of Eastgate, done by Mick Pearce of Pearce partnership, was motivated by the

need to construct a building that is habitable with no air conditioning and almost no heating.

The benefits include saving on energy consumption and maintenance costs while operating

within acceptable comfort levels of the occupants.

It has been reported that the total energy consumption for Eastgate is 35% less than the

average consumption of six other conventional buildings in Harare that use full high voltage

air conditioning (HVAC). In the event of power cuts the Eastgate ventilation system runs

by natural convection.

The Eastgate complex is made up of two buildings side by side that are separated by an

atrium which is glazed over and open to the breezes, see Figure 2.3. Below the glass roof

are steel bridges and lifts suspended on cables from steel lattice beams. On the second floor

there is a glass sky-walk that runs the length of the atrium and connects the lifts. This

sky-walk is connected to the ground floor by escalators.

The interior of the building is protected from the harsh high veld sun by the use of very

20



Figure 2.2: Cross-section of an office

little glass with most of the building being made up of concrete. Windows are screened by

massive protruding stone elements and plants. The protruding ledges increase surface area

of the building’s exterior. This helps improve heat loss to space at night thereby storing

more thermal energy in the slab mass mode which is used during the day to regulate the

temperature of the air in the office area. This energy is sometimes referred to by the engineers

as “coolth”. Also, during the day heat gain is minimised.

The sandwich of the vaulted ceiling, air void and the floor above acts as a thermal store

and exchanger. The air void is festooned with concrete teeth to increase surface area and

augment convective heat transfer. The vaulted ceiling provides an increased surface area to

enhance heat absorption from the lights which face the ceiling upwards. These are sometimes

referred to as “uplighters”.

Fans in the mezzanine floor below the offices suck air from the atrium and blow it up through

the supply section of vertical ducts in the central spine core of each office block. The air

passes through the void before entering the room above as part of a displacement ventilation

system. It rises as it is warmed to the ceiling and it is sucked out through exhaust ports

in the ceiling at the end of each vault to exhaust sections of the vertical ducts. See Figure

(2.2). On the roof are 48 round brick chimneys which pull exhaust air out of the seven office

floors below.
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Figure 2.3: Building structure
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High volume fans run at night to give ten air changes per hour and during the day low

volume fans are switched on to give two air changes per hour. By timing the change over

from high to low volume fans the use of the diurnal swing can be optimised.

For most countries in Europe the mean air temperature is mostly less than the mean work-

ing temperature in the office space, so the system needs to be heated to raise the mean

temperature of the ventilation air. However, in Africa the mean ambient air temperature is

approximately equal to the optimum office space temperature. Therefore what needs to be

done is to reduce the diurnal swing of the ambient temperature.

2.1.2 On temperature monitoring at Eastgate

Introduction

To ensure that measured data for validating mathematical models that were obtained was

reliable, investigations were carried out on the temperature monitoring at the Eastgate

complex. For a detailed description of the models, see Chapter 3. The engineers involved,

Ove Arup and Partners installed an 8-bit ACR data logger and, six external temperature

sensors positioned to measure temperatures at different locations in the building:

• outside air

• diffuser supply (this is placed through a low level grille in the office space to hang at

the exit of a horizontal duct. See Figure 2.4)

• riser air (this is placed at the entrance to the horizontal duct as shown in Figure 2.4)

• room medium level

• atrium air (this hangs in the atrium near the fans)

• slab

The data logger has one internal temperature sensor, used to measure the room temperature

at low level.

Monitoring the temperatures at selected points in the building gave results that are not

representative of what is expected. Figure 2.5 shows a sample of measured data taken for
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Figure 2.4: Temperatures at selected points in the building, 01-08-2000

the indicated period at the inlet to and the outlet from the ventilated floor slab. In Figure 2.4

the underlined values correspond to temperatures at the given positions at 5:24 am, which

happened to be the coldest time on a typical day. The other values were taken later in the

day at 6:18 pm. It is clear that the ventilation air increases in temperature by 4.2◦ C and

1.1◦ C at 5:28 am and 6:18 pm respectively through the horizontal duct. Note that in the

morning, the air at the riser is cooler than the slab by about 2.1◦ C and so it is warmed

to 18.1◦ C as it leaves the duct. In the afternoon, the air enters at a higher temperature

than the slab but it still appears to get warmed through the duct. Furthermore, the mean

temperatures for the day for the riser and diffuser supply are 16.2◦ C and 18.6◦ C respectively,

showing that the air is being heated as it goes through the duct.

Consequently, two questions were considered.

1. Are the calibrations used for the temperature measurements correct?

2. Are the temperature sensors properly exposed or subject to influences which lead to

temperatures which are not representative of the air stream being measured?

To answer these questions the following activities were suggested by Professor James Milford

of the Physics department at the University of Zimbabwe
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Figure 2.5: Measured results for period: 31-07-2000 to 04-08-2000

• Calibration of sensors in the laboratory

• In situ comparison of sensors

• A check on representivity

Experiments

Laboratory calibration of the sensors

Action A spare ACR data logger, with two external temperature sensors (thermistors)

from Eastgate was compared with a reference thermometer in the laboratory. The two sensors

and, a Mercury (Hg) bulb thermometer were bound together and used to simultaneously

measure the temperature of water in a thermos flask over a range of temperatures. Since the

data logger only accepts one external sensor at time, measurements were taken from the Hg

bulb thermometer and only one thermistor at a time. The same experiment was conducted

using a stirred water bath in place of a thermos flask to make taking of readings from the

thermometer easier.
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Results and Conclusion In the first experiment, Thermistor 1 gives results to within

0.1◦ C of the Mercury bulb thermometer on average. For thermistor 2 the absolute value of

the mean of the difference of its temperature from that of the Mercury bulb thermometer is

0.3◦ C. Part of thermistor 2 was damaged during installation for a measurement exercise at

a different site. This could account for the less accurate results obtained.

In the second experiment, the mean of the absolute values of the difference between readings

from the mercury thermometer and, thermistors 1 and 2 are 0.07◦ C and 0.09◦ C respectively.

The ACR data logger used in this experiment is 8-bit and so there are only 28 = 256 possible

values at a time. On a temperature range of 0◦ C to 100◦ C this gives a resolution of 0.39◦ C.

This is the minimum difference between any two consecutive readings. It can be concluded

from these observations that the sensors and ACR data logger are accurate and consistent

within resolution.

In situ comparison of sensors

Action The six external sensors were brought back to the data logger position and, bound

together with a mercury bulb thermometer. They were immersed in well stirred water and

compared over a range of temperatures. Also compared was the spare ACR logger and,

two sensors that were re-calibrated at the University of Zimbabwe Physics department as

described in the previous sections.

Results and conclusion Thermistor 1 and the six external sensors take a longer time to

respond to sudden changes in temperature of the surroundings than the mercury thermome-

ter. Upon taking this into account it was deduced from these results that all the sensors give

results to within 0.2◦ C of the mercury thermometer.

A check on representivity

Introduction The riser air temperature sensor measures the temperature of the air in the

supply section of the vertical ducts. It goes through a hole which is about 50mm above the

floor. It then emerges in the vertical duct and hangs at the entrance to the horizontal duct.

The temperature reading it gives is taken as the input temperature for the ventilated floor
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slab. To check if the readings from the riser air sensor were not affected by radiation from

nearby surfaces the following experiment was carried out.

Action A second hole was drilled about 200mm away from the one through which the riser

sensor goes at the same height above the floor. Two sensors were inserted through this hole,

one of them exposed and the other shielded from direct radiation by a louvered aluminium

foil. Readings were taken from both sensors over a range of temperatures.

Results and conclusion A comparison of the readings from the exposed sensor against

those from the shielded one showed that they were the same to within 0.5◦ C. This is of the

same order of magnitude as the resolution of the sensors.

2.1.3 Discussion

From the experiments done to test the temperature sensors and the data logger, the following

conclusions were made.

• Laboratory calibration and in situ comparison of the sensors showed that the instru-

ments were accurate to within their resolution.

• The effect of radiation emitted from neighbouring surfaces on the temperature readings

from the sensors is negligible.

Since the exact positioning of both the slab and the riser air sensors were uncertain, this

could have resulted in error in taking temperature measurements. For example, the diffuser

supply temperature sensor could have been placed closer to the grille that lets air out into

the office space than to the outlet of the ventilated floor slab where it is supposed to take

temperature readings. Because of this and the possibility of office air mixing with duct

air near the grille temperatures recorded by the diffuser supply sensor could have been a

misrepresentation of the desired temperature readings.

Although improper calibration and misplacing of temperature sensors could be possible

sources of error in taking temperature readings lax monitoring of the ventilation system

could have also contributed significantly. It is not surprising to go into the fan control room

and find out that the system is operating in summer mode when it is actually winter. Also,
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there have been reports that the air filtering system was blocked for several months without

maintenance. However, the system operates successfully by natural convection during such

moments. Another issue related to this is that if filters are blocked, supply air is not available

from the outside to the building’s interior via the ventilated floor slabs. Consequently, the

impact of the external environment is not delayed as much as is required because there is no

extra thermal mass to temporarily store the not needed energy during the hours of occupancy.

Furthermore, there is less reduction in the diurnal swing and hence room temperature may

not fall within acceptable comfort levels. In this case the measured data is not suitable for

use to validate the mathematical model.
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Chapter 3

On modelling supply air cooling at

Eastgate

3.1 Introduction

This chapter gives a description of some models for heating and cooling in the Eastgate

building. The models are derived mathematically and compared.

3.2 What is being modelled?

It was thought that most of the heat transfer in the building occurs in the horizontal ducts.

(See Chapter (2) for a detailed description of the structure of the building.) As a result,

the part of the structure that is modelled is the ceiling slab-air void-floor slab sandwich

(sometimes referred to by engineers as a ventilated floor slab), see Figure 3.1. However,

by the time the ventilation air reaches higher level floors it would have been cooled by the

vertical ducts in the lower level floors. Since modelling is local, this effect cannot be exhibited

by the model. The following assumptions are made in developing the mathematical model

for heat exchange in the slab-air-slab sandwich.

1. The three-dimensional physical problem is reduced to a two-dimensional model. The

actual physical setup is such that when ventilation air enters the horizontal void it

spreads sideways as it drifts towards the exit points. See Figure 3.1. However, in this
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Figure 3.1: Reduction of model to 2-d

model only a vertical two-dimensional section is considered.

2. The following boundary conditions are imposed.

(a) The floor slab is assumed to be insulated all the way round except on the surface

of contact between the floor slab and the air in the void where there is convective

heat transfer with the air and radiative heat transfer with ceiling slab below. This

assumption is based on the fact that a carpet sits on the surface of the floor that

faces the office area.

(b) Similarly, there is a convective and radiative heat transfer boundary condition on

the surface of contact between the ceiling and the air in the void. On the surface

of the ceiling facing the office area below, the boundary condition is a prescribed

spatially uniform heat flux. This models the heat gain from the lighting and the

office equipment that emit radiation. On the rest of the boundary of the ceiling

slab an insulation boundary condition is assumed.

3. The entire slab is assumed to be homogeneous. A special type of concrete called screed

poured over pre-cast concrete makes the floor slab. Since the screed is much thinner

than the pre-cast concrete this assumption is reasonable.

4. Thermal storage in concrete teeth is incorporated in the rest of the body of the slab.

This simplifies the geometry to a rectangular cross-section. The extra thermal mass

provided by the concrete teeth is assumed negligible. However, if the amount of thermal

mass is considerable, it enhances thermal interaction with the supply air and hence

improves the conditioning of the interior of the building.

5. A uniform convective heat transfer coefficient hc for each period of either low or high

flow along the duct is assumed. However, there is turbulent air flow due to the existence
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of concrete teeth in the void. This results in a non-uniform air velocity and hence

variation (which is assumed negligible here) in hc along the duct.

6. Constant air and slab properties are assumed except for the air velocity which may

vary with time to cater for different fan speeds at different times.

7. The initial temperature distribution in both the slab and the air is assumed to be

uniform.

3.3 Description of the Mathematical models

3.3.1 Introduction

The following sections give a description of the full mathematical model for thermal energy

storage and recovery in a ventilated floor slab. Also given are two simplified forms of the

full model; test problems A and B. These are used as an alternative to using measured data

to validate the full model. In both problems, an assumption of symmetry in the geometry

and boundary condtions about the air flow path allows for analysis to be restricted to half

the problem domain, and to neglect radiative heat transfer. Also, the air temperature at

the inlet experiences a step change at initial instant. The major difference between the two

problems is that one assumes a prescribed uniform air temperature and in the other the

variation of air temperature is governed by a suitable energy equation. The aspect of the

full model that is tested by the two simplified models is the dynamic response of the air inlet

temperature to a time-wise variation. Results for the response to a step change in inlet air

temperature can be used together with the principle of superposition as described in [29].

Also, an energy balance is checked to verify the energy equations.

3.3.2 The full model

A description of the full model is stated here.

The problem is to find T (x, t), the floor temperature, T ?(x, t), the ceiling temperature and

T∞(x, t), the air temperature that satisfy the following partial differential equations subject

to the given boundary and initial conditions. The problem domain concerned is shown in
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Figure 3.2: Problem domain for the full problem

Figure 3.2. The energy equations for the floor are:

∂T

∂t
=α∇2T x ∈ D and t > 0,

with boundary conditions

−km

∂T (x, t)

∂n
=











hc(T (x, t) − T∞)

+hr(T (x, t) − T ?(x, t)) on ∂D(in contact with air)

0 on ∂D(the remaining part),

and initial condition

T (x, 0) =T0, x ∈ D,
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those for the ceiling are:

∂T ?

∂t
=α∇2T ? x ∈ D? and t > 0,

with boundary conditions

−km

∂T ?(x, t)

∂n
=



















hc(T
?(x, t) − T∞)

+hr(T
?(x, t) − T (x, t)) on ∂D(in contact with air)

q? on ∂D(exposed to the room)

0 on ∂D(the remaining part),

and initial condition

T ?(x, 0) =T ?
0 , x ∈ D?,

and for air they are:

∂T∞(x, t)

∂t
+ vf

∂T∞(x, t)

∂x
=β(T (x, t) − T∞(x, t))

+ β(T ?(x, t) − T∞(x, t)), x ∈ G

with initial condition

T∞(x, 0) =T0, x ∈ G,

and boundary condition

T∞(0, t) =f(t), t > 0,

where α =
km

ρmcm
and β =

hc

ρfcfg
. D, D? and G are the problem domains for the floor,

ceiling and air respectively. f(t) is an arbitrary function of time whose values are obtained

from measured data.

A derivation of the standard parabolic diffusion equation is well established and may be

33



found in various books on heat transfer, for example on pages 7-10 of [11]. Appendix A.2

gives a brief outline of the derivation of the energy equation for the air.

3.3.3 Input data for model

Heat flux

The net heat gain on the ceiling surface facing the office below is modelled collectively as a

prescribed flux. During the day, from 7am to 6pm a uniform heat flux of 17.6 Wm−2 is used

as recommended by the engineers. Outside hours of occupancy, different small values of the

heat flux can be tried out. Initially, a value of 0 Wm−2 was tried out for periods outside the

hours of occupancy. It is worth noting that switching off of lighting and machines in the office

outside working hours is not strictly monitored. Consequently, it was thought unreasonable

to assume a heat flux of 0 Wm−2 during these times. This also applies to weekends when

some offices maybe occupied.

Air velocity

In summer mode, the low volume fans run during the day and during the night the high

volume fans are switched on to cool the slab for the next day. In winter mode the high

volume fans are never switched on. The timing procedure used for the fan speed in the

summer is as follows

velocity , vf =











0.25 ms−1 from 7am to 6pm (low flow)

1.1 ms−1 from 10pm to 5:30am (high flow)

vffree
ms−1 otherwise (natural convection)

In the winter, the fans are never switched on between 10pm and 5:30am. The ventilation

system operates by natural convection at such times during this period of the year. vffree

was initially chosen to be 0 ms−1 but several values were tried out later, one typical value

is 0.01 ms−1. It was thought that such a small value should include the effect of natural

convection on the response of the ventilated floor slab.
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Air temperature at the inlet

The temperature of the air at the inlet to the ventilated floor slab is taken from measured

data.

Numerical values used for physical constants

km = 1.4 W/mK thermal conductivity of the concrete

g = .2 m air gap

L = 6 m length of each slab

B = .15 m thickness of each slab

cm = 1000 J/KgK specific heat capacity of concrete

ρ = 2400Kg/m3 density of concrete

hc = 16 v.8

g.2 W/m2K convective heat transfer coefficient

hr = 5.1 W/m2K radiative heat transfer coefficient

cf = 1006 J/KgK specific heat capacity of air

ρf = 1.177 Kg/m3 density of air

3.3.4 Testing the full model on two problems, A and B

Three numerical methods for analysing the thermal performance of a ventilated floor slab,

are compared. The methods are: a simple electrical analogue; an improvement through

boundary modifications; and finite elements. The methods are tested against an analytic

solution for accuracy and again on a more realistic problem for convergence with mesh refine-

ment. Both problems are excited by a step temperature input. The models are discretised

in space, time integration is analytic. The energy balance is checked.

The method of the electrical analogue to heat flow is commonly used among engineers. In

this work this approach is called the “lumped parameter” method. A lumped parameter

model of a hollow core concrete ventilated slab thermal storage system and associated zone

has been presented in [26].

The lumped parameter method and a modified form are compared with finite elements. Two

aspects are considered in particular:
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• Are each of the methods consistent with the mathematical model? In other words, on

refining the mesh will the error tend to zero?

• To examine the methods for rates of convergence on refining the mesh and for relative

efficiency.

A description of the setting of the original modelling given in Section 3.3.2 indicates the

type of problem to which the methods are relevant. The following sections present the two

simplified problems (A and B) used to test the three numerical methods.

The first test problem is sufficiently simple to allow an analytic solution, and the second is

closer to the actual problem but consequently has no analytic solution and the solution has

to be judged from the convergence behaviour shown by refining the mesh of the numerical

methods.

Test problem A

L

B

G

x

y

Figure 3.3: Test problem A

Consider replacing the flux boundary condition in the full model of Section (3.3.2) with

an insulation boundary condition. This introduces symmetry in the boundary conditions.

Furthermore, if symmetry in the geometry is incorporated, it is sufficient to consider only half

the problem domain as shown in Figure 3.3 and to neglect radiative heat transfer between the

floor and the ceiling surfaces facing each other. A slab is insulated on three sides, indicated

in Figure 3.3 by thickened lines, and the fourth experiences convection to the outside fluid

which remains at a constant temperature. The heat transfer in the slab is modelled by the
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standard parabolic diffusion equation:

Slab:
∂T (x, t)

∂t
= α∇2T (x, t) x ∈ D where D = (0, L) × (0, B)

initial condition T (x, 0) = T0, x ∈ D

boundary conditions − km

∂T (x, t)

∂n
=

{

hc(T (x, t) − T∞) on ∂D(in contact with air)

0 on ∂D(the remaining part)

where the fluid temperature T∞ is constant.

The analytic solution to this problem is given in [30] on page 15 and given in appendix A.1

for convenience.

Test problem B

line of symmetry

D

Figure 3.4: Test problem B

The ventilated slab is assumed to be insulated all round except on the slab to air interface,

where heat interchange occurs by convection into the moving air. The ceiling and floor slabs

are assumed to be identical thus reducing the size of the problem through symmetry and

not involving radiation.

Expressed mathematically, the problem is to follow the time variation of the temperature in

the slab T (x, t) and in the air T∞(x, t), see Figure 3.4. The energy equation for the slab is:

∂T (x, t)

∂t
=α∇2T (x, t), x ∈ D, t > 0, (3.1)
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with initial condition:

T (x, 0) =T0, x ∈ D,

and boundary conditions:

−km

∂T (x, t)

∂n
=

{

hc(T (x, t) − T∞(x, t)) on ∂D(in contact with air)

0 on ∂D(the remaining part),

That for air is:

∂T∞(x, t)

∂t
+ vf

∂T∞(x, t)

∂x
=β(T (x, t) − T∞(x, t)), x ∈ G, (3.2)

with initial condition:

T∞(x, 0) =T0, x ∈ G,

and boundary condition:

T∞(0, t) =f(t), t > 0,

where f(t) is the air temperature as it enters the gap. For the step problem used in the tests

f(t) = TH a constant, so that the step is TH − T0.

Heat transfer in the slab is modelled by the standard parabolic diffusion equation (3.1).

Equation (3.2) is a special case of the energy equation for the air for the full problem. In the

derivation of the latter, given in Appendix A.2 only heat flow from one concrete slab should

be considered to obtain equation (3.2). The air mass flow rate ṁf and the air velocity vf

are related by ṁf = ρfvfg, where ρf , ρf and g are the density and the average velocity of

the air and, g is the air gap in the slab.
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3.4 Details of the mathematical methods for test prob-

lems A and B

Three methods are considered. The first is the simplest, the heat conservation equation

written in the form of the electrical analogy to heat flow. The slabs and air gap are divided

into small sections. The flow in and out of a section is considered together with the rate

of temperature change resulting from any imbalance - this is denoted as the simple lumped

parameter method (slp). It can be modified by an improved modelling of the boundary

effects of the slab surface and the slab/air interface, this is denoted as the modified lumped

parameter method (mlp), and finally the finite element method (fe).

3.4.1 The simple lumped parameter method, slp

Introduction

Thermal network modelling has been used by other investigators as a means of analysing

heat transfer processes in ventilated floor slabs [19, 26]. In the lumped capacitance model

[11], it is assumed that the building fabric has a sufficiently large thermal conductivity, km

and hence a small Biot number, Bi. This holds if the internal thermal resistance is negligible

compared to the surface thermal resistance. Bi is defined as follows:

Bi =
helc
km

(3.3)

where he is an effective heat transfer coefficient that in general takes into account heat

transfer by both radiation and convection, and lc is a characteristic length of the storage

material. A derivation of this condition for applicability of the lumped capacitance model is

given in [11]. Shaw [31] presented a derivation of the lumped capacitance approximation us-

ing asymptotic analysis for solid bodies that are exposed to constant property environments.

If Bi is small then it may be assumed that the slab mass temperature is only a function of

time and is uniform throughout the system at any instant, otherwise temperature gradients

in the slab mass may not be neglected. It is then necessary to divide the slab mass into

a finite number of sections. Each section behaves like a small lumped capacitance and is

taken as a node which is connected to its neighbors through thermal resistances [19]. Ther-

mal storage in the slab material and air is represented in the thermal network model by a

thermal capacity.
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Consider dividing the problem domain occupied by the slab into nx, ny rectangular sections

of widths ∆x and ∆y each in the x-direction and y-direction respectively,

L = nx∆x, B = ny∆y.

Since the air temperature is dependent on only one spatial coordinate x, discretisation need

only be in one direction. The temperatures for the nodes in the air and floor slab are denoted

by

T∞(P, t) ∼ T∞

P (t), T (P, t) ∼ TP (t),

and for the sake of brevity the time argument t is omitted.

Energy equations for the slab material

N

S

Ry

Ry

Rx

Rx

EW

Cs

Rc

Ra

Ra

Ca

P

P

Pa

Rc

Ry

Rx

Rx

Cs

P

Wa Ea

N

N

Pa

PW E

Pa

(a) (b) (c)

Figure 3.5: Discretisation for the slab and air nodes for the slp method, and corresponding
networks. Inner node (a), boundary (with air) node (b) and air nodes (c).

For the section containing node P , see Figure 3.5 the heat flow into the section from node

W across the side of width ∆y is

∆y qw = ∆y (−km

∂T

∂n
)

≈ km∆y
TW − TP

∆x
,
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where qw is the net heat flow rate per area of cross-section going through thermal resistance

labelled Ry.

Since the rate of accumulation of energy at a node, equals the net rate of heat flowing into

that node then

ρscs∆x∆y
dTP

dt
= km∆y

TW − TP

∆x
+ km∆y

TE − TP

∆x
+ km∆x

TS − TP

∆y
+ km∆x

TN − TP

∆y

or Cs

dTP

dt
=

TW − TP

Rx

+
TE − TP

Rx

+
TS − TP

Ry

+
TN − TP

Ry

, (3.4)

where, using the electrical analogue [18], Cs = ρscs∆x∆y is the thermal capacitance of the

section and

Rx =
∆x

km∆y
, Ry =

∆y

km∆x

are the thermal resistances in the x and y directions.

Energy equations for the air

Consider approximating equation (3.2) by a backward difference [22] in the space derivative.

We have that
∂T∞

∂x
(P, t) ≈ T∞

P − T∞

W

∆x

This discretisation in the spatial variable x reduces a partial differential equation (the energy

equation for the air problem domain) to a system of ordinary differential equations for each

node P in terms of an unknown (air temperature at a node) that depends on time only. The

resulting approximation is:

ρfcfg
dT∞

P

dt
+ ṁfcf

T∞

P − T∞

W

∆x
= hc (TN − T∞

P ) , (3.5)

where T∞

P is the air temperature at node P .

Upon multiplying throughout by ∆x and using an analogy between electric flow and heat

flow [18] and re-arranging, equation (3.5) assumes the following form,

Ca

dT∞

P

dt
=
T∞

W − T∞

P

Ra

+
TN − T∞

P

Rc

(3.6)

Ca = ρfcfg∆x is the thermal capacitance of the air. Thermal resistance to heat flow along

the air void Ra, and thermal resistance to convective heat flow (fluid to solid) Rc are defined
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as follows

Rc =
1

hc∆x
, Ra =

1

ṁfcf

It is clear from equation (3.6) that the net heat flow into node P equals the thermal energy

stored in the section of node P . A thermal network for a section in the air is shown in Figure

3.5:c.

Energy balance equations in matrix form

When the energy balance equations (3.4) and (3.6) are applied for all the nodes in the slab

and air, they form a matrix equation

C
dU(t)

dt
= BU(t) + v (3.7)

where U = [T∞

1 , T∞

2 , . . . , T∞

m | T1, T2, . . . , Tmn]T

and v = [RaTH , 0, 0, . . . ]
T

3.4.2 A modified lumped parameter method, mlp

Introduction

Nodes are introduced on the boundary in order to improve the modelling there, resulting in

the sections around the boundary being either a half or quarter of the area of the internal

sections.

The equations for an internal slab node and for the air nodes are the same as for the slp

model and for this reason are not repeated. The new boundary forms are given below.

Heat transfer at a node on an insulated boundary

Consider the setting shown in Figure 3.6(a). If an artificial node W is introduced, the

insulation boundary condition at node P may be approximated by a central difference as

TW = TE. Using this result on equation (3.4) and re-arranging yields the following as the
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Figure 3.6: Discretisation on the boundary for mlp

thermal resistance-capacitance formulation for insulation on a plane surface.

Cs

2

dTP

dt
=
TS − TP

2Rx

+
TN − TP

2Rx

+
TE − TP

Ry

(3.8)

Heat transfer at a node on an insulated boundary and with convection

On the air boundary the convection condition is approximated by

(TS − TN)

2Ry

=
(T∞

P − TP )

Rc

which when used in equation (3.4) gives the following as the thermal resistance-capacitance

formulation for a convection boundary condition at a plane surface, see Figure 3.6(c),

Cs

2

dTP

dt
=
TW − TP

2Rx

+
TE − TP

2Rx

+
T∞

P − TP

Rc

+
TN − TP

Ry

(3.9)
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Heat transfer at a corner with insulation, also with convection

The section size is now a quarter of the standard giving, using a similar method, for the

insulated corner
Cs

4

dTP

dt
=
TW − TP

2Rx

+
TN − TP

2Ry

, (3.10)

and similarly with air convection, see Figure 3.6(b).

Cs

4

dTP

dt
=
TE − TP

2Rx

+
TN − TP

2Ry

+
T∞

P − TP

2Rc

(3.11)

Energy balance equations in matrix form

The equations for the mlp method combine into a global equation of the same form as the

slp, equation (3.7).

3.4.3 The finite element method (fe)

Rectangular elements are used, and since no sudden temperature changes are expected it is

reasonable to use a bilinear approximation on an element in the slab. See [17].

φ(x, y) = a+ bx + cy + dxy

This is linear when reduced to one dimension and so will fit with using linear approximation

for the elements of the air. The nodes on the slab and air are at the same points as for the

mlp method. Discretisation for the floor slab is

M
dT

dt
= −KT +H(T∞ − T) (3.12)

where T = [T1, T2, . . . , Tm| Tm+1, . . . , Tmn]T

T∞ = [T∞

1 , T∞

2 , . . . , T∞

m | 0, . . . , 0]T

m and n are the number of nodes along the air void (which is the same as along the length of

the floor slab), and along the thickness of each slab, respectively. The terms of the matrices
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are given in terms of the basis functions as

Mrc = ρmcm

∫

D

φr(x)φc(x)dA

Hrc = hc

∫

∂D

φr(x)φc(x)dx

Krc = km

∫

D

∇φr(x) · ∇φc(x)dA.

The space discretisation for the air void is

P
dt∞

dt
= −Qt∞ −R(ts − t∞) (3.13)

where Prc =

∫

G

φr(x)φc(x)dx ,

Qrc = vf

∫

G

φr(x)
dφc(x)

dx
dx

and Rrc = βPrc

and t∞ = [T∞

1 , T∞

2 , . . . , T∞

m ]T,

ts = [T1, T2, . . . , Tm]T,

The coupled equations (3.12), (3.13) may be combined into a single matrix system

F
dU(t)

dt
= GU(t) + y (3.14)

where U = [t∞| T]T

y = [H(1, 1)TH , 0, 0, . . . , 0]T.

Note that from the boundary conditions T∞

0 ≡ constant, TH .

3.4.4 An analytic method for solving in the time domain

The finite element equations (3.14) and the energy balance equations for the thermal resistance-

capacitance formulation, equations (3.7), all have the same form and may be written as

ẋ(t) = Ex(t) + w(t), (3.15)

after multiplying throughout by the inverse of the first coefficient matrix.

If, as is the case with the test problems, the source function w(t) can be expressed in terms of
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elementary functions (it is a constant here) this system of equations can be solved analytically

rather than numerically. Usually in the time domain some form of finite difference time

stepping is needed, say the explicit method or Crank-Nicolson, which would introduce it’s

own error. The advantage with an analytic method in comparing the different models is that

it would introduce only a very small rounding error, so that the error which is present in the

final results comes from the modelling equations themselves. An outline of the uncoupling

of the equations is given below; in a different context the method is described in [23].

Suppose the matrix E satisfies the following eigenvalue properties

EX = XD, where D = diag{λ1, λ2, . . . , λs} (3.16)

and λi, i = 1, 2, . . . , s are its eigenvalues and, the columns of X are the corresponding

eigenvectors. Upon inserting x(t) = Xz(t) into equation (3.15) and using equation (3.16)

the following uncoupled system is obtained

ż(t) −Dz(t) = X−1w(t) (3.17)

Equation (3.17) may be solved by standard techniques (Laplace transforms were chosen in

this case) to yield z(t) and hence the required solution x(t) = Xz(t).

For the case of a nearly singular capacitance matrix (which may arise for an inhomoge-

neous slab due to varying physical properties), the generalized eigenvalue problem may be

considered instead. The resulting eigensystem is solved by the qz algorithm (see [21]).

3.5 Results on test problems, A and B

3.5.1 Data used for the test problems

The dimensions and physical parameters chosen for the test problems are,

Slab dimensions: L = 6.00m, B = 0.15m

Slab parameters: k = 1.40W/mK, ρm = 2400 kg/m3, cs = 1000 J/kg ◦C

Air gap: g = 0.20m

Air parameters: vf = 0.25m/s, ρf = 1.177 kg/m3, cf = 1006 J/kg ◦C

Convective heat transfer coefficient: hc = 2.00W/m2 ◦C
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The slabs and the air were assumed to be initially at a uniform temperature of 20◦C, then

the input air temperature was given a step increase to 30◦C. The models estimate the rise

of slab and air temperatures to the same value. The actual data from the Eastgate building

was numerical and roughly periodic and sinusoidal, however since any arbitrary function of

time can be approximated to a required accuracy as a linear combination of step functions,

the present test is sufficient to validate the models, see pages 86–88 of [30].

3.5.2 Accuracy and energy conservation

Testing accuracy with problem A
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Figure 3.7: Comparison of methods against the exact solution to test problem A

The upper half of Figure (3.7) shows the analytic solution at the slab boundary as it ex-

periences convection over 500 hours. The three methods which are compared use the mesh

m = 5 and n = 12 which, judging from the later tables from the test problem B, will give
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a good representation for the methods. The symbols for the methods over-lay showing the

errors to be small. The graph below shows how the errors relate to each other in detail; only

slp has a significant error and this is less than 3% throughout the time period.

Checking on the overall energy balance

As a check on the computer code, it should predict the balance between the input energy

i.e. the heat lost by the air as it passes along the gap, and the heat stored in the floor and

ceiling slabs.

An outline of the computation follows.

d

dt
[e(t)] = ṁfcfT

∞(0, t) − ṁfcfT
∞(L, t) (3.18)

where e(t) = Ea(t) + Es,f(t) + Es,c(t)

Here, Ea(t), Es,f(t) and Es,c(t) denote the total energy content of the air, floor and ceiling

slab respectively and hence e(t) is the total energy. The finite element and lumped parameter

equivalents of the energy terms are found by using the nodal temperatures that are obtained

from code. Each node is either associated with a part of the slab or the air. The solution to

equation (3.18) is obtained as

e(t) − e(0) = ṁfcf

[

t T∞(0, t) −
∫ t

0

T∞(L, τ)dτ

]

(3.19)

Since T∞(L, t) is known from section (3.4.4), equation (3.19) can be evaluated explicitly

and can be used to check an energy balance for the slab-air-slab sandwich. The integration

for the finite element calculation is analytic and can be obtained for any time. For the

simple lumped parameter method this proved difficult and the trapezoidal rule was used for

the integration. The Trapezoidal rule has truncation error O(h2) and the Simpson’s rule

O(h5) hence more accurate, where h is the spacing between neighbouring points used in the

numerical integration. However, no sudden changes in air outlet temperature T∞(L, t) after

the initial instant are expected. This is evident from Figure (3.8) which shows very little

change in temperature between neighbouring points. Hence the Trapezoidal rule is adequate

to demonstrate conservation of energy. Moreover, Simpson’s rule is more computationally

intensive and hence compromises the storage requirement of Matlab, [1] since the time over

which the temperature is integrated is relatively long.

It is clear from the tables 3.2 and 3.1 that there is good agreement and that the codes do
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time(mins) energy(kJ) stored lost (stored-lost)/stored
4.00 54.2450 54.2446 8.3e-06
8.00 99.6295 99.6290 4.5e-06
12.00 144.9237 144.9233 3.1e-06
16.00 190.1300 190.1296 2.4e-06
20.00 235.2506 235.2501 1.9e-06
24.00 280.2874 280.2869 1.6e-06
28.00 325.2424 325.2420 1.4e-06
32.00 370.1176 370.1171 1.2e-06
36.00 414.9146 414.9141 1.1e-06
40.00 459.6351 459.6346 9.8e-07
44.00 504.2808 504.2803 8.9e-07
48.00 548.8531 548.8526 8.2e-07
52.00 593.3536 593.3531 7.6e-07
56.00 637.7835 637.7831 7.0e-07
60.00 682.1443 682.1438 6.6e-07

Table 3.1: Energy balance for the slp method applied to test problem B

time(hrs) energy(kJ) stored lost (stored-lost)/stored
5 3274.55 3272.28 0.00069
10 6273.36 6268.99 0.0007
15 9049.2 9043.28 0.00065
20 11618.5 11611.5 0.0006
50 23474.8 23466.6 0.00035
100 34243.3 34238.6 0.00014
150 39157.8 39155.5 5.9×10−5

200 41387.7 41386.3 3.4×10−5

Table 3.2: Energy balance for the fe method applied to test problem B

have the energy balance built into them. The mlp code was not tested because the values

given were very close to those of the fe method which was known to be satisfactory.

3.5.3 On the minimum mesh size with slp for test problem B

It became evident while making the various tests that for the slp method two sections in the

breadth gave a significant improvement in accuracy compared with using only one. This is

shown in the two Figures 3.8 and 3.9, which give the results of comparing the slp method

with one and two sections, i.e. one or two nodes in the breadth of the slab. The test

problem B was used and Figure 3.8 gives the air temperature at the outlet and 8 records

the temperature of the slab nearest to the air outlet. Note that with the slp method the
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nodes are at the centre of the sections, so that for the 2× 1 and 2 × 2 meshes the outlet air

node position is in fact three-quarters of the way down the gap for both, whereas the slab

positions differ slightly (by a quarter of the thickness). The fe results used as the base values

to compare against are the converged values with a 23×7 mesh (the values have not formally

converged, it is that they have stabilised to 3 decimal places with mesh refinement).

Figure 3.8 shows the outlet air temperature with an initial sharp rise. The rise occurs because

of the step input temperature of 30◦C from the starting value of 20, which at 2.5m/s takes

2.4 seconds to travel the 6m length of the air gap. Thereafter the rate of increase is relatively

small. The important feature is that the 2×1 mesh predicts a temperature about 1.5◦C too

high whereas the 2×2 estimate is reasonable with an error of around 0.2. The corresponding
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Figure 3.8: Comparison of slp method between a 2 × 1 and 2 × 2 mesh with the converged

solution at the air outlet, using problem B

results over 360 hours for the slab temperature at the node nearest the outlet are shown in

Figure (3.9). The error for the 2×1 mesh is again considerably more than for the 2×2 mesh

although generally the slab errors are less than the errors at the air outlet. The discrepancy

between the results of the two meshes comes from the form of the heat-flow through the

slab thickness. This will be exponential rather than linear and thus will need at least two

nodes to adequately represent the behaviour. Hence in the tables below at least 2 nodes or

elements were used in the thickness.
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Figure 3.9: Comparison against an exact solution to problem A

3.5.4 Convergence and accuracy with test problem B

The variance of the errors with time are shown in the previous section. In the tables below,

which look at the convergence rates of the three methods and their relative efficiency, the

temperatures are considered at a particular time. This has been chosen at 45 hours after

the start, being a reasonable compromise considering the different error behaviour of the air

and slab.

The aim of the gap between floor and ceiling is to cool the air as it passes through. The

cooling gain is measured by the difference between the input air temperature of 30◦C and

the temperature as it leaves i.e. at the node closest to the outlet. Table 3.3 below shows the

values given as the mesh is refined, with m and n being the number of nodes in the length

and breadth respectively.

Clearly the system converges very early in the refinement judged by the consistency of the

prediction. The convergent process of refinement is shown more clearly by the differences

between this converged value and the estimates of the refining process, see table 3.4. These

differences show that even for the simplest mesh, 3 × 2, the error is only 0.007 which would

not be noticeable (and also hardly measurable).
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n\ m 3 7 11 15 19 23 27 31
2 28.421 28.421 28.421 28.421 28.421 28.421 28.421 28.421
3 28.426 28.427 28.427 28.426 28.426 28.426 28.426 28.426
4 28.427 28.427 28.427 28.427 28.427 28.427 28.427 28.427
5 28.427 28.428 28.428 28.428 28.428 28.428 28.428 28.428
7 28.428 28.428 28.428 28.428 28.428 28.428 28.428 28.428
11 28.428 28.428 28.428 28.428 28.428 28.428 28.428 28.428

Table 3.3: Indication of convergence for the fe scheme: temperature of air at the duct outlet,
at time = 45 hours

n\ m 3 7 11 15 19 23 27 31
2 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
3 0.002 0.001 0.001 0.002 0.002 0.002 0.002 0.002
4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
5 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3.4: Progress towards convergence of the fe scheme with mesh refinement: air temper-
ature at the duct outlet, at time = 45 hours. Converged temperature (28.428) - estimate

The corresponding differenced values given by the modified lp scheme are similar and show

convergence to a similar value 28.431◦C.

The values shown in table 3.5 are very slightly less accurate than the fe, with the worst

result only in error by 0.037◦C which may not change the first decimal place in the recorded

temperature. Note that the lp method over-estimates the temperature (slightly) whereas fe

under-estimates. The values change with both m and n for the lumped parameter methods,

whereas very little change is observed to three decimal places as n varies in the fe method.

This is because the section size, and hence the node position which is best considered as

being at the centre of the section, varies with m and n for the lumped parameter methods.

The mathematical construction of the fe method ensures that the node values are estimated

at the vertices of the (rectangular) elements.

The simple lp results show the greatest variation and the slowest convergence with refine-

ment, as would be expected. If we take the temperature 28.430◦C (as being the converged

value) from the two previous methods then the differences are given in table (3.6).
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n\ m 3 7 11 15 19 23 27 31
3 -0.037 -0.010 -0.005 -0.002 -0.001 0.000 0.000 0.000
4 -0.037 -0.011 -0.005 -0.003 -0.002 -0.001 0.000 0.000
5 -0.037 -0.011 -0.005 -0.003 -0.002 -0.001 0.000 0.000
7 -0.038 -0.011 -0.006 -0.003 -0.002 -0.001 -0.001 0.000
11 -0.038 -0.011 -0.006 -0.003 -0.002 -0.001 -0.001 0.000

Table 3.5: Progress towards convergence of the mlp scheme with mesh refinement: air tem-
perature at the duct outlet, at time = 45 hours. Converged temperature (28.431) - estimate

n\ m 2 6 10 14 18 22 26 30
2 -0.777 -0.247 -0.140 -0.095 -0.069 -0.053 -0.042 -0.032
3 -0.779 -0.251 -0.145 -0.099 -0.074 -0.058 -0.047 -0.039
4 -0.781 -0.253 -0.147 -0.102 -0.077 -0.061 -0.050 -0.041
6 -0.782 -0.255 -0.150 -0.105 -0.079 -0.063 -0.052 -0.044
10 -0.783 -0.257 -0.152 -0.107 -0.082 -0.066 -0.055 -0.047

Table 3.6: Progress towards convergence of the slp scheme with mesh refinement: air tem-
perature at the duct outlet, at time = 45 hours. Converged temperature (28.430) - estimate

It is clear that the results indicate a convergent process but not exactly to the value 28.430.

In addition to the position of the nodes varying with refinement mentioned above, the value

can also be influenced by the modelling of the time change: the model is not as accurate as

the other two in both space and time, so that the “45 hours” may not be as precise.

However with these reservations the method is still quite accurate and with a mesh of 6× 2

the error is less than a quarter of a degree.

The temperature values in the slab are also available, and in order to show how they behave

for the three schemes the set of tables 3.3 through 3.6 corresponding to the set above is

given. The temperature is estimated at the node in the slab nearest to the outlet; this point

exhibits behaviour similar to the air outlet, but reacts more slowly to the step input.

In table 3.7 for the simple lp scheme the converged value is taken to be the average of the two

other, more accurate schemes i.e. 24.759. This converged value is not the temperature the slp

scheme is converging to, which explains partly the residual differences. As mentioned before

when explaining the behaviour of the air estimates, another cause of the erratic behaviour

is that the central node of each section varies in position as the dimensions, m,n change.

Also the previous comments on the accuracy of the time modelling hold. Having made these
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n\ m 2 6 10 14 18 22 26 30
2 0.044 0.079 0.082 0.082 0.081 0.079 0.078 0.077
3 0.025 0.059 0.062 0.062 0.061 0.060 0.058 0.057
4 0.014 0.048 0.051 0.051 0.050 0.049 0.047 0.046
6 0.003 0.036 0.040 0.040 0.038 0.037 0.036 0.035
10 -0.007 0.027 0.030 0.030 0.029 0.027 0.026 0.025

Table 3.7: Progress towards convergence of the slp scheme with mesh refinement: tem-
perature of slab nearest to the duct outlet, at time = 45 hours. Converged temperature
(24.760) - estimate

allowances the estimates are quite accurate.

Efficiency

n\ m 3 7 11 15 19 23 27 31
2 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
3 0.002 0.001 0.001 0.002 0.002 0.002 0.002 0.002
4 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
5 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 3.8: Progress towards convergence of the fe scheme with mesh refinement: air temper-
ature at the duct outlet, at time = 45 hours. Converged temperature (28.428) - estimate

The form of the data displayed in the tables with the inconsistent numbers chosen for m and

n makes it difficult to make a detailed analysis, however the general indication is clear.

The mlp and fe methods have a similar behaviour with fe being more accurate for the same

mesh, but both give acceptable accuracy for the simplest mesh.

To compare slp with, say, the fe method for the air temperature, see tables 3.8 and 3.9.

Suppose we wish to achieve a prescribed accuracy and record the smallest number of degrees

of freedom needed. If say an error less than 0.1 is required, the slp requires s = m × n to

be at least 14 × 2 = 28 whereas fe needs only 3 × 2 = 6. In fact this simple mesh gives an

error of less than 0.01; it appears that fe (and mlp) is, on the basis of the size of matrices

required to solve the problem, more efficient.

54



n\ m 2 6 10 14 18 22 26 30
2 -0.777 -0.247 -0.140 -0.095 -0.069 -0.053 -0.042 -0.032
3 -0.779 -0.251 -0.145 -0.099 -0.074 -0.058 -0.047 -0.039
4 -0.781 -0.253 -0.147 -0.102 -0.077 -0.061 -0.050 -0.041
6 -0.782 -0.255 -0.150 -0.105 -0.079 -0.063 -0.052 -0.044
10 -0.783 -0.257 -0.152 -0.107 -0.082 -0.066 -0.055 -0.047

Table 3.9: Progress towards convergence of the slp scheme with mesh refinement: air tem-
perature at the duct outlet, at time = 45 hours. Converged temperature (28.430) - estimate

3.5.5 Discussion

A comparison is made of three mathematical methods for modelling, in space and time, the

thermal storage in a ventilated floor slab. The problem to be solved involves the coupling of

slab heat flow with ventilating air. Two of the methods, slp and mlp have a direct derivation

in terms of heat flow and so may be more intuitive and, especially slp, easy to code. The

other, fe, has a more mathematical explanation and may not be so readily available for

someone not familiar with the technique. All three methods are briefly described and judged

on a simple problem with an analytic solution, and to conserve energy. When examined on

a problem having the essential features of the ventilated slab, the slp method is shown to

require at least two sections in the slab thickness to give reasonable results. The mlp and fe

methods were roughly comparable with each other, with the fe being slightly more accurate.

Both were more efficient than slp when judged by the number of degrees of freedom required

for a particular accuracy.

The accuracy requirement in a method is not easily stated; some of the problem parameters

themselves are not known precisely, for example the convective heat transfer coefficient,

and even the physical model has questionable assumptions built into it. However assuming

that the smallest contribution to the overall error from the solution method for a given

computational cost is required, the results given in this chapter indicate that the fe method

should be seriously considered.

The model has some inadequacies which could be addressed in future work and hence mod-

ification in code. Perhaps a comparison of CPU times could be more useful then. Also, the

programming language used Matlab is interpreted and generally slow. A compiled language

like C could be considered in the future since it is faster and more extensible (for those

intending to apply the model).
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3.6 Results on the full model with measured air inlet

temperature

3.6.1 Comparing measured with predicted air outlet temperature
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Figure 3.10: Effect of thermal mass between fans (in the atrium) and slab inlet on supply
air cooling

In this section a comparison is made between measured and predicted air outlet temperatures.

The transient response of a ventilated slab to a time-wise variation in air inlet temperature

is considered. Use is made of measured air inlet temperature. Figure 3.10 shows the mea-

sured air temperature given by three three sensors at three different positions: the atrium

temperature sensor is situated near the fans on the ground floor, the other two sensors are

situated at the inlet and outlet of a slab on the fifth floor of the building. The model is local

to the slab and it does not include the effect of the thermal mass between the atrium and

the inlet to the slab. The bulk of heat transfer seems to occur between the atrium and the

slab inlet as indicated in Figure 3.10 for a week of operating the slab. The figure shows the

damping and the delay in the peaking of the supply air temperature between the fans in the

atrium and the slab inlet.
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Concrete
cm = 1000 J/kg oC
ρm = 2400 kg/m3

km = 1.4 W/m oC

Air
cf = 1006 J/kg oC
ρf = 1.177 kg/m3

Other parameters

L = 6 m
d = 0.15 m
g = 0.2 m
ε′ = 0.94
σ = 5.7 × 10−8 W/m oC4

Tmean = 20 ◦ C

hr =
4σT 3

mean

2

ε′
− 1

W/m2 ◦C

Table 3.10: Input parameters

Table (3.10) shows values used for the basic input parameters to generate the results pre-

sented in this section.

The correlation between hc and the air velocity vf used, 3.20 is that recommended by Holmes

and Wilson [19].

hc =16
v0.8

f

g0.2
(3.20)

where

vf =











0.25m/s for low flow

1.1m/s for high flow

0.01m/s fan off

The velocity repeats the same cycle every week and similarly the heat source to the ceiling

slab. Figures 3.11 and 3.12 show the variation with time of the velocity and heat source

profiles used for obtaining results in this section. The shown profiles are for a week beginning

on a Friday at midnight and they clearly indicate (virtually) no air flow and no heat source

during the weekend. A zero heat source corresponds to periods outside occupancy of the

building.

Shown in Figure 3.13 is a comparison of measured with predicted outlet air temperature.

Also shown is the air velocity to indicate how it affects the outlet air temperature. The

heat source profile was left out for clarity but a profile corresponding to the air velocity can
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be deduced from the weekly cycle of the heat source given in Figure 3.12. A time scale of

two weeks was chosen to make sure that the numerical system has settled down since it was

assumed that the ventilated slab is initially at a constant temperature throughout.

The predicted outlet air temperature underestimates the measured outlet air temperature.

This could be due to the following limitations in the model:

• It is assumed that the carpet sitting on the floor slab provides insulation and hence

there is no thermal interaction with room above.

• Thermal interaction with the room below the slab is modelled as a heat source. A

value of 17.59W/m2 ◦C was used during hours of occupancy. This was advised by the

site engineer but was uncertain.

Also, an average air velocity vf and hence constant hc is assumed along the slab. This is

not the case since air spreads sideways as it moves from the inlet of the slab to its outlet

resulting in a variation of the velocity with the length of the slab.

There is a prolonged absence of forced air flow during the weekend since the fans are off

then. This results in very little variation in the outlet air temperature. The predicted air

outlet temperature does not pick up the decay in the air inlet temperature at these times.

One weekness of the comparison between predicted and measured data is that measured

surface temperatures were not available to help identify discrepancies. The measured surface

temperatures are essential in determining a reasonable value for hc since convective heat

transfer on the conrete-air interface is given by

qc = hcA (Ts − T∞) ⇒ hc =
qc

A (Ts − T∞)

where Ts is the surface temperature and T∞ is the air bulk temperature.

3.6.2 Sensitivity tests

Effect of heat source

Due to the uncertainty of the value used for the heat source to the slab from the room below,

changes in the value used are considered. The objective is to investigate how sensitive the
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numerical model is to these changes and whether or not the comparison given in section

3.6.1 improves. The heat source value of 17.59W/m2 ◦C was doubled and trebled as shown

in Figure 3.14.

The results show that raising the heat source value raises the predicted outlet air temperature

and brings it closer to the measured outlet air temperature. However, the swing of the

predicted outlet temperature is increased and hence overestimated in the process. Trebling

the heat source value is unreasonably high for a single source. Another possible heat source

not included in the model is through the floor. This is assumed to be insulated but the floor

will most probably receive heat through the carpert.

Effect of the convective heat transfer coefficient

When the fans are off the system is driven by free convection and a velocity of 0.01m/s

was chosen at these times to try and account for the slight motion in the supply air. The

correlation for hc given by equation (3.20) gives a value of hc = 0.6W/m2 ◦C. This value

was thought to be too low and so it was increased to 4W/m2 ◦C. The latter value seems

reasonable as it is of the same order of magnitude as those suggested by other authors, for

example [11] on page 24 indicates values of hc for gases for natural convection in the range

of about 5 − 50W/m2 ◦C.

Now, for the standard specification for the numerical model the following should be noted:

• The fans are either

– on and blowing the supply air at low and high velocities of 0.25m/s and 1.1m/s

respectively, or

– they are off and an air velocity of 0.01m/s is assumed.

• Convection is either

– forced and hc is given by 3.20 for both low and high air flow, or

– it is free and hc = 4W/m2 ◦C.

For the same velocity profile vf(t), two variations of the standard specification are introduced:

the heat transfer coefficient profile hc(t) is either halved or doubled. Figure 3.15 gives

a comparison of the outlet air temperature for the three different cases. The period of
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operation of the slab is two weeks but, only about two days in the middle of the week are

shown to get a closer look at the results.

The results show that:

• The higher the heat transfer coefficient the more the damping there is in the outlet air

temperature. A higher hc results in increased convective heat transfer on the slab - air

interface and hence the supply air loses more heat to the slab.

• Increasing hc also results in an increase in the phase change of the supply air temper-

ature. Thus the peaking of the supply air temperature is delayed more by a bigger

hc.

While values of hc were thought to be uncertain as indicated by the need to do sensitivity

tests, experimental determination together with statistical analysis could improve the model.

However, this involves working with surface temperatures and these were not available.

Effect of the air velocity when the fans are off

The value used for the air velocity when the fans are off, vffree
= 0.01m/s is very uncertain.

It seems too low to pick up the decay in the supply air temperature during weekends. In

this section slight changes in this value are made and their effect on the numerical model

is considered. The heat transfer coefficient profile hc(t) is the same as for the standard

specification for the numerical model and it is computed from equation (3.20) for both forced

and free convection. During the periods when the fans are off two different values for the air

velocity: 0.05m/s and 0.10m/s are used. Figure 3.16 shows the air outlet temperature for

the three different cases. The slab was operated for a fortnight but, the figure only shows

Saturday and Sunday to indicate the prolonged absence of forced air flow.

The results show the following.

• Increasing vffree
reduces the thermal resistance to heat flow in the supply air through

the slab. This results indicate:

– a closer match in the decay of the air outlet temperature between the predicted

and measured values and,

– the swing of the supply air temperature increases and gets the predicted closer to

the measured values.
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Figure 3.11: Weekly cycle (starting Friday at midnight) of the velocity profile for Eastgate
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Figure 3.12: Weekly cycle (starting Friday at midnight) of the heat source profile for Eastgate
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Chapter 4

On modelling space cooling with

packed beds and Harare International

School

4.1 Introduction

The problem considered here is that of mathematically modelling the transient response of a

packed bed to a varying fluid inlet temperature. The bed is used as a thermal storage system

to regulate temperature in the room space environment for a typical building design; Harare

International School [25]. The energy transporting fluid and the energy storage medium are

air and rock respectively. The results from the developed model are compared with measured

data and the model is used to do a parametric study in chapter 5.

The method of solution uses a finite difference approximation for discretising space in the

solid problem domain. A finite element approximation is used in the fluid problem domain.

Time stepping is done by finite differences.
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4.2 A general review of models for thermal storage in

packed beds

4.2.1 Introduction

This section gives a review of models for thermal energy storage in packed beds. Perhaps

the most important of these models is the Schumann model [30]. It is the first known model

for thermal energy storage in packed beds. The other models are modifications in one way

or another. It is for this reason that this benchmark model is presented in its own section.

The next two sections describe with examples single-phase and two-phase models. The

former model assumes that the solid and fluid phases have the same temperature on any

cross-section of the bed perpendicular to the direction of the fluid flow. This allows for a

single energy equation to model heat transfer for both phases. The latter model allows for

separation of the fluid and solid phases and derivation of an energy equation for each phase.

The use of the phrase two-phase model is according to [12]. It indicates the use of two energy

equations: each for the solid and the air, contrary to either two-phase heat transfer or change

of state from solid to liquid.

The last section gives a few examples to highlight the current state of research on thermal

energy storage in packed beds and their applications.

4.2.2 The benchmark model (Schumann)

The benchmark model for thermal energy storage in packed beds was done by Schumann in

1928. The following assumptions were made to derive the energy balance equations for both

the storage material and the energy transporting fluid.

• Dispersion effects and intra-particle conduction are negligible.

• Thermal conductivity in the transverse direction is infinite and hence there is no tem-

perature variation in this direction.

• There is zero thermal conductivity in the direction of flow.

• Wall containers are perfectly insulated.
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• Physical and thermal properties are constant. This is valid for small temperature

ranges.

• The convective heat transfer coefficient hc is uniform.

• Fluid flow is one-dimensional and the velocity of the fluid is constant.

• The bed is initially at constant temperature.

• Radiation effects are negligible. This is reasonable for packed beds operating under

moderate temperature conditions.

• Rate of accumulation of energy by the fluid in the bed is negligible. This is true for

most practical purposes, see page 18 of [29]. Furthermore, according to Adebiyi [2],

this is true provided the thermal capacity of the fluid is much smaller than that of the

bed material. That is
ερfcf

(1 − ε)ρmcm
� 1 (4.1)

• There is no internal heat generation.

• There is no mass transfer. What flows into the bed flows out of it. Generally, mass

transfer tends to increase the thermal storage capacity of the solid material. However,

there is experimental evidence that the absorbing nature of solid materials like gravel

does not significantly improve the performance of the packed bed system hence mass

transfer is neglected [15].

x

insulation

packed bed

fluid
in

fluid out

∆ x

Figure 4.1: Control volume

By doing an energy balance on a control volume across the bed (see Figure 4.1), the following

equations can be derived for the fluid and the solid material respectively [29] for 0 < x ≤ L

and t > 0.
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In the fluid

ṁfcfL
∂Tf

∂x
=hcA (Tm − Tf )

and in the solid

Sfr(1 − ε)Lρmcm
∂Tm

∂t
=hcA (Tf − Tm). (4.2)

For this and subsequent notation in this chapter see the nomenclature (Appendix B). Di-

mensionless distance, time and temperature are introduced.

ξ =
hcAx

ṁfcfL
, τ =

hcAt

Sfr(1 − ε)Lρmcm
, θf =

Tf − T0

Tfi − T0
and θm =

Tm − T0

Tfi − T0
.

Consequently, the energy equations for the fluid and the solid respectively assume the fol-

lowing form.

∂θf

∂ξ
=θm − θf

∂θm

∂τ
=θf − θm (4.3)

where

0 < ξ ≤ 1 and τ > 0

The bed is initially at a constant temperature throughout and it suddenly experiences a step

change in the fluid inlet temperature. This mode of operation is called single-blow [29] and

the associated boundary condition is

at ξ = 0, θf = 1,

and the initial condition is

at τ = 0, θm = 0.

It follows from these two conditions and the energy equation for the bed material that

at ξ = 0, θm = 1 − e−τ
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Schumann transformed the energy equations (4.3) into a special case of the the Bessel differ-

ential equation and derived an analytic solution to this problem in the form of infinite series

for the case of a semi-infinite bed. The solution follows.

θm(ξ, τ) = 1 − e−(τ+ξ)
∞

∑

n=0

ξnM
(n)
0 (ξτ)

θf (ξ, τ) = 1 − e−(τ+ξ)
∞

∑

n=1

ξnM
(n)
0 (ξτ)

where M0(ξτ) = J0(2i
√

ξτ) and M
(n)
0 (ζ) =

dnM0(ζ)

dζn
; i =

√
−1

J0 is the Bessel function of the first kind and of order 0. For a detailed derivation of this

solution see [29].

4.2.3 Single-phase models

Negligible thermal resistance model

Contrary to the Schumann model, it is assumed here that there is intra-particle conduction.

Furthermore, if both the thermal conductivity of the bed material km and the convective heat

transfer coefficient hc are assumed to be large, thermal resistance to heat transfer between the

bed material and the fluid is negligible. A sufficiently large km ensures negligible internal

thermal resistance and similarly a sufficiently large hc ensures negligible surface thermal

resistance. This follows from the following formulae for thermal resistance to internal thermal

conduction and to heat transfer at the surface of contact respectively:

Rinternal =
L

kmA
, Rsurface =

1

hcA
.

The consequence is that the fluid and bed temperatures are equal on any cross-section of

the bed perpendicular to the direction of flow. Hence only one energy equation is needed for

heat transfer in the packed bed. The rest of the assumptions are the same as those for the

Schumann model.

Since the net accumulation of energy in the bed material must equal the energy lost by the

fluid through the bed together with the energy transferred from the surface to the interior
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of the bed material, the energy equation is

vfρfcf
∂T

∂x
+ ρmcm(1 − ε)

∂T

∂t
= km

∂2T

∂x2

The boundary condition at the bed’s inlet is of Danckwert type [27] and, at distances suffi-

ciently large from the inlet it is assumed that temperature gradients vanish:

at x = 0, −km

∂T

∂x
= vfρfcf(Tfi − T )

∂T

∂x
→ 0 as x→ ∞

If the following non-dimensional quantities are introduced,

ξ =
vfρfcfx

km

, θ =
T − T0

Tfi − T0

, τ =
(vfρfcf)

2t

kmρmcm(1 − ε)

the mathematical model may be written as follows

∂θ

∂ξ
+
∂θ

∂τ
=
∂2θ

∂ξ2

with boundary conditions

at ξ = 0,
∂θ

∂ξ
=θ − θfi

∂θ

∂ξ
→ 0 as ξ → ∞

An analytic solution to this problem, obtained by the use of Laplace transforms was presented

by Riaz [27] as

θ(ξ, τ) =
1

2
erfc

(

ξ − τ

2
√
τ

)

+

√

τ

π
exp

[−(ξ − τ)2

4τ

]

−1

2
(1 + ξ + τ) exp(ξ)erfc

[

ξ + τ

2
√
τ

]
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Infinite NTU model

Let the non-dimensional distance and time for the Schumann model be re-defined as follows

ξ =
x

L
, τ =

ṁfcf t

Sfrρmcm(1 − ε)L
.

The volumetric heat transfer coefficient hv is defined in terms of hc by the following relation.

hv =
hcA

LSfr

.

If we introduce the number of transfer units NTU which is defined as

NTU =
hvSfrL

ṁfcf
,

and add a term that accounts for the heat loss from the fluid to the environment, then the

energy equations for the Schumann model (4.2) assume the following form.

∂θf

∂ξ
= NTU(θm − θf ) +

U P L

ṁfcf
(θenv − θ)

∂θm

∂τ
= NTU(θf − θm) (4.4)

where
U P L

ṁfcf
(θenv − θf ) represents energy loss to the environment. It follows from equations

(4.4) that

θf ≡ θs ∼ θ (4.5)

is the limiting case for an infinitely large NTU (this is the case for infinitely large hv). If

these equations are added and we use identity (4.5), the following is obtained as the energy

equation for the infinite NTU model [12].

∂θ

∂τ
+
∂θ

∂ξ
=
U P L

ṁfcf
(θenv − θ), θ = θ(ξ, τ) (4.6)

Appropriate initial and boundary conditions for a particular physical setup should be pre-

scribed. For a packed bed operating in single-blow mode these are θ(ξ, τ = 0) = 0 and

θ(ξ = 0, τ) = 1. θenv is a given function of time.
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4.2.4 Two-phase models

Modified Schumann model

Energy balance equations for the Schumann model, equations (4.4) may be modified to

include

• the effect of large Biot numbers Bi hence accounting for large temperature gradients

in the solid particles,

• the effect of large Peclet numbers Pe hence accounting for axial conduction and dis-

persion.

Bi represents the ratio of internal thermal resistance to surface thermal resistance. The

closer it is to zero the smaller the temperature gradients in the solid material. It is given by

the following formula

Bi =
hcLc

k
.

Pe is proportional to the ratio of the bulk heat transfer to conductive heat transfer. It is

given by the following formula [30]

Pe =
(ρfcfvf)

2SfrLε

kfA
.

To include the effects of large Bi and large Pe the modified NTU , NTUc, a quantity which

depends on the volumetric heat transfer coefficient hv is introduced. NTUc is related to

NTU by the following formula [12].

1

NTUc

=
D

L Pe
+

1 + 0.2Bi

NTU
(4.7)

The energy equations for the modified Schumann model [12] are:

∂θf

∂ξ
= NTUc(θm − θf ) +

U P L

ṁfcf
(θenv − θf)

∂θm

∂τ
= NTUc(θf − θm) . (4.8)
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Intra-particle conduction and dispersion model

In this model both the effect of intra-particle conduction and dispersion on the performance

of the packed bed are taken into account. Provided the thermal capacity of the fluid is

negligible compared to that of the solid, the energy equations for solid particles of spherical

shape and the energy transporting fluid are as follows [30]

fluid:

0 = − ṁfcf
∂Tf

∂x
+ kfSfrε

∂2Tf

∂x2
+
hcA

L
(Tms

− Tf)

solid:

ρmcm
∂Tm

∂t
=km

1

r2

∂

∂r

(

r2∂Tm

∂r

)

with a convective heat transfer boundary condition on the surface of a sphere and an ad-

ditional boundary condition at the centre (zero first order derivative of the solid material

temperature):

−km

∂Tm

∂r
=hc(Tms

− Tf ) when r = R

∂Tm

∂r
=0 when r = 0

where

Tms
(x, t) =Tm(r = R, x, t) and Tf = Tf (x, t).

4.2.5 Some recent studies

In 1996, Al-nimr et al. [6] developed an analytical model that predicts the dynamic response

of a packed bed (cylindrical) column to a variable inlet fluid temperature. The energy

equation for the fluid includes heat loss to the environment:

ερfcfSfrL
∂Tf

∂t
+GcfSfrL

∂Tf

∂z
=hvSfrL(Tm − Tf) + U P L(Tenv − Tf) (4.9)
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where G =
ṁf

Sfr

and the energy equation for the solid is

(1 − ε)ρmcmSfrL
∂Tm

∂t
=hvSfrL(Tf − Tm) . (4.10)

By introducing the following dimensionless quantities

θf =
Tf − Tenv

Tfi − Tenv

, θm =
Tm − Tenv

Tfi − Tenv

, τ =
hvt

ρfcfε
, Z =

hvz

Gcf

the energy equations for the solid and the fluid phases assume the following forms.

∂θf

∂τ
+
∂θf

∂Z
+ (1 +M1)θf + θm =0 (4.11)

∂θm

∂τ
−M2(θf − θm) =0 (4.12)

where

M1 =
UP

hvSfr

andM2 =
ρfcfε

ρmcm(1 − ε)
.

The problem considered in this paper is of heat transfer (in the packed bed column) governed

by equations (4.11) and (4.12) subject to a constant temperature profile at initial instant

and a given temperature of the fluid at the inlet. A solution to this problem was developed

using Laplace transforms. The predicted results were validated against experimental results.

In 1998, Ziada and Abdel Rehim [36] presented a thermal analysis of energy storage in a

cylindrical packed bed made up of three layers of different materials, equal in length, that

are used as thermal energy storage media with air as the energy transporting medium. The

bed is packed with spheres of equal diameter. For a schematic view of the bed considered

see Figure (4.2). In this study, the thermal behaviour of the bed is described by a transient

one-dimensional model. The model allows for the energy equations to be derived separately

for the air and bed material. The energy equation for air is 4.9 without the heat loss term

and, the energy equation for the bed material is

(1 − ε)ρmcm
∂Tm

∂t
=
∂

∂z

(

km

∂Tm

∂z

)

+ hv(Tf − Tm) , 0 < z < L, t ≥ 0 (4.13)

The last term on the right hand side of equation (4.13) represents the thermal interaction

between the air and the bed material. Thermal dispersion is neglected and air flows in the
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Figure 4.2: Multi-layer cylindrical packed bed

axial direction. At initial instant, the temperature throughout the bed is T0 except at the

inlet where it is the same as the fluid temperature there, that is Tfi.

It was intended in this model to find Tf (z, t) and Tm(z, t) subject to the following boundary

conditions for all times t ≥ 0:

Tf (0, t) =Tfi

(1 − ε)ρm1
cm1

∂Tm(0, t)

∂t
=k1

∂2Tm(0, t)

∂z2
+ hv(Tfi − Tm(0, t))
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and

(1 − ε)ρm3
cm3

∂Tm(L, t)

∂t
=k3

∂2Tm(L, t)

∂z2
+ hv(Tf (L, t) − Tm(L, t))

k1, k2 and k3 are thermal conductivities of the first, second and third layers in the bed re-

spectively and similarly for the storage material densities and heat capacities. The numerical

solution considered in this model uses an upwind finite difference scheme to approximate the

space derivative appearing in the energy equation for the air to ensure stability [22, 36].

Central differencing is used to approximate the space derivative that appears in the energy

balance for the storage material and, marching in time uses an implicit difference scheme.

Using this mathematical model Ziada and Abdel Rehim could predict

• the transient one-dimensional temperature distribution in the bed,

• variation of this temperature distribution with time,

• variation of energy stored in the bed material with time and,

• variation of storage capacities for various groups of layers with time.

In 2004, Zarrinehkafsh and Sadrameli [35] presented a numerical model for heat transfer in

a fixed bed regenerative heat exchanger that is used for flue gas heat recovery. Although the

application of packed beds considered is different, the same thermal analysis is applicable

to the use of packed beds for space cooling as considered in this work. In the model of

Zarrinehkafsh and Sadrameli, the following assumptions made for the mathematical model

differ from those for the work presented in this thesis.

• The heat transfer coefficient hc is constant during each of the charging (heating) and

discharging (cooling) periods.

• The fluid mass flow rate ṁf is constant.

• There is no fluid heat dispersion.

• There is no heat loss to the environment.

The thermal storage unit considered by Zarrinehkafsh and Sadrameli is made up of spheres of

ceramic material to withstand the high operating temperature conditions, typically around

1400◦ C. Their mathematical model has the same energy equations for the both the fluid
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and the solid phases as that used in analysing the cooling example which follows in the

next sections except that the terms for heat loss to the environment and fluid dispersion are

added. Also, the mass flow rate is assumed to vary with time in a step-wise manner.

4.3 Space cooling at Harare International School

Figure 4.3: Aerial view: (H. I. S)

Harare International School (H. I. S) is situated in Harare, the capital city of Zimbabwe with

a temperate climate and experiences temperatures as high as 33◦ C in the summer and as

low as 3◦ C in the winter. The school hosts 400 pupils from about 50 countries around the

world.

The basic operation of space (room environment) cooling at the school is in two parts [25]:

• supply air cooling is done by using rock-store compartments, and

• exhaust air is extracted by wind driven fans that are mounted on the roofs of the

buildings. See Figure (4.3) for an aerial view of the school.

The first implementation of rock-store cooling was on a part of the school, the Middle School.

A typical compartment for the Middle School is divided into two units by a wall as shown

in Figure (4.4). Each compartment lies beneath a veranda in front of a classroom as shown
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Figure 4.4: Rock-store compartments during construction of the Middle School

in the same Figure. A unit in the rock-store compartment is packed with granite rocks and

shall be referred to as a packed bed unit. The energy transporting fluid is air and the rocks

in the bed act as the storage material.

Figure (4.5) shows the path taken by the air as it is drawn from the outside. It is blown by

fans, one for each packed unit, via ducts which are surrounded by concrete walls. It enters a

packed bed unit on one end and leaves at the other end before it enters a classroom as part

of a displacement ventilation system.

The air is forced through the two units in a compartment depending on which fan is acting

and the time of the day. The fan operation is either in auto or test mode. The test mode

was provided for helping with experiments and monitoring of the system. Since the system

normally operates in auto mode, only this mode shall be considered in the thesis. In the

auto mode, a specific fan timing scheme is followed which is described in detail in chapter 5.

To monitor the cooling system at the school, a data logger connected to at least five sensors

was set up. The sensors measure air temperature at different positions in the flow path,

namely

• outside,

• entrance to the morning unit,

• entrance to the afternoon unit,
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Figure 4.5: Air flow path

• exit from the rock-store compartment, and

• classroom.

The model presented in this thesis is a mathematical representation of heat transfer in each of

the morning and afternoon packed bed units for the Middle School. It predicts the transient

response of each unit separately, to a time-wise varying fluid inlet temperature.
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4.4 A mathematical model

4.4.1 Assumptions

The underlying assumptions for the mathematical model are basically the same as for the

Schumann model with the following differences.

• There is a step-wise change in the fluid flow rate. Fans blowing air through the bed

are either on or off at given times of the day. It is during each of these periods that

the fluid flow rate is constant: 0m3/s for no flow and 0.6m3/s otherwise.

• Each rock is a sphere of fixed radius R.

• Thermal conduction between neighbouring rocks is neglected. This is reasonable since

the area of contact is much smaller than the surface area of a typical rock.

• The model includes the effect of fluid heat dispersion (axial conduction), intra-particle

conduction and heat loss to the ground (environment). Since the ground could provide

a significant amount of thermal mass and hence contribute a significant amount of

thermal storage to a neighbouring packed bed unit, it is reasonable to take thermal

interaction with the ground (ground coupling) into account.

4.4.2 Problem description

The problem is to find Tm(r, x, t), the bed material temperature satisfying the one-dimensional

parabolic diffusion equation (4.14) for 0 ≤ x ≤ L,

ρmcm
∂Tm

∂t
=km

1

r2

∂

∂r

(

r2∂Tm

∂r

)

, 0 < r < R, t > 0, (4.14)

with boundary conditions:

−km

∂Tm

∂r
(r = R, x, t) =hc(Tms

(x, t) − Tf(x, t)), t > 0, (4.15)

∂Tm

∂r
(r = 0, x, t) =0, t > 0, (4.16)
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and initial conditions:

Tms
(x, t = 0) =Tm(r, x, t = 0) = To, 0 < x < L, 0 < r < R (4.17)

and to find Tf (x, t), the fluid temperature satisfying

ṁfcfL
∂Tf

∂x
=kfSfrεL

∂2Tf

∂x2
+ hcA (Tms

− Tf ) + U P L (Tenv − Tf ), t > 0, (4.18)

subject to the boundary conditions:

Tf (x = 0, t) =Tfi(t), t ≥ 0, (4.19)

and

∂Tf

∂x
(x = L, t) =0, t ≥ 0. (4.20)

Equations (4.14) through (4.20) constitute a mathematical model for the problem. Note

that since equation (4.18) is stationary, no initial condition is required for the fluid energy

equation. However, the fluid temperature depends on the environment and solid tempera-

tures at initial instant. These are assumed to be constant then. Consequently, it may be

reasonable to assume a uniform fluid temperature at initial instant. This is common practise

and simplifies the coding of the numerical solution.

The term on the left hand side of equation (4.18) represents an energy rate associated with

the motion of the fluid through the bed. On the right hand side, the first term represents

fluid heat dispersion and, the second and third terms represent convective heat transfer

on the fluid-solid interface and, thermal interaction with the environment respectively. If

heat loss to the environment is neglected in the energy equation for the fluid, the resulting

form is as given in [29] on page 291. It is worth noting that only simplified versions of

this equation without the heat loss to the environment term are solved by other authors

as indicated on page 292 of [29]. Recent studies exist on similar energy equations. For

example, in 2004 Rupali Shukla et. al [32] considered heat and fluid flow in a packed bed

of spheres. Although fluid flow analysis is more thorough, the model considered here in this

thesis is sufficient to give a good understanding of how the supply air conditioning system

at the Harare International School works, and to explore ways of improving it as shown

later in the chapter on results. Also, the model is simpler, and contrary to [32] it includes

ground coupling to account for the extra thermal mass provided by the surrounding ground.
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Another recent study is that by Zarrinehkafsh and Sadrameli in 2004, [35]. This study does

not also include ground coupling. Furthermore, these studies have different applications of

packed beds to the one considered in this thesis: supply air conditioning. For example, the

application for [35] is flue gas heat recovery, and that for [32] is food processing.

4.5 Solution by a finite element - finite difference nu-

merical scheme

4.5.1 Introduction

The finite element method has several advantages over the finite difference method. These

include a better ability to handle general boundary conditions, complex geometries, variable

or non-linear material properties and the ease with which general purpose software may be

created. The finite element method shall be used for the fluid problem domain and in the

solid problem domain we shall use a finite difference method.

A change of notation is introduced for the sake of clarity. v(x, t) and u(r, x, t) are substituted

for the fluid and solid temperatures Tf (x, t) and Tm(r, x, t) respectively. Consequently, the

solid surface temperature becomes us(x, t) = u(r = R, x, t). Also, venv(x, t) shall substituted

for the ground temperature Tenv(x, t).

4.5.2 Formulation of the problem for the fluid problem domain

Differential form

The problem is to find v(x, t) satisfying

ṁfcfL
∂v

∂x
=kfSfrεL

∂2v

∂x2
+ hcA (us − v) + U P L (venv − v), 0 < x < L

subject to the boundary conditions:

v(x = 0, t) =vi(t), t ≥ 0,
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and

∂v

∂x
(x = L, t) =0, t ≥ 0,

and initial condition:

v(x, t = 0) =vo, 0 < x ≤ L.

Integral form

If we form the residual for a trial function v(x, t) such that v(x = 0, t) = vi(t)

S(x, t) =ṁfcfL
∂v(x, t)

∂x
− kfSfrεL

∂2v(x, t)

∂x2
− hcA (us(x, t) − v(x, t)) − U P L (venv(x, t) − v(x, t))

then

∫ L

0

z(x)S(x, t)dx = 0

or

∫ L

0

z

(

ṁfcfL
∂v

∂x
− kfSfrεL

∂2v

∂x2
− hcA (us − v) − U P L (venv − v)

)

dx = 0

(4.21)

for all weighting functions z(x) such that z(x = 0) = 0.

The use of integration by parts in the second part of the integral in equation (4.21) together

with the boundary condition at x = L, and that z(x = 0) = 0 gives the following:

∫ L

0

−kfSfrεL z
∂2v

∂x2
dx =

[

−kfSfrεL z
∂v

∂x

]x=L

x=0

+

∫ L

0

kfSfrεL z
′
∂v

∂x
dx

=

∫ L

0

kfSfrεL z
′
∂v

∂x
dx

which if substituted in equation (4.21) yields the following:

∫ L

0

(

ṁfcfL z
∂v

∂x
+ kfSfrεL z

′
∂v

∂x
− hcAz (us − v) − U P L z (venv − v)

)

dx = 0 (4.22)
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Finally, the integral form of the problem is to find v(x, t) satisfying equation (4.22) for all

weighting functions z(x) such that z(x = 0) = 0.

4.5.3 Discretisation in space for the fluid problem domain

If the solution space for v(x, t) is spanned by the basis {ψ1, ψ2, . . . , ψN ′}, each associated

with a node in the problem domain, then its approximation is

v(x, t) ≈
N ′

∑

l=1

ψl(x)vl(t) ∼
∑

l

ψlvl

where vl is the value of v at node l in the fluid problem domain 0 ≤ x ≤ L. Upon substituting

the approximation for v in equation (4.22) and setting N ′ different values for z, it assumes

the following form:

∑

l

vl

∫ L

0

ṁfcfL zn ψ
′

l dx+
∑

l

vl

∫ L

0

kfSfrεL z
′

nψ
′

l dx

−
∫ L

0

hcAznus dx +
∑

l

vl

∫ L

0

hcAznψl dx

−
∫ L

0

U P L znvenv dx+
∑

l

vl

∫ L

0

U P L znψl dx = 0 (4.23)

where

n = 1, 2, . . . , N ′

Now, if the same basis used for v is also used to express both us and venv in its discrete form

then equation (4.23) assumes the following form:

∑

l

vl

∫ L

0

ṁfcfL zn ψ
′

l dx +
∑

l

vl

∫ L

0

kfSfrεL z
′

nψ
′

l dx

−
∑

l

usl

∫ L

0

hcAznψl dx+
∑

l

vl

∫ L

0

hcAznψl dx

−
∑

l

venvl

∫ L

0

U P L znψl dx+
∑

l

vl

∫ L

0

U P L znψl dx = 0 (4.24)
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where

n = 1, 2, . . . , N ′

4.5.4 The Galerkin method for the fluid problem domain

By the Galerkin method [17], we shall choose zn ≡ ψn so that equation (4.24) assumes the

following form after re-arranging.

∑

l

vl

∫ L

0

ṁfcfLψn ψ
′

l dx +
∑

l

vl

∫ L

0

kfSfrεLψ
′

nψ
′

l dx

−
∑

l

usl

∫ L

0

hcAψnψl dx+
∑

l

vl

∫ L

0

hcAψnψl dx

−
∑

l

venvl

∫ L

0

U P Lψnψl dx+
∑

l

vl

∫ L

0

U P Lψnψl dx = 0 (4.25)

where

n = 1, 2, . . . , N ′

4.5.5 Finite element equations for the fluid problem domain

Global equations

System (4.25) is made up of N ′ equations. These are the finite element equations for the

fluid problem domain. They may be written in the general matrix form

Kv − f =0 (4.26)

where

v =[v1, v2, . . . , vN ′]′

Knl =

∫ L

0

(ṁfcfLψn ψ
′

l + kfSfrεLψ
′

nψ
′

l + hcAψn ψl + U P Lψn ψl) dx
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and

fn =
∑

l

usl

∫ L

0

hcAψnψl dx+
∑

l

venvl

∫ L

0

U P Lψnψl dx

However, vector f may be written in a more convenient way:

f =Fus + Gvenv

where

Fnl =

∫ L

0

hcAψnψl dx, Gnl =

∫ L

0

U P Lψnψl dx

us =[us1
, us2

, . . . , usN′
]′ and venv = [uenv1

, uenv2
, . . . , uenvN ′

]′

Element contributions

It follows from a property of integrals that the matrices in the global equations may be

obtained by considering the sum of the contributions to these matrices over the elements.

For example, the global stiffness matrix K equals the sum of the element mass matrices Ke,

that is

Knl =
∑

e

Ke
nl

where

Ke
nl =

∫ xj

xi

(ṁfcfLNnNl + kfSfrεLN
′

nN
′

l + hcANnNl + U P LNnNl) dx

since a global basis function ψ reduces to an element shape function N on an element (e)

with end points xi and xj corresponding to nodes i and j in the problem domain. Both

subscripts n and l are either i or j on (e). The element stiffness mass matrix in condensed

form is given by:

Ke
c =

i j
[

Ke
ii Ke

ij

Ke
ij Ke

jj

]

i

j
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where

Ke
ii =

∫ xj

xi

(

ṁfcfLNiN
′

i + kfSfrεLN
′2
i + hcAN

2
i + U P LN2

i

)

dx

= − ṁfcfL
1

2
+ kfSfrεL

1

g
+ hcA

g

3
+ U P L

g

3

Ke
ij =

∫ xj

xi

(

ṁfcfLNiN
′

j + kfSfrεLN
′

iN
′

j + hcANiNj + U P LNiNj

)

dx

=ṁfcfL
1

2
− kfSfrεL

1

g
+ hcA

g

6
+ U P L

g

6

Ke
ji =

∫ xj

xi

(

ṁfcfLNjN
′

i + kfSfrεLN
′

jN
′

i + hcANjNi + U P LNjNi

)

dx

= − ṁfcfL
1

2
− kfSfrεL

1

g
+ hcA

g

6
+ U P L

g

6

and

Ke
jj =

∫ xj

xi

(

ṁfcfLNjN
′

j + kfSfrεLN
′2
j + hcAN

2
j + U P LN2

j

)

dx

=ṁfcfL
1

2
+ kfSfrεL

1

g
+ hcA

g

3
+ U P L

g

3

Here, integration details have been left out and, xj − xi = g. Similarly

F e
c =hcA

g

6

i j
[

2 1

1 2

]

i

j
and Ge

c = U P L
g

6

i j
[

2 1

1 2

]

i

j

Here, we have used the fact that the physical properties for the problem are constant on (e),

that the element shape functions are linear and hence the global basis functions are piecewise

linear and continuous. The choice of linear shape functions is reasonable since we do not

expect any sudden changes in temperature.

If the nodes in the fluid problem domain are numbered 0 through N ′ and the corresponding

elements 1 through E(= N ′) then the condensed stiffness matrices for the elements are

K1
c =

0 1
[

K1
ii K1

ij

K1
ij K1

jj

]

0

1
, · · · , Ke

c =

i j
[

Ke
ii Ke

ij

Ke
ij Ke

jj

]

i

j
, · · · , KE

c =

N ′ − 1 N ′

[

KE
ii KE

ij

KE
ij KE

jj

]

N ′ − 1

N ′
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and similarly for F e
c , G

e
c, v

e
c and hence f e

c . This results in a system of N ′ + 1 equations in

N ′ + 1 unknowns for the fluid problem domain which may be written in the same matrix

form as (4.26).

4.5.6 Finite difference approximation in space for the solid phase

If we let u(i,j) (time argument left out for clarity) denote u(i∆r, j∆x, t) where ∆r and ∆x

are distances between neighbouring nodes in the radial direction and along the direction of

fluid flow then, a second order central difference approximation in the space derivative in

4.14 results in the following finite difference equations for the solid problem domain.

u̇(i,j) =
αm

i(∆r)2

[

(i− 1)u(i−1,j) − 2 i u(i,j) + (i+ 1)u(i+1,j)
]

; i = 1, 2, . . . , I − 2

and on the fluid-solid interface

u̇(I−1,j) =
αm

(I − 1)(∆r)2

[

(I − 2)u(I−2,j) − 2 (I − 1) u(I−1,j)

+ I
(

u(I−2,j) + 2B̌i
(

vj − usj

))]

=
αm

(I − 1)(∆r)2

[

2(I − 1)u(I−2,j) +
(

−2(I − 1) − 2 I B̌i
)

usj

]

+
αm

(I − 1)(∆r)2
2 I B̌i vj

where

usj
=u(I−1,j), αm =

km

ρmcm

is the thermal diffusivity,

B̌i =
hc∆r

km

is the Biot number per unit subdivision and u(I,j), the unknown at an artificial node, is

eliminated by use of a central difference approximation for the boundary condition:

km

u(I,j) − u(I−2,j)

2∆r
=hc(−usj

+ vj)
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The finite difference equations for the solid may be written in matrix form as follows

u̇j =Auj + vjb; j = 0, 1, 2, . . . , J = N ′ = E

where

u̇j =
[

u(1,j), u(2,j), · · · , u(I−2,j), usj

]′

, usj
= u(I−1,j)

b =

[

0, 0, · · · , 0, αm

(I − 1)(∆r)2
2 I B̌i

]

′

and the matrix A is defined as follows.

A =





























2λ1 2λ1

λ2 −4λ2 3λ2

. . .

(i− 1)λi −2iλi (i + 1)λi

. . .

(I − 3)λI−2 2(2 − I)λI−2 (I − 1)λI−2

2(I − 1)λI−1

(

−2(I − 1) − 2 I B̌i
)

αm

(I−1) (∆r)2





























(4.27)

The finite difference equations for the solid problem domain may be written as single matrix

structure, that is

u̇ =Ǎu + b̌ (4.28)

where

u =























u0

u1

...

uj

...

uN ′























′

, b̌ =























v0b

v1b
...

vjb
...

vN ′b























′

and the matrix Ǎ is a block diagonal matrix with matrices A on its main diagonal. (4.28)

constitutes a system of I − 1 by N ′ + 1 equations in the same number of unknowns for the

solid problem domain.
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4.5.7 Applying the boundary condition for the fluid problem do-

main

Before applying boundary conditions, the finite element equations for the fluid may be

written as

Ǩv =F̌us + Ǧvenv (4.29)

where

v =[v0, v1, . . . , vN ′]′

venv =[venv0
, venv1

, . . . , venvN ′
]′

us =[us0
, us1

, . . . , us′

N
]′

Substituting the boundary condition v0 ≡ Tfi(t) (older notation is used here to clearly point

out the fluid inlet temperature) for the first equation transforms (4.29) to the following form













1 0 · · · 0

Ǩ

























v0

v1

...

vN ′













=













0 0 · · · 0

F̌

























us0

us1

...

usN′













+













0 0 · · · 0

Ǧ

























venv0

venv1

...

venvN′













+













Tfi(t)

0
...

0













or in a more compact form

Kv(t) =Fus(t) + Gvenv(t) + Tfi(t)f

which upon re-arranging becomes

v(t) =L̂us(t) + Qvenv(t) + Tfi(t)g (4.30)
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where

L̂ =K−1F, Q = K−1G, f =













1

0
...

0













, g = K−1f , K =













1 0 · · · 0

Ǩ













F =













0 0 · · · 0

F̌













and G =













0 0 · · · 0

Ǧ













.

Expanding (4.30) to the same size as the solid equations’ matrix structure gives the following

results:

Lus(t) =













L̂11 L̂12 . . . L̂1,N ′+1

L̂21 L̂22 . . . L̂2,N ′+1

...

L̂N ′+1,1 L̂N ′+1,2 . . . L̂N ′+1,N ′+1

























us0
(t)

us1
(t)
...

usN′
(t)













becomes

























































L̂11 L̂12 . . . L̂1,N ′+1

L̂21 L̂22 . . . L̂2,N ′+1

...

L̂N ′+1,1 L̂N ′+1,2 . . . L̂N ′+1,N ′+1



















































































































u(1,0)(t)
...

u(I−2,0)(t)

us0
(t)

u(1,1)(t)
...

u(I−2,1)(t)

us1

...

u(1,N ′)(t)
...

u(I−2,N ′)(t)

usN′
(t)


























































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and similarly

Qvenv =













Q11 Q12 . . . Q1,N ′+1

Q21 Q22 . . . Q2,N ′+1

...

QN ′+1,1 QN ′+1,2 . . . QN ′+1,N ′+1

























venv0
(t)

venv1
(t)

...

venvN ′
(t)












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

Q11 Q12 . . . Q1,N ′+1

Q21 Q22 . . . Q2,N ′+1

...

QN ′+1,1 QN ′+1,2 . . . QN ′+1,N ′+1




















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


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






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
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
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0

venv0
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0
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0
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(t)
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0
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0

venvN ′
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
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
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and,

g Tfi(t) =K−1f Tfi(t) = M f Tfi(t) = M













1

0
...

0













Tfi(t) =













M11

M21

...

MN ′1













Tfi(t)

expands to

[0, . . . , 0,M11|0, . . . , 0,M21| . . . |0, . . . , 0,MN ′1]
′ Tfi(t)
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and finally v(t) expands to

[0, . . . , 0, v0(t)|0, . . . , 0, v1(t)| . . . |0, . . . , 0, vN ′(t)]′.

4.5.8 A brief description of the energy equations in matrix form

The energy equations for the solid phase may be written as follows.

u̇(t) =Ǎu(t) + b̌(t) (4.31)

where

b̌(t) =
αm 2 I Bi

(I − 1)(∆r)2
[0, . . . , 0, v0(t)|0, . . . , 0, v1(t)| . . . |0, . . . , 0, vN ′(t)]′

and Ǎ is a block diagonal matrix with matrices A on its main diagonal. The matrix A is

defined in (4.27).

The energy equations for the fluid phase may be written as follows.

v(t) = L̂u(t) + Qvenv(t) + Tfi(t)g (4.32)

(4.32) is the expanded form of (4.30).

4.5.9 Time stepping

Upon writing b̌(t) in terms of the expanded form of v(t), (4.31) assumes the following form.

u̇(t) = Ǎu(t) +
αm 2 I Bi

(I − 1)(∆r)2
v(t) (4.33)

Substituting the right hand side of (4.32) for v(t) in (4.33) eliminates nodal values for the

fluid temperature away from the inlet of the bed and gives the following matrix equation.

u̇(t) =Bu(t) + Q̂venv(t) + Tfi(t)ď (4.34)
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where

ď =
αm 2 I Bi

(I − 1)(∆r)2
[0, . . . , 0,M11|0, . . . , 0,M21| . . . |0, . . . , 0,MN ′1]

′

B =Ǎ +
αm 2 I Bi

(I − 1)(∆r)2
L̂ and Q̂ =

αm 2 I Bi

(I − 1)(∆r)2
Q

The Crank-Nicolson method is chosen to ensure stability [33] for reasonably big time steps.

The equation of concern is approximated at mid-points between time levels n∆t, n = 0, 1, 2, · · · ,
and an unknown at these mid-points is replaced by an average of two nodal values imme-

diately above and below it in the time domain. For (4.34) this gives the following implicit

finite difference scheme:

(

I − ∆t

2
B

)

un+1 =

(

I +
∆t

2
B

)

un +
∆t

2
Q̂

(

venvn+1
+ venvn

)

+
∆t

2

(

T n+1
fi + T n

fi

)

ď (4.35)

The iterative scheme (4.35) is for computing u at all time levels and, the corresponding

values of v are computed using equation (4.32).
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Chapter 5

Numerical predictions

5.1 Introduction

In this chapter, the mathematical model for heat transfer in packed beds that was developed

in chapter 4 is used to give numerical predictions. Code in the Octave programming language

was written for the numerical computations. To check this code, different code in Matlab

was written by my supervisor Dr. David Henwood. The numerical results from the two

distinct codes are compared.

The mathematical model is validated against measured data and used in a parametric study.

The results from the parametric study can be used to optimise design and operational pa-

rameters for a typical packed bed unit. Owing to the level of uncertainty in the values used

for the convective heat transfer coefficient hc and the fluid mass flow rate ṁf , tests are car-

ried out to see how sensitive the model is to slight changes in these two parameters. Also

presented is the effect of ground coupling on the model.

5.2 On checking the numerical solution

Considered here is the transient response of a packed bed to a step change in the inlet fluid

temperature in the absence of thermal interaction with the surroundings of the bed. The

bed is initially at a constant temperature T0 throughout, taken at 0◦ C. It then experiences a

sudden change in the fluid inlet temperature to Tfi taken at 20◦ C. The fluid inlet temperature
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is maintained at Tfi, a constant temperature for all times t ≥ 0 since the occurrence of the

step change. The fluid outlet temperature Tf (x = L, t) is observed as it rises exponentially

with time towards its maximum possible value Tfi and observation stops at 90 %.

The method used for generating the Matlab code uses finite differences with 4 nodes in

space for the rocks. 3 quadratic finite elements with 7 nodes are used for the fluid problem

domain. The solution in time is analytic. An iterative process is used to solve the fluid and

solid energy equations uncoupled. For each time step t1 to t2:

1. Estimate Tf(t2) the fluid temperatures at time t2 using Tm(t1) the solid temperatures

at time t1, Tfi(t2) the fluid inlet temperature at time t2 and the fluid energy equation.

That is

Tf(t2) = L̂Tm(t1) + Tfi(t2)g

2. Solve the solid energy equations analytically in time

Ṫm(t) =BTm(t) + bTf (t)

assuming a linear variation in the fluid temperatures in the interval t1 < t < t2, that is

Tf(t) =Tf(t2) +
t− t1
t2 − t1

(Tf(t2) − Tf (t1))

and compute an estimate of Tm(t2).

3. Repeat stages 1 and 2 using Tm(t2) instead of Tm(t1).

The method for generating the Octave code uses finite differences with the same number of

nodes in space for the rocks as the Matlab code. 5 linear finite elements with 6 nodes are

used for the fluid problem domain. The solution in time uses an implicit Crank-Nicolson

finite difference method with a constant time step of 30 seconds.

Figure (5.1) shows a comparison of the fluid outlet temperature produced by the two different

codes. The results from the Octave code are represented by the blue circles, the green solid

line represents results from the Matlab code and the inlet fluid temperature is the red solid

level line. The fluid outlet temperature rises to 90 % of the maximum possible value in

12.812 hours for the Octave code and in 12.805 hours for the Matlab code showing a good

agreement between the two different codes.

To measure the gain in the fluid outlet temperature and the associated phase change it is
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Figure 5.1: On checking the code

more appropriate to consider the transient response of the bed to a sinusoidal variation in

the fluid inlet temperature. Figure (5.2) shows the numerical predictions made using the

Octave code for a time scale of 36 hours. The difference between the temperature at the

second peak of the fluid inlet and outlet temperatures gives the gain. Similarly, the difference

between the corresponding times gives phase change. As previously, a comparison is made

with the Matlab code. The gain is 3.733◦ C and 3.739◦ C for the Octave and Matlab codes

respectively. Similarly, the phase changes are 2.600 hours and 2.613 hours respectively again

showing how well the two different codes agree.
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Figure 5.2: On fluid temperature gain and phase change

5.3 Comparing measured and predicted fluid outlet

temperatures

5.3.1 Introduction

As described in section 4.3, a packed bed unit is one of two halves that make a rock-store

compartment. One is the morning unit and the other the afternoon unit depending on

whether it is supplied air by the am or pm fan. Each fan is switched on and off depending

on the time of the day, and day of the week.

The am fan timing is as follows.

AM fan status =











ON from 10 pm to 6 am (Sunday to Thursday only)

ON from 8 am to 12 pm (Monday to Friday only)

OFF at any other times (and any other day)
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Similarly, the pm fan timing is as follows.

PM fan status =











ON from 10 pm to 6 am (Sunday to Thursday only)

ON from 12 pm to 3:30 pm (Monday to Friday only)

OFF at any other times (and any other day)

To summarise, both fans are switched on at 10 pm at night till 6 am in the morning when

they both are switched off for the next 2 hours. At 8 am the am fan is switched on and it

runs till 12 pm when it is switched off and at the same time the pm fan is switched on and

it runs till 3:30 pm. Both fans are off then till 10 pm and the cycle is repeated for the week.

However, the weekend is an exception. Both fans are not switched on at 10 pm on Friday.

They stay off throughout Saturday, Sunday morning and afternoon and, both of them are

only switched on Sunday at 10 pm for the next weekly cycle.

In this section, the mathematical model is compared with measured data for the purpose

of validation, for both the morning and the afternoon unit. Use is made here of measured

fluid inlet and outlet temperatures. These readings were taken off a data logger as described

in section 4.3. Two different sensors are used to measure the fluid inlet temperature for

each of the morning and the afternoon units. They are positioned after the am and pm fans

respectively. Consequently, a different fluid inlet temperature is used depending on which

unit (morning or afternoon) is being considered.

Granite rocks

cm = 800 J/kg oC
ρm = 2700 kg/m3

km = 2.1 W/m oC
R = 0.1 m

Air
cf = 1007 J/kg oC
ρf = 1.106 kg/m3

kf = 0.25 W/m oC

Other parameters

hc = 6 W/m2 oC
ε = .5
L = 2 m
Sfr = 5.4 m2

A = 3
(1 − ε)

R
SfrL m2

Table 5.1: Input parameters

Table (5.1) shows values used for the basic parameters to generate the results presented in

this section. The flow rates for the am and pm fans used are shown in Figure (5.3). The

time scale of interest is one week beginning on a Monday. The figure clearly indicates when
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the fans are off for the weekend.
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Figure 5.3: Volume flow rates for the am and pm fans

5.3.2 Performance of the morning unit

In this section, a comparison is made of the predicted with the measured outlet fluid tem-

perature for the morning packed bed unit. The measured data used was taken in October,

one of the hottest months of the year in Harare. A constant heat transfer coefficient hc is

assumed. Values for this and other parameters used are given in Table (5.1).

Figure (5.4) shows the transient response of the morning packed bed unit to ambient air

temperature. A time scale of two weeks was chosen to make sure that the numerical system

has settled down since it was assumed that the packed bed unit is initially at a constant

temperature throughout. The predicted and measured fluid outlet temperatures are shown

in the figure. Also shown is the variation of the volume flow rate V̇f throughout the fortnight

to indicate how the fluid outlet temperature is affected by changes in the fluid flow rate.

Generally, the agreement between predicted and measured fluid outlet temperatures is sat-

isfactory especially for the night cooling periods. However, the morning cooling is underes-

timated. This may be due to an incorrect value for either hc or V̇f . Tests are carried out
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later in the chapter to see how the agreement is sensitive to slight changes in the values

of hc and V̇f . During the weekend there is a prolonged absence of forced fluid flow. The

agreement between predicted and measured results then is better for the second week since

the numerical system has settled down.

5.3.3 Performance of the afternoon unit

The predicted and measured fluid outlet temperatures for the afternoon packed bed unit are

compared in this section. The material and fluid parameters used are the same as in the

previous section and they are shown in Table (5.1). The fluid volume flow rate varies as

shown in Figure (5.3).

Shown in Figure (5.5) is a comparison of the predicted with the measured fluid outlet tem-

perature for the afternoon unit responding to a measured fluid inlet temperature and a given

fluid flow variation over a period of two weeks.

The predicted fluid outlet temperature follows the trends of the measured fluid outlet tem-

perature. However, it is uniformly higher, even for the weekend. The results are worse in

this respect than those for the morning unit. There are several possible explanations for this

difference. Amongst them are the following.

• Two different sensors measure the fluid inlet temperature for each of the morning

and afternoon packed bed unit. They may either be non-uniformly calibrated or not

equally shielded from thermal radiation. Physical damage on one of the sensors could

also contribute.

• They are located at different physical positions. Improper placement of sensors could

give wrong temperature readings as was the case for a different building, Eastgate: due

to lack of strict monitoring, a sensor that was supposed to measure air temperature at

the exit of a ventilated floor slab was actually measuring room air temperature.

Possible reasons for differences between measured and computed results which are valid for

both the morning and the afternoon units include the following:

• The thermal mass between the fans and bed inlet along the air flow path is not included

in the model. The walls surrounding theses channels are made up of concrete. This

101



will add to the thermal capacity of the bed and delay its reaction to changes in the

ambient air temperature.

• There is uncertainty in:

– the values of the physical properties for both the bed material and the air flowing

through it, and

– the amount of storage material in the bed.

5.4 Sensitivity tests

5.4.1 Effect of the convective heat transfer coefficient

In this section, the effect of varying hc on how close the predicted and measured outlet fluid

temperatures agree is investigated. Three different values of hc are used to see whether agree-

ment between predicted and measured results becomes better or worse by slightly changing

the value of hc. The fluid volume flow rates for the morning and afternoon units are as given

in Figure (5.3) and the basic parameters are given in Table (5.1).

Figure (5.6) shows how sensitive the numerical model is to slight changes in hc for the

afternoon unit. A time period of 18 hours is chosen to get a closer look than for the whole

of the fortnight. This period also covers the two cooling periods for this unit. These are 12

pm to 3:30 pm and 10 pm to 6 am as shown in the figure. The second week is chosen to

make sure the numerical system has settled down. The shown data is from Tuesday but the

trend is the same over the entire two week period, morning or afternoon.

It can be seen from Figure (5.6) that the effect of increasing hc is to dampen the response of

the fluid outlet temperature. The higher the hc the higher the gain in the fluid temperature.

This is clear for the period 12 mid-day to 3:30 pm when the air is blown through the unit

by the pm fan. During this period, the heat transfer on the rock-air interface is driven by

forced convection. For the period 3:30 pm to 10 pm both fans are off and the heat transfer

on the rock-air interface is facilitated by free convection and during the last period 10 pm

to 6 am it is back to forced convection. Similar behaviour is also exhibited by the morning

unit.

The weakness of the model in its current form is that it assumes a constant hc throughout

the entire period. Generally, low hc values (for example 6W/m2 ◦C) are valid for the free
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convection and higher values for forced convection. In the period of free convection a flow

rate of 0m/s is assumed. V̇f = 0.6m/s is used for forced convection as recommended by

the consulting engineer who was involved in the construction of the Harare International

School. Several correlations between hc and V̇f have been published for example in [29]

by Schmidt and Willmont and in [16] by Duffie and Beckman. However, some of these

correlations have been indicated to be not entirely satisfactory. They apply for bed material

with different physical properties and size and not for the granite used. An example is the

following correlation between the volumetric heat transfer coefficient hv and the mass flow

rate ṁf for a packed bed of pebbles by Duffie and Beckman. Contrary to this, the rocks at

the Harare International School are much bigger, typically 20 cm in diameter.

hv =650

(

ṁf

2RSfr

)0.7

Expressed in terms of hc, this is

hc =650

(

ṁf

2RSfr

)0.7
SfrL

A

where

hvSfrL =hcA

and ṁf is related to V̇f by

ṁf =ρf V̇f

5.4.2 Effect of the fluid flow rate

Similar to the previous section, this section investigates the effect of V̇f on the agreement

between predicted and measured fluid outlet temperature. Figure (5.7) shows the transient

response of the afternoon unit for different peak values of V̇f denoted by Vf in the figure.

hc is assumed to be constant at 6W/m2 ◦C and the other parameters are as given in Table

(5.1). The temperatures shown in Figure (5.7) are for Tuesday of the second week but the

trend is the same over the whole two week period for either the morning or afternoon unit.

From the figure it is clear that the effect of using a lower flow rate of V̇f = 0.4m3/s is to
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dampen the fluid outlet temperature. It brings the predicted values closer to the measured

values. The greater gain achieved with a lower flow rate may be because the air is given more

time to be in contact with the rocks. Also, the measured average value of V̇f = 0.6m3/s

recommended for use in the modelling is subject to error. Information about how this

figure was arrived at and if it is likely to be above or below the true figure was not available.

Furthermore, the fluid must be well mixed before taking a measurement otherwise the reading

is not a true representative of the fluid flow rate.

5.5 Ground coupling

Considered here is the effect of thermal interaction between the packed bed unit and the

surrounding ground for a bed that is subject to a step change in its fluid inlet temperature.

The bed is initially at a uniform temperature T0 = 0◦C. Suddenly, the fluid inlet temperature

experiences a step change to a constant value Tfi = 20◦C while the environment temperature

is maintained at a constant temperature. The time scale of interest is 30 hours. The basic

parameters are as given in Table (5.1) together with the following additional parameters.

The value of 15◦ C used for the ground temperature is an estimate for the year.

U = 2 W/m2 ◦C

P = 26.8 m

Tenv = 15 ◦C

Figure (5.8) shows the effect of ground coupling on the fluid outlet temperature. The fluid

outlet temperature is plotted for the case when there is no thermal interaction with the

ground surrounding the packed unit. On the same graph, the fluid outlet temperature is

plotted for the case when ground coupling is taken into account. The bottom half of the

figure shows the difference in fluid outlet temperature with or without ground coupling.

The figure indicates that the fluid outlet temperature in the presence of ground coupling is

higher initially because of the extra heat gained from the ground. The opposite is true when

heat transfer between the ground and the bed reverses its direction of flow. The effect of

adding ground coupling is to increase the thermal capacity of the bed and hence delay the

time it takes for the fluid outlet temperature to reach its maximum possible value of 20◦ C.

The value of 15oC for the ground temperature is the annual mean and hence gives an

average effect. The effect may vary depending on the time of year. For example, during the
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summer the supply air temperature comes in at relatively high temperatures and hence the

ground contributes better in storing excess energy during hours of occupancy. This energy

is extracted by the supply air to the building’s exteriour after hours. Hence the supply air

acts as an energy transporting medium.

5.6 Parametric study

5.6.1 Introduction

A parametric study can be used to optimise the design of a packed bed and to come up

with optimal operational parameters for example an optimal fluid volume flow rate. In this

section one such study is carried out by investigating the effect of

• length of bed L,

• fluid volume flow rate V̇f , and

• type of bed material,

on the amount of heat stored in the bed after a fixed time of operation. A similar analysis

is carried out on the fraction of maximum possible heat stored in the bed. A packed bed

operating in single-blow mode is considered with three different types of bed material. These

are granite, concrete rubble and brick rubble and their physical properties are shown in Table

(5.2).

Brick rubble
cm = 800 J/kg oC
ρm = 1700 kg/m3

km = 0.73 W/m oC

Concrete rubble
cm = 878 J/kg oC
ρm = 2100 kg/m3

km = 1.1 W/m oC

Granite rocks
cm = 800 J/kg oC
ρm = 2700 kg/m3

km = 2.1 W/m oC

Table 5.2: Physical properties for three different materials

Additional information required for the analyses is as follows:
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• The duration of heat storage is chosen to be t = 8 hours. Note that the same analysis as

carried out here can be applied to heat recovery (storage of coolth). The duration used

here was chosen to match the duration of storage of coolth for the Harare International

School. This begins at 10 pm and ends at 6 am the following morning.

• The inlet fluid temperature Tfi = 20◦C.

• The initial temperature throughout the bed T0 = 0◦C.

The values for the other basic parameters are given in Table (5.1). The solid particles for all

the three types of material are spheres of radius 10 cm.

As for the heat resulting from the power absorded by the fan, a corresponding term should

ideally be incorperated in the energy equations. However, it is assumed that the effect is

negliglible.

5.6.2 On the absolute amount of energy stored

The absolute amount of energy stored in the bed, Q after time t is given by

Q(t) = ṁfcf

∫ t

0

(Tfi − Tfo(τ)) dτ (5.1)

Similar to the explanation given in section (3.5.2), since no big changes in temperature

between neighbouring data points are expected, the Trapezoidal rule is used for the numerical

evaluation of the integral in equation (5.1). No significant gain in accuracy is expected by

using the Simpson’s rule instead. Tables (5.3) through (5.5) show the effect of L and V̇f on

the absolute amount of energy stored in the bed after 8 hours for the three different types

of storage material. The results indicate that:

• Much less absolute heat energy is stored by increasing V̇f than by increasing L.

• The amount of absolute energy stored is higher in the order: brick rubble, concrete

rubble and granite rocks. This suggests that of the three different types of material,

granite is the best storage material.

It is worth noting that a higher thermal capacity of the energy storage material results in

increased reduction of the diurnal swing of the supply air temperature.
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L \V̇f 0.2 0.4 0.6 0.8 1.0 1.2
0.5 32.8 34.3 34.8 35.1 35.4 35.6
1.0 59.8 65.7 67.6 68.6 69.2 69.6
1.5 80.7 94.2 98.5 100.7 102.0 102.9
2.0 96.1 119.6 127.5 131.4 133.7 135.2
2.5 107.0 141.9 154.5 160.6 164.2 166.6
3.0 114.6 161.4 179.4 188.3 193.6 197.1

Table 5.3: absolute heat stored ( MJ ): brick rubble

L \V̇f 0.2 0.4 0.6 0.8 1.0 1.2
0.5 40.6 43.4 44.4 45.0 45.3 45.6
1.0 70.7 81.3 84.9 86.8 88.0 88.8
1.5 91.7 113.9 121.9 126.0 128.5 130.2
2.0 105.7 141.5 155.4 162.6 166.9 169.9
2.5 114.7 164.5 185.4 196.5 203.2 207.8
3.0 120.2 183.5 212.2 227.8 237.4 243.9

Table 5.4: absolute heat stored ( MJ ): concrete rubble

L \V̇f 0.2 0.4 0.6 0.8 1.0 1.2
0.5 45.1 48.8 50.2 50.9 51.4 51.8
1.0 76.6 90.2 95.1 97.7 99.2 100.3
1.5 97.2 124.8 135.3 140.8 144.2 146.5
2.0 110.1 153.2 171.0 180.4 186.3 190.3
2.5 117.9 176.1 202.4 216.7 225.6 231.6
3.0 122.5 194.5 229.8 249.6 262.1 270.7

Table 5.5: absolute heat stored ( MJ ): granite

5.6.3 On the relative amount of energy stored

The fraction of maximum possible heat stored in the bed after time t is defined in terms of

the outlet fluid temperature Tfo(t) by equation (5.2).

Q+(t) =
Q

Qmax

=
ṁfcf

∫ t

0
(Tfi − Tfo(τ)) dτ

ρmSfrL(1 − ε)cm(Tfi − T0)
(5.2)

Tables (5.6) through (5.8) show the effect of L and V̇f on the relative amount of energy

stored in the bed after 8 hours for the three different types of storage material.

The results indicate that:

• The relative heat stored increases with flow rate for each bed material. However,

increasing volume flow rate is subject to the constraint of a maximum allowable pressure
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L \V̇f 0.2 0.4 0.6 0.8 1.0 1.2
0.5 0.894 0.933 0.948 0.957 0.964 0.969
1.0 0.814 0.894 0.920 0.934 0.942 0.948
1.5 0.732 0.855 0.894 0.914 0.926 0.934
2.0 0.654 0.814 0.868 0.895 0.910 0.920
2.5 0.583 0.773 0.841 0.875 0.895 0.908
3.0 0.520 0.732 0.814 0.855 0.879 0.895

Table 5.6: relative heat stored: brick rubble
L \V̇f 0.2 0.4 0.6 0.8 1.0 1.2
0.5 0.816 0.872 0.892 0.903 0.911 0.917
1.0 0.710 0.816 0.853 0.872 0.884 0.892
1.5 0.614 0.763 0.816 0.844 0.861 0.872
2.0 0.531 0.711 0.780 0.816 0.838 0.853
2.5 0.461 0.661 0.745 0.789 0.816 0.835
3.0 0.403 0.614 0.711 0.763 0.795 0.816

Table 5.7: relative heat stored: concrete rubble
L \V̇f 0.2 0.4 0.6 0.8 1.0 1.2
0.5 0.773 0.837 0.860 0.873 0.881 0.888
1.0 0.656 0.773 0.815 0.837 0.851 0.860
1.5 0.556 0.713 0.773 0.805 0.824 0.837
2.0 0.472 0.657 0.733 0.774 0.799 0.816
2.5 0.404 0.604 0.694 0.743 0.774 0.794
3.0 0.350 0.556 0.657 0.713 0.749 0.774

Table 5.8: relative heat stored: granite

drop for the fans. More fan power is required to blow air through the bed at higher

flow rates.

• The relative energy stored decreases with length of bed. The longer the bed the less

efficient it is as not all storage material is utilised. The heat can only penetrate to a

certain depth of storage material.

• Higher relative heat is stored for granite, concrete rubble and brick rubble in that

order.
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Figure 5.4: Transient response of the morning unit to ambient air temperature with night
and morning cooling only
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Figure 5.5: Transient response of the afternoon unit to ambient air temperature with night
and afternoon cooling only
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Figure 5.6: Effect of hc on the performance of the afternoon unit over 18 hours
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Figure 5.7: Effect of V̇f on the performance of the afternoon unit over 14 hours
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Figure 5.8: Effect of ground coupling on the fluid outlet temperature
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Chapter 6

Conclusions and further work

6.1 Eastgate building

A general understanding of the cooling system has been gained through discussion with the

project engineer and through interpreting measured data from the data logger.

The integrity of the measured data was established through testing the equipment and

examining its position in the building.

A mathematical model was coded for heat transfer in a ventilated slab driven by a measured

air inlet temperature. In order to solve the mathematical mode three numerical methods

were compared. Two were forms of the electrical analogue of heat flow and the third was

finite elements. The numerical methods were tested on simplified forms of the ventilated slab

thermal storage problem in order to obtain experience of accuracy and mesh refinement. All

three were suitable with finite elements having a slight advantage.

• A comparison was made of predicted with measured air outlet temperatures. There is

good agreement in trend but there are differences, the main one being the predicted

underestimate the measured temperatures. Possible ways of improving the modelling

include the following.

– Replacing the insulation boundary condition on the interface between the slab and

the room above, with a convection boundary condition and using the available

measured room air temperature. This requires a modification to the code.
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– The assumption of constant air velocity could be relaxed to account for the com-

plex fluid flow in the passage. This may require thorough fluid flow analysis.

– Revising the parameter values, especially the the convective heat transfer coeffi-

cient hc.

• Sensitivity tests were carried out and they indicate how the parameters can be modified

to move the predicted air outlet temperatures closer to the measured values.

Further work includes better estimation of the parameters, and optimising the design and

operational parameters. An experimental approach could be used to determine hc, and a

statistical analysis done to determine the uncertainty of values for hc.

6.2 Harare International School

Research on packed beds was studied and the implementation of this form of cooling was

discussed with the project engineer at the Harare International School.

A mathematical model was coded for the transient response of a packed bed unit to mea-

sured air inlet temperature and validated by comparing with similar but distinct numerical

methods.

• The model was tested against measured data and there is a good agreement.

• Sensitivity tests were carried out and they show how parameters affect the prediction

of the model.

• A parametric study giving heat stored for bed size and different storage materials was

reported. This showed the potential of the code in designing more energy efficient

buildings. Through contact with Prof Mike Holmes of Ove Arup and Partners Ltd in

London the packed bed thermal storage code is being tested with a view to it being

incorporated into the company’s design software.

Further work

• More work needs to be done to come up with a suitable correlation for hc.
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• Another aspect of the modelling that requires a more detailed study is the effect of

ground coupling on the thermal performance of the bed.

• An optimisation study could be made to aid the future design of buildings using packed

beds for cooling or heating. Since packed beds are generally more efficient and easier

to vary in size and the materials used than ventilated slabs, they are more likely to be

used in future building designs.
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Appendix A

Simplified problems for Eastgate

A.1 Analytical solution for test problem A

T (y, t) − T0

T∞ − T0

= 1 − 2
∞

∑

j=1

sinmj

sinmj cosmj +mj

exp[−(mjα)2t] cos

[

mj

B − y

B

]

, (A.1)

where mj, j = 1, 2, . . .∞ are the roots of

mj tanmj = Bi = hc

B

k

Note that because of symmetry in the problem the solution is independent of the x co-

ordinate.
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A.2 A derivation of the energy equation for the air

Consider heat transfer in a fixed control volume of length ∆x, depth g and unit thickness.

The energy balance is



















net rate of

heat flow into

the control

volume



















=



















rate of heat

flow through

the control volume

along the air void



















+



















convective heat

flow rate

into the

control volume



















which can be written in mathematical form as

ρfcf∆x · 1 · g∂T
∞

∂t
= {ṁfcfT

∞ |x − ṁfcfT
∞ |x+∆x}

+{hc∆x · 1 (T |x − T∞ |x) + hc∆x · 1 (T ∗ |x − T∞ |x)} (A.2)

Upon dividing equation (A.2) throughout by ∆x and taking the limit as ∆x → 0 the following

is obtained as the governing equation for the heat transfer in the air void.

ρfcfg
∂T∞

∂t
+ ṁfcf

∂T∞

∂x
= hc (T − T∞) + hc (T ∗ − T∞) . (A.3)
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Appendix B

Nomenclature

A = Area of convective heat transfer m2

c = specific heat capacity J/Kg ◦C

D = solid particle diameter m

di = internal diameter of cylindrical bed m

h = heat transfer coefficient W/m2 ◦C

k = thermal conductivity W/m ◦C

L = length of bed m

P = perimeter of bed m

Q = energy stored in bed J

r = radial distance m

R = radius of solid particle m

Sfr = surface frontal area m2

T = temperature ◦C

t = time s

U = heat loss coefficient W/m2 ◦C

vf = fluid velocity m/s
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x = distance in the direction of flow m

z = axial distance (cylindrical bed) m

ρ = density Kg/m3

σ = Stefan’s constant W/m2 ◦C4

Dimensionless quantities

Bi = Biot number

ε = void fraction

ε′ = emmisivity

η = radial distance

NTU = number of transfer units

NTUc = modified number of transfer units

Pe = Peclet number

Q+ = heat stored

θ = temperature

θ̄ = average temperature

ξ = distance in the direction of fluid flow

τ = time

Subscripts

c = convective

e = effective (overall)

env = environment

f = fluid

fi = fluid inlet

fo = fluid outlet

m = bed material

max = maximum

o = initial instant

r = radiative

v = volumetric

Superscripts

∞ = fluid (ventilated slab analysis only)

? = ceiling slab

122



References

[1] Getting Started with Matlab. The Mathworks Inc., 1998.

[2] G. A. Adebiyi. A second–law study on packed bed thermal storage systems utilizing

phase–change materials. ASME Journal of Solar Energy Engineering, 113:146–156,

1991.

[3] G. A. Adebiyi and D. J. Chenevert. An appraisal of one–dimensional models for the

packed bed thermal storage systems utilizing sensible heat storage materials. Transac-

tions of the ASME Journal of Energy Resources Techonolgy, 118:45, 1996.

[4] G. A. Adebiyi, B. K. Hodge, W. G. Steele, A. Jalaalzadeh-Azar, and E. C. Nsofor.

Computer simulation of a high–temperature thermal energy storage system employing

multiple families of phase change storage materials. Transactions of the ASME Journal

of Energy Resources Techonolgy, 118(2):102–111, 1996.

[5] G. A. Adebiyi, E. C. Nsofor, W. G. Steele, and A. Jalaalzadeh-Azar. Parametric study

on the operating efficiencies of a packed bed for high–temperature sensible heat storage.

Transactions of the ASME Journal of Solar Energy Engineering, 120(1):2–13, 1998.

[6] M. Al-Nimr, M. K. Abu-quadais, and M. D. Mashaqi. Dynamic behaviour of packed

bed energy storage system. Energy Convers. Mgmt, 37:23–30, 1996.

[7] M. Al-Nimr, M. Tahat, and M. Al-Rashdan. A night cold storage system enhanced by

radiative cooling – a modified australian cooling system. Applied Thermal Engineering,

19(1999):1013–1026.

[8] A. K. Athienitis. Investigation of thermal performance of a passive solar building with

floor radiant heating. Solar energy, 61(5):337–345, 1997.

[9] C. A. Balaras. The role of thermal mass on the cooling load of buildings. an overview

of computational methods. Energy and Buildings, 24(1996):1–10.

123



[10] P. Barton, C. B. Beggs, and P. A. Sleigh. A theoretical study on the thermal per-

formance of the TermoDeck hollow core slab system. Applied Thermal Engineering,

22(2002):1488–1499.

[11] A. Bejan. Heat transfer. Wiley, 1993.

[12] S. J. Bhardwarj, S. C. Kaushik, and H. P. Garg. Sensible thermal storage in rock

beds for space conditioning: a state of the art study. International Journal of Ambient

Energy, 20(4):211, 1991.

[13] T. Y. Chen. Real-time predictive supervisory operation of building thermal systems

with thermal mass. Energy and Buildings, 33(2001):141–150.

[14] W. Chen and W. Liu. Numerical and experimental analysis of convection heat trans-

fer in passive solar heating room with greenhouse and heat storage. Solar Energy,

76(2004):623–633.

[15] D. J. Close. Design and performance of a thermal storage air conditioning system.

ASME Transactions Journal of Heat transfer, 98:336, 1976.

[16] J. A. Duffie and W. A. Beckman. Solar engineering of thermal processes. Wiley, 1980.

[17] D. J. Henwood and J. Bonnet. A gentle introduction to finite elements. MacMillan,

1996.

[18] J. P. Holman. Heat transfer. McGraw–Hill, 1976.

[19] M. J. Holmes and A. Wilson. Assessment of the performance of ventilated floor thermal

storage systems. Building and Environment, 102(1), 1996.

[20] G. T. Marewo. Mathematical modelling of the storage of coolth in a building strucure

(the Eastgate building). Master’s thesis, University of Zimbabwe, 1998.

[21] C. B. Moler and C. W. Stewart. An algorithm for generalized matrix eigenvalue prob-

lems. SIAM Journal of Numerical Analysis, 10(2), 1973.

[22] K. W. Morton and D. F. Mayers. Numerical solution of partial differential equations.

Cambridge, 1993.

[23] D. E. Newland. Mechanical vibration analysis and computation. Longman Scientific &

Technical, 1989.

[24] B. Paul and J. S. Saini. Optimization of bed parameters for packed bed solar energy

collection system. Renewable Energy, 29(2004):1863–1876.

124



[25] M. Rainbow. School of hard rocks: lessons out of Africa. In Third International Con-

ference on Sustainable Energy Technologies, School of Build Environment, University of

Nottingham, U. K, 2004.

[26] M. J. Ren and J. A. Wright. A ventilated slab thermal storage system model. Building

and Environment, 33(1), 1998.

[27] M. Riaz. Analytic solutions for single and two–plane models of packed bed thermal

energy systems. ASME Transactions Journal of Heat transfer, 99:489, 1977.

[28] M. B. Russell and P. N. Surendan. Influence of active heat sinks on fabric thermal

storage in building mass. Applied Energy, 70(2001):17–33.

[29] F. W. Schmidt and A. J. Willmont. Thermal storage and regeneration. McGraw Hill,

1981.

[30] T. E. W. Schumann. Heat transfer: A liquid flowing through a porous prism. J. Franklin

Inst, 208:405, 1929.

[31] B. D. Shaw. Asymptotic analysis of the lumped capacitance approximation. Interna-

tional journal of heat flow, 36(4), 1992.

[32] R. Shukla, S. D. Dhole, R. P. Chhadra, and V. Eswaran. Convective heat transfer for

power law fluids in packed and fluidised beds of spheres. Chemical Engineering Science,

59:645–659, 2004.

[33] G. D. Smith. Numerical solution of partial differential equations. Oxford, 1965.

[34] J. Yam, Y. Li, and Z. Zheng. Non-linear coupling between thermal mass and nat-

ural ventilation in buildings. International Journal of Heat and Mass Transfer,

46(2003):1251–1264.

[35] M. T. Zarrinehkafsh and S. M. Sadrameli. Simulation of fixed bed regenerative heat

exchangers for flue gas heat recovery. Applied Thermal Engineering, 24(2–3):373–382,

2004.

[36] M. A. Ziada and Z. S. Abdel-Rehim. Thermal analysis of energy storage in packed beds

of multilayer storing medium. Energy sources, 20:209–222, 1998.

125


