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Summary
A number of presence-only models can be used in the prediction of the geographic distribution of diseases 
and/or their vectors. The predictive performance of these models differs depending on a number of factors but 
primarily the modeled species’ ecological traits. In this study, the performance of GARP and Maxent, two of the 
most commonly used modelling methods were compared in predicting presence and absence of anthrax in 
Zimbabwe using accuracy, sensitivity, specificity, Kappa statistic and the Jaccard coefficient as measures of 
model performance. The results showed that GARP had higher accuracy than Maxent (GARP = 0.70, Maxent = 
0.67). Both methods had equal sensitivity (sensitivity = 0.71), but GARP had higher specificity (GARP=0.70, 
Maxent=0.67). Both Kappa and the Jaccard coefficient were also higher for GARP (0.335; 0.36) than for 
Maxent (0.295; 0.34). The results imply that GARP has superior performance over Maxent and is recommended 
for modelling species habitat suitability.
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Introduction

Habitat models, also known as ecological niche 
models (ENMs) are correlative models that use 
environmental and/or geographic information to 
explain observed patterns of species occurrence 
(Elith & Graham 2009). These models define the
niche of the target species and predict its potential 
geographic and ecologic distribution through the 
analysis of relationships between combinations of 
environmental variables (i.e. bioclimatic, edaphic 
and topographical factors) and the species location 
data (Blackburn et al. 2007). The ecologic niche 
follows the Hutchinsonian definition as the 
hypervolume of ecologic parameters that allow a 
species to maintain populations without 
immigration (Peterson, Bauer & Mills 2004). 
ENMs have had wide applications in the study of 
biodiversity of flora and fauna, and recently have 

been used in epidemiology to understand disease
ecology (Colacicco-Mayhugh, Masuoka & Grieco
2010; Gurgel-Goncalves, et al. 2012). There are a 
number of ENM techniques, ranging from those 
that require presence and absence data of the 
species under study to those that can use presence
data only. The latter techniques include the Genetic 
Algorithm for Rule-set Prediction (GARP)
(Stockwell 1999), and maximum entropy (Phillips,
Anderson & Schapire 2006). 

Surveillance and reporting of disease and/or disease 
vectors is a challenge to most developing countries 
like Zimbabwe due to limited resources. 
Consequently, complete data on spatial patterns of 
disease and disease vectors are limited. To 
overcome the problem of incomplete data, we can 
make use of the (few) presence records that are 
available, to predict areas where disease or disease 
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vectors are likely to occur (Peterson 2006). In this 
regard, predictive modelling provides a cost-
effective alternative tool for estimating patterns of 
disease/vector distribution for informing public 
health authorities. Modelling ecological and 
environmental factors may give insights into which 
areas provide suitable habitat for vectors and 
pathogens (Peterson 2006). Predicted areas with a 
suitable habitat may then be taken to be at risk of
the disease. This knowledge may then be used to 
improve surveillance and planning for future 
outbreaks. Accurate prediction of the potential 
spatial distribution of B. anthracis can be useful for 
generating new research hypotheses about disease
persistence and for targeting surveillance efforts to 
areas at greater risk of potential disease presence, 
with the ultimate goal of providing sound methods 
for improving disease control. This is particularly 
important for resource-poor countries where 
disease surveillance and reporting capacity may be 
limited in spatial extent. Thus focusing the limited 
resources on areas at high risk may lead to better 
resource allocation. 

However, the predictive performances of species 
distribution models (SDMs) may vary depending 
on the modeled species’ ecological characteristics
(McPherson & Jetz 2006).Thus, assessment of 
model performance is important in determining the 
suitability of the model for specific applications 
(Barry & Elith 2006). It also enables the user to 
investigate how different properties of the data and/ 
or of the species affect the accuracy of the maps 
generated by the techniques, and provides a basis 
for comparing algorithms (Segurado & Araujo 
2004). In addition, it is important to use more than 
one metric to assess model performance because 
each quantifies a different aspect of predictive 
performance (Elith et al. 2006). Because of the 
importance of anthrax in Zimbabwe, which is a 
specified disease, and the need to accurately predict 
its spatial occurrence, this study sought to compare 
the performance of GARP and Maxent, two of the 
most commonly used modelling methods, in 
predicting the suitable habitat for B. anthracis
using anthrax outbreaks data.

Materials and Methods

Anthrax occurrence data

The geographical locations of anthrax outbreaks 
were obtained from the Information and 
Management Unit (IMU) of the Division of 
Livestock Production and Veterinary Services in 

Harare, Zimbabwe. In this study, any confirmed 
anthrax occurrence was regarded as an outbreak
regardless of the number of cases. A total of 110 
geo-referenced records for the period 2005-2010 
(for which bioclimatic parameters were available)
of anthrax outbreaks were obtained from the IMU.
After the data were converted from MGRS to 
Latitude and Longitude in Microsoft Excel 
spreadsheet it was then imported into a Geographic 
Information System (ILWIS 3.3 Academic) 
(www.itc.nl) for mapping.

Environmental variables

Climate data was freely downloaded from the 
global climate data site 
(www.worldclim.org/bioclim). To select variables 
that have an important influence on the distribution 
of anthrax outbreaks, the histogram method, as 
developed by Beaumont, Hughes & Poulsen (2005)
was used. The histogram method shows the 
frequency distribution of values of each climatic 
variable throughout the species’ range. According 
to the same authors, parameters with normally 
distributed and those with highly skewed values 
may have an important influence on a species’ 
distribution and therefore should be included in 
modelling. Where there is no clear pattern in the 
histograms for a variable, the variable could be 
classified as irrelevant and therefore ignored for 
modelling. Similarly, where the histogram is 
normally distributed but is truncated in one or both 
tails, the parameter could also be rejected as this 
suggests that the species could tolerate other values 
of the parameter that were not included in the 
species’ climatic envelope (Beaumont et al. 2005). 
After calculating histograms for the 19 bioclimatic 
variables from BIOCLIM, a jackknife test was 
carried out in Maxent (Philips et al. 2006), to 
determine variable importance and in this regard, 
variables with little contribution to the model were 
left out. The remaining variables were namely
temperature seasonality, temperature annual range, 
mean temperature of the wettest quarter, 
precipitation seasonality and precipitation of the 
wettest quarter. The environmental variables were 
overlaid with the boundaries of Zimbabwe in a GIS 
and re-sampled to 90m spatial resolution to match 
the digital elevation model data for analysis.

Modelling techniques

The Genetic Algorithm for Rule-set Prediction
(GARP)
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GARP is a presence-only modelling technique that 
determines non-random associations between 
species occurrence localities (anthrax outbreaks) 
and environmental variables, such as satellite-
derived data and interpolated field measurements 
(Stockwell 1999; Blackburn et al. 2007). Through 
an iterative process, GARP generates 
presence/absence predictions on the basis of a set 
of four logic rule types; i) atomic rules, where 
predicted locations are defined by a specific 
environmental variable; ii) range rules, where 
predicted locations are defined by a range of 
variables; iii) negated range rules, where predicted 
locations are defined as values outside of a defined 
range and; iv) logit rules, where predicted locations 
are fit to a logistic regression model with the 
environmental variables. The rules are developed 
through evolutionary refinement by testing and 
selecting rules on random draws of presence points 
from known occurrences data and pseudo-absences 
localities generated internally from the wider study 
area. In this study, we used Desktop GARP version 
1.1.6 software freely available at 
www.lifemapper.org/desktopgarp.

Maximum Entropy (Maxent)

Maxent is a modelling technique which uses 
presence-only data to measure entropy, a measure 
of ‘how much choice’ is involved in the selection 
of an event (Phillips & Dudik 2004; Philips et al.
2006). Maxent is a general-purpose method for 
characterizing probability distributions from 
incomplete information. In estimating the 
probability distribution defining a species’ 
distribution across a study area, Maxent formalizes 
the principle that the estimated distribution must 
agree with everything that is known (or inferred 
from the environmental conditions where the 
species has been observed) but should avoid 
making any assumptions that are not supported by 
the data (Philips et al. 2006). The approach is thus 
to find the probability distribution of maximum 
entropy (the distribution that is most spread-out, or 
closest to uniform) subject to constraints imposed 
by the information available regarding the observed 
distribution of the species and environmental 
conditions across the study area (Philips et al.
2006). The Maxent technique uses known 
occurrence locations (presence only data) and a set 
of gridded environmental layers to produce an 
output map of the predicted ecological niche of the 
species on a scale of 0 (lowest suitability) to 1 
(highest suitability). Generally, if the area under the 
curve (AUC) is ≤0.5 the model is weak and no 

better than a random one, while the closer the AUC 
approaches 1 the better the prediction. In this study, 
we used Maxent version 3.3.3e, freely available at
http://www.cs.princeton.edu/~schapire/Maxent

Model building 

A total of 110 geo-referenced outbreaks were used 
as presence records. These were randomly split into 
70% for training and 30% testing data initially run 
in Maxent. The 70% training data selected by 
Maxent were used for training the GARP model 
and the 30% retained for validating the models. A 
training/testing partition (70%/30%, respectively)
internal to Desktop GARP was used for model 
building (Blackburn et al. 2007).
A total of  100 models were developed and the best 
subset procedure was employed to select the 20
best models under a 10% hard omission threshold 
and a 50% commission threshold fora final 10-
model best subset (Blackburn et al. 2007). The 
final 10 models were summed within the GIS to
visualize the geographic areas of presence/absence 
predicted across the best subsets. To enable model 
comparison, the testing data set was imported into a 
GIS system (DIVA-GIS) to generate pseudo-
absence data. Dichotomous scores of presence-
absence were generated after setting a presence 
threshold of ≥0.5 to produce maps of predicted 
disease presence/absence.

Evaluation and comparison of models

Model evaluation focused on the predictive 
performance of the modelling techniques and 
included the determination of a minimum threshold 
of quantitative output for the potential presence of 
the species. A 2x2 error matrix for each model was 
generated, and five measures of overall accuracy 
(rate of correctly classified pixels), sensitivity 
(probability of correctly detecting a presence), 
specificity (probability of correctly detecting an 
absence), Cohen’s Kappa (overall accuracy 
corrected from that expected to occur by chance) 
and the Jaccard coefficient were calculated. Overall 
accuracy, defined as the rate of correctly classified 
cells, was used for each model.Two measures 
derived from the error matrix are sensitivity and
specificity. Model sensitivity is defined as the 
proportion of true presences in relation to total 
presences predicted by the model (Allouche et al.
2006). Model specificity is the proportion of true 
absences in relation to absences predicted by the
model (Allouche et al. 2006). The Kappa statistic 
normalizes the overall accuracy by the accuracy 
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that might have occurred by chance alone
(Allouche et al. 2006). The Kappa statistic ranges 
from−1 to+1, where +1 indicates perfect agreement 
and values of zero or less indicate a performance 
no better than random (Cohen 1960). 

Results

The two methods generated positive predictions in 
the central and north-eastern parts of the country 

(Figures 1a and b).The GARP had a higher overall 
accuracy, compared to Maxent (Table 1). The 
models had equal sensitivity, with specificity 
higher for GARP compared to Maxent. The Kappa 
value and the Jaccard coefficient for the two 
methods were in the same range of fair agreement, 
but higher for GARP compared to Maxent (Table 
1).  

Figure 1: Predicted presence/absence of anthrax by the (a) GARP and (b) Maxent models

Table 1: Overall Accuracy, Sensitivity, Specificity, Kappa and the Jaccard Coefficient for the two models.

Modelling 
method

Overall 
Accuracy

Sensitivity Specificity Kappa statistic Jaccard 
Coefficient

GARP 0.70 0.71 0.70 0.335 0.36

Maxent 0.67 0.71 0.67 0.295 0.34

Discussion 

This study presents the first comparison of ENMs 
in Zimbabwe using anthrax occurrence data. The 
two methods predicted almost the same region in 
the central, east and north-eastern parts of the 
country, but with most performance metrics being 
higher for GARP than Maxent. Except for 
sensitivity, which was the same for the two

methods, GARP showed relatively superior 
performance over Maxent in correctly predicting 
areas with and without anthrax (overall accuracy), 
and predicting areas without the disease 
(specificity).

The superior performance of GARP over Maxent is 
also supported by Anderson et al. (2003), who 
showed that GARP was superior over Maxent. 
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However, these results differ from those by Elith et 
al. (2006), and Elith & Graham (2009), who rated 
Maxent higher than GARP.

A number of factors may influence the relative 
performance of ENMs. Elith et al. (2006) observed 
that ENMs performance varied according to 
regions and the species studied. Regional variation 
was explained as due to differences in the quality 
of presence data available, with biases like 
collecting data from more accessible arears 
affecting model performance. Variation according 
to the species studied was explained as due to 
whether the species was a specialist or generalist, 
with specialist species being predicted better than a 
generalist, a result also observed by Segurado &
Araujo (2004). While most performance measures 
used in this study were similar, the use of a 
minimum threshold (≥0.5) to enable calculation of 
performance measures limited comparison to the 
selected threshold (≥0.5), thus making performance 
comparison at lower threshold levels (≤) 
impossible.This could have masked differences at 
lower threshold since it has been shown some other 
measures like Kappa can vary at different 
thresholds (Larson et al. 2010).

Previous studies on anthrax in Zimbabwe 
(Chikerema et al. 2013) have shown soil type (a 
categorical variable) as an important variable in the 
spatial distribution of B. anthracis. Variable 
selection influences the estimated potential 
distribution of the species under study (Velez-
Liendo, Strubbe & Matthysen 2013), thus in this 
case inclusion of soil type might have affected the 
predicted suitable areas for anthrax occurrence. 
However, according to Velez-Liendo, Strubbe &
Matthysen (2013), although variable selection may 
influence the estimated potential distribution, it 
does not affect the relative performance of the 
model, which was the main objective of the present 
study.  

According to Elith et al. (2006), the high predictive 
performance of machine learning methods like 
GARP and Maxent is due to their high level of 
flexibility in fitting complex responses, including 
the ability to handle interactions between the 
variables. It has also been suggested that the best 
models are those that minimise the omission error 
i.e. those that maximize sensitivity (Anderson et al. 
2003), the reason being that incorrectly predicting a 
suitable habitat as unsuitable is a clear error, 
whereas predicting a suitable habitat where a 
species has not been observed may be due to 

insufficient sampling or other non-climatic factors 
limiting occupation by the species (Anderson et al. 
2003). Using the performance measures employed 
in this study, the results show that the GARP has 
superior performance over Maxent and thus can be 
used for predicting the geographical distribution of 
the species, or other species of similar ecological 
traits. Thus, we make a claim that GARP is most 
suited for predicting the geographic distribution of 
B. anthracis.

Data Availability Statement 

Data on the location of anthrax outbreaks is 
considered sensitive information by the 
Zimbabwean government as the disease is 
specified. For access to data, was granted by the 
Information and Management Unit (IMU) of the 
Division of Livestock Production and Veterinary 
Services in Harare, Zimbabwe.

Acknowledgements
The authors are grateful to the Division of 
Livestock Production and Veterinary Services 
Harare, Zimbabwe, for permission to access 
anthrax outbreaks data.

Conflict of interest

The authors declare that they had no financial or 
personal relationships that may have 
inappropriately influenced them in writing this 
manuscript.

References

Allouche, O., Tsoar, A. & Kadmon, R., 2006,
‘Assessing the accuracy of species 
distribution models: prevalence, kappa and 
the true skill statistic (TSS)’, Journal of 
Applied Ecology 43, 1223-1232.

Anderson, R.P., Lew, D. & Peterson, A.T., 2003, 
‘Evaluating models of species’ geographic
distributions: Criteria for selecting optimal 
models’, Ecological Modeling 162, 211-
232.

Barry, S. & Elith, J., 2006, ‘Error and uncertainty 
in habitat models’, Journal of Applied
Ecology 43, 413-423.

Beaumont, L.J., Hughes, L. & Poulsen, M.P., 2005,
‘Predicting species distributions: use of
climatic parameters in BIOCLIM and its 
impact on predictions of species’current 



Zimbabwe Veterinary Journal 35(1):1-6, August 2017

ISSN: 1016-1511

Original Research

6

and future distributions’, Ecological 
Modeling 186, 250-269.

Blackburn, J.K., Mcnyset, K.M., Curtis, A.&
Hugh-Jones, M.E., 2007,‘Modeling 
thegeographic distribution of Bacillus 
anthracis, the causative agent of anthrax 
in the Contiguous United States using 
Predictive Ecologic Niche Modeling’,
American Journal of Tropical Medicine 
and Hygiene 77, 1103-1110.

Chikerema, S.M., Murwira, A., Matope, G. &
Pfukenyi, D.M., 2013, ‘Spatial modelling 
of Bacillus anthracis ecological niche in 
Zimbabwe’, Preventive Veterinary 
Medicine 111(1-2), 25-30.

Cohen, J., 1960, ‘A coefficient of agreement of 
nominal scales’, Educational and
Psychological Measurement 20, 37-46.

Colacicco-Mayhugh, M.G., Masuoka, P.M. &
Grieco, J.P., 2010, ‘Ecological niche 
model ofPhlebotomus alexandri and P. 
papatasi (Diptera: Psychodidae) in the 
Middle East’, International Journal of 
Health Geographics, 21 January, 9: 2.

Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., 
Ferrier, S., Guisan, A., Hijmans, 
R.J.,Huettmann, F., Leathwick, J.R., 
Lehmann, A., Lucia, J.L., Lohmann, G., 
Loiselle, B.A., Manion, G., Moritz, C., 
Nakamura, M., Nakazawa, Y., Overton, 
M., Peterson, A.T., Philips, S.J., 
Richardson, K., Scachetti-Pereira, R., 
Schapire, R.E., Soberon, J.,Williams, S., 
Wisz, M.S. & Zimmermann, N.E., 2006,
‘Novel methods improve prediction of 
species’ distributions from occurrence 
data’, Ecography 29, 129-151.

Elith, J. & Graham, C.H., 2009, ‘Do they? How do 
they? WHY do they differ? On finding
reasons for differing performances of 
species distribution models’, Ecography
32, 66-77.

Gurgel-Goncalves, R., Galvao, C., Costa, J. &
Peterson, T.A., 2012,‘Geographical
Distribution of Chagas Disease Vectors in 
Brazil Based on Ecological Niche
Modeling’, Journal of Tropical Medicine
doi: 1155/2012/705326.

Larson, S.R., De Groote, J.P., Bartholomay, L.C. &
Sugumaran, R., 2010, ‘Ecological 
NicheModelling of Potential West Nile 
Virus Vector Mosquito Species in Iowa’, 
Journal ofInsect Science 10(110), 1-17. 

Mcpherson, J.M. & Jetz, W., 2006, ‘Effects of 
species’ ecology on the accuracy of 
distribution models’, Ecography 30, 135-
`151. 

Peterson, A.T., Bauer, J.T., & Mills, J.N., 2004,
‘Ecologic and geographic distribution of
filovirus disease’, Emerging Infectious
Diseases 10, 40-47.

Peterson, A.T., 2006, ‘Uses and requirements of 
ecological niche models and related 
distributional models’, Biodiversity 
Informatics 3, 59-72.

Phillips, S.J., Anderson, R.P. & Schapire, R.E., 
2006, ‘Maximum Entropy Modeling of
Species Geographic Distributions’,
Ecological Modelling 190, 231-259.

Phillips, S.J. & Dudik, M., 2004, ‘A maximum 
entropy approach to species distribution
modeling. In 21st international Conference 
on Machine Learning, Banff, Canada.

Segurado, P. & Araujo, M.B., 2004, ‘An evaluation 
of methods for modelling species
distributions’, Journal of Biogeography
31, 1555-1568.

Stockwell, D.R.B., 1999, ‘Genetic Algorithms II’,
In:Fielding, A.H., (ed). Machine learning
methods for ecological applications’,
Kluwer Academic Publishers, Boston. pp 
123-144.

Velez-Liendo, X., Strubbe, D. & Matthysen, E., 
2013, ‘Effects of variable selection on
modelling habitat and potential 
distribution of the Andean bear in 
Bolivia’, Ursus 24 (2), 127-138.


