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a b s t r a c t

Temperature and presence of water bodies are known to influence the transmission dynamics

of schistosomiasis. In this work, effects of water bodies (taken in context of rainfall patterns)

and temperature from 1950 to 2000 are considered in the model. With the aid of Geographic

Information System (GIS), the reproduction number is mapped on the Zimbabwean country.

Results of the mapping show high reproduction numbers along the Lowveld and the Zambezi

valley catchment area. High reproduction numbers suggest high levels of schistosomiasis. This

result suggests more control efforts should be targeted in these areas with high reproduction

numbers.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Schistosomiasis also referred to as bilharzias (or snail fever) is an infectious disease caused by parasitic flatworms of the genus

schistosoma. It is a major source of morbidity affecting over 250 million people worldwide, with 85% occurring in the developing

tropical countries in Africa, Asia, South America and the Middle East [1,2]. In terms of morbidity and mortality, schistosomiasis

is considered the second most important human parasitic disease after malaria [3]. Schistosomiasis continues to drain the socio-

economic development of already impoverished rural communities of sub-Saharan Africa.

Schistosomiasis may localise in different parts of the body and its localisation determines its particular clinical profile [4].

Schistosomiasis is caused by five species of flatworms, each of which causes a different clinical presentation of the disease. In-

testinal schistosomiasis is caused by Schistosoma mansoni, urinary schistosomiasis is caused by Schistosoma haematobium and

Schistosoma japonicum and Schistosoma mekongi cause Asian intestinal schistosomiasis [5]. Three species of schistosomiasis,

S. haematobium (prevalent in Africa), S. japonicum (prevalent in Japan, Southeast Asia, and Western Pacific) and S. mansoni

(prevalent in Africa, Southwest Asia, Brazil and the Caribbean) are responsible for the majority of schistosomiasis infection while

the other two species, S. intercalatum and S. mekongi parasitise humans to a much lesser extent [6]. Flatworms infect humans

by penetrating the skin when exposed to contaminated freshwater (e.g., when wading, swimming, or bathing). The flatworms

spread in freshwater areas, such as rivers and lakes, where freshwater snails act as intermediate hosts for the parasite’s larvae.

As such, the habitats of the host snails are of great importance for the spread of the disease. The most important determinants

of the population dynamics of snails are temperature and rainfall [4]. The best survival temperature of snails was found to be

between 20 ◦C and 25 ◦C while at 40 ◦C none of the snails survived [8]. However, snails are less sensitive to low temperatures
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Fig. 1. Model diagram of the mathematical model for schistosomiasis transmission. Dotted lines on the diagram denote indirect interaction.
than schistosome parasites in snails. Uninfected snails can therefore be found in high altitude areas of endemic countries where

low temperatures inhibit larval development in snails [7]. Dagal et al. [8] considered the effects of water temperatures on hatch-

ability of eggs and survival of snails and found that at low temperatures 15 ◦C, none of the eggs hatched. The mean survival rate

of snails between 5 ◦C and 10 ◦C was found to be zero. As temperature increased, hatching rate increased but at 35 ◦C none of the

eggs hatched.

Incorporating climate effects into models of disease dynamics is now extremely important as there is a strong need to un-

derstand the effects of climate change. The schistosome and snail life cycles are highly dependant on ambient conditions and

climate change is known to affect several parameters in the epidemiology of schistosomiasis. Developing an epidemiological

model to predict how these factors bring out the impact of climate on the dynamics of schistosomiasis transmission is crucial.

Here, a schistosomiasis model is incorporated into geographic information systems (GIS) to get a feel of the possible variation of

schistosomiasis intensity in Zimbabwe.

2. Model formulation

The life cycle of schistosome parasites is complicated and involves two different hosts: human beings and snails. A model to

trace the life cycle of schistosome parasite is formulated. The model is based on monitoring the dynamics of the populations at

any time t of susceptible humans SH(t), exposed humans EH(t), infectious humans IH, miracidia M(t) (larvae of the parasite soon

after hatching from the eggs), uninfected snails U(t), latently infected snails L(t), patent infected snails (infected snails not yet

releasing cercariae) Is(t) and cercariae C(t) (larvae released into the water from infected snail ready to enter the human skin). In-

dividuals are recruited into the human population at a rate �H. Susceptible individuals acquire infection at a rate λH = βHC(t)
C0+εC(t)

,

where βH is the cercarial infection rate, C0 is a saturation constant for the cercariae and ε is the limitation of the growth velocity

of cercariae with the increase of cases. Upon infection, an individual does not automatically become infectious but enters an

exposed class as the incubation period of schistosomiasis ranges from 4 to 8 weeks for schistosomiasis mansoni and schisto-

somiasis japonicum, respectively [9,10]. Individuals then progress to the infectious compartment at a rate κH. Susceptible and

infected individuals suffer from natural death rate μH, but infectious individuals have an additional host mortality δH. Adult

schistosomes within infected human hosts produce eggs which hatch and develop to free-swimming miracidia at a net rate θM.

Miracidia either die at a rate δM or infect uninfected snails at rate λS = βSM
M0+εM . Adult snails are recruited into the susceptible snail

population at a rate �S. Upon infection, snails enter the latently infected class from which they progress to the patent infected

class at a rate κS. Adult snails die naturally at rate δS and infected adult snails also die due to parasite-induced mortality at an

additional rate α. The patent infected snails will then release a second form of free swimming larvae called cercariae at a rate θC

which is capable of infecting humans. Cercariae die naturally at the rate δC.

A compartmental model of schistosomiasis dynamics is presented in Fig. 1.
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The following system of differential equations describes the model:

S′
H(t) = �H − βHCSH

C0 + εC
− μHSH + γHIH,

E′
H(t) = βHCSH

C0 + εC
− (κH + μH)EH,

I′H(t) = κHEH − (μH + δH + γH)IH,

M′(t) = θMIH − βSMU

M0 + εM
− δMM,

U ′(t) = �S − βSMU

M0 + εM
− δSU,

L′(t) = βSMU

M0 + εM
− (δS + α + κ)L,

I′S(t) = κL − (δS + α)IS,

C′(t) = θCIS − βHCSH

C0 + εC
− δCC. (1)

where A1 = 351.04480681884, A2 = −1925.49534415329, A3 = −85.1815135926783, B1 = −8.59,

B2 = 855, B3 = 31487.35, B4 = 574921.12, B5 = 5188906, B6 = 18196700, C1 = 11.4267,

C2 = 126.89, C3 = 525.29,C4 = −960.38, C5 = 654.3, D1 = −1.333627E − 02, G1 = 6.45,

D2 = 8.738295237E − 06, D3 = 1334.208298 F1 = 3.99E − 07, F2 = −3.73E − 05, F3 = 4.97E − 04,

F4 = 3.99E − 02, F5 = −1.149, F6 = 9.59, G2 = 40.19, G3 = −907.85, H1 = 2.97E − 06,

H2 = −3.699E − 04, H3 = 1.83E − 02, H4 = −0.45, H5 = 5.38, H6 = −25.688

a = 0.23, b = −1.05, Bm = 0.849, Tm = 25

We make a simplification common in models with free living particles and assume that the rate of the particle depletion

by hosts or snails has negligible impact on particle dynamics [11]. This is done to reduce the complexity of the mathematics

involved. In this case the interaction between the miracidia and the susceptible snail
βSMU

M0+εM and the interaction between the

cercariae and the humans
βHCSH
C0+εC are assumed to be negligible on pathogen dynamics. System (1) can now be written as

S′
H(t) = �H − βHCSH

C0 + εC
− μHSH + γHIH,

E′
H(t) = βHCSH

C0 + εC
− (κH + μH)EH,

I′H(t) = κHEH − (μH + δH + γH)IH,

M′(t) = θMIH − δMM,

U ′(t) = �S − βSMU

M0 + εM
− δSU,

L′(t) = βSMU

M0 + εM
− (δS + α + κ)L,

I′S(t) = κL − (δS + α)IS,

C′(t) = θCIS − δCC. (2)

All feasible solutions of model system (2) enter the region

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(SH, EH, IH) ∈ R
3
+ : NH ≤ �H

μH

,

M ∈ R+ : M ≤ θM�H

δMμH

,

(U, L, IS) ∈ R
3
+ : NS ≤ �S

δS

,

C ∈ R+ : C ≤ θC�S

δCδS

,

(3)

which is positively invariant and attracting and it is sufficient to consider solutions in �. Existence, uniqueness and continuation

results for system (2) hold in this region and all solutions starting in � remain in there for all t ≥ 0. Hence, (2) is mathematically

and epidemiologically well-posed and it is sufficient to consider the dynamics of the flow generated by the model system (2) in

�. Also, all parameters and state variables for model system (2) are assumed to be non-negative since it monitors human, snail,

miracidia and cercariae populations.
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Table 1

Parameters of the basic schistosomiasis transmission model in Eq. (1) where T represents temperature and P rep-

resents rainfall. [a]∗ denotes temperature dependant parameters designed using Datafit based on results from [a].

Description Symbol Value Source

Recruitment rate of humans �H 8000 [11]

Cercarial infection rate βH −2.296 + 0.446 ln T + 2.96
ln T

[14]∗

Saturation constant of cercariae C0 9000000 [11]

Progression rate of humans κH 0.017857 est

Natural death rate of humans μH 0.014 [12]

Disease induced human death rate δH 0.039 [11]

Adult snail recruitment rate �S(T) 100eA1+ A2
T +A3 ln T [14]∗

Adult snail recruitment rate �S(T, P) 80Bm
e−c[T−Tm ]2

1+ea−bP [13]∗
Miracidia infection rate βS B1 + B2

T
− B3

T 2 + B4

T 3 − B5

T 4 + B6

T 5 [8]∗

Saturation constant for the miracidia M0 100000000 [11]

Adult snail mortality rate δS C1 − C2

ln T
+ C3

( ln T)2 + C4

( ln T)3 + C5

( ln T)4 [14]∗

Additional snail mortality due to infection α D1 + D2T 2.5 + D3e−T [14]∗

Net miracidial production rate θM 500 [14]∗

Miracidial death rate δM F1T 5 + F2T 4 + F3T 3 + F4T F
5 T + F6 [14]∗

Cercarial production rate θC G1T 2 + G2T + G3 [14]∗

Cercarial mortality rate δc 0.004 [13]

Within snail schistosome maturation rate κS H1T 5 + H2T 4 + H3T 3 + H4T 2 + H5T + H6 [14]∗
3. Equilibrium states

The equilibrium states of the basic model are obtained by setting the right hand side of system (2) to zero. Model system (2)

has two steady states.

3.1. The disease free equilibrium

The parasite larval stages (represented by M and C) have relatively short lifespans compared with those of worms, humans

and snails. So the dynamic equations for M and C are replaced with their quasi-equilibrated values C∗ = θC IS
δS

and M∗ = θMIH
δM

. The

original system (2) is reduced to a six dimensional form for variables SH, EH, IH, U, L and IS.

S′
H(t) = �H −

βHSH
θC IS
δS

C0 + ε θC IS
δS

− μHSH + γHIH,

E′
H(t) =

βHSH
θC IS
δS

C0 + ε θC IS
δS

− (μH + κH)EH,

I′H(t) = κHEH − (μH + δH + γH)IH,

U ′(t) = �S −
βSU

θMIH
δM

M0 + ε θMIH
δM

− δSU,

L′(t) =
βSU

θMIH
δM

M0 + ε θMIH
δM

− (δS + α + κ)L,

I′S(t) = κL − (δS + α)IS. (4)

At the disease free equilibrium, there are no infected humans and infected snail, thus the model system (4) has a disease free

equilibrium

E0 = (SH, EH, IH,U, L, IS) =
(

�H

μH

, 0, 0,
�S

δS

, 0, 0

)

3.2. Basic reproduction number

The next generation operator approach as described by Diekmann et al. [15] is used to define the treatment induced repro-

ductive number, Rs, as the number of new infections (in snails or humans) produced by one infectious individual or snail over

the duration of the infectious period in the presence of treatment for infected humans.

Rs =
√

κHκSβHθC�HβSθM�S

δcC0δHδMM0δS(κH + μH)(δS + α + κS)(δS + α)(μH + δH + γH)
. (5)
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3.3. Local stability of the disease-free equilibrium E0

The local stability of the disease free equilibrium can be discussed by examining the linearised form of the system (4) at the

steady state E0.

Theorem 1. The disease-free equilibrium E0 is locally asymptotically stable whenever Rs < 1, and unstable otherwise.

Proof. The Jacobian matrix of the model (4) evaluated at the disease free equilibrium point is given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μH 0 γH 0 0 −βHθC�H

δcC0δH

0 −(κH + μH) 0 0 0 βHθC�H

δcC0δH

0 κH −(μH + δH + γH) 0 0 0

0 0 −βSθM�S

δMM0δC
−δS 0 0

0 0 βSθM�S

δMM0δC
0 −(δS + α + κS) 0

0 0 0 0 κS −(δS + α)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The first and the fourth columns have diagonal entries resulting in these diagonal entries being two of the eigenvalues of the

Jacobian matrix. Now excluding these columns and the corresponding rows we calculate the remaining eigenvalues.⎡
⎢⎢⎢⎢⎣

−(κH + μH) 0 0 βHθC�H

δcC0δH

κH −(μH + δH + γH) 0 0

0 βSθM�S

δMM0δC
−(δS + α + κS) 0

0 0 κS −(δS + α)

⎤
⎥⎥⎥⎥⎦.

Let a1 = κH + μH, a2 = 0, a3 = 0, a4 = βHθC�H
δcC0δH

In the same manner,

b1 = κH, b2 = μH + δH + γH, c2 = βSθM�S
δMM0δC

, c3 = δS + α + κS, d3 = κS, d4 = δS + α

The eigenvalues are solutions of the characteristic equation of the reduced matrix of dimension four which is given by

(κH + μH + λ)[(μH + δH + γH + λ)(δS + α + κS + λ)(δS + α + λ)] − κHκSβHθC�HβSθM�S

δcC0δHδMM0δS

)
= 0

which is simplified to

λ4 + A3λ
3 + A2λ

2 + A1λ + A0 = 0,

A3 = a1 + b2 + c3 + d4,

A2 = (a1 + d4)(b2 + c3) + a1d4 + b2c3,

A1 = c3d4(b2 + a1) + a1b2(c3 + d4),

A0 = (κH + μH)(δS + ακS)(δS + α)(μH + δH + γH) − κHκSβHθC�HβSθM�S

δcC0δHδMM0δS

. (6)

The Routh–Hurwitz conditions are sufficient and necessary conditions on the coefficients of the polynomial (6). These conditions

ensure that all roots of the polynomial given by (6) have negative real parts. For this polynomial, the Routh–Hurwitz conditions

are A3 > 0, A2 > 0, A1 > 0, A0 > 0 and

H1 = A3 > 0,

H2 =
∣∣∣∣ A3 1

A1 A2

∣∣∣∣ > 0,

H3 =
∣∣∣∣∣

A3 1 0
A1 A2 A3

0 A0 A1

∣∣∣∣∣ > 0,

H4 =

∣∣∣∣∣∣∣
A3 1 0 0
A1 A2 A3 1
0 A0 A1 A2

0 0 0 A0

∣∣∣∣∣∣∣
> 0,

since all A > 0, i = 1, 2, 3.
i
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Note that from

A0 = (κH + μH)(δS + ακS)(δS + α)(μH + δH + γH) − κHκSβHθC�HβSθM�S

δcC0δHδMM0δS

> 0

we deduce the reproduction number

R2
s = κHκSβHθC�HβSθM�S

δcC0δHδMM0δS(κH + μH)(δS + α + κS)(δS + α)(μH + δH + γH)
,

which satisfies Rs < 1, in order to have A0 > 0.

Clearly, H1 = A3 > 0.

H2 = A3A2 − A1

= (b2 + c3)(b2 + d4)(c3 + d4) + a2
1(b2 + c3 + d4) + a1(b2 + c3 + d4)

2 (7)

which is positive.

H3 = A1(A3A2 − A1) − A0A2
3

= a3
1(b2 + c3)(b2 + d4)(c3 + d4) + b2c3(b2 + c3)d4(b2 + d4)(c3 + d4) + a4b1c2d3(b2 + c3 + d4)

2

+ a2
1(a4b1c2d3 + b3

2(c3 + d4) + 2b2
2(c3 + d4)

2 + c3d4(c3 + d4)
2 + b2(c3

3 + 4c2
3d4 + 4c3d2

4 + d3
4))

+ a1(b3
2(c3 + d4)

2 + (c3 + d4)(2a4b1c2d3 + c2
3d2

4) + b2
2(c3

3 + 4c2
3d4 + 4c3d2

4 + d3
4)

+ 2b2(a4b1c2d3 + c3d4(c3 + d4)
2)) (8)

which is also positive.

It can be easily seen that H4 = A0H3.

Therefore, all eigenvalues of the Jacobian matrix have negative real parts when Rs < 1. However, Rs > 1 implies that A0 <

0, and since all coefficients of the polynomial (6) are positive, not all roots of this polynomial can have negative real parts. This

means that when Rs > 1, the disease free equilibrium point is unstable. �

3.4. Endemic equilibrium and its stability

The endemic equilibrium point for system (4) in terms of the forces of infection λ∗
H

and λ∗
S
is given by

S∗
H = �H(κH + μH)(μH + δH + γH)

(λ∗
H

+ μH)(κH + μH)(μH + δH + γH) − γHκHλ∗
H

,

E∗
H = λ∗

H�H(μH + δH + γH)

δH(κH + μH)(λ∗
H

+ μH) + μH[(κH + μH)(λ∗
H

+ μH) + γH(κH + λ∗
H

+ μH)]
,

I∗H = κHλ∗
H�H

δH(κH + μH)(λ∗
H

+ μH) + μH[(κH + μH)(λ∗
H

+ μH) + γH(κH + λ∗
H

+ μH)]
,

U∗ = �∗
S

δS + λ∗
S

, L∗ = λ∗
S�S

(α + δS + κS)(δS + λ∗
S
)
, I∗S = κSλ∗

S�S

(α + δS)(α + δS + κS)(δS + λ∗
S

. (9)

3.4.1. Local stability of the endemic equilibrium

The stability of the endemic equilibrium can be determined by computing the eigenvalues of the Jacobian matrix and then

evaluate it at the endemic equilibrium. However this approach is mathematically complicated for the system of Eq. (4). Bifurca-

tion analysis is performed at the disease free equilibrium by using Center Manifold Theory as presented in Castillo-Chavez and

Song [16].

Letting x1 = SH, x2 = EH, x3 = IH, x4 = U, x5 = L, x6 = IS, we write system (4) as

dXi

dt
= F(Xi)

where Xi = (x1, x2, . . . , x8)
T , F = ( f1, f2, . . . , f8)

T and (.)T represents the matrices transpose.

The system of Eq. (4) becomes

dx1

dt
= f1 = �H − β∗

HθCx6x1

δSC0 + εθCx6

− μHx1 + γHx3,

dx2

dt
= f2 = β∗

HθCx6x1

δSC0 + εθCx6

− (μH + κH)x2,

dx3

dt
= f3 = κHx2 − (μH + δH + γH)x3,

dx4

dt
= f4 = �S − βSθMx3x4

δMM0 + εθMx3

− δSx4,



E.T. Ngarakana-Gwasira et al. / Commun Nonlinear Sci Numer Simulat 35 (2016) 137–147 143
dx5

dt
= f5 = βSθMx3x4

δMM0 + εθMx3

− (δS + α + κ)x5,

dx6

dt
= f6 = κx5 − (δS + α)x6, (10)

where β∗
H

= βH from (5). Suppose that β∗
H

is a bifurcation parameter, the system (10) is linearised at disease free equilibrium

point E0 when βH = β∗
H with Rs = 1. Now solving for Rs = 1 in (5) gives

β∗
H = δCC0δHM0δS(κH + μH)(δS + α + κS)(δS + α)(μH + δH + γH)

κHκSθCθMβS�S�H

.

Then zero is a simple eigenvalue of the following Jacobian matrix with the application of the bifurcation parameters.⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μH 0 γH 0 0
−β∗

HθC�H

δCC0δH

0 −(κH + μH) 0 0 0
β∗

HθC�H

δCC0δH

0 κH −(μH + δH + γH) 0 0 0

0 0 −βSθM�S

δMM0δS
−δS 0 0

0 0 −βSθM�S

δMM0δS
0 −(δS + α + κS) 0

0 0 0 0 κS −(δS + α)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A right eigenvector associated with the eigenvalue zero is ω = (ω1,ω2, . . . , ω6), where

ω1 = γHω3 + β∗
HQ1ω6

μH

, ω2 = β∗
HQ1ω6

κH + μH

, ω3 = κHω2

μH + δH + γH

,

ω4 = −βSQ2ω3

δS

, ω5 = βSQ2ω3

δS + α + κS

, ω6 = κSω5

δS + α
. (11)

The left eigenvector satisfying v.ω = 1 is v = (v1, v2, . . . , v6), where v1 = 0, v2 = v2 > 0, v3 = (κH+μH)v2
κH

,

v4 = 0, v5 = μH+δH+γH
βSQ2

v3, v6 = β∗
H

Q1

δS+α
v2.

Theorem 4.1 in Castillo-Chavez and Song [16] is used to explore local stability of the endemic equilibrium near Rs = 1.

Computation of acs and bcs

For the system (10), the associated non-zero second order partial derivatives at disease free equilibrium are given by

acs =
3∑

k,i, j=2

vkωiω j

∂2 fk

∂xi∂x j

(0, 0) +
6∑

k,i, j=5

vkωiω j

∂2 fk

∂xi∂x j

(0, 0),

bcs =
3∑

k,i=2

vkωi

∂2 fk

∂xi∂φ
(0, 0) +

6∑
k,i=5

vkωi

∂2 fk

∂xi∂φ
(0, 0).

Since vk = 0, for k = 1, 4, we should consider vk for k = 2, 3, 5, 6.

That is, the following functions will be used to find acs and bcs from the system (10).

f2 = β∗
HθCx6x1

δSC0 + εθCx6

− (κH + μH)x2,

NH = x1 + x2 + x3

f2 = β∗
HθCx6(NH − x2 − x3)

δSC0 + εθCx6

− (κH + μH)x2. (12)

Hence

∂2 f2

∂x2∂x6

= −β∗
HθC

δSC0

= ∂2 f2

∂x3∂x6

,

f5 = βSθMx3x4

δMM0 + εθMx3

− (δS + α + κS)x5

NS = x4 + x5 + x6,

f5 = βSθMx3(NS − x5 − x6)

δMM0 + εθMx3

− (δS + α + κS)x5, (13)
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Fig. 2. Simulation of (a) Snail egg laying rate, (b) Snail mortality rate, (c) Rs , (d) Miracidia death rate, (e) Miracidia infection rate and (f) within snail schistosome

maturation rate using parameter functions in Table 1.
hence

∂2 f5

∂x5∂x3

= − βSθM

δMM0

= ∂2 f5

∂x6∂x3

.

Therefore on simplifying we get

acs = − (β∗
H)2θCQ1(μH + δH + γH + κH)

δSC0(κH + μH)(μH + δH + γH)
v2ω

2
6 − β2

S θMQ2(δS + α + κS)

δMM0(δS + α)(δS + α + κS)
v6ω

2
3 < 0.

From Eq. (12) we get

∂2 f2

∂x6∂β∗ = θC�H

μHδSC0

.

H
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Fig. 3. Simulation of infected snails and human populations with varying temperature, using model system (2).

Fig. 4. Variation of reproduction number Rs as a function of temperature in Zimbabwe.
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Fig. 5. Variation of reproduction number Rs as a function of temperature and rainfall in Zimbabwe.
Therefore

bcs = θC�H

μHδSC0

v2ω6 > 0.

Thus acs < 0 and bcs > 0 and the following theorem follows:

Theorem 2. The unique endemic equilibrium E∗ guaranteed by Theorem 4.1 (Castillo-Chavez and Song [17]) is locally asymptotically

stable for Rs > 1, but close to 1.

4. Numerical simulations

We explore the effects of temperature and rainfall using graphical representations.

In Fig. 2, the effects of temperature on snail recruitment rate, snail mortality rate, basic reproduction number, miracidia

death rate, miracidia infection rate and within snail schistosome maturation rate are illustrated. The snail recruitment rate is 0

at 15 ◦C and increases to a maximum at around 23 ◦C before declining to zero again at around 34 ◦C. This is in agreement with

Dagal et al. [8] because no snail eggs hatch at temperatures lower than 15 ◦C and at temperatures greater or equal to 35 ◦C.

The snail recruitment rate is maximum at 24 ◦C as the optimal temperatures for reproduction lie between 22 ◦C and 26 ◦C, in

agreement with WHO [1]. Snail mortality is high at low temperatures but decreases to a minimum between 20 ◦C and 25 ◦C

before increasing again at higher temperatures. The reproduction number is zero at 10 ◦C and increases to become greater

than unity around 18 ◦C. It increases to a maximum at about 22.5 ◦C before declining to zero at about 35 ◦C. The reproduction

number is greater than unity between 18 ◦C and 28 ◦C making this temperature range the ideal temperature range for endemic

schistosomiasis.

In Fig. 3, the relationship between pre-patent snails, patent snails, exposed humans and infectious humans is illustrated.

Results show that in the long term, the effects of temperature within the range 20–25 ◦C on human infectivity is more or less

constant.

Fig. 4 shows different reproduction numbers across Zimbabwe. Cooler and warmer colours represent low and high repro-

duction numbers, respectively. Thus based on temperature alone highest reproduction numbers are in the lower veld and the

Zambezi valley catchment area. Higher reproduction numbers signify higher incidences of schistosomiasis. Based on these re-

sults which are temperature dependant, it is shown that most major towns have very low incidence of schistosomiasis if we are

to base the results on temperature only.

In Fig. 5, the combined effects of temperature and rainfall patterns in Zimbabwe from 1950 to 2000 were used to map the

reproduction number risk map for schistosomiasis transmission. As the intensity of the colour increases, the reproduction num-

ber also increases. Therefore, high reproductive numbers are found in the lower veld of Zimbabwe and along the Zambezi valley

catchment area. This correlates with high incidence of schistosomiasis. This result is in total agreement with Midzi et al. [17] who

obtained similar results for the cross-sectional survey of 280 primary schools country wide. The combined effect of rainfall and

temperature seem to lower the reproduction number as the reproduction number is a decreasing function of rainfall.
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5. Discussion

In this paper, a mathematical model to explore the impact of temperature and water bodies taken in the context of rainfall

on schistosomiasis transmission is presented as a system of differential equations and analysed. In agreement with Dagal et al.

[8], the model analysis suggests that the temperature range of 18–28 ◦C is found to be ideal for schistosomiasis transmission.

The reproduction number increases as temperature increases to attain a maximum around 23 ◦C, beyond which the reproduc-

tion number starts declining. This result suggests the optimal temperature for schistosomiasis transmission is around 23 ◦C.

The analysed results are also supported by numerical simulations which show an increased infection among snails at 22 ◦C as

compared to at 20 ◦C and 25 ◦C. At 30 ◦C the infection dies out. Amongst humans however, the infection is endemic from 20 to

25 ◦C and the differences in transmission in relation to temperatures are minimal. Geographical information systems (GIS) was

used to map the reproduction number on the Zimbabwe map using temperature and rainfall data from 1950 to 2000. It was

noted that high reproduction numbers are found in the Zambezi valley catchment area and the lower veld of the country. High

reproduction numbers suggest high incidences of schistosomiasis. The results of this manuscript can be used to identify areas

which need special attention with regard to schistosomiasis control. Chiredzi, a known irrigated sugarcane producing area and

Mushandike areas in the Lowveld of Zimbabwe are among those requiring special attention in the fight against schistosomiasis.

This manuscript can be extended to incorporate other aspects like the terrain of the country under study to capture the real

dynamics of what happens on the ground.
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