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Abstract

Malaria is a life-threatening disease caused by parasites that are transmitted

to humans through the bites of infected female mosquitoes. Almost half of the

world’s population is at risk of malaria. Schistosomiasis is considered second only

to malaria as the most devastating parasitic disease, estimated to affect 237 mil-

lion people worldwide. The development, mortality and reproduction rates of the

malaria and schistosomiasis parasites and their hosts are very sensitive to tem-

perature and the availability of water bodies. The distribution and prevalence of

the diseases are most likely to be affected by climate change. The aim of this

thesis was to advance understanding of the potential effects of climate change on

malaria and schistosomiasis transmission, using non linear differential equations.

In addition, the study also sought to assess the role of mathematical models in

evaluating the impact of climate variability and change on malaria and schistoso-

miasis transmission. The work in this thesis focused on investigating the effects

of climate on malaria and schistosomiasis transmission in Africa and South Amer-

ica. Climate driven deterministic models were developed separately for malaria,

schistosomiasis and malaria-schistosomiasis coinfection. Mathematical models of

human population dynamics and the vector population dynamics were developed

for both malaria and schistosomiasis. For both diseases, temperature-dependent

stages of the parasites in their life cycles are considered. Temperature and rain-

fall were incorporated in the models to explore the effects of climate variability

and change on the diseases transmission dynamics. The equilibrium states for the

models were determined and analysed. The reproductive rates were computed for
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each model and accordingly analysed. Mathematical packages (Mathematica, Mat-

lab and C++) were used to perform sensitivity analyses and numerical simulations.

Projections for future transmission dynamics were made from climate change pro-

jection models in order to inform policy makers on how to deal with the diseases in

the future. Results from the malaria model suggest that temperature range 23oC

to 38oC is ideal for malaria transmission. The reproduction number increases as

temperature increases to attain a maximum at 31.5oC, beyond which the repro-

duction number starts declining. This result suggests the optimal temperature

for malaria transmission is around 31oC. The analytic results are also supported

by numerical simulations which show an increase in malaria cases as tempera-

ture increases to about 38oC and a decrease thereafter. Furthermore, results from

model analysis suggest daily rainfall in the range of 15 − 17mm is ideal for the

spread of malaria. The models’ reproductive rates were simulated using climate

models for Africa to determine the current transmission patterns and to aid pre-

diction of future trends. The results of the simulated current transmission pattern

of malaria fall within the observed spatial distribution of falciparum limits on the

African continent. Results from future projections of malaria transmission suggest

that due to climate change, endemic malaria will die out on the southern fringe

of the disease map in Africa by 2040, while malaria endemicity is going to become

a problem in the African highlands. A drying trend is the likely driving force for

the reduction in malaria transmission in the regions to the south of the continent,

while a warming trend is the likely factor driving the projected increase in malaria

endemicity in the highlands, although increases in malaria incidences in these ar-
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eas can also be attributed to socioeconomic factors such as land use change and

drug resistance. The model has the following limitations: it did not consider the

role of human migration, other climate variables, in particular relative humidity

as the tropical anopheline mosquitoes prefer humidities above 60% and the role of

socioeconomic factors in malaria transmission dynamics. Despite these limitations,

the model is reasonable enough to be able to give a realistic picture of malaria in

the African continent. Thus, results from the study will be useful at various lev-

els of decision making, for example, in setting up an early warning system and

sustainable strategies for climate change adaptation for malaria vectors control

programmes in Africa. These results can be generalized to other tropical regions

outside Africa. A mathematical model to explore the impact of temperature and

rainfall (in the context of its effect on water bodies) on schistosomiasis transmis-

sion is presented as a system of differential equations and analysed. The model

analysis suggests that the optimal temperature for schistosomiasis transmission

is around 23OC. Geographical information systems (GIS) was used to map the re-

production number for Zimbabwe using temperature and rainfall data from 1950

to 2000. It was noted that high reproduction numbers, which suggest high inci-

dences of schistosomiasis, are found in the Zambezi valley catchment area and the

lowveld of the country. A mathematical model for schistosomiasis and malaria coin-

fection incorporating rainfall and temperature was developed and analysed. The

coinfection reproduction number was computed and mapped on the continents of

Africa and South America. Results from the mapping suggest that environmental

ambient conditions in the equatorial regions of Africa and Latin America promote
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malaria and schistosomiasis coinfection with a heavier burden of coinfection in

South America, especially in Brazil. Within Africa, there are some countries where

it is beneficial to target both diseases, for example Angola, Democratic Republic of

Congo and Madagascar. However there are some areas where targeting Malaria

only is warranted. In the sub-tropical regions, including Namibia, South Africa,

the greater part of Zimbabwe and the areas on the northern fringe of the Sahara,

schistosomiasis is more dominant than malaria. Results also show that coinfection

is a greater problem in general in South America than in Africa. These findings

suggest that both schistosomiasis and malaria control programmes should be in-

tensified in these regions of Africa and South America. The results of this study

can be used to identify areas which need special attention with regard to malaria

and schistosomiasis control. This can be extended to incorporate other aspects like

the terrain of the region under study to capture the real transmission dynamics of

schistosomiasis and malaria.
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Chapter 1

Introduction

1.1. Background

The impact of climate variability and change on the transmission of infectious dis-

eases is a complex and pressing public health issue. Schistosomiasis is endemic in

78 tropical and subtropical countries (WHO, 2014). The World Health Organisa-

tion estimates that globally, 779 million people are at risk of schistosomiasis and

at least 237 million people are infected with Schistosoma species (Chitsulo et al.,

2000; Steinmann et al., 2006; Vos et al., 2012; Colley et al., 2014). Africa bears

the brunt of the epidemic where more than 90% of the infections occur worldwide

(WHO, 2013). Malaria on the other hand remains endemic in 97 countries with an

estimated 214 million cases worldwide and an estimated 438 000 deaths in 2015

(WHO, 2015). It is considered one of the most important vector-borne disease re-
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sponsible for the fifth greatest number of deaths due to infectious diseases and is

the second leading cause of death in Africa behind HIV/ AIDS (Gubler, 1998). Glob-

ally, malaria caused an estimated 453 000 under-five deaths in 2013 of which 437

000 were from Africa (WHO, 2014).

Climate change projections show increasing temperatures across Africa (Stocker

et al., 2013), where the burden of both schistosomiasis and malaria are highly

concentrated. What remains unclear is how climate change might affect the trans-

mission potential of both malaria and schistosomiasis in different locations, given

that rainfall and temperature are key determinants of both snails and mosquitoes

geographical distribution and all aspects of their life cycles. Although the impact of

climate change on human health has received increasing attention in recent years,

current comprehension of the relationships between environmental variables, in-

cluding temperature, rainfall and hydrology and vector borne diseases is still lim-

ited (Remais, 2010 ).

The aim of this thesis was to advance understanding of the potential effects of

climate change on malaria and schistosomiasis transmission, using non linear dif-

ferential equations. Mathematical models of human population dynamics and the

vector population dynamics were developed for both malaria and schistosomiasis.

For both diseases, temperature-dependent stages of the parasites in their life cycles

are considered.
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1.2. Mathematical modelling of infectious diseases

Mathematical modelling is an attempt to describe some part of the real world phe-

nomenon using functions and equations. Mathematical models take us beyond

verbal or graphical reasoning and provide a solid frame-work upon which to build

experiments and generate hypotheses. Mathematical models have been used in

the physical, biological, and social science. The building blocks for mathematical

models have been taken from calculus, algebra, geometry and nearly every other

field within mathematics. The main thrust of creating and analysing mathemati-

cal models is to develop a clear understanding of the real world phenomenon under

investigation with aid of virtual models instead of experimenting with lives. A vir-

tual model is a mathematical model with a biological meaning.

Population dynamics are complex, non-linear systems that cannot be understood

without the help of detailed mathematical analysis. In population dynamics, pop-

ulations in different states are denoted by variables. These variables are used to

construct ordinary differential equations that describe the interactions and rela-

tionships between the different variables. After the mathematical model has been

developed, it is then analysed or is used in biological investigations from which

biological results are obtained analytically or numerically. Mathematical models

can be used to,

• understand the mechanisms through which infectious diseases spread;

• understand, predict and control disease outbreaks;
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• quantify the relative contribution of vaccination, chemotherapy and preven-

tive measures to the reduction of the disease;

• determine the effectiveness of interventions currently in place;

• study the impact of poverty on disease epidemiology;

• explore the effects of drug interactions in situations where an individual is

co-infected with different pathogens;

• determine the effects of drug-resistant strains in a population;

• determine the effectiveness of current vaccines on multifactorial interaction

between different diseases;

• predict the future course of an epidemic.

Mathematical models can be classified in several ways some of which are described

as

• Linear and non-linear: Mathematical models are usually composed of vari-

ables, which are abstractions of quantities of interest in the described sys-

tems, and operators that act on these variables, which can be algebraic op-

erators, functions and differential operators. If all the operators in a mathe-

matical model present linearity the resulting mathematical model is defined

as linear. A model is considered to be non linear otherwise.

• Deterministic and stochastic: A deterministic model is one in which every set

of variables is uniquely determined by parameters in the model and by sets



Introduction 5

of previous states of these variables. Therefore, deterministic models perform

the same way for a given set of initial conditions. Deterministic models are

also called compartmental models as individuals in a population are classified

into compartments depending on their status with regard to infection under

study. Usually they are classified by a string of letters that provides informa-

tion about the model structure. Conversely, in a stochastic model, random-

ness is present, and variable states are not described by unique values, but

rather by probability distributions.

In this thesis a deterministic approach is used in the modelling of malaria and

schistosomiasis dynamics. Data from published work and reasonable estimates

will be used in this thesis. Differential equations are preferred because a lot is

known about their behaviour and they are suitable to model population dynamics.

For instance given a set of parameters and particular set of differential equations,

one can predict the behaviour of the system and tell the range of parameter values

the system make biological sense and bifurcate from one state to the other. Al-

most all modern epidemic models (Anderson and May, 1991; Daley and Gani, 1999;

Hethcote, 2000) make use of a multiple-state approach, segmenting the modelled

population into a set of distinct classes, each exhibiting a different characteristic

with respect to the disease.

The states that are modelled would typically include those described in Table 1.1.

The existence (or otherwise) of each of these five states, together with the links
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between the respective states, is usually sufficient to provide a broad outline of the

particular epidemic model being used, particularly in describing acute epidemics,

which develop and spread over a short period of time. However, models for more

chronic and long-term epidemics would also need to consider births and deaths.

A further enhancement for models dealing with diseases for which vaccines have

been developed is to include a further state for those lives that have been immu-

nized against a particular disease. The states used in conventional epidemic mod-

elling are described in Table 1.1.

Symbol Epidemic State Description

M Passively Immune Individuals who have acquired temporary immunity

to a particular disease without having ever

been infected. An example of this state

would be newborn infants with antibodies

against the disease passed from their mother.

These antibodies eventually disappear from

the body at which time the infant moves into

the Susceptible state.

S Susceptible Lives who are healthy, but who could

potentially develop the disease.

E Exposed Individuals who have been infected and with the

disease, but who are still in the latent

period (with or without symptoms of the

disease) and who cannot transmit the

disease to others.

I Infective Individuals who are infected with the disease

(with or without symptoms of the disease)

and who are capable of transmitting the

infection to others.

R Removed Individuals who have either died or recovered from

infection thereby acquiring immunity

(temporary or permanent) from infection.

Table 1.1: States used in conventional epidemic modelling.
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Making use of the states outlined above, it is conventional to name epidemic mod-

els after the states considered in the modelling process and the possible transitions

between the various states. For example, one of the simplest epidemic models is

called the Susceptible, Infective, and Removed (SIR) model after the 3 states con-

sidered in the modelling. Various other epidemic models, considering combinations

of the above five states are shown in Table 1.2.
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Model Characteristics

SI Once a susceptible member of the population (S)
has been infected with the disease,

he or she is immediately infective (I) and

capable of transmitting the infection to

others. No recovery from the disease is possible.

SIS Same as the SI model, except that recovery from

the disease is possible. However,

upon recovery, a life is immediately susceptible

(S) once again. That is, recovery

from the disease does not confer any

immunity against future infection.

SEI Same as the SI model, except that, following

initial exposure (E) to the disease

leading to infection, there is a latent or

incubation period during which the

disease cannot be passed on to others.

SEIS Same as the SIS model, except that, following

initial exposure (E) to the disease

leading to infection, there is a latent or

incubation period during which the disease

cannot be passed on to others.

SIR Same as the SI model, except that recovery (R)
from the disease is possible. Once

recovered from the disease, there is

lifelong immunity from reinfection.

SIRS Same as the SIR model, except that postrecovery

immunity is only temporary. Following

a period of immunity, a life may

become susceptible (S) once again.

SEIR Same as the SIR model, except that following

initial exposure (E) to the disease

leading to infection, there is a latent or

incubation period during which the disease

cannot be passed on to others.

SEIRS Same as the SEIR model, except that postrecovery

immunity is only temporary.

MSEIR Same as the SEIR model, with the addition of

lives who are passively immune (M) from

infection when they enter the population.

MSEIRS Same as the MSEIR model, except that

postrecovery immunity is only temporary.

Table 1.2: Conventional epidemic models.
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In many such models, there is a sharp threshold behaviour and the asymptotic dy-

namics are determined by a parameter R0 known as the basic reproduction num-

ber. When R0 < 1, the disease-free equilibrium is asymptotically stable (usually

globally) and when R0 > 1 there exists a unique endemic equilibrium which is also

asymptotically stable. R0 represents the average number of new infectious cases

caused by an infectious case in a fully susceptible population, during the entire in-

fectious period. It is worth noting here that not all SEIR-type models have an R0

threshold; see Heffernan et al. (2005) for the review of R0 estimation in different

kinds of models.

The first mathematical model to predict epidemics was developed in 1760 by Daniel

Bernoulli who used mathematical methods to evaluate the effectiveness of vari-

olation of healthy people with small pox virus in an effort to tame the disease.

However deterministic epidemiology modelling seems to have started in the 20th

century. In 1906 Hamer formulated and analysed a discrete time model in an at-

tempt to understand the recurrence of measles epidemics. His model may have

been the first to assume that incidence depends on the product of the susceptibles

and infectives (Hamer, 1906). This concept of mass action in analogy to its origin

in chemical reaction kinetics is fundamental to the modern theory of determinis-

tic epidemic modelling (Roberts and Heesterbeek, 2003). The popularity of mass

action is explained by its mathematical convenience and the fact that at low pop-

ulation densities it is a reasonable approximation of a much more complex contact

process (Roberts and Heesterbeek, 2003). For a complete undestanding of the con-
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cept of mass action in epidemiological models see Roberts and Heesterbeek (2003).

Ross who was interested in the incidence and control of malaria developed a dif-

ferential equation model for malaria as a host-vector disease (Ross, 1911). Other

deterministic models were later, developed by Ross, Ross and Hudson, Martini and

Lotka (Bailey, 1975; Dietz, 1967, 1988). Kermark and McKendrick developed a

number of epidemic models starting in 1926 which show that an epidemic thresh-

old result that the density of susceptibles must exceed a critical value in order for

an epidemic outbreak to occur (Bailey, 1975).

1.3. Malaria

Malaria is a disease that is transmitted between female Anopheles mosquitoes and

mammals. Four Plasmodium parasite species are responsible for malaria infection

in humans: Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and

Plasmodium malariae. Of the four parasites, P. falciparum causes the most severe

clinical symptoms and is responsible for the greatest number of malaria induced

deaths. Malaria is transmitted between humans through bites by infected female

Anopheles mosquitoes. The incubation period is usually 7 − 30 days; this is the

time it takes for the sporozoites from a new mosquito bite to travel to the liver

and develop into merozoites in the blood stream. Malaria is both a preventable

and treatable disease. The objective of treating is to ensure a rapid and complete

elimination of the Plasmodium parasite from the patients blood in order to prevent

progression of uncomplicated malaria to severe disease or death, and to chronic
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infection that leads to malaria-related anaemia. Treatment is meant to reduce

transmission of the infection to others, by reducing the infectious reservoir and to

prevent the emergence and spread of resistance to antimalarial medicines. Clinical

manifestations of severe infection include cerebral malaria, anaemia, respiratory

distress syndrome, and acute renal failure (Kochar et al. 2009).

The malaria parasite has two main life stages, one which requires a human host

and the other requires a mosquito host. An infectious mosquito bites a human, the

parasites in form of sporozoites in the saliva of the mosquito enter the human blood

and move to the liver. In the liver, the sporozoites invade the hepatic cells. After

some 5 − 16 days, the sporozoites develop into schizonts which contain thousands

of merozoites. The merozoites exit the liver cells and re-enter the bloodstream,

beginning a cycle of invasion of red blood cells, known as asexual replication. In

the red blood cells they develop into mature schizonts, which rupture, releasing

newly formed merozoites that then reinvade other red blood cells. The rupture

is what frees the parasite and causes it to affect other blood cells. This cycle of

invasion and cell rupture repeats every 1 − 3 days and can result in thousands

of parasite-infected red blood cells in the host bloodstream, leading to illness and

complications of malaria that can last for months if not treated. Some of the mero-

zoites differentiate into sexual forms known as gametocytes.

When a mosquito takes a blood meal from an infected human being it ingests the

gametocytes. These gametocytes fuse to form the zygote that matures to form an

ookinete which penetrates the stomach wall. The ookinete develops into an oocyst
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which in a week or more releases sporozoites. This process is ambient temperature

dependent. Some of the merozoite-infected blood cells leave the cycle of asexual

replication. Instead of replicating, the merozoites in these cells develop into sex-

ual forms of the parasite, called male and female gametocytes. In some malaria

species, young gametocytes sequester in the bone marrow and some organs while

late stage gametocytes, circulate in the bloodstream. It takes 7−12 days for the ga-

metocytes to form new sporozoites in the mosquito but this incubation period varies

greatly depending on the environmental temperature, humidity and the species of

plasmodium. The optimal environmental conditions for development of sporozoites

are temperatures between 20oC and 30oC and relative humidity greater than 60%.

The malaria parasite life cycle is shown in Figure 1.1.

Figure 1.1: Malaria parasite life cycle (Adopted from www.cdc.gov/dpdx/malaria/)
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The mosquito has four separate and distinct stages of its life cycle. The eggs re-

quire water for successful hatching. They hatch into larvae in about 2 − 3 days

depending on temperature. However, the hatching may even take weeks in cold

weather. The larvae stage requires water, they live in water for 7 − 14 days de-

pending on water temperature as they develop into pupa. Pupa requires water and

may take 1− 4 days depending on the species and temperature. The egg, larva and

pupa stage belong to the immature stage and do not participate in the infection

cycle. This stage is water bound and depends on the existence of water bodies. The

pupa develops to an adult mosquito. The average lifespan of an adult male is about

a week while the female mosquito can live up to a month.

The adult female mosquito requires a blood meal for the protein needed to produce

eggs. After the blood meal it rests until the eggs develop and this process is temper-

ature dependent and usually lasts for 2−3 days in tropical conditions. The lifespan

of the adult mosquito depends on temperature, humidity, sex of the mosquito and

time of the year. Temperature and moisture, in form of precipitation and relative

humidity, are critical regulators of the growth and development within each stage,

in determining the end of one stage and the beginning of the next and in regulating

the length of the gonotrophic cycle. Thus, the transition usually occurs in 10 − 14

days in tropical conditions. The development time for the mosquito depends on the

environmental conditions and on the species of the mosquito with warmer temper-

atures promoting quicker development.

To control the population of mosquitoes, people in Africa in the past, removed or
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poisoned the breeding grounds of mosquitoes and the aquatic habitats of the larva

stages by applying oil to places with standing water (Killeen et al, 2002). In re-

cent years, pesticides have been widely used to eliminate mosquitoes. The use of

mosquito nets, bedclothes and mosquito-repellent incense (indoor residual spray-

ing) also helps to minimize the biting rate, greatly reducing the chances of infec-

tion and transmission of malaria as mosquitoes are kept away from humans. There

are effective drugs for malaria treatment, Chloroquine, Quinuine, Primaquine and

combinations of some other drugs like sulfadoxine and pyrimethamine(SP) are ef-

fective medicines for treating infections caused by the malaria parasites. Once

recovered, an individual does possess temporary immunity, but it only lasts for a

short time. The road to malaria vaccine clinics has been long and filled with dark-

ness, even with the support of global funds. A completely effective vaccine has

not yet been developed for malaria infection, although several vaccines are under

clinical trials.

1.3.1. Review of mathematical models for Malaria

For over a century, mathematical models have been used to provide a framework

for understanding malaria transmission dynamics in human population. In early

1900, Sir Ronald Ross was one of the first to publish a series of papers using math-

ematical functions to study transmission of Malaria (Ross 1915 , 1916a, 1916b,

1916c, 1916d). Ross developed a simple mathematical model, commonly known as

the Ross model (Ross 1916a), which explained the relationship between the num-

ber of mosquitoes and incidence of malaria in humans. His results showed that
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reduction of mosquito numbers below the transmission threshold was sufficient to

counter malaria. Several mathematical models have been developed as researchers

extended Ross’s model. In the 1950s George Macdonald reasserted the usefulness

of mathematical models by modifying Ross’s model by integrating the latent period

of infection in mosquitoes due to parasite development (Macdonald, 1957). Ander-

son and May also introduced latency of infection in humans in Macdonald’s model

(Anderson and May, 1991). All other models are developed from these three basic

models by incorporating different factors to make them biologically more realistic

in explaining disease prevalence and prediction.

While Ross was a pioneer in using mathematical models to understand malaria

transmission, he did not look into the aspects of climate variables and the mosquito

life cycle. The mosquito lifecycle is generally not considered in most mathemati-

cal models because eggs, larvae and pupae are not involved in the transmission

cycle. In malaria transmission, the mosquito population dynamics are strongly in-

fluenced by the environmental conditions which directly affect the juvenile stage

dynamics. Though neglecting the juvenile stage in modelling malaria transmis-

sion simplifies the modelling aspect, results of such models do not predict malaria

intensity in most malaria endemic regions (Smith and McKenzie, 2004).

1.4. Schistosomiasis

Schistosomiasis, also known as bilharzia, is a water-borne infection caused by a

microscopic worm called Schistosoma, belonging to the family of flukes. There
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are three types of human schistosomiasis, two of which occur in Africa and South

America and the other one in the Far East. Schistosoma mansoni worms live in

the veins supplying the intestine and their eggs are passed out with faeces, while

S. haematobium worms live in the veins supplying the bladder and their eggs are

voided with urine. The S. japonicum species of the Far East behave like S. man-

soni. The male and female worms are small enough to lie within blood vessels

where they feed and reproduce. The male has a groove along his body in which the

female lives. The fertilised female lays thousands of eggs in her lifetime. Some are

swept along in the bloodstream to the liver, while others find their way directly into

the intestine or bladder from where they exit the host, either in urine or faeces.

An infected human passes eggs in stool or urine in or near fresh water. The eggs

will hatch upon contact with water into tiny, hairy larvae called miracidia. The

miracidia penetrates the tissues of freshwater snails, where they multiply. After

several days, the snails shed many hundred swimming larvae called cercariae into

the water. One egg excreted in human waste can give rise to thousands of aquatic

cercariae. These larvae penetrate human skin during activities in water such as

washing clothes, bathing, swimming, planting rice and fishing which expose hu-

mans to infection by schistosome larvae. However, the deeper the water, the lower

the risk of infection as the snail host prefers shallow water with plenty of vegeta-

tion. In the water, the cercariae penetrate human skin, transforming into larvae

called schistosomulae. The schistosomulae mature into worms in the blood supply

of the liver, intestines, and bladder. These worms lay thousands of eggs that cause
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damage as they work through tissues. The eggs, released into the water in urine

or feaces, restart the cycle.

The eggs of S. mansoni and S. haematobium are equipped with a sharp spine to

enable them to burrow out of the blood vessels and penetrate into other tissues on

their migration out of the host. While most eggs find their way out of the host,

many become trapped in tissue and die before completing their journey. It is these

trapped eggs which eventually lead to tissue damage and cause problems to the

human host. S. mansoni eggs tend to lodge in the liver while S.haematobium eggs

become trapped in the bladder wall. The heavier the worm infection, the greater

the number of eggs which remain stuck. The body defenses of the host produce an

inflammatory reaction around each egg. Over time, the inflamed tissue hardens

and blockages of blood and lymph vessels occur, leading in turn to complications

for the host.

Different control measures have been used to interupt the life cycle of schistosomes.

These include improved sanitation which reduces surface water contamination by

urine or stool, construction of dams and supply of clean water which also reduces

contact with water, killing of worms in the human host through chemotherapy and

using mollucides for snail control (WHO, 1993). Schistosomiasis infection caused

by any of the schistosome human species can be treated using a single dose of

Praziquantel.
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1.4.1. Review of mathematical models for schistosomiasis

Mathematical models have been used to provide a framework for understanding

schistosomiasis transmission dynamics in the human and snail populations. The

models have been developed for evaluating possible control strategies; limitations

and uncertainties (Barbour, 1978), heterogeneities; snail dynamics; miracidia and

cercaria dynamics and acquired immunity (Anderson and May, 1985; Woolhouse,

1991). The first mathematical model for schistosomiasis transmission was devel-

oped by George MacDonald in 1965 (Macdonald, 1965). The model has shown some

potential for understanding the disease transmission and control although it was

based on oversimplified biological assumptions. Latent period in snails has been

incorporated into transmission models since 1976, (Bradley and May, 1978; Lee

and Lewis, 1976; Nasell, 1976). The latent period is epidemiologically significant

to snails since the life expectancy of snail is comparable to the length of latent

period. Mathematical models that ignore latent period would predict an unre-

alistically high prevalence of shedding snails (Bradley and May, 1978; Barbour,

1978). Mathematical models exploring the effects of temperature on schistosomi-

asis transmission have been developed (McCreesh and Booth, 2014; Martens et

al.,1995; Martens et al., 1997; Mangal et al., 2008; Zhou et al., 2008; Mas-Coma

et al., 2009). While most incorporated projected increases in mean temperature,

McCreesh developed a mathematical model of water temperature, snail population

dynamics incorporating temperature dependent stages of the parasite and snail

lifecycles (McCreesh and Booth, 2014). Some attempts have been made to develop
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more realistic models incorporating both rainfall and temperature to capture the

seasonal environmental factors in snail dynamics (Liang et al., 2002; Woolhouse

and Chandiwana, 1990). The models of Liang (Liang et al., 2002) used tempera-

ture and rainfall to formulate the effective growth rate of snail population based on

earlier work of Woolhouse and Chandiwana ( Woolhouse and Chandiwana, 1990).

These models from previous works laid a foundation for our work and shed light

on direction of our research in modeling schistosomiasis transmission.

1.5. Mathematical background

In this thesis ordinary differential equations are used. This section therefore pro-

vides a synoptic discussion of these ordinary differential equations that are used

in the formulation of the models in this work.

An ordinary differential equation system is a system of equations of the form

dx1

dt
= f1(x1, x2, . . . , xn),

dx2

dt
= f2(x1, x2, . . . , xn),

. . . . . .
dxn

dt
= fn(x1, x2, . . . , xn),

(1.1)

which can be written more concisely in vector notation

dx

dt
= f(x), (1.2)
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where x and f are vectors with components xi and fi, respectively, and the functions

fi are assumed to be smooth enough so that through each point x0 there passes a

unique solution of equation (1.1). It is worth noting here that the xis correspond

to the states of the disease being modelled as shown in Table 1.1 and the system

corresponds to various epidemic models shown in Table 1.2. In disease modelling

the variables represent numbers of individuals, or fractions of the whole popula-

tion, therefore they should be positive or zero for all times t ≥ 0, and if this fails

then the model should be discarded since it violates a basic aspect of the biological

reality.

Let IRn be an n-dimensional space (n ≥ 1), and let Ω be a subset of IRn. We say

that Ω is positively invariant for (1.1) if, when (x1(0), x2(0), . . . , xn(0)) is in Ω, the

solution starting with these initial values has the property that the trajectory

(x1(t), x2(t), . . . , xn(t)) is in Ω for all t ≥ 0,

IRn
+ = {(x1, x2, . . . , xn) : x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0}.

Positive invariance of the non-negative orthant IRn
+ for any given system (1.1) will

be assured if no trajectory can leave IRn
+ by crossing through one of its faces.

In the analysis of system (1.1), often the first step is to determine whether there

are steady states or equilibria. An equilibrium is a constant vector x̄ (that is,

xi = x̄i, i = 1, . . . , n are constant) that satisfies the equations (1.1). Since this
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solution is constant, it may be found by solving the equations

f1(x̄1, . . . , x̄n) = 0,

. . .

fn(x̄1, . . . , x̄n) = 0.

(1.3)

A set of values that satisfy (1.3) represents a system state such that if the sys-

tem is in that state at some time t1, it remains in that state for all t ≥ t1, in the

absence of external disturbance. The effects that these disturbances have on an

equilibrium are important, hence it is necessary to distinguish between stable and

unstable equilibria. We now describe, the analysis of finding stability by restricting

ourselves to the case n = 2, to keep the notation simple. For n = 2, equations (1.1)

are

dx1

dt
= f1(x1, x2),

dx2

dt
= f2(x1, x2).

(1.4)

If (x1(t), x2(t)) is a solution of this system for t ≥ 0 such that (x1(0), x2(0)) is near an

equilibrium (x̄1, x̄2), we define

y1(t) = x1(t)− x̄1, y2(t) = x2(t)− x̄2. (1.5)

Then

dy1(t)

dt
= f1(x̄1 + y1(t), x̄2 + y2),

dy2(t)

dt
= f2(x̄1 + y1(t), x̄2 + y2). (1.6)
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Assuming that the functions f1 and f2 are sufficiently differentiable, the expres-

sions (1.6) can be expanded in Taylor series. Since y1(t) and y2(t) are assumed to

be small disturbances from the equilibrium, we drop terms of degree two or higher

and consider linear parts of the equations. We note that since (x̄1, x̄2) is an equilib-

rium state, f1(x̄1, x̄2) = f2(x̄1, x̄2) = 0. Therefore, the appropriate linear equations

are obtained as

dy1
dt

= a11y1 + a12y2,

dy2
dt

= a21y1 + a22y2,

(1.7)

where a11, a12, a21, a22 are the partial derivatives of the fi evaluated at (x̄1, x̄2). Sys-

tem (1.7) can be in a more compact form as

dY

dt
= JY,

where Y = (y1, y2)
T and

J =





∂f1
x1

(x̄1, x̄2)
∂f1
x2

(x̄1, x̄2)

∂f2
x1

(x̄1, x̄2)
∂f2
x2

(x̄1, x̄2)



 =





a11 a12

a21 a22



 (1.8)

is the Jacobian matrix of system (1.4) evaluated at (x̄1, x̄2). System (1.7) is called

the linearisation of (1.4) near (x̄1, x̄2). Behaviour of solutions of (1.7) is determined

by the eigenvalues of J , which are the roots λ of the equation

det(J − λI) = 0. (1.9)
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According to the Hartman-Grobman theorem, every solution of (1.7) has the prop-

erty that y1(t) → 0 and y2(t) → 0 as t → +∞ if all the roots of (1.9) are negative

or are complex with negative real parts. In this case, it can therefore be proved

that any solution of (1.4) with initial value sufficiently close to (x̄1, x̄2) will tend

to (x̄1, x̄2) as t → +∞. Then (x̄1, x̄2) is said to be a locally asymptotically stable

equilibrium of (1.4). If one or both eigenvalues are positive or have positive real

parts, then most solutions of (1.7) become unboundedly large as t → +∞ and con-

sequently most solutions of (1.4) do not remain near (x̄1, x̄2), even if they start very

close and in this case, (x̄1, x̄2) is said to be unstable.

We now illustrate some of the basic mathematical concepts used in modelling by

analysing a simple malaria model, which is a system of deterministic ordinary dif-

ferential equations.

1.5.1. A basic malaria transmission model

A basic model for malaria has four compartments for the human population namely

the susceptibles Sh(t), latently infected (exposed) Eh(t), the infectious Ih(t) individ-

uals and the recovered Rh(t). The mosquito population is subdivided into suscep-

tibles Sm(t), latently infected (exposed) Em(t) and the infectious Im(t). The total

human population is given by Nh(t) = Sh(t) + Eh(t) + Ih(t) + Rh(t) while the total
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mosquito population is Nm(t) = Sm(t) + Em(t) + Im(t). The basic model is given by

dSh

dt
= Λh − λhSh − µhSh + γhRh,

dEh

dt
= λhSh − (µh + kh)Eh,

dIh
dt

= khE − (µh + δh + η)Ih,

dRh

dt
= δhIh − (µh + γh)Rh

dSm

dt
= Λm − λmSm − µmSm,

dEm

dt
= λmSm − (µm + km)Em,

dIm
dt

= kmE − µmIm,

(1.10)

with λh =
abhIm(t)

Nm(t)
, λm =

abmIh(t)

Nh(t)
where Λh and Λm are constant human and

mosquito recruitment rates respectively; a is the mosquito biting rate and bh or

bm is the proportion of bites by infectious mosquitoes on susceptible human or by

a susceptible mosquito on an infectious human that produce infection. kh / km

is the rate at which the individual leaves the latently infected class by becoming

infectious, δh is the disease induced death rate, µh is the natural death rate of

humans while µm is the mortality rate of mosquitoes, η is the treatment rate of

individuals who also gain partial immunity, γh is the rate of loss of immunity as

individuals rejoin the susceptible class. We assumed that an individual becomes

infected only through contacts with infectious individuals. The initial conditions of
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model system (1.10) are given by

Sh(0) = Sh0 ≥ 0, Eh(0) = Eh0 ≥ 0, Ih(0) = Ih0, Rh(0) = Rh0,

Sm(0) = Sm0 ≥ 0, Em(0) = Em0 ≥ 0, Im(0) = Im0 ≥ 0.
(1.11)

The equilibrium states of model system (1.10) can be calculated by setting

dSh

dt
=

dEh

dt
=

dIh
dt

=
dRh

dt
=

dSm

dt
=

dEm

dt
=

dIm
dt

= 0. (1.12)

Solving (1.12) we get

E0 =
(

S0
h, E

0
h, I

0
h, R

0
h, S

0
m, E

0
m, I

0
m

)

=

(

Λh

µh

, 0, 0, 0,
Λm

µm

, 0, 0

)

, (1.13)

being the disease-free equilibrium which is defined as a situation in which there is

no infection in the population. We now determine an important threshold param-

eter in epidemic modelling known as the basic reproduction number. It is defined

as the number of new infections generated by a single infectious individual in a

completely susceptible population (Anderson and May, 1991) and mathematically

as the spectral radius of the next generation matrix (Diekman et al., 1990; van den

Driessche and Watmough, 2002). For model system (1.10), the basic reproduction

number (R0) is defined as the number of secondary malaria cases (in mosquitoes

or humans) produced by one infectious individual (human or mosquito) in a to-

tally susceptible population. We now follow the method of van den Driessche and

Watmough (2002), in using the vector notation to rewrite the equations in which

infections appear in terms of the difference between fj , the rate of appearance of
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new infections in compartment j, and vj , the rate of transfer into and out of com-

partment j by all other processes. Progression from ST to ET is considered to be

new infection:

d
dt

















Eh(t)

Ih(t)

Em(t)

Im(t)

















= f − v =

















λhSh

0

λmSm

0

















−

















(µ+ k)Eh

(µh + δh + η)Ih − khEh

(µm + km)Em

µmIm − kmEm

















. (1.14)

The corresponding Jacobian matrices, F and V, describes the linearisation of the

system about the disease-free equilibrium,

F =

















0 abh 0 0

0 0 0 0

0 0 0 abm

0 0 0 0

















, V =

















µh + kh 0 0 0

−kh µh + δh + ηh 0 0

0 0 µm + km 0

0 0 −k µm

















, (1.15)

and the basic reproduction number, R0 is given as the spectral radius of the domi-

nant eigenvalue of FV−1 (van den Driessche and Watmough, 2002):

R0 = ρ(FV−1) =

√

( abmkm
µm(km + µm)

)( abhkh
(η + δh + µh)(κh + µh)

)

.
(1.16)

Theorem 1.1. The disease-free equilibrium is locally asymptotically stable when-

ever R0 < 1 and unstable otherwise.

Theorem 1.1 can also be proven using the Jacobian matrix as follows. The Jacobian
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matrix of model system (1.10) evaluated at disease free equilibrium is given by

J(E) =



































−µH 0 0 γh 0 0 −abh

0 −(κh + µh) 0 0 0 0 abh

0 κh −(µh + δh + γh) 0 0 0 0

0 0 η −(γh + µh) 0 0 0

0 0 −abm 0 −µm 0 0

0 0 abm 0 0 −(κm + µm) 0

0 0 0 0 0 κm −µm



































.

(1.17)

Finding the eigenvalues of the Jacobian matrix at E0, we set det[J(E0 − λ] = 0. The

eigenvalues of J(E0) are negative whenever (−1)3 det[J(E0)] > 0 and

trace[J(E0)] < 0.

From (1.17), we have

trace[J(E0)] = −(4µh + 3µm + κh + δh + 2γh + κm) < 0,

det[J(E0)] = −µhµm(γh + µh)[−(a2bhbmκhκm) + µm(η + δh + µh)(κh + µh)(κm + µm)].

(1.18)

Thus (−1)3 det[J(E0] > 0 whenever,

R0 =
abmkm

µm(km + µm)

abhkh
(η + δh + µh)(κh + µh)

< 1 (1.19)

Thus all the eigenvalues of det[J(E0 − λ] = 0 have negative real parts whenever

R0 < 1. This implies that the disease-free equilibrium point E0 is locally asymptot-

ically stable whenever R0 < 1.
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Numerical simulations and mapping

Numerical simulations were done with the ODE solver of Matlab, a numerical

mathematical software package. Matlab is also used to compute the partial rank

correlation coefficient, (PRCC) for sensitivity analysis. The PRCC is a very efficient

tool for identifying the most important parameters on the output variable in this

study it is the reproduction number. The PRCC have a sign (+ or −) indicating the

direction of change in the reproduction number if there is an increase or decrease

in the input parameter.

Geographic Information System (GIS) software (ArcGIS 10.1) was used to produce

maps of the distribution of malaria and schistosomiasis in terms of the reproduc-

tion number. Data on mean annual temperature and total annual precipitation for

the baseline climate (i.e, average values for the period 1950 to 2000) were down-

loaded from the worldclim database as raster grids with a spatial resolution of 30

arc-seconds (approximately 1 km at the equator) (World Climate Database, 2014).

For the future climate, we used temperature and precipitation projections of the

HadCM3 and CSIROMK3 general circulation models (GCM) based on the A2a

emission scenario. Data for the future climate (average values for the 2020-2039,

hereafter 2040) were downloaded from the Inter-governmental panel on climate

change (IPCC) database in raster format at the same 30 arc-seconds spatial reso-

lution (IPCC Database, 2014 ).
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1.6. Structure of the thesis

In Chapter 2, a malaria model incorporating the juvenile mosquito population is

considered. The model is used to determine the effect of temperature on the trans-

mission dynamics of malaria. In Chapter 3, the effects of both rainfall and tem-

perature is investigated on the transmission of malaria. In this chapter, the future

dynamics of malaria transmission are considered in Africa. In Chapter 4, a schsto-

somiasis transmission model is presented. The model is used to assess the effects

of both rainfall and temperature on schistosomiasis transmission. We present in

Chapter 5, a model for malaria and schistosomiasis coinfection. Finally we present

the conclusion and possible extensions to our work in Chapter 6. Due to the com-

plexity of the models involved, global stability analysis of the equilibrium points

was not considered. Parts of Chapters 2, 3 and 4 were published as follows

1. Ngarakana-Gwasira ET, Bhunu CP & Mashonjowa E, (2014). Assessing the

impact of temperature on malaria transmission dynamics. Afrika Matem-

atika, 25:1095-1112.

2. Ngarakana-Gwasira ET, Bhunu CP, Masocha M, Mashonjowa E, (2016). Trans-

mission dynamics of schistosomiasis in Zimbabwe: A mathematical and GIS

Approach. Commun Nonlinear Sci Numer Simul, 35:137-147.

3. Ngarakana-Gwasira ET, Bhunu CP, Masocha M, Mashonjowa E, (2016). Im-

pact of climate change on malaria transmission in Africa. Malaria Research

and Treatment http://dx.doi.org/10.1155/2016/7104291



Chapter 2

Assessing the impact of

temperature on malaria

transmission dynamics

2.1. Introduction

Malaria is a major cause of morbidity and mortality, with an estimated 216 million

cases worldwide and at least 655 000 deaths in 2011 (WHO, 2011). Understanding

the role of temperature in malaria transmission is of particular importance in light

of climate change. The global mean temperature has increased by 0.70C during the

past 100 years and is predicted to increase by an additional 1.1 − 6.40C during

the twenty-first century (IPCC, 2007). This additional warming is likely to affect

malaria transmission because temperature changes can alter vector development
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rates, shift their geographical distribution and alter transmission dynamics.

Temperature is known to play a major role in the life cycle of the malaria vec-

tor. The development of the three aquatic stages and their emergence to adulthood

are strongly dependent on temperature. It takes one, three and ten days for eggs

of some mosquitoes to hatch at temperatures of 300C, 200C and 100C, respectively

and water temperature regulates the speed of mosquito breeding (Jia Li, 2011).

The development of the parasite within the mosquito (sporogonic cycle) depends on

temperature. It takes about nine to ten days at temperatures of 280C, but stops

at temperatures below 160C (Alemu et al., 2011). The minimum temperature for

parasite development of P. falciparum approximates 180C and the daily survival of

the vector is dependent on temperature. At temperatures between 160C and 360C,

the daily survival is about 90% (Alemu et al., 2011).

Incorporating climate effects into models of disease dynamics is now very crucial

as the evidence for climate impacts on disease transmission and potential vector

distribution increases. Climate change is known to affect several parameters in

the epidemiology of malaria and hence predicting climate change effects on dis-

ease transmission requires a framework that specifically incorporates the role of

each climate sensitive parameter. Some models examining the contribution of cli-

mate change have been explored (Alonso et al., 2010; Craig et al., 1999; Hoshen

and Morse, 2005; Martens et al., 1997; Parham and Michael, 2010). However, this

study incorporates the juvenile stage of the mosquito into malaria transmission
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dynamics which is highly dependent on the environmental ambient conditions.

We begin by formulating the model, illustrating some of its basic properties, deter-

mining the equilibria and stability analysis performed in Section 2. The effect of

temperature on the dynamics of malaria is presented and the numerical simula-

tions in section 3. A discussion of the results is presented in Section 4.

2.2. Malaria transmission model

2.2.1. Model description

In developing a framework for understanding the impact of temperature on malaria

dynamics, a deterministic transmission model is developed. The human population

is subdivided into four classes: susceptible (SH), exposed or incubating EH , infec-

tious (IH) and recovered individuals who become partially immune (RH). The rate

of infection of a susceptible individual is dependent on the mosquito’s biting rate

a(T ) and the proportion of bites by infectious mosquitoes on susceptible humans

that produce infection bH . Blood meal taken by an infectious female anopheles

mosquito on a susceptible human will cause sporozoites to be injected into the hu-

man bloodstream and will be carried to the liver.

Upon infection, individuals will then move to the exposed class EH , where parasites

in their bodies are still in the asexual stages. We assume that exposed individuals

are not capable of transmitting the disease to susceptible mosquitoes as they do not

have gametocytes. Exposed humans progress at a rate κH to the infectious class,
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in which they now have gametocytes in their bloodstream making them capable

of infecting the susceptible anopheles mosquitoes. Treated individuals recover at

a rate α. A proportion p recovers with temporary immunity and the compliment

(1 − p) recovers with no temporary immunity. Temporarily immune individuals

lose immunity at a rate γ. Infected individuals who do not seek treatment die from

infection at a rate η. The birth rate for humans is θ and individuals die naturally

at a rate µH . Both human and mosquito infections take time to develop into an in-

fectious state. Within host parasite dynamics are weather independent, but within

vector, parasite dynamics, as well as the mosquito life cycle, are weather depen-

dent.

The mosquito population is divided into the juvenile (JM(t)) and adult population of

which the adult population is subdivided into three classes: susceptible (SM(t)), ex-

posed EM(t) and infectious (IM(t)). The juvenile stages describe the development of

the aquatic stages which mature to become susceptible adult mosquitoes at a rate

βM . The rate of infecting a susceptible mosquito depends on the mosquitoes’ biting

rate a and the proportion of bites by susceptible mosquitoes on infected humans

that produce infection bM . Susceptible mosquitoes that feed on infectious humans

will take gametocytes in blood meals, but as they do not have sporozoites in their

salivary glands, they enter into the exposed class. After fertilisation, sporozoites

are produced and migrate to the salivary glands ready to infect any susceptible

host, the vector is then considered as infectious. Mosquitoes die at a rate µM which

is independent of infection status. Infected mosquitoes are not harmed by the in-
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fection, never clear their infection and the infective period of the mosquito ends

with its death.

A coupled mosquito-human compartmental model of malaria dynamics is presented

in Figure 2.1.

Figure 2.1: Mosquito-human model of malaria dynamics.
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The following system of differential equations describe the model.

S ′
H(t) = θ − λH(T )SH − µHSH + pαIH + γRH ,

E ′
H(t) = λH(T )SH − (κH + µh)EH ,

I ′H(t) = κEH − (µH + α + η)IH ,

R′
H(t) = (1− p)αIH − (γ + µH)RH ,

J ′
M(t) = [βJ(T )NM − µJ(T ) JM ](1− JM

K
)− βM(T )JM ,

S ′
M(t) = βM(T )JM − λM(T )SM − µM(T )SM ,

E ′
M(t) = λM(T )SM − (κM(T ) + µM(T ))EM ,

I ′M(t) = κM(T )EM − µM(T )IM ,

(2.1)

where λH =
a(T )bHIM

NM

and λM =
a(T )bMIH

NH

.

All parameters and state variables for model system (2.1) are assumed to be non-

negative to be consistent with human and mosquito juvenile and adult populations.

2.2.2. Mathematical preliminaries

In this section, we study some basic results of the solutions of the system (2.1)

which will be very useful to use into the proof of stability and persistence results.

Let Rn
+ = (0,∞) denote the set of positive vectors x = (x1, x2, ..., xn) with xj > 0 for
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j = 1, 2, ..., n. We will use the following results in Appendix A of Thieme (2003):

Lemma 2.1. Let F : Rn
+ → R

n

F (x) = (F1(x), F2(x), ..., Fn(x)), x = (x1, x2, ..., xn)

be continuous and have partial derivatives
∂Fj

∂xk

which exist and are continuous in

R
n for all j, k = 1, 2, ..., n. Then F is locally Lipschitz continuous in R

n
+.

Theorem 2.1. Let F : Rn
+ → R

n be locally Lipschitz continuous and for each

j = 1, 2, ..., n satisfy

Fj(x) ≥ 0 whenever x ∈ R
n
+, xj = 0.

Then for every x0 ∈ R
n
+, there exists a unique solution of x′ = F (x), x(0) = x0 with

values in R
n
+ which is defined in some interval (0, b] with b ∈ (0,∞]. If b < ∞, then

sup
0≤t≤b

n
∑

j=1

xj(t) = ∞.

Assumption 2.1. C(H), C(M) : R4
+ → R are continuously differentiable functions

of (SH , EH , IH , RH) and (JM , SM , EM , IM) respectively.

Theorem 2.2. Assume Assumption 2.1 holds.

For all S0
H , E

0
H , I

0
H , R

0
H , J

0
M , S0

M , E0
M , I0M > 0, there exists

SH , EH , IH , RH , JM , SM , EM , IM : (0,∞) → (0,∞) which solve (2.1) with initial condi-

tions SH = S0
H , EH = E0

H , IH = I0H , RH = R0
H , JM = J0

M , SM = S0
M , EM = E0

M , IM = I0M .
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Proof. We will apply Theorem 2.1. Define

F1(x) = θ − λHSH − µHSH + pαIH + γRh,

F2(x) = λHSH − (κH + µh)EH ,

F3(x) = κEH − (µH + α + η)IH ,

F4(x) = (1− p)αIH − (γ + µH)RH ,

F5(x) = [βJNM − µJJM ](1− JM
K
)− βMJM ,

F6(x) = βMJM − λMSM − µMSM ,

F7(x) = λMSM − (κM + µM)EM ,

F8(x) = κMEM − µMIM .

(2.2)

By Assumption 2.1 and the properties of continuity over operations, we have the

continuity of Fi for all i = 1, 2, ..., 8. Further

∂F1

∂x1
= −abHIM

NM

− µH ,
∂F1

∂x2
= 0,

∂F1

∂x3
= pα,

∂F1

∂x4
= γ,

∂F1

∂x5
=

∂F1

∂x6
=

∂F1

∂x7
= 0,

∂F1

∂x8
=

−abHSH

NM

.

(2.3)

These partial derivatives exist and are continuous, in the same way the other par-

tial derivatives exist and are continuous. In consequence by Lemma 2.1, F is locally

Lipschitz continuous.

Let x1 = SH = 0 and x2 = EH > 0, x3 = IH > 0, x4 = RH > 0 x5 = JM > 0,

x6 = SM > 0, x7 = EM > 0, x8 = IM > 0.

Then F1(x) = θ + pαIH + γRH > 0.

Now let x2 = EH = 0 and x1 = SH > 0, x3 = IH > 0, x4 = RH > 0, x5 = JM > 0,

x6 = SM > 0, x7 = EM > 0, x8 = IM > 0. Then F2(x) =
abHIH
NH

> 0.
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Now let x3 = IH = 0 and x1 = SH > 0, x2 = EH > 0, x4 = RH > 0, x5 = JM > 0, ,

x6 = SM > 0, x7 = EM > 0, x8 = IM > 0. Then F3(x) = κHEH > 0.

Now let x4 = RH = 0 and x1 = SH > 0, x2 = EH > 0, x3 = IH > 0, x5 = JM > 0,

x6 = SM > 0, x7 = EM > 0, x8 = IM > 0. Then F4(x) = (1− p)αIH > 0.

Now let x5 = JM = 0 and x1 = SH > 0, x2 = EH > 0, x3 = IH > 0, x4 = RH > 0,

x6 = SM > 0, , x7 = EM > 0, x8 = IM > 0. Then F5(x) = βJNM > 0.

Now let x6 = SM = 0 and x1 = SH > 0, x2 = EH > 0, x3 = IH > 0, x4 = RH > 0, ,

x5 = JM > 0, x7 = EM > 0, x8 = IM > 0. Then F6(x) = βMJM > 0.

Now let x7 = EM = 0 and x1 = SH > 0, x2 = EH > 0, x3 = IH > 0, x4 = RH > 0,

x5 = JM > 0, x6 = SM > 0, x8 = IM > 0. Then F7(x) =
abMIHSM

NH

> 0.

Furthermore let x8 = IM = 0 and x1 = SH > 0, x2 = EH > 0, x3 = IH > 0, x4 = RH > 0,

x5 = JM > 0, x6 = SM > 0, x7 = EM > 0. Then F8(x) = κMEM > 0.

By Theorem 2.1, for every x0 = (S0
H , E

0
H , I

0
H , R

0
H , J

0
M , S0

M , E0
M , I0M) ∈ R

4
+ × R

1
+ × R

3
+,

there exists a unique solution of x′ = F (x), x(0) = x0 with values in R
4
+ × R

1
+ × R

3
+

which is defined in some interval (0; b] with b ∈ (0,∞]. If b < ∞, then

sup
0≤t≤b

(SH(t), EH(t), IH(t), RH(t), JM(t), SM(t), EM(t), IM(t)) = ∞.

Suppose that b < ∞ and set NH(t) = SH(t) +EH(t) + IH(t) +RH(t), NM(t) = SM(t) +
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EM(t) + IM(t). Then

N ′
H = θ − µHNH − ηIH ≤ θ − µHNH .

Using the Gronwell inequality,

0 ≤ NH ≤ θ

µH

+N(0)e−µH t,

where N(0) represents the initial total human population. As t → ∞,

0 ≤ NH ≤ θ

µH

,

so N(t) is bounded, a contradiction to Theorem 2.1. As a result, b = ∞, implying

that solutions of model system (2.1) are positive and are defined on (0,∞).

Lemma 2.2. The model system (2.1) has solutions which are contained in the feasi-

ble region Ω = ΩH × ΩM × ΩJ .

Proof. Let (SH , EH , IH , RH) ∈ R
4
+, JM ∈ R

1
+, (SM , EM , IM) ∈ R

3
+ be any solution of

the system with non-negative initial conditions.

Since

dNH

dt
≤ θ − µHNH , (2.4)

and using Birkhoff and Rota (1989) theorem on differential inequality, we have

0 ≤ NH ≤ θ

µH

.

Therefore in system (2.1), all feasible solutions of the human population only are
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in the region

ΩH = {(SH , EH , IH , RH) ∈ R
4
+ : NH ≤ θ

µH

}. (2.5)

dNM

dt
= βMJM − µMNM ≥ 0.

NM ≤ βMJM

µM

.

(2.6)

dJM

dt
= [βJNM − µJJM ](1− JM

K
)− βMJM

≤ JM
µM

[(βJβM − µJµM)(1− JM
K
)− βMµM ]

0 ≤ (βJβM − µJµM − βMµM) +
JM

K
(µJµM − βJβM)

JM

K
(−µJµM + βJβM) ≤ βJβM − µJµM − βMµM

JM ≤ K(βJβM − µJµM − βMµM)

βJβM − µJµM

NM ≤ βMK(βJβM − µJµM − βMµM)

µM(βJβM − µJµM)
.

(2.7)

Similarly, the feasible solutions of the juvenile and adult mosquito population only

are in the region

ΩJ = {JM ∈ R
1
+ : JM ≤ K(βJβM − µJµM − βMµM)

βJβM − µJµM

}

ΩM = {(SM , EM , IM) ∈ R
3
+ : NM ≤ βMK(βJβM − µJµM − βMµM)

µM(βJβM − µJµM)
}.

(2.8)

Thus all feasible solutions of model system (2.1) are positive and eventually enter
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the invariant attracting region

Ω =
{

(SH , EH , IH , RH) ∈ R
4
+, JM ∈ R

1
+, (SM , EM , IM) ∈ R

3
+ :

SH , EH , IH , RH , JM , SM , EM , IM ≥ 0;

NH ≤ θ

µH

; JM ≤ K(βJβM − µJµM − βMµM)

βJβM − µJµM

, NM ≤ βMK(βJβM − µJµM − βMµM)

µM(βJβM − µJµM))

}

which is a positively invariant set under the flow induced by model (2.1). Hence

system (2.1) is epidemiologically meaningful and mathematically well-posed in the

domain Ω. Therefore in this domain, it is sufficient to consider the dynamics of the

flow generated by model (2.1). In addition, the usual existence, uniqueness and

continuation of results hold for the system.

Predicting the effect of temperature on malaria dynamics requires a framework

that specifically incorporates the role of each temperature sensitive parameter. The

functional forms of temperature dependent parameters are presented in Table 2.1.
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Table 2.1: Parameters of the basic malaria model in equation (2.1)
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Description Symbol Value Source

Mosquito biting rate a(T ) 0.000203T (T − 11.7)
√
42.3− T a∗

Birth rate of juveniles βJ(T ) 2.325a(T ) b∗

Adult mosquito βM(T ) βJ

10
b∗

birth rate

Juvenille mosquito µJ(T ) 0.0025T 2 − 0.094T + 1.0257 b∗

death rate

adult mosquito µM(T ) − ln ρ(T ) c∗

death rate

ρ(T ) e
−1

−0.03T2+1.31T−4.4 c∗

Progression rate of κM
T−Tmin

DD
d∗

mosquitoes

Recruitment rate of θ 0.028 e∗

humans

Proportion of bites bH 0.09 f ∗

by infectious mosquitoes

on susceptible humans

that produce infection

proportion of bites by bM 0.04 f ∗

susceptible mosquitoes

on infected humans that

produce infection

per capita natural death µH 0.00004 e∗

rate for humans

Progression rate of κH 1/14 e∗

humans from the exposed

state to infectious

Recovery rate of humans α 0.005 e∗

Per capita disease induced η 0.0004 e∗

death rate

Per capita rate of γ 1
20∗365 g∗

loss of immunity

carrying capacity K 1000000 Est

of larvae

Proportion of humans p 0.25 Est

recoverig with

temporary immunity
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a∗ denotes parameters adapted from Paaijmans et al. (2013), b∗ from Rubel et al.
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(2008), c∗ from Martens et al (1995), d∗ from McDonald (1957), e∗ from Chiyaka et

al. (2007), f ∗ from Parham and Michael (2010) and g∗ from Blayneh et al (2009).

2.2.3. Disease-free equilibrium and stability analysis

The disease-free equilibrium of model (2.1) is given by,

E0 = (S0
H , E

0
H , I

0
H , R

0
H , J

0
M , S0

M , E0
M , I0M)

=
( θ

µH

, 0, 0, 0,
K(βJβM − µJµM − βMµM)

βJβM − µJµM

,
KβM(βJβM − µJµM − βMµM)

µM(βJβM − µJµM)
, 0, 0

)

.

(2.9)

The next generation operator approach as described by Diekmann (1990) is used

to define the basic reproductive number, Rm, as the number of new infections (in

mosquitoes or humans) from one infectious individual (human or mosquito) over

the duration of the infectious period, given that all other members of the population

are susceptible (Diekmann et al., 1990).

Rm =

√

( a(T )bHκH

µM(T )(κM(T ) + µM(T ))

)( a(T )bMκM(T )

(κH + µH)(µH + α + η)

)

(2.10)

Local stability of the disease-free equilibrium E0

The local stability of the disease free equilibrium can be discussed by examining

the linearised form of the system (2.1) at the steady state E0.

Theorem 2.3. The disease-free equilibrium E0 is locally asymptotically stable when-

ever Rm < 1, and unstable otherwise.
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Proof. The Jacobian matrix of the model (2.1) evaluated at the disease free equi-

librium point is given by









































−µH 0 ν γ 0 0 0 −abHQ3

0 −(κH + µH) 0 0 0 0 0 abHQ3

0 κH −Q1 0 0 0 0 0

0 0 α −(γ + µH) 0 0 0 0

0 0 0 0 Q2 0 0 0

0 0 −abMQ4 0 βM −µM 0 0

0 0 abMQ4 0 0 0 −(κM + µM) 0

0 0 0 0 0 0 κM −µM









































,

where

Q1 = (ν + µH + α + η)

Q2 = −(µJ + βM) + 2µJ

(βJβM − µJµM − βMµM)

βJβM − µJµM

Q3 =
θ

µH

µM(βJβM − µJµM)

KβM(βJβM − µJµM − βMµM)

Q4 =
KβM(βJβM − µJµM − βMµM)

µM(βJβM − µJµM)

µH

θ
=

1

Q3

.

(2.11)

The first and the sixth columns have diagonal entries resulting in the diagonal

entries being two of the eigenvalues of the Jacobian. Now excluding these columns
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and the corresponding rows we calculate the remaining eigenvalues.





























−(κH + µH) 0 0 0 0 abHQ3

κH −Q1 0 0 0 0

0 α −(γ + µH) 0 0 0

0 0 0 Q2 0 0

0 abMQ4 0 0 −(κM + µM) 0

0 0 0 0 κM −µM





























.

Again the third and fourth columns have diagonal entries that result in other

eigenvalues. Excluding these columns and the corresponding rows we calculate

the remaining eigenvalues from

















−(κH + µH) 0 0 abHQ3

κH −Q1 0 0

0 abMQ4 −(κM + µM) 0

0 0 κM −µM

















.

Let a1 = κH + µH , a2 = 0, a3 = 0, a4 = abH .

In the same manner,

b1 = κH , b2 = µH + α+ η, c2 = abM , c3 = κM + µM , d3 = κM , d4 = µM .

The eigenvalues are solutions of the characteristic equation of the reduced matrix

of dimension four which is given by

(κH + µH + λ)[(µH + α + η + λ)(κM + µM + λ)(µM + λ)]− abH(κHabMκM) = 0
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which is simplified to

λ4 + A3λ
3 + A2λ

2 + A1λ+ A0 = 0, (2.12)

where

A3 = a1 + b2 + c3 + d4,

A2 = (a1 + d4)(b2 + c3) + a1d4 + b2c3,

A1 = c3d4(b2 + a1) + a1b2(c3 + d4),

A0 = a1b2c3d4 − a2bHκHκMbM .

(2.13)

The Routh-Huwirtz conditions are sufficient and necessary conditions on the coef-

ficients of the polynomial (2.12). These conditions ensure that all roots of the poly-

nomial given by (2.12) have negative real parts. For this polynomial, the Routh-

Hurwitz conditions are A3 > 0, A2 > 0, A1 > 0, A0 > 0 and

H1 = A3 > 0,

H2 =

∣

∣

∣

∣

∣

∣

A3 1

A1 A2

∣

∣

∣

∣

∣

∣

> 0,

H3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

A3 1 0

A1 A2 A3

0 A0 A1

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0,

H4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A3 1 0 0

A1 A2 A3 1

0 A0 A1 A2

0 0 0 A0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0,

since all Ai > 0, i = 1, 2, 3.
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Note that from A0 = a1b2c3d4 − a2bHκHκMbM the reproduction number reduces to

R2
m =

a2bHκHκMbM
a1b2c3d4

.

Hence if Rm < 0, A0 > 0.

Clearly, H1 = A3 > 0.

H2 = A3A2 − A1

= (b2 + c3)(b2 + d4)(c3 + d4) + a21(b2 + c3 + d4) + a1(b2 + c3 + d4)
2

(2.14)

which is positive.

H3 = A1(A3A2 −A1)− A0A
2
3

= a31(b2 + c3)(b2 + d4)(c3 + d4) + b2c3(b2 + c3)d4(b2 + d4)(c3 + d4) + a4b1c2d3(b2 + c3 + d4)
2

+a21(a4b1c2d3 + b32(c3 + d4) + 2b22(c3 + d4)
2 + c3d4(c3 + d4)

2 + b2(c
3
3 + 4c23d4 + 4c3d

2
4 + d34))

+a1(b
3
2(c3 + d4)

2 + (c3 + d4)(2a4b1c2d3 + c23d
2
4) + b22(c

3
3 + 4c23d4 + 4c3d

2
4 + d34)

+2b2(a4b1c2d3 + c3d4(c3 + d4)
2)),

(2.15)

which is also positive.

It can be easily seen that H4 = A0H3.

Therefore, all eigenvalues of the Jacobian matrix have negative real parts when

Rm < 1. However, Rm > 0 implies that A0 < 0, and since all coefficients of the

polynomial (2.12) are positive, not all roots of this polynomial can have negative

real parts. This means that when Rm > 1, the disease free equilibrium point is

unstable.
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2.2.4. Endemic equilibria and stability analysis

The endemic equilibrium point E1 is a steady-state solution where the disease per-

sists in the population. The endemic equilibrium of model system (2.1) is given

by

E1 = (S∗
H , E

∗
H , I

∗
H , R

∗
H , S

∗
M , E∗

M , I∗M),

in terms of the forces of infection λH and λM , where

S∗
H = θ(γ+µH )(κH+µH )(µH+α+η)

µH (γ+µH )(κH+µH )(µH+α+η)+λH [µH(γ+µH )(+µH+α+η)+κH (γη+µH (µH+α+η))]
,

E∗
H = θλH (γ+µH )(µH+α+η)

λH [µH (γ+µH )(µH+α+η)+κH (γη+µH (µH+α+η))]+µH (γ+µH )(κH+µH )(µH+α+η)
,

I∗H = θκHλH (γ+µH )
λH [µH (γ+µH )(µH+)α+η)+κH (γη+µH (µH+)α+η))]+µH (γ+µH )(κH+µH )(µH+α+η)

,

R∗
H = (1−p)αθκHλH

λH [µH(γ+µH )(µH+α+η)+κH (γη+µH (µH+α+η))]+µH (γ+µH )(κH+µH )(µH+α+η)
,

J∗
M =

KβM+N∗

M
βJ+KµJ±

√
(KβM+N∗

M
βJ+KµJ)2−4KN∗

M
βJµJ

2µJ
,

S∗
M =

βM [KβM+N∗

M
βj+KµJ±

√
(KβM+N∗

M
βJ+KµJ)2−4KN∗

M
βJµJ ]

2µJ (λM+µM )
,

E∗
M =

βMλM [KβM+N∗

M
βj+KµJ±

√
(KβM+N∗

M
βJ+KµJ)2−4KN∗

M
βJµJ ]

2µJ (κM+µM )(λM+µM )
,

I∗M =
βMκMλM [KβM+N∗

Mβj+KµJ±
√

(KβM+N∗

M
βJ+KµJ)2−4KN∗

M
βJµJ ]

2µJµM (κM+µM )(λM+µM )
,

N∗
M = KβM(βJβM−βMµM−µJµM )

µM (βJβM−βMµM )
,

N∗
H = θ[(γ+µH )(µH+α+η)(λH+µH )+κH{λH ((1−p)α+γ+µH )+(γ+µH )(µH+α+η)}]

µH (γ+µH )(µH+)α+η)(λH+µH )+κH [µH (γ+µH )(µH+α+η+λH (γη+µH (µH+α+η))]
,
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λM =

aθbMκHλHµM (γ+µH )(βJβM−µJµM )
KβM [µH (γ+µH )(µH+α+η)(λH+µH )+κH{µH (γ+µH )(µH+α+η)+λH [γη+µH (µH+α+η)]}](βJβM−(βM+µJ )µM )

λH = abHβMκMλM [µH (γ+µH )(µH+α+η)(λH+µH )+κH [µH (γ+µH )(µH+α+η+λH (γη+µH (µH+α+η))]A]
2θ[(γ+µH )(µH+α+η)(λH+µH )+κH{λH ((1−p)α+γ+µH )+(γ+µH )(µH+α+η)}]µJµM (κM+µM )(λM+µM )

where

A = 2KµJ(βJβM−(βM+µJ )µM )
βJβM−µJµM

. (2.16)

From expanding and simplifying the equation of λH , we obtain third order equation

in λH as follows

λH(B1λ
2
H +B2λH +B3) = 0, (2.17)

where

B1 = 2KµJµM [κH((1−p)α+γ+µH)+(γ+µH)((1−p)α+η+pα+µH)](κM+µM){βJβM−

(βM + µJ)µM}[aθbMκH(γ + µH)(βJβM − µJµM) + κβM (βJβM − (βM + µJ)µM)(µH(γ +

µH)(η + α+ µH) + κH(γη + µH((1− p)α + η + γ + µH)))],

B2 = 2KµJ(βJβM − (βM + µJ)µM)
[

aθbMκH(γ + µH)(η + α + µH)(κH + µH)µM(κM +

µM)(βJβM − µJµM) + a2KbHbMβMκHκM(−µH(γ + µH)(η + α+ µH)− κH(γη + µH((1−

p)α + γ + η + µH)))(βJβM − (βM + µJ)µM) +KβM(η + α + µH)µM(κM + µM)(βJβM −

(βM + µJ)µM){κ2
HµH((1− p)α+ γ + µH) + κHµ

2
H(α+ γ + µH) + 2κHµH(γ + µH)(η+α+
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µH) + 2µ2
H(γ + µH)(η + α+ µH) + 2Kκ3

H(γη + ((1− p)α+ γ + η + µH)µH)
2µJµM(κM +

µM)(βJβM − (βM + µJ)µM)}
]

B3 = 2K2βMµHµJ(γ+µH)
2(η+α+µH)(κH+µH)(βJβM−(βM+µJ)µM)2[−a2bHbMκHκM+

µM(κM + µM)(κH + µH)(η + α + µH)]

which reduces to

B3 = C(1−R2
m)

where C = 2K2βMµHµJ(γ + µH)
2(η + α + µH)(κH + µH)(βJβM − (βM + µJ)µM)2

In equation (2.17), λH = 0 corresponds to the disease free equilibrium and

f(λ∗
H) = λH(B1λ

2
H +B2λH +B3) = 0,

is associated with the endemic equilibria states. It is worth mentioning that B1 and

C are always positive, B2 is either positive or negative and B3 is either positive or

negative depending on whether 1 > or < Rm. Solving for λ∗
H in f(λ∗

H) = 0. The roots

of f(λ∗
H) = 0 are explored using Descartes rule of signs. The three possibilities are

tabulated in Table 2.2.

∣

∣

∣

∣

∣

∣

∣

∣

Case B1 B2 B3 Rm No of sign changes Possible equilibria

Case 1 + − + Rm < 1 2 2
Case 2 + − − Rm > 1 1 1
Case 3 + + − Rm > 1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

Table 2.2: Number of possible roots of f(λ∗
H) = 0 for Rm > 1 and Rm < 1.

The analysis of the results in Table 2.2 gives the following lemma.

Lemma 2.3. The endemic equilibrium E∗ exists and is unique whenever Rm > 1,
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and there exists a backward bifurcation when Rm < 1.

2.3. Results

2.3.1. Effect of temperature dependant parameters on the

reproduction number

The effect of climate change is investigated by examining the effect of climate com-

ponents on the disease reproduction number. Evidence suggests that the mosquito

biting rate (a), mosquito mortality rate (µM) and the parasite development rate

κM are all sensitive to changes in temperature. The change in Rm, with a change

in mean temperature can be determined by the sum of the effects of temperature

on each temperature sensitive component of Rm coupled with the corresponding

change to Rm.

dRm

dT
=

da

dT

dRm

da
+

dκM

dT

dRm

dκM

+
dµM

dT

dRm

dµM

(2.18)

The mathematical relationships between Rm and the temperature-sensitive bio-

logical parameters are as follows:

dRm

da
=

Rm

a

dRm

dκM

=
Rm

2

(

1− 1

κM + µM

)

dRm

dµM

= −Rm

2

[ 2µM + κM

µM(κM + µM)

]

(2.19)

The system of equations in (2.19) shows that an increase in a, and κM will have a

positive effect on Rm, while increasing µM will have a negative effect. The quanti-



Assessing the impact of temperature on malaria transmission dynamics 52

tative effect of temperature change on Rm will depend on both the individual rela-

tionships of these parameters with temperature and their combined impact within

the Rm equation.

1. Mosquito biting rate a(T )

The biting rate represents the frequency of feeding activity by mosquitoes per

day.

a(T ) = 0.000203T (T − 11.7)
√
42.3− T .

Hence

da

dT
=

0.000406(T − 10.7)(42.3− T )− 0.000203T (T − 11.7)

2
√
42.3− T

da

dT
=

−0.000609T 2 + 0.023891T − 0.18376

2
√
42.3− T

(2.20)

2. Mosquito mortality rate µM(T )

µM(T ) = − ln p(T ), where p(T ) = e
−1

AT2+BT+C is the daily survival rate. There-

fore

dµM

dT
=

−(2AT +B)

(AT 2 +BT + C)2
(2.21)

3. Progression rate of mosquitoes to infectious class κM = T−Tmin

DD
where DD is

the total degree days for the parasite development, T is the mean temper-

ature in degrees centigrade and Tmin is the temperature at which parasite

development ceases.
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DD = 111 while Tmin is 16 for plasmodium falciparum.

dκM

dT
=

1

DD
(2.22)

Substituting equations (2.19, 2.20, 2.21, 2.22) into equation (2.18) we have

dRm

dT
= Rm

[

−0.000609T 2+0.023891T−0.18376
2a

√
42.3−T

+ 2AT+B
2(AT 2+BT+C)

(

1
µM

+ 1
(κM+µM )

)

+ 1
2DD

(

1− 1
(κM+µM )

)]

Let
0.023891T

2a
√
42.3− T

= G1,
2AT +B

2(AT 2 +BT + C)

( 1

µM

+
1

(κM + µM)

)

= G2,

1

2DD
= G3 and

0.000609T 2 + 0.18376

2a
√
42.3− T

+
1

2DD(κM + µM)
= G4

Then

dRm

dT
= Rm(G1 +G2 +G3 −G4).

If G1 +G2 +G3 −G4 < 0 then dRm

dT
< 0 and increase in temperature results in a de-

crease in Rm, typically in regions which experience extremely high temperatures.

If G1 + G2 + G3 − G4 > 0 then dRm

dT
> 0 and Rm increases as temperature increases

the epidemic also increases.
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2.3.2. Numerical Simulations

In Figure 2.2, the relationship between temperature and mosquito biting rate, par-

asite development rate, mosquito mortality rate, and malaria reproduction number

respectively, are illustrated. The mosquito biting rate is low at lower temperatures

but increases to a maximum as temperature increases. Mosquito mortality is high

at low temperatures, decreases to a minimum between 20− 250C before increasing

at temperatures beyond 250C. The temperature range where Rm > 1 for malaria is

22.34− 38.60C. A maximum Rm of 3.65 occurs at 31.50C.
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Figure 2.2: Simulation of (a) Mosquito biting rate, (b) Mosquito mortality rate, (c)
Progression rate of mosquitoes, (d) Rm versus temperature



Assessing the impact of temperature on malaria transmission dynamics 55

In Figure 2.3, we carry out numerical simulations using a fourth order Runge-

Kutta scheme in Matlab with the aim of verifying some of the analytical results on

the stability of the system (2.1). The parameter values that we use for numerical

simulations are in Table 2.1. The following initial values are used for the numeri-

cal simulations.

SH = 1000, EH = 300, IH = 200, RH = 0, JM = 30000, SM = 10000,

EM = 1000, IM = 1000.

The effects of varying temperature on the infected human and mosquito popula-

tions is observed. The simulations reveal both the endemic equilibrium and the

disease free equilibrium points as temperature is varied from 20− 400C. In Figure

2.3, if temperatures are to average 200C, the infected human and mosquito pop-

ulation declines to asymptotically low levels as mosquito survives at above 220C

(McMichael etal, 1996). Furthermore, infected mosquito and human populations

tend to decline to asymptotically low levels faster when temperatures average 400C

as compared to temperatures averaging 200C . This may be due to increased death

rate of juvenile mosquitoes as ponds dry up quickly because of high evaporation

rates at high temperatures and mosquitoes can not survive above 400C (Shetty,

2009). Infected humans tend to be more at average temperatures of 350C as com-

pared to when T = 300C (the range of optimal temperature for malaria transmis-

sion). This is possibly due to increased mosquito biting rate and parasite develop-

ment rate at higher temperatures.
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Figure 2.3: Simulation of (a) Exposed humans, (b) Infectious humans, (c) Exposed
mosquitoes, and (d) Infectious mosquitoes as temperature varies
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Figure 2.4, sensitivity analysis is presented using the partial rank correlation coef-

ficients, (PRCC) which show the effect of parameter variations on Rm. Parameters

with positive PRCC will increase Rm when they are increased, whereas parameters

with negative PRCCs will decrease Rm when they are increased. Results from the

PRCC show that mosquito biting rate plays a more significant role in the increase

of Rm than any other factor. This suggests that mosquito biting rate promotes

malaria transmission than any other factor. Thus intervention strategies should

be tailor made to prevent mosquito bites.
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Mosquito biting rate

Progression rate of humans

Mosquito to human infection

Mosquito mortality rate

Progression rate of mosquitoes
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Disease induced death rate

Human to mosquito infection

Figure 2.4: Partial rank correlation coefficients.
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In Figure 2.5, Latin Hypercube Sampling and Monte Carlo simulations were used

to run 1000 simulations to illustrates the effect of varying four sample parame-

ters on the reproductive number Rm. The results demonstrate that an increase

in mosquito mortality results in a decrease in the reproduction number, while in-

creases in both mosquito biting rate and the probability of human to mosquito

infection result in an increase on the reproductive ratio.
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Figure 2.5: Monte Carlo simulations of (a) Mosquito biting rate, (b) Mosquito mor-
tality, (c) Human to mosquito infection, and (d) Recovery rate of humans
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2.4. Discussion

In this chapter, a mathematical model to explore the impact of temperature on

malaria transmission is presented as a system of differential equations and anal-

ysed. Analysis of the model suggests that temperature range 230C to 380C is ideal

for malaria transmission. The reproduction number increases as temperature in-

creases to attain a maximum at 31.50C, beyond which the reproduction number

starts declining.

This result suggests the optimal temperature for malaria transmission is around

310C. The analytic results are also supported by numerical simulations which

show an increase in malaria cases as temperature increases to about 380C and

a decrease thereafter. From the PRCCs, it is illustrated that the death rate of

mosquitoes has a negative impact on the reproduction number. Thus, results sug-

gest that any factor which contributes to increased mosquito death like spraying,

use of treated mosquito nets, has potential to reduce malaria transmission. Thus,

mosquito spraying, coupled with the use of treated mosquito nets has a great po-

tential to control this deadly tropical scourge. Given high incidences of tuberculosis

in Sub-saharan Africa, where malaria is also endemic, this model can be extended

to incorporate the malaria and TB coinfection.



Chapter 3

Assessing the role of climate

change in malaria transmission in

Africa

3.1. Introduction

Climate change is projected to alter the distribution of vector borne diseases and

malaria is no exception. Children under five and pregnant women continue to be at

risk. One of the key Millennium development goals was to halve, halt and reverse

the scourge of malaria by 2015. The disease has not yet been halved although a

significant reduction in malaria incidences has been recorded (WHO, 2014). These

little gains achieved to date are under threat from climate change.

Malaria is sensitive to climate change in the sense that the vector that spreads
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malaria as well as the parasite that causes the disease are sensitive to climate

variables especially rainfall and temperature. Research on the impact of climate

change on the dynamics of malaria is still ongoing (Craig et al., 1999; Martens et

al., 1997; Parham and Michael, 2010; Paaijmans et al., 2013). However most stud-

ies tend to consider the effect of temperature alone on the dynamics of malaria, ne-

glecting the impact of incorporating rainfall in the mathematical models of malaria

transmission. Understanding the role of temperature and rainfall on malaria

transmission is of particular importance in light of climate change as changes

can alter vector development rates, shift vector geographical distribution and alter

transmission dynamics. Climate change is widely expected to significantly affect

the global spread, intensity and distribution of malaria. The question is, how is cli-

mate change going to affect the gains made thus far in trying to reduce the burden

of malaria?

This study seeks to build a model that will enable prediction and mapping of the

current and potential future distribution of malaria in Africa as a result of climate

change. The study will highlight how combining regional climate models with

mathematical models of malaria transmission provides valuable tools for better

understanding future disease scenarios as climatic conditions change. We modify

our previous work in Chapter 2, to incorporate rainfall into the model. We focus

on the construction of a realistic, climate-based malaria transmission model that

captures the combined effects of both rainfall and temperature on malaria infec-

tion dynamics. This approach permits us to gain insights into the effect of climate
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change on malaria transmission.

3.2. Model description

A deterministic transmission model is developed as a framework for understand-

ing the impact of temperature and rainfall on malaria dynamics. The human pop-

ulation is subdivided into four classes: susceptible (SH(t)), exposed or incubating

EH(t), infectious (IH(t)) and recovered individuals who become partially immune

(RH(t)). Individuals are recruited into the susceptible class at a rate θ and indi-

viduals die naturally at a rate µH . The rate of infection of a susceptible individual

is dependent on the mosquito’s biting rate a(T,R) and the proportion of bites by

infectious mosquitoes on susceptible humans that produce infection bH . Once in-

dividuals are infected, they do not automatically become infectious as they do not

have gametocytes, but enter the exposed class EH , where parasites in their bodies

are still in the asexual stages. Exposed humans then progress at a rate κH to the

infectious class, in which they now have gametocytes in their bloodstream mak-

ing them capable of infecting the susceptible anopheles mosquitoes. Individuals

recover through treatment at a rate α, where a proportion (1 − p) recovers with

temporary immunity and the compliment p recovers with no immunity. Temporar-

ily immune individuals lose immunity at a rate γ. Infected individuals who do not

seek treatment die from infection at a rate η. Both human and mosquito infections

take time to develop into an infectious state. Within host parasite dynamics are

weather independent, but within vector parasite dynamics, as well as the mosquito
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life cycle are weather dependent.

The mosquito population is divided into the juvenile (JM(t)) and adult population of

which the adult population is subdivided into three classes: susceptible (SM(t)), ex-

posed EM(t) and infectious (IM(t)). The juvenile stages describe the development

of the aquatic stages which mature to become susceptible adult mosquitoes at a

rate βM . The rate of infecting a susceptible mosquito depends on the mosquitoes’

biting rate a(T,R) and the proportion of bites by susceptible mosquitoes on infected

humans that produce infection bM . Susceptible mosquitoes that feed on infectious

humans will take gametocytes in blood meals, but as they do not have sporozoites

in their salivary glands, they enter into the exposed class EM . After fertilisation,

sporozoites are produced and migrate to the salivary glands ready to infect any

susceptible host, the vector is then considered as infectious and enters the class

IM . Mosquitoes die at a rate µM which is independent of infection status. Infected

mosquitoes are not harmed by the infection, never clear their infection and the

infective period of the mosquito ends with its death. The following system of dif-



Assessing the role of climate change in malaria transmission in Africa 64

ferential equations describe the model.

S ′
H(t) = θ − λH(T,R)SH − µHSH + pαIH + γRH ,

E ′
H(t) = λH(T,R)SH − (κH + µh)EH ,

I ′H(t) = κHEH − (µH + α + η)IH,

R′
H(t) = (1− p)αIH − (γ + µH)RH ,

J ′
M(t) = βJ(T,R)NM(1− JM

K
)− µJ(T ) JM − βM (T,R)JM ,

S ′
M(t) = βM(T,R)JM − λM(T,R)SM − µM(T )SM ,

E ′
M(t) = λM(T,R)SM − (κM(T ) + µM(T ))EM ,

I ′M(t) = κM(T )EM − µM(T )IM .

(3.1)

Here, λH =
a(T,R)bHIM

NM

and λM =
a(T,R)bMIH

NH

, NH = SH + EH + IH + RH and

NM = SM +EM + IM . X(T,R) specifies a function of temperature and rainfall while

X(T ) represents a function of temperature alone.

Predicting the effect of climate change on malaria dynamics requires a framework

that specifically incorporates the role of each climate sensitive parameter. The

functional forms of temperature and rainfall dependent parameters are presented

in Table 3.1.
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Table 3.1: Parameters of the basic malaria model presented. (R) shows dependance
on rainfall and (T) represents dependance on temperature
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Description Symbol Value Source

Adult mosquito birth rate βM(T,R) BEPE(R)PL(R,T )PP (R)
(τE+τL(T )+τP )

f ∗

Birth rate of juveniles βJ(T,R) 10 ∗ βM(T,R) b∗

Mosquito biting rate a(T,R) βJ(T,R)
2.325

b∗

Number of eggs laid BE 200 f ∗

per adult oviposition

Daily survival probability of eggs PE(R) 4∗0.9
R2

L

R(RL − R) f ∗

Daily survival probability of lavae PL(T,R) R(RL−R)∗e−0.00554T−0.06737

R2
L

f ∗

Daily survival probability of pupae PP (R) 4∗0.75
R2

L

R(RL − R) f ∗

Duration of egg development τE 1 f ∗

Duration of larvae development τL(T )
1

(0.00554T−0.06737)
f ∗

Rainfall beyond which no RL 50 f ∗

immature stages survive

Duration of pupae development τP 1 f ∗

Juvenille mosquito death rate µJ(T ) 0.0025T 2 − 0.094T + 1.0257 b∗

adult mosquito death rate µM(T ) − ln ρ(T ) c∗

ρ(T ) e
−1

−0.03T2+1.31T−4.4 c∗

Progression rate of mosquitoes κM
T−Tmin

DD
d∗

Recruitment rate of humans θ 0.028 e∗

Proportion of bites by bH 0.09 f ∗

infectious mosquitoes

Proportion of bites by bM 0.04 f ∗

susceptible mosquitoes

per capita natural death µH 0.00004 e∗

rate for humans

Progression rate of κH 1/14 e∗

humans from exposed

Recovery rate of humans α 0.005 e∗

Per capita disease induced death rate η 0.0004 e∗

Per capita rate of loss of immunity γ 1
20∗365 g∗

carrying capacity of larvae K 1000000 h∗

Proportion humans recovering p 0.25 h∗

without temp immunity
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b∗ denotes parameters adapted from Rubel et al. (2008), c∗ from Martens et al

(1995), d∗ from McDonald (1957), e∗ from Chiyaka et al. (2007), f ∗ from Parham



Assessing the role of climate change in malaria transmission in Africa 66

and Michael (2010), g∗ from Blayneh et al (2009) and h∗ are parameters mantained

from Chapter 2.

3.2.1. Model analysis

Following Van den Driessche and Watmough [?], the treatment induced reproduc-

tion number [Rm] of the model in equation (3.1) is given by

Rm =

√

( a(T,R)bHκH

µM(T )(κM(T ) + µM(T ))

)( a(T,R)bMκM(T )

(κH + µH)(µH + α + η)

)

. (3.2)

In the absence of treatment α = 0, then lim
α→0

Rm = R0 - the basic reproduction num-

ber. The treatment induced reproduction number defines the average number of

new infections a single infected mosquito/ individual would produce during its/ his

(her) entire infectious period where treatment is the only intervention strategy.

3.3. Mapping transmission dynamics across Africa

We applied equation (3.2) to gridded temperature and precipitation datasets for

the baseline climate and future climate to compute R0 for each pixel in Geograph-

ical information systems (GIS). The datasets used covered the entire continent of

Africa. R0 was calculated separately for the baseline climate and for each GCM

model.

To determine whether falciparum malaria will persist or the disease dies out in fu-

ture, we evaluated the following boolean expressions on a pixel basis, respectively:

R0 < 1 for the baseline map and R0 > 1 for the future map; R0 > 1 for the baseline
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map and R0 < 1 for the future map.

This allowed us to classify an area as becoming malaria endemic or malaria free.

All the maps generated in this study are based on the Albers equal area conic pro-

jection. We clipped the R0 maps by the raster maps of the digital map of dominant

vectors to exclude malaria free areas such as the sahara desert.

3.4. Results

In Figure 3.1, we plot R0 for falciparum malaria as a function of rainfall and

temperature. We observe that the optimum temperature window for falciparum

malaria transmission is 30− 32oC.
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Figure 3.1: Reproduction number as a function of daily rainfall R in mm and tem-
perature T in oC

Figure 3.2 illustrates the simulated R0 for falciparum malaria on the African con-

tinent based on baseline climate. We observe distinct geographic patterns in the
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intensity of falciparum malaria. The transmission intensity is highest in the trop-

ics as well as the coastal areas of East Africa. The subtropics exhibit low levels of

transmission intensity. The white areas represent areas where climatic conditions

are not suitable for malaria transmission. Our simulations fall within the observed

spatial distribution of falciparum malaria on the continent described by Gething et

al. (2011).

Figure 3.2: Basic reproduction number for falciparum malaria based on the base-
line climate
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Figure 3.3 shows the projected R0 for falciparum malaria in Africa based on HadCM3

and CSIRO MK3 A2a climate scenarios for 2040. Compared to the simulations for

the baseline climate, we observe increases in R0 in the tropics, the highland re-

gions, east Africa as well as along the northern limit of falciparum malaria. By

contrast, a decrease in R0 is projected to occur on the southern fringe of the disease

by 2040. These changes are similar for both HadCM3 and CSIRO MK3 A2a climate

projections.

(a) (b)

Figure 3.3: 2040 Projected basic reproduction number for falciparum malaria.

In Figure 3.4 we notice that the increases in R0 are sufficient to turn most areas in

the African highlands into malaria endemic areas by 2040. The northern limit of

falciparum malaria is also projected to become an endemic region.
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(a) (b)

Figure 3.4: 2040 Projected malaria endemic areas previously malaria free

In contrast, the decreases in R0 are sufficient to turn areas that fringe the southern

limit of the disease into malaria-free zones. A similar trend is expected for isolated

areas in the African highlands as noted in Figure 3.5.

(a) (b)

Figure 3.5: 2040 Projected malaria free areas previously malaria endemic
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3.5. Discussion

A model incorporating rainfall and temperature is analysed regarding malaria

transmisssion. Results from the model suggests that the optimum temperature

window for peak falciparum malaria transmission is 30 − 32oC. This is in agree-

ment with other studies (Parham and Michael, 2010). Furthermore, results from

model analysis suggest daily rainfall in the range of 15 − 17mm is ideal for the

spread of malaria. Perhaps the most interesting but unexpected result is that by

2040 malaria is projected to die out on the southern fringe of the disease in Africa.

The fact that the same result was detected using projections from two different

GCM models makes this a key result. A drying trend is the likely driving force

for this change (Volker et al., 2012). This finding has implications for malaria

elimination in some regions of Africa. In other words, the result offers hope that

the international goal of shrinking the malaria map may be achieved in southern

Africa.

Results of this study suggest that due to climate change endemic malaria will be-

come an increasing problem in the African highlands, this seems to be in agree-

ment with other studies (Hay et al., 2002; lindsay and Martens, 1998; Parham and

Michael, 2010; Siraj et al., 2014; Thomas et al., 2004). A warming trend is the

likely factor driving the projected increase in malaria endemicity in the highlands

though socio-economic factors such as land use change and drug resistance can also

be attributed to increases in malaria incidences in highlands too.
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The model has the following limitations: (i) it did not consider the role of hu-

man migration neither did it consider other climate variables in particular rela-

tive humidity as the tropical anopheline mosquitoes prefer humidities above 60%

(Martens and Thomas, 2005); (ii) the role of socio-economic factors in malaria

transmission dynamics but it would be interesting to incorporate these factors to

ascertain whether climate change in combination with these factors will amplify

malaria transmission in the highlands. Despite these limitations, the authors be-

lieve that the model is robust enough to be able to give a realistic picture of malaria

on the African continent. Thus, results from the study will be useful at various

levels of decision making, for example, in setting up an early warning and sus-

tainable strategies for climate change and adaptation for malaria vectors control

programmes in Africa.



Chapter 4

Transmission dynamics of

schistosomiasis in Zimbabwe

4.1. Introduction

Schistosomiasis also referred to as bilharzias (or snail fever) is an infectious dis-

ease caused by parasitic flatworms of the genus schistosoma. It is a major source

of morbidity affecting over 250 million people worldwide, with 85% occuring in

the developing tropical countries in Africa, Asia, South America and the Middle

East (WHO, 2015; Ukoroije et al., 2012). In terms of morbidity and mortality,

schistosomiasis is considered the second most important human parasitic disease

after malaria (Chitsulo et al., 2000). Schistosomiasis continues to drain the socio-

economic development of already impoverished rural communities of sub-Saharan

Africa.
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Schistosomiasis may localize in different parts of the body and its localization de-

termines its particular clinical profile (Sturrock, 1993). Schistosomiasis is caused

by five species of flatworms, each of which causes a different clinical presenta-

tion of the disease. Intestinal schistosomiasis is caused by Schistosoma mansoni,

urinary schistosomiasis is caused by Schistosoma haematobium and Schistosoma

japonicum and Schistosoma mekongi cause Asian intestinal schistosomiasis (De

Jesus et al., 2000). Three species of schistosomiasis, S. haematobium (prevalent in

Africa), S. japonicum (prevalent in Japan, Southeast Asia, and Western Pacific) and

S. mansoni (prevalent in Africa, Southwest Asia, Brazil and the Caribbean) are re-

sponsible for the majority of schistosomiasis infection while the other two species,

S. intercalatum and S. mekongi parasitize humans to a much lesser extent (WHO,

2002). Flatworms infect humans by penetrating the skin when exposed to con-

taminated freshwater (e.g., when wading, swimming, or bathing). The flatworms

spread in freshwater areas, such as rivers and lakes, where freshwater snails act

as intermediate hosts for the parasites larvae. As such, the habitats of the host

snails are of great importance for the spread of the disease.

The most important determinants of the population dynamics of snails are temper-

ature and rainfall (Sturrock, 1993). The best survival temperature of snails was

found to be between 20o and 25oC while at 40oC none of the snails survived (Dagal et

al., 1986). However, snails are less sensitive to low temperatures than schistosome

parasites in snails. Uninfected snails can therefore be found in high altitude areas

of endemic countries where low temperatures inhibit larval development in snails
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(Brooker, 2007). Dagal et al. (1986) considered the effects of water temperatures

on hatchability of eggs and survival of snails and found that at low temperatures

15oC, none of the eggs hatched. The mean survival rate of snails between 5oC and

10oC was found to be zero. As temperature increased, hatching rate increased but

at 35oC none of the eggs hatched.

Incorporating climate effects into models of disease dynamics is now extremely

important as there is a strong need to understand the effects of climate change.

The schistosome and snail life cycles are highly dependant on ambient conditions

and climate change is known to affect several parameters in the epidemiology of

schistosomiasis. Developing an epidemiological model to predict how these fac-

tors overally bring out the impact of climate on the dynamics of schistosomiasis

transmission is crucial. The model reproduction number is applied to gridded tem-

perature and rainfall datasets for Zimbabwe to determine the possible variation of

schistosomiasis intensity in Zimbabwe.

4.2. Model formulation

The life cycle of schistosome parasites is complicated and involves two different

hosts: human beings and snails. A model to trace the life cycle of schistosome

parasite is formulated. The model is based on monitoring the dynamics of the

populations at any time t of susceptible humans SH(t), exposed humans EH(t), in-

fectious humans IH , miracidia M(t) (larvae of the parasite soon after hatching from

the eggs), uninfected snails U(t), latently infected snails L(t), patent infected snails
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(infected snails not yet releasing cercariae) Is(t) and cercariae C(t) (larvae released

into the water from infected snail ready to enter the human skin). Individuals are

recruited into the human population at a rate ΛH . Susceptible individuals acquire

infection at a rate λH =
βHC(t)

C0 + ǫC(t)
, where βH is the cercarial infection rate, C0 is

a saturation constant for the cercariae and ǫ is the limitation of the growth ve-

locity of cercariae with the increase of cases. Upon infection, an individual does

not automatically become infectious but enters an exposed class as the incubation

period of schistosomiasis ranges from 4-8 weeks for schistosomiasis mansoni and

schistosomiasis japonicum, respectively (Cohen, 1977; Spira, 2003). Individuals

then progress to the infectious compartment at a rate κH . Susceptible and infected

individuals suffer from natural death rate µH , but infectious individuals have an

additional host mortality δH . Adult schistosomes within infected human hosts pro-

duce eggs which hatch and develop to free-swimming miracidia at a net rate θM .

Miracidia either die at a rate δM or infect uninfected snails at rate λS =
βSM

M0 + ǫM
.

Adult snails are recruited into the susceptible snail population at a rate ΛS. Upon

infection, snails enter the latently infected class from which they progress to the

patent infected class at a rate κS. Adult snails die naturally at rate δS and in-

fected adult snails also die due to parasite-induced mortality at an additional rate

α. The patent infected snails will then release a second form of free swimming lar-

vae called cercariae at a rate θC which is capable of infecting humans. Cercariae

die naturally at the rate δC .

A compartmental model of schistosomiasis dynamics is presented in Figure 4.1.
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Figure 4.1: Model diagram of the mathematical model for schistosomiasis transmission.
Dotted lines on the diagram denote indirect interaction.

The following system of differential equations describe the model.

S ′
H(t) = ΛH − βHCSH

C0 + ǫC
− µHSH + γHIH ,

E ′
H(t) =

βHCSH

C0 + ǫC
− (κH + µH)EH ,

I ′H(t) = κHEH − (µH + δH + γH)IH ,

M ′(t) = θMIH − βSMU

M0 + ǫM
− δMM,

U ′(t) = ΛS − βSMU

M0 + ǫM
− δSU,

L′(t) =
βSMU

M0 + ǫM
− (δS + α + κ)L,

I ′S(t) = κL− (δS + α)IS,

C ′(t) = θCIS − βHCSH

C0 + ǫC
− δCC.

(4.1)
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Table 4.1: Parameters of the basic schistosomiasis transmission model in equa-
tion (4.1) where T represents temperature and P represents rainfall. a∗∗ denotes
temperature dependant parameters designed using Datafit based on results from
a∗.
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Description Symbol Value Source

Recruitment rate of humans ΛH 800 j∗

Cercarial infection rate βH −2.296 + 0.446 lnT + 2.96
lnT

k∗∗

Saturation constant C0 9000000 j∗

of cercarae

progression rate of humans κH 0.017857 est

Natural death rate µH 0.014 m∗

of humans

Disease induced death rate δH 0.039 j∗

Adult snail recruitment rate ΛS(T ) 100eA1+
A2
T

+A3 lnT k∗∗

Adult snail recruitment rate ΛS(T, P ) 0.321e−0.5[
ln( T

21.3 )

0.087
]2 + 0.603e−0.5[P−1.927

1.786
]2 n∗∗

Miracidia infection rate βS B1 +
B2

T
− B3

T 2 +
B4

T 3 − B5

T 4 +
B6

T 5 p∗∗

Saturation constant M0 100000000 j∗

for the miracidia

Adult snail mortality rate δS C1 − C2

lnT
+ C3

(lnT )2
+ C4

(lnT )3
+ C5

(lnT )4
k∗∗

Additional snail mortality α D1 +D2T
2.5 +D3e

−T m∗∗

due to infection

Net miracidial θM 500 m∗∗

production rate

Miracidial death rate δM F1T
5 + F2T

4 + F3T
3 + F4T

2 + F5T + F6 k∗∗

Cercarial production rate θC G1T
2 +G2T +G3 k∗∗

Cercarial mortality rate δc 0.004 n∗

Within snail schistosome κS H1T
5 +H2T

4 +H3T
3 +H4T

2 +H5T k∗∗

maturation rate +H6
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j∗ denotes parameters from Chiyaka and Garira (2009), k∗ from Mangal et al.

(2008), m∗ from Feng et al. (2002), n∗ from Remais et al. (2007), p∗ from Dagal

et al. (1986),

where A1 = 351.04480681884, A2 = −1925.49534415329, A3 = −85.1815135926783,

B1 = −8.59, B2 = 855, B3 = 31487.35, B4 = 574921.12, B5 = 5188906,

B6 = 18196700, C1 = 11.4267, C2 = 126.89, C3 = 525.29, C4 = −960.38,
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D2 = 8.738295237E − 06, D3 = 1334.208298 F1 = 3.99E − 07, F2 = −3.73E − 05,

F3 = 4.97E − 04, F4 = 3.99E − 02, F5 = −1.149, F6 = 9.59, G2 = 40.19,

G3 = −907.85, H1 = 2.97E − 06, H2 = −3.699E − 04, H3 = 1.83E − 02,

H4 = −0.45, H5 = 5.38, H6 = −25.688 a = 0.23, b = −1.05,

Bm = 0.849, Tm = 25

We make a simplification common in models with free living particles and assume

that the rate of the particle depletion by hosts or snails has negligible impact on

particle dynamics (Chiyaka and Garira, 2009). This is done to reduce the complex-

ity of the mathematics involved. In this case the interaction between the miracidia

and the susceptible snail
βSMU

M0 + ǫM
and the interaction between the cercariae and

the humans
βHCSH

C0 + ǫC
are assumed to be negligible on pathogen dynamics. System
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(4.1) can now be written as

S ′
H(t) = ΛH − βHCSH

C0 + ǫC
− µHSH + γHIH ,

E ′
H(t) =

βHCSH

C0 + ǫC
− (κH + µH)EH ,

I ′H(t) = κHEH − (µH + δH + γH)IH ,

M ′(t) = θMIH − δMM,

U ′(t) = ΛS − βSMU

M0 + ǫM
− δSU,

L′(t) =
βSMU

M0 + ǫM
− (δS + α + κ)L,

I ′S(t) = κL− (δS + α)IS,

C ′(t) = θCIS − δCC.

(4.2)

All feasible solutions of model system (4.2) enter the region

Ω =















































































(SH , EH , IH) ∈ IR3
+ : NH ≤ ΛH

µH

,

M ∈ IR+ : M ≤ θMΛH

δMµH

,

(U, L, IS) ∈ IR3
+ : NS ≤ ΛS

δS
,

C ∈ IR+ : C ≤ θCΛS

δCδS
,

(4.3)

which is positively invariant and attracting and it is sufficient to consider solutions
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in Ω. Existence, uniqueness and continuation results for system (4.2) hold in this

region and all solutions starting in Ω remain in there for all t ≥ 0. Hence, (4.2) is

mathematically and epidemiologically well-posed and it is sufficient to consider the

dynamics of the flow generated by the model system (4.2) in Ω. Also, all parameters

and state variables for model system (4.2) are assumed to be non-negative since it

monitors human, snail, miracidia and cercariae populations.

4.3. Model analysis

The parasite larval stages (represented by M and C) have relatively short lifes-

pans compared with those of worms, humans and snails. So the dynamic equa-

tions for M and C are replaced with their quasi-equilibrated values C∗ =
θCIS
δS

and

M∗ =
θMIH
δM

. The original system (4.2) is reduced to a six dimensional form for
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variables SH , EH , IH , U, L and IS.

S ′
H(t) = ΛH −

βHSH
θCIS
δS

C0 + ǫθCIS
δS

− µHSH + γHIH ,

E ′
H(t) =

βHSH
θCIS
δS

C0 + ǫθCIS
δS

− (µH + κH)EH ,

I ′H(t) = κHEH − (µH + δH + γH)IH ,

U ′(t) = ΛS −
βSU

θM IH
δM

M0 + ǫθM IH
δM

− δSU,

L′(t) =
βSU

θM IH
δM

M0 + ǫθM IH
δM

− (δS + α + κ)L,

I ′S(t) = κL− (δS + α)IS.

(4.4)

The equilibrium states of the basic model are obtained by setting the right hand

side of system (4.2) to zero. Model system (4.2) has two steady states. At the

disease free equilibrium, there are no infected humans and infected snail, thus the

model system (4.4) has a disease free equilibrium

E0 = (SH , EH , IH , U, L, IS) =
(ΛH

µH

, 0, 0,
ΛS

δS
, 0, 0

)

.
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The endemic equilibrium point for system (4.2) in terms of the forces of infection

λ∗
H and λ∗

Sis given by

S∗
H =

ΛH(κH + µH)(µH + δH + γH)

(λ∗
H + µH)(κH + µH)(µH + δH + γH)− γHκHλ∗

H

,

E∗
H =

λ∗
HΛH(µH + δH + γH)

δH(κH + µH)(λ
∗
H + µH) + µH [(κH + µH)(λ

∗
H + µH) + γH(κH + λ∗

H + µH)]
,

I∗H =
κHλ

∗
HΛH

δH(κH + µH)(λ
∗
H + µH) + µH [(κH + µH)(λ

∗
H + µH) + γH(κH + λ∗

H + µH)]
,

U∗ =
Λ∗

S

δS + λ∗
S

, L∗ =
λ∗
SΛS

(α + δS + κS)(δS + λ∗
S)
, I∗S =

κSλ
∗
SΛS

(α + δS)(α + δS + κS)(δS + λ∗
S

.

(4.5)

4.3.1. Basic reproduction number

The next generation operator approach as described by Diekmann et al (1990) is

used to define the basic reproductive number, Rs, as the number of new infections

(in snails or humans) produced by one infectious individual or snail over the dura-

tion of the infectious period in a naive population.

Rs =

√

κHκSβHθCΛHβSθMΛS

δcC0δHδMM0δS(κH + µH)(δS + α + κS)(δS + α)(µH + δH + γH)
. (4.6)

4.3.2. Local stability of the disease-free equilibrium E0

The local stability of the disease free equilibrium can be discussed by examining

the linearised form of the system (4.4) at the steady state E0.

Theorem 4.1. The disease-free equilibrium E0 is locally asymptotically stable when-

ever Rs < 1, and unstable otherwise.

Proof. The Jacobian matrix of the model (4.4) evaluated at the disease free equi-
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librium point is given by





























−µH 0 γH 0 0 −βHθCΛH

δcC0δH

0 −(κH + µH) 0 0 0 βHθCΛH

δcC0δH

0 κH −(µH + δH + γH) 0 0 0

0 0 − βSθMΛS

δMM0δC
−δS 0 0

0 0 βSθMΛS

δMM0δC
0 −(δS + α + κS) 0

0 0 0 0 κS −(δS + α)





























.

The first and the fourth columns have diagonal entries resulting in these diagonal

entries being two of the eigenvalues of the Jacobian matrix −µM and −δS . Now

excluding these columns and the corresponding rows we calculate the remaining

eigenvalues.

















−(κH + µH) 0 0 βHθCΛH

δcC0δH

κH −(µH + δH + γH) 0 0

0 βSθMΛS

δMM0δC
−(δS + α + κS) 0

0 0 κS −(δS + α)

















.

Let a1 = κH + µH , a4 =
βHθCΛH

δcC0δH
.

In the same manner,

b1 = κH , b2 = µH + δH + γH , c2 =
βSθMΛS

δMM0δC
, c3 = δS +α+κS, d3 = κS, d4 = δS +α.

The eigenvalues are solutions of the characteristic equation of the reduced matrix

of dimension four which is given by

(κH + µH + λ)[(µH + δH + γH + λ)(δS + α + κS + λ)(δS + α + λ)]− κHκSβHθCΛHβSθMΛS

δcC0δHδMM0δS
= 0
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which is simplified to

λ4 + A3λ
3 + A2λ

2 + A1λ + A0 = 0,

A3 = a1 + b2 + c3 + d4,

A2 = (a1 + d4)(b2 + c3) + a1d4 + b2c3,

A1 = c3d4(b2 + a1) + a1b2(c3 + d4),

A0 = (κH + µH)(δS + ακS)(δS + α)(µH + δH + γH)− κHκSβHθCΛHβSθMΛS

δcC0δHδMM0δS
.

(4.7)

The Routh-Huwirtz conditions are sufficient and necessary conditions on the co-

efficients of the polynomial (4.7). These conditions ensure that all roots of the

polynomial given by (4.7) have negative real parts. For this polynomial, the Routh-

Hurwitz conditions are A3 > 0, A2 > 0, A1 > 0, A0 > 0 and

H1 = A3 > 0,

H2 =

∣

∣

∣

∣

∣

∣

A3 1

A1 A2

∣

∣

∣

∣

∣

∣

> 0,

H3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

A3 1 0

A1 A2 A3

0 A0 A1

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0,

H4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A3 1 0 0

A1 A2 A3 1

0 A0 A1 A2

0 0 0 A0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

> 0,

since all Ai > 0, i = 1, 2, 3.
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Note that from

A0 = (κH + µH)(δS + ακS)(δS + α)(µH + δH + γH)−
κHκSβHθCΛHβSθMΛS

δcC0δHδMM0δS

= (κH + µH)(δS + ακS)(δS + α)(µH + δH + γH)(1− R2
S).

At disease free equilibrium, RS < 1, which implies that A0 > 0.

Clearly, H1 = A3 > 0.

H2 = A3A2 − A1,

= (b2 + c3)(b2 + d4)(c3 + d4) + a21(b2 + c3 + d4) + a1(b2 + c3 + d4)
2

(4.8)

which is positive.

H3 = A1(A3A2 −A1)− A0A
2
3,

= a31(b2 + c3)(b2 + d4)(c3 + d4) + b2c3(b2 + c3)d4(b2 + d4)(c3 + d4) + a4b1c2d3(b2 + c3 + d4)
2

+a21(a4b1c2d3 + b32(c3 + d4) + 2b22(c3 + d4)
2 + c3d4(c3 + d4)

2 + b2(c
3
3 + 4c23d4 + 4c3d

2
4 + d34))

+a1(b
3
2(c3 + d4)

2 + (c3 + d4)(2a4b1c2d3 + c23d
2
4) + b22(c

3
3 + 4c23d4 + 4c3d

2
4 + d34)

+2b2(a4b1c2d3 + c3d4(c3 + d4)
2))

(4.9)

which is also positive.

It can be easily seen that H4 = A0H3.

Therefore, all eigenvalues of the Jacobian matrix have negative real parts when

Rs < 1. However, Rs > 1 implies that A0 < 0, and since all coefficients of the

polynomial (4.7) are positive, not all roots of this polynomial can have negative

real parts. This means that when Rs > 1, the disease free equilibrium point is
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unstable.

4.4. Numerical simulations

We explore the effects of temperature and rainfall using graphical representations.

In Figure 4.2, the effects of temperature on snail recruitment rate, snail mortality

rate, basic reproduction number, miracidia death rate, miracidia infection rate and

within snail schistosome maturation rate are illustrated. The snail recruitment

rate is 0 at 15oC and increases to a maximum at around 23oC before declining to

zero again at around 340C. This is in agreement with Dagal et al (1986) because

no snail eggs hatch at temperatures lower than 15oC and at temperatures greater

or equal to 35oC. The snail recruitment rate is maximum at 24oC as the optimal

temperatures for reproduction lie between 220C and 260C, in agreement with WHO

(2015). Snail mortality is high at low temperatures but decreases to a minimum

between 20oC and 25oC before increasing again at higher temperatures. The re-

production number is zero at 10oC and increases to become greater than unity

around 18oC. It increases to a maximum at about 22.5oC before declining to zero at

about 35oC. The reproduction number is greater than unity between 18oC and 28oC

making this temperature range the ideal temperature range for endemic schisto-

somiasis. Matlab codes are used to obtain the numerical simulations.
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Figure 4.2: Simulation of (a) Snail egg laying rate, (b) Snail mortality rate, (c) Rs,
(d) Miracidia death rate, (e) Miracidia infection rate and (f) within snail schisto-
some maturation rate using parameter functions in Table 1.
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In Figure 4.3, simulations show convergence to the endemic equilibrium point of

pre-patent snails, patent snails, exposed humans and infectious humans is illus-

trated. Results show that in the long term, the effects of temperature within the

range 20− 25oC on human infectivity is more or less constant.
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Figure 4.3: Simulation of infected snails and human populations with varying tem-
perature, using model system (2).
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Figure 4.4 shows different reproduction numbers across Zimbabwe. Cooler and

warmer colours represent low and high reproduction numbers respectively. Thus

based on temperature alone highest reproduction numbers are in the lower veld

and the Zambezi valley catchment area. Higher reproduction numbers signify

higher incidences of schistosomiasis. Based on these results which are temper-

ature dependant, it is shown that most major towns have very low incidence of

schistosomiasis if we are to base the results on temperature only.

Figure 4.4: Variation of reproduction number Rs as a function of temperature in Zim-
babwe.

In Figure 4.5, the combined effects of temperature and rainfall patterns in Zim-

babwe from 1950-2000 were used to map the reproduction number risk map for

schistosomiasis transmission. As the intensity of the colour increases, the repro-

duction number also increases. Therefore, high reproductive numbers are found

in the lower veld of Zimbabwe and along the Zambezi valley catchment area. This

correlates with high incidence of schistosomiasis. This result is in total agreement
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with Midzi et al (2014) who obtained similar results for the cross-sectional survey of

280 primary schools country wide. The combined effect of rainfall and temperature

seem to lower the reproduction number as the reproduction number is a decreasing

function of rainfall.

Figure 4.5: Variation of reproduction number Rs as a function of temperature and rainfall
in Zimbabwe.

4.5. Discussion

In this chapter, a mathematical model to explore the impact of temperature and

water bodies taken in the context of rainfall on schistosomiasis transmission is

presented as a system of differential equations and analysed. In agreement with

Dagal et al. (1986), the model analysis suggests that the temperature range of

18oC to 28oC is found to be ideal for schistosomiasis transmission. The reproduc-

tion number increases as temperature increases to attain a maximum around 23oC,
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beyond which the reproduction number starts declining. This result suggests the

optimal temperature for schistosomiasis transmission is around 23oC. The ana-

lytic results are also supported by numerical simulations which show an increased

infection among snails at 22oC as compared to at 20oC and 25oC. At 30oC the infec-

tion dies out. Amongst humans however, the infection is endemic from 20 − 25oC

and the differences in transmission in relation to temperatures are minimal. Ge-

ographical information systems (GIS) was used to map the reproduction number

on the Zimbabwe map using temperature and rainfall data from 1950-2000. It

was noted that high reproduction numbers are found in the Zambezi valley catch-

ment area and the lower veld of the country. High reproduction numbers suggest

high incidences of schistosomiasis. The results of this manuscript can be used to

identify areas which need special attention with regard to schistosomiasis control.

Chiredzi, a known irrigated sugarcane producing area and Mushandike areas in

the lowveld of Zimbabwe are among those requiring special attention in the fight

against schistosomiasis. This can be extended to incorporate other aspects like the

terrain of the country under study to capture the real dynamics of what happens

on the ground.



Chapter 5

Mapping malaria and

schistosomiasis coinfection in

Africa and South America

5.1. Introduction

Malaria and schistosomiasis are the worlds two most important parasitic infec-

tions in terms of distribution, morbidity, and mortality. Both infections are highly

endemic in tropical and sub tropical areas (Adegnika and Kremsner, 2012; Akue et

al., 2011; Brooker et al., 2007). In the tropics, Sub Saharan Africa bears the heav-

iest burden of Plasmodium infections and 90% of all schistosomiasis cases world-

wide are confined into this part of the world (Hotez and Kamath 2009; Simoonga et

al. 2009). In areas where Plasmodium and Schistosoma species are both endemic,
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coinfections are common. Research on parasitic infections has over the years been

focused on a singular disease, in recent years however there has been a growing

recognition that patients in tropical regions worldwide often experience dual in-

fections (Keusch and Migasena, 1982). In parasitic coinfection, the interactions

between diseases can cause altered immunologic and pathological outcomes com-

pared to what usually occurs with single infections (Supali et al., 2010).

Epidemiological studies have shown that heavy schistosomiasis mansoni infections

are associated with a significant increase in the incidence of malaria among school-

age children (Ndefo Mbah et al. 2014). In this chapter, we extend the work done in

Chapters 2, 3 and 4 to come up with coinfection of the two tropical infections. The

current work is focused on predicting the coinfection pattern of schistosomiasis and

malaria, laying the basis for public health management system to map interven-

tion strategies and allocate resources accordingly for eliminating the diseases.

5.2. Model formulation

A mathematical model for the interplay between malaria and S. mansoni is de-

veloped. Malaria and schistosomiasis transmission is modeled as follows: At each

point in time people can be in one of seven states: susceptible (S), malaria exposed

(EHM), malaria infectious (IHM ), recovered with temporary immunity (R), schisto-

somiasis exposed (EHS), schistosomiasis infectious (IHS) and schistosomiasis and

malaria coinfected (X).

Upon infection with the malaria parasite, individuals will then move to the ex-
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posed class EHM , where parasites in their bodies are still in the asexual stages.

Both human and mosquito infections take time to develop into an infectious state.

We assume that exposed individuals are not capable of transmitting the disease

to susceptible mosquitoes as they do not have gametocytes. Humans exposed to

the malaria parasite progress at a rate κH to the infectious class, in which they

now have gametocytes in their bloodstream making them capable of infecting the

susceptible anopheles mosquitoes. Treated individuals recover at a rate αM with

temporary immunity and enter the class R. Temporarily immune individuals lose

immunity at a rate γ and join the susceptible class. Infected individuals who do not

seek treatment die from malaria infection at a rate η. The birth rate for humans

is θ and individuals die naturally at a rate µH . Within host parasite dynamics are

weather independent, but within vector parasite dynamics, as well as the mosquito

life cycle are weather dependent. The mosquito population is divided into the juve-

nile (JM(t)) and adult population which is subdivided into three classes: susceptible

(SM(t)), exposed EM(t) and infectious (IM(t)). Adult mosquitoes are recruited from

the juvenile mosquito population at a rate ΛM . The rate of infecting a susceptible

mosquito depends on the mosquitoes’ biting rate a and the proportion of bites by

susceptible mosquitoes on infected humans that produce infection bM . Susceptible

mosquitoes that feed on infectious humans will take gametocytes in blood meals,

but as they do not have sporozoites in their salivary glands, they enter into the

exposed class. After fertilisation, sporozoites are produced and migrate to the sali-

vary glands ready to infect any susceptible host, the vector is then considered as

infectious. Mosquitoes die at a rate µM which is independent of infection status.
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Infected mosquitoes are not harmed by the infection, never clear their infection

and the infective period of the mosquito ends with its death.

For schistosomiasis transmission, the model is based on monitoring the dynam-

ics of the populations at any time t of susceptible humans SH , exposed humans

EHS, infected humans IHS, miracidia M , susceptible snails U , prepatent snails L

patent snails IS and the cercariae C. The susceptible population is the same pop-

ulation susceptible to malaria. Susceptible individuals acquire infection at a rate

λH =
βHC(t)

C0 + ǫC(t)
, where βH is the cercarial infection rate, C0 is a saturation con-

stant for the cercariae and ǫ is the limitation of the growth velocity of cercariae with

the increase of cases. Upon infection, an individual does not automatically become

infectious but enters an exposed class as the incubation period of schistosomiasis

ranges from 4-8 weeks for schistosomiasis mansoni and schistosomiasis japonicum,

respectively (Cohen, 1977; Spira, 2003). Individuals then progress to the infectious

compartment at a rate κHS. Susceptible and infected individuals suffer from natu-

ral death rate µH , but infectious individuals have an additional host mortality δH .

Treated individuals recover at a rate αs to join the class R with temporary immu-

nity. Adult schistosomes within infected human hosts produce eggs which hatch

and develop to free-swimming miracidia at a net rate θM . Miracidia either die at a

rate δM or infect uninfected snails at rate λS =
βSM

M0 + ǫM
. Adult snails are recruited

into the susceptible snail population at a rate ΛS. Upon infection, snails enter the

latently infected class from which they progress to the patent infected class at a

rate κS. Adult snails die naturally at rate µS and infected adult snails also die due
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to parasite-induced mortality at an additional rate α. The patent infected snails

will then release a second form of free swimming larvae called cercariae at a rate

θC which is capable of infecting humans. Cercariae die naturally at the rate δC .

Individuals can be dually infected by malaria and schistosomiasis. We assume

that individuals who aquire malaria infection while they are already infected with

schistosomiasis will progress to being malaria infectious faster. Individuals who

are already malaria infectious cannot aquire schistosomiasis because of reduced

contact with water as they are already considered less mobile due to malaria dis-

ease. Individuals who show symptoms of schistosomiasis when further infected

with malaria parasites, quickly progress to the infectious state of malaria hence

the modification parameter p. Thus the coinfection compartment X consists of in-

dividuals who are dually infected. Individuals in the compartment X recover from

treatment of both malaria and schistosomiasis at a rate αSM to join the class R.

Individuals who are not treated from compartment X as a result of dual infection

die at a rate ηSM .

The model flow diagram is presented in Figure 5.1.
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Figure 5.1: Malaria schistosomiasis coinfection model.
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The model equations describing the dynamics of infection are as follows

S ′
H(t) = ΛH − λM(T,R)SH − λB(T,R)SH − µHSH + αSIHS + γR,

E ′
HM(t) = λM(T,R)SH − (κHM + µH)EHM ,

I ′HM(t) = κHMEHM − (µH + αM + η)IH ,

R′
H(t) = αIHM − (γ + µH)RH ,

J ′
M(t) = βJ(T )NM(1− JM

K
)− µJ(T ) JM − βM(T )JM ,

S ′
M(t) = βM(T )JM − λV (T,R)SM − µM(T )SM ,

E ′
M(t) = λV (T,R)SM − (κM(T ) + µM(T ))EM ,

I ′M(t) = κM(T )EM − µM(T )IM ,

E ′
HS(t) =

βHCSH

C0 + ǫC
− (κHS + µH)EHS,

I ′HS(t) = κHSEHS − (µH + δH + γH)IHS,

M ′(t) = θMIH − βSMU

M0 + ǫM
− δMM,

U ′(t) = ΛS − βSMU

M0 + ǫM
− µSU,

L′(t) =
βSMU

M0 + ǫM
− (µS + α + κ)L,

I ′S(t) = κL− (µS + α)IS,

C ′(t) = θCIS − βHCSH

C0 + ǫC
− δCC,

X ′(t) = λM(EHS + IHS) + λBEHM − αSMX − µHX,

(5.1)
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where, λM =
a(T,R)bHIM

NM

, λV =
a(T,R)bMIHM

NH

, λB =
βHC

C0 + ǫC
and λS =

βSM

M0 + ǫM
.

Note that

NH = SH + EHM + IHM +R + EHS + IHS +X,

NV = SM + EM + IM ,

NS = U + L+ IS.

(5.2)

5.2.1. Positivity and boundedness of solutions

Model (5.1) describes the human, juvenile mosquito, adult mosquito, snail, miracidia

and cercarea populations and therefore it can be shown that the associated state

variables are non-negative for all time t ≥ 0 and that the solutions of the model

(5.1) with positive initial data remains positive for all time t ≥ 0. We assume the

associated parameters are nonnegative for all time t ≥ 0. We show that all feasible

solutions are uniformly bounded in a proper subset Ψ = ΨH×ΨJ×ΨV ×ΨS×ΨC×ΨM .

Theorem 5.1. Solutions of the model (5.1) are contained in the region Ψ = ΨH ×

ΨJ ×ΨV ×ΨS ×ΨC ×ΨM .

Proof. To show that all feasible solutions are uniformly-bounded in a proper subset

Ψ, we split the model (5.1) into the human component (NH), juvenile mosquito

component JM , the adult mosquito component (NV ), the snail component (NS), the

miracidia component (M) and the cercarea component (C) given by equations (5.2).
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Let

(SH , EHM , IHM , R, EHS, IHS, X) ∈ IR7
+

be any solution with non-negative initial conditions. From the theorem by Birkhoff

and Rota (1989) on differential inequality it follows that

lim sup
t→∞

SH(t) ≤
ΛH

µH

.

Taking the time derivative of NH along a solution path of the model (5.1) gives

dNH

dt
= ΛH − µHNH − ηMIHM − ηSIHS − ηSMX.

Then,

dNH

dt
≤ ΛH − µHNH .

From the theorem by Birkhoff and Rota (1989) on differential inequality it follows

that

0 ≤ NH ≤ ΛH

µH

+NH(0)e
−µH t

where NH(0) represents the value of (5.2) evaluated at the initial values of the

respective variables. Thus as t → ∞, we have

0 ≤ NH ≤ ΛH

µH

.

This shows that NH is bounded and all the feasible solutions of the human only

component of model (5.1) starting in the region ΨH approach, enter or stay in the
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region, where

ΨH =
{

(SH , EHM , IHM , R, EHS, IHS, X) : NH ≤ ΛH

µH

}

. (5.3)

Similarly, let

(SV , EV , IV ) ∈ IR3
+

be any solution with non-negative initial conditions. Then

lim sup
t→∞

SV (t) ≤
ΛV

µV

.

Taking the time derivative of NV along a solution path of the model (5.1) gives

dNv

dt
= ΛV − µVNV .

The mosquito-only component (5.2) has a constant population size. Therefore,

dNV

dt
≤ ΛV − µVNV .

From the theorem by Birkhoff and Rota (1989) on differential inequality it follows

that

0 ≤ NV ≤ ΛV

µV

+NV (0)e
−µV t,

where NV (0) represents the value of (5.2) evaluated at the initial values of the

respective variables. Thus as t → ∞, we have

0 ≤ NV ≤ ΛV

µV

.
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This shows that NV is bounded and all the feasible solutions of the mosquito only

component of model (5.1) starting in the region ΨV approach, enter or stay in the

region, where

ΨV = {(SV , EV , IV ) : NV ≤ ΛV µV }. (5.4)

Similarly, let

(U, L, IS) ∈ IR3
+

be any solution with non-negative initial conditions. Then

lim sup
t→∞

U(t) ≤ ΛS

µS

.

Taking the time derivative of NS along a solution path of the model (5.1) gives

dNS

dt
= ΛS − α(L+ IS)− µSNS.

The snails-only component (5.2) has a varying population size. Therefore,

dNS

dt
< ΛS − µSNS.

From the theorem by Birkhoff and Rota (1989) on differential inequality it follows

that

0 ≤ NS ≤ ΛS

µS

+NS(0)e
−µSt,

where NS(0) represents the value of (5.2) evaluated at the initial values of the
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respective variables. Thus as t → ∞, we have

0 ≤ NS ≤ ΛS

µS

.

This shows that NS is bounded and all the feasible solutions of the snails only

component of model (5.1) starting in the region ΨS approach, enter or stay in the

region, where

ΨS = {(U, L, IS) : NS ≤ ΛS

µS

}. (5.5)

All feasible solutions of model system (5.1) enter the region

Ψ =



































































































































ΨH = (SH , EHM , IHM , R, EHS, IHS, X) ∈ IR7
+ : NH ≤ ΛH

µH

,

ΨJ = JM ∈ IR+ : JM ≤ K,

ΨV = (SV , EV , IV ) ∈ IR3
+ : NV ≤ ΛV

µV

,

ΨS = (U, L, IS) ∈ IR3
+ : NS ≤ ΛS

µS

,

ΨM = M ∈ IR+ : M ≤ θMΛH

δMµH

,

ΨC = C ∈ IR+ : C ≤ θCΛS

δCµS

,



































































































































. (5.6)

which is positively invariant and attracting and it is sufficient to consider solutions

in Ψ. Existence, uniqueness and continuation results for system (5.1) hold in this

region and all solutions starting in Ψ remain in there for all t ≥ 0. Hence, (5.1) is

mathematically and epidemiologically well-posed and it is sufficient to consider the
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dynamics of the flow generated by the model system (5.1) in Ψ. Also, all parameters

and state variables for model system (5.1) are assumed to be non-negative since it

monitors human, mosquito, snail, miracidia and cercariae populations.

5.2.2. Disease free equilibrium (DFE)

The disease free equilibria,

E0 = (
ΛH

µH

, 0, 0, 0,
βJNMK

βJ +K(µJ + βM)
,

βMβJNMK

µM [βJ +K(µJ + βM)]
, 0, 0, 0, 0, 0,

ΛS

µS

, 0, 0, 0, 0).

The coinfection reproduction number

Rsm = max
{√

a2bHbMκHκMSHSM

Z1
,
√

βHβSθCθMκHSκSSHU

Z2

}

,

= max
{

Rm, Rs

}

,

(5.7)

where

Z1 = µMNHNM(η + αM + µH)(κHM + µH)(κM + µM),

and

Z2 = C0M0δCδM(γH + δH + µH)(κHS + µH)(α + µS)(α+ κS + µS).

The parameters used for numerical simulations are taken from Tables 3.1 and 4.1

5.3. Results

Figure 5.2 shows the simulated basic reproduction numbers for malaria and schis-

tosomiasis on the African continent and the Americas based on the baseline cli-



Mapping malaria and schistosomiasis coinfection in Africa and the Americas 106

mate. This ideally shows the regions where the environmental ambient conditions

allow malaria endemicity alone, schistosomiasis endemicity alone or coinfection

insighted from the model.

Rsm

1.2 - 3.6

3.6 - 5.2

5.2 - 7.6

7.6 - 10.4

10.4 - 16.4

Rs

1.0 - 2.4

2.4 - 4.2

4.2 - 9.7

Rm

1.0 - 4.7

4.7 - 9.1

9.1 - 17.4
0 2,0001,000 km

Malaria and schistosomiasis co-infection in Africa and the Americas

/
Figure 5.2: Malaria schistosomiasis coinfection pattern.
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5.4. Discussion

A mathematical model for schistosomiasis and malaria coinfection incorporating

rainfall and temperature is analysed. The coinfection reproduction number is com-

puted and mapped on the continents of Africa and South America. Results from the

mapping suggest that environmental ambient conditions in the equatorial regions

of Africa and Latin America promote malaria and schistosomiasis coinfection with

a heavier burden of coinfection in South America especially Brazil. Within Africa,

there are some countries where it is beneficial to target both diseases for example

DRC, Angola, Madagascar except the southern tip. The same pattern of coinfec-

tion is observed in South America. However there are some areas where targeting

Malaria only is warranted. In the sub-tropical regions, including Namibia, South

Africa and the greater part of Zimbabwe schistosomiasis is more dominant than

malaria. The same goes for the areas on the northern fringe of the Sahara. Results

show that coinfection is a greater problem in general in South America than in

Africa. These results also suggest that one of the reasons why malaria mortality is

higher in Africa may not necessarily be because of endemicity but of poor and fail-

ing health systems. Results of this current work also correspond with the targerted

areas of control of schistosomiasis in South America (CDC, 2012). However health

systems should target both diseases in Africa and the Americas as schistosoma

infection enhances malaria incidence (Ndeffo et al., 2014).



Chapter 6

Conclusion

6.1. Introduction

In this study, climate driven deterministic models of malaria, schistosomiasis and

a coinfection model for malaria and schistosomiasis were developed. Temperature

and rainfall were incorporated in the models to explore the effects of climate vari-

ability and change on the disease transmission dynamics. Calculated reproductive

rates of the models were mapped to determine whether results from mathematical

models agree with the situation on the ground. Projections were made for future

transmission dynamics in order to inform policy makers on how to deal with dis-

eases in the future.
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6.2. Summary and concluding remarks

In Chapter 2, a human-mosquito population model for malaria dynamics incorpo-

rating temperature dependant parameters was developed. Results from the model

suggests that temperature range 230C to 380C is ideal for malaria transmission.

Beyond 380C mosquito mortality is extremely high and the reproduction number

drops below unit. The model suggests that optimal temperature for malaria trans-

mission is around 310C. The analysed results are also supported by numerical

simulations which show an increase in malaria cases as temperature increases to

about 380C and a decrease thereafter. Results of the partial rank correlation coeffi-

cients (PRCCs) illustrated that the death rate of mosquitoes has a negative impact

on the reproduction number. This then suggests that any factor which contributes

to increased mosquito mortality has potential to reduce malaria transmission.

In Chapter 3 the aspect of water bodies as a result of rainfall is incorporated

into the model formulated in Chapter 2. Apart from the optimal temperature

for malaria transmission being around 310C, results from the model analysis sug-

gested a daily rainfall in the range of 15− 17mm is ideal for the spread of malaria.

The reproduction number dependent on both temperature and rainfall is applied to

gridded temperature and rainfall datasets to determine the transmission pattern

of malaria across Africa. The results of the transmission pattern fall within the

observed falciparum limit of 2010 Gething et al. (2011). The reproduction num-

ber is also applied to projected datasets of temperature and rainfall to predict the

future impact of climate change on malaria transmission. Results from the study
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suggest that in future, malaria will die out on the southern fringe of the disease in

Africa, giving hope for malaria eradication in Southern Africa. However malaria

will remain endemic in the tropics and coastal areas of East Africa. Furthermore,

results of the study suggest an upward shift of the northern limit of falciparum

malaria and endemic malaria will become a problem in the African highlands.

In Chapter 4 a schistosomiasis transmission model with parameters related to

snails and parasite dynamics dependent on temperature is developed. The snail

recruitment rate was dependant on both temperature and rainfall. The mathe-

matical analysis of the model was done and the reproduction number for schis-

tosomiasis transmission was mapped to temperature and rainfall datasets from

Zimbabwe. Environmental ambient conditions suitable for endemic schistosomi-

asis were suggested to be in the lower veld of Zimbabwe and along the Zambezi

valley catchment area. Results of the study suggest an optimal temperature for

schistosomiasis transmission around 230C.

In Chapter 5 a rainfall and temperature dependent malaria and schistosomiasis

coinfection model is developed. The coinfection reproduction number is also com-

puted and mapped to show the effect of climate variability on the pattern of coin-

fection in Africa and the Americas. Results from the study suggest a high burden

of schistosomiasis coinfection in Africa and Latin America along the tropics and

subtropics. These results suggest both schistosomiasis and malaria control pro-

grammes in these areas. In countries on the northern fringe of the Sahara, and the

sub tropical regions of Africa including Namibia, South Africa and the greater part
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of Zimbabwe, channelling resources towards eliminating schistosomiasis should be

a priority.

6.3. Future research directions

The results of this thesis leave room for possible future research. We propose the

following extensions.

• In this study we have gained insight into the effects of climate variability

on the dynamics of schistosomiasis and the effect of climate change on the

dynamics of malaria. The knowledge gained from this theoretical study can

be used in the implementation of a practical project, thus a possible extension

of this thesis would be to consider the implementation of practical projects in

the light of this work for African countries.

• Given that lymphatic filariasis is also a mosquito transmitted infection, its

coinfection with malaria may also be investigated in light of climate change.

• Possible extensions of this thesis are to incorporate other aspects like human

migration, relative humidity, the role of socio-economic factors and the spatial

variation of the countries under study to capture the the real transmission

dynamics of schistosomiasis and malaria.
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Appendix

The matlab code for numerical simulations in Figure 4.3 is presented below.

function dx = bilharzia(t,x) global PiH BH C0 epsilon muH deltaH gammaH a K

piS deltaE thetaE lambdaM BS M0 deltaM deltaJ thetaS deltaS kappah kappas

alpha lambdaC deltaC deltaP LambdaS dx = zeros(8, 1);

T = 40;

a = 0.23;

b = −1.05;

c = 0.1;

P = 30;

Bm = 0.849;

BH = (−2.2957184151497)+(0.44586818702128)∗log(T )+(2.95983357327484)/(log(T ));

C0 = 90000000;

epsilon = 0.2;

muH = 0.00000384;

kappah = 0.017857;

deltaH = 0.0039;

gammaH = 0.006;

LambdaS = 2000∗exp(351.04480681884+(−1925.49534415329)/T+(−85.1815135926783)∗
log(T ));

kappas = 1/10 ∗ (T/(6271.093098237131+165.427360339652 ∗T +(−1946.87993772373 ∗
sqrt(T ))));

thetaE = 0.0318402041755522/(1+(−0.0416780520469753)∗T+0.000577602879269135∗
T. ∗ T );
lambdaM = 500;

BS = −8.59111 + 855/T − 31487.35/T 2 + 574921.12/T 3 − 5188906/T 4 + 18196700/T 5;

M0 = 100000000;

deltaM = 1/1000 ∗ ((3.98974358865154E − 07) ∗ T 5 + (−3.7263403251269E − 05) ∗ T 4 +

(4.96981351536597E−04)∗T 3+(3.99238927794239E−02)∗T 2+(−1.14921235431391)∗
T + 9.58999999983625);

deltaJ = (−2.19004925774938E − 04) + (2.66513140443254E − 07). ∗ T. ∗ T. ∗ T +
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(5.98522430001724E − 18). ∗ exp(T );
thetaS = T/(79196.0253972279+3446.39220863669 ∗T+(−32898.311685307) ∗ sqrt(T ));
alpha = 1/100∗((−1.333627E−02)+8.738295237E−06∗T 2.5+1334.208298∗exp(−T ));

deltaP = (8.45272006716759E−02)+(4.86602370933418E−18).∗exp(T )+(−4.00521351511864E−
03). ∗ (T (0.5)). ∗ log(T );
lambdaC = 6.44999999999998 ∗ T. ∗ T + 40.1900000000012 ∗ T + (−907.850000000018);

deltaC = 0.004;

PiH = 800;

deltaS = 1/100∗(11.4266138930207+(−126.890461063771)/log(T )+(525.291589814963)/(log(T ))

(−960.378832397901)/(log(T ))3 + (654.302614387871)/(log(T ))4);

dx(1) = PiH− (BH ∗x(8) ∗x(1))/(C0+ epsilon ∗x(8))−muH ∗x(1)+ gammaH ∗x(3);
dx(2) = (BH ∗ x(8) ∗ x(1))/(C0 + epsilon ∗ x(8))− (muH + kappah) ∗ x(2);
dx(3) = kappah ∗ x(2)− (muH + deltaH + gammaH) ∗ x(3);
dx(4) = LambdaS − (BS ∗ x(7) ∗ x(4))/(M0 + epsilon ∗ x(7))− deltaS ∗ x(4);
dx(5) = (BS ∗ x(7) ∗ x(4))/(M0 + epsilon ∗ x(7))− (alpha + deltaS + kappas) ∗ x(5);
dx(6) = kappas ∗ x(5)− (alpha + deltaS) ∗ x(6);
dx(7) = lambdaM ∗ x(3)− deltaM ∗ x(7);
dx(8) = lambdaC ∗ x(6)− deltaC ∗ x(8);
global PiH BH C0 epsilon muH deltaH gammaH a K deltaE thetaE lambdaM BS

M0 deltaM deltaJ thetaS deltaS kappah kappas alpha lambdaC deltaC deltaP

hold on

[t, x] = ode45(′bilharzia′, [0.0 : 0.1 : 4000.0], [1000000.0, 5000.0, 200.0, 100000.0, 1000.0, 100.0, 100000

plot(t, x(:, 1),′ r′,′ Linewidth′, 1.5)

plot(t, x(:, 2),′ b′,′ Linewidth′, 1.5)

plot(t, x(:, 3),′ r′,′ Linewidth′, 1.5)

plot(t, x(:, 4),′ r′,′ Linewidth′, 1.5)

plot(t, x(:, 5),′ b′,′ Linewidth′, 1.5)

plot(t, x(:, 6),′ b′,′ Linewidth′, 1.5)

plot(t, x(:, 7),′ r′,′ Linewidth′, 1.5)

plot(t, x(:, 8),′ g′,′ Linewidth′, 1.5)

hold off


